Di Cerbo, A.; Palatucci, A. T.; Rubino, V.; Centenaro, S.; Giovazzino, A.; Fraccaroli, E.; Cortese, L.; Ruggiero, G.; Guidetti, G.; Canello, S.
2015-01-01
ABSTRACT Antibiotics are widely used in zoo technical and veterinary practices as feed supplementation to ensure wellness of farmed animals and livestock. Several evidences have been suggesting both the toxic role for tetracyclines, particularly for oxytetracycline (OTC). This potential toxicity appears of great relevance for human nutrition and for domestic animals. This study aimed to extend the evaluation of such toxicity. The biologic impact of the drug was assessed by evaluating the proinflammatory effect of OTC and their bone residues on cytokine secretion by in vitro human peripheral blood lymphocytes. Our results showed that both OTC and OTC‐bone residues significantly induced the T lymphocyte and non‐T cell secretion of interferon (IFN)‐γ, as cytokine involved in inflammatory responses in humans as well as in animals. These results may suggest a possible implication for new potential human and animal health risks depending on the entry of tetracyclines in the food‐processing chain. PMID:26537863
Di Cerbo, A; Palatucci, A T; Rubino, V; Centenaro, S; Giovazzino, A; Fraccaroli, E; Cortese, L; Ruggiero, G; Guidetti, G; Canello, S; Terrazzano, G
2016-04-01
Antibiotics are widely used in zoo technical and veterinary practices as feed supplementation to ensure wellness of farmed animals and livestock. Several evidences have been suggesting both the toxic role for tetracyclines, particularly for oxytetracycline (OTC). This potential toxicity appears of great relevance for human nutrition and for domestic animals. This study aimed to extend the evaluation of such toxicity. The biologic impact of the drug was assessed by evaluating the proinflammatory effect of OTC and their bone residues on cytokine secretion by in vitro human peripheral blood lymphocytes. Our results showed that both OTC and OTC-bone residues significantly induced the T lymphocyte and non-T cell secretion of interferon (IFN)-γ, as cytokine involved in inflammatory responses in humans as well as in animals. These results may suggest a possible implication for new potential human and animal health risks depending on the entry of tetracyclines in the food-processing chain. © 2015 The Authors Journal of Biochemical and Molecular Toxicology Published Wiley Periodicals, Inc.
Tsai, Julie; Qiu, Wei; Kohen-Avramoglu, Rita; Adeli, Khosrow
2007-01-01
Hepatic VLDL assembly is defective in HepG2 cells, resulting in the secretion of immature triglyceride-poor LDL-sized apoB particles. We investigated the mechanisms underlying defective VLDL assembly in HepG2 and have obtained evidence implicating the MEK-ERK pathway. HepG2 cells exhibited considerably higher levels of the ERK1/2 mass and activity compared with primary hepatocytes. Inhibition of ERK1/2 using the MEK1/MEK2 inhibitor, U0126 (but not the inactive analogue) led to a significant increase in apoB secretion. In the presence of oleic acid, ERK1/2 inhibition caused a major shift in the lipoprotein distribution with a majority of particles secreted as VLDL, an effect independent of insulin. In contrast, overexpression of constitutively active MEK1 decreased apoB and large VLDL secretion. MEK1/2 inhibition significantly increased both cellular and microsomal TG mass, and mRNA levels for DGAT-1 and DGAT-2. In contrast to ERK, modulation of the PI3-K pathway or inhibition of the p38 MAP kinase, had no effect on lipoprotein density profile. Modulation of the MEK-ERK pathway in primary hamster hepatocytes led to changes in apoB secretion and altered the density profile of apoB-containing lipoproteins. Inhibition of the overactive ras-MEK-ERK pathway in HepG2 cells can correct the defect in VLDL assembly leading to the secretion of large, VLDL-sized particles, similar to primary hepatocytes, implicating the MEK-ERK cascade in VLDL assembly in the HepG2 model. Modulation of this pathway in primary hepatocytes also regulates apoB secretion and appears to alter the formation of VLDL-1 sized particles.
Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages.
Lee, Jacinta P W; Foote, Andrew; Fan, Huapeng; Peral de Castro, Celia; Lang, Tali; Jones, Sarah A; Gavrilescu, Nichita; Mills, Kingston H G; Leech, Michelle; Morand, Eric F; Harris, James
2016-06-02
MIF (macrophage migration inhibitory factor [glycosylation-inhibiting factor]) is a pro-inflammatory cytokine expressed in multiple cells types, including macrophages. MIF plays a pathogenic role in a number of inflammatory diseases and has been linked to tumor progression in some cancers. Previous work has demonstrated that loss of autophagy in macrophages enhances secretion of IL1 family cytokines. Here, we demonstrate that loss of autophagy, by pharmacological inhibition or siRNA silencing of Atg5, enhances MIF secretion by monocytes and macrophages. We further demonstrate that this is dependent on mitochondrial reactive oxygen species (ROS). Induction of autophagy with MTOR inhibitors had no effect on MIF secretion, but amino acid starvation increased secretion. This was unaffected by Atg5 siRNA but was again dependent on mitochondrial ROS. Our data demonstrate that autophagic regulation of mitochondrial ROS plays a pivotal role in the regulation of inflammatory cytokine secretion in macrophages, with potential implications for the pathogenesis of inflammatory diseases and cancers.
Butler, Mark H; Harper, James M; Seedall, Ryan B
2009-01-01
A critical and potentially polarizing decision in treating infidelity is whether facilitating partner disclosure or accommodating nondisclosure is most beneficial following private disclosure of infidelity to the therapist. Given couple distress and volatility following disclosure, understandably some therapists judge accommodating an infidelity secret both efficient and compassionate. Employing Western ethics and an attachment/intimacy lens, we consider ethical, pragmatic, and attachment intimacy implications of accommodating infidelity secrets. Issues bearing on the decision to facilitate disclosure or accommodate nondisclosure include (a) relationship ethics and pragmatics; (b) attachment and intimacy consequences; and (c) prospects for healing. We conclude that facilitating voluntary disclosure of infidelity, although difficult and demanding, represents the most ethical action with the best prospects for renewed and vital attachment intimacy.
Arredouani, Abdelilah; Ruas, Margarida; Collins, Stephan C.; Parkesh, Raman; Clough, Frederick; Pillinger, Toby; Coltart, George; Rietdorf, Katja; Royle, Andrew; Johnson, Paul; Braun, Matthias; Zhang, Quan; Sones, William; Shimomura, Kenju; Morgan, Anthony J.; Lewis, Alexander M.; Chuang, Kai-Ting; Tunn, Ruth; Gadea, Joaquin; Teboul, Lydia; Heister, Paula M.; Tynan, Patricia W.; Bellomo, Elisa A.; Rutter, Guy A.; Rorsman, Patrik; Churchill, Grant C.; Parrington, John; Galione, Antony
2015-01-01
Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca2+ action potentials due to the activation of voltage-dependent Ca2+ channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca2+ release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca2+ from the endolysosomal system, resulting in localized Ca2+ signals. We show here that NAADP-mediated Ca2+ release from endolysosomal Ca2+ stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca2+ release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca2+ signals, and insulin secretion. Our findings implicate NAADP-evoked Ca2+ release from acidic Ca2+ storage organelles in stimulus-secretion coupling in β cells. PMID:26152717
Neuromedin U suppresses glucose-stimulated insulin secretion in pancreatic β cells.
Zhang, Weidong; Sakoda, Hideyuki; Miura, Ayako; Shimizu, Koichiro; Mori, Kenji; Miyazato, Mikiya; Takayama, Kentaro; Hayashi, Yoshio; Nakazato, Masamitsu
2017-11-04
Neuromedin U (NMU), a highly conserved peptide in mammals, is implicated in energy homeostasis and glycemic control, and may also be involved in the regulation of adipoinsular axis function. However, the role of NMU in regulating insulin secretion has not been clearly established. In this study, we investigated the role of NMU in the regulation of insulin secretion both in vitro and in vivo. We found that NMU and NMU receptor (NMUR) 1 were expressed in mouse islets and β cell-derived MIN6-K8 cells. In mice, NMU suppressed glucose-stimulated insulin secretion (GSIS) both in vitro and in vivo. Additionally, an NMUR1 agonist inhibited GSIS in both MIN6-K8 cells and mice islets. Moreover, NMU attenuated intracellular Ca 2+ influx in MIN6-K8 cells, potentially causing a decrease in insulin secretion. siNmu-transfected MIN6-K8 cells showed elevated GSIS. Treatment with anti-NMU IgG increased GSIS in isolated mouse pancreatic islets. These results suggested that NMU can act directly on β cells through NMUR1 in an autocrine or paracrine fashion to suppress insulin secretion. Collectively, our results highlight the crucial role of NMU in suppressing pancreatic insulin secretion, and may improve our understanding of glucose homeostasis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Comparative pan genome analysis of oral Prevotella species implicated in periodontitis.
Ibrahim, Maziya; Subramanian, Ahalyaa; Anishetty, Sharmila
2017-09-01
Prevotella is part of the oral bacterial community implicated in periodontitis. Pan genome analyses of eight oral Prevotella species, P. dentalis, P. enoeca, P. fusca, P. melaninogenica, P. denticola, P. intermedia 17, P. intermedia 17-2 and P. sp. oral taxon 299 are presented in this study. Analysis of the Prevotella pan genome revealed features such as secretion systems, resistance to oxidative stress and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems that enable the bacteria to adapt to the oral environment. We identified the presence of type VI secretion system (T6SS) in P. fusca and P. intermedia strains. For some VgrG and Hcp proteins which were not part of the core T6SS loci, we used gene neighborhood analysis and identified putative effector proteins and putative polyimmunity loci in P. fusca and polymorphic toxin systems in P. intermedia strains. Earlier studies have identified the presence of Por secretion system (PorSS) in P. gingivalis, P. melaninogenica and P. intermedia. We noted the presence of their homologs in six other oral Prevotella studied here. We suggest that in Prevotella, PorSS is used to secrete cysteine proteases such as interpain and C-terminal domain containing proteins with a "Por_secre_tail" domain. We identified subtype I-B CRISPR-Cas system in P. enoeca. Putative CRISPR-Cas system subtypes for 37 oral Prevotella and 30 non-oral Prevotella species were also predicted. Further, we performed a BLASTp search of the Prevotella proteins which are also conserved in the red-complex pathogens, against the human proteome to identify potential broad-spectrum drug targets. In summary, the use of a pan genome approach enabled identification of secretion systems and defense mechanisms in Prevotella that confer adaptation to the oral cavity.
Cholesterol in islet dysfunction and type 2 diabetes
Brunham, Liam R.; Kruit, Janine K.; Verchere, C. Bruce; Hayden, Michael R.
2008-01-01
Type 2 diabetes (T2D) frequently occurs in the context of abnormalities of plasma lipoproteins. However, a role for elevated levels of plasma cholesterol in the pathogenesis of this disease is not well established. Recent evidence suggests that alterations of plasma and islet cholesterol levels may contribute to islet dysfunction and loss of insulin secretion. A number of genes involved in lipid metabolism have been implicated in T2D. Recently an important role for ABCA1, a cellular cholesterol transporter, has emerged in regulating cholesterol homeostasis and insulin secretion in pancreatic β cells. Here we review the impact of cholesterol metabolism on islet function and its potential relationship to T2D. PMID:18246189
Age factors potentiating drug toxicity in the reproductive axis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, R.F.
Traditionally, the drug toxicity in the reproductive system has been a concern only as it affects fertility and fecundity in young individuals. The purpose of this report is to address the potential problem of synergy between drug actions and abnormal secretion of reproductive hormones that together produce disease in older individuals. Thus, reproductive toxicity has different, but no less serious implications in aging individuals. During aging, the coordinated function of elements within the reproductive neuroendocrine axis degrades. This change promotes atypical secretion of hormones producing abnormal responses in target organs and thus creates a condition with pathogenic potential. Certain drugsmore » may contribute to reproductive toxicity in aging individuals either by accelerating the process of dysregulation and/or by synergizing with hormones to stimulate pathologic changes in target tissues. The geriatric population or the world is increasing, and since it consumes a proportionately larger percentage of drugs than younger groups, this novel form of reproductive toxicity may represent a problem in drug safety that warrants serious consideration.« less
Family Secrets: The Bioethics of Genetic Testing
ERIC Educational Resources Information Center
Markowitz, Dina G.; DuPre, Michael J.; Holt, Susan; Chen, Shaw-Ree; Wischnowski, Michael
2006-01-01
This article discusses "Family Secrets," a problem-based learning (PBL) curriculum module that focuses on the bioethical implications of genetic testing. In high school biology classrooms throughout New York State, students are using "Family Secrets" to learn about DNA testing; Huntington's disease (HD); and the ethical, legal,…
Cunha, Burke A; Gian, John; Dieguez, Bertamaria; Santos-Cruz, Elsa; Matassa, Daniela; Gerson, Steve; Daniels, Pat; Rosales, Carlos; Silletti, Rodger P
2016-11-30
Objective: B. contaminans was cultured from respiratory secretions and liquid docusate (Colace) in a Neurosurgical Intensive Care Unit (NICU) patient with community-acquired Legionnaire's disease but not from another bottle given to the patient. Unexpectedly, C. pelliculosa was cultured from two bottles, but not the B. contaminans bottle or respiratory secretions. Methods: B. cepacia , later identified as B. contaminans , was cultured from a bottle of liquid docusate (Colace) dispensed to a non-cystic fibrosis patient. His respiratory secretions were colonized with B. contaminans . Results: Eradication of B. contaminans colonization in the patient's respiratory secretions was attempted. With levofloxacin, B. contaminans developed multidrug resistance (MDR). Subsequent TMP-SMX therapy did not result in further MDR. Nine other ICU patients were given docusate from the same lot, but there were no other B. contaminans isolates. Conclusion: B. contaminans colonization of respiratory secretion may be difficult to eliminate. The significance of C. pelliculosa cultured from liquid docusate (Colace) remains to be elucidated. In this case, it appeared that B. contaminans may have inhibited the growth of C. pelliculosa in the same bottle. Others should be alerted to the possibility that C. pelliculosa may be present in B. contaminans -contaminated lots of liquid docusate (Colace).
Cunha, Burke A.; Gian, John; Dieguez, Bertamaria; Santos-Cruz, Elsa; Matassa, Daniela; Gerson, Steve; Daniels, Pat; Rosales, Carlos; Silletti, Rodger P.
2016-01-01
Objective: B. contaminans was cultured from respiratory secretions and liquid docusate (Colace) in a Neurosurgical Intensive Care Unit (NICU) patient with community-acquired Legionnaire’s disease but not from another bottle given to the patient. Unexpectedly, C. pelliculosa was cultured from two bottles, but not the B. contaminans bottle or respiratory secretions. Methods: B. cepacia, later identified as B. contaminans, was cultured from a bottle of liquid docusate (Colace) dispensed to a non-cystic fibrosis patient. His respiratory secretions were colonized with B. contaminans. Results: Eradication of B. contaminans colonization in the patient’s respiratory secretions was attempted. With levofloxacin, B. contaminans developed multidrug resistance (MDR). Subsequent TMP-SMX therapy did not result in further MDR. Nine other ICU patients were given docusate from the same lot, but there were no other B. contaminans isolates. Conclusion: B. contaminans colonization of respiratory secretion may be difficult to eliminate. The significance of C. pelliculosa cultured from liquid docusate (Colace) remains to be elucidated. In this case, it appeared that B. contaminans may have inhibited the growth of C. pelliculosa in the same bottle. Others should be alerted to the possibility that C. pelliculosa may be present in B. contaminans–contaminated lots of liquid docusate (Colace). PMID:27916878
Occhi, Gianluca; Regazzo, Daniela; Albiger, Nora Maria; Ceccato, Filippo; Ferasin, Sergio; Scanarini, Massimo; Denaro, Luca; Cosma, Chiara; Plebani, Mario; Cassarino, Maria Francesca; Mantovani, Giovanna; Stalla, Günter K; Pecori Giraldi, Francesca; Paez-Pareda, Marcelo; Scaroni, Carla
2014-09-01
Cushing's disease (CD) is a rare condition in which hypercortisolemia is secondary to excessive ACTH release from a pituitary corticotroph adenoma. CD is associated with significant morbidity and mortality, and a safe therapy that effectively targets the pituitary tumor is still lacking. Retinoic acid (RA) and dopamine agonists (DAs) have recently been considered as monotherapy in CD patients, and satisfactory results have been reported, albeit in a limited number of patients. Given the permissive role of RA on the dopamine receptor type-2 (DRD2), the aim of the present study was to see whether a combination of 9-cis RA and the DA bromocriptine (Br) might represent a possible treatment for CD. Here we show that 9-cis RA induces a functional DRD2 in the pituitary corticotroph cell line AtT20, and increases cell sensitivity to Br via a mechanism only partially related to corticotroph-to-melanotroph transdifferentiation. In addition, 9-cis RA and Br act synergistically to modulate cell viability, with favorable implications for clinical use. In nearly 45% of corticotropinoma-derived primary cultures, the combined administration of 9-cis RA and Br lowered the steady-state level of the ACTH precursor proopiomelanocortin (POMC) more efficiently than either of the drugs alone. In conclusion, the effects of a combination of 9-cis RA and Br on ACTH synthesis/secretion and cell viability in AtT20, and on POMC transcriptional activity in human corticotropinomas might represent a suitable starting point for assessing the potential of this treatment regimen for ACTH-secreting pituitary adenomas. This study thus has potentially important implications for novel therapeutic approaches to CD.
Telles, Connor J.; Decker, Sarah E.; Motley, William W.; Peters, Alexander W.; Mehr, Ali Poyan; Frizzell, Raymond A.
2016-01-01
In the shark rectal gland (SRG), apical chloride secretion through CFTR channels is electrically coupled to a basolateral K+ conductance whose type and molecular identity are unknown. We performed studies in the perfused SRG with 17 K+ channel inhibitors to begin this search. Maximal chloride secretion was markedly inhibited by low-perfusate pH, bupivicaine, anandamide, zinc, quinidine, and quinine, consistent with the properties of an acid-sensitive, four-transmembrane, two-pore-domain K+ channel (4TM-K2P). Using PCR with degenerate primers to this family, we identified a TASK-1 fragment in shark rectal gland, brain, gill, and kidney. Using 5′ and 3′ rapid amplification of cDNA ends PCR and genomic walking, we cloned the full-length shark gene (1,282 bp), whose open reading frame encodes a protein of 375 amino acids that was 80% identical to the human TASK-1 protein. We expressed shark and human TASK-1 cRNA in Xenopus oocytes and characterized these channels using two-electrode voltage clamping. Both channels had identical current-voltage relationships (outward rectifying) and a reversal potential of −90 mV. Both were inhibited by quinine, bupivicaine, and acidic pH. The pKa for current inhibition was 7.75 for shark TASK-1 vs. 7.37 for human TASK-1, values similar to the arterial pH for each species. We identified this protein in SRG by Western blot and confocal immunofluorescent microscopy and detected the protein in SRG and human airway cells. Shark TASK-1 is the major K+ channel coupled to chloride secretion in the SRG, is the oldest 4TM 2P family member identified, and is the first TASK-1 channel identified to play a role in setting the driving force for chloride secretion in epithelia. The detection of this potassium channel in mammalian lung tissue has implications for human biology and disease. PMID:27653983
Calcium-Activated Cl- Channel: Insights on the Molecular Identity in Epithelial Tissues.
Rottgen, Trey S; Nickerson, Andrew J; Rajendran, Vazhaikkurichi M
2018-05-10
Calcium-activated chloride secretion in epithelial tissues has been described for many years. However, the molecular identity of the channel responsible for the Ca 2+ -activated Cl − secretion in epithelial tissues has remained a mystery. More recently, TMEM16A has been identified as a new putative Ca 2+ -activated Cl − channel (CaCC). The primary goal of this article will be to review the characterization of TMEM16A, as it relates to the physical structure of the channel, as well as important residues that confer voltage and Ca 2+ -sensitivity of the channel. This review will also discuss the role of TMEM16A in epithelial physiology and potential associated-pathophysiology. This will include discussion of developed knockout models that have provided much needed insight on the functional localization of TMEM16A in several epithelial tissues. Finally, this review will examine the implications of the identification of TMEM16A as it pertains to potential novel therapies in several pathologies.
Imaginary "Geographies" of Childhood: School Library Media Centers as Secret Spaces
ERIC Educational Resources Information Center
Sturm, Brian W.
2008-01-01
Secret spaces serve as mirrors in which children can explore themselves and play with identities, while at the same time they act as windows to the real world through which children develop an understanding of social interactions and societal norms and expectations. The understanding of secret spaces has important implications for the physical…
Progranulin as a biomarker and potential therapeutic agent.
Abella, Vanessa; Pino, Jesús; Scotece, Morena; Conde, Javier; Lago, Francisca; Gonzalez-Gay, Miguel Angel; Mera, Antonio; Gómez, Rodolfo; Mobasheri, Ali; Gualillo, Oreste
2017-10-01
Progranulin is a cysteine-rich secreted protein with diverse pleiotropic actions and participates in several processes, such as inflammation or tumorigenesis. Progranulin was first identified as a growth factor and, recently, it was characterised as an adipokine implicated in obesity, insulin resistance and rheumatic disease. At a central level, progranulin acts as a neurotropic and neuroprotective factor and protects from neural degeneration. In this review, we summarise the most recent research advances concerning the potential role of progranulin as a therapeutic target and biomarker in cancer, neurodegenerative and inflammatory diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Park, Jihye; Zhang, Ying; Chen, Chun; Dudley, Edward G; Harvill, Eric T
2015-12-01
Secretion systems are key virulence factors, modulating interactions between pathogens and the host's immune response. Six potential secretion systems (types 1-6; T1SS-T6SS) have been discussed in classical bordetellae, respiratory commensals/pathogens of mammals. The prototypical Bordetella bronchiseptica strain RB50 genome seems to contain all six systems, whilst two human-restricted subspecies, Bordetella parapertussis and Bordetella pertussis, have lost different subsets of these. This implicates secretion systems in the divergent evolutionary histories that have led to their success in different niches. Based on our previous work demonstrating that changes in secretion systems are associated with virulence characteristics, we hypothesized there would be substantial divergence of the loci encoding each amongst sequenced strains. Here, we describe extensive differences in secretion system loci; 10 of the 11 sequenced strains had lost subsets of genes or one entire secretion system locus. These loci contained genes homologous to those present in the respective loci in distantly related organisms, as well as genes unique to bordetellae, suggesting novel and/or auxiliary functions. The high degree of conservation of the T3SS locus, a complex machine with interdependent parts that must be conserved, stands in dramatic contrast to repeated loss of T5aSS 'autotransporters', which function as an autonomous unit. This comparative analysis provided insights into critical aspects of each pathogen's adaptation to its different niche, and the relative contributions of recombination, mutation and horizontal gene transfer. In addition, the relative conservation of various secretion systems is an important consideration in the ongoing search for more highly conserved protective antigens for the next generation of pertussis vaccines.
Commensal Bacteria Modulate Innate Immune Responses of Vaginal Epithelial Cell Multilayer Cultures
Rose, William A.; McGowin, Chris L.; Spagnuolo, Rae Ann; Eaves-Pyles, Tonyia D.; Popov, Vsevolod L.; Pyles, Richard B.
2012-01-01
The human vaginal microbiome plays a critical but poorly defined role in reproductive health. Vaginal microbiome alterations are associated with increased susceptibility to sexually-transmitted infections (STI) possibly due to related changes in innate defense responses from epithelial cells. Study of the impact of commensal bacteria on the vaginal mucosal surface has been hindered by current vaginal epithelial cell (VEC) culture systems that lack an appropriate interface between the apical surface of stratified squamous epithelium and the air-filled vaginal lumen. Therefore we developed a reproducible multilayer VEC culture system with an apical (luminal) air-interface that supported colonization with selected commensal bacteria. Multilayer VEC developed tight-junctions and other hallmarks of the vaginal mucosa including predictable proinflammatory cytokine secretion following TLR stimulation. Colonization of multilayers by common vaginal commensals including Lactobacillus crispatus, L. jensenii, and L. rhamnosus led to intimate associations with the VEC exclusively on the apical surface. Vaginal commensals did not trigger cytokine secretion but Staphylococcus epidermidis, a skin commensal, was inflammatory. Lactobacilli reduced cytokine secretion in an isolate-specific fashion following TLR stimulation. This tempering of inflammation offers a potential explanation for increased susceptibility to STI in the absence of common commensals and has implications for testing of potential STI preventatives. PMID:22412914
Kowluru, Anjaneyulu
2008-01-15
Recent findings have implicated post-translational modifications at C-terminal cysteines [e.g., methylation] of specific proteins [e.g., G-proteins] in glucose-stimulated insulin secretion [GSIS]. Furthermore, methylation at the C-terminal leucine of the catalytic subunit of protein phosphatase 2A [PP2Ac] has also been shown to be relevant for GSIS. In addition to these two classes of protein methyl transferases, a novel class of glucose-activated phospholipid methyl transferases have also been identified in the beta cell. These enzymes catalyze three successive methylations of phosphatidylethanolamine to yield phosphatidylcholine. The "newly formed" phosphatidylcholine is felt to induce alterations in the membrane fluidity, which might favor vesicular fusion with the plasma membrane for the exocytosis of insulin. The objectives of this commentary are to: (i) review the existing evidence on the regulation, by glucose and other insulin secretagogues, of post-translational carboxylmethylation [CML] of specific proteins in the beta cell; (ii) discuss the experimental evidence, which implicates regulation, by glucose and other insulin secretagogues, of phosphatidylethanolamine methylation in the islet beta cell; (iii) propose a model for potential cross-talk between the protein and lipid methylation pathways in the regulation of GSIS and (iv) highlight potential avenues for future research, including the development of specific pharmacological inhibitors to further decipher regulatory roles for these methylation reactions in islet beta cell function.
Prolactin secretion patterns: basic mechanisms and clinical implications for reproduction.
Egli, Marcel; Leeners, Brigitte; Kruger, Tillmann H C
2010-11-01
Prolactin (PRL) is one of the most versatile hormones in the mammalian body affecting reproductive, sexual, metabolic, immune, and other functions. It is therefore not surprising that the neural control of PRL secretion is complex, involving the coordinated actions of several hypothalamic nuclei. A plethora of experimental data exists on the hypothalamic control of hormone secretion under various physiological stimuli. There have been even mathematical models and computer studies published, which help to understand the complex hypothalamic-pituitary network. Nevertheless, the putative role of PRL for human reproduction still has to be clarified. Here, we review data on the underlying mechanisms controlling PRL secretion using both experimental and mathematical approaches. These investigations primarily focus on rhythmic secretion in rats during early pregnancy or pseudopregnancy, and they point to the important role of oxytocin as a crucial PRL-releasing factor. Recent data on human studies and their theoretical and clinical implications are reviewed as well. In particular, studies demonstrating a sustained PRL surge after sexual climax in males and females are presented, indicating possible implications for both sexual satiation and reproductive functions. Taking these data together, there is evidence for the hypothesis that the PRL surge induced by sexual activity, together with the altered PRL rhythmic pattern, is important for successful initialization of pregnancy not only in rodents but also possibly in humans. However, further investigations are needed to clarify such a role in humans.
Nakayama, K
2015-01-01
Porphyromonas gingivalis is a gram-negative, non-motile, anaerobic bacterium implicated as a major pathogen in periodontal disease. P. gingivalis grows as black-pigmented colonies on blood agar, and many bacteriologists have shown interest in this property. Studies of colonial pigmentation have revealed a number of important findings, including an association with the highly active extracellular and surface proteinases called gingipains that are found in P. gingivalis. The Por secretion system, a novel type IX secretion system (T9SS), has been implicated in gingipain secretion in studies using non-pigmented mutants. In addition, many potent virulence proteins, including the metallocarboxypeptidase CPG70, 35 kDa hemin-binding protein HBP35, peptidylarginine deiminase PAD and Lys-specific serine endopeptidase PepK, are secreted through the T9SS. These findings have not been limited to P. gingivalis but have been extended to other bacteria belonging to the phylum Bacteroidetes. Many Bacteroidetes species possess the T9SS, which is associated with gliding motility for some of these bacteria. PMID:25546073
Turvill, J L; Connor, P; Farthing, M J G
2000-01-01
The secretagogue 5-hydroxytryptamine (5-HT) is implicated in the pathophysiology of cholera. 5-HT released from enterochromaffin cells after cholera toxin exposure is thought to activate non-neuronally (5-HT2 dependent) and neuronally (5-HT3 dependent) mediated water and electrolyte secretion. CT-secretion can be reduced by preventing the release of 5-HT. Enterochromaffin cells possess numerous receptors that, under basal conditions, modulate 5-HT release. These include basolateral 5-HT3 receptors, the activation of which is known to enhance 5-HT release. Until now, 5-HT3 receptor antagonists (e.g. granisetron) have been thought to inhibit cholera toxin-induced fluid secretion by blockading 5-HT3 receptors on secretory enteric neurones. Instead we postulated that they act by inhibiting cholera toxin-induced enterochromaffin cell degranulation. Isolated intestinal segments in anaesthetized male Wistar rats, pre-treated with granisetron 75 μg kg−1, lidoocaine 6 mg kg−1 or saline, were instilled with a supramaximal dose of cholera toxin or saline. Net fluid movement was determined by small intestinal perfusion or gravimetry and small intestinal and luminal fluid 5-HT levels were determined by HPLC with fluorimetric detection. Intraluminal 5-HT release was proportional to the reduction in tissue 5-HT levels and to the onset of water and electrolyte secretion, suggesting that luminal 5-HT levels reflect enterochromaffin cell activity. Both lidocaine and granisetron inhibited fluid secretion. However, granisetron alone, and proportionately, reduced 5-HT release. The simultaneous inhibition of 5-HT release and fluid secretion by granisetron suggests that 5-HT release from enterochromaffin cells is potentiated by endogenous 5-HT3 receptors. The accentuated 5-HT release promotes cholera toxin-induced fluid secretion. PMID:10882387
Role of estrogen receptors alpha, beta and GPER1/GPR30 in pancreatic beta-cells.
Nadal, Angel; Alonso-Magdalena, Paloma; Soriano, Sergi; Ripoll, Cristina; Fuentes, Esther; Quesada, Ivan; Ropero, Ana Belen
2011-01-01
Estrogen receptors (ER) are emerging as important molecules involved in the adaptation of beta-cells to insulin resistance. The onset of type 2 diabetes is marked by insulin secretory dysfunction and decreased beta-cell mass. During pregnancy, puberty and obesity there is increased metabolic demand and insulin resistance is developed. This metabolic state increases the demand on beta-cells to augment insulin biosynthesis and release. In this respect, ERalpha is directly implicated in the E2-regulation of insulin content and secretion, while ERbeta is in the E2-potentiation of glucose-induced insulin release. Both receptors develop their actions within the physiological range of E2. In addition, the G protein-coupled estrogen receptor (GPER1/GPR30) seems to be implicated in the E2-regulation of stimulus-secretion coupling in the three cell types of the islet. The increased demand of insulin production for long time may lead to beta-cell stress and apoptosis. ERalpha, ERbeta and GPER1/GPR30 are involved in preventing beta-cell apoptosis, impeding the loss of critical beta-cell mass. Therefore, estrogen receptors may play an essential role in the adaptation of the pancreas to insulin resistant periods.
Changes in the sialylation and sulfation of secreted thyrotropin in congenital hypothyroidism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyves, P.W.; Gesundheit, N.; Thotakura, N.R.
1990-05-01
The authors have examined the oligosaccharide structure of secreted thyrotropin (TSH) in perinatal and mature rats with congenital primary hypothyroidism. Rat pituitaries from euthyroid control animals and those rendered hypothyroid by methimazole treatment were incubated with ({sup 3}H)glucosamine in vitro. Secreted TSH was purified, and oligosaccharides were enzymatically released and characterized by anion-exchange HPLC. In perinatal hypothyroid animals compared with control animals, oligosaccharides from TSH {alpha} and {beta} subunits contained more species with three or more negative charges. Moreover, perinatal hypothyroid animals demonstrated a dramatic increase in the ratio of sialylated to sulfated species within oligosaccharides of the same negativemore » charge. In mature hypothyroid 9-week-old animals compared with control animals, changes were less pronounced, suggesting that endocrine regulation of oligosaccharide structure is dependent upon the maturational state of the animal. Together, these data provide direct evidence and characterization of specific changes in the structure of a secreted pituitary glycoprotein hormone occurring as a result of in vivo endocrine alterations during early development. Moreover, they provide a potential structural basis to explain the delayed clearance of both TSH and the gonadotropins with end-organ deficiency, which may have important implications for the in vivo biological activities of these hormones.« less
Role for ion transport in porcine vocal fold epithelial defense to acid challenge.
Erickson-Levendoski, Elizabeth; Sivasankar, M Preeti
2012-02-01
The vocal fold epithelium is routinely exposed to gastric contents, including acid and pepsin, during laryngopharyngeal reflux events. The epithelium may possess intrinsic defenses to reflux. The first objective of the current study was to examine whether vocal fold epithelial ion transport is one potential mechanism of defense to gastric contents. The second objective was to determine whether ion transport in response to gastric contents is associated with the secretion of bicarbonate. Prospective design in excised porcine larynges. Laboratory. Porcine vocal folds (N = 56) were exposed on the luminal surface to acid, pepsin, or sham challenges. Ion transport at baseline and following challenge exposure was measured using electrophysiological techniques. To examine specific ion transport mechanisms, vocal folds were pretreated with either a sodium channel blocker or bicarbonate channel blocker. Within 60 seconds of acid but not pepsin exposure, there was a significant increase in ion transport. This rapid increase in ion transport was transient and related to bicarbonate secretion. The current data suggest that porcine vocal folds immediately increase bicarbonate secretion following exposure to acid. Bicarbonate secretion may act to neutralize acid. These findings contribute to the identification of the mechanisms underlying vocal fold defense to reflux and offer implications for the development of treatments for reflux-induced vocal fold injury.
Yousuf, A K M; Misbahuddin, Mir; Rahman, Md Sayedur
2011-06-01
Melanosis and leucomelanosis with or without keratosis are the earliest symptoms of arsenicosis. Uneven distribution of arsenical melanosis and leucomelanosis in skin led us to investigate the possibility of preferential secretion of arsenic and three constituents of sweat; cholesterol, vitamin E, and zinc. Twenty-four-hour skin secretion was collected from skin lesions and unaffected sites of 20 patients. Skin secretions were collected from 20 people exposed to arsenic-contaminated drinking water and 20 healthy, unexposed individuals. The secretion of arsenic from the skin of healthy controls (mean ± SE; unit: μg/in.(2) of skin/24 h; chest: 0.6 ± 0.2; back: 0.3 ± 0.1; abdomen: 0.5 ± 0.2) was increased several folds in arsenic-exposed controls (chest: 8.4 ± 1.8; back: 8.3 ± 1.9; abdomen: 6.7 ± 1.8) and patients (chest: 9.2 ± 1.3; back: 7.8 ± 1.3; abdomen: 5.2 ± 1.0). There was no difference in the skin lesions and unaffected sites in patients. However, the secretion of cholesterol was significantly lower in the chest of patients (190 ± 36) and healthy controls (686 ± 100) (p < 0.001). Secretions of vitamin E were low in healthy controls (chest: 8.5 ± 3.1; back: 5.2 ± 1.7; and abdomen: 8.7 ± 2.4), higher in arsenic-exposed controls (chest: 30.2 ± 8.1; back: 16.3 ± 8.9; and abdomen: 24.8 ± 9.3), and highest in patients [chest: 91.4 ± 14.9 (p < 0.0001 vs. control); back: 72.4 ± 13.2 (p < 0.001 vs. control); and abdomen: 46.8 ± 12.9]. Chronic intake of arsenic led to several folds higher secretion of zinc both in patients and in arsenic-exposed controls. One molecule of arsenic appears to be co-secreted with two molecules of zinc. Arsenic skin lesions showed no alteration in secretion of arsenic, although the secretion of cholesterol, vitamin E, and zinc was changed. Potential implications are discussed.
Antigen localization controls T cell-mediated tumor immunity.
Zeelenberg, Ingrid S; van Maren, Wendy W C; Boissonnas, Alexandre; Van Hout-Kuijer, Maaike A; Den Brok, Martijn H M G M; Wagenaars, Jori A L; van der Schaaf, Alie; Jansen, Eric J R; Amigorena, Sebastian; Théry, Clotilde; Figdor, Carl G; Adema, Gosse J
2011-08-01
Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.
Catena, Raúl; Bhattacharya, Nandita; Rayes, Tina El; Wang, Suming; Choi, Hyejin; Gao, Dingcheng; Ryu, Seongho; Joshi, Natasha; Bielenberg, Diane; Lee, Sharrell B.; Haukaas, Svein A.; Gravdal, Karsten; Halvorsen, Ole J.; Akslen, Lars A.; Watnick, Randolph S.; Mittal, Vivek
2013-01-01
Metastatic tumors have been shown to establish permissive microenvironments for metastases via recruitment of bone marrow (BM)- derived cells. Here, we show that metastasis-incompetent tumors are also capable of generating such microenvironments. However, in these situations the otherwise pro-metastatic Gr1+ myeloid cells create a metastasis-refractory microenvironment via the induction of thrombospondin-1 (Tsp-1) by tumor-secreted prosaposin. (BM)-specific genetic deletion of Tsp-1 abolished the inhibition of metastasis, which was restored by BM transplant from Tsp-1+ donors. We also developed a 5-amino acid peptide from prosaposin as a pharmacological inducer of Tsp-1 in Gr1+ BM cells, which dramatically suppresses metastasis. These results provide mechanistic insights into why certain tumors are deficient in metastatic potential and implicate recruited Gr1+ myeloid cells as the main source of Tsp-1. The results underscore the plasticity of Gr1+ cells, which, depending on the context, promote or inhibit metastasis, and suggest that the peptide could be a potential therapeutic agent against metastatic cancer. PMID:23633432
Melatonin: A Review of Its Potential Functions and Effects on Dental Diseases
Permuy, Maria; López-Peña, Mónica; González-Cantalapiedra, Antonio; Muñoz, Fernando
2017-01-01
Melatonin is a hormone synthesised and secreted by the pineal gland and other organs. Its secretion, controlled by an endogenous circadian cycle, has been proven to exert immunological, anti-oxidant, and anti-inflammatory effects that can be beneficial in the treatment of certain dental diseases. This article is aimed at carrying out a review of the literature published about the use of melatonin in the dental field and summarising its potential effects. In this review article, an extensive search in different databases of scientific journals was performed with the objective of summarising all of the information published on melatonin use in dental diseases, focussing on periodontal diseases and dental implantology. Melatonin released in a natural way into the saliva, or added as an external treatment, may have important implications for dental disorders, such as periodontal disease, as well as in the osseointegration of dental implants, due to its anti-inflammatory and osseoconductive effects. Melatonin has demonstrated to have beneficial effects on dental pathologies, although further research is needed to understand the exact mechanisms of this molecule. PMID:28422058
Telles, Connor J; Decker, Sarah E; Motley, William W; Peters, Alexander W; Mehr, Ali Poyan; Frizzell, Raymond A; Forrest, John N
2016-12-01
In the shark rectal gland (SRG), apical chloride secretion through CFTR channels is electrically coupled to a basolateral K + conductance whose type and molecular identity are unknown. We performed studies in the perfused SRG with 17 K + channel inhibitors to begin this search. Maximal chloride secretion was markedly inhibited by low-perfusate pH, bupivicaine, anandamide, zinc, quinidine, and quinine, consistent with the properties of an acid-sensitive, four-transmembrane, two-pore-domain K + channel (4TM-K2P). Using PCR with degenerate primers to this family, we identified a TASK-1 fragment in shark rectal gland, brain, gill, and kidney. Using 5' and 3' rapid amplification of cDNA ends PCR and genomic walking, we cloned the full-length shark gene (1,282 bp), whose open reading frame encodes a protein of 375 amino acids that was 80% identical to the human TASK-1 protein. We expressed shark and human TASK-1 cRNA in Xenopus oocytes and characterized these channels using two-electrode voltage clamping. Both channels had identical current-voltage relationships (outward rectifying) and a reversal potential of -90 mV. Both were inhibited by quinine, bupivicaine, and acidic pH. The pKa for current inhibition was 7.75 for shark TASK-1 vs. 7.37 for human TASK-1, values similar to the arterial pH for each species. We identified this protein in SRG by Western blot and confocal immunofluorescent microscopy and detected the protein in SRG and human airway cells. Shark TASK-1 is the major K + channel coupled to chloride secretion in the SRG, is the oldest 4TM 2P family member identified, and is the first TASK-1 channel identified to play a role in setting the driving force for chloride secretion in epithelia. The detection of this potassium channel in mammalian lung tissue has implications for human biology and disease. Copyright © 2016 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Arman; DeCourcey, Joseph; Larbi, Nadia Ben
Highlights: •Knock-down of syntaxin-4 in U266 plasma cells resulted in reduction of IgE secretion. •Knock-down of syntaxin-4 also leads to the accumulation of IgE in the cell. •Immuno-fluorescence staining shows co-localisation of IgE and syntaxin-4 in U266 cells. •Findings suggest a critical requirement for syntaxin-4 in IgE secretion from plasma cells. -- Abstract: The humoral immune system provides a crucial first defense against the invasion of microbial pathogens via the secretion of antigen specific immunoglobulins (Ig). The secretion of Ig is carried out by terminally differentiated B-lymphocytes called plasma cells. Despite the key role of plasma cells in the immunemore » response, the mechanisms by which they constitutively traffic large volumes of Ig out of the cell is poorly understood. The involvement of Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in the regulation of protein trafficking from cells has been well documented. Syntaxin-4, a member of the Qa SNARE syntaxin family has been implicated in fusion events at the plasma membrane in a number of cells in the immune system. In this work we show that knock-down of syntaxin-4 in the multiple myeloma U266 human plasma cell line results in a loss of IgE secretion and accumulation of IgE within the cells. Furthermore, we show that IgE co-localises with syntaxin-4 in U266 plasma cells suggesting direct involvement in secretion at the plasma membrane. This study demonstrates that syntaxin-4 plays a critical role in the secretion of IgE from plasma cells and sheds some light on the mechanisms by which these cells constitutively traffic vesicles to the surface for secretion. An understanding of this machinery may be beneficial in identifying potential therapeutic targets in multiple myeloma and autoimmune disease where over-production of Ig leads to severe pathology in patients.« less
Candida albicans triggers interleukin-6 and interleukin-8 responses by oral fibroblasts in vitro.
Dongari-Bagtzoglou, A; Wen, K; Lamster, I B
1999-12-01
Oral candidiasis is the most frequent opportunistic infection associated with an immunocompromised host. Production of proinflammatory cytokines, such as interleukin-6 (IL-6) and IL-8, by host cells in response to Candida albicans can be expected to have a major impact in the activation of immune effector cells against the invading microorganism. Using a human cell--C. albicans coculture model system, we determined that this microorganism can trigger secretion of these potent chemoattractant and proinflammatory cytokines by oral mucosal fibroblasts. This response varied depending on the infecting strain and required fungal viability, germination of yeast into hyphae and mannose-mediated direct contact between the host cell and Candida. The secretion of proinflammatory cytokines by oral mucosal fibroblasts in response to C. albicans suggests that these cells have the potential to enhance the host defense against this organism in vivo. This may have important implications in controlling fungal overgrowth in the oral cavity.
Retrieving and routing quantum information in a quantum network
NASA Astrophysics Data System (ADS)
Sazim, S.; Chiranjeevi, V.; Chakrabarty, I.; Srinathan, K.
2015-12-01
In extant quantum secret sharing protocols, once the secret is shared in a quantum network ( qnet) it cannot be retrieved, even if the dealer wishes that his/her secret no longer be available in the network. For instance, if the dealer is part of the two qnets, say {{Q}}_1 and {{Q}}_2 and he/she subsequently finds that {{Q}}_2 is more reliable than {{Q}}_1, he/she may wish to transfer all her secrets from {{Q}}_1 to {{Q}}_2. Known protocols are inadequate to address such a revocation. In this work we address this problem by designing a protocol that enables the source/dealer to bring back the information shared in the network, if desired. Unlike classical revocation, the no-cloning theorem automatically ensures that the secret is no longer shared in the network. The implications of our results are multi-fold. One interesting implication of our technique is the possibility of routing qubits in asynchronous qnets. By asynchrony we mean that the requisite data/resources are intermittently available (but not necessarily simultaneously) in the qnet. For example, we show that a source S can send quantum information to a destination R even though (a) S and R share no quantum resource, (b) R's identity is unknown to S at the time of sending the message, but is subsequently decided, (c) S herself can be R at a later date and/or in a different location to bequeath her information (`backed-up' in the qnet) and (d) importantly, the path chosen for routing the secret may hit a dead end due to resource constraints, congestion, etc., (therefore the information needs to be back-tracked and sent along an alternate path). Another implication of our technique is the possibility of using insecure resources. For instance, if the quantum memory within an organization is insufficient, it may safely store (using our protocol) its private information with a neighboring organization without (a) revealing critical data to the host and (b) losing control over retrieving the data. Putting the two implications together, namely routing and secure storage, it is possible to envision applications like quantum mail (qmail) as an outsourced service.
Role of Nitric Oxide in the Regulation of Renin and Vasopressin Secretion
NASA Technical Reports Server (NTRS)
Reid, Ian A.
1994-01-01
Research during recent years has established nitric oxide as a unique signaling molecule that plays important roles in the regulation of the cardiovascular, nervous, immune, and other systems. Nitric oxide has also been implicated in the control of the secretion of hormones by the pancreas, hypothalamus, and anterior pituitary gland, and evidence is accumulating that it contributes to the regulation of the secretion of renin and vasopressin, hormones that play key roles in the control of sodium and water balance. Several lines of evidence have implicated nitric oxide in the control of renin secretion. The enzyme nitric oxide synthase is present in vascular and tubular elements of the kidney, particularly in cells of the macula densa, a structure that plays an important role in the control of renin secretion. Guanylyl cyclase, a major target for nitric oxide, is also present in the kidney. Drugs that inhibit nitric oxide synthesis generally suppress renin release in vivo and in vitro, suggesting a stimulatory role for the L-arginine/nitric oxide pathway in the control of renin secretion. Under some conditions, however, blockade of nitric oxide synthesis increases renin secretion. Recent studies indicate that nitric oxide not only contributes to the regulation of basal renin secretion, but also participates in the renin secretory responses to activation of the renal baroreceptor, macula densa, and beta adrenoceptor mechanisms that regulate renin secretion. Histochemical and immunocytochemical studies have revealed the presence of nitric oxide synthase in the supraoptic and paraventricular nuclei of the hypothalamus and in the posterior pituitary gland. Colocalization of nitric oxide synthase and vasopressin has been demonstrated in some hypothalamic neurons. Nitric oxide synthase activity in the hypothalamus and pituitary is increased by maneuvers known to stimulate vasopressin secretion, including salt loading and dehydration, Administration of L-arginine and nitric oxide donors in vitro and in vivo has variable effects on vasopressin secretion, but the most common one is inhibition. Blockade of nitric oxide synthesis has been reported to increase vasopressin secretion, but again variable results have been obtained. An attractive working hypothesis is that nitric oxide serves a neuromodulatory role as an inhibitor of vasopressin secretion.
Human Rhinovirus 16 Causes Golgi Apparatus Fragmentation without Blocking Protein Secretion
Mousnier, Aurelie; Swieboda, Dawid; Pinto, Anaïs; Guedán, Anabel; Rogers, Andrew V.; Walton, Ross; Johnston, Sebastian L.
2014-01-01
ABSTRACT The replication of picornaviruses has been described to cause fragmentation of the Golgi apparatus that blocks the secretory pathway. The inhibition of major histocompatibility complex class I upregulation and cytokine, chemokine and interferon secretion may have important implications for host defense. Previous studies have shown that disruption of the secretory pathway can be replicated by expression of individual nonstructural proteins; however the situation with different serotypes of human rhinovirus (HRV) is unclear. The expression of 3A protein from HRV14 or HRV2 did not cause Golgi apparatus disruption or a block in secretion, whereas other studies showed that infection of cells with HRV1A did cause Golgi apparatus disruption which was replicated by the expression of 3A. HRV16 is the serotype most widely used in clinical HRV challenge studies; consequently, to address the issue of Golgi apparatus disruption for HRV16, we have systematically and quantitatively examined the effect of HRV16 on both Golgi apparatus fragmentation and protein secretion in HeLa cells. First, we expressed each individual nonstructural protein and examined their cellular localization and their disruption of endoplasmic reticulum and Golgi apparatus architecture. We quantified their effects on the secretory pathway by measuring secretion of the reporter protein Gaussia luciferase. Finally, we examined the same outcomes following infection of cells with live virus. We demonstrate that expression of HRV16 3A and 3AB and, to a lesser extent, 2B caused dispersal of the Golgi structure, and these three nonstructural proteins also inhibited protein secretion. The infection of cells with HRV16 also caused significant Golgi apparatus dispersal; however, this did not result in the inhibition of protein secretion. IMPORTANCE The ability of replicating picornaviruses to influence the function of the secretory pathway has important implications for host defense. However, there appear to be differences between different members of the family and inconsistent results when comparing infection with live virus to expression of individual nonstructural proteins. We demonstrate that individual nonstructural HRV16 proteins, when expressed in HeLa cells, can both fragment the Golgi apparatus and block secretion, whereas viral infection fragments the Golgi apparatus without blocking secretion. This has major implications for how we interpret mechanistic evidence derived from the expression of single viral proteins. PMID:25100828
Kuo, Shih-Wei; Ke, Ferng-Chun; Chang, Geen-Dong; Lee, Ming-Ting; Hwang, Jiuan-Jiuan
2011-06-01
Angiogenesis occurs during ovarian follicle development and luteinization. Pituitary secreted FSH was reported to stimulate the expression of endothelial mitogen VEGF in granulosa cells. And, intraovarian cytokine transforming growth factor (TGF)β1 is known to facilitate FSH-induced differentiation of ovarian granulosa cells. This intrigues us to investigate the potential role of FSH and TGFβ1 regulation of granulosa cell function in relation to ovarian angiogenesis. Granulosa cells were isolated from gonadotropin-primed immature rats and treated once with FSH and/or TGFβ1 for 48 h, and the angiogenic potential of conditioned media (granulosa cell culture conditioned media; GCCM) was determined using an in vitro assay with aortic ring embedded in collagen gel and immunoblotting. FSH and TGFβ1 increased the secreted angiogenic activity in granulosa cells (FSH + TGFβ1 > FSH ≈ TGFβ1 >control) that was partly attributed to the increased secretion of pro-angiogenic factors VEGF and PDGF-B. This is further supported by the evidence that pre-treatment with inhibitor of VEGF receptor-2 (Ki8751) or PDGF receptor (AG1296) throughout or only during the first 2-day aortic ring culture period suppressed microvessel growth in GCCM-treated groups, and also inhibited the FSH + TGFβ1-GCCM-stimulated release of matrix remodeling-associated gelatinase activities. Interestingly, pre-treatment of AG1296 at late stage suppressed GCCM-induced microvessel growth and stability with demise of endothelial and mural cells. Together, we provide original findings that both FSH and TGFβ1 increased the secretion of VEGF and PDGF-B, and that in turn up-regulated the angiogenic activity in rat ovarian granulosa cells. This implicates that FSH and TGFβ1 play important roles in regulation of ovarian angiogenesis during follicle development. Copyright © 2010 Wiley-Liss, Inc.
Pinaud, Laurie; Ferrari, Mariana L.; Friedman, Robin; Jehmlich, Nico; von Bergen, Martin; Phalipon, Armelle; Sansonetti, Philippe J.
2017-01-01
Many human Gram-negative bacterial pathogens express a Type Three Secretion Apparatus (T3SA), including among the most notorious Shigella spp., Salmonella enterica, Yersinia enterocolitica and enteropathogenic Escherichia coli (EPEC). These bacteria express on their surface multiple copies of the T3SA that mediate the delivery into host cells of specific protein substrates critical to pathogenesis. Shigella spp. are Gram-negative bacterial pathogens responsible for human bacillary dysentery. The effector function of several Shigella T3SA substrates has largely been studied but their potential cellular targets are far from having been comprehensively delineated. In addition, it is likely that some T3SA substrates have escaped scrutiny as yet. Indeed, sequencing of the virulence plasmid of Shigella flexneri has revealed numerous open reading frames with unknown functions that could encode additional T3SA substrates. Taking advantage of label-free mass spectrometry detection of proteins secreted by a constitutively secreting strain of S. flexneri, we identified five novel substrates of the T3SA. We further confirmed their secretion through the T3SA and translocation into host cells using β-lactamase assays. The coding sequences of two of these novel T3SA substrates (Orf13 and Orf131a) have a guanine-cytosine content comparable to those of T3SA components and effectors. The three other T3SA substrates identified (Orf48, Orf86 and Orf176) have significant homology with antitoxin moieties of type II Toxin-Antitoxin systems usually implicated in the maintenance of low copy plasmids. While Orf13 and Orf131a might constitute new virulence effectors contributing to S. flexneri pathogenicity, potential roles for the translocation into host cells of antitoxins or antitoxin-like proteins during Shigella infection are discussed. PMID:29073283
Tani, Alessia; Anderloni, Giulia; Pierucci, Federica; Matteini, Francesca; Chellini, Flaminia; Zecchi Orlandini, Sandra; Meacci, Elisabetta
2014-01-01
Bone-marrow-derived mesenchymal stromal cells (MSCs) have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P), a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK), blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF) involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration. PMID:25264785
Ratnayake, Kamani; Joyce, Daryl C; Webb, Richard I
2013-08-01
Maintaining a high rate of water uptake is crucial for maximum longevity of cut stems. Physiological gel/tylosis formation decreases water transport efficiency in the xylem. The primary mechanism of action for post-harvest Cu(2+) treatments in improving cut flower and foliage longevity has been elusive. The effect of Cu(2+) on wound-induced xylem vessel occlusion was investigated for Acacia holosericea A. Cunn. ex G. Don. Experiments were conducted using a Cu(2+) pulse (5 h, 2.2 mM) and a Cu(2+) vase solution (0.5 mM) vs a deionized water (DIW) control. Development of xylem blockage in the stem-end region 10 mm proximal to the wounded stem surface was examined over 21 days by light and transmission electron microscopy. Xylem vessels of stems stood into DIW were occluded with gels secreted into vessel lumens via pits from surrounding axial parenchyma cells. Gel secretion was initiated within 1-2 days post-wounding and gels were detected in the xylem from day 3. In contrast, Cu(2+) treatments disrupted the surrounding parenchyma cells, thereby inhibiting gel secretion and maintaining the vessel lumens devoid of occlusions. The Cu(2+) treatments significantly improved water uptake by the cut stems as compared to the control. © 2013 Scandinavian Plant Physiology Society.
Role for Ion Transport in Porcine Vocal Fold Epithelial Defense to Acid Challenge
Erickson-Levendoski, Elizabeth; Sivasankar, M. Preeti
2012-01-01
Objective The vocal fold epithelium is routinely exposed to gastric contents, including acid and pepsin, during laryngopharyngeal reflux events. The epithelium may possess intrinsic defenses to reflux. The first objective of the current study was to examine whether vocal fold epithelial ion transport is one potential mechanism of defense to gastric contents. The second objective was to determine whether ion transport in response to gastric contents is associated with the secretion of bicarbonate. Study Design Prospective design in excised porcine larynges. Setting Laboratory. Subjects and Methods Porcine vocal folds (N = 56) were exposed on the luminal surface to acid, pepsin, or sham challenges. Ion transport at baseline and following challenge exposure was measured using electrophysiological techniques. To examine specific ion transport mechanisms, vocal folds were pretreated with either a sodium channel blocker or bicarbonate channel blocker. Results Within 60 seconds of acid but not pepsin exposure, there was a significant increase in ion transport. This rapid increase in ion transport was transient and related to bicarbonate secretion. Conclusion The current data suggest that porcine vocal folds immediately increase bicarbonate secretion following exposure to acid. Bicarbonate secretion may act to neutralize acid. These findings contribute to the identification of the mechanisms underlying vocal fold defense to reflux and offer implications for the development of treatments for reflux-induced vocal fold injury. PMID:22086905
Noya, Verónica; Brossard, Natalie; Rodríguez, Ernesto; Dergan-Dylon, L Sebastián; Carmona, Carlos; Rabinovich, Gabriel A; Freire, Teresa
2017-01-12
Fasciolosis is a trematode zoonosis of interest in public health and cattle production. We report here the immunostimulatory effect of a 66 mer mucin-like peptide from Fasciola hepatica (Fhmuc), which synergizes with lipopolysaccharide (LPS) to promote dendritic cell (DC) maturation, endowing these cells with Th1-polarizing capacity. Exposure of DCs to Fhmuc in presence of LPS induced enhanced secretion of pro-inflammatory cytokines and expression of co-stimulatory molecules by DCs, promoting their T cell stimulatory capacity and selectively augmenting IFN-γ secretion by allogeneic T cells. Furthermore, exposure of DCs to Fhmuc augmented LPS-induced Toll-like receptor (TLR) 4 expression on the cell surface. Finally, Fhmuc-conditioned DCs induced parasite specific-adaptive immunity with increased levels of IFN-γ secreted by splenocytes from vaccinated animals, and higher parasite-specific IgG antibodies. However, Fhmuc-treated DC conferred modest protection against F. hepatica infection highlighting the potent immuno-regulatory capacity of the parasite. In summary, this work highlights the capacity of a mucin-derived peptide from F. hepatica to enhance LPS-maturation of DCs and induce parasite-specific immune responses with potential implications in vaccination and therapeutic strategies.
Noya, Verónica; Brossard, Natalie; Rodríguez, Ernesto; Dergan-Dylon, L. Sebastián; Carmona, Carlos; Rabinovich, Gabriel A.; Freire, Teresa
2017-01-01
Fasciolosis is a trematode zoonosis of interest in public health and cattle production. We report here the immunostimulatory effect of a 66 mer mucin-like peptide from Fasciola hepatica (Fhmuc), which synergizes with lipopolysaccharide (LPS) to promote dendritic cell (DC) maturation, endowing these cells with Th1-polarizing capacity. Exposure of DCs to Fhmuc in presence of LPS induced enhanced secretion of pro-inflammatory cytokines and expression of co-stimulatory molecules by DCs, promoting their T cell stimulatory capacity and selectively augmenting IFN-γ secretion by allogeneic T cells. Furthermore, exposure of DCs to Fhmuc augmented LPS-induced Toll-like receptor (TLR) 4 expression on the cell surface. Finally, Fhmuc-conditioned DCs induced parasite specific-adaptive immunity with increased levels of IFN-γ secreted by splenocytes from vaccinated animals, and higher parasite-specific IgG antibodies. However, Fhmuc-treated DC conferred modest protection against F. hepatica infection highlighting the potent immuno-regulatory capacity of the parasite. In summary, this work highlights the capacity of a mucin-derived peptide from F. hepatica to enhance LPS-maturation of DCs and induce parasite-specific immune responses with potential implications in vaccination and therapeutic strategies. PMID:28079156
Secreted Phospholipases A₂ from Animal Venoms in Pain and Analgesia.
Zambelli, Vanessa O; Picolo, Gisele; Fernandes, Carlos A H; Fontes, Marcos R M; Cury, Yara
2017-12-19
Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A₂ (sPLA₂s). These PLA₂ belong to distinct PLA₂s groups. For example, snake venom sPLA₂s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA₂ belongs to group III of sPLA₂s. It is well known that PLA₂, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA₂s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA₂s from animal venoms, particularly snake venoms.
USDA-ARS?s Scientific Manuscript database
Puberty, brought about by changes in LH pulse frequency and amplitude, is metabolically gated in the pig. How nutrition regulates LH secretion to initiate puberty in gilts is largely unknown. Kisspeptin (Kiss1) and neurokinin B (NKB) are neuropeptides that have been implicated in regulating LH pulsa...
Direct analysis of the secretions of the potato cyst nematode Globodera rostochiensis.
Robertson, L; Robertson, W M; Jones, J T
1999-08-01
Secretions were induced from second (invasive) stage juveniles (J2s) of the potato cyst nematode Globodera rostochiensis by exposing them to 5-methoxy-N,N-dimethyl tryptamine oxalate (DMT). Secretions were collected from J2s in sufficient quantity to allow direct analysis. Gel electrophoresis followed by monochromatic silver staining demonstrated the presence of at least 10 proteins. The presence of several enzymes, including superoxide dismutase and proteases, was demonstrated using Western blots and activity assays. Antisera raised against the secretions recognized bands on Western blots consistent in molecular mass with those identified on silver stained gels. The antisera recognized structures implicated in the production of secretions including the subventral gland cells and surface of J2s.
Lessard, Julie; Pelletier, Mélissa; Biertho, Laurent; Biron, Simon; Marceau, Simon; Hould, Frédéric-Simon; Lebel, Stéfane; Moustarah, Fady; Lescelleur, Odette; Marceau, Picard; Tchernof, André
2015-01-01
Mature adipocytes can reverse their phenotype to become fibroblast-like cells. This is achieved by ceiling culture and the resulting cells, called dedifferentiated fat (DFAT) cells, are multipotent. Beyond the potential value of these cells for regenerative medicine, the dedifferentiation process itself raises many questions about cellular plasticity and the pathways implicated in cell behavior. This work has been performed with the objective of obtaining new information on adipocyte dedifferentiation, especially pertaining to new targets that may be involved in cellular fate changes. To do so, omental and subcutaneous mature adipocytes sampled from severely obese subjects have been dedifferentiated by ceiling culture. An experimental design with various time points along the dedifferentiation process has been utilized to better understand this process. Cell size, gene and protein expression as well as cytokine secretion were investigated. Il-6, IL-8, SerpinE1 and VEGF secretion were increased during dedifferentiation, whereas MIF-1 secretion was transiently increased. A marked decrease in expression of mature adipocyte transcripts (PPARγ2, C/EBPα, LPL and Adiponectin) was detected early in the process. In addition, some matrix remodeling transcripts (FAP, DPP4, MMP1 and TGFβ1) were rapidly and strongly up-regulated. FAP and DPP4 proteins were simultaneously induced in dedifferentiating mature adipocytes supporting a potential role for these enzymes in adipose tissue remodeling and cell plasticity. PMID:25816202
Bardy, G; Virsolvy, A; Quignard, J F; Ravier, M A; Bertrand, G; Dalle, S; Cros, G; Magous, R; Richard, S; Oiry, C
2013-01-01
Background and Purpose Quercetin is a natural polyphenolic flavonoid that displays anti-diabetic properties in vivo. Its mechanism of action on insulin-secreting beta cells is poorly documented. In this work, we have analysed the effects of quercetin both on insulin secretion and on the intracellular calcium concentration ([Ca2+]i) in beta cells, in the absence of any co-stimulating factor. Experimental Approach Experiments were performed on both INS-1 cell line and rat isolated pancreatic islets. Insulin release was quantified by the homogeneous time-resolved fluorescence method. Variations in [Ca2+]i were measured using the ratiometric fluorescent Ca2+ indicator Fura-2. Ca2+ channel currents were recorded with the whole-cell patch-clamp technique. Key Results Quercetin concentration-dependently increased insulin secretion and elevated [Ca2+]i. These effects were not modified by the SERCA inhibitor thapsigargin (1 μmol·L−1), but were nearly abolished by the L-type Ca2+ channel antagonist nifedipine (1 μmol·L−1). Similar to the L-type Ca2+ channel agonist Bay K 8644, quercetin enhanced the L-type Ca2+ current by shifting its voltage-dependent activation towards negative potentials, leading to the increase in [Ca2+]i and insulin secretion. The effects of quercetin were not inhibited in the presence of a maximally active concentration of Bay K 8644 (1 μmol·L−1), with the two drugs having cumulative effects on [Ca2+]i. Conclusions and Implications Taken together, our results show that quercetin stimulates insulin secretion by increasing Ca2+ influx through an interaction with L-type Ca2+ channels at a site different from that of Bay K 8644. These data contribute to a better understanding of quercetin's mechanism of action on insulin secretion. PMID:23530660
Rajagopal, S P; Hutchinson, J L; Dorward, D A; Rossi, A G; Norman, J E
2015-08-01
Both term and preterm parturition are characterized by an influx of macrophages and neutrophils into the myometrium and cervix, with co-incident increased peripheral blood monocyte activation. Infection and inflammation are strongly implicated in the pathology of preterm labour (PTL), with progesterone considered a promising candidate for its prevention or treatment. In this study, we investigated the effect of monocytes on myometrial smooth muscle cell inflammatory cytokine production both alone and in response to LPS, a TLR4 agonist used to trigger PTL in vivo. We also investigated the effect of monocytes on myocyte contraction. Monocytes, isolated from peripheral blood samples from term pregnant women, were cultured alone, or co-cultured with PHM1-41 myometrial smooth muscle cells, for 24 h. In a third set of experiments, PHM1-41 myocytes were cultured for 24 h in isolation. Cytokine secretion was determined by ELISA or multiplex assays. Co-culture of monocytes and myocytes led to synergistic secretion of pro-inflammatory cytokines and chemokines including IL-6, IL-8 and MCP-1, with the secretion being further enhanced by LPS (100 ng/ml). The synergistic secretion of IL-6 and IL-8 from co-cultures was mediated in part by direct cell-cell contact, and by TNF. Conditioned media from co-cultures stimulated contraction of PHM1-41 myocytes, and the effect was inhibited by progesterone. Both progesterone and IL-10 inhibited LPS-stimulated IL-6 and IL-8 secretion from co-cultures, while progesterone also inhibited chemokine secretion. These data suggest that monocytes infiltrating the myometrium at labour participate in crosstalk that potentiates pro-inflammatory cytokine secretion, an effect that is enhanced by LPS, and can augment myocyte contraction. These effects are all partially inhibited by progesterone. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
Choi, Soon Gang; Wang, Qian; Jia, Jingjing; Chikina, Maria; Pincas, Hanna; Dolios, Georgia; Sasaki, Kazuki; Wang, Rong; Minamino, Naoto; Salton, Stephen R J; Sealfon, Stuart C
2016-09-30
Reproductive function is controlled by the pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH), which regulates the expression of the gonadotropins luteinizing hormone and FSH in pituitary gonadotropes. Paradoxically, Fshb gene expression is maximally induced at lower frequency GnRH pulses, which provide a very low average concentration of GnRH stimulation. We studied the role of secreted factors in modulating gonadotropin gene expression. Inhibition of secretion specifically disrupted gonadotropin subunit gene regulation but left early gene induction intact. We characterized the gonadotrope secretoproteome and global mRNA expression at baseline and after Gα s knockdown, which has been found to increase Fshb gene expression (1). We identified 1077 secreted proteins or peptides, 19 of which showed mRNA regulation by GnRH or/and Gα s knockdown. Among several novel secreted factors implicated in Fshb gene regulation, we focused on the neurosecretory protein VGF. Vgf mRNA, whose gene has been implicated in fertility (2), exhibited high induction by GnRH and depended on Gα s In contrast with Fshb induction, Vgf induction occurred preferentially at high GnRH pulse frequency. We hypothesized that a VGF-derived peptide might regulate Fshb gene induction. siRNA knockdown or extracellular immunoneutralization of VGF augmented Fshb mRNA induction by GnRH. GnRH stimulated the secretion of the VGF-derived peptide NERP1. NERP1 caused a concentration-dependent decrease in Fshb gene induction. These findings implicate a VGF-derived peptide in selective regulation of the Fshb gene. Our results support the concept that signaling specificity from the cell membrane GnRH receptor to the nuclear Fshb gene involves integration of intracellular signaling and exosignaling regulatory motifs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Wang, Qian; Jia, Jingjing; Chikina, Maria; Pincas, Hanna; Dolios, Georgia; Sasaki, Kazuki; Wang, Rong; Minamino, Naoto; Sealfon, Stuart C.
2016-01-01
Reproductive function is controlled by the pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH), which regulates the expression of the gonadotropins luteinizing hormone and FSH in pituitary gonadotropes. Paradoxically, Fshb gene expression is maximally induced at lower frequency GnRH pulses, which provide a very low average concentration of GnRH stimulation. We studied the role of secreted factors in modulating gonadotropin gene expression. Inhibition of secretion specifically disrupted gonadotropin subunit gene regulation but left early gene induction intact. We characterized the gonadotrope secretoproteome and global mRNA expression at baseline and after Gαs knockdown, which has been found to increase Fshb gene expression (1). We identified 1077 secreted proteins or peptides, 19 of which showed mRNA regulation by GnRH or/and Gαs knockdown. Among several novel secreted factors implicated in Fshb gene regulation, we focused on the neurosecretory protein VGF. Vgf mRNA, whose gene has been implicated in fertility (2), exhibited high induction by GnRH and depended on Gαs. In contrast with Fshb induction, Vgf induction occurred preferentially at high GnRH pulse frequency. We hypothesized that a VGF-derived peptide might regulate Fshb gene induction. siRNA knockdown or extracellular immunoneutralization of VGF augmented Fshb mRNA induction by GnRH. GnRH stimulated the secretion of the VGF-derived peptide NERP1. NERP1 caused a concentration-dependent decrease in Fshb gene induction. These findings implicate a VGF-derived peptide in selective regulation of the Fshb gene. Our results support the concept that signaling specificity from the cell membrane GnRH receptor to the nuclear Fshb gene involves integration of intracellular signaling and exosignaling regulatory motifs. PMID:27466366
The versatile role of exosomes in cancer progression: diagnostic and therapeutic implications.
Sundararajan, Vignesh; Sarkar, Fazlul H; Ramasamy, Thamil Selvee
2018-06-01
Recent advances in cancer biology have highlighted the relevance of exosomes and nanovesicles as carriers of genetic and biological messages between cancer cells and their immediate and/or distant environments. It has been found that these molecular cues may play significant roles in cancer progression and metastasis. Cancer cells secrete exosomes containing diverse molecules that can be transferred to recipient cells and/or vice versa to induce a plethora of biological processes, including angiogenesis, metastasis formation, therapeutic resistance, epithelial-mesenchymal transition and epigenetic/stemness (re)programming. While exosomes interact with cells within the tumour microenvironment to promote tumour growth, these vesicles can also facilitate the process of distant metastasis by mediating the formation of pre-metastatic niches. Next to their tumour promoting effects, exosomes have been found to serve as potential tools for cancer diagnosis and therapy. The ease of isolating exosomes and their content from different body fluids has led to the identification of diagnostic and prognostic biomarker signatures, as well as to predictive biomarker signatures for therapeutic responses. Exosomes can also be used as cargos to deliver therapeutic anti-cancer drugs, and they can be engineered to serve as vaccines for immunotherapy. Additionally, it has been found that inhibition of exosome secretion, and thus the transfer of oncogenic molecules, holds promise for inhibiting tumour growth. Here we provide recent information on the diverse roles of exosomes in various cellular and systemic processes governing cancer progression, and discuss novel strategies to halt this progression using exosome-based targeted therapies and methods to inhibit exosome secretion and the transfer of pro-tumorigenic molecules. This review highlights the important role of exosomes in cancer progression and its implications for (non-invasive) diagnostics and the development of novel therapeutic strategies, as well as its current and future applications in clinical trials.
ERIC Educational Resources Information Center
Misler, Stanley
2009-01-01
Stimulus-secretion coupling (SSC) in endocrine cells remains underappreciated as a subject for the study/teaching of general physiology. In the present article, we review key new electrophysiological, electrochemical, and fluorescence optical techniques for the study of exocytosis in single cells that have made this a fertile area for recent…
Plouin, Pierre-François; Amar, Laurence; Gimenez-Roqueplo, Anne-paule
2015-01-01
Pheochromocytomas and paragangliomas are catecholamine-secreting tumors usually associated with arterial hypertension. They can contribute to acute cardiovascular events. Ten to 15 percent of tumors are metastatic. Autosomal dominant gene alterations are present in more than a third of cases. The secretory phenotype and the risk of malignancy are driven by the presence of gene mutations, specifically in the subunits of succinate dehydrogenase. Recent advances in genomics have clinical implications for family screening, biological follow-up, prediction of the risk of recurrence, and therapeutic options in cases with malignant recurrence.
Metz, D C; Patto, R J; Mrozinski, J E; Jensen, R T; Turner, R J; Gardner, J D
1992-10-15
In the present study we used thapsigargin (TG), an inhibitor of microsomal calcium ATPase, to evaluate the roles of free cytoplasmic calcium and intracellular stored calcium in secretagogue-stimulated enzyme secretion from rat pancreatic acini. Using microspectrofluorimetry of fura-2-loaded pancreatic acini, we found that TG caused a sustained increase in free cytoplasmic calcium by mobilizing calcium from inositol 1,4,5-trisphosphate-sensitive intracellular stores and by increasing influx of extracellular calcium. TG also caused a small increase in basal amylase secretion, inhibited the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate, and potentiated the stimulation of amylase secretion caused by 12-O-tetradecanoylphorbol-13-acetate or secretagogues that increase cyclic adenosine 3',5'-monophosphate. Bombesin, which like TG increased free cytoplasmic calcium, also potentiated the stimulation of amylase secretion caused by secretagogues that increase cyclic adenosine 3',5'-monophosphate, but did not inhibit the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate. Finally, TG inhibited the sustained phase of cholecystokinin-stimulated amylase secretion and potentiated the time course of vasoactive intestinal peptide-stimulated amylase secretion. The present findings indicate that stimulation of amylase secretion by secretagogues that increase inositol 1,4,5-trisphosphate does not depend on increased free cytoplasmic calcium per se. In contrast, TG-induced potentiation of the stimulation of secretagogues that increase cellular cyclic adenosine 3',5'-monophosphate appears to result from increased free cytoplasmic calcium per se.
Symbiotic implications of type III protein secretion machinery in Rhizobium.
Viprey, V; Del Greco, A; Golinowski, W; Broughton, W J; Perret, X
1998-06-01
The symbiotic plasmid of Rhizobium sp. NGR234 carries a cluster of genes that encodes components of a bacterial type III secretion system (TTSS). In both animal and plant pathogens, the TTSS is an essential component of pathogenicity. Here, we show that secretion of at least two proteins (y4xL and NolX) is controlled by the TTSS of NGR234 and occurs after the induction with flavonoids. Polar mutations in two TTSS genes, rhcN and the nod-box controlled regulator of transcription y4xl, block the secretion of both proteins and strongly affect the ability of NGR234 to nodulate a variety of tropical legumes including Pachyrhizus tuberosus and Tephrosia vogelii.
USDA-ARS?s Scientific Manuscript database
Plant sucking heteropteran bugs feed regularly on small amounts of K+rich plant material, in contrast to their hematophagous relatives which imbibe large volumes of Na+-rich blood. It was anticipated that this would be reflected in the endocrine control of MT secretion. To explore this, neuroendocri...
The effect of imiquimod on taste bud calcium transients and transmitter secretion
Wu, Sandy Y
2016-01-01
Background and Purpose Imiquimod is an immunomodulator approved for the treatment of basal cell carcinoma and has adverse side effects, including taste disturbances. Paracrine transmission, representing cell–cell communication within taste buds, has the potential to shape the final signals that taste buds transmit to the brain. Here, we tested the underlying assumption that imiquimod modifies taste transmitter secretion in taste buds of mice. Experimental Approach Taste buds were isolated from C57BL/6J mice. The effects of imiquimod on transmitter release in taste buds were measured using calcium imaging with cellular biosensors, and examining the net effect of imiquimod on taste‐evoked ATP secretion from mouse taste buds. Key Results Up to 72% of presynaptic (Type III) taste cells responded to 100 μM imiquimod with an increase in intracellular Ca2+ concentrations. These Ca2 + responses were inhibited by thapsigargin, an inhibitor of the sarco/endoplasmic reticulum Ca2 +‐ATPase, and by U73122, a PLC inhibitor, suggesting that the Ca2 + mobilization elicited by imiquimod was dependent on release from internal Ca2 + stores. Moreover, combining studies of Ca2 + imaging with cellular biosensors showed that imiquimod evoked secretion of 5‐HT, which then provided negative feedback onto receptor (Type II) cells to reduce taste‐evoked ATP secretion. Conclusion and Implications Our results provide evidence that there is a subset of taste cells equipped with a range of intracellular mechanisms that respond to imiquimod. The findings are also consistent with a role of imiquimod as an immune response modifier, which shapes peripheral taste responses via 5‐HT signalling. PMID:27464850
Walford, T; Musa, F I
2015-01-01
Background and Purpose Recently, we demonstrated that a pericellular Ca2+ recycling system potentiates agonist‐evoked Ca2+ signalling and granule secretion in human platelets and hypothesized a role for the membrane complex (MC) in orchestrating the accumulation of Ca2+ in the pericellular region. Previous work has demonstrated that treatment with high concentrations of nicergoline may disrupt the MC through an ability to trigger a re‐organization of the dense tubular system. Experiments were therefore performed to assess whether nicergoline‐induced changes in platelet ultrastructure affects thrombin‐evoked Ca2+ fluxes and dense granule secretion. Experimental Approach Thrombin‐evoked Ca2+ fluxes were monitored in Fura‐2‐ or Fluo‐5N‐loaded human platelets, or using platelet suspensions containing Fluo‐4 or Rhod‐5N K+ salts. Fluorescence microscopy was utilized to monitor microtubule structure and intracellular Ca2+ store distribution in TubulinTracker‐ and Fluo‐5N‐loaded platelets respectively. Dense granule secretion was monitored using luciferin–luciferase. Key Results Nicergoline treatment inhibited thrombin‐evoked Ca2+ signalling and induced alterations in the microtubule structure and the distribution of intracellular Ca2+ stores in platelets. Nicergoline altered the generation and spreading of thrombin‐induced pericellular Ca2+ signals and almost completely prevented dense granule secretion. Stabilization of microtubules using taxol reversed most effects of nicergoline on platelet Ca2+ signalling and partially reversed its effects on dense granule secretion. Conclusions and Implications Nicergoline‐induced alterations to platelet ultrastructure disrupt platelet Ca2+ signalling in a manner that would be predicted if the MC had been disrupted. These data suggest that nicergoline may be a useful prototype for the discovery of novel MC‐disrupting anti‐thrombotics. PMID:26450366
The stem cell secretome and its role in brain repair
Drago, Denise; Cossetti, Chiara; Iraci, Nunzio; Gaude, Edoardo; Musco, Giovanna; Bachi, Angela; Pluchino, Stefano
2014-01-01
Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS. PMID:23827856
Secreted Phospholipases A2 from Animal Venoms in Pain and Analgesia
Zambelli, Vanessa O.; Picolo, Gisele; Fernandes, Carlos A. H.
2017-01-01
Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A2 (sPLA2s). These PLA2 belong to distinct PLA2s groups. For example, snake venom sPLA2s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA2 belongs to group III of sPLA2s. It is well known that PLA2, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA2s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA2s from animal venoms, particularly snake venoms. PMID:29311537
Hepp, Christof; Maier, Berenike
2017-10-01
Secretion systems enable bacteria to import and secrete large macromolecules including DNA and proteins. While most components of these systems have been identified, the molecular mechanisms of macromolecular transport remain poorly understood. Recent findings suggest that various bacterial secretion systems make use of the translocation ratchet mechanism for transporting polymers across the cell envelope. Translocation ratchets are powered by chemical potential differences generated by concentration gradients of ions or molecules that are specific to the respective secretion systems. Bacteria employ these potential differences for biasing Brownian motion of the macromolecules within the conduits of the secretion systems. Candidates for this mechanism include DNA import by the type II secretion/type IV pilus system, DNA export by the type IV secretion system, and protein export by the type I secretion system. Here, we propose that these three secretion systems employ different molecular implementations of the translocation ratchet mechanism. © 2017 The Authors. BioEssays Published by WILEY Periodicals, Inc.
Fan, Wei; Xu, Jia-Meng; Lou, He-Qiang; Xiao, Chuan; Chen, Wei-Wei; Yang, Jian-Li
2016-01-01
Grain amaranth (Amaranthus hypochondriacus L.) is abundant in oxalate and can secrete oxalate under aluminium (Al) stress. However, the features of Al-induced secretion of organic acid anions (OA) and potential genes responsible for OA secretion are poorly understood. Here, Al-induced OA secretion in grain amaranth roots was characterized by ion charomatography and enzymology methods, and suppression subtractive hybridization (SSH) together with quantitative real-time PCR (qRT-PCR) was used to identify up-regulated genes that are potentially involved in OA secretion. The results showed that grain amaranth roots secrete both oxalate and citrate in response to Al stress. The secretion pattern, however, differs between oxalate and citrate. Neither lanthanum chloride (La) nor cadmium chloride (Cd) induced OA secretion. A total of 84 genes were identified as up-regulated by Al, in which six genes were considered as being potentially involved in OA secretion. The expression pattern of a gene belonging to multidrug and toxic compound extrusion (MATE) family, AhMATE1, was in close agreement with that of citrate secretion. The expression of a gene encoding tonoplast dicarboxylate transporter and four genes encoding ATP-binding cassette transporters was differentially regulated by Al stress, but the expression pattern was not correlated well with that of oxalate secretion. Our results not only reveal the secretion pattern of oxalate and citrate from grain amaranth roots under Al stress, but also provide some genetic information that will be useful for further characterization of genes involved in Al toxicity and tolerance mechanisms. PMID:27144562
Fan, Wei; Xu, Jia-Meng; Lou, He-Qiang; Xiao, Chuan; Chen, Wei-Wei; Yang, Jian-Li
2016-04-30
Grain amaranth (Amaranthus hypochondriacus L.) is abundant in oxalate and can secrete oxalate under aluminium (Al) stress. However, the features of Al-induced secretion of organic acid anions (OA) and potential genes responsible for OA secretion are poorly understood. Here, Al-induced OA secretion in grain amaranth roots was characterized by ion charomatography and enzymology methods, and suppression subtractive hybridization (SSH) together with quantitative real-time PCR (qRT-PCR) was used to identify up-regulated genes that are potentially involved in OA secretion. The results showed that grain amaranth roots secrete both oxalate and citrate in response to Al stress. The secretion pattern, however, differs between oxalate and citrate. Neither lanthanum chloride (La) nor cadmium chloride (Cd) induced OA secretion. A total of 84 genes were identified as up-regulated by Al, in which six genes were considered as being potentially involved in OA secretion. The expression pattern of a gene belonging to multidrug and toxic compound extrusion (MATE) family, AhMATE1, was in close agreement with that of citrate secretion. The expression of a gene encoding tonoplast dicarboxylate transporter and four genes encoding ATP-binding cassette transporters was differentially regulated by Al stress, but the expression pattern was not correlated well with that of oxalate secretion. Our results not only reveal the secretion pattern of oxalate and citrate from grain amaranth roots under Al stress, but also provide some genetic information that will be useful for further characterization of genes involved in Al toxicity and tolerance mechanisms.
Adachi, Naoki; Numakawa, Tadahiro; Richards, Misty; Nakajima, Shingo; Kunugi, Hiroshi
2014-01-01
Brain-derived neurotrophic factor (BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia. PMID:25426265
Cane, Matthew C.; Parrington, John; Rorsman, Patrik; Galione, Antony; Rutter, Guy A.
2016-01-01
Ca2+ signals are central to the stimulation of insulin secretion from pancreatic β-cells by glucose and other agents, including glucagon-like peptide-1 (GLP-1). Whilst Ca2+ influx through voltage-gated Ca2+ channels on the plasma membrane is a key trigger for glucose-stimulated secretion, mobilisation of Ca2+ from acidic stores has been implicated in the control of more localised Ca2+ changes and membrane potential. Nicotinic acid adenine dinucleotide phosphate (NAADP), generated in β-cells in response to high glucose, is a potent mobiliser of these stores, and has been proposed to act through two pore channels (TPC1 and TPC2, murine gene names Tpcn1 and Tpcn2). Whilst the role of TPC1 in the control of Ca2+ mobilisation and insulin secretion was recently confirmed, conflicting data exist for TPC2. Here, we used the selective and efficient deleter strain, Ins1Cre to achieve β-cell selective deletion of the Tpcn2 gene in mice. βTpcn2 KO mice displayed normal intraperitoneal and oral glucose tolerance, and glucose-stimulated Ca2+ dynamics and insulin secretion from islets were similarly normal. GLP-1-induced Ca2+ increases involved an increase in oscillation frequency from 4.35 to 4.84 per minute (p = 0.04) at 8 mM glucose, and this increase was unaffected by the absence of Tpcn2. The current data thus indicate that TPC2 is not absolutely required for normal glucose- or incretin-stimulated insulin secretion from the β-cell. Our findings suggest that TPC1, whose expression tended to increase in Tpcn2 null islets, might be sufficient to support normal Ca2+ dynamics in response to stimulation by nutrients or incretins. PMID:26769314
Nuche-Berenguer, Bernardo; Ramos-Álvarez, Irene; Jensen, R T
2016-06-01
In pancreatic acinar cells, the Src family of kinases (SFK) is involved in the activation of several signaling cascades that are implicated in mediating cellular processes (growth, cytoskeletal changes, apoptosis). However, the role of SFKs in various physiological responses such as enzyme secretion or in pathophysiological processes such as acute pancreatitis is either controversial, unknown, or incompletely understood. To address this, in this study, we investigated the role/mechanisms of SFKs in acute pancreatitis and enzyme release. Enzyme secretion was studied in rat dispersed pancreatic acini, in vitro acute-pancreatitis-like changes induced by supramaximal COOH-terminal octapeptide of cholecystokinin (CCK). SFK involvement assessed using the chemical SFK inhibitor (PP2) with its inactive control, 4-amino-7-phenylpyrazol[3,4-d]pyrimidine (PP3), under experimental conditions, markedly inhibiting SFK activation. In CCK-stimulated pancreatic acinar cells, activation occurred of trypsinogen, various MAP kinases (p42/44, JNK), transcription factors (signal transducer and activator of transcription-3, nuclear factor-κB, activator protein-1), caspases (3, 8, and 9) inducing apoptosis, LDH release reflective of necrosis, and various chemokines secreted (monocyte chemotactic protein-1, macrophage inflammatory protein-1α, regulated on activation, normal T cell expressed and secreted). All were inhibited by PP2, not by PP3, except caspase activation leading to apoptosis, which was increased, and trypsin activation, which was unaffected, as was CCK-induced amylase release. These results demonstrate SFK activation is playing a dual role in acute pancreatitis, inhibiting apoptosis and promoting necrosis as well as chemokine/cytokine release inducing inflammation, leading to more severe disease, as well as not affecting secretion. Thus, our studies indicate that SFK is a key mediator of inflammation and pancreatic acinar cell death in acute pancreatitis, suggesting it could be a potential therapeutic target in acute pancreatitis. Copyright © 2016 the American Physiological Society.
Comparative secretome analysis of rat stomach under different nutritional status.
Senin, Lucia L; Roca-Rivada, Arturo; Castelao, Cecilia; Alonso, Jana; Folgueira, Cintia; Casanueva, Felipe F; Pardo, Maria; Seoane, Luisa M
2015-02-26
Obesity is a major public health threat for many industrialised countries. Bariatric surgery is the most effective treatment against obesity, suggesting that gut derived signals are crucial for energy balance regulation. Several descriptive studies have proven the presence of gastric endogenous systems that modulate energy homeostasis; however, these systems and the interactions between them are still not well known. In the present study, we show for the first time the comparative 2-DE gastric secretome analysis under different nutritional status. We have identified 38 differently secreted proteins by comparing stomach secretomes from tissue explant cultures of rats under feeding, fasting and re-feeding conditions. Among the proteins identified, glyceraldehyde-3-phosphate dehydrogenase was found to be more abundant in gastric secretome and plasma after re-feeding, and downregulated in obesity. Additionally, two calponin-1 species were decreased in feeding state, and other were modulated by nutritional and metabolic conditions. These and other secreted proteins identified in this work may be considered as potential gastrokines implicated in food intake regulation. The present work has an important impact in the field of obesity, especially in the regulation of body weight maintenance by the stomach. Nowadays, the most effective treatment in the fight against obesity is bariatric surgery, which suggests that stomach derived signals might be crucial for the regulation of the energy homeostasis. However, until now, the knowledge about the gastrokines and its mechanism of action has been poorly elucidated. In the present work, we had updated a previously validated explant secretion model for proteomic studies; this analysis allowed us, for the first time, to study the gastric secretome without interferences from other organs. We had identified 38 differently secreted proteins comparing ex vivo cultured stomachs from rats under feeding, fasting and re-feeding regimes. The results in the present article provide novel targets to study the role of the stomach in body weight and appetite regulation, and suggest new potential therapeutic targets for treating obesity. Copyright © 2015 Elsevier B.V. All rights reserved.
Mucins in contact lens wear and dry eye conditions.
Ramamoorthy, Padmapriya; Nichols, Jason J
2008-08-01
Ocular mucins are thought to play integral roles in ocular surface lubrication, anchoring of the aqueous, stabilizing the lipid components of the tear film, eliminating foreign bodies and pathogens, and with potential involvement in cell cycle mediation and apoptotic activity of ocular surface epithelia. Ocular mucins are of secreted and membrane-associated types. Secreted mucins may be of large gel-forming type or small soluble mucins (e.g., MUC5AC and MUC7). Membrane-associated mucins such as MUCs 1 and 4 are a major component of the glycocalyx. They are thought to render structural support to the microplicae and mediate epithelial cell cycle and apoptotic activity. The alterations in ocular mucins with contact lens wear are unclear. Recent work shows mucin expression may be up-regulated during the early years of contact lens wear, and with long-term lens wear, mucin expression may return to normal levels or sub-normal levels, although this is not well understood. Further, the polar nature of mucins may be associated with their affinity for contact lens surfaces making them a component of contact lens deposition. This has potential implications in the wettability and tolerability of contact lenses, and may be impacted by surface coatings, polymer characteristics, or care solutions. Conjunctival mucin gene expression and secretion may be deficient in several ocular surface disorders associated with dry eye. Deficiency and alterations in glycosylation characteristics of MUC5AC and MUC2 have been reported in both Sjögren and non-Sjögren dry eye types. Decreased binding of the membrane-associated mucin MUC16 to the conjunctival epithelium has been reported in Sjögren dry eye while MUC1 alterations have been reported in Sjögren and non-Sjögren dry eye states. In view of the mucin involvement in dry eye conditions, stimulation of mucus secretion pathways may hold promise in the pharmaceutical treatment of dry eye.
Seventy years of pancreatic physiology: take a look back.
Morisset, Jean
2014-11-01
This review article has 4 major objectives to follow pancreatic physiology development more than close to 70 years of intensive and productive basic research. At first, the review will focus on secretion of the pancreatic enzymes with (1) the controls involved, (2) the interrelations existing between secretion and synthesis of these enzymes, (3) the enzymes' adaptation to the constituents of the diet, and (4) whether secretion of the different enzymes is parallel or nonparallel. Second, growth and regeneration of the pancreatic gland will be looked at in relation to the factors involved and the target cells implicated.
Gonzalez, R; Levy, F; Orgeur, P; Poindron, P; Signoret, J P
1991-01-01
The importance of olfactory cues in inducing luteinizing hormone and testosterone secretion as a response to stimulation by sexually receptive ewes has been tested. In sexually experienced rams, olfactory stimulation with urine, wool and vaginal secretions from sexually receptive females placed in a mask did not induce an endocrine response. The female-induced secretion of LH and testosterone was similar in anosmic, sham-operated and in control rams. These results show that olfactory cues are not necessary in the mediation of interindividual stimulation of endocrine response in the sexually experienced ram.
Tapia, Pablo; Fernández-Galilea, Marta; Robledo, Fermín; Mardones, Pablo; Galgani, José E; Cortés, Víctor A
2018-05-01
The discovery of metabolically active brown adipose tissue (BAT) in adult humans has fuelled the research of diverse aspects of this previously neglected tissue. BAT is solely present in mammals and its clearest physiological role is non-shivering thermogenesis, owing to the capacity of brown adipocytes to dissipate metabolic energy as heat. Recently, a number of other possible functions have been proposed, including direct regulation of glucose and lipid homeostasis and the secretion of a number of factors with diverse regulatory actions. Herein, we review recent advances in general biological knowledge of BAT and discuss the possible implications of this tissue in human metabolic health. In particular, we confront the claimed thermogenic potential of BAT for human energy balance and body mass regulation, mostly based on animal studies, with the most recent quantifications of human BAT. © 2017 Cambridge Philosophical Society.
Tomasetti, Marco; Lee, Wan; Santarelli, Lory; Neuzil, Jiri
2017-01-20
Malignant progression is greatly affected by dynamic cross-talk between stromal and cancer cells. Exosomes are secreted nanovesicles that have key roles in cell-cell communication by transferring nucleic acids and proteins to target cells and tissues. Recently, MicroRNAs (miRs) and their delivery in exosomes have been implicated in physiological and pathological processes. Tumor-delivered miRs, interacting with stromal cells in the tumor microenvironment, modulate tumor progression, angiogenesis, metastasis and immune escape. Altered cell metabolism is one of the hallmarks of cancer. A number of different types of tumor rely on mitochondrial metabolism by triggering adaptive mechanisms to optimize their oxidative phosphorylation in relation to their substrate supply and energy demands. Exogenous exosomes can induce metabolic reprogramming by restoring the respiration of cancer cells and supress tumor growth. The exosomal miRs involved in the modulation of cancer metabolism may be potentially utilized for better diagnostics and therapy.
The biology, function and clinical implications of exosomes in lung cancer.
Zhou, Li; Lv, Tangfeng; Zhang, Qun; Zhu, Qingqing; Zhan, Ping; Zhu, Suhua; Zhang, Jianya; Song, Yong
2017-10-28
Exosomes are 30-100 nm small membrane vesicles of endocytic origin that are secreted by all types of cells, and can also be found in various body fluids. Increasing evidence implicates that exosomes confer stability and can deliver their cargos such as proteins and nucleic acids to specific cell types, which subsequently serve as important messengers and carriers in lung carcinogenesis. Here, we describe the biogenesis and components of exosomes mainly in lung cancer, we summarize their function in lung carcinogenesis (epithelial mesenchymal transition, oncogenic cell transformation, angiogenesis, metastasis and immune response in tumor microenvironment), and importantly we focus on the clinical potential of exosomes as biomarkers and therapeutics in lung cancer. In addition, we also discuss current challenges that might impede the clinical use of exosomes. Further studies on the functional roles of exosomes in lung cancer requires thorough research. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lang, Carolin; Seifert, Karlheinz; Dettner, Konrad
2012-11-01
Rove beetles of the genus Stenus Latreille and the genus Dianous Leach possess pygidial glands containing a multifunctional secretion of piperidine and pyridine-derived alkaloids as well as several terpenes. One important character of this secretion is the spreading potential of its different compounds, stenusine, norstenusine, 3-(2-methyl-1-butenyl)pyridine, cicindeloine, α-pinene, 1,8-cineole and 6-methyl-5-heptene-2-one. The individual secretion composition enables the beetles to skim rapidly and far over the water surface, even when just a small amount of secretion is emitted. Ethological investigations of several Stenus species revealed that the skimming ability, skimming velocity and the skimming behaviour differ between the Stenus species. These differences can be linked to varied habitat claims and secretion saving mechanisms. By means of tensiometer measurements using the pendant drop method, the spreading pressure of all secretion constituents as well as some naturally identical beetle secretions on the water surface could be established. The compound 3-(2-methyl-1-butenyl)pyridine excelled stenusine believed to date to be mainly responsible for skimming relating to its surface activity. The naturally identical secretions are not subject to synergistic effects of the single compounds concerning the spreading potential. Furthermore, evolutionary aspects of the Steninae's pygidial gland secretion are discussed.
Franzen, Carrie A; Blackwell, Robert H; Foreman, Kimberly E; Kuo, Paul C; Flanigan, Robert C; Gupta, Gopal N
2016-05-01
Exosomes are small secreted vesicles that contain proteins, mRNA and miRNA with the potential to alter signaling pathways in recipient cells. While exosome research has flourished, few publications have specifically considered the role of genitourinary cancer shed exosomes in urine, their implication in disease progression and their usefulness as noninvasive biomarkers. In this review we examined the current literature on the role of exosomes in intercellular communication and as biomarkers, and their potential as delivery vehicles for therapeutic applications in bladder, prostate and renal cancer. We searched PubMed® and Google® with the key words prostate cancer, bladder cancer, kidney cancer, exosomes, microvesicles and urine. Relevant articles, including original research studies and reviews, were selected based on contents. A review of this literature was generated. Cancer exosomes can be isolated from urine using various techniques. Cancer cells have been found to secrete more exosomes than normal cells. These exosomes have a role in cellular communication by interacting with and depositing their cargo in target cells. Bladder, prostate and renal cancer exosomes have been shown to enhance migration, invasion and angiogenesis. These exosomes have also been shown to increase proliferation, confer drug resistance and promote immune evasion. Urinary exosomes can be isolated from bladder, kidney and prostate cancer. They serve as a potential reservoir for biomarker identification. Exosomes also have potential for therapeutics as siRNA or pharmacological agents can be loaded into exosomes. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Towards elucidating the differential regulation of floral and extrafloral nectar secretion
Radhika, Venkatesan; Kost, Christian; Boland, Wilhelm
2010-01-01
Nectar is a rich source of sugars that serves the attraction of pollinators (floral nectar) or predatory arthropods (extrafloral nectar). We just begin to understand the similarities and differences that underlie the secretory control of these two important types of plant secretions. Jasmonates are phytohormones, which are well documented to be involved in plant developmental processes and plant defence responses against herbivores, including the secretion of extrafloral nectar. Recently, jasmonates have also been implicated in the regulation of floral nectar secretion in Brassica napus. Due to a trade-off between reproduction and defence, however, plants need to functionally separate the regulation of these two secretory processes. In line with this prediction, externally applying jasmonates to leaves did indeed not affect floral nectar secretion. Here we compare the current knowledge on the regulation of floral and extrafloral nectar secretion to understand similarities and dissimilarities between these two secretory processes and highlight future research directions in this context. PMID:20622524
The Secret of Intrafamilial Child Sexual Abuse: Who Keeps It and How?
Tener, Dafna
2018-01-01
This article analyzes how women survivors of intrafamilial child sexual abuse perceive the family members who took part in keeping it secret and their tactics for doing so. Analysis of 20 in-depth interviews with Jewish Israeli women revealed unique ways of guarding the secret. These were attributed to the perpetrator, the mother and the family. Secret-keeping tactics included presenting a normative public identity or an unstable psychological identity, presenting multiple personas, reframing the abuse, concealing any trace of the secret after it was disclosed, as if the abuse had never happened, and making a monument of the abuser. These tactics are discussed in the context of silencing, the interpersonal relations orientation model, and the wider concepts of secrecy in society. Implications for professional practice and for society are considered, and new attitudes toward intrafamilial child sexual abuse secrecy are suggested.
Acetylcholine is released from taste cells, enhancing taste signalling
Dando, Robin; Roper, Stephen D
2012-01-01
Acetylcholine (ACh), a candidate neurotransmitter that has been implicated in taste buds, elicits calcium mobilization in Receptor (Type II) taste cells. Using RT-PCR analysis and pharmacological interventions, we demonstrate that the muscarinic acetylcholine receptor M3 mediates these actions. Applying ACh enhanced both taste-evoked Ca2+ responses and taste-evoked afferent neurotransmitter (ATP) secretion from taste Receptor cells. Blocking muscarinic receptors depressed taste-evoked responses in Receptor cells, suggesting that ACh is normally released from taste cells during taste stimulation. ACh biosensors confirmed that, indeed, taste Receptor cells secrete acetylcholine during gustatory stimulation. Genetic deletion of muscarinic receptors resulted in significantly diminished ATP secretion from taste buds. The data demonstrate a new role for acetylcholine as a taste bud transmitter. Our results imply specifically that ACh is an autocrine transmitter secreted by taste Receptor cells during gustatory stimulation, enhancing taste-evoked responses and afferent transmitter secretion. PMID:22570381
The Classification of E-Authentication Protocols for Targeted Applicability
2009-12-01
that the secret is only known to the Claimant and either the Verifier or Relying Party (V/RP), and serves as a form of identifier to the... secret against unauthorized observation. The protection of the secret is critical to prevent potential impersonation attacks. The secret is usually...confident that the Claimant is who he claims, if he is able to prove possession of this secret. 1. Symmetric vs. Asymmetric Secret The secret used by
Stammler, Dominik; Eigenbrod, Tatjana; Menz, Sarah; Frick, Julia S; Sweet, Matthew J; Shakespear, Melanie R; Jantsch, Jonathan; Siegert, Isabel; Wölfle, Sabine; Langer, Julian D; Oehme, Ina; Schaefer, Liliana; Fischer, Andre; Knievel, Judith; Heeg, Klaus; Dalpke, Alexander H; Bode, Konrad A
2015-12-01
Histone deacetylase (HDAC) inhibitors (HDACi) are clinically approved anticancer drugs that have important immune-modulatory properties. We report the surprising finding that HDACi promote LPS-induced IL-1β processing and secretion in human and murine dendritic cells and murine macrophages. HDACi/LPS-induced IL-1β maturation and secretion kinetics differed completely from those observed upon inflammasome activation. Moreover, this pathway of IL-1β secretion was dependent on caspase-8 but was independent of the inflammasome components NACHT, LRR, and PYD domains-containing protein 3, apoptosis-associated speck-like protein containing a carboxyl-terminal caspase-recruitment domain, and caspase-1. Genetic studies excluded HDAC6 and HDAC10 as relevant HDAC targets in this pathway, whereas pharmacological inhibitor studies implicated the involvement of HDAC11. Treatment of mice with HDACi in a dextran sodium sulfate-induced colitis model resulted in a strong increase in intestinal IL-1β, confirming that this pathway is also operative in vivo. Thus, in addition to the conventional inflammasome-dependent IL-1β cleavage pathway, dendritic cells and macrophages are capable of generating, secreting, and processing bioactive IL-1β by a novel, caspase-8-dependent mechanism. Given the widespread interest in the therapeutic targeting of IL-1β, as well as the use of HDACi for anti-inflammatory applications, these findings have substantial clinical implications. Copyright © 2015 by The American Association of Immunologists, Inc.
Shlygin, G K; Vasilevskaia, L S; Loranskaia, T I; Shakhovskaia, A K; Lebedeva, R P
1991-08-01
The authors report a potentiating effect of sodium glutamate on gastric secretion in subjects free of gastrointestinal diseases. Similar effect has been discovered in dogs. In subjects with gastric hyposecretion (chronic gastritis, functional regulatory disturbances) sodium glutamate combined with pentagastrin is a helpful tool in overall evaluation of gastric secretion. In achlorhydria is can be used for determination of a residual capacity of the stomach to secrete the hydrochloric acid in failure of humoral stimulators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dingell, J.D.
1991-02-01
The Department of Energy's (DOE) Lawrence Livermore National Laboratory, located in Livermore, California, generates and controls large numbers of classified documents associated with the research and testing of nuclear weapons. Concern has been raised about the potential for espionage at the laboratory and the national security implications of classified documents being stolen. This paper determines the extent of missing classified documents at the laboratory and assesses the adequacy of accountability over classified documents in the laboratory's custody. Audit coverage was limited to the approximately 600,000 secret documents in the laboratory's custody. The adequacy of DOE's oversight of the laboratory's secretmore » document control program was also assessed.« less
Salicylic acid, a plant defense hormone, is specifically secreted by a molluscan herbivore.
Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T; Meldau, Stefan
2014-01-01
Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding.
Salicylic Acid, a Plant Defense Hormone, Is Specifically Secreted by a Molluscan Herbivore
Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T.; Meldau, Stefan
2014-01-01
Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding. PMID:24466122
Interleukin-6 amplifies glucagon secretion: coordinated control via the brain and pancreas
Barnes, Tammy M.; Otero, Yolanda F.; Elliott, Amicia D.; Locke, Alicia D.; Malabanan, Carlo M.; Coldren, Anastasia G.; Brissova, Marcela; Piston, David W.
2014-01-01
Inappropriate glucagon secretion contributes to hyperglycemia in inflammatory disease. Previous work implicates the proinflammatory cytokine interleukin-6 (IL-6) in glucagon secretion. IL-6-KO mice have a blunted glucagon response to lipopolysaccharide (LPS) that is restored by intravenous replacement of IL-6. Given that IL-6 has previously been demonstrated to have a transcriptional (i.e., slow) effect on glucagon secretion from islets, we hypothesized that the rapid increase in glucagon following LPS occurred by a faster mechanism, such as by action within the brain. Using chronically catheterized conscious mice, we have demonstrated that central IL-6 stimulates glucagon secretion uniquely in the presence of an accompanying stressor (hypoglycemia or LPS). Contrary to our hypothesis, however, we found that IL-6 amplifies glucagon secretion in two ways; IL-6 not only stimulates glucagon secretion via the brain but also by direct action on islets. Interestingly, IL-6 augments glucagon secretion from both sites only in the presence of an accompanying stressor (such as epinephrine). Given that both adrenergic tone and plasma IL-6 are elevated in multiple inflammatory diseases, the interactions of the IL-6 and catecholaminergic signaling pathways in regulating GCG secretion may contribute to our present understanding of these diseases. PMID:25205821
Michou, I Vassiliki; Constantoulakis, Pantelis; Makarounis, Kostantinos; Georgoulias, Giorgos; Kapetanios, Vassilis; Tsilivakos, Vassilis
2014-01-01
At present, routine laboratory investigation of the infectious agents implicated in female genital infections is mainly based on culture/direct fluorescence antibody (DFA) (immunofluorescence antibody test) results of cervicovaginal secretions. In this study the use of the menstrual tissue is introduced for the molecular detection of pathogens which are implicated in female infertility. Cervicovaginal secretions and menstrual tissue samples of 87 women (mean age 34.07 ± 5.17) experiencing infertility problems were screened for Chlamydia trachomatis, Ureaplasma urealyticum and Mycoplasma hominis presence using polymerase chain reaction (PCR, light cycler-PCR). Cervicovaginal secretions were also tested by the culture/DFA technique. The results were compared using the binomial test. In the overall study group, the prevalence of C. trachomatis was 25.3%, 18.3%, and 13.8%, the prevalence of U. urealyticum was 18.3%, 16.09% and 12.6% and the prevalence of M. hominis was 13.7%, 19.5% and 8.0% in the menstrual tissue, cervicovaginal secretions using PCR and cervicovaginal secretions culture/DFA, respectively. A statistically significant difference was revealed between the two methods for all three microbes and between menstrual tissue and cervicovaginal secretions PCR for chlamydia. The use of menstrual tissue along with the PCR method seems to be an effective and thus novel alternative for the investigation of the infectious agents lying in the genital tract. One of the main advantages of this technique compared to cervicovaginal secretions is that it is non-invasive and the sample can be collected at home, thus allowing the early detection and treatment of a condition that can otherwise lead to serious consequences, such as tubal obstruction, pelvic inflammatory disease, ectopic pregnancy, spontaneous abortions and unexplained infertility. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.
Nanjappa, Manjunatha K.; Simon, Liz; Akingbemi, Benson T.
2012-01-01
ABSTRACT The presence of bisphenol A (BPA) in consumer products has raised concerns about potential adverse effects on reproductive health. Testicular Leydig cells are the predominant source of the male sex steroid hormone testosterone, which supports the male phenotype. The present report describes the effects of developmental exposure of male rats to BPA by gavage of pregnant and lactating Long-Evans dams at 2.5 and 25 μg/kg body weight from Gestational Day 12 to Day 21 postpartum. This exposure paradigm stimulated Leydig cell division in the prepubertal period and increased Leydig cell numbers in the testes of adult male rats at 90 days. Observations from in vitro experiments confirmed that BPA acts directly as a mitogen in Leydig cells. However, BPA-induced proliferative activity in vivo is possibly mediated by several factors, such as 1) protein kinases (e.g., mitogen-activated protein kinases or MAPK), 2) growth factor receptors (e.g., insulin-like growth factor 1 receptor-beta and epidermal growth factor receptors), and 3) the Sertoli cell-secreted anti-Mullerian hormone (also called Mullerian inhibiting substance). On the other hand, BPA suppressed protein expression of the luteinizing hormone receptor (LHCGR) and the 17beta-hydroxysteroid dehydrogenase enzyme (HSD17B3), thereby decreasing androgen secretion by Leydig cells. We interpret these findings to mean that the likely impact of deficits in androgen secretion on serum androgen levels following developmental exposure to BPA is alleviated by increased Leydig cell numbers. Nevertheless, the present results reinforce the view that BPA causes biological effects at environmentally relevant exposure levels and its presence in consumer products potentially has implication for public health. PMID:22302688
The stem cell secretome and its role in brain repair.
Drago, Denise; Cossetti, Chiara; Iraci, Nunzio; Gaude, Edoardo; Musco, Giovanna; Bachi, Angela; Pluchino, Stefano
2013-12-01
Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Autism, Alzheimer disease, and fragile X
Sokol, D.K.; Maloney, B.; Long, J.M.; Ray, B.
2011-01-01
The present review highlights an association between autism, Alzheimer disease (AD), and fragile X syndrome (FXS). We propose a conceptual framework involving the amyloid-β peptide (Aβ), Aβ precursor protein (APP), and fragile X mental retardation protein (FMRP) based on experimental evidence. The anabolic (growth-promoting) effect of the secreted α form of the amyloid-β precursor protein (sAPPα) may contribute to the state of brain overgrowth implicated in autism and FXS. Our previous report demonstrated that higher plasma sAPPα levels associate with more severe symptoms of autism, including aggression. This molecular effect could contribute to intellectual disability due to repression of cell–cell adhesion, promotion of dense, long, thin dendritic spines, and the potential for disorganized brain structure as a result of disrupted neurogenesis and migration. At the molecular level, APP and FMRP are linked via the metabotropic glutamate receptor 5 (mGluR5). Specifically, mGluR5 activation releases FMRP repression of APP mRNA translation and stimulates sAPP secretion. The relatively lower sAPPα level in AD may contribute to AD symptoms that significantly contrast with those of FXS and autism. Low sAPPα and production of insoluble Aβ would favor a degenerative process, with the brain atrophy seen in AD. Treatment with mGluR antagonists may help repress APP mRNA translation and reduce secretion of sAPP in FXS and perhaps autism. PMID:21482951
[Ghrelin: beyond hunger regulation].
Milke García, Maria del Pilar
2005-01-01
Man ingests food to mitigate hunger (mediated by physiological and biochemical signals), satisfy appetite (subjective sensation) and because of psychosocial reasons. Satiation biomarkers (stop feeding) are gastric distention and hormones (CCK, GLP-1) and satiety biomarkers (induce feeding) are food-induced thermogenesis, body temperature, glycaemia and also hormones (insulin, leptin and ghrelin). Oxidative metabolism/body composition, tryptophan/serotonin and proinflammatory cytokines are also implicated on hunger physiology. At the present time, ghrelin is the only known circulating orexigenic with potential on hunger/body weight regulation. It is a neuropeptide (endogenous ligand for the GH secretagogue) recently isolated from the oxyntic mucosa and synthesized mainly in the stomach. Its blood concentration depends on diet, hyperglucemia and adiposity/leptin. It is secreted 1-2 hours preprandially and its concentration decreases drastically during the postprandium. Ghrelin acts on the lateral hypothalamus and theoretically inhibits proinflammatory cytokine secretion and antagonizes leptin. Ghrelin physiologically increases food intake and stimulates adipogenesis, gastrointestinal motility and gastric acid secretion, and has other hormonal and cardiovascular functions. Ghrelin blood concentration is reduced in massive obesity, non-alcoholic steatohepatitis, polycystic ovary syndrome, acromegaly, hypogonadism, ageing, short bowel syndrome and rheumatoid arthritis; and increased in primary or secondary anorexia, starvation, chronic liver disease and celiac disease. Cerebral and peritoneal ghrelin administration (rats) and systemic administration (rats and healthy volunteers, cancer patients or patients on peritoneal dialysis) promotes food consumption and increases adiposity, of utmost importance in the treatment of patients with anorexia.
Riquelme-Neira, Roberto; Rivera, Alejandra; Sáez, Darwin; Fernández, Pablo; Osorio, Gonzalo; del Canto, Felipe; Salazar, Juan C; Vidal, Roberto M; Oñate, Angel
2015-01-01
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is the predominant causative agent of hemorrhagic colitis in humans and is the cause of haemolytic uraemic syndrome and other illnesses. Cattle have been implicated as the main reservoir of this organism. Here, we evaluated the immunogenicity and protective efficacy of a DNA vaccine encoding conserved sequences of truncated EHEC factor for adherence-1 (efa-1') in a mouse model. Intranasal administration of plasmid DNA carrying the efa-1' gene (pVAXefa-1') into C57BL/6 mice elicited both humoral and cellular immune responses. In animals immunized with pVAXefa-1', EHEC-secreted protein-specific IgM and IgG antibodies were detected in sera at day 45. Anti-EHEC-secreted protein sIgA was also detected in nasal and bronchoalveolar lavages. In addition, antigen-specific T-cell-proliferation, IL-10, and IFN-γ were observed upon re-stimulation with either heat-killed bacteria or EHEC-secreted proteins. Vaccinated animals were also protected against challenge with E. coli O157:H7 strain EDL933. These results suggest that DNA vaccine encoding efa-1' have therapeutic potential in interventions against EHEC infections. This approach could lead to a new strategy in the production of vaccines that prevent infections in cattle.
Constraints on gene patent protection fuel secrecy concerns: a qualitative study
Guerrini, Christi J; McGuire, Amy L; Majumder, Mary A; Bollinger, Juli M; Rowan, Paul J
2017-01-01
Abstract Concern is mounting that innovators are responding to recent changes in patent eligibility by increasingly choosing to protect their discoveries as trade secrets. Due to the clandestine nature of trade secrets, it is impossible to quantify the extent to which innovators actually elect to protect their inventions as trade secrets rather than patents. Nevertheless, interest in each strategy may be gauged through qualitative means. We conducted semi-structured interviews of legal and scientific experts (n = 30) to understand the effect of recent patent eligibility changes on interest in patenting and trade secrecy of genetic innovations. Interview data indicate that secrecy may have increased in strategic appeal relative to patent protection in some areas of genetic innovation, although the actual election of secrecy strategies is often limited as a practical matter. The data also suggest that the burden of navigating the new intellectual property landscape may be falling disproportionately on those who translate gene-based discoveries into clinical applications. Some interviewees expressed concern about the normative implications of secrecy on advancements in and access to genetic medicine. Our findings are potentially relevant to policy proposals intended to restore some of the legal protection that was lost as a result of recent changes to patent eligibility, including amending the federal patent statute and expanding regulatory exclusivities for some genetic technologies. PMID:29868184
Murphy, Kaitlin C; Whitehead, Jacklyn; Zhou, Dejie; Ho, Steve S; Leach, J Kent
2017-12-01
Mesenchymal stem cells (MSCs) secrete endogenous factors such as vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE 2 ) that promote angiogenesis, modulate the inflammatory microenvironment, and stimulate wound repair, and MSC spheroids secrete more trophic factors than dissociated, individual MSCs. Compared to injection of cells alone, transplantation of MSCs in a biomaterial can enhance their wound healing potential by localizing cells at the defect site and upregulating trophic factor secretion. To capitalize on the therapeutic potential of spheroids, we engineered a fibrin gel delivery vehicle to simultaneously enhance the proangiogenic and anti-inflammatory potential of entrapped human MSC spheroids. We used multifactorial statistical analysis to determine the interaction between four input variables derived from fibrin gel synthesis on four output variables (gel stiffness, gel contraction, and secretion of VEGF and PGE 2 ). Manipulation of the four input variables tuned fibrin gel biophysical properties to promote the simultaneous secretion of VEGF and PGE 2 by entrapped MSC spheroids while maintaining overall gel integrity. MSC spheroids in stiffer gels secreted the most VEGF, while PGE 2 secretion was highest in more compliant gels. Simultaneous VEGF and PGE 2 secretion was greatest using hydrogels with intermediate mechanical properties, as small increases in stiffness increased VEGF secretion while maintaining PGE 2 secretion by entrapped spheroids. The fibrin gel formulation predicted to simultaneously increase VEGF and PGE 2 secretion stimulated endothelial cell proliferation, enhanced macrophage polarization, and promoted angiogenesis when used to treat a wounded three-dimensional human skin equivalent. These data demonstrate that a statistical approach is an effective strategy to formulate fibrin gel formulations that enhance the wound healing potential of human MSCs. Mesenchymal stem cells (MSCs) are under investigation for wound healing applications due to their secretion of bioactive factors that enhance granulation tissue formation, blood vessel ingrowth, and reduce inflammation. However, the effectiveness of cell-based therapies is reduced due to poor engraftment and high rates of cell death when transplanted into harsh environments characteristic of large wounds. Compared to dissociated cells, MSCs exhibit increased overall function when aggregated into three-dimensional spheroids, and transplantation of cells using biomaterials is one strategy for guiding cell function in the defect site. The present study demonstrates that the biophysical properties of fibrin hydrogels, designed for use as a cell carrier, can be engineered to dictate the secretion of bioactive factors by entrapped MSC spheroids. This strategy enables MSCs to contribute to wound healing by synergistically promoting neovascularization and modulating the inflammatory milieu. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Futalan, Diahnn; Huang, Chien-Tze; Schmidt-Wolf, Ingo G H; Larsson, Marie; Messmer, Davorka
2011-01-01
Dendritic cell (DC)-based adoptive tumor immunotherapy approaches have shown promising results, but the incidence of tumor regression is low and there is an evident call for identifying culture conditions that produce DCs with a more potent Th1 potential. Routinely, DCs are differentiated in CO(2) incubators under atmospheric oxygen conditions (21% O(2)), which differ from physiological oxygen levels of only 3-5% in tissue, where most DCs reside. We investigated whether differentiation and maturation of DCs under physiological oxygen levels could produce more potent T-cell stimulatory DCs for use in adoptive immunotherapy. We found that immature DCs differentiated under physiological oxygen levels showed a small but significant reduction in their endocytic capacity. The different oxygen levels did not influence their stimuli-induced upregulation of cluster of differentiation 54 (CD54), CD40, CD83, CD86, C-C chemokine receptor type 7 (CCR7), C-X-C chemokine receptor type 4 (CXCR4) and human leukocyte antigen (HLA)-DR or the secretion of interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-10 in response to lipopolysaccharide (LPS) or a cytokine cocktail. However, DCs differentiated under physiological oxygen level secreted higher levels of IL-12(p70) after exposure to LPS or CD40 ligand. Immature DCs differentiated at physiological oxygen levels caused increased T-cell proliferation, but no differences were observed for mature DCs with regard to T-cell activation. In conclusion, we show that although DCs generated under atmospheric or physiological oxygen conditions are mostly similar in function and phenotype, DCs differentiated under physiological oxygen secrete larger amounts of IL-12(p70). This result could have implications for the use of ex vivo-generated DCs for clinical studies, since DCs differentiated at physiological oxygen could induce increased Th1 responses in vivo.
Dinkins, Michael B; Enasko, John; Hernandez, Caterina; Wang, Guanghu; Kong, Jina; Helwa, Inas; Liu, Yutao; Terry, Alvin V; Bieberich, Erhard
2016-08-17
Recent evidence implicates exosomes in the aggregation of Aβ and spreading of tau in Alzheimer's disease. In neural cells, exosome formation can be blocked by inhibition or silencing of neutral sphingomyelinase-2 (nSMase2). We generated genetically nSMase2-deficient 5XFAD mice (fro;5XFAD) to assess AD-related pathology in a mouse model with consistently reduced ceramide generation. We conducted in vitro assays to assess Aβ42 aggregation and glial clearance with and without exosomes isolated by ultracentrifugation and determined exosome-induced amyloid aggregation by particle counting. We analyzed brain exosome content, amyloid plaque formation, neuronal degeneration, sphingolipid, Aβ42 and phospho-tau levels, and memory-related behaviors in 5XFAD versus fro;5XFAD mice using contextual and cued fear conditioning. Astrocyte-derived exosomes accelerated aggregation of Aβ42 and blocked glial clearance of Aβ42 in vitro Aβ42 aggregates were colocalized with extracellular ceramide in vitro using a bifunctional ceramide analog preloaded into exosomes and in vivo using anticeramide IgG, implicating ceramide-enriched exosomes in plaque formation. Compared with 5XFAD mice, the fro;5XFAD mice had reduced brain exosomes, ceramide levels, serum anticeramide IgG, glial activation, total Aβ42 and plaque burden, tau phosphorylation, and improved cognition in a fear-conditioned learning task. Ceramide-enriched exosomes appear to exacerbate AD-related brain pathology by promoting the aggregation of Aβ. Reduction of exosome secretion by nSMase2 loss of function improves pathology and cognition in the 5XFAD mouse model. We present for the first time evidence, using Alzheimer's disease (AD) model mice deficient in neural exosome secretion due to lack of neutral sphingomyelinase-2 function, that ceramide-enriched exosomes exacerbate AD-related pathologies and cognitive deficits. Our results provide rationale to pursue a means of inhibiting exosome secretion as a potential therapy for individuals at risk for developing AD. Copyright © 2016 the authors 0270-6474/16/368653-15$15.00/0.
Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor.
Taliaz, Dekel; Loya, Assaf; Gersner, Roman; Haramati, Sharon; Chen, Alon; Zangen, Abraham
2011-03-23
Chronic stress is a trigger for several psychiatric disorders, including depression; however, critical individual differences in resilience to both the behavioral and the neurochemical effects of stress have been reported. A prominent mechanism by which the brain reacts to acute and chronic stress is activation of the hypothalamic-pituitary-adrenal (HPA) axis, which is inhibited by the hippocampus via a polysynaptic circuit. Alterations in secretion of stress hormones and levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were implicated in depression and the effects of antidepressant medications. However, the potential role of hippocampal BDNF in behavioral resilience to chronic stress and in the regulation of the HPA axis has not been evaluated. In the present study, Sprague Dawley rats were subjected to 4 weeks of chronic mild stress (CMS) to induce depressive-like behaviors after lentiviral vectors were used to induce localized BDNF overexpression or knockdown in the hippocampus. The behavioral outcome was measured during 3 weeks after the CMS procedure, then plasma samples were taken for measurements of corticosterone levels, and finally hippocampal tissue was taken for BDNF measurements. We found that hippocampal BDNF expression plays a critical role in resilience to chronic stress and that reduction of hippocampal BDNF expression in young, but not adult, rats induces prolonged elevations in corticosterone secretion. The present study describes a mechanism for individual differences in responses to chronic stress and implicates hippocampal BDNF in the development of neural circuits that control adequate stress adaptations.
Wang, Songbo; Wang, Guoqing; Zhang, Mengyuan; Zhuang, Lu; Wan, Xiaojuan; Xu, Jingren; Wang, Lina; Zhu, Xiaotong; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Shu, Gang; Jiang, Qingyan
2016-11-15
It has been implicated that IGF-1 secretion can be regulated by dietary protein. However, whether the dipeptides, one of digested products of dietary protein, have influence on IGF-1 secretion remain largely unknown. Our study aimed to investigate the effects of the dipeptide Pro-Asp on IGF-1 secretion and expression in hepatocytes and to explore the possible underlying mechanisms. Our findings demonstrated that Pro-Asp promoted the secretion and gene expression of IGF-1 in HepG2 cells and primary porcine hepatocytes. Meanwhile, Pro-Asp activated the ERK and Akt signaling pathways, downstream of IGF-1. In addition, Pro-Asp enhanced GH-mediated JAK2/STAT5 signaling pathway, while inhibition of JAK2/STAT5 blocked the promotive effect of Pro-Asp on IGF-1 secretion and expression. Moreover, acute injection of Pro-Asp stimulated IGF-1 expression and activated JAK2/STAT5 signaling pathway in mice liver. Together, these results suggested that the dipeptide Pro-Asp promoted IGF-1 secretion and expression in hepatocytes by enhancing GH-mediated JAK2/STAT5 signaling pathway. Copyright © 2016. Published by Elsevier Ireland Ltd.
Selheim, F; Frøyset, A K; Strand, I; Vassbotn, F S; Holmsen, H
2000-11-17
Adrenaline significantly potentiated late thrombin- and SFRLLN-induced PtdIns(3,4)P(2) production. Furthermore, the potentiating effect of adrenaline on thrombin-induced PtdIns(3, 4)P(2) production was independent on secreted ADP, whereas, the effect of adrenaline on SFRLLN-induced PtdIns(3,4)P(2) production was completely dependent of secreted ADP. However, the ADP-dependent accumulation of PtdIns(3,4)P(2) was not required for irreversible platelet aggregation induced by SFRLLN in the presence of adrenaline. It is concluded that adrenaline can replace secreted ADP to potentiate PtdIns(3,4)P(2) production in thrombin-stimulated but not in SFRLLN-stimulated platelets, thus demonstrating a qualitative difference between platelet stimulation by thrombin and the thrombin receptor activating peptide SFRLLN.
Exposure to bright light biases effort-based decisions.
Bijleveld, Erik; Knufinke, Melanie
2018-06-01
Secreted in the evening and the night, melatonin suppresses activity of the mesolimbic dopamine pathway, a brain pathway involved in reward processing. However, exposure to bright light diminishes-or even prevents-melatonin secretion. Thus, we hypothesized that reward processing, in the evening, is more pronounced in bright light (vs. dim light). Healthy human participants carried out three tasks that tapped into various aspects of reward processing (effort expenditure for rewards task [EEfRT]; two-armed bandit task [2ABT]; balloon analogue risk task [BART). Brightness was manipulated within-subjects (bright vs. dim light), in separate evening sessions. During the EEfRT, participants used reward-value information more strongly when they were exposed to bright light (vs. dim light). This finding supported our hypothesis. However, exposure to bright light did not significantly affect task behavior on the 2ABT and the BART. While future research is necessary (e.g., to zoom in on working mechanisms), these findings have potential implications for the design of physical work environments. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Unfolded protein response in filamentous fungi-implications in biotechnology.
Heimel, Kai
2015-01-01
The unfolded protein response (UPR) represents a mechanism to preserve endoplasmic reticulum (ER) homeostasis that is conserved in eukaryotes. ER stress caused by the accumulation of potentially toxic un- or misfolded proteins in the ER triggers UPR activation and the induction of genes important for protein folding in the ER, ER expansion, and transport from and to the ER. Along with this adaptation, the overall capacity for protein secretion is markedly increased by the UPR. In filamentous fungi, various approaches to employ the UPR for improved production of homologous and heterologous proteins have been investigated. As the effects on protein production were strongly dependent on the expressed protein, generally applicable strategies have to be developed. A combination of transcriptomic approaches monitoring secretion stress and basic research on the UPR mechanism provided novel and important insight into the complex regulatory cross-connections between UPR signalling, cellular physiology, and developmental processes. It will be discussed how this increasing knowledge on the UPR might stimulate the development of novel strategies for using the UPR as a tool in biotechnology.
Wong, Rebecca Lee Yean; Wang, Quan; Treviño, Lindsey S; Bosland, Maarten C; Chen, Jing; Medvedovic, Mario; Prins, Gail S; Kannan, Kurunthachalam; Ho, Shuk-Mei; Walker, Cheryl Lyn
2015-01-01
Secretoglobins are a superfamily of secreted proteins thought to participate in inflammation, tissue repair, and tumorigenesis. Secretoglobin family 2A member 1 (Scgb2a1) is a component of prostatein, a major androgen-binding protein secreted by the rat prostate. Using a rat model for developmental reprogramming of susceptibility to prostate carcinogenesis, we identified, by RNA-seq, that Scgb2a1 is significantly upregulated (>100-fold) in the prostate of adult rats neonatally exposed to bisphenol A (BPA), with increased gene expression confirmed by quantitative RT-PCR and chromatin immunoprecipitation for histone H3 lysine 9 acetylation. Bisulfite analysis of both CpG islands located within 10 kb of the Scgb2a1 promoter identified significant hypomethylation of the CpG island upstream of the transcription start site of this gene in the reprogrammed prostate. These data suggest that expression of Scgb2a1 in the adult prostate could be epigenetically reprogrammed by BPA exposure during prostate development, with potential implications for cancer risk and response to chemotherapeutics associated with prostatein binding.
Palermo, Nicholas Y; Thomas, Peter; Murphy, Richard F; Lovas, Sándor
2012-04-01
Colorectal cancers with metastatic potential secrete the glycoprotein carcinoembryonic antigen (CEA). CEA has been implicated in colorectal cancer metastasis by inducing Kupffer cells to produce inflammatory cytokines which, in turn, make the hepatic micro-environment ideal for tumor cell implantation. CEA binds to the heterogeneous ribonucleoprotein M (hnRNP M) which acts as a cell surface receptor in Kupffer cells. The amino acid sequence in CEA, which binds the hnRNP M receptor, is Tyr-Pro-Glu-Leu-Pro-Lys. In this study, the structure of Ac-Tyr-Pro-Glu-Leu-Pro-Lys-NH₂ (YPELPK) was investigated using electronic circular dichroism, vibrational circular dichroism, and molecular dynamics simulations. The binding of the peptide to hnRNP M was also investigated using molecular docking calculations. The biological activity of YPELPK was studied using differentiated human THP-1 cells, which express hnRNP M on their surface and secrete IL-6 when stimulated by CEA. YPELPK forms a stable polyproline-II helix and stimulates IL-6 production of THP-1 cells at micromolar concentrations. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
... Activities; Proposed Collection; Comment Request; Trade Secret Claims for Emergency Planning and Community... Planning and Community Right-to- Know Act (EPCRA). Title: Trade Secret Claims for Emergency Planning and...). Estimated total number of potential respondents: 481. Frequency of response: Trade secret claims are...
Biological Activities of Red Pepper (Capsicum annuum) and Its Pungent Principle Capsaicin: A Review.
Srinivasan, Krishnapura
2016-07-03
Capsaicin, the pungent alkaloid of red pepper (Capsicum annuum) has been extensively studied for its biological effects which are of pharmacological relevance. These include: cardio protective influence, antilithogenic effect, antiinflammatory, and analgesia, thermogenic influence, and beneficial effects on gastrointestinal system. Therefore, capsaicinoids may have the potential clinical value for pain relief, cancer prevention and weight loss. It has been shown that capsaicinoids are potential agonists of capsaicin receptor (TRPV1). They could exert the effects not only through the receptor-dependent pathway but also through the receptor-independent one. The involvement of neuropeptide Substance P, serotonin, and somatostatin in the pharmacological actions of capsaicin has been extensively investigated. Topical application of capsaicin is proved to alleviate pain in arthritis, postoperative neuralgia, diabetic neuropathy, psoriasis, etc. Toxicological studies on capsaicin administered by different routes are documented. Capsaicin inhibits acid secretion, stimulates alkali and mucus secretion and particularly gastric mucosal blood flow which helps in prevention and healing of gastric ulcers. Antioxidant and antiinflammatory properties of capsaicin are established in a number of studies. Chemopreventive potential of capsaicin is evidenced in cell line studies. The health beneficial hypocholesterolemic influence of capsaicin besides being cardio protective has other implications, viz., prevention of cholesterol gallstones and protection of the structural integrity of erythrocytes under conditions of hypercholesterolemia. Beneficial influences of capsaicin on gastrointestinal system include digestive stimulant action and modulation of intestinal ultrastructure so as to enhance permeability to micronutrients.
Kumar, Dhruv; New, Jacob; Vishwakarma, Vikalp; Joshi, Radhika; Enders, Jonathan; Lin, Fangchen; Dasari, Sumana; Gutierrez, Wade R; Leef, George; Ponnurangam, Sivapriya; Chavan, Hemantkumar; Ganaden, Lydia; Thornton, Mackenzie M; Dai, Hongying; Tawfik, Ossama; Straub, Jeffrey; Shnayder, Yelizaveta; Kakarala, Kiran; Tsue, Terance Ted; Girod, Douglas A; Van Houten, Bennett; Anant, Shrikant; Krishnamurthy, Partha; Thomas, Sufi Mary
2018-05-16
Despite aggressive therapies, head and neck squamous cell carcinoma (HNSCC) is associated with a less than 50% 5-year survival rate. Late stage HNSCC frequently consists of up to 80% cancer-associated fibroblasts (CAF). We previously reported that CAF-secreted hepatocyte growth factor (HGF) facilitates HNSCC progression, however very little is known about the role of CAFs in HNSCC metabolism. Here we demonstrate that CAF-secreted HGF increases extracellular lactate levels in HNSCC via upregulation of glycolysis. CAF-secreted HGF induced basic fibroblast growth factor (bFGF) secretion from HNSCC. CAFs were more efficient than HNSCC in using lactate as a carbon source. HNSCC-secreted bFGF increased mitochondrial oxidative phosphorylation (OXPHOS) and HGF secretion from CAFs. Combined inhibition of c-Met and FGFR significantly inhibited CAF-induced HNSCC growth in vitro and in vivo (p<0.001). Our cumulative findings underscore reciprocal signaling between CAF and HNSCC involving bFGF and HGF. This contributes to metabolic symbiosis and a targetable therapeutic axis involving c-Met and FGFR. Copyright ©2018, American Association for Cancer Research.
A protein secretion system linked to bacteroidete gliding motility and pathogenesis
Sato, Keiko; Naito, Mariko; Yukitake, Hideharu; Hirakawa, Hideki; Shoji, Mikio; McBride, Mark J.; Rhodes, Ryan G.; Nakayama, Koji
2009-01-01
Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum. PMID:19966289
Christensen, Dan Ploug; Ejlerskov, Patrick; Rasmussen, Izabela; Vilhardt, Frederik
2016-03-08
Secretion of proteopathic α-synuclein (α-SNC) species from neurons is a suspected driving force in the propagation of Parkinson's disease (PD). We have previously implicated exophagy, the exocytosis of autophagosomes, as a dominant mechanism of α-SNC secretion in differentiated PC12 or SH-SY5Y nerve cells. Here we have examined the regulation of exophagy associated with different forms of nerve cell stress relevant to PD. We identify cJUN-N-terminal kinase (JNK) activity as pivotal in the secretory fate of autophagosomes containing α-SNC. Pharmacological inhibition or genetic (shRNA) knockdown of JNK2 or JNK3 decreases α-SNC secretion in differentiated PC12 and SH-SY5Y cells, respectively. Conversely, expression of constitutively active mitogen-activated protein kinase kinase 7 (MKK7)-JNK2 and -JNK3 constructs augment secretion. The transcriptional activity of cJUN was not required for the observed effects. We establish a causal relationship between increased α-SNC release by exophagy and JNK activation subsequent to lysosomal fusion deficiency (overexpression of Lewy body-localized protein p25α or bafilomycin A1). JNK activation following neuronal ER or oxidative stress was not correlated with exophagy, but of note, we demonstrate that reciprocal signaling between microglia and neurons modulates α-SNC secretion. NADPH oxidase activity of microglia cell lines was upregulated by direct co-culture with α-SNC-expressing PC12 neurons or by passive transfer of nerve cell-conditioned medium. Conversely, inflammatory factors secreted from activated microglia increased JNK activation and α-SNC secretion several-fold in PC12 cells. While we do not identify these factors, we extend our observations by showing that exposure of neurons in monoculture to TNFα, a classical pro-inflammatory mediator of activated microglia, is sufficient to increase α-SNC secretion in a mechanism dependent on JNK2 or JNK3. In continuation hereof, we show that also IFNβ and TGFβ increase the release of α-SNC from PC12 neurons. We implicate stress kinases of the JNK family in the regulation of exophagy and release of α-SNC following endogenous or exogenous stimulation. In a wider scope, our results imply that microglia not only inflict bystander damage to neurons in late phases of inflammatory brain disease but may also be active mediators of disease propagation.
Schlicht, Markus; Volkmann, Dieter; Mancuso, Stefano
2008-01-01
The plant hormone auxin is secreted in root apices via phospholipase Dζ2 (PLDζ2) activity which produces specific population of phosphatidic acid that stimulates secretion of vesicles enriched with auxin. These vesicles were reported to be localized at plant synapses which are active in auxin secretion, especially at the transition zone of the root apex. There are several implications of this vesicular secretion of auxin. In root apices, auxin emerges as plant neurotransmitter-like signal molecule which coordinates activities of adjacent cells via electric and chemical signaling. Putative quantal release of auxin after electrical stimulation, if confirmed, would be part of neuronal communication between plant cells. As auxin transport across plant synapses is tightly linked with integrated sensory perception of environment, especially of omnipresent gravity and light, this process is proposed to mediate the plant perception of environment. These neuronal features allow sessile plants to integrate multitude of sensory signals into the adaptive behavior of whole plants and the animal-like exploratory behavior of growing roots. PMID:19704646
Zhang, Sarah X.; Ma, Jacey H.; Bhatta, Maulasri; Fliesler, Steven J.; Wang, Joshua J.
2015-01-01
Angiogenesis is a complex, step-wise process of new vessel formation that is involved in both normal embryonic development as well as postnatal pathological processes, such as cancer, cardiovascular disease, and diabetes. Aberrant blood vessel growth, also known as neovascularization, in the retina and the choroid is a major cause of vision loss in severe eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity, and central and branch retinal vein occlusion. Yet, retinal neovascularization is causally and dynamically associated with vasodegeneration, ischemia, and vascular remodeling in retinal tissues. Understanding the mechanisms of retinal neovascularization is an urgent unmet need for developing new treatments for these devastating diseases. Accumulating evidence suggests a vital role for the unfolded protein response (UPR) in regulation of angiogenesis, in part through coordinating the secretion of pro-angiogenic growth factors, such as VEGF, and modulating endothelial cell survival and activity. Herein, we summarize current research in the context of endoplasmic reticulum (ER) stress and UPR signaling in retinal angiogenesis and vascular remodeling, highlighting potential implications of targeting these stress response pathways in the prevention and treatment of retinal vascular diseases that result in visual deficits and blindness. PMID:25529848
Cyclic movement stimulates hyaluronan secretion into the synovial cavity of rabbit joints
Ingram, K R; Wann, A K T; Angel, C K; Coleman, P J; Levick, J R
2008-01-01
The novel hypothesis that the secretion of the joint lubricant hyaluronan (HA) is coupled to movement has implications for normal function and osteoarthritis, and was tested in the knee joints of anaesthetized rabbits. After washing out the endogenous synovial fluid HA (miscibility coefficient 0.4), secretion into the joint cavity was measured over 5 h in static joints and in passively cycled joints. The net static secretion rate (11.2 ± 0.7 μg h−1, mean ± s.e.m., n = 90) correlated with the variable endogenous HA mass (mean 367 ± 8 μg), with a normalized value of 3.4 ± 0.2 μg h−1 (100 μg)−1 . Cyclic joint movement approximately doubled the net HA secretion rate to 22.6 ± 1.2 μg h−1 (n = 77) and raised the normalized percentage to 5.9 ± 0.3 μg h−1 (100 μg)−1. Secretion was inhibited by 2-deoxyglucose and iodoacetate, confirming active secretion. The net accumulation rate underestimated true secretion rate due to some trans-synovial loss. HA turnover time (endogenous mass/secretion rate) was 17–30 h (static) to 8–15 h (moved) The results demonstrate for the first time that the active secretion of HA is coupled to joint usage. Movement–secretion coupling may protect joints against the damaging effects of repetitive joint use, replace HA lost during periods of immobility (overnight), and contribute to the clinical benefit of exercise therapy in moderate osteoarthritis. PMID:18202097
Gargus, Matthew; Niu, Chao; Vallone, John G.; Binkley, Jana; Rubin, Deborah C.
2015-01-01
The pathophysiology of esophageal injury, repair, and inflammation in gastroesophageal reflux-disease (GERD) is complex. Whereas most studies have focused on the epithelial response to GERD injury, we are interested in the stromal response. We hypothesized that subepithelial esophageal myofibroblasts in GERD secrete proinflammatory cytokines in response to injurious agents encountered via epithelial barrier breaches or through dilated epithelial intercellular spaces. We determined the percentage of myofibroblasts [α-smooth muscle actin (α-SMA)+vimentin+CD31−] in the subepithelial GERD and normal esophageal stroma by immunomorphologic analysis. We performed α-SMA coimmunostaining with IL-6 and p65. We established and characterized primary cultures of α-SMA+vimentin+CD31−CD45− human esophageal myofibroblasts (HuEso MFs). We modeled GERD by treatment with pH 4.5-acidified media and Toll-like receptor 4 (TLR4) ligands, LPS and high-mobility group box 1 protein (HMGB1), and determined myofibroblast cytokine secretion in response to GERD injury. We demonstrate that spindle-shaped cell myofibroblasts are located near the basement membrane of stratified squamous epithelium in normal esophagus. We identify an increase in subepithelial myofibroblasts and activation of proinflammatory pathways in patients with GERD. Primary cultures of stromal cells obtained from normal esophagus retain myofibroblast morphology and express the acid receptor transient receptor potential channel vanilloid subfamily 1 (TRPV1) and TLR4. HuEso MFs stimulated with acid and TLR4 agonists LPS and HMGB1 increase IL-6 and IL-8 secretion via TRPV1 and NF-κB activation. Our work implicates a role for human subepithelial stromal cells in the pathogenesis of GERD-related esophageal injury. Findings of this study can be extended to the investigation of epithelial-stromal interactions in inflammatory esophageal mucosal disorders. PMID:25882613
Clarke, Douglas N.; Al Ahmad, Abraham; Lee, Boyeon; Parham, Christi; Auckland, Lisa; Fertala, Andrezj; Kahle, Michael; Shaw, Courtney S.; Roberts, Jill; Bix, Gregory J.
2012-01-01
Perlecan Domain V (DV) promotes brain angiogenesis by inducing VEGF release from brain endothelial cells (BECs) following stroke. In this study, we define the specific mechanism of DV interaction with the α5β1 integrin, identify the downstream signal transduction pathway, and further investigate the functional significance of resultant VEGF release. Interestingly, we found that the LG3 portion of DV, which has been suggested to possess most of DV’s angio-modulatory activity outside of the brain, binds poorly to α5β1 and induces less BEC proliferation compared to full length DV. Additionally, we implicate DV’s DGR sequence as an important element for the interaction of DV with α5β1. Furthermore, we investigated the importance of AKT and ERK signaling in DV-induced VEGF expression and secretion. We show that DV increases the phosphorylation of ERK, which leads to subsequent activation and stabilization of eIF4E and HIF-1α. Inhibition of ERK activity by U0126 suppressed DV-induced expression and secretion of VEGR in BECs. While DV was capable of phosphorylating AKT we show that AKT phosphorylation does not play a role in DV’s induction of VEGF expression or secretion using two separate inhibitors, LY294002 and Akt IV. Lastly, we demonstrate that VEGF activity is critical for DV increases in BEC proliferation, as well as angiogenesis in a BEC-neuronal co-culture system. Collectively, our findings expand our understanding of DV’s mechanism of action on BECs, and further support its potential as a novel stroke therapy. PMID:23028886
Parker, Jeremy C; Douglas, Isobel; Bell, Jennifer; Comer, David; Bailie, Keith; Skibinski, Grzegorz; Heaney, Liam G; Shields, Michael D
2015-01-01
Epithelial remodelling in asthma is characterised by goblet cell hyperplasia and mucus hypersecretion for which no therapies exist. Differentiated bronchial air-liquid interface cultures from asthmatic children display high goblet cell numbers. Epidermal growth factor and its receptor have been implicated in goblet cell hyperplasia. We hypothesised that EGF removal or tyrphostin AG1478 treatment of differentiating air-liquid interface cultures from asthmatic children would result in a reduction of epithelial goblet cells and mucus secretion. In Aim 1 primary bronchial epithelial cells from non-asthmatic (n = 5) and asthmatic (n = 5) children were differentiated under EGF-positive (10 ng/ml EGF) and EGF-negative culture conditions for 28 days. In Aim 2, cultures from a further group of asthmatic children (n = 5) were grown under tyrphostin AG1478, a tyrosine kinase inhibitor, conditions. All cultures were analysed for epithelial resistance, markers of differentiation using immunocytochemistry, ELISA for MUC5AC mucin secretion and qPCR for MUC5AC mRNA. In cultures from asthmatic children the goblet cell number was reduced in the EGF negative group (p = 0.01). Tyrphostin AG1478 treatment of cultures from asthmatic children had significant reductions in goblet cells at 0.2 μg/ml (p = 0.03) and 2 μg/ml (p = 0.003) as well as mucus secretion at 2 μg/ml (p = 0.04). We have shown in this preliminary study that through EGF removal and tyrphostin AG1478 treatment the goblet cell number and mucus hypersecretion in differentiating air-liquid interface cultures from asthmatic children is significantly reduced. This further highlights the epidermal growth factor receptor as a potential therapeutic target to inhibit goblet cell hyperplasia and mucus hypersecretion in asthma.
Genetic Analysis of the Role of Protein Kinase Cθ in Platelet Function and Thrombus Formation
Hall, Kellie J.; Harper, Matthew T.; Gilio, Karen; Cosemans, Judith M.; Heemskerk, Johan W. M.; Poole, Alastair W.
2008-01-01
Background PKCθ is a novel protein kinase C isozyme, predominately expressed in T cells and platelets. PKCθ−/− T cells exhibit reduced activation and PKCθ−/− mice are resistant to autoimmune disease, making PKCθ an attractive therapeutic target for immune modulation. Collagen is a major agonist for platelets, operating through an immunoreceptor-like signalling pathway from its receptor GPVI. Although it has recently been shown that PKCθ positively regulates outside-in signalling through integrin αIIbβ3 in platelets, the role of PKCθ in GPVI-dependent signalling and functional activation of platelets has not been assessed. Methodology/Principal Findings In the present study we assessed static adhesion, cell spreading, granule secretion, integrin αIIbβ3 activation and platelet aggregation in washed mouse platelets lacking PKCθ. Thrombus formation on a collagen-coated surface was assessed in vitro under flow. PKCθ−/− platelets exhibited reduced static adhesion and filopodia generation on fibrinogen, suggesting that PKCθ positively regulates outside-in signalling, in agreement with a previous report. In contrast, PKCθ−/− platelets also exhibited markedly enhanced GPVI-dependent α-granule secretion, although dense granule secretion was unaffected, suggesting that PKCθ differentially regulates these two granules. Inside-out regulation of αIIbβ3 activation was also enhanced downstream of GPVI stimulation. Although this did not result in increased aggregation, importantly thrombus formation on collagen under high shear (1000 s−1) was enhanced. Conclusions/Significance These data suggest that PKCθ is an important negative regulator of thrombus formation on collagen, potentially mediated by α-granule secretion and αIIbβ3 activation. PKCθ therefore may act to restrict thrombus growth, a finding that has important implications for the development and safe clinical use of PKCθ inhibitors. PMID:18815612
Bocchinfuso, Donald G; Taylor, Paul; Ross, Eric; Ignatchenko, Alex; Ignatchenko, Vladimir; Kislinger, Thomas; Pearson, Bret J; Moran, Michael F
2012-09-01
The freshwater planarian Schmidtea mediterranea has been used in research for over 100 years, and is an emerging stem cell model because of its capability of regenerating large portions of missing body parts. Exteriorly, planarians are covered in mucous secretions of unknown composition, implicated in locomotion, predation, innate immunity, and substrate adhesion. Although the planarian genome has been sequenced, it remains mostly unannotated, challenging both genomic and proteomic analyses. The goal of the current study was to annotate the proteome of the whole planarian and its mucous fraction. The S. mediterranea proteome was analyzed via mass spectrometry by using multidimensional protein identification technology with whole-worm tryptic digests. By using a proteogenomics approach, MS data were searched against an in silico translated planarian transcript database, and by using the Swiss-Prot BLAST algorithm to identify proteins similar to planarian queries. A total of 1604 proteins were identified. The mucous subproteome was defined through analysis of a mucous trail fraction and an extract obtained by treating whole worms with the mucolytic agent N-acetylcysteine. Gene Ontology analysis confirmed that the mucous fractions were enriched with secreted proteins. The S. mediterranea proteome is highly similar to that predicted for the trematode Schistosoma mansoni associated with intestinal schistosomiasis, with the mucous subproteome particularly highly conserved. Remarkably, orthologs of 119 planarian mucous proteins are present in human mucosal secretions and tear fluid. We suggest planarians have potential to be a model system for the characterization of mucous protein function and relevant to parasitic flatworm infections and diseases underlined by mucous aberrancies, such as cystic fibrosis, asthma, and other lung diseases.
Characterization and Comprehensive Proteome Profiling of Exosomes Secreted by Hepatocytes
Conde-Vancells, Javier; Rodriguez-Suarez, Eva; Embade, Nieves; Gil, David; Matthiesen, Rune; Valle, Mikel; Elortza, Felix; Lu, Shelly C.; Mato, Jose M.; Falcon-Perez, Juan M.
2009-01-01
Synopsis Exosomes constitute a discrete population of nanometer-sized (30-150 nm) vesicles formed in endocytic compartments and released to the extracellular environment by different cell types. In this work we demonstrated by electron microscopic, western blotting and proteomic analyses that primary hepatocytes secrete exosome-like vesicles containing proteins involved in metabolizing lipoproteins, endogenous compounds as well as xenobiotics. These new findings contribute to improve our knowledge about biology's hepatocyte and may have important diagnostic, prognosis and therapeutic implications in liver diseases Exosomes represent a discrete population of vesicles that are secreted from various cell types to the extracellular media. Their protein and lipid composition are a consequence of sorting events at the level of the multivesicular body, a central organelle which integrates endocytic and secretory pathways. Characterization of exosomes from different biological samples has shown the presence of common as well as cell-type specific proteins. Remarkably, the protein content of the exosomes is modified upon pathological or stress conditions. Hepatocytes play a central role in the body response to stress metabolizing potentially harmful endogenous substances as well as xenobiotics. In the present study we described and characterized for first time exosome secretion in non-tumoral hepatocytes, and using a systematic proteomic approach, we establish the first extensive proteome of a hepatocyte-derived exosome population which should be useful in furthering our understanding of the hepatic function and in the identification of components that may serve as biomarkers for hepatic alterations. Our analysis identifies a significant number of proteins previously described among exosomes derived from others cell types as well as proteins involved in metabolizing lipoproteins, endogenous compounds and xenobiotics, not previously described in exosomes. Furthermore, we demonstrated that exosomal membrane proteins can constitute an interesting tool to express non-exosomal proteins into exosomes with therapeutic purposes. PMID:19367702
Metz, D C; Pradhan, T K; Mrozinski, J E; Jensen, R T; Turner, R J; Patto, R J; Gardner, J D
1994-01-13
We used thapsigargin (TG), 2,5-di-tert-butyl-1,4-benzohydroquinone (BHQ) and cyclopiazonic acid (CPA), each of which inhibits microsomal Ca(2+)-ATPase, to evaluate the effects of this inhibition on cytoplasmic free calcium ([Ca2+]i) and secretagogue-stimulated enzyme secretion in rat pancreatic acini. Using single-cell microspectrofluorimetry of fura-2-loaded acini we found that all three agents caused a sustained increase in [Ca2+]i by mobilizing calcium from inositol-(1,4,5)-trisphosphate-sensitive intracellular calcium stores and by promoting influx of extracellular calcium. Concentrations of all three agents that increased [Ca2+]i potentiated the stimulation of enzyme secretion caused by secretagogues that activate adenylate cyclase but inhibited the stimulation of enzyme secretion caused by secretagogues that activate phospholipase C. With BHQ, potentiation of adenylate cyclase-mediated enzyme secretion occurred immediately whereas inhibition of phospholipase C-mediated enzyme secretion occurred only after several min of incubation. In addition, the effects of BHQ and CPA on both [Ca2+]i and secretagogue-stimulated enzyme secretion were reversed completely by washing whereas the actions of TG could not be reversed by washing. Concentrations of BHQ in excess of those that caused maximal changes in [Ca2+]i inhibited all modes of stimulated enzyme secretion by a mechanism that was apparently unrelated to changes in [Ca2+]i. Finally, in contrast to the findings with TG and BHQ, CPA inhibited bombesin-stimulated enzyme secretion over a range of concentrations that was at least 10-fold lower than the range of concentrations over which CPA potentiated VIP-stimulated enzyme secretion.
Nipah virus transmission in a hamster model.
de Wit, Emmie; Bushmaker, Trenton; Scott, Dana; Feldmann, Heinz; Munster, Vincent J
2011-12-01
Based on epidemiological data, it is believed that human-to-human transmission plays an important role in Nipah virus outbreaks. No experimental data are currently available on the potential routes of human-to-human transmission of Nipah virus. In a first dose-finding experiment in Syrian hamsters, it was shown that Nipah virus was predominantly shed via the respiratory tract within nasal and oropharyngeal secretions. Although Nipah viral RNA was detected in urogenital and rectal swabs, no infectious virus was recovered from these samples, suggesting no viable virus was shed via these routes. In addition, hamsters inoculated with high doses shed significantly higher amounts of viable Nipah virus particles in comparison with hamsters infected with lower inoculum doses. Using the highest inoculum dose, three potential routes of Nipah virus transmission were investigated in the hamster model: transmission via fomites, transmission via direct contact and transmission via aerosols. It was demonstrated that Nipah virus is transmitted efficiently via direct contact and inefficiently via fomites, but not via aerosols. These findings are in line with epidemiological data which suggest that direct contact with nasal and oropharyngeal secretions of Nipah virus infected individuals resulted in greater risk of Nipah virus infection. The data provide new and much-needed insights into the modes and efficiency of Nipah virus transmission and have important public health implications with regards to the risk assessment and management of future Nipah virus outbreaks.
Nipah Virus Transmission in a Hamster Model
de Wit, Emmie; Bushmaker, Trenton; Scott, Dana; Feldmann, Heinz; Munster, Vincent J.
2011-01-01
Based on epidemiological data, it is believed that human-to-human transmission plays an important role in Nipah virus outbreaks. No experimental data are currently available on the potential routes of human-to-human transmission of Nipah virus. In a first dose-finding experiment in Syrian hamsters, it was shown that Nipah virus was predominantly shed via the respiratory tract within nasal and oropharyngeal secretions. Although Nipah viral RNA was detected in urogenital and rectal swabs, no infectious virus was recovered from these samples, suggesting no viable virus was shed via these routes. In addition, hamsters inoculated with high doses shed significantly higher amounts of viable Nipah virus particles in comparison with hamsters infected with lower inoculum doses. Using the highest inoculum dose, three potential routes of Nipah virus transmission were investigated in the hamster model: transmission via fomites, transmission via direct contact and transmission via aerosols. It was demonstrated that Nipah virus is transmitted efficiently via direct contact and inefficiently via fomites, but not via aerosols. These findings are in line with epidemiological data which suggest that direct contact with nasal and oropharyngeal secretions of Nipah virus infected individuals resulted in greater risk of Nipah virus infection. The data provide new and much-needed insights into the modes and efficiency of Nipah virus transmission and have important public health implications with regards to the risk assessment and management of future Nipah virus outbreaks. PMID:22180802
PTEN Regulates Beta-Catenin in Androgen Signaling: Implication in Prostate Cancer Progression
2006-03-01
interacts with a single transmembrane LDL receptor-related protein 5/6 (LRP5/6) [14,15]. A number of different secreted proteins, such as secreted...cells [30,33,47,48,51]. Reduction of cellular levels of b-catenin by antisense or shRNA constructs decreases the expression of the PSA gene, a downstream...Zeng, LDL receptor- related proteins 5 and 6 inWnt/beta-catenin signaling: arrows point the way, Development 131 (2004) 1663–1677. [15] J.C. Hsieh
2008-12-23
glycoprotein precursor (GPC) signal peptide (SP) or human IgG signal sequences (s.s.). GP2 was secreted from cells only when (1) the transmembrane (TM) domain... peptide (SP) or human IgG signal sequences (s.s.). GP2 was secreted from cells only when (1) the transmembrane (TM) domain was deleted, the...terminal signal peptide (SP), which directs the precursor to the endoplasmic retic- ulum (ER) for further processing [11]. The SP, which has been
Immunomodulatory molecules are released from the first trimester and term placenta via exosomes
Kshirsagar, S.K.; Alam, S.M.; Jasti, S.; Hodes, H.; Nauser, T.; Gilliam, M.; Billstrand, C.; Hunt, J.S.; Petroff, M.G.
2012-01-01
The semiallogenic fetus is tolerated by the maternal immune system through control of innate and adaptive immune responses. Trophoblast cells secrete nanometer scale membranous particles called exosomes, which have been implicated in modulation of the local and systemic maternal immune system. Here we investigate the possibility that exosomes secreted from the first trimester and term placenta carry HLA-G and B7 family immunomodulators. Confocal microscopy of placental sections revealed intracellular colocalization of B7-H1 with CD63, suggesting that B7-H1 associates with subcellular vesicles that give rise to exosomes. First trimester and term placental explants were then cultured for 24 hours. B7H-1 (CD274), B7-H3 (CD276) and HLA-G5 were abundant in pelleted supernatants of these cultures that contained microparticles and exosomes; the latter, however, was observed only in first trimester pellets and was nearly undetectable in term explant-derived pellets. Further purification of exosomes by sucrose density fractionation confirmed the association of these proteins specifically with exosomes. Finally, culture of purified trophoblast cells in the presence or absence of EGF suggested that despite the absence of HLA-G5 association with term explant-derived exosomes, it is present in exosomes secreted from mononuclear cytotrophoblast cells. Further, differentiation of cytotrophoblast cells reduced the presence of HLA-G5 in secreted exosomes. Together, the results suggest that the immunomodulatory proteins HLA-G5, B7-H1 and B7-H3, are secreted from early and term placenta, and have important implications in the mechanisms by which trophoblast immunomodulators modify the maternal immunological environment. PMID:23107341
Wolosin, J M
1985-06-01
A summary of recent studies on relations between the properties of the membrane incorporating the H+-K+-ATPase, the H+ motive force in gastric acid secretion, and the secretory state of the parietal cell is presented. Depending on tissue secretory state, two distinct H+-K+-ATPase-rich membranes predominate in tissue homogenates, the gastric microsomes derived from the intracellular tubulovesicles of the resting cell and the stimulation-associated (SA) vesicle derived from the apical membrane of the acid-secreting cell. Structural and chemical differences between both vesicular types lend support to the notion that the formation of an expanded, elaborated apical membrane in the secreting parietal cell results from fusion of tubulovesicles containing the H+-K+-ATPase to an apical membrane of different chemical composition. Comparison of polypeptide composition of microsomes and SA membranes provides a way to identify and isolate membrane and cytoskeletal components putatively involved in the membrane interconversion process. Comparison of transport properties between gastric microsomes and SA vesicles demonstrates that stimulation triggers the appearance of rapid K+ and Cl- permeabilities in the H+-K+-ATPase membrane, allowing efficient acid accumulation in SA vesicles by the combination of rapid KCl influx followed by ATPase-driven H+ for K+ exchange, i.e., by K+ recycling. These stimulation-triggered conductances are functionally independent. Nevertheless, their concurrent inhibition by certain divalent cations (Mn2+,Zn2+) suggests their location within a single physical domain. The compatibility of the K+-recycling model for HCl accumulation in SA vesicles with gastric HCl secretion and selected electrophysiological observations and certain implications of the findings for cellular mechanisms of transport regulation in the context of a membrane fusion and recycling model are discussed.
Central nervous system regulation of intestinal lipid and lipoprotein metabolism.
Farr, Sarah; Taher, Jennifer; Adeli, Khosrow
2016-02-01
In response to nutrient availability, the small intestine and brain closely communicate to modulate energy homeostasis and metabolism. The gut-brain axis involves complex nutrient sensing mechanisms and an integration of neuronal and hormonal signaling. This review summarizes recent evidence implicating the gut-brain axis in regulating lipoprotein metabolism, with potential implications for the dyslipidemia of insulin resistant states. The intestine and brain possess distinct mechanisms for sensing lipid availability, which triggers subsequent regulation of feeding, glucose homeostasis, and adipose tissue metabolism. More recently, central receptors, neuropeptides, and gut hormones that communicate with the brain have been shown to modulate hepatic and intestinal lipoprotein metabolism via parasympathetic and sympathetic signaling. Gut-derived glucagon-like peptides appear to be particularly important in modulating the intestinal secretion of chylomicron particles via a novel brain-gut axis. Dysregulation of these pathways may contribute to postprandial diabetic dyslipidemia. Emerging evidence implicates the central and enteric nervous systems in controlling many aspects of lipid and lipoprotein metabolism. Bidirectional communication between the gut and brain involving neuronal pathways and gut peptides is critical for regulating feeding and metabolism, and forms a neuroendocrine circuit to modulate dietary fat absorption and intestinal production of atherogenic chylomicron particles.
R-spondins can potentiate WNT signaling without LGRs.
Lebensohn, Andres M; Rohatgi, Rajat
2018-02-06
The WNT signaling pathway regulates patterning and morphogenesis during development and promotes tissue renewal and regeneration in adults. The R-spondin (RSPO) family of four secreted proteins, RSPO1-4, amplifies target cell sensitivity to WNT ligands by increasing WNT receptor levels. Leucine-rich repeat-containing G-protein coupled receptors (LGRs) 4-6 are considered obligate high-affinity receptors for RSPOs. We discovered that RSPO2 and RSPO3, but not RSPO1 or RSPO4, can potentiate WNT/β-catenin signaling in the absence of all three LGRs. By mapping the domains on RSPO3 that are necessary and sufficient for this activity, we show that the requirement for LGRs is dictated by the interaction between RSPOs and the ZNRF3/RNF43 E3 ubiquitin ligases and that LGR-independent signaling depends on heparan sulfate proteoglycans (HSPGs). We propose that RSPOs can potentiate WNT signals through distinct mechanisms that differ in their use of either LGRs or HSPGs, with implications for understanding their biological functions. © 2017, Lebensohn et al.
R-spondins can potentiate WNT signaling without LGRs
2018-01-01
The WNT signaling pathway regulates patterning and morphogenesis during development and promotes tissue renewal and regeneration in adults. The R-spondin (RSPO) family of four secreted proteins, RSPO1-4, amplifies target cell sensitivity to WNT ligands by increasing WNT receptor levels. Leucine-rich repeat-containing G-protein coupled receptors (LGRs) 4-6 are considered obligate high-affinity receptors for RSPOs. We discovered that RSPO2 and RSPO3, but not RSPO1 or RSPO4, can potentiate WNT/β-catenin signaling in the absence of all three LGRs. By mapping the domains on RSPO3 that are necessary and sufficient for this activity, we show that the requirement for LGRs is dictated by the interaction between RSPOs and the ZNRF3/RNF43 E3 ubiquitin ligases and that LGR-independent signaling depends on heparan sulfate proteoglycans (HSPGs). We propose that RSPOs can potentiate WNT signals through distinct mechanisms that differ in their use of either LGRs or HSPGs, with implications for understanding their biological functions. PMID:29405118
Trade Secrets in the Legal Studies Curriculum--A Case Study
ERIC Educational Resources Information Center
Evans, Michelle
2012-01-01
Trade secrets can be a valuable company asset because of their potential to last forever. Unfortunately, along with such a significant benefit, there is also a significant risk--the risk that the trade secret can be lost in an instant if it is not sufficiently protected. Companies must be vigilant in protecting these secrets. However, the law is…
Iron acquisition in the cystic fibrosis lung and potential for novel therapeutic strategies
Tyrrell, Jean
2016-01-01
Iron acquisition is vital to microbial survival and is implicated in the virulence of many of the pathogens that reside in the cystic fibrosis (CF) lung. The multifaceted nature of iron acquisition by both bacterial and fungal pathogens encompasses a range of conserved and species-specific mechanisms, including secretion of iron-binding siderophores, utilization of siderophores from other species, release of iron from host iron-binding proteins and haemoproteins, and ferrous iron uptake. Pathogens adapt and deploy specific systems depending on iron availability, bioavailability of the iron pool, stage of infection and presence of competing pathogens. Understanding the dynamics of pathogen iron acquisition has the potential to unveil new avenues for therapeutic intervention to treat both acute and chronic CF infections. Here, we examine the range of strategies utilized by the primary CF pathogens to acquire iron and discuss the different approaches to targeting iron acquisition systems as an antimicrobial strategy. PMID:26643057
Chemerin regulation and role in host defense.
Zabel, Brian A; Kwitniewski, Mateusz; Banas, Magdalena; Zabieglo, Katarzyna; Murzyn, Krzysztof; Cichy, Joanna
2014-01-01
Chemerin is a widely distributed multifunctional secreted protein implicated in immune cell migration, adipogenesis, osteoblastogenesis, angiogenesis, myogenesis, and glucose homeostasis. Chemerin message is regulated by nuclear receptor agonists, metabolic signaling proteins and intermediates, and proinflammatory cytokines. Following translation chemerin is secreted as an inactive pro-protein, and its secretion can be regulated depending on cell type. Chemerin bioactivity is largely dependent on carboxyl-terminal proteolytic processing and removal of inhibitory residues. Chemerin is abundant in human epidermis where it is well-placed to provide barrier protection. In host defense, chemerin plays dual roles as a broad spectrum antimicrobial protein and as a leukocyte attractant for macrophages, dendritic cells, and NK cells. Here we review the mechanisms underlying chemerin regulation and its function in host defense.
Autism, Alzheimer disease, and fragile X: APP, FMRP, and mGluR5 are molecular links.
Sokol, D K; Maloney, B; Long, J M; Ray, B; Lahiri, D K
2011-04-12
The present review highlights an association between autism, Alzheimer disease (AD), and fragile X syndrome (FXS). We propose a conceptual framework involving the amyloid-β peptide (Aβ), Aβ precursor protein (APP), and fragile X mental retardation protein (FMRP) based on experimental evidence. The anabolic (growth-promoting) effect of the secreted α form of the amyloid-β precursor protein (sAPPα) may contribute to the state of brain overgrowth implicated in autism and FXS. Our previous report demonstrated that higher plasma sAPPα levels associate with more severe symptoms of autism, including aggression. This molecular effect could contribute to intellectual disability due to repression of cell-cell adhesion, promotion of dense, long, thin dendritic spines, and the potential for disorganized brain structure as a result of disrupted neurogenesis and migration. At the molecular level, APP and FMRP are linked via the metabotropic glutamate receptor 5 (mGluR5). Specifically, mGluR5 activation releases FMRP repression of APP mRNA translation and stimulates sAPP secretion. The relatively lower sAPPα level in AD may contribute to AD symptoms that significantly contrast with those of FXS and autism. Low sAPPα and production of insoluble Aβ would favor a degenerative process, with the brain atrophy seen in AD. Treatment with mGluR antagonists may help repress APP mRNA translation and reduce secretion of sAPP in FXS and perhaps autism.
Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine
2009-11-01
Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and endothelial microparticles could be an important immunmodulatory therapeutic target.
Lin, Wei-Jye; Salton, Stephen R
2013-01-01
The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs), where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs), with neuropsychiatric, endocrine, and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A) of the human brain-derived neurotrophic factor gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired.
Lin, Wei-Jye; Salton, Stephen R.
2013-01-01
The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs), where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs), with neuropsychiatric, endocrine, and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A) of the human brain-derived neurotrophic factor gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired. PMID:23964269
Charmandari, Evangelia; Weise, Martina; Bornstein, Stefan R; Eisenhofer, Graeme; Keil, Margaret F; Chrousos, George P; Merke, Deborah P
2002-05-01
Leptin is secreted by the white adipose tissue and modulates energy homeostasis. Nutritional, neural, neuroendocrine, paracrine, and autocrine factors, including the sympathetic nervous system and the adrenal medulla, have been implicated in the regulation of leptin secretion. Classic congenital adrenal hyperplasia (CAH) is characterized by a defect in cortisol and aldosterone secretion, impaired development and function of the adrenal medulla, and adrenal hyperandrogenism. To examine leptin secretion in patients with classic CAH in relation to their adrenomedullary function and insulin and androgen secretion, we studied 18 children with classic CAH (12 boys and 6 girls; age range 2-12 yr) and 28 normal children (16 boys and 12 girls; age range 5-12 yr) matched for body mass index (BMI). Serum leptin concentrations were significantly higher in patients with CAH than in control subjects (8.1 +/- 2.0 vs. 2.5 +/- 0.6 ng/ml, P = 0.01), and this difference persisted when leptin values were corrected for BMI. When compared with their normal counterparts, children with CAH had significantly lower plasma epinephrine (7.1 +/- 1.3 vs. 50.0 +/- 4.2, P < 0.001) and free metanephrine concentrations (18.4 +/- 2.4 vs. 46.5 +/- 4.0, P < 0.001) and higher fasting serum insulin (10.6 +/- 1.4 vs. 3.2 +/- 0.2 microU/ml, P < 0.001) and testosterone (23.7 +/- 5.3 vs. 4.6 +/- 0.5 ng/dl, P = 0.003) concentrations. Insulin resistance determined by the homeostasis model assessment method was significantly greater in children with classic CAH than in normal children (2.2 +/- 0.3 vs. 0.7 +/- 0.04, P < 0.001). Leptin concentrations were significantly and negatively correlated with epinephrine (r = -0.50, P = 0.001) and free metanephrine (r = -0.48, P = 0.002) concentrations. Stepwise multiple linear regression analysis indicated that serum leptin concentrations were best predicted by BMI in both patients and controls. Gender predicted serum leptin concentrations in controls but not in patients with classic CAH. No association was found between the dose of hydrocortisone and serum leptin (r = -0.17, P = 0.5) or insulin (r = 0.24, P = 0.3) concentrations in children with CAH. Our findings indicate that children with classic CAH have elevated fasting serum leptin and insulin concentrations, and insulin resistance. These most likely reflect differences in long-term adrenomedullary hypofunction and glucocorticoid therapy. Elevated leptin and insulin concentrations in patients with CAH may further enhance adrenal and ovarian androgen production, decrease the therapeutic efficacy of glucocorticoids, and contribute to later development of polycystic ovary syndrome and/or the metabolic syndrome and their complications.
A new potential secretion pathway for recombinant proteins in Bacillus subtilis.
Wang, Guangqiang; Xia, Yongjun; Gu, Zhennan; Zhang, Hao; Chen, Yong Q; Chen, Haiqin; Ai, Lianzhong; Chen, Wei
2015-11-10
Secretion of cytoplasmic expressed proteins into growth media has significant advantages. Due to the lack of an outer membrane, Bacillus subtilis is considered as a desirable 'cell factory' for the secretion of recombinant proteins. However, bottlenecks in the classical pathway for the secretion of recombinant proteins limit its use on a wide scale. In this study, we attempted to use four typical non-classically secreted proteins as signals to export three recombinant model proteins to the culture medium. All four non-classically secreted proteins can direct the export of the intrinsically disordered nucleoskeletal-like protein (Nsp). Two of them can guide the secretion of alkaline phosphatase (PhoA). One can lead the secretion of the thermostable β-galactosidase BgaB, which cannot be secreted with the aid of typical Sec-dependent signal peptides. Our results show that the non-classically secreted proteins lead the recombinant proteins to the culture medium, and thus non-classical protein secretion pathways can be exploited as a novel secretion pathway for recombinant proteins.
Gora, Sarah; Perret, Claire; Jemel, Ikram; Nicaud, Viviane; Lambeau, Gérard; Cambien, François; Ninio, Ewa; Blankenberg, Stefan; Tiret, Laurence; Karabina, Sonia-Athina
2009-07-01
Among secreted phospholipases A2 (sPLA2s), human group X sPLA2 (hGX sPLA2) is emerging as a novel attractive therapeutic target due to its implication in inflammatory diseases. To elucidate whether hGX sPLA2 plays a causative role in coronary artery disease (CAD), we screened the human PLA2G10 gene to identify polymorphisms and possible associations with CAD end-points in a prospective study, AtheroGene. We identified eight polymorphisms, among which, one non-synonymous polymorphism R38C in the propeptide region of the sPLA2. The T-512C polymorphism located in the 5' untranslated region was associated with a decreased risk of recurrent cardiovascular events during follow-up. The functional analysis of the R38C polymorphism showed that it leads to a profound change in expression and activity of hGX sPLA2, although there was no detectable impact on CAD risk. Due to the potential role of hGX sPLA2 in inflammatory processes, these polymorphisms should be investigated in other inflammatory diseases.
Species, gender, and identity: cracking petrels' sociochemical code.
Mardon, Jérôme; Saunders, Sandra M; Anderson, Marti J; Couchoux, Charline; Bonadonna, Francesco
2010-05-01
Avian chemosignaling remains relatively unexplored, but its potential importance in birds' social behaviors is becoming recognized. Procellariiform seabirds provide particularly appropriate models for investigating these topics as they possess a well-developed olfactory system and unequalled associated capabilities. We present here results from a detailed chemical examination of the uropygial secretions (the main source of avian exogenous chemicals) from 2 petrel species, Antarctic prions and blue petrels. Using gas chromatography-mass spectrometry techniques and recently developed multivariate tools, we demonstrate that the secretions contain critical socioecological information such as species, gender, and individual identity. Importantly, these chemosignals correlate with some of the birds' olfactory behaviors demonstrated in the field. The molecules found to be associated with social information were essentially large unsaturated compounds, suggesting that these may be precursors of, or correlates to the actual airborne signals. Although the species-specific chemosignal may be involved in interspecific competition at the breeding grounds, the role of the sexually specific chemosignal remains unclear. The existence of individually specific signals (i.e., chemical signatures) in these birds has important implications for processes such as individual recognition and genetically based mate choice already suspected for this group. Our results open promising avenues of research for the study of avian chemical communication.
Mussel byssus attachment weakened by ocean acidification
NASA Astrophysics Data System (ADS)
O'Donnell, Michael J.; George, Matthew N.; Carrington, Emily
2013-06-01
Biomaterials connect organisms to their environments. Their function depends on biological, chemical and environmental factors, both at the time of creation and throughout the life of the material. Shifts in the chemistry of the oceans driven by anthropogenic CO2 (termed ocean acidification) have profound implications for the function of critical materials formed under these altered conditions. Most ocean acidification studies have focused on one biomaterial (secreted calcium carbonate), frequently using a single assay (net rate of calcification) to quantify whether reductions in environmental pH alter how organisms create biomaterials. Here, we examine biological structures critical for the success of ecologically and economically important bivalve molluscs. One non-calcified material, the proteinaceous byssal threads that anchor mytilid mussels to hard substrates, exhibited reduced mechanical performance when secreted under elevated pCO2 conditions, whereas shell and tissue growth were unaffected. Threads made under high pCO2 (>1,200μatm) were weaker and less extensible owing to compromised attachment to the substratum. According to a mathematical model, this reduced byssal fibre performance, decreasing individual tenacity by 40%. In the face of ocean acidification, weakened attachment presents a potential challenge for suspension-culture mussel farms and for intertidal communities anchored by mussel beds.
Silibinin down-regulates expression of secreted phospholipase A2 enzymes in cancer cells.
Hagelgans, Albert; Nacke, Brit; Zamaraeva, Maria; Siegert, Gabriele; Menschikowski, Mario
2014-04-01
Silibinin, a naturally-occurring flavonoid produced by milk thistle, possesses antioxidant, anti-inflammatory and cancer-preventive activities. In the current study, we examined the effects of silibinin on the expression of secreted phospholipase A2 (sPLA2) enzymes, especially those of group IIA (hGIIA), which play a crucial role in inflammation and carcinogenesis. The effects of silibinin on sPLA2 expressions in human HepG2 hepatoma and PC-3 prostate cancer cells were analyzed using quantitative reverse transcription-polymerase chain reaction and enzyme linked immunosorbent assay technique. Silibinin inhibited the expression of hGIIA in unstimulated and cytokine-primed HepG2 and PC-3 cells. The mRNA levels of sPLA2 of groups IB, III and V were also significantly decreased by silibinin. Analyses of transcription factor activation suggest that nuclear factor-κB, but not specificity protein 1 (SP1) is implicated in the silibinin-mediated down-regulation of hGIIA. Silibinin exhibits inhibitory effects on basal and cytokine-induced expression of sPLA2s in cancer cells and therefore, may have the potential to protect against up-regulation of hGIIA and other sPLA2 isoforms during inflammation and cancer.
Legionella phospholipases implicated in virulence.
Kuhle, Katja; Flieger, Antje
2013-01-01
Phospholipases are diverse enzymes produced in eukaryotic hosts and their bacterial pathogens. Several pathogen phospholipases have been identified as major virulence factors acting mainly in two different modes: on the one hand, they have the capability to destroy host membranes and on the other hand they are able to manipulate host signaling pathways. Reaction products of bacterial phospholipases may act as secondary messengers within the host and therefore influence inflammatory cascades and cellular processes, such as proliferation, migration, cytoskeletal changes as well as membrane traffic. The lung pathogen and intracellularly replicating bacterium Legionella pneumophila expresses a variety of phospholipases potentially involved in disease-promoting processes. So far, genes encoding 15 phospholipases A, three phospholipases C, and one phospholipase D have been identified. These cell-associated or secreted phospholipases may contribute to intracellular establishment, to egress of the pathogen from the host cell, and to the observed lung pathology. Due to the importance of phospholipase activities for host cell processes, it is conceivable that the pathogen enzymes may mimic or substitute host cell phospholipases to drive processes for the pathogen's benefit. The following chapter summarizes the current knowledge on the L. pneumophila phospholipases, especially their substrate specificity, localization, mode of secretion, and impact on host cells.
Kaihara, Kelly A.; Dickson, Lorna M.; Jacobson, David A.; Tamarina, Natalia; Roe, Michael W.; Philipson, Louis H.; Wicksteed, Barton
2013-01-01
Acute insulin secretion determines the efficiency of glucose clearance. Moreover, impaired acute insulin release is characteristic of reduced glucose control in the prediabetic state. Incretin hormones, which increase β-cell cAMP, restore acute-phase insulin secretion and improve glucose control. To determine the physiological role of the cAMP-dependent protein kinase (PKA), a mouse model was developed to increase PKA activity specifically in the pancreatic β-cells. In response to sustained hyperglycemia, PKA activity potentiated both acute and sustained insulin release. In contrast, a glucose bolus enhanced acute-phase insulin secretion alone. Acute-phase insulin secretion was increased 3.5-fold, reducing circulating glucose to 58% of levels in controls. Exendin-4 increased acute-phase insulin release to a similar degree as PKA activation. However, incretins did not augment the effects of PKA on acute-phase insulin secretion, consistent with incretins acting primarily via PKA to potentiate acute-phase insulin secretion. Intracellular calcium signaling was unaffected by PKA activation, suggesting that the effects of PKA on acute-phase insulin secretion are mediated by the phosphorylation of proteins involved in β-cell exocytosis. Thus, β-cell PKA activity transduces the cAMP signal to dramatically increase acute-phase insulin secretion, thereby enhancing the efficiency of insulin to control circulating glucose. PMID:23349500
Restoration of Corneal Transparency by Mesenchymal Stem Cells.
Mittal, Sharad K; Omoto, Masahiro; Amouzegar, Afsaneh; Sahu, Anuradha; Rezazadeh, Alexandra; Katikireddy, Kishore R; Shah, Dhvanit I; Sahu, Srikant K; Chauhan, Sunil K
2016-10-11
Transparency of the cornea is indispensable for optimal vision. Ocular trauma is a leading cause of corneal opacity, leading to 25 million cases of blindness annually. Recently, mesenchymal stem cells (MSCs) have gained prominence due to their inflammation-suppressing and tissue repair functions. Here, we investigate the potential of MSCs to restore corneal transparency following ocular injury. Using an in vivo mouse model of ocular injury, we report that MSCs have the capacity to restore corneal transparency by secreting high levels of hepatocyte growth factor (HGF). Interestingly, our data also show that HGF alone can restore corneal transparency, an observation that has translational implications for the development of HGF-based therapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Liou, Alice P.; Sei, Yoshitatsu; Zhao, Xilin; Feng, Jianying; Lu, Xinping; Thomas, Craig; Pechhold, Susanne; Raybould, Helen E.
2011-01-01
The extracellular calcium-sensing receptor (CaSR) has recently been recognized as an l-amino acid sensor and has been implicated in mediating cholecystokinin (CCK) secretion in response to aromatic amino acids. We investigated whether direct detection of l-phenylalanine (l-Phe) by CaSR results in CCK secretion in the native I cell. Fluorescence-activated cell sorting of duodenal I cells from CCK-enhanced green fluorescent protein (eGFP) transgenic mice demonstrated CaSR gene expression. Immunostaining of fixed and fresh duodenal tissue sections confirmed CaSR protein expression. Intracellular calcium fluxes were CaSR dependent, stereoselective for l-Phe over d-Phe, and responsive to type II calcimimetic cinacalcet in CCK-eGFP cells. Additionally, CCK secretion by an isolated I cell population was increased by 30 and 62% in response to l-Phe in the presence of physiological (1.26 mM) and superphysiological (2.5 mM) extracellular calcium concentrations, respectively. While the deletion of CaSR from CCK-eGFP cells did not affect basal CCK secretion, the effect of l-Phe or cinacalcet on intracellular calcium flux was lost. In fact, both secretagogues, as well as superphysiological Ca2+, evoked an unexpected 20–30% decrease in CCK secretion compared with basal secretion in CaSR−/− CCK-eGFP cells. CCK secretion in response to KCl or tryptone was unaffected by the absence of CaSR. The present data suggest that CaSR is required for hormone secretion in the specific response to l-Phe by the native I cell, and that a receptor-mediated mechanism may inhibit hormone secretion in the absence of a fully functional CaSR. PMID:21252045
Secretome of obligate intracellular Rickettsia
Gillespie, Joseph J.; Kaur, Simran J.; Rahman, M. Sayeedur; Rennoll-Bankert, Kristen; Sears, Khandra T.; Beier-Sexton, Magda; Azad, Abdu F.
2014-01-01
The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial ‘life on the inside’. PMID:25168200
Cruz e Carvalho, Andréa; Márquez, César Augusto Prías; Azevedo, Ricardo Bentes; Joanitti, Graziella Anselmo; Pires Júnior, Osmindo Rodrigues; Fontes, Wagner; Castro, Mariana S
2015-10-08
Anuran secretions are rich sources of bioactive molecules, including antimicrobial and antitumoral compounds. The aims of this study were to investigate the therapeutic potential of Physalaemus nattereri skin secretion against skin cancer cells, and to assess its cytotoxic action mechanisms on the murine melanoma cell line B16F10. Our results demonstrated that the crude secretion reduced the viability of B16F10 cells, causing changes in cell morphology (e.g., round shape and structure shrinkage), reduction in mitochondrial membrane potential, increase in phosphatidylserine exposure, and cell cycle arrest in S-phase. Together, these changes suggest that tumor cells die by apoptosis. This skin secretion was also subjected to chromatographic fractioning using RP-HPLC, and eluted fractions were assayed for antiproliferative and antibacterial activities. Three active fractions showed molecular mass components in a range compatible with peptides. Although the specific mechanisms causing the reduced cell viability and cytotoxicity after the treatment with crude secretion are still unknown, it may be considered that molecules, such as the peptides found in the secretion, are effective against B16F10 tumor cells. Considering the growing need for new anticancer drugs, data presented in this study strongly reinforce the validity of P. nattereri crude secretion as a rich source of new anticancer molecules.
Trading secrets: Jews and the early modern quest for clandestine knowledge.
Jütte, Daniel
2012-12-01
This essay explores the significance and function of secrecy and secret sciences in Jewish-Christian relations and in Jewish culture in the early modern period. It shows how the trade in clandestine knowledge and the practice of secret sciences became a complex, sometimes hazardous space for contact between Jews and Christians. By examining this trade, the essay clarifies the role of secrecy in the early modern marketplace of knowledge. The attribution of secretiveness to Jews was a widespread topos in early modern European thought. However, relatively little is known about the implications of such beliefs in science or in daily life. The essay pays special attention to the fact that trade in secret knowledge frequently offered Jews a path to the center of power, especially at court. Furthermore, it becomes clear that the practice of secret sciences, the trade in clandestine knowledge, and a mercantile agenda were often inextricably interwoven. Special attention is paid to the Italian-Jewish alchemist, engineer, and entrepreneur Abramo Colorni (ca. 1544-1599), whose career illustrates the opportunities provided by the marketplace of secrets at that time. Much scholarly (and less scholarly) attention has been devoted to whether and what Jews "contributed" to what is commonly called the "Scientific Revolution." This essay argues that the question is misdirected and that, instead, we should pay more attention to the distinctive opportunities offered by the early modern economy of secrecy.
The multiple roles of sGP in Ebola pathogenesis.
de La Vega, Marc-Antoine; Wong, Gary; Kobinger, Gary P; Qiu, Xiangguo
2015-02-01
Ebola causes severe hemorrhagic fever in humans and nonhuman primates, and there are currently no approved therapeutic countermeasures. The virulence of Ebola virus (EBOV) may be partially attributed to the secreted glycoprotein (sGP), which is the main product transcribed from its GP gene. sGP is secreted from infected cells and can be readily detected in the serum of EBOV-infected hosts. This review summarizes the multiple roles that sGP may play during infection and highlights the implications for the future design of vaccines and treatments.
The Multiple Roles of sGP in Ebola Pathogenesis
de La Vega, Marc-Antoine; Wong, Gary; Kobinger, Gary P.
2015-01-01
Abstract Ebola causes severe hemorrhagic fever in humans and nonhuman primates, and there are currently no approved therapeutic countermeasures. The virulence of Ebola virus (EBOV) may be partially attributed to the secreted glycoprotein (sGP), which is the main product transcribed from its GP gene. sGP is secreted from infected cells and can be readily detected in the serum of EBOV-infected hosts. This review summarizes the multiple roles that sGP may play during infection and highlights the implications for the future design of vaccines and treatments. PMID:25354393
Kiatpanabhikul, Phatharaporn; Shuangshoti, Shanop; Chantra, Kraisri; Navicharern, Patpong; Kingpetch, Kanaungnit; Houngngam, Natnicha; Snabboon, Thiti
2017-07-01
Co-existence of thyrotropin/growth hormone-secreting pituitary adenoma with differentiated thyroid carcinoma is exceedingly rare, with less than 15 cases having been reported. Its clinical presentation and treatment strategy are challenging. We report a case of pituitary macroadenoma, with clinical syndromes of acromegaly and hyperthyroidism, and a thyroid nodule, with cytologically confirmed to be a papillary thyroid carcinoma. Clinical implications, focusing on the strategy for proper management, and possible pathogenesis were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Identification and characterization of secreted proteins in Eimeria tenella
NASA Astrophysics Data System (ADS)
Ramlee, Intan Azlinda; Firdaus-Raih, Mohd; Wan, Kiew-Lian
2015-09-01
Eimeria tenella is a protozoan parasite that causes coccidiosis, an economically important disease in the poultry industry. The characterization of proteins that are secreted by parasites have been shown to play important roles in parasite invasion and are considered to be potential control agents. In this study, 775 proteins potentially secreted by E. tenella were identified. These proteins were further filtered to remove mitochondrial proteins. Out of 763 putative secreted proteins, 259 proteins possess transmembrane domains while another 150 proteins have GPI (Glycosylphosphatidylinositol) anchors. Homology search revealed that 315 and 448 proteins have matches with known and hypothetical proteins in the database, respectively. Within this data set, previously characterized secretory proteins such as micronemes, rhoptry kinases and dense granules were detected.
Oxygen-dependent secretion of a bioactive hepcidin-GFP chimera.
Chachami, Georgia; Lyberopoulou, Aggeliki; Kalousi, Alkmini; Paraskeva, Efrosyni; Pantopoulos, Kostas; Simos, George
2013-06-14
Hepcidin, a hepatic hormone, regulates serum iron levels by controlling both intestinal iron absorption and iron release from macrophages. Although transcription of hepcidin is controlled by diverse stimuli, it remains elusive if post-transcriptional steps of its production are also regulated. To address this issue, GFP was fused to the C-terminus of hepcidin and the chimeric hepcidin-GFP protein was expressed in hepatoma Huh7 cells. Expression and secretion of hepcidin-GFP were analyzed by fluorescence microscopy or western blotting and its activity was assessed by in vitro biological assays. Transient over-expression of hepcidin-GFP resulted in production and secretion of premature forms. On the other hand, stable low-level expression led to synthesis and secretion of a properly matured hepcidin-GFP. This form was biologically active since it affected appropriately the levels of IRP2 and ferritin in human THP1 monocytes and targeted ferroportin in mouse J774 macrophages. Treatment of hepcidin-GFP expressing cells with hypoxia (0.1% O2) altered the subcellular distribution of pro-hepcidin-GFP and significantly reduced the secretion of mature hepcidin-GFP. Our hepcidin-GFP expression system allows the investigation of post-transcriptional processing of hepcidin and implicates hypoxia in its secretion control. Copyright © 2013 Elsevier Inc. All rights reserved.
Public Pedagogy via PostSecret: A Transitional Space Where Private and Public Coincide
ERIC Educational Resources Information Center
Motter, Jennifer L.
2011-01-01
PostSecret (www.postsecret.com) is a transitional space where the in-betweenness of public and private exists. Within this space, peer public pedagogy occurs through critical participatory democratic interactions of community participants. Integrating PostSecret into the art education curriculum can offer the potential for generative knowledge…
Zheng, Yun-Chong; He, Hao; Wei, Xing; Ge, Sheng; Lu, Yan-Hua
2016-11-23
The effects of mulberry ingredients including 1-deoxynojrimycin (DNJ), resveratrol (RES), oxyresveratrol (OXY), cyanidin-3-glucoside (C3G), and cyanidin-3-rutinoside (C3R) on insulin secretion under oxidative stress were investigated. The results revealed that they had distinct effects on insulin secretion in H 2 O 2 -induced MIN 6 cells, especially DNJ, C3G, and C3R, while RES and OXY showed modest effects in low dose (12.5 μM). The mechanisms were demonstrated in signal pathway that after treatment with DNJ, C3G, and C3R, the expressions of glucokinase (GK) were up-regulated, leading to intracellular ATP accumulation and insulin secretion. They also bound to glucagon-like peptide-1 receptor (GLP-1R), improved GLP-1R, duodenal homeobox factor-1 (PDX-1) expression, and stimulated insulin secretion. Moreover, ROS production was inhibited, followed by a decreasing apoptosis rate, while RES and OXY accelerated the apoptosis at high dose (50 μM). This work expounded the potential mechanisms of mulberry ingredients on insulin secretion, indicating the potential application in the intervention against hyperglycemia.
Grim, Christopher J; Kozlova, Elena V; Sha, Jian; Fitts, Eric C; van Lier, Christina J; Kirtley, Michelle L; Joseph, Sandeep J; Read, Timothy D; Burd, Eileen M; Tall, Ben D; Joseph, Sam W; Horneman, Amy J; Chopra, Ashok K; Shak, Joshua R
2013-04-23
Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966(T), and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966(T). The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966(T) and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. Aeromonas hydrophila is a common aquatic bacterium that has increasingly been implicated in serious human infections. While many determinants of virulence have been identified in Aeromonas, rapid identification of pathogenic versus nonpathogenic strains remains a challenge for this genus, as it is for other opportunistic pathogens. This paper demonstrates, by using whole-genome sequencing of clinical Aeromonas strains, followed by corresponding virulence assays, that comparative genomics can be used to identify a virulent subtype of A. hydrophila that is aggressive during human infection and more lethal in a mouse model of infection. This aggressive pathotype contained genes for toxin production, toxin secretion, and bacterial motility that likely enabled its pathogenicity. Our results highlight the potential of whole-genome sequencing to transform microbial diagnostics; with further advances in rapid sequencing and annotation, genomic analysis will be able to provide timely information on the identities and virulence potential of clinically isolated microorganisms.
Screening key candidate genes and pathways involved in insulinoma by microarray analysis.
Zhou, Wuhua; Gong, Li; Li, Xuefeng; Wan, Yunyan; Wang, Xiangfei; Li, Huili; Jiang, Bin
2018-06-01
Insulinoma is a rare type tumor and its genetic features remain largely unknown. This study aimed to search for potential key genes and relevant enriched pathways of insulinoma.The gene expression data from GSE73338 were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified between insulinoma tissues and normal pancreas tissues, followed by pathway enrichment analysis, protein-protein interaction (PPI) network construction, and module analysis. The expressions of candidate key genes were validated by quantitative real-time polymerase chain reaction (RT-PCR) in insulinoma tissues.A total of 1632 DEGs were obtained, including 1117 upregulated genes and 514 downregulated genes. Pathway enrichment results showed that upregulated DEGs were significantly implicated in insulin secretion, and downregulated DEGs were mainly enriched in pancreatic secretion. PPI network analysis revealed 7 hub genes with degrees more than 10, including GCG (glucagon), GCGR (glucagon receptor), PLCB1 (phospholipase C, beta 1), CASR (calcium sensing receptor), F2R (coagulation factor II thrombin receptor), GRM1 (glutamate metabotropic receptor 1), and GRM5 (glutamate metabotropic receptor 5). DEGs involved in the significant modules were enriched in calcium signaling pathway, protein ubiquitination, and platelet degranulation. Quantitative RT-PCR data confirmed that the expression trends of these hub genes were similar to the results of bioinformatic analysis.The present study demonstrated that candidate DEGs and enriched pathways were the potential critical molecule events involved in the development of insulinoma, and these findings were useful for better understanding of insulinoma genesis.
Svensson, Per-Arne; Asea, Alexzander; Englund, Mikael C O; Bausero, Maria A; Jernås, Margareta; Wiklund, Olov; Ohlsson, Bertil G; Carlsson, Lena M S; Carlsson, Björn
2006-03-01
Lipid accumulation and inflammation are key hallmarks of the atherosclerotic plaque and macrophage uptake of oxidized low-density lipoprotein (oxLDL) is believed to drive these processes. Initial experiments show that supernatants from oxLDL treated macrophages could induce IL-1beta production in naïve macrophages. To search for potential paracrine mediators that could mediate this effect a DNA microarray scan of oxLDL treated human macrophages was performed. This analysis revealed that oxLDL induced activation of heat shock protein (HSP) expression. HSPs have been implicated in the development of atherosclerosis, but the exact mechanisms for this is unclear. Extracellular heat shock protein 70 (HSP70) has been shown to elicit a pro-inflammatory cytokine response in monocytes and could therefore be a potential paracrine pro-inflammatory mediator. After 24 h of oxLDL treatment there was a significant increase of HSP70 concentrations in supernatants from oxLDL treated macrophages (oxLDLsup) compared to untreated controls (P<0.05). OxLDLsup could induce both interleukin (IL)-1beta and IL-12 secretion in naïve macrophages. We also demonstrate that the effect of oxLDLsup on cytokine production and release could be blocked by inhibition of HSP70 transcription or secretion or by the use of HSP70 neutralizing antibodies. This suggests that extracellular HSP70 can mediate pro-inflammatory changes in macrophages in response to oxLDL.
Svensson, Per-Arne; Asea, Alexzander; Englund, Mikael C.O.; Bausero, Maria A.; Jernås, Margareta; Wiklund, Olov; Ohlsson, Bertil G.; Carlsson, Lena M.S.; Carlsson, Björn
2006-01-01
Lipid accumulation and inflammation are key hallmarks of the atherosclerotic plaque and macrophage uptake of oxidized low-density lipoprotein (oxLDL) is believed to drive these processes. Initial experiments show that supernatants from oxLDL treated macrophages could induce IL-1β production in naïve macrophages. To search for potential paracrine mediators that could mediate this effect a DNA microarray scan of oxLDL treated human macrophages was performed. This analysis revealed that oxLDL induced activation of heat shock protein (HSP) expression. HSPs have been implicated in the development of atherosclerosis, but the exact mechanisms for this is unclear. Extracellular heat shock protein 70 (HSP70) has been shown to elicit a pro-inflammatory cytokine response in monocytes and could therefore be a potential paracrine pro-inflammatory mediator. After 24 h of oxLDL treatment there was a significant increase of HSP70 concentrations in supernatants from oxLDL treated macrophages (oxLDLsup) compared to untreated controls (P < 0.05). OxLDLsup could induce both interleukin (IL)-1β and IL-12 secretion in naïve macrophages. We also demonstrate that the effect of oxLDLsup on cytokine production and release could be blocked by inhibition of HSP70 transcription or secretion or by the use of HSP70 neutralizing antibodies. This suggests that extracellular HSP70 can mediate pro-inflammatory changes in macrophages in response to oxLDL. PMID:15993884
Hsu, Ann; Siegler, Karen E.
2017-01-01
ABSTRACT Amino acid sequence differences in the variable region of immunoglobulin (Ig) cause wide variations in secretion outputs. To address how a primary sequence difference comes to modulate Ig secretion, we investigated the biosynthetic process of 2 human IgG2κ monoclonal antibodies (mAbs) that differ only by one amino acid in the light chain complementarity-determining region 1 while showing ∼20-fold variance in secretion titer. Although poorly secreted, the lower-secreting mAb of the 2 was by no means defective in terms of its folding stability, antigen binding, and in vitro biologic activity. However, upon overexpression in HEK293 cells, the low-secreting mAb revealed a high propensity to aggregate into enlarged globular structures called Russell bodies (RBs) in the endoplasmic reticulum. While Golgi morphology was affected by the formation of RBs, secretory pathway membrane traffic remained operational in those cells. Importantly, cellular protein synthesis was severely suppressed in RB-positive cells through the phosphorylation of eIF2α. PERK-dependent signaling was implicated in this event, given the upregulation and nuclear accumulation of downstream effectors such as ATF4 and CHOP. These findings illustrated that the underlining process of poor Ig secretion in RB-positive cells was due to downregulation of Ig synthesis instead of a disruption or blockade of secretory pathway trafficking. Therefore, RB formation signifies an end of active Ig production at the protein translation level. Consequently, depending on how soon and how severely an antibody-expressing cell develops the RB phenotype, the productive window of Ig secretion can vary widely among the cells expressing different mAbs. PMID:28379093
Cruz e Carvalho, Andréa; Prías Márquez, César Augusto; Azevedo, Ricardo Bentes; Joanitti, Graziella Anselmo; Pires Júnior, Osmindo Rodrigues; Fontes, Wagner; Castro, Mariana S.
2015-01-01
Anuran secretions are rich sources of bioactive molecules, including antimicrobial and antitumoral compounds. The aims of this study were to investigate the therapeutic potential of Physalaemus nattereri skin secretion against skin cancer cells, and to assess its cytotoxic action mechanisms on the murine melanoma cell line B16F10. Our results demonstrated that the crude secretion reduced the viability of B16F10 cells, causing changes in cell morphology (e.g., round shape and structure shrinkage), reduction in mitochondrial membrane potential, increase in phosphatidylserine exposure, and cell cycle arrest in S-phase. Together, these changes suggest that tumor cells die by apoptosis. This skin secretion was also subjected to chromatographic fractioning using RP-HPLC, and eluted fractions were assayed for antiproliferative and antibacterial activities. Three active fractions showed molecular mass components in a range compatible with peptides. Although the specific mechanisms causing the reduced cell viability and cytotoxicity after the treatment with crude secretion are still unknown, it may be considered that molecules, such as the peptides found in the secretion, are effective against B16F10 tumor cells. Considering the growing need for new anticancer drugs, data presented in this study strongly reinforce the validity of P. nattereri crude secretion as a rich source of new anticancer molecules. PMID:26457717
Sachdev, Rishibha; Kappes-Horn, Karin; Paulsen, Lydia; Duernberger, Yvonne; Pleschka, Catharina; Denner, Philip; Kundu, Bishwajit; Reimann, Jens; Vorberg, Ina
2018-03-15
Sporadic inclusion body myositis (sIBM) is the most prevalent acquired muscle disorder in the elderly with no defined etiology or effective therapy. Endoplasmic reticulum stress and deposition of myostatin, a secreted negative regulator of muscle growth, have been implicated in disease pathology. The myostatin signaling pathway has emerged as a major target for symptomatic treatment of muscle atrophy. Here, we systematically analyzed the maturation and secretion of myostatin precursor MstnPP and its metabolites in a human muscle cell line. We find that increased MsntPP protein levels induce ER stress. MstnPP metabolites were predominantly retained within the endoplasmic reticulum (ER), also evident in sIBM histology. MstnPP cleavage products formed insoluble high molecular weight aggregates, a process that was aggravated by experimental ER stress. Importantly, ER stress also impaired secretion of mature myostatin. Reduced secretion and aggregation of MstnPP metabolites were not simply caused by overexpression, as both events were also observed in wildtype cells under ER stress. It is tempting to speculate that reduced circulating myostatin growth factor could be one explanation for the poor clinical efficacy of drugs targeting the myostatin pathway in sIBM.
Veenendaal, Andreas K J; Hodgkinson, Julie L; Schwarzer, Lynn; Stabat, David; Zenk, Sebastian F; Blocker, Ariel J
2007-03-01
Type III secretion systems (T3SSs) are essential virulence determinants of many Gram-negative bacterial pathogens. The Shigella T3SS consists of a cytoplasmic bulb, a transmembrane region and a hollow 'needle' protruding from the bacterial surface. Physical contact with host cells initiates secretion and leads to assembly of a pore, formed by IpaB and IpaC, in the host cell membrane, through which proteins that facilitate host cell invasion are translocated. As the needle is implicated in host cell sensing and secretion regulation, its tip should contain components that initiate host cell contact. Through biochemical and immunological studies of wild-type and mutant Shigella T3SS needles, we reveal tip complexes of differing compositions and functional states, which appear to represent the molecular events surrounding host cell sensing and pore formation. Our studies indicate that the interaction between IpaB and IpaD at needle tips is key to host cell sensing, orchestration of IpaC secretion and its subsequent assembly at needle tips. This allows insertion into the host cell membrane of a translocation pore that is continuous with the needle.
Fast, M D; Ross, N W; Craft, C A; Locke, S J; MacKinnon, S L; Johnson, S C
2004-01-01
Lepeophtheirus salmonis is an ectoparasitic copepod that causes serious disease outbreaks in both wild and farmed salmonids. As the relationship between L. salmonis and its hosts is not well understood, the current investigation was undertaken to investigate whether any immunomodulatory compounds could be identified from secretions of L. salmonis. By incubating live L. salmonis adults with the neurotransmitter dopamine in seawater, we were able to obtain secretions from the parasite. These were analyzed by RP-HPLC column, as well as LC-MS. L. salmonis secretions contained a compound with the same retention time and mass of PGE(2). The identity of this compound as PGE(2) was confirmed by MS-in source dissociation. The concentrations of PGE(2) in L. salmonis secretions ranged from 0.2 to 12.3 ng/individual and varied with incubation temperature and time kept off the host. Prostaglandin E(2) is a potent vasodilator and thought to aid in parasite evasion from host immune responses. This is the first reported evidence of prostaglandin production in parasitic copepod secretions and its implications for the host-parasite relationship are discussed.
Bodger, K; Bromelow, K; Wyatt, J; Heatley, R
2001-01-01
Background/Aims—Interleukin 10 (IL-10) is a counterinflammatory peptide implicated in the downregulation of human intestinal immune responses. Enhanced secretion of IL-10 has been documented in gastric biopsy organ culture in Helicobacter pylori infection. This study aimed to define the cellular origins of IL-10 in H pylori associated gastritis, and to determine the effects of endogenous IL-10 on proinflammatory cytokine secretion in vitro. Methods—Endoscopic biopsies were obtained from the gastric antrum at endoscopy from patients with dyspepsia. Two pairs of antral biopsies were cultured in vitro for 24 hours, one pair in the presence of neutralising anti-IL-10 monoclonal antibody, the other pair as controls. The cytokine content of culture supernatants (tumour necrosis factor α (TNF-α), IL-6, and IL-8) was determined by enzyme linked immunosorbent assay and corrected for biopsy weight. Helicobacter pylori status was established by histology and biopsy urease test, and histopathology graded by the Sydney system. In a subgroup of patients, western blotting was used to establish CagA serological status. Immunohistochemistry for IL-10 was performed on formalin fixed tissues using a combination of microwave antigen retrieval and the indirect avidin–biotin technique. Immunoreactivity was scored semiquantitatively. Results—In vitro culture was performed in 41 patients: 31 with H pylori positive chronic gastritis and 10 H pylori negative. In vitro secretion of TNF-α, IL-6, and IL-8 for "control" biopsies was significantly higher in H pylori positive versus negative samples, with values of TNF-α and IL-6 correlating with the degree of active and chronic inflammation and being higher in CagA seropositive cases. No evidence for enhanced cytokine secretion was seen in biopsies cocultured in the presence of anti-IL-10 monoclonal antibody. Immunohistochemistry was performed in 29 patients, of whom 13 were H pylori positive. IL-10 immunoreactivity was observed in the surface epithelium in all H pylori positive cases and in 13 of 16 negative cases, especially in areas of surface epithelial degeneration. Lamina propria mononuclear cells (LPMNCs) were positively stained in all H pylori positive cases and in 12 of 16 negative cases, with a significantly greater proportion of positive LPMNCs in the positive group. Conclusions—This study localised IL-10 protein to the gastric epithelium and LPMNCs. In vitro proinflammatory cytokine secretion was increased in H pylori infection (especially CagA positive infection), but blocking endogenous IL-10 secretion did not significantly increase cytokine secretion. IL-10 is implicated in H pylori infection and might "damp down" local inflammation. The role of gastric IL-10 secretion in determining the clinicopathological outcome of infection merits further study. Key Words: Helicobacter pylori infection • interleukin 10 • gastritis • immunohistochemistry PMID:11304845
Demoulin, Stéphanie A; Somja, Joan; Duray, Anaëlle; Guénin, Samuel; Roncarati, Patrick; Delvenne, Philippe O; Herfs, Michael F; Hubert, Pascale M
2015-01-01
The progression of genital human papillomavirus (HPV) infections into preneoplastic lesions suggests that infected/malignant cells are not adequately recognized by the immune system. In this study, we demonstrated that cervical/vulvar cancer cells secrete factor(s) that affect both the maturation and function of dendritic cells (DC) leading to a tolerogenic profile. Indeed, DC cocultured with cancer cell lines display both a partially mature phenotype after lipopolysaccharide (LPS) maturation and an altered secretory profile (IL-10high and IL-12p70low). In addition, tumor-converted DC acquire the ability to alter T-cell proliferation and to induce FoxP3+ suppressive T cells from naive CD4+ T cells. Among the immunosuppressive factors implicated in DC alterations in genital (pre)neoplastic microenvironment, we identified receptor activator of nuclear factor kappa-B ligand (RANKL), a TNF family member, as a potential candidate. For the first time, we showed that RANKL expression strongly increases during cervical progression. We also confirmed that RANKL is directly secreted by cancer cells and this expression is not related to HPV viral oncoprotein induction. Interestingly, the addition of osteoprotegerin (OPG) in coculture experiments reduces significantly the inhibition of DC maturation, the release of a tolerogenic cytokine profile (IL-12low IL-10high) and the induction of regulatory T (Treg) cells. Our findings suggest that the use of inhibitory molecules directed against RANKL in cervical/vulvar (pre)neoplastic lesions might prevent alterations of DC functionality and represent an attractive strategy to overcome immune tolerance in such cancers. PMID:26155412
Melatonin potentiates tear secretion induced by diadenosine tetraphosphate in the rabbit.
Hoyle, Charles H V; Peral, Assumpta; Pintor, Jesús
2006-12-15
Diadenosine tetraphosphate (Ap(4)A, 0.03 nmol) applied topically to the cornea of New Zealand white rabbits, evoked an increase in tear secretion of 9.7 +/- 2.60% (N=7). Melatonin (1 nmol) had no significant effect. Application of Ap(4)A in combination with melatonin, evoked a significantly greater increase in tear secretion of 34.2 +/- 5.8% (N=11). This potentiating effect of melatonin was blocked by pretreating the cornea with a topical application of the melatonin receptor antagonist, luzindole (240 nmol). Melatonin combined with Ap(4)A may be useful for treating dry eye conditions.
Diaz-Garcia, Carlos Manlio; Sanchez-Soto, Carmen; Hiriart, Marcia
2013-03-01
Transient receptor potential channels, especially the members of the melastatin family (TRPM), participate in insulin secretion. Some of them are substrates for protein kinases, which are involved in several neurotransmitter, incretin and hormonal signaling cascades in β cells. The functional relationships between protein kinases and TRPM channels in systems of heterologous expression and native tissues rise issues about novel regulation pathways of pancreatic β-cell excitability. The aim of the present work is to review the evidences about phosphorylation of TRPM channels in β cells and to discuss the perspectives on insulin secretion.
Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine
2009-01-01
Background Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Design and Methods Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Results Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-α) and also induced allogeneic naive CD4+ T cells to proliferate and to produce type 1 cytokines such as interferon-γ and tumor necrosis factor-α. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Conclusions Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and endothelial microparticles could be an important immunmodulatory therapeutic target. PMID:19648164
Associations of cord blood fatty acids with lymphocyte proliferation, IL-13, and IFN-γ
Gold, Diane R.; Willwerth, Ben M.; Tantisira, Kelan G.; Finn, Patricia W.; Schaub, Bianca; Perkins, David L.; Tzianabos, Arthur; Ly, Ngoc P.; Schroeter, Christian; Gibbons, Fiona; Campos, Hannia; Oken, Emily; Gillman, Matthew W.; Palmer, Lyle J.; Ryan, Louise M.; Weiss, Scott T.
2006-01-01
Background. N-3 and n-6 polyunsaturated fatty acids (PUFAs) have been hypothesized to have opposing influences on neonatal immune responses that might influence the risk of allergy or asthma. However, both n-3 eicosapentaenoic acid (EPA) and n-6 arachidonic acid (AA) are required for normal fetal development. Objective. We evaluated whether cord blood fatty acid levels were related to neonatal immune responses and whether n-3 and n-6 PUFA responses differed. Methods. We examined the relation of cord blood plasma n-3 and n-6 PUFAs (n = 192) to antigen- and mitogen-stimulated cord blood lymphocyte proliferation (n = 191) and cytokine (IL-13 and IFN-γ; n = 167) secretion in a US birth cohort. Results. Higher levels of n-6 linoleic acid were correlated with higher IL-13 levels in response to Bla g 2 (cockroach, P = .009) and Der f 1 (dust mite, P = .02). Higher n-3 EPA and n-6 AA levels were each correlated with reduced lymphocyte proliferation and IFN-γ levels in response to Bla g 2 and Der f 1 stimulation. Controlling for potential confounders, EPA and AA had similar independent effects on reduced allergen-stimulated IFN-γ levels. If neonates had either EPA or AA levels in the highest quartile, their Der f 1 IFN-γ levels were 90% lower (P = .0001) than those with both EPA and AA levels in the lowest 3 quartiles. Reduced AA/EPA ratio was associated with reduced allergen-stimulated IFN-γ level. Conclusion. Increased levels of fetal n-3 EPA and n-6 AA might have similar effects on attenuation of cord blood lymphocyte proliferation and IFN-γ secretion. Clinical implications. The implications of these findings for PMID:16630954
Vitali, Beatrice; Cruciani, Federica; Baldassarre, Maria Elisabetta; Capursi, Teresa; Spisni, Enzo; Valerii, Maria Chiara; Candela, Marco; Turroni, Silvia; Brigidi, Patrizia
2012-10-18
The vaginal microbiota of healthy women consists of a wide variety of anaerobic and aerobic bacterial genera and species dominated by the genus Lactobacillus. The activity of lactobacilli helps to maintain the natural healthy balance of the vaginal microbiota. This role is particularly important during pregnancy because vaginal dismicrobism is one of the most important mechanisms for preterm birth and perinatal complications. In the present study, we characterized the impact of a dietary supplementation with the probiotic VSL#3, a mixture of Lactobacillus, Bifidobacterium and Streptococcus strains, on the vaginal microbiota and immunological profiles of healthy women during late pregnancy. An association between the oral intake of the probiotic VSL#3 and changes in the composition of the vaginal microbiota of pregnant women was revealed by PCR-DGGE population profiling. Despite no significant changes were found in the amounts of the principal vaginal bacterial populations in women administered with VSL#3, qPCR results suggested a potential role of the probiotic product in counteracting the decrease of Bifidobacterium and the increase of Atopobium, that occurred in control women during late pregnancy. The modulation of the vaginal microbiota was associated with significant changes in some vaginal cytokines. In particular, the decrease of the anti-inflammatory cytokines IL-4 and IL-10 was observed only in control women but not in women supplemented with VSL#3. In addition, the probiotic consumption induced the decrease of the pro-inflammatory chemokine Eotaxin, suggesting a potential anti-inflammatory effect on the vaginal immunity. Dietary supplementation with the probiotic VSL#3 during the last trimester of pregnancy was associated to a modulation of the vaginal microbiota and cytokine secretion, with potential implications in preventing preterm birth. ClinicalTrials.gov NCT01367470.
Monguió-Tortajada, Marta; Roura, Santiago; Gálvez-Montón, Carolina; Pujal, Josep Maria; Aran, Gemma; Sanjurjo, Lucía; Franquesa, Marcel la; Sarrias, Maria-Rosa; Bayes-Genis, Antoni; Borràs, Francesc E
2017-01-01
Undesired immune responses have drastically hampered outcomes after allogeneic organ transplantation and cell therapy, and also lead to inflammatory diseases and autoimmunity. Umbilical cord mesenchymal stem cells (UCMSCs) have powerful regenerative and immunomodulatory potential, and their secreted extracellular vesicles (EVs) are envisaged as a promising natural source of nanoparticles to increase outcomes in organ transplantation and control inflammatory diseases. However, poor EV preparations containing highly-abundant soluble proteins may mask genuine vesicular-associated functions and provide misleading data. Here, we used Size-Exclusion Chromatography (SEC) to successfully isolate EVs from UCMSCs-conditioned medium. These vesicles were defined as positive for CD9, CD63, CD73 and CD90, and their size and morphology characterized by NTA and cryo-EM. Their immunomodulatory potential was determined in polyclonal T cell proliferation assays, analysis of cytokine profiles and in the skewing of monocyte polarization. In sharp contrast to the non-EV containing fractions, to the complete conditioned medium and to ultracentrifuged pellet, SEC-purified EVs from UCMSCs inhibited T cell proliferation, resembling the effect of parental UCMSCs. Moreover, while SEC-EVs did not induce cytokine response, the non-EV fractions, conditioned medium and ultracentrifuged pellet promoted the secretion of pro-inflammatory cytokines by polyclonally stimulated T cells and supported Th17 polarization. In contrast, EVs did not induce monocyte polarization, but the non-EV fraction induced CD163 and CD206 expression and TNF-α production in monocytes. These findings increase the growing evidence confirming that EVs are an active component of MSC's paracrine immunosuppressive function and affirm their potential for therapeutics in nanomedicine. In addition, our results highlight the importance of well-purified and defined preparations of MSC-derived EVs to achieve the immunosuppressive effect.
Secretion imbalance between tumour necrosis factor and its inhibitor in inflammatory bowel disease
Noguchi, M; Hiwatashi, N; Liu, Z; Toyota, T
1998-01-01
Background—Tumour necrosis factor (TNF) α and TNF-β are soluble ligands binding to TNF receptors with similar activities; soluble TNF receptors neutralise TNF activity by acting as inhibitors. Little is known about the cytokine/soluble receptor role in inflammatory bowel disease (IBD). Aims—To test the hypothesis that an imbalance in secretion between TNF and TNF inhibitors plays a role in gut inflammation in patients with IBD. Methods—The secretion of TNF-α, TNF-β, and soluble TNF receptors was compared in the culture supernatants of colonic biopsy specimens and isolated lamina propria mononuclear cells from patients with active colonic IBD. Results—Spontaneous secretion of TNF-α in involved IBD mucosa was higher than in normal control and self limited colitis mucosa. Secretion of TNF-β was higher in patients with Crohn's disease than in those with ulcerative colitis. Soluble TNF receptor in IBD mucosa inhibited TNF activity. Type 2 soluble receptor release from IBD mucosa was increased in active inflammation; release from lamina propria cells was not increased. Mucosal TNF-α production correlated with severity of disease. Conclusions—Results showed enhanced secretion of TNF-α but failure to release enhanced amounts of soluble TNF receptor in lamina propria mononuclear cells of patients with IBD. An imbalance in secretion between TNF and TNF inhibitor may be implicated in the pathogenesis of IBD. Keywords: Crohn's disease; inflammation; mucosal immunology; soluble TNF receptor; tumour necrosis factor; ulcerative colitis PMID:10189845
Patterns of online abortion among teenagers
NASA Astrophysics Data System (ADS)
Wahyudi, A.; Jacky, M.; Mudzakkir, M.; Deprita, R.
2018-01-01
An on-going debate of whether or not to legalize abortion has not stopped the number of abortion cases decreases. New practices of abortion such as online abortion has been a growing trend among teenagers. This study aims to determine how teenagers use social media such as Facebook, YouTube and Wikipedia for the practice of abortion. This study adopted online research methods (ORMs), a qualitative approach 2.0 by hacking analytical perspective developed. This study establishes online teen abortion as a research subject. This study finds patterns of online abortions among teenagers covering characteristics of teenagers as perpetrators, styles of communication, and their implication toward policy, particularly Electronic Transaction Information (ETI) regulation. Implications for online abortion behavior among teenagers through social media. The potential abortion client especially girls find practical, fast, effective, and efficient solutions that keep their secret. One of prevention patterns that has been done by some people who care about humanity and anti-abortion in the online world is posting a anti-abortion text, video or picture, anti-sex-free (anti -free intercourse before marriage) in an interesting, educative, and friendly ways.
Ferreira, José Alexandre; Magalhães, Ana; Gomes, Joana; Peixoto, Andreia; Gaiteiro, Cristiana; Fernandes, Elisabete; Santos, Lúcio Lara; Reis, Celso A
2017-02-28
Glycosylation is the most frequent and structurally complex posttranslational modification in cell-surface and secreted proteins. Glycans are major orchestrators of biological processes, namely, by controlling protein folding and key biological functions such as cell adhesion, migration, signaling and immune recognition. Altered glycosylation is considered a hallmark of malignant transformations that decisively contributes to disease outcome. This review comprehensively summarizes the main findings related with gastrointestinal cancers and the decisive impact of aberrant glycosylation on tumor biology toward more aggressive phenotypes. Particular emphasis is given to alterations in O-glycosylation, namely, the overexpression of immature O-glycans, and the sialylated Lewis antigens sialyl-LeA and sialyl-LeX, frequently implicated in lymphohematogenous metastasis. We further discuss how recent contributions from glycoproteomics and glycoengineering fields have broadened our understanding of the human O-glycoproteome and its implications for cancer research. Finally, we address the tremendous potential of glycans in the context of targeted therapeutics (selective inhibition of glycosylation pathways, immunotherapy) and discuss the need to include glycomics/glycoproteomics in holistic panomics models toward true precision medicine settings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mast cells: potential positive and negative roles in tumor biology.
Marichal, Thomas; Tsai, Mindy; Galli, Stephen J
2013-11-01
Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors. ©2013 AACR.
Bacterial exopolymer utilization by a harpacticoid copepod: A methodology and results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decho, A.W.; Moriarty, D.J.W.
1990-07-01
Exopolymer mucus secretions of bacteria and diatoms are potential foods for benthic animals. These secretions are coincidently ingested by animals during consumption of microbial cells and sediments. The utilization of microbial secretions was investigated with exopolymer derived from a marine bacterium (pseudomonas sp.) from seagrass beds and a harpacticoid copepod Laophonte sp. from the same habitat. A new technique was developed to examine ingestion, absorption, and absorption efficiencies of these bacterial secretions by consumers. Exopolymer mucus (from the bacterium in stationary phase) was labeled with {sup 14}C, collected, purified, and bound onto bacterium-sized beads. The exopolymer slime coating mimicked themore » coatings associated with many marine bacteria. Results from feeding experiments where the coated beads were mixed with sediment demonstrated that the mucus-exopolymer secretions of bacteria were ingested and utilized by Laophonte sp. Absorption efficiencies, determined directly, were > 80% in the presence of other food resources, indicating that exopolymer is potentially a highly labile C resource for this animal.« less
Secretion and extracellular space travel of Wnt proteins.
Gross, Julia Christina; Boutros, Michael
2013-08-01
Wnt signaling pathways control many processes during development, stem cell maintenance and homeostasis, and their aberrant regulation has been linked to diseases in man including diabetes, neurodegeneration and cancer. Wnts are hydrophobic proteins, however, quite paradoxically, they can travel over distances to induce cell-type specific responses. While there has been an initial focus on elucidating the intracellular signaling cascade, discoveries in the past few years have shed light on a highly complex, and regulated secretory process that guides Wnt proteins through the exocytic pathway. Wnt proteins are at least in portion packaged onto extracellular carriers such as exosomes. Similar to dysregulation of components in the Wnt receiving cell, failure to regulate Wnt secretion has been linked to cancer. Here, we review recent discoveries on factors and processes implicated in Wnt secretion. Copyright © 2013 Elsevier Ltd. All rights reserved.
The semantics of secrecy: young children's classification of secret content.
Anagnostaki, Lida; Wright, Michael J; Bourchier-Sutton, Alison J
2010-01-01
The authors explored whether young children can distinguish potential secrets from nonsecrets by their content, as can older children, adolescents, and adults. Ninety children, 4, 5, and 6 years old, rated the secrecy of items from an adult-validated list of personal information about an age- and gender-appropriate puppet. Two factors of the children's data corresponded to the adult categories of nonsecrets and secrets, and a third factor corresponded to surprises. All ages rated surprises as significantly more secret than nonsecret items; however, the surprise items contained linguistic cues to secrecy. A tendency to rate nonsecrets as secret decreased with age, but only the 6-year-olds rated secrets other than surprises as significantly more secret than nonsecrets. Thus, children acquire the implicit rules defining secret content from a somewhat later age than that reported for the cognitive or behavioral capacities for secrecy.
2013-01-01
Background Generation of tolerogenic dendritic cells (TolDCs) for therapy is challenging due to its implications for the design of protocols suitable for clinical applications, which means not only using safe products, but also working at defining specific biomarkers for TolDCs identification, developing shorter DCs differentiation methods and obtaining TolDCs with a stable phenotype. We describe here, a short-term protocol for TolDCs generation, which are characterized in terms of phenotypic markers, cytokines secretion profile, CD4+ T cell-stimulatory ability and migratory capacity. Methods TolDCs from healthy donors were generated by modulation with dexamethasone plus monophosphoryl lipid A (MPLA-tDCs). We performed an analysis of MPLA-tDCs in terms of yield, viability, morphology, phenotypic markers, cytokines secretion profile, stability, allogeneic and antigen-specific CD4+ T-cell stimulatory ability and migration capacity. Results After a 5-day culture, MPLA-tDCs displayed reduced expression of costimulatory and maturation molecules together to an anti-inflammatory cytokines secretion profile, being able to maintain these tolerogenic features even after the engagement of CD40 by its cognate ligand. In addition, MPLA-tDCs exhibited reduced capabilities to stimulate allogeneic and antigen-specific CD4+ T cell proliferation, and induced an anti-inflammatory cytokine secretion pattern. Among potential tolerogenic markers studied, only TLR-2 was highly expressed in MPLA-tDCs when compared to mature and immature DCs. Remarkable, like mature DCs, MPLA-tDCs displayed a high CCR7 and CXCR4 expression, both chemokine receptors involved in migration to secondary lymphoid organs, and even more, in an in vitro assay they exhibited a high migration response towards CCL19 and CXCL12. Conclusion We describe a short-term protocol for TolDC generation, which confers them a stable phenotype and migratory capacity to lymphoid chemokines, essential features for TolDCs to be used as therapeutics for autoimmunity and prevention of graft rejection. PMID:23706017
Ning, Xiaojun; Luckenbaugh, Laurie; Liu, Kuancheng; Bruss, Volker; Sureau, Camille; Hu, Jianming
2018-05-09
During the morphogenesis of hepatitis B virus (HBV), an enveloped virus, two types of virions are secreted: (1) a minor population of complete virions containing a mature nucleocapsid with the characteristic, partially double-stranded, relaxed circular DNA genome and (2) a major population containing an empty capsid with no DNA or RNA (empty virions). Secretion of both types of virions requires interactions between the HBV capsid or core protein (HBc) and the viral surface or envelope proteins. We have studied the requirements from both HBc and envelope proteins for empty virion secretion, in comparison with those for secretion of complete virions. Substitutions within the N-terminal domain of HBc that block secretion of DNA-containing virions reduced but did not prevent secretion of empty virions. The HBc C-terminal domain was not essential for empty virion secretion. Among the three viral envelope proteins, the smallest, S, alone was sufficient for empty virion secretion at a basal level. The largest protein, L, essential for complete virion secretion, was not required for, but could stimulate empty virion secretion. Also, substitutions in L that eliminate secretion of complete virions reduced but did not eliminate empty virion secretion. S mutations that block secretion of the hepatitis D virus (HDV), an HBV satellite, did not block secretion of either empty or complete HBV virions. Together, these results indicate that both common and distinct signals on empty capsids vs. mature nucleocapsids interact with the S and L proteins during the formation of complete vs. empty virions. IMPORTANCE Hepatitis B virus (HBV) is a major cause of severe liver diseases including cirrhosis and cancer. In addition to the complete infectious virion particle, which contains an outer envelope layer and an interior capsid that, in turn, encloses a DNA genome, HBV infected cells also secrete non-infectious, incomplete viral particles in large excess over the complete virions. In particular, the empty (or genome-free) virion share with the complete virion the outer envelope and interior capsid but contain no genome. We have carried out a comparative study on the capsid and envelope requirements for the secretion of these two types of virion particles and uncovered both shared and distinct determinants on the capsid and envelope for their secretion. These results provide new information on HBV morphogenesis, and have implications for efforts to develop empty HBV virions as a novel biomarker and a new generation of HBV vaccine. Copyright © 2018 American Society for Microbiology.
Pérez-Sotelo, Diego; Roca-Rivada, Arturo; Larrosa-García, María; Castelao, Cecilia; Baamonde, Iván; Baltar, Javier; Crujeiras, Ana Belen; Seoane, Luisa María; Casanueva, Felipe F; Pardo, María
2017-02-01
The secretion of the hepatokine alpha-2-Heremans-Schmid glycoprotein/Fetuin A, implicated in pathological processes including systemic insulin resistance, by adipose tissue has been recently described. Thus, we have recently identified its presence in white adipose tissue secretomes by mass spectrometry. However, the secretion pattern and function of adipose-derived alpha-2-Heremans-Schmid glycoprotein are poorly understood. The aim of this study is to evaluate the expression and secretion of total and active phosphorylated alpha-2-Heremans-Schmid glycoprotein by adipose tissue from visceral and subcutaneous localizations in animals at different physiological and nutritional status including anorexia and obesity. Alpha-2-Heremans-Schmid glycoprotein expression and secretion in visceral adipose tissue and subcutaneous adipose tissue explants from animals under fasting and exercise training, at pathological situations such as anorexia and obesity, and from human obese individuals were assayed by immunoblotting, quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. We reveal that visceral adipose tissue expresses and secretes more alpha-2-Heremans-Schmid glycoprotein than subcutaneous adipose tissue, and that this secretion is diminished after fasting and exercise training. Visceral adipose tissue from anorectic animals showed reduced alpha-2-Heremans-Schmid glycoprotein secretion; on the contrary, alpha-2-Heremans-Schmid glycoprotein is over-secreted by visceral adipose tissue in the occurrence of obesity. While secretion of active-PhophoSer321α2HSG by visceral adipose tissue is independent of body mass index, we found that the fraction of active-alpha-2-Heremans-Schmid glycoprotein secreted by subcutaneous adipose tissue increments significantly in situations of obesity. Functional studies show that the inhibition of adipose-derived alpha-2-Heremans-Schmid glycoprotein increases insulin sensitivity in differentiated adipocytes. In conclusion, visceral adipose tissue secretes more alpha-2-Heremans-Schmid glycoprotein than subcutaneous adipose tissue and this secretion is more sensitive to nutritional and physiological changes. The over-secretion of alpha-2-Heremans-Schmid glycoprotein by visceral adipose tissue, the increased secretion of the active phosphorylated form by subcutaneous adipose tissuein obese animals, and the adipose-derived alpha-2-Heremans-Schmid glycoprotein capacity to inhibit the insulin pathway suggest the participation of adipose-derived alpha-2-Heremans-Schmid glycoprotein in the deleterious effects of obesity.
High-fructose corn syrup, energy intake, and appetite regulation.
Melanson, Kathleen J; Angelopoulos, Theodore J; Nguyen, Von; Zukley, Linda; Lowndes, Joshua; Rippe, James M
2008-12-01
High-fructose corn syrup (HFCS) has been implicated in excess weight gain through mechanisms seen in some acute feeding studies and by virtue of its abundance in the food supply during years of increasing obesity. Compared with pure glucose, fructose is thought to be associated with insufficient secretion of insulin and leptin and suppression of ghrelin. However, when HFCS is compared with sucrose, the more commonly consumed sweetener, such differences are not apparent, and appetite and energy intake do not differ in the short-term. Longer-term studies on connections between HFCS, potential mechanisms, and body weight have not been conducted. The main objective of this review was to examine collective data on associations between consumption of HFCS and energy balance, with particular focus on energy intake and its regulation.
Impaired autophagy in macrophages promotes inflammatory eye disease.
Santeford, Andrea; Wiley, Luke A; Park, Sunmin; Bamba, Sonya; Nakamura, Rei; Gdoura, Abdelaziz; Ferguson, Thomas A; Rao, P Kumar; Guan, Jun-Lin; Saitoh, Tatsuya; Akira, Shizuo; Xavier, Ramnik; Virgin, Herbert W; Apte, Rajendra S
2016-10-02
Autophagy is critical for maintaining cellular homeostasis. Organs such as the eye and brain are immunologically privileged. Here, we demonstrate that autophagy is essential for maintaining ocular immune privilege. Deletion of multiple autophagy genes in macrophages leads to an inflammation-mediated eye disease called uveitis that can cause blindness. Loss of autophagy activates inflammasome-mediated IL1B secretion that increases disease severity. Inhibition of caspase activity by gene deletion or pharmacological means completely reverses the disease phenotype. Of interest, experimental uveitis was also increased in a model of Crohn disease, a systemic autoimmune disease in which patients often develop uveitis, offering a potential mechanistic link between macrophage autophagy and systemic disease. These findings directly implicate the homeostatic process of autophagy in blinding eye disease and identify novel pathways for therapeutic intervention in uveitis.
Narp Deletion Blocks Extinction of Morphine Place Preference Conditioning
Crombag, Hans S; Dickson, Mercy; Dinenna, Megan; Johnson, Alexander W; Perin, Mark S; Holland, Peter C; Baraban, Jay M; Reti, Irving M
2008-01-01
As drug abuse can be viewed as a maladaptive form of neuronal plasticity, attention has focused on defining the synaptic plasticity mechanisms that mediate the long-term effects of these drugs. As Narp is secreted at synaptic sites and binds to the extracellular surface of AMPA receptors, it has been implicated in mediating enduring forms of synaptic plasticity. Accordingly, to assess its potential role in the long-lasting behavioral effects of drugs of abuse, we have investigated the impact of Narp deletion on sustained behavioral responses elicited by repeated morphine administration. Narp knockout mice display normal locomotor sensitization and conditioned place preference, but are markedly resistant to extinction of place preference. Thus, these findings indicate that Narp plays a selective role in extinction, possibly by its effects on AMPA receptor trafficking. PMID:18536700
Ofosu, Wendy Amy; Mohamed, Daahir; Corcoran, Olivia; Ojo, Opeolu Oyejide
2018-01-19
Challenges facing the treatment of type 2 diabetes necessitate the search for agents which act via alternative pathways to provide better therapeutic outcomes. Recently, an increasing body of evidence implicates the activation of oestrogen receptors (ERα and ERβ) in the development and treatment of underlying conditions in type 2 diabetes. This article summarizes available evidence for the involvement of oestrogen receptors in insulin secretion, insulin resistance as well as glucose uptake and highlights the potential of ERβ as a therapeutic target. Recent studies indicate an association between the activation of each of the isoforms of ER and recent findings indicate that ERβ show promise as a potential target for antidiabetic drugs. In vitro and in vivo studies in receptor knock out mice indicate beneficial actions of selective agonists of ERβ receptor and underscore its therapeutic potential. Studies are needed to further elucidate the exact mechanism underlying the role of ERβ activation as a therapeutic approach in the management of type 2 diabetes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Kato, Shinichiro; Yokoyama, Satoru; Hayakawa, Yoshihiro; Li, Luhui; Iwakami, Yusuke; Sakurai, Hiroaki; Saiki, Ikuo
2016-10-01
Although the secretory matricellular protein connective tissue growth factor (CTGF) has been reported to be related to lung cancer metastasis, the precise mechanism by which CTGF regulates lung cancer metastasis has not been elucidated. In the present study, we show the molecular link between CTGF secretion and the p38 pathway in the invasive and metastatic potential of non-small-cell lung cancer (NSCLC). Among three different human NSCLC cell lines (PC-14, A549, and PC-9), their in vitro invasiveness was inversely correlated with the level of CTGF secretion. By supplementing or reducing CTGF secretion in NSCLC culture, dysregulation of the invasive and metastatic potential of NSCLC cell lines was largely compensated. By focusing on the protein kinases that are known to be regulated by CTGF, we found that the p38 pathway is a key downstream signal of CTGF to regulate the metastatic potential of NSCLC. Importantly, a negative correlation between CTGF and phosphorylation status of p38 was identified in The Cancer Genome Atlas lung adenocarcinoma dataset. In the context of the clinical importance of our findings, we showed that p38 inhibitor, SB203580, reduced the metastatic potential of NSCLC secreting low levels of CTGF. Collectively, our present findings indicate that the CTGF/p38 axis is a novel therapeutic target of NSCLC metastasis, particularly NSCLC secreting low levels of CTGF. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Kim, So-Yeon; Kim, Ye-Ryung; Park, Woo-Jae; Kim, Han Su; Jung, Sung-Chul; Woo, So-Youn; Jo, Inho; Ryu, Kyung-Ha; Park, Joo-Won
2015-01-01
Tonsil-derived (T-) mesenchymal stem cells (MSCs) display mutilineage differentiation potential and self-renewal capacity and have potential as a banking source. Diabetes mellitus is a prevalent disease in modern society, and the transplantation of pancreatic progenitor cells or various stem cell-derived insulin-secreting cells has been suggested as a novel therapy for diabetes. The potential of T-MSCs to trans-differentiate into pancreatic progenitor cells or insulin-secreting cells has not yet been investigated. We examined the potential of human T-MSCs to trans-differentiate into pancreatic islet cells using two different methods based on β-mercaptoethanol and insulin-transferin-selenium, respectively. First, we compared the efficacy of the two methods for inducing differentiation into insulin-producing cells. We demonstrated that the insulin-transferin-selenium method is more efficient for inducing differentiation into insulin-secreting cells regardless of the source of the MSCs. Second, we compared the differentiation potential of two different MSC types: T-MSCs and adipose-derived MSCs (A-MSCs). T-MSCs had a differentiation capacity similar to that of A-MSCs and were capable of secreting insulin in response to glucose concentration. Islet-like clusters differentiated from T-MSCs had lower synaptotagmin-3, -5, -7, and -8 levels, and consequently lower secreted insulin levels than cells differentiated from A-MSCs. These results imply that T-MSCs can differentiate into functional pancreatic islet-like cells and could provide a novel, alternative cell therapy for diabetes mellitus. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Upper bounds on secret-key agreement over lossy thermal bosonic channels
NASA Astrophysics Data System (ADS)
Kaur, Eneet; Wilde, Mark M.
2017-12-01
Upper bounds on the secret-key-agreement capacity of a quantum channel serve as a way to assess the performance of practical quantum-key-distribution protocols conducted over that channel. In particular, if a protocol employs a quantum repeater, achieving secret-key rates exceeding these upper bounds is evidence of having a working quantum repeater. In this paper, we extend a recent advance [Liuzzo-Scorpo et al., Phys. Rev. Lett. 119, 120503 (2017), 10.1103/PhysRevLett.119.120503] in the theory of the teleportation simulation of single-mode phase-insensitive Gaussian channels such that it now applies to the relative entropy of entanglement measure. As a consequence of this extension, we find tighter upper bounds on the nonasymptotic secret-key-agreement capacity of the lossy thermal bosonic channel than were previously known. The lossy thermal bosonic channel serves as a more realistic model of communication than the pure-loss bosonic channel, because it can model the effects of eavesdropper tampering and imperfect detectors. An implication of our result is that the previously known upper bounds on the secret-key-agreement capacity of the thermal channel are too pessimistic for the practical finite-size regime in which the channel is used a finite number of times, and so it should now be somewhat easier to witness a working quantum repeater when using secret-key-agreement capacity upper bounds as a benchmark.
Horizontal transfer of potential mobile units in phytoplasmas
Ku, Chuan; Lo, Wen-Sui; Kuo, Chih-Horng
2013-01-01
Phytoplasmas are uncultivated phytopathogenic bacteria that cause diseases in a wide range of economically important plants. Through secretion of effector proteins, they are able to manipulate their plant hosts to facilitate their multiplication and dispersal by insect vectors. The genome sequences of several phytoplasmas have been characterized to date and a group of putative composite transposons called potential mobile units (PMUs) are found in these highly reduced genomes. Recently, our team reported the genome sequence and comparative analysis of a peanut witches’ broom (PnWB) phytoplasma, the first representative of the phytoplasma 16SrII group. Comparisons between the species phylogeny and the phylogenies of the PMU genes revealed that the PnWB PMU is likely to have been transferred from the 16SrI group. This indicates that PMUs are not only the DNA unit for transposition within a genome, but also for horizontal transfer among divergent phytoplasma lineages. Given the association of PMUs with effector genes, the mobility of PMUs across genomes has important implications for phytoplasma ecology and evolution. PMID:24251068
BMI and BMD: The Potential Interplay between Obesity and Bone Fragility
Palermo, Andrea; Tuccinardi, Dario; Defeudis, Giuseppe; Watanabe, Mikiko; D’Onofrio, Luca; Lauria Pantano, Angelo; Napoli, Nicola; Pozzilli, Paolo; Manfrini, Silvia
2016-01-01
Recent evidence demonstrating an increased fracture risk among obese individuals suggests that adipose tissue may negatively impact bone health, challenging the traditional paradigm of fat mass playing a protective role towards bone health. White adipose tissue, far from being a mere energy depot, is a dynamic tissue actively implicated in metabolic reactions, and in fact secretes several hormones called adipokines and inflammatory factors that may in turn promote bone resorption. More specifically, Visceral Adipose Tissue (VAT) may potentially prove detrimental. It is widely acknowledged that obesity is positively associated to many chronic disorders such as metabolic syndrome, dyslipidemia and type 2 diabetes, conditions that could themselves affect bone health. Although aging is largely known to decrease bone strength, little is yet known on the mechanisms via which obesity and its comorbidities may contribute to such damage. Given the exponentially growing obesity rate in recent years and the increased life expectancy of western countries it appears of utmost importance to timely focus on this topic. PMID:27240395
Placental transport and in vitro effects of Bisphenol A.
Mørck, Thit J; Sorda, Giuseppina; Bechi, Nicoletta; Rasmussen, Brian S; Nielsen, Jesper B; Ietta, Francesca; Rytting, Erik; Mathiesen, Line; Paulesu, Luana; Knudsen, Lisbeth E
2010-08-01
Bisphenol A (BPA), an estrogen-like chemical, leaches from consumer products potentially causing human exposure. To examine the effects of BPA exposure during pregnancy, we performed studies using the BeWo trophoblast cell line, placental explant cultures, placental perfusions and skin diffusion models, all of human origin. Results showed BPA cytotoxicity in BeWo cells with an apparent EC50 at 100-125 microM. BPA exposure significantly increased beta-hCG secretion and caspase-3 expression in placental explants at an environmentally relevant concentration of 1 nM. In the transport studies, a rapid transfer of BPA was observed across the term placentae and the BeWo cell monolayer. Further, transdermal transport of BPA was observed. These results indicate that fetal BPA exposure through placental exchange occurs with potential adverse implications for placental and fetal development. This battery of test systems within the realm of human implantation and fetal development represents important elements in risk assessment of reproductive toxicity. Copyright 2010 Elsevier Inc. All rights reserved.
Horizontal transfer of potential mobile units in phytoplasmas.
Ku, Chuan; Lo, Wen-Sui; Kuo, Chih-Horng
2013-09-01
Phytoplasmas are uncultivated phytopathogenic bacteria that cause diseases in a wide range of economically important plants. Through secretion of effector proteins, they are able to manipulate their plant hosts to facilitate their multiplication and dispersal by insect vectors. The genome sequences of several phytoplasmas have been characterized to date and a group of putative composite transposons called potential mobile units (PMUs) are found in these highly reduced genomes. Recently, our team reported the genome sequence and comparative analysis of a peanut witches' broom (PnWB) phytoplasma, the first representative of the phytoplasma 16SrII group. Comparisons between the species phylogeny and the phylogenies of the PMU genes revealed that the PnWB PMU is likely to have been transferred from the 16SrI group. This indicates that PMUs are not only the DNA unit for transposition within a genome, but also for horizontal transfer among divergent phytoplasma lineages. Given the association of PMUs with effector genes, the mobility of PMUs across genomes has important implications for phytoplasma ecology and evolution.
Kristensen, Lars P.; Chen, Li; Nielsen, Maria Overbeck; Qanie, Diyako W.; Kratchmarova, Irina; Kassem, Moustapha; Andersen, Jens S.
2012-01-01
It is well established that bone forming cells (osteoblasts) secrete proteins with autocrine, paracrine, and endocrine function. However, the identity and functional role for the majority of these secreted and differentially expressed proteins during the osteoblast (OB) differentiation process, is not fully established. To address these questions, we quantified the temporal dynamics of the human stromal (mesenchymal, skeletal) stem cell (hMSC) secretome during ex vivo OB differentiation using stable isotope labeling by amino acids in cell culture (SILAC). In addition, we employed pulsed SILAC labeling to distinguish genuine secreted proteins from intracellular contaminants. We identified 466 potentially secreted proteins that were quantified at 5 time-points during 14-days ex vivo OB differentiation including 41 proteins known to be involved in OB functions. Among these, 315 proteins exhibited more than 2-fold up or down-regulation. The pulsed SILAC method revealed a strong correlation between the fraction of isotope labeling and the subset of proteins known to be secreted and involved in OB differentiation. We verified SILAC data using qRT-PCR analysis of 9 identified potential novel regulators of OB differentiation. Furthermore, we studied the biological effects of one of these proteins, the hormone stanniocalcin 2 (STC2) and demonstrated its autocrine effects in enhancing osteoblastic differentiation of hMSC. In conclusion, combining complete and pulsed SILAC labeling facilitated the identification of novel factors produced by hMSC with potential role in OB differentiation. Our study demonstrates that the secretome of osteoblastic cells is more complex than previously reported and supports the emerging evidence that osteoblastic cells secrete proteins with endocrine functions and regulate cellular processes beyond bone formation. PMID:22801418
Expression of p16(INK4A) gene in human pituitary tumours.
Machiavelli, Gloria; Cotignola, Javier; Danilowicz, Karina; Carbonara, Carolina; Paes de Lima, Andrea; Basso, Armando; Bruno, Oscar Domingo; Szijan, Irene
2008-01-01
Pituitary adenomas comprise 10-15% of primary intracranial tumours but the mechanisms leading to tumour development are yet to be clearly established. The retinoblastoma pathway, which regulates the progression through the cell cycle, is often deregulated in different types of tumours. We studied the cyclin-dependent kinase inhibitor p16(INK4A) gene expression at mRNA level in human pituitary adenomas. Forty-six tumour specimens of different subtypes, 21 clinically non-functioning, 12 growth hormone-secreting, 6 prolactin-secreting, 6 adrenocorticotropin-secreting, and 1 thyrotropin-secreting tumours were studied. All clinically non-functioning and most of the hormone-secreting tumours were macroadenomas (38/46). The RT-PCR assay and electrophoresis of the PCR-products showed that p16(INK4A) mRNA was undetectable in: 62% of non-functioning, 8% of growth hormone-secreting, 17% of prolactin-secreting and 17% of adrenocorticotropin-secreting adenomas. Forty percent of all macroadenomas and 25% of microadenomas had negative p16(INK4A) mRNA, the latter results suggest that the absence of p16(INK4A) product might be an early event in tumours with no expression of this suppressor gene. Within the non-functioning adenomas 63% were "null cell" and 37% were positive for some hormone, both subgroups showed similar percentage of cases with absence of p16(INK4A) mRNA. Our results show that clinically non-functioning macroadenomas have impaired p16(INK4A) expression in a clearly higher proportion than any other pituitary tumour subtype investigated. Other regulatory pathways may be implicated in the development of tumours with positive p16(INK4A) expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrow, Lyle W., E-mail: lostrow1@jhmi.edu; Suchyna, Thomas M.; Sachs, Frederick
2011-06-24
Highlights: {yields} Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. {yields} Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca{sup 2+} permeant SACs. {yields} The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. {yields} Stretch-induced ET-1 production depends on a calcium influx. {yields} SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia.more » We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch (<20%) of a rubber substrate increased ET-1 secretion, and 4 {mu}M GsMTx-4 (a specific inhibitor of SACs) inhibited secretion by 30%. GsMTx-4 did not alter basal ET-1 levels in the absence of stretch. Decreasing the calcium influx by lowering extracellular calcium also inhibited stretch-induced ET-1 secretion without effecting ET-1 secretion in unstretched controls. Furthermore, inhibiting SACs with the less specific inhibitor streptomycin also inhibited stretch-induced ET-1 secretion. The data can be explained with a simple model in which ET-1 secretion depends on an internal Ca{sup 2+} threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.« less
KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species.
Pampalakis, Georgios; Sykioti, Vasia-Samantha; Ximerakis, Methodios; Stefanakou-Kalakou, Ioanna; Melki, Ronald; Vekrellis, Kostas; Sotiropoulou, Georgia
2017-02-28
KLK6 is a serine protease highly expressed in the nervous system. In synucleinopathies, including Parkinson disease, the levels of KLK6 inversely correlate with α-synuclein in CSF. Recently, we suggested that recombinant KLK6 mediates the degradation of extracellular α-synuclein directly and via a proteolytic cascade that involves unidentified metalloproteinase(s). Here, we show that recombinant and naturally secreted KLK6 can readily cleave α-synuclein fibrils that have the potential for cell-to-cell propagation in "a prion-like mechanism". Importantly, KLK6-deficient primary cortical neurons have increased ability for α-synuclein fibril uptake. We also demonstrate that KLK6 activates proMMP2, which in turn can cleave α-synuclein. The repertoire of proteases activated by KLK6 in a neuronal environment was analyzed by degradomic profiling, which also identified ADAMTS19 and showed that KLK6 has a limited number of substrates indicating specific biological functions such as the regulation of α-synuclein turnover. We generated adenoviral vectors for KLK6 delivery and demonstrated that the levels of extracellular α-synuclein can be reduced by neuronally secreted KLK6. Our findings open the possibility to exploit KLK6 as a novel therapeutic target for Parkinson disease and other synucleinopathies.
KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species
Pampalakis, Georgios; Sykioti, Vasia-Samantha; Ximerakis, Methodios; Stefanakou-Kalakou, Ioanna; Melki, Ronald; Vekrellis, Kostas; Sotiropoulou, Georgia
2017-01-01
KLK6 is a serine protease highly expressed in the nervous system. In synucleinopathies, including Parkinson disease, the levels of KLK6 inversely correlate with α-synuclein in CSF. Recently, we suggested that recombinant KLK6 mediates the degradation of extracellular α-synuclein directly and via a proteolytic cascade that involves unidentified metalloproteinase(s). Here, we show that recombinant and naturally secreted KLK6 can readily cleave α-synuclein fibrils that have the potential for cell-to-cell propagation in “a prion-like mechanism”. Importantly, KLK6-deficient primary cortical neurons have increased ability for α-synuclein fibril uptake. We also demonstrate that KLK6 activates proMMP2, which in turn can cleave α-synuclein. The repertoire of proteases activated by KLK6 in a neuronal environment was analyzed by degradomic profiling, which also identified ADAMTS19 and showed that KLK6 has a limited number of substrates indicating specific biological functions such as the regulation of α-synuclein turnover. We generated adenoviral vectors for KLK6 delivery and demonstrated that the levels of extracellular α-synuclein can be reduced by neuronally secreted KLK6. Our findings open the possibility to exploit KLK6 as a novel therapeutic target for Parkinson disease and other synucleinopathies. PMID:27845893
Li, Shi-Hua; Ge, Zhen-Ming; Xie, Li-Na; Chen, Wei; Yuan, Lin; Wang, Dong-Qi; Li, Xiu-Zhen; Zhang, Li-Quan
2018-02-05
The ecophysiological characteristics of native Phragmites australis and exotic Spartina alterniflora grown under waterlogging and salinity were investigated to explore their adaptation potential to sea level rise. The seasonal course of phenotypic traits, photosynthetic activity and chlorophyll fluorescence parameters of P. australis did not change remarkably under shallow flooding, whereas these variables were sensitive to increasing salinity. Waterlogging exacerbated the negative effects of salinity on shoot growth and photosynthetic activity of P. australis, and the combined stresses led to an absence of tassel and reproductive organs. By contrast, S. alterniflora performed well under both stresses and showed an obvious adaptation of salt secretion with increasing salinity. Light salinity was the optimal condition for S. alterniflora, and the tassel growth, chlorophyll content and fluorescence characters under moderate stresses did not differ notably. The Na + and Cl - concentrations in leaves of both species increased, and the K + content decreased in response to salinity. Under moderate and high saline levels, the ion concentrations in S. alterniflora were maintained at relatively consistent levels with increased salt secretion. We expect the degradation of P. australis and further colonization of S. alterniflora under prolonged flooding and saltwater intrusion from sea level rise on the coastline of China.
Virreira Winter, Sebastian; Zychlinsky, Arturo
2018-01-01
Inflammasomes are cytosolic complexes that mature and secrete the inflammatory cytokines interleukin 1β (IL-1β) and IL-18 and induce pyroptosis. The NLRP3 (NACHT, LRR, and PYD domains–containing protein 3) inflammasome detects many pathogen- and danger-associated molecular patterns, and reactive oxygen species (ROS)/reactive nitrogen species (RNS) have been implicated in its activation. The phenazine pyocyanin (PCN) is a virulence factor of Pseudomonas aeruginosa and generates superoxide in cells. Here we report that PCN inhibits IL-1β and IL-18 release and pyroptosis upon NLRP3 inflammasome activation in macrophages by preventing speck formation and Caspase-1 maturation. Of note, PCN did not regulate the AIM2 (absent in melanoma 2) or NLRC4 inflammasomes or tumor necrosis factor (TNF) secretion. Imaging of the fluorescent glutathione redox potential sensor Grx1-roGFP2 indicated that PCN provokes cytosolic and nuclear but not mitochondrial redox changes. PCN-induced intracellular ROS/RNS inhibited the NLRP3 inflammasome posttranslationally, and hydrogen peroxide or peroxynitrite alone were sufficient to block its activation. We propose that cytosolic ROS/RNS inhibit the NLRP3 inflammasome and that PCN's anti-inflammatory activity may help P. aeruginosa evade immune recognition. PMID:29414783
Flores, Carlos A; Melvin, James E; Figueroa, Carlos D; Sepúlveda, Francisco V
2007-01-01
Intestinal fluid secretion is driven by apical membrane, cystic fibrosis transmembrane conductance regulator (CFTR)-mediated efflux of Cl– that is concentrated in cells by basolateral Na+−K+−2Cl– cotransporters (NKCC1). An absolute requirement for Cl– efflux is the parallel activation of K+ channels which maintain a membrane potential that sustains apical anion secretion. Both cAMP and Ca2+ are intracellular signals for intestinal Cl– secretion. The K+ channel involved in cAMP-dependent secretion has been identified as the KCNQ1–KCNE3 complex, but the identity of the K+ channel driving Ca2+-activated Cl– secretion is controversial. We have now used a Kcnn4 null mouse to show that the intermediate conductance IK1 K+ channel is necessary and sufficient to support Ca2+-dependent Cl– secretion in large and small intestine. Ussing chambers were used to monitor transepithelial potential, resistance and equivalent short-circuit current in colon and jejunum from control and Kcnn4 null mice. Na+, K+ and water content of stools was also measured. Distal colon and small intestinal epithelia from Kcnn4 null mice had normal cAMP-dependent Cl– secretory responses. In contrast, they completely lacked Cl– secretion in response to Ca2+-mobilizing agonists. Ca2+-activated electrogenic K+ secretion was increased in colon epithelium of mice deficient in the IK1 channel. Na+ and water content of stools was diminished in IK1-null animals. The use of Kcnn4 null mice has allowed us to demonstrate that IK1 K+ channels are solely responsible for driving intestinal Ca2+-activated Cl– secretion. The absence of this channel leads to a marked reduction in water content in the stools, probably as a consequence of decreased electrolyte and water secretion. PMID:17584847
Bidirectional regulation of bakuchiol, an estrogenic-like compound, on catecholamine secretion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Haoping; Wang, Hong; Ma, Shangwei
2014-01-01
Excess or deficiency of catecholamine (CA) secretion was related with several diseases. Recently, estrogen and phytoestrogens were reported to regulate the activity of CA system. Bakuchiol is a phytoestrogen isolated from the seeds of Psoralea corylifolia L. (Leguminosae) which has been used in Traditional Chinese medicine as a tonic or aphrodisiac. In the present study, bovine adrenal medullary cells were employed to investigate the effects and mechanisms of bakuchiol on the regulation of CA secretion. Further, its anti-depressant like and anti-stress effects were evaluated by using behavioral despair and chronic immobilization stress models. Our results indicated that bakuchiol showed bidirectionalmore » regulation on CA secretion. It stimulated basal CA secretion in a concentration dependent manner (p < 0.01), while it reduced 300 μM acetylcholine (ACh) (p < 0.01), 100 μM veratridine (Ver) (p < 0.01) and 56 mM K{sup +} (p < 0.05) induced CA secretion, respectively. We also found that the stimulation of basal CA secretion by bakuchiol may act through estrogen-like effect and the JNK pathway in an extra-cellular calcium independent manner. Further, bakuchiol elevated tyrosine hydroxylase Ser40 and Ser31 phosphorylation (p < 0.01) through the PKA and ERK1/2 pathways, respectively. Bakuchiol inhibited ACh, Ver and 56 mM K{sup +} induced CA secretion was related with reduction of intracellular calcium rise. In vivo experiments, we found that bakuchiol significantly reduced immobilization time in behavioral despair mouse (p < 0.05 or 0.01), and plasma epinephrine (E) and norepinephrine (NE) levels in chronic immobilization stress (p < 0.05). Overall, these results present a bidirectional regulation of bakuchiol on CA secretion which indicated that bakuchiol may exert anti-stress and the potential anti-depressant-like effects. - Highlights: • Bakuchiol stimulated basal catecholamine secretion. • Bakuchiol inhibited various secretagogues induced catecholamine secretion. • Bakuchiol may have anti-stress and the potential anti-depression-like effects.« less
Sánchez-Capelo, A; Castells, M T; Cremades, A; Peñafiel, R
1996-09-01
Potassium deficiency produced by feeding mice a low potassium diet caused a marked decrease in plasma and testicular testosterone concentrations and a concomitant fall in the weight of seminal vesicles and in renal ornithine decarboxylase activity. All of these parameters were rapidly restored when potassium supply was normalized. Immunocytochemical analysis of gonadotropes and plasma LH values suggested that the pulsatile liberation of LH by the pituitary was impaired in the potassium-deficient male mice. Because the synthesis of testosterone in the potassium-deficient mice was stimulated by exogenous LH, hCG, or GnRH, one can conclude that alteration of the transcellular potassium gradient could affect the regulation of the hypothalamo-hypophyseal-testicular axis by affecting the pulsatile release of GnRH. Our results showing that the stimulation of LH secretion after castration was similar in control and potassium-deficient male mice suggest that a testicular factor(s) different from testosterone could be implicated in the abnormal regulation of LH secretion in potassium-deficient mice. We conclude that plasma potassium concentration is an important factor in the regulation of gonadotropin secretion and testicular functions.
Coleman, Kimberly D; Ghosh, Mimi; Crist, Sarah G; Wright, Jacqueline A; Rossoll, Richard M; Wira, Charles R; Fahey, John V
2012-01-01
Hepatocyte Growth Factor (HGF) secretion facilitates epithelial cell growth and development in the female reproductive tract (FRT) and may contribute to pathological conditions such as cancer and endometriosis. We hypothesized that estradiol and poly (I:C), a synthetic RNA mimic, may have a regulatory effect on HGF secretion by stromal fibroblasts from FRT tissues. Following hysterectomies, normal tissue from the uterus, endocervix, and ectocervix were dispersed into stromal cell fractions by enzymatic digestion and differential filtering. Stromal fibroblasts were cultured and treated with estradiol and/or poly (I:C), and conditioned media were analyzed for HGF via enzyme-linked immunosorbent assay. Treating uterine fibroblasts with estradiol or poly (I:C) significantly increased HGF secretion. When uterine fibroblasts were co-treated with estradiol and poly (I:C), the effect on HGF secretion was additive. In contrast, stromal fibroblasts from endo- and ecto-cervix were unresponsive to estradiol, but were stimulated to secrete HGF by poly (I:C). HGF secretion is uniquely regulated in the uterus, but not in ecto- and endo-cervix, by estradiol. Moreover, potential viral pathogens further induce HGF. These findings have potential applications in understanding both hormonal regulation of normal tissue as well as the role of HGF in tumorogenesis, endometriosis, and human immunodeficiency virus infection. © 2011 John Wiley & Sons A/S.
Antibody-Mediated Activation of FGFR1 Induces FGF23 Production and Hypophosphatemia
Kolumam, Ganesh; Zavala-Solorio, Jose; Wyatt, Shelby K.; Gandham, Vineela D.; Carano, Richard A. D.; Sonoda, Junichiro
2013-01-01
The phosphaturic hormone Fibroblast Growth Factor 23 (FGF23) controls phosphate homeostasis by regulating renal expression of sodium-dependent phosphate co-transporters and cytochrome P450 enzymes involved in vitamin D catabolism. Multiple FGF Receptors (FGFRs) can act as receptors for FGF23 when bound by the co-receptor Klotho expressed in the renal tubular epithelium. FGFRs also regulate skeletal FGF23 secretion; ectopic FGFR activation is implicated in genetic conditions associated with FGF23 overproduction and hypophosphatemia. The identity of FGFRs that mediate the activity of FGF23 or that regulate skeletal FGF23 secretion remains ill defined. Here we report that pharmacological activation of FGFR1 with monoclonal anti-FGFR1 antibodies (R1MAb) in adult mice is sufficient to cause an elevation in serum FGF23 and mild hypophosphatemia. In cultured rat calvariae osteoblasts, R1MAb induces FGF23 mRNA expression and FGF23 protein secretion into the culture medium. In a cultured kidney epithelial cell line, R1MAb acts as a functional FGF23 mimetic and activates the FGF23 program. siRNA-mediated Fgfr1 knockdown induced the opposite effects. Taken together, our work reveals the central role of FGFR1 in the regulation of FGF23 production and signal transduction, and has implications in the pathogenesis of FGF23-related hypophosphatemic disorders. PMID:23451204
A gastric acid secretion model.
de Beus, A M; Fabry, T L; Lacker, H M
1993-01-01
A theory of gastric acid production and self-protection is formulated mathematically and examined for clinical and experimental correlations, implications, and predictions using analytic and numerical techniques. In our model, gastric acid secretion in the stomach, as represented by an archetypal gastron, consists of two chambers, circulatory and luminal, connected by two different regions of ion exchange. The capillary circulation of the gastric mucosa is arranged in arterial-venous arcades which pass from the gastric glands up to the surface epithelial lining of the lumen; therefore the upstream region of the capillary chamber communicates with oxyntic cells, while the downstream region communicates with epithelial cells. Both cell types abut the gastric lumen. Ion currents across the upstream region are calculated from a steady-state oxyntic cell model with active ion transport, while the downstream ion fluxes are (facilitated) diffusion driven or secondarily active. Water transport is considered iso-osmotic. The steady-state model is solved in closed form for low gastric lumen pH. A wide variety of previously performed static and dynamic experiments on ion and CO2 transport in the gastric lumen and gastric blood supply are for the first time correlated with each other for an (at least) semiquantitative test of current concepts of gastric acid secretion and for the purpose of model verification. Agreement with the data is reported with a few outstanding and instructive exceptions. Model predictions and implications are also discussed. Images FIGURE 1 PMID:8396457
Sun, Hongxin; Niisato, Naomi; Nishio, Kyosuke; Hamilton, Kirk L.; Marunaka, Yoshinori
2014-01-01
Epithelial Cl− secretion plays important roles in water secretion preventing bacterial/viral infection and regulation of body fluid. We previously suggested that quercetin would be a useful compound for maintaining epithelial Cl− secretion at a moderate level irrespective of cAMP-induced stimulation. However, we need a compound that stimulates epithelial Cl− secretion even under cAMP-stimulated conditions, since in some cases epithelial Cl− secretion is not large enough even under cAMP-stimulated conditions. We demonstrated that quercetin and myricetin, flavonoids, stimulated epithelial Cl− secretion under basal conditions in epithelial A6 cells. We used forskolin, which activates adenylyl cyclase increasing cytosolic cAMP concentrations, to study the effects of quercetin and myricetin on cAMP-stimulated epithelial Cl− secretion. In the presence of forskolin, quercetin diminished epithelial Cl− secretion to a level similar to that with quercetin alone without forskolin. Conversely, myricetin further stimulated epithelial Cl− secretion even under forskolin-stimulated conditions. This suggests that the action of myricetin is via a cAMP-independent pathway. Therefore, myricetin may be a potentially useful compound to increase epithelial Cl− secretion under cAMP-stimulated conditions. In conclusion, myricetin would be a useful compound for prevention from bacterial/viral infection even under conditions that the amount of water secretion driven by cAMP-stimulated epithelial Cl− secretion is insufficient. PMID:24818160
Yang, Jun; Dolinger, Michael; Ritaccio, Gabrielle; Mazurkiewicz, Joseph; Conti, David; Zhu, Xinjun; Huang, Yunfei
2012-01-01
The amino acid leucine is a potent secretagogue, capable of inducing insulin secretion. It also plays an important role in the regulation of mTOR activity, therefore, providing impetus to investigate if a leucine-sensing mechanism in the mTOR pathway is involved in insulin secretion. We found that leucine-induced insulin secretion was inhibited by both the mTOR inhibitor rapamycin as well as the adrenergic α2 receptor agonist clonidine. We also demonstrated that leucine down-regulated the surface expression of adrenergic α2A receptor via activation of the mTOR pathway. The leucine stimulatory effect on insulin secretion was attenuated in diabetic Goto-Kakizaki rats that overexpress adrenergic α2A receptors, confirming the role of leucine in insulin secretion. Thus, our data demonstrate that leucine regulates insulin secretion by modulating adrenergic α2 receptors through the mTOR pathway. The role of the mTOR pathway in metabolic homeostasis led us to a second important finding in this study; retrospective analysis of clinical data showed that co-administration of rapamycin and clonidine was associated with an increased incidence of new-onset diabetes in renal transplantation patients over those receiving rapamycin alone. We believe that inhibition of mTOR by rapamycin along with activation of adrenergic α2 receptors by clonidine represents a double-hit to pancreatic islets that synergistically disturbs glucose homeostasis. This new insight may have important implications for the clinical management of renal transplant patients. PMID:22645144
Miyazaki, Satsuki; Taniguchi, Hidenori; Moritoh, Yusuke; Tashiro, Fumi; Yamamoto, Tsunehiko; Yamato, Eiji; Ikegami, Hiroshi; Ozato, Keiko; Miyazaki, Jun-ichi
2010-11-01
Retinoid X receptors (RXRs) are members of the nuclear hormone receptor superfamily and are thought to be key regulators in differentiation, cellular growth, and gene expression. Although several experiments using pancreatic β-cell lines have shown that the ligands of nuclear hormone receptors modulate insulin secretion, it is not clear whether RXRs have any role in insulin secretion. To elucidate the function of RXRs in pancreatic β-cells, we generated a double-transgenic mouse in which a dominant-negative form of RXRβ was inducibly expressed in pancreatic β-cells using the Tet-On system. We also established a pancreatic β-cell line from an insulinoma caused by the β-cell-specific expression of simian virus 40 T antigen in the above transgenic mouse. In the transgenic mouse, expression of the dominant-negative RXR enhanced the insulin secretion with high glucose stimulation. In the pancreatic β-cell line, the suppression of RXRs also enhanced glucose-stimulated insulin secretion at a high glucose concentration, while 9-cis-retinoic acid, an RXR agonist, repressed it. High-density oligonucleotide microarray analysis showed that expression of the dominant-negative RXR affected the expression levels of a number of genes, some of which have been implicated in the function and/or differentiation of β-cells. These results suggest that endogenous RXR negatively regulates the glucose-stimulated insulin secretion. Given these findings, we propose that the modulation of endogenous RXR in β-cells may be a new therapeutic approach for improving impaired insulin secretion in type 2 diabetes.
Fundamental rate-loss tradeoff for optical quantum key distribution.
Takeoka, Masahiro; Guha, Saikat; Wilde, Mark M
2014-10-24
Since 1984, various optical quantum key distribution (QKD) protocols have been proposed and examined. In all of them, the rate of secret key generation decays exponentially with distance. A natural and fundamental question is then whether there are yet-to-be discovered optical QKD protocols (without quantum repeaters) that could circumvent this rate-distance tradeoff. This paper provides a major step towards answering this question. Here we show that the secret key agreement capacity of a lossy and noisy optical channel assisted by unlimited two-way public classical communication is limited by an upper bound that is solely a function of the channel loss, regardless of how much optical power the protocol may use. Our result has major implications for understanding the secret key agreement capacity of optical channels-a long-standing open problem in optical quantum information theory-and strongly suggests a real need for quantum repeaters to perform QKD at high rates over long distances.
Steringer, Julia P.; Bleicken, Stephanie; Andreas, Helena; Zacherl, Sonja; Laussmann, Mareike; Temmerman, Koen; Contreras, F. Xabier; Bharat, Tanmay A. M.; Lechner, Johannes; Müller, Hans-Michael; Briggs, John A. G.; García-Sáez, Ana J.; Nickel, Walter
2012-01-01
Fibroblast growth factor 2 (FGF2) is a critical mitogen with a central role in specific steps of tumor-induced angiogenesis. It is known to be secreted by unconventional means bypassing the endoplasmic reticulum/Golgi-dependent secretory pathway. However, the mechanism of FGF2 membrane translocation into the extracellular space has remained elusive. Here, we show that phosphatidylinositol 4,5-bisphosphate-dependent membrane recruitment causes FGF2 to oligomerize, which in turn triggers the formation of a lipidic membrane pore with a putative toroidal structure. This process is strongly up-regulated by tyrosine phosphorylation of FGF2. Our findings explain key requirements of FGF2 secretion from living cells and suggest a novel self-sustained mechanism of protein translocation across membranes with a lipidic membrane pore being a transient translocation intermediate. PMID:22730382
X‐linked retinoschisis: an update
Sikkink, Stephen K; Biswas, Susmito; Parry, Neil R A; Stanga, Paulo E; Trump, Dorothy
2007-01-01
X‐linked retinoschisis is the leading cause of macular degeneration in males and leads to splitting within the inner retinal layers leading to visual deterioration. Many missense and protein truncating mutations have now been identified in the causative retinoschisis gene (RS1) which encodes a 224 amino acid secreting retinal protein, retinoschisin. Retinoschisin octamerises is implicated in cell–cell interactions and cell adhesion perhaps by interacting with β2 laminin. Mutations cause loss of retinoschisin function by one of the three mechanisms: by interfering with protein secretion, by preventing its octamerisation or by reducing function in the secreted octamerised protein. The development of retinoschisis mouse models have provided a model system that closely resembles the human disease. Recent reports of RS1 gene transfer to these models and the sustained restoration of some retinal function and morphology suggest gene replacement may be a possible future therapy for patients. PMID:17172462
From (before) Bhopal to (after) BP: trade secrets and the right to know.
Levenstein, Charles; Tuminaro, Dom
2011-01-01
This paper discuses the tensions between, on the one hand, workers' and communities' right to know about occupational and environmental hazards, and on the other hand, trade secrets and the rights of their corporate owners. We first discuss the role of trade secrets in economic development in the context of the benefits claimed for free markets. We then describe the ongoing struggles of workers and communities in the United States for access to information about hazards. The third section of the paper is a discussion of the reformulation of labor and occupational health and safety regulation as matters of human rights, again focusing on the situation in the United States. The final section is a discussion of the implications of the human rights approach for the occupational and environmental health practitioner. Although the paper focuses primarily on the U.S. experience, we believe that the lessons learned may be broadly applicable.
Focus on the short- and long-term effects of ghrelin on energy homeostasis.
De Vriese, Carine; Perret, Jason; Delporte, Christine
2010-06-01
The endogenous ligand for the growth hormone secretagogue receptor, ghrelin, is a 28-amino-acid peptide acylated with an octanoyl group at the serine in position 3. Most of the circulating ghrelin results from its synthesis and secretion by the X/A-like endocrine cells from the stomach and proximal small intestine. Besides its potent growth hormone secretory action, ghrelin is a highly pleiotropic hormone, contributing significantly to the regulation of appetite and food intake control, gastrointestinal motility, gastric acid secretion, endocrine and exocrine pancreatic secretions, cell proliferation, glucose and lipid metabolism, and cardiovascular and immunologic processes. The purpose of this review is to consider the orexigenic effects of ghrelin on short-term regulation of food intake and long-term regulation of body weight, the implications of genetic ghrelin and growth hormone secretagogue receptor polymorphism, and the use of antagonists and agonists of ghrelin in pathophysiological conditions. Copyright 2010 Elsevier Inc. All rights reserved.
Hellesen, A; Edvardsen, K; Breivik, L; Husebye, E S; Bratland, E
2014-06-01
Autoimmune Addison's disease (AAD) is caused by selective destruction of the hormone-producing cells of the adrenal cortex. As yet, little is known about the potential role played by environmental factors in this process. Type I and/or type III interferons (IFNs) are signature responses to virus infections, and have also been implicated in the pathogenesis of autoimmune endocrine disorders such as type 1 diabetes and autoimmune thyroiditis. Transient development of AAD and exacerbation of established or subclinical disease, as well as the induction of autoantibodies associated with AAD, have been reported following therapeutic administration of type I IFNs. We therefore hypothesize that exposure to such IFNs could render the adrenal cortex susceptible to autoimmune attack in genetically predisposed individuals. In this study, we investigated possible immunopathological effects of type I and type III IFNs on adrenocortical cells in relation to AAD. Both types I and III IFNs exerted significant cytotoxicity on NCI-H295R adrenocortical carcinoma cells and potentiated IFN-γ- and polyinosine-polycytidylic acid [poly (I : C)]-induced chemokine secretion. Furthermore, we observed increased expression of human leucocyte antigen (HLA) class I molecules and up-regulation of 21-hydroxylase, the primary antigenic target in AAD. We propose that these combined effects could serve to initiate or aggravate an ongoing autoimmune response against the adrenal cortex in AAD. © 2014 British Society for Immunology.
Hellesen, A; Edvardsen, K; Breivik, L; Husebye, E S; Bratland, E
2014-01-01
Autoimmune Addison's disease (AAD) is caused by selective destruction of the hormone-producing cells of the adrenal cortex. As yet, little is known about the potential role played by environmental factors in this process. Type I and/or type III interferons (IFNs) are signature responses to virus infections, and have also been implicated in the pathogenesis of autoimmune endocrine disorders such as type 1 diabetes and autoimmune thyroiditis. Transient development of AAD and exacerbation of established or subclinical disease, as well as the induction of autoantibodies associated with AAD, have been reported following therapeutic administration of type I IFNs. We therefore hypothesize that exposure to such IFNs could render the adrenal cortex susceptible to autoimmune attack in genetically predisposed individuals. In this study, we investigated possible immunopathological effects of type I and type III IFNs on adrenocortical cells in relation to AAD. Both types I and III IFNs exerted significant cytotoxicity on NCI-H295R adrenocortical carcinoma cells and potentiated IFN-γ-and polyinosine-polycytidylic acid [poly (I : C)]-induced chemokine secretion. Furthermore, we observed increased expression of human leucocyte antigen (HLA) class I molecules and up-regulation of 21-hydroxylase, the primary antigenic target in AAD. We propose that these combined effects could serve to initiate or aggravate an ongoing autoimmune response against the adrenal cortex in AAD. PMID:24666275
Unconventional secretion of FABP4 by endosomes and secretory lysosomes.
Villeneuve, Julien; Bassaganyas, Laia; Lepreux, Sebastien; Chiritoiu, Marioara; Costet, Pierre; Ripoche, Jean; Malhotra, Vivek; Schekman, Randy
2018-02-05
An appreciation of the functional properties of the cytoplasmic fatty acid binding protein 4 (FABP4) has advanced with the recent demonstration that an extracellular form secreted by adipocytes regulates a wide range of physiological functions. Little, however, is known about the mechanisms that mediate the unconventional secretion of FABP4. Here, we demonstrate that FABP4 secretion is mediated by a membrane-bounded compartment, independent of the conventional endoplasmic reticulum-Golgi secretory pathway. We show that FABP4 secretion is also independent of GRASP proteins, autophagy, and multivesicular bodies but involves enclosure within endosomes and secretory lysosomes. We highlight the physiological significance of this pathway with the demonstration that an increase in plasma levels of FABP4 is inhibited by chloroquine treatment of mice. These findings chart the pathway of FABP4 secretion and provide a potential therapeutic means to control metabolic disorders associated with its dysregulated secretion. © 2018 Villeneuve et al.
Redhai, Siamak; Hellberg, Josephine E E U; Wainwright, Mark; Perera, Sumeth W; Castellanos, Felix; Kroeger, Benjamin; Gandy, Carina; Leiblich, Aaron; Corrigan, Laura; Hilton, Thomas; Patel, Benjamin; Fan, Shih-Jung; Hamdy, Freddie; Goberdhan, Deborah C I; Wilson, Clive
2016-10-01
Regulated secretion by glands and neurons involves release of signalling molecules and enzymes selectively concentrated in dense-core granules (DCGs). Although we understand how many secretagogues stimulate DCG release, how DCG biogenesis is then accelerated to replenish the DCG pool remains poorly characterised. Here we demonstrate that each prostate-like secondary cell (SC) in the paired adult Drosophila melanogaster male accessory glands contains approximately ten large DCGs, which are loaded with the Bone Morphogenetic Protein (BMP) ligand Decapentaplegic (Dpp). These DCGs can be marked in living tissue by a glycophosphatidylinositol (GPI) lipid-anchored form of GFP. In virgin males, BMP signalling is sporadically activated by constitutive DCG secretion. Upon mating, approximately four DCGs are typically released immediately, increasing BMP signalling, primarily via an autocrine mechanism. Using inducible knockdown specifically in adult SCs, we show that secretion requires the Soluble NSF Attachment Protein, SNAP24. Furthermore, mating-dependent BMP signalling not only promotes cell growth, but is also necessary to accelerate biogenesis of new DCGs, restoring DCG number within 24 h. Our analysis therefore reveals an autocrine BMP-mediated feedback mechanism for matching DCG release to replenishment as secretion rates fluctuate, and might explain why in other disease-relevant systems, like pancreatic β-cells, BMP signalling is also implicated in the control of secretion.
Redhai, Siamak; Hellberg, Josephine E. E. U.; Wainwright, Mark; Perera, Sumeth W.; Castellanos, Felix; Kroeger, Benjamin; Gandy, Carina; Leiblich, Aaron; Corrigan, Laura; Hilton, Thomas; Patel, Benjamin; Fan, Shih-Jung; Hamdy, Freddie; Goberdhan, Deborah C. I.
2016-01-01
Regulated secretion by glands and neurons involves release of signalling molecules and enzymes selectively concentrated in dense-core granules (DCGs). Although we understand how many secretagogues stimulate DCG release, how DCG biogenesis is then accelerated to replenish the DCG pool remains poorly characterised. Here we demonstrate that each prostate-like secondary cell (SC) in the paired adult Drosophila melanogaster male accessory glands contains approximately ten large DCGs, which are loaded with the Bone Morphogenetic Protein (BMP) ligand Decapentaplegic (Dpp). These DCGs can be marked in living tissue by a glycophosphatidylinositol (GPI) lipid-anchored form of GFP. In virgin males, BMP signalling is sporadically activated by constitutive DCG secretion. Upon mating, approximately four DCGs are typically released immediately, increasing BMP signalling, primarily via an autocrine mechanism. Using inducible knockdown specifically in adult SCs, we show that secretion requires the Soluble NSF Attachment Protein, SNAP24. Furthermore, mating-dependent BMP signalling not only promotes cell growth, but is also necessary to accelerate biogenesis of new DCGs, restoring DCG number within 24 h. Our analysis therefore reveals an autocrine BMP-mediated feedback mechanism for matching DCG release to replenishment as secretion rates fluctuate, and might explain why in other disease-relevant systems, like pancreatic β-cells, BMP signalling is also implicated in the control of secretion. PMID:27727275
Katagiri, Tomohiro; Kobayashi, Minoru; Yoshimura, Michio; Morinibu, Akiyo; Itasaka, Satoshi; Hiraoka, Masahiro; Harada, Hiroshi
2018-01-01
Hypoxic and stroma-rich microenvironments, characteristic features of pancreatic cancers, are strongly associated with a poor prognosis. However, whether and how hypoxia increases stromal compartments remain largely unknown. Here, we investigated the potential importance of a master regulator of the cellular adaptive response to hypoxia, hypoxia-inducible factor-1 (HIF-1), in the formation of stroma-rich microenvironments of pancreatic tumors. We found that pancreatic cancer cells secreted more Sonic hedgehog protein (SHH) under hypoxia by upregulating its expression and efficiency of secretion in a HIF-1-dependent manner. Recombinant SHH, which was confirmed to activate the hedgehog signaling pathway, accelerated the growth of fibroblasts in a dose-dependent manner. The SHH protein secreted from pancreatic cancer cells under hypoxic conditions promoted the growth of fibroblasts by stimulating their Sonic hedgehog signaling pathway. These results suggest that the increased secretion of SHH by HIF-1 is potentially responsible for the formation of detrimental and stroma-rich microenvironments in pancreatic cancers, therefore providing a rational basis to target it in cancer therapy. PMID:29535824
Pacey, Evan K; O'Donnell, Michael J
2014-02-01
Following ingestion of a blood meal, the adult female mosquito undergoes a massive diuresis during which Na(+), Cl(-) and water are secreted at high rates by the Malpighian tubules. In the hours following completion of diuresis, digestion of the K(+)-rich blood cells provides a source of energy as well as amino acids for proteins in the developing eggs. Although the transport of inorganic ions by the Malpighian tubules of blood-fed mosquitoes has been extensively characterized, relatively little is known of the epithelial transport mechanisms responsible for movement of Na(+), H(+), and K(+) across the posterior midgut. In this paper we have used the Scanning Ion-selective Electrode Technique (SIET) to measure the basal (unstimulated) rates of transport of K(+), Na(+) and H(+) across the isolated posterior midgut at intervals after the blood meal. We have also measured luminal concentrations of Na(+) and K(+) and the transepithelial electrical potential at the same time points and have calculated the electrochemical potentials for Na(+), K(+) and H(+) across the midgut. SIET measurements reveal absorption (lumen to bath) of Na(+) and H(+) and secretion of K(+) for the first 2h after blood-feeding. By 24h after the meal, absorption of Na(+) and H(+) remains active while there is an electrochemical gradient favouring absorption of K(+). Inhibition by ouabain and Ba(2+) suggest a role for the Na(+)/K(+)-ATPase and K(+) channels in absorption of Na(+) and K(+), respectively. Inhibition of H(+) absorption by acetazolamide implicates carbonic anhydrase in transepithelial H(+) transport. Copyright © 2014 Elsevier Ltd. All rights reserved.
Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates
Celandroni, Francesco; Salvetti, Sara; Gueye, Sokhna Aissatou; Mazzantini, Diletta; Lupetti, Antonella; Senesi, Sonia; Ghelardi, Emilia
2016-01-01
The soil-related Bacillus and Paenibacillus species have increasingly been implicated in various human diseases. Nevertheless, their identification still poses problems in the clinical microbiology laboratory and, with the exception of Bacillus anthracis and Bacillus cereus, little is known on their pathogenicity for humans. In this study, we evaluated the use of matrix-assisted laser desorption—ionization time of flight mass spectrometry (MALDI-TOF MS) in the identification of clinical isolates of these genera and conducted genotypic and phenotypic analyses to highlight specific virulence properties. Seventy-five clinical isolates were subjected to biochemical and MALDI-TOF MS identification. 16S rDNA sequencing and supplemental tests were used to solve any discrepancies or failures in the identification results. MALDI-TOF MS significantly outperformed classical biochemical testing for correct species identification and no misidentification was obtained. One third of the collected strains belonged to the B. cereus species, but also Bacillus pumilus and Bacillus subtilis were isolated at high rate. Antimicrobial susceptibility testing showed that all the B. cereus, B. licheniformis, B. simplex, B. mycoides, Paenibacillus glucanolyticus and Paenibacillus lautus isolates are resistant to penicillin. The evaluation of toxin/enzyme secretion, toxin-encoding genes, motility, and biofilm formation revealed that B. cereus displays the highest virulence potential. However, although generally considered nonpathogenic, most of the other species were shown to swim, swarm, produce biofilms, and secrete proteases that can have a role in bacterial virulence. In conclusion, MALDI-TOF MS appears useful for fast and accurate identification of Bacillus and Paenibacillus strains whose virulence properties make them of increasing clinical relevance. PMID:27031639
Sánchez, Manuel; Suárez, Lorena; Cantabrana, Begoña; Bordallo, Javier
2017-01-01
Estrogens facilitate prolactin (PRL) secretion acting on pituitary cells. In GH 3 cells, estradiol induces acute action potentials and oscillations of intracellular Ca 2+ associated with the secretagogue function. Estradiol modulates several ion channels which may affect the action potential rate and the release of PRL in lactotroph cells, which might depend on its concentration. The aims were to characterize the acute effect of supraphysiological concentrations of estradiol on Ca 2+ and noninactivating K + currents and measure the effect on the spontaneous action potentials and PRL release in the somatolactotroph cell line, GH 3 . Electrophysiological studies were carried out by voltage- and current-clamp techniques and ELISA determination of PRL secretion. Pharmacological concentrations of estradiol (above 1 μM), without a latency period, blocked Ca 2+ channels and noninactivating K + currents, including the large-conductance voltage- and Ca 2+ -activated K + channels (BK), studied in whole-cell nystatin perforated and in excided inside-out patches of GH 3 and CHO cells, transiently transfected with the human α-pore forming subunit of BK. The effect on BK was contrary to the agonist effect associated with the regulatory β 1 -subunits of the BK, which GH 3 cells lack, but its transient transfection did not modify the noninactivating current blockade, suggesting a different mechanism of regulation. Estradiol, at the same concentration range, acutely decreased the frequency of action potentials, an expected effect as consequence of the Ca 2+ channel blockade. Despite this, PRL secretion initially increased, followed by a decrease in long-term incubations. This suggests that, in GH 3 cells, supraphysiological concentrations of estradiol modulating PRL secretion are partially independent of extracellular Ca 2+ influx.
Diabetes induced by gain-of-function mutations in the Kir6.1 subunit of the KATP channel.
Remedi, Maria S; Friedman, Jonathan B; Nichols, Colin G
2017-01-01
Gain-of-function (GOF) mutations in the pore-forming (Kir6.2) and regulatory (SUR1) subunits of K ATP channels have been identified as the most common cause of human neonatal diabetes mellitus. The critical effect of these mutations is confirmed in mice expressing Kir6.2-GOF mutations in pancreatic β cells. A second K ATP channel pore-forming subunit, Kir6.1, was originally cloned from the pancreas. Although the prominence of this subunit in the vascular system is well documented, a potential role in pancreatic β cells has not been considered. Here, we show that mice expressing Kir6.1-GOF mutations (Kir6.1[G343D] or Kir6.1[G343D,Q53R]) in pancreatic β cells (under rat-insulin-promoter [Rip] control) develop glucose intolerance and diabetes caused by reduced insulin secretion. We also generated transgenic mice in which a bacterial artificial chromosome (BAC) containing Kir6.1[G343D] is incorporated such that the transgene is only expressed in tissues where Kir6.1 is normally present. Strikingly, BAC-Kir6.1[G343D] mice also show impaired glucose tolerance, as well as reduced glucose- and sulfonylurea-dependent insulin secretion. However, the response to K + depolarization is intact in Kir6.1-GOF mice compared with control islets. The presence of native Kir6.1 transcripts was demonstrated in both human and wild-type mouse islets using quantitative real-time PCR. Together, these results implicate the incorporation of native Kir6.1 subunits into pancreatic K ATP channels and a contributory role for these subunits in the control of insulin secretion. © 2017 Remedi et al.
Proverbio, Maria Carla; Mangano, Eleonora; Gessi, Alessandra; Bordoni, Roberta; Spinelli, Roberta; Asselta, Rosanna; Valin, Paola Sogno; Di Candia, Stefania; Zamproni, Ilaria; Diceglie, Cecilia; Mora, Stefano; Caruso-Nicoletti, Manuela; Salvatoni, Alessandro; De Bellis, Gianluca; Battaglia, Cristina
2013-01-01
Congenital hyperinsulinism of infancy (CHI) is a rare disorder characterized by severe hypoglycemia due to inappropriate insulin secretion. The genetic causes of CHI have been found in genes regulating insulin secretion from pancreatic β-cells; recessive inactivating mutations in the ABCC8 and KCNJ11 genes represent the most common events. Despite the advances in understanding the molecular pathogenesis of CHI, specific genetic determinants in about 50 % of the CHI patients remain unknown, suggesting additional locus heterogeneity. In order to search for novel loci contributing to the pathogenesis of CHI, we combined a family-based association study, using the transmission disequilibrium test on 17 CHI patients lacking mutations in ABCC8/KCNJ11, with a whole-exome sequencing analysis performed on 10 probands. This strategy allowed the identification of the potential causative mutations in genes implicated in the regulation of insulin secretion such as transmembrane proteins (CACNA1A, KCNH6, KCNJ10, NOTCH2, RYR3, SCN8A, TRPV3, TRPC5), cytosolic (ACACB, CAMK2D, CDKAL1, GNAS, NOS2, PDE4C, PIK3R3) and mitochondrial enzymes (PC, SLC24A6), and in four genes (CSMD1, SLC37A3, SULF1, TLL1) suggested by TDT family-based association study. Moreover, the exome-sequencing approach resulted to be an efficient diagnostic tool for CHI, allowing the identification of mutations in three causative CHI genes (ABCC8, GLUD1, and HNF1A) in four out of 10 patients. Overall, the present study should be considered as a starting point to design further investigations: our results might indeed contribute to meta-analysis studies, aimed at the identification/confirmation of novel causative or modifier genes. PMID:23869231
Wan, Zhenmao; Goddard, Noel L
2012-10-01
Inter- and intraspecies horizontal gene transfer enabled by bacterial secretion systems is a powerful mechanism for bacterial genome plasticity. The type IV secretion system of Escherichia coli, encoded by the F plasmid, enables cell-to-cell contact and subsequent DNA transfer known as conjugation. Conjugation is compromised by phage infection that specifically targets the secretion machinery. Hence, the use of phages to regulate the spread of genes, such as acquired antibiotic resistance or as general biosanitation agents, has gained interest. To predict the potential efficacy, the competition kinetics must first be understood. Using quantitative PCR to enumerate genomic loci in a resource-limited batch culture, we quantify the infection kinetics of the nonlytic phage M13 and its impact on conjugation in the absence of selection pressure (isogenic set). Modeling the resulting experimental data reveals the cellular growth rate to be reduced to 60% upon phage infection. We also find a maximum phage infection rate of 3×10(-11) mL phage(-1) min(-1) which is only 1 order of magnitude slower than the maximum conjugation rate (3×10(-10) mL cell(-1) min(-1)), suggesting phages must be in significant abundance to be effective antagonists to horizontal gene transfer. In the regime where the number of susceptible cells (F(+)) and phages are equal upon initial infection, we observe the spread of the conjugative plasmid throughout the cell population despite phage infection, but only at 10% of the uninfected rate. This has interesting evolutionary implications, as even in the absence of selection pressure, cells maintain the ability to conjugate despite phage vulnerability and the associated growth consequences.
Fazekas, Tamas; Eickhoff, Philipp; Pruckner, Nathalie; Vollnhofer, Georg; Fischmeister, Gustav; Diakos, Christopher; Rauch, Margit; Verdianz, Maria; Zoubek, Andreas; Gadner, Helmut; Lion, Thomas
2012-09-05
Common cold is caused by a variety of respiratory viruses. The prevalence in children is high, and it potentially contributes to significant morbidity. Iota-carragenan, a polymer derived from red seaweed, has reduced viral load in nasal secretions and alleviated symptoms in adults with common cold. We have assessed the antiviral and therapeutic activity of a nasal spray containing iota-carrageenan in children with acute symptoms of common cold. A cohort of 153 children between 1-18 years (mean age 5 years), displaying acute symptoms of common cold were randomly assigned to treatment with a nasal spray containing iota-carrageenan (0.12%) as verum or 0.9% sodium chloride solution as placebo for seven days. Symptoms of common cold were recorded and the viral load of respiratory viruses in nasal secretions was determined at two consecutive visits. The results of the present study showed no significant difference between the iota carrageenan and the placebo group on the mean of TSS between study days 2-7. Secondary endpoints, such as reduced time to clearance of disease (7.6 vs 9.4 days; p = 0.038), reduction of viral load (p = 0.026), and lower incidence of secondary infections with other respiratory viruses (p = 0.046) indicated beneficial effects of iota-carrageenan in this population. The treatment was safe and well tolerated, with less side effects observed in the verum group compared to placebo. In this study iota-carrageenan did not alleviate symptoms in children with acute symptoms of common cold, but significantly reduced viral load in nasal secretions that may have important implications for future studies. ISRCTN52519535, http://www.controlled-trials.com/ISRCTN52519535/
Two Mechanisms Involved in Trigeminal CGRP Release: Implications for Migraine Treatment
Durham, Paul L.; Masterson, Caleb G.
2012-01-01
Objective The goal of this study was to better understand the cellular mechanisms involved in proton stimulation of calcitonin gene-related peptide (CGRP) secretion from cultured trigeminal neurons by investigating the effects of two anti-migraine therapies, onabotulinumtoxin A and rizatriptan. Background Stimulated CGRP release from peripheral and central terminating processes of trigeminal ganglia neurons is implicated in migraine pathology by promoting inflammation and nociception. Based on models of migraine pathology, several inflammatory molecules including protons are thought to facilitate sensitization and activation of trigeminal nociceptive neurons and stimulate CGRP secretion. Despite the reported efficacy of triptans and onabotulinumtoxinA to treat acute and chronic migraine, respectively, a substantial number of migraneurs do not get adequate relief with these therapies. A possible explanation is that triptans and onabutulinumtoxinA are not able to block proton mediated CGRP secretion. Methods CGRP secretion from cultured primary trigeminal ganglia neurons was quantitated by radioimmunoassay while intracellular calcium and sodium levels were measured in neurons via live cell imaging using Fura2-AM and SBFI-AM, respectively. The expression of ASIC3 was determined by immunocytochemistry and western blot analysis. In addition, the involvement of ASICs in mediating proton stimulation of CGRP was investigated using the potent and selective ASIC3 inhibitor APETx2. Results While KCl caused a significant increase in CGRP secretion that was significantly repressed by treatment with EGTA, onabotulinumtoxinA, and rizatriptan, the stimulatory effect of protons (pH 5.5) was not suppressed by EGTA, onabotulinumtoxinA, or rizatriptan. In addition, while KCl caused a transient increase in intracellular calcium levels that was blocked by EGTA, no appreciable change in calcium levels was observed with proton treatment. However, protons did significantly increase the intracellular level of sodium ions. Under our culture conditions, ASIC3 was shown to be expressed in most trigeminal ganglion neurons. Importantly, proton stimulation of CGRP secretion was repressed by pretreatment with the ASIC3 inhibitor APETx2, but not the TRPV1 antagonist capsazepine. Conclusions Our findings provide evidence that proton regulated release of CGRP from trigeminal neurons utilizes a different mechanism than the calcium and SNAP-25 dependent pathways that are inhibited by the anti-migraine therapies rizatriptan and onabotulinumtoxinA. PMID:23095108
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Chaowei; Harrold, Duff R.; Claypool, Joshua T.
Microorganisms involved in biomass deconstruction are an important resource for organic waste recycling and enzymes for lignocellulose bioconversion. The goals of this paper were to examine the impact of nitrogen amendment on microbial community restructuring, secretion of xylanases and endoglucanases, and potential for biomass deconstruction. Communities were cultivated aerobically at 55 °C on green waste (GW) amended with varying levels of NH 4Cl. Bacterial and fungal communities were determined using 16S rRNA and ITS region gene sequencing and PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was applied to predict relative abundance of genes involved in lignocellulose hydrolysis.more » Nitrogen amendment significantly increased secretion of xylanases and endoglucanases, and microbial activity; enzyme activities and cumulative respiration were greatest when nitrogen level in GW was between 4.13–4.56 wt% (g/g), but decreased with higher nitrogen levels. The microbial community shifted to one with increasing potential to decompose complex polymers as nitrogen increased with peak potential occurring between 3.79–4.45 wt% (g/g) nitrogen amendment. Finally, the results will aid in informing the management of nitrogen level to foster microbial communities capable of secreting enzymes that hydrolyze recalcitrant polymers in lignocellulose and yield rapid decomposition of green waste.« less
Class II ADP-ribosylation factors are required for efficient secretion of dengue viruses.
Kudelko, Mateusz; Brault, Jean-Baptiste; Kwok, Kevin; Li, Ming Yuan; Pardigon, Nathalie; Peiris, J S Malik; Bruzzone, Roberto; Desprès, Philippe; Nal, Béatrice; Wang, Pei Gang
2012-01-02
Identification and characterization of virus-host interactions are very important steps toward a better understanding of the molecular mechanisms responsible for disease progression and pathogenesis. To date, very few cellular factors involved in the life cycle of flaviviruses, which are important human pathogens, have been described. In this study, we demonstrate a crucial role for class II Arf proteins (Arf4 and Arf5) in the dengue flavivirus life cycle. We show that simultaneous depletion of Arf4 and Arf5 blocks recombinant subviral particle secretion for all four dengue serotypes. Immunostaining analysis suggests that class II Arf proteins are required at an early pre-Golgi step for dengue virus secretion. Using a horseradish peroxidase protein fused to a signal peptide, we show that class II Arfs act specifically on dengue virus secretion without altering the secretion of proteins through the constitutive secretory pathway. Co-immunoprecipitation data demonstrate that the dengue prM glycoprotein interacts with class II Arf proteins but not through its C-terminal VXPX motif. Finally, experiments performed with replication-competent dengue and yellow fever viruses demonstrate that the depletion of class II Arfs inhibits virus secretion, thus confirming their implication in the virus life cycle, although data obtained with West Nile virus pointed out the differences in virus-host interactions among flaviviruses. Our findings shed new light on a molecular mechanism used by dengue viruses during the late stages of the life cycle and demonstrate a novel function for class II Arf proteins.
Class II ADP-ribosylation Factors Are Required for Efficient Secretion of Dengue Viruses*
Kudelko, Mateusz; Brault, Jean-Baptiste; Kwok, Kevin; Li, Ming Yuan; Pardigon, Nathalie; Peiris, J. S. Malik; Bruzzone, Roberto; Desprès, Philippe; Nal, Béatrice; Wang, Pei Gang
2012-01-01
Identification and characterization of virus-host interactions are very important steps toward a better understanding of the molecular mechanisms responsible for disease progression and pathogenesis. To date, very few cellular factors involved in the life cycle of flaviviruses, which are important human pathogens, have been described. In this study, we demonstrate a crucial role for class II Arf proteins (Arf4 and Arf5) in the dengue flavivirus life cycle. We show that simultaneous depletion of Arf4 and Arf5 blocks recombinant subviral particle secretion for all four dengue serotypes. Immunostaining analysis suggests that class II Arf proteins are required at an early pre-Golgi step for dengue virus secretion. Using a horseradish peroxidase protein fused to a signal peptide, we show that class II Arfs act specifically on dengue virus secretion without altering the secretion of proteins through the constitutive secretory pathway. Co-immunoprecipitation data demonstrate that the dengue prM glycoprotein interacts with class II Arf proteins but not through its C-terminal VXPX motif. Finally, experiments performed with replication-competent dengue and yellow fever viruses demonstrate that the depletion of class II Arfs inhibits virus secretion, thus confirming their implication in the virus life cycle, although data obtained with West Nile virus pointed out the differences in virus-host interactions among flaviviruses. Our findings shed new light on a molecular mechanism used by dengue viruses during the late stages of the life cycle and demonstrate a novel function for class II Arf proteins. PMID:22105072
Celińska, Ewelina; Borkowska, Monika; Białas, Wojciech; Korpys, Paulina; Nicaud, Jean-Marc
2018-06-01
Upon expression of a given protein in an expression host, its secretion into the culture medium or cell-surface display is frequently advantageous in both research and industrial contexts. Hence, engineering strategies targeting folding, trafficking, and secretion of the proteins gain considerable interest. Yarrowia lipolytica has emerged as an efficient protein expression platform, repeatedly proved to be a competitive secretor of proteins. Although the key role of signal peptides (SPs) in secretory overexpression of proteins and their direct effect on the final protein titers are widely known, the number of reports on manipulation with SPs in Y. lipolytica is rather scattered. In this study, we assessed the potential of ten different SPs for secretion of two heterologous proteins in Y. lipolytica. Genomic and transcriptomic data mining allowed us to select five novel, previously undescribed SPs for recombinant protein secretion in Y. lipolytica. Their secretory potential was assessed in comparison with known, widely exploited SPs. We took advantage of Golden Gate approach, for construction of expression cassettes, and micro-volume enzymatic assays, for functional screening of large libraries of recombinant strains. Based on the adopted strategy, we identified novel secretory tags, characterized their secretory capacity, indicated the most potent SPs, and suggested a consensus sequence of a potentially robust synthetic SP to expand the molecular toolbox for engineering Y. lipolytica.
Flores-Pliego, Arturo; Espejel-Nuñez, Aurora; Castillo-Castrejon, Marisol; Meraz-Cruz, Noemi; Beltran-Montoya, Jorge; Zaga-Clavellina, Veronica; Nava-Salazar, Sonia; Sanchez-Martinez, Maribel; Vadillo-Ortega, Felipe; Estrada-Gutierrez, Guadalupe
2015-01-01
The activity of matrix degrading enzymes plays a leading role in the rupture of the fetal membranes under normal and pathological human labor, and matrix metalloproteinase-9 (MMP-9) it is considered a biomarker of this event. To gain further insight into local MMP-9 origin and activation, in this study we analyzed the contribution of human placental leukocytes to MMP-9 secretion and explored the local mechanisms of the pro-enzyme activation. Placental blood leukocytes were obtained from women at term gestation without labor and maintained in culture up to 72 h. MMP-9 activity in the culture supernatants was determined by zymography and using a specific substrate. The presence of a potential pro-MMP-9 activator in the culture supernatants was monitored using a recombinant biotin-labeled human pro-MMP-9. To characterize the endogenous pro-MMP-9 activator, MMP-1, -3, -7 and -9 were measured by multiplex assay in the supernatants, and an inhibition assay of MMP-9 activation was performed using an anti-human MMP-3 and a specific MMP-3 inhibitor. Finally, production of MMP-9 and MMP-3 in placental leukocytes obtained from term pregnancies with and without labor was assessed by immunofluorescence. Placental leukocytes spontaneously secreted pro-MMP-9 after 24 h of culture, increasing significantly at 48 h (P≤0.05), when the active form of MMP-9 was detected. Culture supernatants activated the recombinant pro-MMP-9 showing that placental leukocytes secrete the activator. A significant increase in MMP-3 secretion by placental leukocytes was observed since 48 h in culture (P≤0.05) and up to 72 h (P≤0.001), when concentration reached its maximum value. Specific activity of MMP-9 decreased significantly (P≤0.005) when an anti-MMP-3 antibody or a specific MMP-3 inhibitor were added to the culture media. Placental leukocytes from term labor produced more MMP-9 and MMP-3 compared to term non-labor cells. In this work we confirm that placental leukocytes from human term pregnancies are able to secrete large amounts of MMP-9, and that the production of the enzyme it is enhanced by labor. We also demonstrate for the first time that endogenous MMP-3 plays a major role in MMP-9 activation process. These findings support the contribution of placental leukocytes to create the collagenolytic microenvironment that induces the rupture of the fetal membranes during human labor.
Hormones and immune function: implications of aging.
Arlt, Wiebke; Hewison, Martin
2004-08-01
Aging is associated with a decline in immunity described as immunosenescence. This is paralleled by a decline in the production of several hormones, as typically illustrated by the menopausal loss of ovarian oestrogen production. However, other hormonal changes that occur with aging and that potentially impact on immune function include the release of the pineal gland hormone melatonin and pituitary growth hormone, adrenal production of dehydroepiandrosterone and tissue-specific availability of active vitamin D. It remains to be established whether hormonal changes with aging actually contribute to immunosenescence and this area is at the interface of fact and fiction, clearly inviting systematic research efforts. As a step in this direction, the present review summarizes established facts on the physiology of secretion and function of hormones that, in most cases, decline with aging and that are likely to affect the immune system.
Tundo, Grazia; Ciaccio, Chiara; Sbardella, Diego; Boraso, Mariaserena; Viviani, Barbara; Coletta, Massimiliano; Marini, Stefano
2012-01-01
The deposition of β-amyloid (Aβ) into senile plaques and the impairment of somatostatin-mediated neurotransmission are key pathological events in the onset of Alzheimer's disease (AD). Insulin-degrading-enzyme (IDE) is one of the main extracellular protease targeting Aβ, and thus it represents an interesting pharmacological target for AD therapy. We show that the active form of somatostatin-14 regulates IDE activity by affecting its expression and secretion in microglia cells. A similar effect can also be observed when adding octreotide. Following a previous observation where somatostatin directly interacts with IDE, here we demonstrate that somatostatin regulates Aβ catabolism by modulating IDE proteolytic activity in IDE gene-silencing experiments. As a whole, these data indicate the relevant role played by somatostatin and, potentially, by analogue octreotide, in preventing Aβ accumulation by partially restoring IDE activity.
Ciprandi, Alessandra; da Silva, Wanderson Marques; Santos, Agenor Valadares; de Castro Pimenta, Adriano Monteiro; Carepo, Marta Sofia Peixe; Schneider, Maria Paula Cruz; Azevedo, Vasco; Silva, Artur
2013-07-01
Chromobacterium violaceum is a beta-proteobacterium with high biotechnological potential, found in tropical environments. This bacterium causes opportunistic infections in both humans and animals, that can spread throughout several tissues, quickly leading to the death of the host. Genomic studies identified potential mechanisms of pathogenicity but no further studies were done to confirm the expression of these systems. In this study 36 unique protein entries were identified in databank from a two-dimensional profile of C. violaceum secreted proteins. Chromobacterium violaceum exoproteomic preliminary studies confirmed the production of proteins identified as virulence factors (such as a collagenase, flagellum proteins, metallopeptidases, and toxins), allowing us to better understand its pathogenicity mechanisms. Biotechnologically interesting proteins (such as chitinase and chitosanase) were also identified among the secreted proteins, as well as proteins involved in the transport and capture of amino acids, carbohydrates, and oxidative stress protection. Overall, the secreted proteins identified provide us important insights on pathogenicity mechanisms, biotechnological potential, and environment adaptation of C. violaceum.
The choroid plexus: function, pathology and therapeutic potential of its transplantation.
Emerich, Dwaine F; Vasconcellos, Alfred V; Elliott, Robert B; Skinner, Stephen J M; Borlongan, Cesario V
2004-08-01
The choroid plexus (CP) produces cerebrospinal fluid (CSF) and forms the blood-CSF barrier. However, the CP may have additional functions in the CNS beyond these traditional roles. Preclinical and clinical studies in ageing and neurodegeneration demonstrate anatomical and physiological changes in CP, suggesting roles in normal and pathological conditions and potentially endogenous repair processes following trauma. One of the broadest functions of the CP is establishing and maintaining the extracellular milieu throughout the brain and spinal cord, in part by secreting numerous growth factors into the CSF. The endogenous secretion of growth factors raises the possibility that transplantable CP might enable delivery of these molecules to the brain, while avoiding the conventional molecular and genetic alterations associated with modifying cells to secrete selected products. This review describes some of the anatomical and functional changes of CP in ageing and neurodegeneration, and recent demonstrations of the therapeutic potential of transplanted CP for neural trauma.
Piura, Benjamin; Medina, Liat; Rabinovich, Alex; Dyomin, Victor; Huleihel, Mahmoud
2013-01-01
Thalidomide inhibits TNF-α production in lipopolysaccharide-stimulated monocytes. The aim of this study was to evaluate the effect of thalidomide on TNF-α, IL-6 and MMP secretion in epithelial ovarian carcinoma cells. SKOV-3 cells and primary epithelial ovarian carcinoma cells were cultured in the presence of various concentrations of thalidomide. Cell proliferation was examined by MTT proliferation assay. TNF-α and IL-6 levels were determined in the supernatants of the cell cultures by ELISA, and MMP activity was examined by gelatin zymography. Thalidomide did not significantly affect the proliferation and growth of SKOV-3 cells. However, it decreased significantly the capacity of SKOV-3 cells and primary epithelial ovarian carcinoma cells to secrete TNF-α. Thalidomide also significantly decreased the capacity of SKOV-3 cells, but not primary epithelial ovarian carcinoma cells, to secrete MMP-9 and MMP-2. However, thalidomide did not affect IL-6 secretion in SKOV-3 cells or primary epithelial ovarian carcinoma cells. Our study suggests that thalidomide distinctly affected TNF-α, IL-6 and MMPs secretion by an ovarian carcinoma cell line (SKOV-3) and primary ovarian cancer cells. This might suggest a different susceptibility of these two types of cells to thalidomide, and/or that the mechanisms of secretion of the factors examined are differently regulated in these cells. Our results may deepen our understanding the mechanism/s of action of thalidomide in ovarian carcinoma cells. The results might have important implications in future therapeutic strategies that will incorporate thalidomide and other cytokine inhibitors in the treatment of epithelial ovarian carcinoma.
Hoopoes color their eggs with antimicrobial uropygial secretions
NASA Astrophysics Data System (ADS)
Soler, Juan J.; Martín-Vivaldi, M.; Peralta-Sánchez, J. M.; Arco, L.; Juárez-García-Pelayo, N.
2014-09-01
Uropygial gland secretions are used as cosmetics by some species of birds to color and enhance properties of feathers and teguments, which may signal individual quality. Uropygial secretions also reach eggshells during incubation and, therefore, may influence the coloration of birds' eggs, a trait that has attracted the attention of evolutionary biologists for more than one century. The color of hoopoe eggs typically changes along incubation, from bluish-gray to greenish-brown. Here, we test experimentally the hypothesis that dark uropygial secretion of females is responsible for such drastic color change. Moreover, since uropygial secretion of hoopoes has antimicrobial properties, we also explore the association between color and antimicrobial activity of the uropygial secretion of females. We found that eggs stayed bluish-gray in nests where female access to the uropygial secretion was experimentally blocked. Furthermore, experimental eggs that were maintained in incubators and manually smeared with uropygial secretion experienced similar color changes that naturally incubated eggs did, while control eggs that were not in contact with the secretions did not experience such color changes. All these results strongly support the hypothesis that female hoopoes use their uropygial gland secretion to color the eggs. Moreover, saturation of the uropygial secretion was associated with antimicrobial activity against Bacillus licheniformis. Given the known antimicrobial potential of uropygial secretions of birds, this finding opens the possibility that in scenarios of sexual selection, hoopoes in particular and birds in general signal antimicrobial properties of their uropygial secretion by mean of changes in egg coloration along incubation.
Identification of secreted bacterial proteins by noncanonical amino acid tagging
Mahdavi, Alborz; Szychowski, Janek; Ngo, John T.; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Schneewind, Olaf; Mazmanian, Sarkis K.; Tirrell, David A.
2014-01-01
Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins. Selective labeling of microbial proteins is accomplished via translational incorporation of azidonorleucine (Anl), a methionine surrogate that requires a mutant form of the methionyl-tRNA synthetase for activation. Secreted pathogen proteins containing Anl can be tagged by azide-alkyne cycloaddition and enriched by affinity purification. Application of the method to analysis of the type III secretion system of the human pathogen Yersinia enterocolitica enabled efficient identification of secreted proteins, identification of distinct secretion profiles for intracellular and extracellular bacteria, and determination of the order of substrate injection into host cells. This approach should be widely useful for the identification of virulence factors in microbial pathogens and the development of potential new targets for antimicrobial therapy. PMID:24347637
Castro-Combs, Juan; Garcia, Cesar J; Majewski, Marek; Wallner, Grzegorz; Sarosiek, Jerzy
2014-11-01
The alimentary tract mucosa continuously releases mucus-rich secretion. Mucin, the major component of mucus, determines its viscosity and provides lubrication for the luminal content of indigestible food particles. To measure mucin secretion rate and its viscosity in patients with chronic constipation (CC) and in asymptomatic volunteers. Nineteen patients with symptoms of CC and 19 controls were included in the study. Mucin secretion and viscosity were assessed in aspirated gastric juice in basal conditions and after stimulation with pentagastrin (1 h each). Mucin content was tested by PAS methodology. Viscosity was measured using cone/plate digital viscometer. Mucin secretion rates in basal and stimulated conditions in controls were 65 and 42 % higher than in patients with CC (P < 0.05 and P < 0.001, respectively). Basal viscosity in controls was 48 % higher than in CC (P < 0.05) at the lowest and 55 % higher (P < 0.05) at the middle velocities. Viscosity in pentagastrin-stimulated conditions in controls was 71 % higher than in CC (P < 0.01) at the lowest and 35 % higher (P < 0.05) at the middle velocities. (1) The significantly lower rate of soluble mucin secretion in patients with CC than in normal volunteers may reflect impairment in mucin-related lubrication. (2) Significantly lower viscosity of gastric secretion in patients with CC may result from the lower rate of mucin secretion and may also diminish lubrication within the alimentary tract. (3) This may potentially set the stage for the development of symptoms related to chronic constipation and open a new therapeutic avenue for this patient population.
The role of the leptin in reproduction.
Cervero, Ana; Domínguez, Francisco; Horcajadas, José A; Quiñonero, Alicia; Pellicer, Antonio; Simón, Carlos
2006-06-01
Since its discovery in 1994, leptin has appeared to be a pleiotrophic hormone, governing energy homeostasis and affecting many tissues in the body. Numerous pieces of evidence have accumulated showing that leptin potentially plays an important role in the control of the reproductive function. This review presents the major concepts for the role of leptin in the modulation of reproductive function. As a marker of the nutritional status, leptin affects the hypothalamo-pituitary-gonadal axis, regulating gonadotrophin-releasing hormone and luteinising hormone secretion, and appears to be a permissive factor in the onset of the puberty. This protein and its receptor have been found in the reproductive tissues, indicating that this system could be also implicated in several processes such as embryo development, implantation and pregnancy. Moreover, disorders of the leptin system have been related to some reproductive pathologies such as pre-eclampsia and polycystic ovary syndrome. However, controversy surrounds several aspects of the action of leptin in reproduction that require a deeper investigation of this system. Results to date suggest that this system could be implicated in important reproductive processes such as embryonic development and implantation. Moreover, understanding the role of leptin might be useful for new treatments in reproductive pathologies.
Light during darkness and cancer: relationships in circadian photoreception and tumor biology.
Jasser, Samar A; Blask, David E; Brainard, George C
2006-05-01
The relationship between circadian phototransduction and circadian-regulated processes is poorly understood. Melatonin, commonly a circadian phase marker, may play a direct role in a myriad of physiologic processes. The circadian rhythm for pineal melatonin secretion is regulated by the hypothalamic suprachiasmatic nucleus (SCN). Its neural source of light input is a unique subset of intrinsically photosensitive retinal ganglion cells expressing melanopsin, the primary circadian photopigment in rodents and primates. Action spectra of melatonin suppression by light have shown that light in the 446-477 nm range, distinct from the visual system's peak sensitivity, is optimal for stimulating the human circadian system. Breast cancer is the oncological disease entity whose relationship to circadian rhythm fluctuations has perhaps been most extensively studied. Empirical data has increasingly supported the hypothesis that higher risk of breast cancer in industrialized countries is partly due to increased exposure to light at night. Studies of tumor biology implicate melatonin as a potential mediator of this effect. Yet, causality between lifestyle factors and circadian tumor biology remains elusive and likely reflects significant variability with physiologic context. Continued rigorous empirical inquiry into the physiology and clinical implications of these habitual, integrated aspects of life is highly warranted at this time.
Cao, Haojie; van Heel, Auke J; Ahmed, Hifza; Mols, Maarten; Kuipers, Oscar P
2017-04-04
Bacillus subtilis is widely used as a cell factory for numerous heterologous proteins of commercial value and medical interest. To explore the possibility of further enhancing the secretion potential of this model bacterium, a library of engineered strains with modified cell surface components was constructed, and the corresponding influences on protein secretion were investigated by analyzing the secretion of α-amylase variants with either low-, neutral- or high- isoelectric points (pI). Relative to the wild-type strain, the presence of overall anionic membrane phospholipids (phosphatidylglycerol and cardiolipin) increased dramatically in the PssA-, ClsA- and double KO mutants, which resulted in an up to 47% higher secretion of α-amylase. Additionally, we demonstrated that the appropriate net charge of secreted targets (AmyTS-23, AmyBs and AmyBm) was beneficial for secretion efficiency as well. In B. subtilis, the characteristics of cell membrane phospholipid bilayer and the pIs of heterologous α-amylases appear to be important for their secretion efficiency. These two factors can be engineered to reduce the electrostatic interaction between each other during the secretion process, which finally leads to a better secretion yield of α-amylases.
Honeybee Foraging, Nectar Secretion, and Honey Potential of Wild Jujube Trees, Ziziphus nummularia.
Alqarni, A S
2015-06-01
Ziziphus trees are of economic importance due to their aggregated value (source of fruits and timber) and are the most important melliferous plants in the Arabian Peninsula. Interaction between honeybees and Ziziphus nummularia was investigated by assessing foraging, flower phenology, nectar secretion, and honey potential. It is demonstrate that both the native Apis mellifera jemenitica Ruttner and the exotic Apis mellifera carnica Pollmann foraged on Z. nummularia flowers. Bee foraging for nectar and pollen was low (2 ± 0.7 workers/200 flowers/3 min) during early morning and increased to a peak in the afternoon (100 ± 15 workers/200 flowers/3 min). Remarkable foraging activity was recorded during high temperature (35°C) and low humidity (20%) conditions. Foraging for nectar collection was more distinct than that for pollen. The flowering of Z. nummularia was gradual, and was characterized by some flowers that opened and secreted nectar early before sunrise, whereas other flowers remained opened until sunrise. The flowers lasted 2 days, with 83% of nectar secreted in the first day. The peak of nectar secretion was recorded at noon under hot and dry conditions. The lowest amount of nectar was secreted during sunrise under mild temperature (24°C) and humidity (31%) conditions. Under optimum conditions, it is assumed that the average sugar mass was 0.321 ± 0.03 mg TSS/flower, while the total sugar mass was 27.65 ± 11 g/tree. The average honey production potential of tested Z. nummularia was approximately 2.998 kg/tree and 749.475 kg/ha in the main flowering season.
Tocotrienols Stimulate Insulin Secretion of Rat Pancreatic Isolated Islets in a Dynamic Culture.
Chia, Ling L; Jantan, Ibrahim; Chua, Kien H
2017-01-01
Tocotrienols (T3) are the naturally occurring vitamin E derivatives that possess antioxidant properties and therapeutic potential in diabetic complications. The bioactivities of the derivatives are determined by the number and arrangement of methyl substitution on the structure. The objective of this study was to determine the effects of T3 derivatives, σ-T3, γ-T3 and α-T3 on insulin secretion of rat pancreatic islets in a dynamic culture. Pancreatic islets isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation that provided a stable cell culture environment. Glucose (2.8 mM and 16.7 mM, as basal and stimulant, respectively) and potassium chloride (KCl) (30 mM) were added to the treatment in calcium free medium. The supernatant was collected for insulin measurements. Short-term exposure (1 h) of σ-T3 to β cells in the stimulant glucose condition significantly potentiated insulin secretion in a dose-dependent manner. γ-T3 and α-T3 also displayed dosedependent effect but were less effective in the activation of insulin secretion. Essentially, KCl, a pancreatic β cell membrane depolarizing agent, added into the treatment further enhanced the insulin secretion of σ-T3, γ-T3 and α-T3 with ED50 values of 504, 511 and 588 µM, respectively. The findings suggest the potential of σ-T3 in regulating glucose-stimulated insulin secretion (GSIS) in response to the intracellular calcium especially in the presence of KCl. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Humidification and secretion volume in mechanically ventilated patients.
Solomita, Mario; Palmer, Lucy B; Daroowalla, Feroza; Liu, Jeffrey; Miller, Dori; LeBlanc, Deniese S; Smaldone, Gerald C
2009-10-01
To determine potential effects of humidification on the volume of airway secretions in mechanically ventilated patients. Water vapor delivery from devices providing non-heated-wire humidification, heated-wire humidification, and heat and moisture exchanger (HME) were quantified on the bench. Then, patients requiring 24-hour mechanical ventilation were exposed sequentially to each of these humidification devices, and secretions were removed and measured by suctioning every hour during the last 4 hours of the 24-hour study period. In vitro water vapor delivery was greater using non-heated-wire humidification, compared to heated-wire humidification and HME. In vivo, a total of 9 patients were studied. Secretion volume following humidification by non-heated-wire humidification was significantly greater than for heated-wire humidification and HME (P=.004). The volume of secretions appeared to be linked to humidification, as greater water vapor delivery measured in vitro was associated with greater secretion volume in vivo.
Volden, Paul A.; Skor, Maxwell N.; Johnson, Marianna B.; Singh, Puneet; Patel, Feenalie N.; McClintock, Martha K.; Brady, Matthew J.; Conzen, Suzanne D.
2016-01-01
Lysophosphatidic acid (LPA), acting in an autocrine or paracrine fashion through G protein-coupled receptors, has been implicated in many physiological and pathological processes including cancer. LPA is converted to lysophosphatidylcholine (LPC) by the secreted phospholipase, autotaxin (ATX). Although various cell types can produce ATX, adipocyte-derived ATX is believed to be the major source of circulating ATX and also to be the major regulator of plasma LPA. In addition to ATX, adipocytes secrete numerous other factors (adipokines); although several adipokines have been implicated in breast cancer biology, the contribution of mammary adipose tissue-derived LPC/ATX/LPA (LPA-axis) signaling to breast cancer is poorly understood. Using mammary fat-conditioned medium, we investigated the contribution of LPA signaling to mammary epithelial cancer cell biology and identified LPA signaling as a significant contributor to the oncogenic effects of the mammary adipose tissue secretome. To interrogate the role of mammary fat in the LPA-axis during breast cancer progression, we exposed mammary adipose tissue to secreted factors from estrogen receptor-negative mammary epithelial cell lines and monitored changes in the mammary fat pad LPA-axis. Our data indicate that bidirectional interactions between mammary cancer cells and mammary adipocytes alter the local LPA-axis and increase ATX expression in the mammary fat pad during breast cancer progression. Thus, the LPC/ATX/LPA axis may be a useful target for prevention in patients at risk of ER-negative breast cancer. PMID:26862086
Salvachúa, Davinia; Martínez, Angel T; Tien, Ming; López-Lucendo, María F; García, Francisco; de Los Ríos, Vivian; Martínez, María Jesús; Prieto, Alicia
2013-08-10
Identifying new high-performance enzymes or enzyme complexes to enhance biomass degradation is the key for the development of cost-effective processes for ethanol production. Irpex lacteus is an efficient microorganism for wheat straw pretreatment, yielding easily hydrolysable products with high sugar content. Thus, this fungus was selected to investigate the enzymatic system involved in lignocellulose decay, and its secretome was compared to those from Phanerochaete chrysosporium and Pleurotus ostreatus which produced different degradation patterns when growing on wheat straw. Extracellular enzymes were analyzed through 2D-PAGE, nanoLC/MS-MS, and homology searches against public databases. In wheat straw, I. lacteus secreted proteases, dye-decolorizing and manganese-oxidizing peroxidases, and H2O2 producing-enzymes but also a battery of cellulases and xylanases, excluding those implicated in cellulose and hemicellulose degradation to their monosaccharides, making these sugars poorly available for fungal consumption. In contrast, a significant increase of β-glucosidase production was observed when I. lacteus grew in liquid cultures. P. chrysosporium secreted more enzymes implicated in the total hydrolysis of the polysaccharides and P. ostreatus produced, in proportion, more oxidoreductases. The protein pattern secreted during I. lacteus growth in wheat straw plus the differences observed among the different secretomes, justify the fitness of I. lacteus for biopretreatment processes in 2G-ethanol production. Furthermore, all these data give insight into the biological degradation of lignocellulose and suggest new enzyme mixtures interesting for its efficient hydrolysis.
Secretory NaCl and volume flow in renal tubules.
Beyenbach, K W
1986-05-01
This review attempts to give a retrospective survey of the available evidence concerning the secretion of NaCl and fluid in renal tubules of the vertebrate kidney. In the absence of glomerular filtration, epithelial secretory mechanisms, which to this date have not been elucidated, are responsible for the renal excretion of NaCl and water in aglomerular fish. However, proximal tubules isolated from glomerular fish kidneys of the flounder, killifish, and the shark also have the capacity to secrete NaCl and fluid. In shark proximal tubules, fluid secretion appears to be driven via secondary active transport of Cl. In another marine vertebrate, the sea snake, secretion of Na (presumably NaCl) and fluid is observed in freshwater-adapted and water-loaded animals. Proximal tubules of mammals can be made to secrete NaCl in vitro together with secretion of aryl acids. An epithelial cell line derived from dog kidney exhibits secondary active secretion of Cl when stimulated with catecholamines. Tubular secretion of NaCl and fluid may serve a variety of renal functions, all of which are considered here. The occurrence of NaCl and fluid secretion in glomerular proximal tubules of teleosts, elasmobranchs, and reptiles and in mammalian renal tissue cultures suggests that the genetic potential for NaCl secretion is present in every vertebrate kidney.
Sex steroids and the GH axis: Implications for the management of hypopituitarism.
Birzniece, Vita; Ho, Ken K Y
2017-02-01
Growth hormone (GH) regulates somatic growth, substrate metabolism and body composition. Sex hormones exert profound effect on the secretion and action of GH. Estrogens stimulate the secretion of GH, but inhibit the action of GH on the liver, an effect that occurs when administered orally. Estrogens suppress GH receptor signaling by stimulating the expression proteins that inhibit cytokine receptor signaling. This effect of estrogens is avoided when physiological doses of estrogens are administered via a non-oral route. Estrogen-like compounds, such as selective estrogen receptor modulators, possess dual properties of inhibiting the secretion as well as the action of GH. In contrast, androgens stimulate GH secretion, driving IGF-1 production. In the periphery, androgens enhance the action of GH. The differential effects of estrogens and androgens influence the dose of GH replacement in patients with hypopituitarism on concomitant treatment with sex steroids. Where possible, a non-oral route of estrogen replacement is recommended for optimizing cost-benefit of GH replacement in women with GH deficiency. Adequate androgen replacement in conjunction with GH replacement is required to achieve the full anabolic effect in men with hypopituitarism. Copyright © 2017 Elsevier Ltd. All rights reserved.
Metabolism of AGEs – Bacterial AGEs Are Degraded by Metallo-Proteases
Cohen-Or, Ifat; Katz, Chen; Ron, Eliora Z.
2013-01-01
Advanced Glycation End Products (AGEs) are the final products of non-enzymatic protein glycation that results in loss of protein structure and function. We have previously shown that in E. coli AGEs are continually formed as high-molecular weight protein complexes. Moreover, we showed that AGEs are removed from the cells by an active, ATP-dependent secretion and that these secreted molecules have low molecular weight. Taken together, these results indicate that E. coli contains a fraction of low molecular weight AGEs, in addition to the high-molecular weight AGEs. Here we show that the low-molecular weight AGEs originate from high-molecular weight AGEs by proteolytic degradation. Results of in-vitro and in vivo experiments indicated that this degradation is carried out not by the major ATP-dependent proteases that are responsible for the main part of bacterial protein quality control but by an alternative metal-dependent proteolysis. This proteolytic reaction is essential for the further secretion of AGEs from the cells. As the biochemical reactions involving AGEs are not yet understood, the implication of a metalloprotease in breakdown of high molecular weight AGEs and their secretion constitutes an important step in the understanding of AGEs metabolism. PMID:24130678
Metabolism of AGEs--bacterial AGEs are degraded by metallo-proteases.
Cohen-Or, Ifat; Katz, Chen; Ron, Eliora Z
2013-01-01
Advanced Glycation End Products (AGEs) are the final products of non-enzymatic protein glycation that results in loss of protein structure and function. We have previously shown that in E. coli AGEs are continually formed as high-molecular weight protein complexes. Moreover, we showed that AGEs are removed from the cells by an active, ATP-dependent secretion and that these secreted molecules have low molecular weight. Taken together, these results indicate that E. coli contains a fraction of low molecular weight AGEs, in addition to the high-molecular weight AGEs. Here we show that the low-molecular weight AGEs originate from high-molecular weight AGEs by proteolytic degradation. Results of in-vitro and in vivo experiments indicated that this degradation is carried out not by the major ATP-dependent proteases that are responsible for the main part of bacterial protein quality control but by an alternative metal-dependent proteolysis. This proteolytic reaction is essential for the further secretion of AGEs from the cells. As the biochemical reactions involving AGEs are not yet understood, the implication of a metalloprotease in breakdown of high molecular weight AGEs and their secretion constitutes an important step in the understanding of AGEs metabolism.
Exploring the Secretomes of Microbes and Microbial Communities Using Filamentous Phage Display
Gagic, Dragana; Ciric, Milica; Wen, Wesley X.; Ng, Filomena; Rakonjac, Jasna
2016-01-01
Microbial surface and secreted proteins (the secretome) contain a large number of proteins that interact with other microbes, host and/or environment. These proteins are exported by the coordinated activities of the protein secretion machinery present in the cell. A group of bacteriophage, called filamentous phage, have the ability to hijack bacterial protein secretion machinery in order to amplify and assemble via a secretion-like process. This ability has been harnessed in the use of filamentous phage of Escherichia coli in biotechnology applications, including screening large libraries of variants for binding to “bait” of interest, from tissues in vivo to pure proteins or even inorganic substrates. In this review we discuss the roles of secretome proteins in pathogenic and non-pathogenic bacteria and corresponding secretion pathways. We describe the basics of phage display technology and its variants applied to discovery of bacterial proteins that are implicated in colonization of host tissues and pathogenesis, as well as vaccine candidates through filamentous phage display library screening. Secretome selection aided by next-generation sequence analysis was successfully applied for selective display of the secretome at a microbial community scale, the latter revealing the richness of secretome functions of interest and surprising versatility in filamentous phage display of secretome proteins from large number of Gram-negative as well as Gram-positive bacteria and archaea. PMID:27092113
Functions of TGF-β-exposed plasmacytoid dendritic cells.
Saas, Philippe; Perruche, Sylvain
2012-01-01
Plasmacytoid dendritic cells (pDCs) belong to the family of dendritic cells and possess specific features that distinguish them from conventional dendritic cells. For instance, pDC are the main interferon-alpha-secreting cells. Plasmacytoid dendritic cells exert both proinflammatory and regulatory functions. This is attested by the involvement of pDC through interferon-alpha secretion in several autoimmune diseases, and by the implication of pDC in tolerance. The same is true for TGF-β that plays a dual role in inflammation. In this review, we discuss recent data on pDC and TGF-β interactions. As with many cell types, pDCs are able to respond to TGF-β using the classic Smad signaling pathway. In addition, pDCs are capable to secrete TGF-β, in particular in response to TGF-β exposure. Exposure of pDCs to TGF-β prevents type I interferon secretion in response to TLR7/9 ligands. In contrast, the consequences of TGF-β on the antigen-presenting cell capacities of pDC are less clear, since TGF-β-exposed pDCs may lead to both regulatory T-cell and interleukin-17-secreting cell polarization. Here, we discuss the factors that may influence this polarization. We also discuss how pDCs exposed to TGF-β may participate in tolerance induction and maintenance, or, on the contrary, in autoimmune diseases.
Eccrine sweat gland development and sweat secretion
Cui, Chang-Yi; Schlessinger, David
2017-01-01
Eccrine sweat glands help to maintain homoeostasis, primarily by stabilizing body temperature. Derived from embryonic ectoderm, millions of eccrine glands are distributed across human skin and secrete litres of sweat per day. Their easy accessibility has facilitated the start of analyses of their development and function. Mouse genetic models find sweat gland development regulated sequentially by Wnt, Eda and Shh pathways, although precise subpathways and additional regulators require further elucidation. Mature glands have two secretory cell types, clear and dark cells, whose comparative development and functional interactions remain largely unknown. Clear cells have long been known as the major secretory cells, but recent studies suggest that dark cells are also indispensable for sweat secretion. Dark cell-specific Foxa1 expression was shown to regulate a Ca2+-dependent Best2 anion channel that is the candidate driver for the required ion currents. Overall, it was shown that cholinergic impulses trigger sweat secretion in mature glands through second messengers – for example InsP3 and Ca2+ – and downstream ion channels/transporters in the framework of a Na+-K+-Cl− cotransporter model. Notably, the microenvironment surrounding secretory cells, including acid–base balance, was implicated to be important for proper sweat secretion, which requires further clarification. Furthermore, multiple ion channels have been shown to be expressed in clear and dark cells, but the degree to which various ion channels function redundantly or indispensably also remains to be determined. PMID:26014472
Park, Phil June; Lee, Tae Ryong; Cho, Eun-Gyung
2015-02-01
Substance P (SP) is a well-known neuropeptide implicated in the wound-healing process. The wound occasionally causes a pigmented scar. In the present study, we examined whether increased levels of SP affected melanogenesis. When human melanocytes were treated with SP, the melanin content increased and the pigmentation process accelerated in a dose-dependent manner. In addition to melanogenesis-related genes, the expression of neurokinin 1 receptor, endothelin 1 (EDN1), and EDN receptor type B (EDNRB) also increased at both the messenger RNA and protein levels. Interestingly, secreted EDN1 was observed in the melanocyte culture medium, and this phenomenon was significantly enhanced by SP treatment. Through knockdown experiments using small interfering RNAs (siRNAs), we confirmed that endothelin-converting enzyme 1 (ECE1), EDN1, and EDNRB were involved in SP-induced pigmentation and found that EDN1 secretion was affected by ECE1 and EDN1 siRNAs, but not by EDNRB siRNA. These findings indicate that ECE1 is essential for EDN1 secretion in melanocytes and that EDNRB functions downstream of secreted EDN1 to increase the cAMP levels and activate the melanogenesis-related phosphorylation cascade. This study provides in vitro evidence for a melanogenic function of SP in the skin and suggests that the SP-related signal is a potent target for regulating stress- or wound-induced pigmentation.
Regazzi, R; Wollheim, C B; Lang, J; Theler, J M; Rossetto, O; Montecucco, C; Sadoul, K; Weller, U; Palmer, M; Thorens, B
1995-01-01
VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta-cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP-2 and cellubrevin, but not VAMP-1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta-cells contain secretory granules that store and secrete insulin as well as synaptic-like microvesicles carrying gamma-aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP-2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP-2 with insulin-containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta-cells. Pretreatment of streptolysin-O permeabilized insulin-secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP-2 and cellubrevin and abolished Ca(2+)-induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S-stimulated insulin secretion. Taken together, our results show that pancreatic beta-cells express VAMP-2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)-mediated insulin secretion. Images PMID:7796801
The emerging functions of UCP2 in health, disease, and therapeutics.
Mattiasson, Gustav; Sullivan, Patrick G
2006-01-01
The uncoupling proteins (UCPs) are attracting an increased interest as potential therapeutic targets in a number of important diseases. UCP2 is expressed in several tissues, but its physiological functions as well as potential therapeutic applications are still unclear. Unlike UCP1, UCP2 does not seem to be important to thermogenesis or weight control, but appears to have an important role in the regulation of production of reactive oxygen species, inhibition of inflammation, and inhibition of cell death. These are central features in, for example, neurodegenerative and cardiovascular disease, and experimental evidence suggests that an increased expression and activity of UCP2 in models of these diseases has a beneficial effect on disease progression, implicating a potential therapeutic role for UCP2. UCP2 has an important role in the pathogenesis of type 2 diabetes by inhibiting insulin secretion in islet beta cells. At the same time, type 2 diabetes is associated with increased risk of cardiovascular disease and atherosclerosis where an increased expression of UCP2 appears to be beneficial. This illustrates that therapeutic applications involving UCP2 likely will have to regulate expression and activity in a tissue-specific manner.
Exercise-Associated Amenorrhea: Are Altered Leptin Levels an Early Warning Sign?
ERIC Educational Resources Information Center
Warren, Michelle P.; Ramos, Russalind H.; Bronson, Emily M.
2002-01-01
Although the exact cause of the female athlete triad (amenorrhea, disordered eating, and osteoporosis) is unknown, recent research implicates leptin, a hormone secreted by adipocytes. Leptin may be an important indicator of nutritional status and may play a role in reproductive function. Physicians who develop a plan for early recognition and…
Brain serotonin, psychoactive drugs, and effects on reproduction.
Ayala, María Elena
2009-12-01
Serotonin, a biogenic amine, is present in significant amounts in many structures of the CNS. It is involved in regulation of a wide variety of physiological functions, such as sensory and motor functions, memory, mood, and secretion of hormones including reproductive hormones. It has also been implicated in the etiology of a range of psychiatric disorders such as anxiety, depression, and eating disorders, along with other conditions such as obesity and migraine. While some drugs that affect serotonin, such as fenfluramine and fluoxetine, have been successfully used in treatment of a range of psychiatric diseases, others, such as the amphetamine analogues MDMA and METH, are potent psychostimulant drugs of abuse. Alterations in serotonergic neurons caused by many of these drugs are well characterized; however, little is known about the reproductive consequences of such alterations. This review evaluates the effects of drugs such as MDMA, pCA, fenfluramine, and fluoxetine on serotonergic transmission in the brain, examines the relationships of these drug effects with the neuroendocrine mechanisms modulating reproductive events such as gonadotropin secretion, ovulation, spermatogenesis, and sexual behavior in animal models, and discusses possible reproductive implications of these drugs in humans.
Briant, Linford J B; Dodd, Michael S; Chibalina, Margarita V; Rorsman, Nils J G; Johnson, Paul R V; Carmeliet, Peter; Rorsman, Patrik; Knudsen, Jakob G
2018-06-12
Glucagon, the principal hyperglycemic hormone, is secreted from pancreatic islet α cells as part of the counter-regulatory response to hypoglycemia. Hence, secretory output from α cells is under high demand in conditions of low glucose supply. Many tissues oxidize fat as an alternate energy substrate. Here, we show that glucagon secretion in low glucose conditions is maintained by fatty acid metabolism in both mouse and human islets, and that inhibiting this metabolic pathway profoundly decreases glucagon output by depolarizing α cell membrane potential and decreasing action potential amplitude. We demonstrate, by using experimental and computational approaches, that this is not mediated by the K ATP channel, but instead due to reduced operation of the Na + -K + pump. These data suggest that counter-regulatory secretion of glucagon is driven by fatty acid metabolism, and that the Na + -K + pump is an important ATP-dependent regulator of α cell function. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Lectin Activation in Giardia lamblia by Host Protease: A Novel Host-Parasite Interaction
NASA Astrophysics Data System (ADS)
Lev, Boaz; Ward, Honorine; Keusch, Gerald T.; Pereira, Miercio E. A.
1986-04-01
A lectin in Giardia lamblia was activated by secretions from the human duodenum, the environment where the parasite lives. Incubation of the secretions with trypsin inhibitors prevented the appearance of lectin activity, implicating proteases as the activating agent. Accordingly, lectin activation was also produced by crystalline trypsin and Pronase; other proteases tested were ineffective. When activated, the lectin agglutinated intestinal cells to which the parasite adheres in vivo. The lectin was most specific to mannose-6-phosphate and apparently was bound to the plasma membrane. Activation of a parasite lectin by a host protease represents a novel mechanism of hostparasite interaction and may contribute to the affinity of Giardia lamblia to the infection site.
The enteric nervous system modulates mammalian duodenal mucosal bicarbonate secretion.
Hogan, D L; Yao, B; Steinbach, J H; Isenberg, J I
1993-08-01
Interaction of the enteric nerves in regulating mammalian duodenal mucosal bicarbonate secretion is not well understood. The purpose of the present experiments was to evaluate the role of the enteric nervous system on bicarbonate secretion from rabbit duodenal mucosa in vitro. Proximal duodenum from male New Zealand White rabbits was stripped of seromuscular layers, mounted in Ussing chambers, and studied under short-circuited conditions. Effects of electrical field stimulation, vasoactive intestinal polypeptide (VIP), carbachol, prostaglandin E2 (PGE2), dibutyryl-cyclic adenosine monophosphate (db-cAMP), and the neurotoxin tetrodotoxin (TTX) and muscarinic blockade by atropine were studied. Electrical field stimulation significantly (P < 0.01) stimulated bicarbonate secretion, short-circuit current (Isc), and electrical potential difference (PD) that was sensitive to both TTX and atropine. VIP-stimulated bicarbonate secretion was significantly inhibited by TTX (-73%), yet Isc and PD remained unchanged. Atropine decreased VIP-induced bicarbonate secretion (-69%) and Isc (-43%). Carbachol-stimulated bicarbonate secretion, Isc, and PD were abolished by atropine, whereas TTX was without affect. Neither TTX nor atropine had a significant effect on PGE2 or db-cAMP-stimulated bicarbonate secretion. These results suggest that (1) enteric nerve stimulation activates an acetylcholine receptor that in turn stimulates duodenal epithelial bicarbonate secretion; (2) VIP stimulates bicarbonate secretion, in large part, via the enteric nervous system; and (3) PGE2 and cAMP stimulate bicarbonate secretion independent of the enteric nervous system.
Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence
Tufariello, JoAnn M.; Chapman, Jessica R.; Kerantzas, Christopher A.; Wong, Ka-Wing; Vilchèze, Catherine; Jones, Christopher M.; Cole, Laura E.; Tinaztepe, Emir; Thompson, Victor; Fenyö, David; Niederweis, Michael; Ueberheide, Beatrix; Philips, Jennifer A.; Jacobs, William R.
2016-01-01
Mycobacterium tuberculosis (Mtb) encodes five type VII secretion systems (T7SS), designated ESX-1–ESX-5, that are critical for growth and pathogenesis. The best characterized is ESX-1, which profoundly impacts host cell interactions. In contrast, the ESX-3 T7SS is implicated in metal homeostasis, but efforts to define its function have been limited by an inability to recover deletion mutants. We overcame this impediment using medium supplemented with various iron complexes to recover mutants with deletions encompassing select genes within esx-3 or the entire operon. The esx-3 mutants were defective in uptake of siderophore-bound iron and dramatically accumulated cell-associated mycobactin siderophores. Proteomic analyses of culture filtrate revealed that secretion of EsxG and EsxH was codependent and that EsxG–EsxH also facilitated secretion of several members of the proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) protein families (named for conserved PE and PPE N-terminal motifs). Substrates that depended on EsxG–EsxH for secretion included PE5, encoded within the esx-3 locus, and the evolutionarily related PE15–PPE20 encoded outside the esx-3 locus. In vivo characterization of the mutants unexpectedly showed that the ESX-3 secretion system plays both iron-dependent and -independent roles in Mtb pathogenesis. PE5–PPE4 was found to be critical for the siderophore-mediated iron-acquisition functions of ESX-3. The importance of this iron-acquisition function was dependent upon host genotype, suggesting a role for ESX-3 secretion in counteracting host defense mechanisms that restrict iron availability. Further, we demonstrate that the ESX-3 T7SS secretes certain effectors that are important for iron uptake while additional secreted effectors modulate virulence in an iron-independent fashion. PMID:26729876
Global Secretome Characterization of Herpes Simplex Virus 1-Infected Human Primary Macrophages
Miettinen, Juho J.; Matikainen, Sampsa
2012-01-01
Herpes simplex virus 1 (HSV-1) is a common pathogen infecting the majority of people worldwide at some stage in their lives. The early host response to viral infection is initiated by the cells of the innate immune response, including macrophages. Here, we have characterized the secretome of HSV-1-infected human primary macrophages using high-throughput quantitative proteomics. We identified and quantified 516 distinct human proteins with high confidence from the macrophage secretome upon HSV-1 infection, and the secretion of 411 proteins was >2-fold increased upon beta interferon (IFN-β) priming and/or HSV-1 infection. Bioinformatics analysis of the secretome data revealed that most of the secreted proteins were intracellular, and almost 80% of the proteins whose secretion increased more than 2-fold were known exosomal proteins. This strongly suggests that nonclassical, vesicle-mediated protein secretion is activated in IFN-β-primed and HSV-1-infected macrophages. Proteins related to immune and inflammatory responses, interferon-induced proteins, and endogenous danger signal proteins were efficiently secreted upon IFN-β priming and HSV-1 infection. The secreted IFN-induced proteins include interferon-induced tetratricopeptide protein 2 (IFIT2), IFIT3, signal transducer and activator of transcription 1 (STAT1), and myxovirus resistance protein A (MxA), implicating that these proteins also have important extracellular antiviral functions. Proinflammatory cytokine interleukin-1β was not released by HSV-1-infected macrophages, demonstrating that HSV-1 can antagonize inflammasome function. In conclusion, our results provide a global view of the secretome of HSV-1-infected macrophages, revealing host factors possibly having a role in antiviral defense. PMID:22973042
Pratha, V S; Hogan, D L; Martensson, B A; Bernard, J; Zhou, R; Isenberg, J I
2000-06-01
The duodenum is a cystic fibrosis transmembrane conductance regulator (CFTR)-expressing epithelium with high bicarbonate secretory capacity. We aimed to define the role of CFTR in human duodenal epithelial bicarbonate secretion in normal (NL) subjects and patients with cystic fibrosis (CF). Endoscopic biopsy specimens of the duodenal bulb were obtained from 9 CF patients and 16 volunteers. Tissues were mounted in modified Ussing chambers. Bicarbonate secretion and short-circuit current (Isc) were quantitated under basal conditions and in response to dibutyryl adenosine 3',5'-cyclic monophosphate (db-cAMP), carbachol, and the heat-stable toxin of Escherichia coli (STa). Duodenocytes were also isolated and loaded with the pH-sensitive fluoroprobe BCECF/AM, and intracellular pH (pH(i)) was measured at rest and after intracellular acidification and alkalinization. Basal HCO(3)(-) secretion and Isc were significantly lower in the CF vs. NL duodenal mucosa. In contrast to NL, db-cAMP failed to alter either HCO(3)(-) or Isc in CF tissues. However, in CF, carbachol resulted in an electroneutral HCO(3)(-) secretion, whereas STa induced electrogenic HCO(3)(-) secretion that was similar to NL. In CF and NL duodenocytes, basal pH(i) and recovery from an acid load were comparable, but pH(i) recovery after an alkaline load in CF duodenocytes was Cl(-) dependent, whereas in NL duodenocytes it was Cl(-) independent. These findings implicate CFTR in NL duodenal alkaline transport and its absence in CF. Although duodenal bicarbonate secretion is impaired in CF tissues, alternate pathway(s) likely exist that can be activated by carbachol and STa.
Adipose Triglyceride Lipase Is Implicated in Fuel- and Non-fuel-stimulated Insulin Secretion*
Peyot, Marie-Line; Guay, Claudiane; Latour, Martin G.; Lamontagne, Julien; Lussier, Roxane; Pineda, Marco; Ruderman, Neil B.; Haemmerle, Guenter; Zechner, Rudolf; Joly, Érik; Madiraju, S. R. Murthy; Poitout, Vincent; Prentki, Marc
2009-01-01
Reduced lipolysis in hormone-sensitive lipase-deficient mice is associated with impaired glucose-stimulated insulin secretion (GSIS), suggesting that endogenous β-cell lipid stores provide signaling molecules for insulin release. Measurements of lipolysis and triglyceride (TG) lipase activity in islets from HSL−/− mice indicated the presence of other TG lipase(s) in the β-cell. Using real time-quantitative PCR, adipose triglyceride lipase (ATGL) was found to be the most abundant TG lipase in rat islets and INS832/13 cells. To assess its role in insulin secretion, ATGL expression was decreased in INS832/13 cells (ATGL-knockdown (KD)) by small hairpin RNA. ATGL-KD increased the esterification of free fatty acid (FFA) into TG. ATGL-KD cells showed decreased glucose- or Gln + Leu-induced insulin release, as well as reduced response to KCl or palmitate at high, but not low, glucose. The KATP-independent/amplification pathway of GSIS was considerably reduced in ATGL-KD cells. ATGL−/− mice were hypoinsulinemic and hypoglycemic and showed decreased plasma TG and FFAs. A hyperglycemic clamp revealed increased insulin sensitivity and decreased GSIS and arginine-induced insulin secretion in ATGL−/− mice. Accordingly, isolated islets from ATGL−/− mice showed reduced insulin secretion in response to glucose, glucose + palmitate, and KCl. Islet TG content and FFA esterification into TG were increased by 2-fold in ATGL−/− islets, but glucose usage and oxidation were unaltered. The results demonstrate the importance of ATGL and intracellular lipid signaling for fuel- and non-fuel-induced insulin secretion. PMID:19389712
Trevino, Michelle B.; Machida, Yui; Hallinger, Daniel R.; Garcia, Eden; Christensen, Aaron; Dutta, Sucharita; Peake, David A.; Ikeda, Yasuhiro
2015-01-01
Elevation of circulating fatty acids (FA) during fasting supports postprandial (PP) insulin secretion that is critical for glucose homeostasis and is impaired in diabetes. We tested our hypothesis that lipid droplet (LD) protein perilipin 5 (PLIN5) in β-cells aids PP insulin secretion by regulating intracellular lipid metabolism. We demonstrated that PLIN5 serves as an LD protein in human islets. In vivo, Plin5 and triglycerides were increased by fasting in mouse islets. MIN6 cells expressing PLIN5 (adenovirus [Ad]-PLIN5) and those expressing perilipin 2 (PLIN2) (Ad-PLIN2) had higher [3H]FA incorporation into triglycerides than Ad-GFP control, which support their roles as LD proteins. However, Ad-PLIN5 cells had higher lipolysis than Ad-PLIN2 cells, which increased further by 8-Br-cAMP, indicating that PLIN5 facilitates FA mobilization upon cAMP stimulation as seen postprandially. Ad-PLIN5 in islets enhanced the augmentation of glucose-stimulated insulin secretion by FA and 8-Br-cAMP in G-protein–coupled receptor 40 (GPR40)- and cAMP-activated protein kinase–dependent manners, respectively. When PLIN5 was increased in mouse β-cells in vivo, glucose tolerance after an acute exenatide challenge was improved. Therefore, the elevation of islet PLIN5 during fasting allows partitioning of FA into LD that is released upon refeeding to support PP insulin secretion in cAMP- and GPR40-dependent manners. PMID:25392244
PCV2 on the spot-A new method for the detection of single porcine circovirus type 2 secreting cells.
Fossum, Caroline; Hjertner, Bernt; Lövgren, Tanja; Fuxler, Lisbeth; Charerntantanakul, Wasin; Wallgren, Per
2014-02-01
A porcine circovirus type 2 SPOT (PCV2-SPOT) assay was established to enumerate virus-secreting lymphocytes obtained from naturally infected pigs. The assay is based on the same principle as general ELISPOT assays but instead of detecting cytokine or immunoglobulin secretion, PCV2 particles are immobilized and detected as filter spots. The method was used to evaluate the influence of various cell activators on the PCV2 secretion in vitro and was also applied to study the PCV2 secretion by lymphocytes obtained from pigs in healthy herds and in a herd afflicted by postweaning multisystemic wasting disease (PMWS). Peripheral blood mononuclear cells (PBMCs) obtained from a pig with severe PMWS produced PCV2-SPOTs spontaneously whereas PBMCs obtained from pigs infected subclinically only generated PCV2-SPOTs upon in vitro stimulation. The PCV2 secretion potential was related to the PCV2 DNA content in the PBMCs as determined by two PCV2 real-time PCR assays, developed to differentiate between Swedish PCV2 genogroups 1 (PCV2a) and 3 (PCV2b). Besides the current application these qPCRs could simplify future epidemiological studies and allow genogroup detection/quantitation in dual infection experiments and similar studies. The developed PCV2-SPOT assay offers a semi-quantitative approach to evaluate the potential of PCV2-infected porcine cells to release PCV2 viral particles as well as a system to evaluate the ability of different cell types or compounds to affect PCV2 replication and secretion. Copyright © 2013 Elsevier B.V. All rights reserved.
Nipple aspirate fluid-A liquid biopsy for diagnosing breast health.
Shaheed, Sadr-Ul; Tait, Catherine; Kyriacou, Kyriacos; Mullarkey, Joanne; Burrill, Wayne; Patterson, Laurence H; Linforth, Richard; Salhab, Mohamed; Sutton, Chris W
2017-09-01
Nipple secretions are protein-rich and a potential source of breast cancer biomarkers for breast cancer screening. Previous studies of specific proteins have shown limited correlation with clinicopathological features. Our aim, in this pilot study, was to investigate the intra- and interpatient protein composition of nipple secretions and the implications for their use as liquid biopsies. Matched pairs of nipple discharge/nipple aspirate fluid (NAF, n = 15) were characterized for physicochemical properties and SDS-PAGE. Four pairs were selected for semiquantitative proteomic profiling and trypsin-digested peptides analyzed using 2D-LC Orbitrap Fusion MS. The resulting data were subject to bioinformatics analysis and statistical evaluation for functional significance. A total of 1990 unique proteins were identified many of which are established cancer-associated markers. Matched pairs shared the greatest similarity (average Pearson correlation coefficient of 0.94), but significant variations between individuals were observed. This was the most complete proteomic study of nipple discharge/nipple aspirate fluid to date providing a valuable source for biomarker discovery. The high level of milk proteins in healthy volunteer samples compared to the cancer patients was associated with galactorrhoea. Using matched pairs increased confidence in patient-specific protein levels but changes relating to cancer stage require investigation of a larger cohort. © 2017 The Authors. PROTEOMICS-Clinical Applications published by WILEY-VCH Verlag GmbH & Co. KGaA.
dit Frey, Nicolas Frei; Muller, Philippe; Jammes, Fabien; Kizis, Dimosthenis; Leung, Jeffrey; Perrot-Rechenmann, Catherine; Bianchi, Michele Wolfe
2010-01-01
Tudor-SN (TSN) copurifies with the RNA-induced silencing complex in animal cells where, among other functions, it is thought to act on mRNA stability via the degradation of specific dsRNA templates. In plants, TSN has been identified biochemically as a cytoskeleton-associated RNA binding activity. In eukaryotes, it has recently been identified as a conserved primary target of programmed cell death–associated proteolysis. We have investigated the physiological role of TSN by isolating null mutations for two homologous genes in Arabidopsis thaliana. The double mutant tsn1 tsn2 displays only mild growth phenotypes under nonstress conditions, but germination, growth, and survival are severely affected under high salinity stress. Either TSN1 or TSN2 alone can complement the double mutant, indicating their functional redundancy. TSN accumulates heterogeneously in the cytosol and relocates transiently to a diffuse pattern in response to salt stress. Unexpectedly, stress-regulated mRNAs encoding secreted proteins are significantly enriched among the transcripts that are underrepresented in tsn1 tsn2. Our data also reveal that TSN is important for RNA stability of its targets. These findings show that TSN is essential for stress tolerance in plants and implicate TSN in new, potentially conserved mechanisms acting on mRNAs entering the secretory pathway. PMID:20484005
Takeuchi, Hideyuki; Suzumura, Akio
2014-01-01
Microglia are macrophage-like resident immune cells that contribute to the maintenance of homeostasis in the central nervous system (CNS). Abnormal activation of microglia can cause damage in the CNS, and accumulation of activated microglia is a characteristic pathological observation in neurologic conditions such as trauma, stroke, inflammation, epilepsy, and neurodegenerative diseases. Activated microglia secrete high levels of glutamate, which damages CNS cells and has been implicated as a major cause of neurodegeneration in these conditions. Glutamate-receptor blockers and microglia inhibitors (e.g., minocycline) have been examined as therapeutic candidates for several neurodegenerative diseases; however, these compounds exerted little therapeutic benefit because they either perturbed physiological glutamate signals or suppressed the actions of protective microglia. The ideal therapeutic approach would hamper the deleterious roles of activated microglia without diminishing their protective effects. We recently found that abnormally activated microglia secrete glutamate via gap-junction hemichannels on the cell surface. Moreover, administration of gap-junction inhibitors significantly suppressed excessive microglial glutamate release and improved disease symptoms in animal models of neurologic conditions such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. Recent evidence also suggests that neuronal and glial communication via gap junctions amplifies neuroinflammation and neurodegeneration. Elucidation of the precise pathologic roles of gap junctions and hemichannels may lead to a novel therapeutic strategies that can slow and halt the progression of neurodegenerative diseases. PMID:25228858
Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus.
Hashimoto, Naoko; Tanaka, Tomoaki
2017-02-01
MicroRNAs (miRNAs) are noncoding RNAs of ~22 nucleotides that regulate gene expression post-transcriptionally by binding to the 3' untranslated region of messenger RNA (mRNAs), resulting in inhibition of translation or mRNA degradation. miRNAs have a key role in fine-tuning cellular functions such as proliferation, differentiation and apoptosis, and they are involved in carcinogenesis, glucose homeostasis, inflammation and other biological processes. In this review, we focus on the role of miRNAs in the pathophysiology of the metabolic disease and diabetes mellitus, the hallmark of which is hyperglycemia caused by defective insulin secretion and/or action. A growing number of studies have revealed the association between miRNAs and the processes of insulin production and secretion in pancreatic β cells. In addition, aberrant expression of miRNAs in skeletal muscle, adipose tissue and liver has also been reported. Intriguingly, the tumor suppressor p53 has been implicated in the pathogenesis of diabetes in association with a number of miRNAs, suggesting that a p53/miRNA pathway might be a therapeutic target. Moreover, data from genome-wide association studies have revealed that several miRNA target sequences overlap type 2 diabetes susceptibility loci. Finally, the recent discovery of circulating miRNAs associated with diabetes onset/progression suggests the potential use of miRNAs as biomarkers.
Lochner, Janis E; Honigman, Leah S; Grant, Wilmon F; Gessford, Sarah K; Hansen, Alexis B; Silverman, Michael A; Scalettar, Bethe A
2006-05-01
Tissue plasminogen activator (tPA) has been implicated in a variety of important cellular functions, including learning-related synaptic plasticity and potentiating N-methyl-D-aspartate (NMDA) receptor-dependent signaling. These findings suggest that tPA may localize to, and undergo activity-dependent secretion from, synapses; however, conclusive data supporting these hypotheses have remained elusive. To elucidate these issues, we studied the distribution, dynamics, and depolarization-induced secretion of tPA in hippocampal neurons, using fluorescent chimeras of tPA. We found that tPA resides in dense-core granules (DCGs) that traffic to postsynaptic dendritic spines and that can remain in spines for extended periods. We also found that depolarization induced by high potassium levels elicits a slow, partial exocytotic release of tPA from DCGs in spines that is dependent on extracellular Ca(+2) concentrations. This slow, partial release demonstrates that exocytosis occurs via a mechanism, such as fuse-pinch-linger, that allows partial release and reuse of DCG cargo and suggests a mechanism that hippocampal neurons may rely upon to avoid depleting tPA at active synapses. Our results also demonstrate release of tPA at a site that facilitates interaction with NMDA-type glutamate receptors, and they provide direct confirmation of fundamental hypotheses about tPA localization and release that bear on its neuromodulatory functions, for example, in learning and memory.
Chlorella protects against hydrogen peroxide-induced pancreatic β-cell damage.
Lin, Chia-Yu; Huang, Pei-Jane; Chao, Che-Yi
2014-12-01
Oxidative stress has been implicated in the etiology of pancreatic β-cell dysfunction and diabetes. Studies have shown that chlorella could be important in health promotion or disease prevention through its antioxidant capacity. However, whether chlorella has a cytoprotective effect in pancreatic β-cells remains to be elucidated. We investigated the protective effects of chlorella on H2O2-induced oxidative damage in INS-1 (832/13) cells. Chlorella partially restored cell viability after H2O2 toxicity. To further investigate the effects of chlorella on mitochondria function and cellular oxidative stress, we analyzed mitochondria membrane potential, ATP concentrations, and cellular levels of reactive oxygen species (ROS). Chlorella prevented mitochondria disruption and maintained cellular ATP levels after H2O2 toxicity. It also normalized intracellular levels of ROS to that of control in the presence of H2O2. Chlorella protected cells from apoptosis as indicated by less p-Histone and caspase 3 activation. In addition, chlorella not only enhanced glucose-stimulated insulin secretion (GSIS), but also partially restored the reduced GSIS after H2O2 toxicity. Our results suggest that chlorella is effective in amelioration of cellular oxidative stress and destruction, and therefore protects INS-1 (832/13) cells from H2O2-induced apoptosis and increases insulin secretion. Chlorella should be studied for use in the prevention or treatment of diabetes.
van den Broek, Lenie J.; Kroeze, Kim L.; Waaijman, Taco; Breetveld, Melanie; Sampat-Sardjoepersad, Shakun C.; Niessen, Frank B.; Middelkoop, Esther; Scheper, Rik J.
2014-01-01
Many cell-based regenerative medicine strategies toward tissue-engineered constructs are currently being explored. Cell–cell interactions and interactions with different biomaterials are extensively investigated, whereas very few studies address how cultured cells will interact with soluble wound-healing mediators that are present within the wound bed after transplantation. The aim of this study was to determine how adipose tissue-derived mesenchymal stem cells (ASC), dermal fibroblasts, and keratinocytes will react when they come in contact with the deep cutaneous burn wound bed. Burn wound exudates isolated from deep burn wounds were found to contain many cytokines, including chemokines and growth factors related to inflammation and wound healing. Seventeen mediators were identified by ELISA (concentration range 0.0006–9 ng/mg total protein), including the skin-specific chemokine CCL27. Burn wound exudates activated both ASC and dermal fibroblasts, but not keratinocytes, to increase secretion of CXCL1, CXCL8, CCL2, and CCL20. Notably, ASC but not fibroblasts or keratinocytes showed significant increased secretion of vascular endothelial growth factor (5-fold) and interleukin-6 (253-fold), although when the cells were incorporated in bi-layered skin substitute (SS) these differences were less pronounced. A similar discrepancy between ASC and dermal fibroblast mono-cultures was observed when recombinant human-CCL27 was used instead of burn wound exudates. Although CCL27 did not stimulate the secretion of any of the wound-healing mediators by keratinocytes, these cells, in contrast to ASC or dermal fibroblasts, showed increased proliferation and migration. Taken together, these results indicate that on transplantation, keratinocytes are primarily activated to promote wound closure. In contrast, dermal fibroblasts and, in particular, ASC respond vigorously to factors present in the wound bed, leading to increased secretion of angiogenesis/granulation tissue formation factors. Our findings have implications for the choice of cell type (ASC or dermal fibroblast) to be used in regenerative medicine strategies and indicate the importance of taking into account interactions with the wound bed when developing advanced therapies for difficult-to-close cutaneous wounds. PMID:23980822
Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells.
Lund, Carina; Pulli, Kristiina; Yellapragada, Venkatram; Giacobini, Paolo; Lundin, Karolina; Vuoristo, Sanna; Tuuri, Timo; Noisa, Parinya; Raivio, Taneli
2016-08-09
Gonadotropin-releasing hormone (GnRH) neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs) into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs) by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Diurnal cortisol amplitude and fronto-limbic activity in response to stressful stimuli
Cunningham-Bussel, Amy C.; Root, James C.; Butler, Tracy; Tuescher, Oliver; Pan, Hong; Epstein, Jane; Weisholtz, Daniel S.; Pavony, Michelle; Silverman, Michael E.; Goldstein, Martin S.; Altemus, Margaret; Cloitre, Marylene; LeDoux, Joseph; McEwen, Bruce; Stern, Emily; Silbersweig, David
2014-01-01
Summary The development and exacerbation of many psychiatric and neurologic conditions are associated with dysregulation of the hypothalamic pituitary adrenal (HPA) axis as measured by aberrant levels of cortisol secretion. Here we report on the relationship between the amplitude of diurnal cortisol secretion, measured across 3 typical days in 18 healthy individuals, and blood oxygen level dependant (BOLD) response in limbic fear/stress circuits, elicited by in-scanner presentation of emotionally negative stimuli, specifically, images of the World Trade Center (WTC) attack. Results indicate that subjects who secrete a greater amplitude of cortisol diurnally demonstrate less brain activation in limbic regions, including the amygdala and hippocampus/parahippocampus, and hypothalamus during exposure to traumatic WTC-related images. Such initial findings can begin to link our understanding, in humans, of the relationship between the diurnal amplitude of a hormone integral to the stress response, and those neuroanatomical regions that are implicated as both modulating and being modulated by that response. PMID:19135805
Thakurdas, S M; Hasan, Z; Hussain, R
2004-05-01
Chronic inflammation associated with cachexia, weight loss, fever and arthralgia is the hallmark of advanced mycobacterial diseases. These symptoms are attributed to the chronic stimulation of tumour necrosis factor (TNF)-alpha. Mycobacterial components directly stimulate adherent cells to secrete TNF-alpha. We have shown recently that IgG1 antimycobacterial antibodies play a role in augmenting TNF-alpha in purified protein derivative (PPD)-stimulated adherent cells from non-BCG-vaccinated donors. We now show that IgG1 antibodies can also augment TNF-alpha expression in stimulated adherent cells obtained from BCG-vaccinated donors and this augmentation is not linked to interleukin (IL)-10 secretion. In addition IgG1 antimycobacterial antibodies can reverse the effect of TNF-alpha blockers such as pentoxifylline and thalidomide. These studies therefore have clinical implications for anti-inflammatory drug treatments which are used increasingly to alleviate symptoms associated with chronic inflammation.
Johnston, Adam P W; Yuzwa, Scott A; Carr, Matthew J; Mahmud, Neemat; Storer, Mekayla A; Krause, Matthew P; Jones, Karen; Paul, Smitha; Kaplan, David R; Miller, Freda D
2016-10-06
Adult mammals have lost multi-tissue regenerative capacity, except for the distal digit, which is able to regenerate via mechanisms that remain largely unknown. Here, we show that, after adult mouse distal digit removal, nerve-associated Schwann cell precursors (SCPs) dedifferentiate and secrete growth factors that promote expansion of the blastema and digit regeneration. When SCPs were dysregulated or ablated, mesenchymal precursor proliferation in the blastema was decreased and nail and bone regeneration were impaired. Transplantation of exogenous SCPs rescued these regeneration defects. We found that SCPs secrete factors that promote self-renewal of mesenchymal precursors, and we used transcriptomic and proteomic analysis to define candidate factors. Two of these, oncostatin M (OSM) and platelet-derived growth factor AA (PDGF-AA), are made by SCPs in the regenerating digit and rescued the deficits in regeneration caused by loss of SCPs. As all peripheral tissues contain nerves, these results could have broad implications for mammalian tissue repair and regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.
Impairment of the Bacterial Biofilm Stability by Triclosan
Hubas, Cédric; Behrens, Sebastian; Ricciardi, Francesco; Paterson, David M.
2012-01-01
The accumulation of the widely-used antibacterial and antifungal compound triclosan (TCS) in freshwaters raises concerns about the impact of this harmful chemical on the biofilms that are the dominant life style of microorganisms in aquatic systems. However, investigations to-date rarely go beyond effects at the cellular, physiological or morphological level. The present paper focuses on bacterial biofilms addressing the possible chemical impairment of their functionality, while also examining their substratum stabilization potential as one example of an important ecosystem service. The development of a bacterial assemblage of natural composition – isolated from sediments of the Eden Estuary (Scotland, UK) – on non-cohesive glass beads (<63 µm) and exposed to a range of triclosan concentrations (control, 2 – 100 µg L−1) was monitored over time by Magnetic Particle Induction (MagPI). In parallel, bacterial cell numbers, division rate, community composition (DGGE) and EPS (extracellular polymeric substances: carbohydrates and proteins) secretion were determined. While the triclosan exposure did not prevent bacterial settlement, biofilm development was increasingly inhibited by increasing TCS levels. The surface binding capacity (MagPI) of the assemblages was positively correlated to the microbial secreted EPS matrix. The EPS concentrations and composition (quantity and quality) were closely linked to bacterial growth, which was affected by enhanced TCS exposure. Furthermore, TCS induced significant changes in bacterial community composition as well as a significant decrease in bacterial diversity. The impairment of the stabilization potential of bacterial biofilm under even low, environmentally relevant TCS levels is of concern since the resistance of sediments to erosive forces has large implications for the dynamics of sediments and associated pollutant dispersal. In addition, the surface adhesive capacity of the biofilm acts as a sensitive measure of ecosystem effects. PMID:22523534
Potent NLRP3 Inflammasome Activation by the HIV Reverse Transcriptase Inhibitor Abacavir.
Toksoy, Atiye; Sennefelder, Helga; Adam, Christian; Hofmann, Sonja; Trautmann, Axel; Goebeler, Matthias; Schmidt, Marc
2017-02-17
There is experimental and clinical evidence that some exanthematous allergic drug hypersensitivity reactions are mediated by drug-specific T cells. We hypothesized that the capacity of certain drugs to directly stimulate the innate immune system may contribute to generate drug-specific T cells. Here we analyzed whether abacavir, an HIV-1 reverse transcriptase inhibitor often inducing severe delayed-type drug hypersensitivity, can trigger innate immune activation that may contribute to its allergic potential. We show that abacavir fails to generate direct innate immune activation in human monocytes but potently triggers IL-1β release upon pro-inflammatory priming with phorbol ester or Toll-like receptor stimulation. IL-1β processing and secretion were sensitive to Caspase-1 inhibition, NLRP3 knockdown, and K + efflux inhibition and were not observed with other non-allergenic nucleoside reverse transcriptase inhibitors, identifying abacavir as a specific inflammasome activator. It further correlated with dose-dependent mitochondrial reactive oxygen species production and cytotoxicity, indicating that inflammasome activation resulted from mitochondrial damage. However, both NLRP3 depletion and inhibition of K + efflux mitigated abacavir-induced mitochondrial reactive oxygen species production and cytotoxicity, suggesting that these processes were secondary to NLRP3 activation. Instead, depletion of cardiolipin synthase 1 abolished abacavir-induced IL-1β secretion, suggesting that mitochondrial cardiolipin release may trigger abacavir-induced inflammasome activation. Our data identify abacavir as a novel inflammasome-stimulating drug allergen. They implicate a potential contribution of innate immune activation to medication-induced delayed-type hypersensitivity, which may stimulate new concepts for treatment and prevention of drug allergies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Ruan, Min; Zhang, Zun; Li, Siyi; Yan, Min; Liu, Shengwen; Yang, Wenjun; Wang, Lizheng; Zhang, Chenping
2014-01-01
Activation of Toll like receptors (TLRs) signaling has been implicated in promoting malignant cell invasion and metastatic potential. Previously we demonstrated that increased TLR-9 expression predicted poor survival in oral cancer patients. The objective of this study is to further investigate the roles and potential molecular mechanisms of TLR-9 signaling in human oral cancer cell invasion. Cell migration, invasion and protein expression were detected by wound healing assay, Transwell chambers model and western blot. The secretion and activity levels of metalloproteinases-2/9 were quantified by ELISA and Gelatin zymography. EMSA and ChIP assays were employed to detect the activity of AP-1signal pathway. TLR-9 siRNA transfection was used to regulate the expression and activity of TLR-9 in oral cancer cell line HB cells. The results of both wound healing assay and in vitro Transwell assay revealed that activation of TLR-9 induced dose- and time- dependent migration and invasion of HB cells. An increased expression, secretion and activity of MMP-2 were observed upon the treatment of CpG-ODN. The TLR-9 signaling-mediated MMP-2 expression appeared to be a consequence of AP-1 activation, because that their DNA binding activity was enhanced by CpG-ODN treatment. All these influences were efficiently repressed by the knockdown of TLR-9 through siRNA or pretreatment of an AP-1 inhibitor. Activation of TLR-9 signaling could promote human oral cancer HB cells invasion with the induction of MMP-2 presentation by attenuating AP-1 binding activity, suggesting a novel anti-metastatic application for TLR-9 targeted therapy in oral cancer in the future.
Antigen specific suppression of humoral immunity by anergic Ars/A1 B cells1
Aviszus, Katja; MacLeod, Megan K.L.; Kirchenbaum, Greg A.; Detanico, Thiago O.; Heiser, Ryan A.; St. Clair, James B.; Guo, Wenzhong; Wysocki, Lawrence J.
2012-01-01
Autoreactive anergic B lymphocytes are considered to be dangerous because of their potential for activation and recruitment into autoimmune responses. Yet they persist for days and constitute ~5% of the B cell pool. We assessed their functional potential in the Ars/A1 transgene model, where anergic B cells express a dual-reactive antigen receptor that binds, in addition to a self-antigen, the hapten p-azophenylarsonate (Ars). When Ars/A1 B cells were transferred into adoptive recipients that were immunized with foreign proteins covalently conjugated with Ars, endogenous IgG immune responses to both were selectively and severely diminished, and the development of T helper cells was impaired. Approximately 95% inhibition of the anti-Ars response was attained with ~4000 transferred Ars/A1 B cells through redundant mechanisms, one of which depended upon their expression of MHC II but not upon secretion of IL-10 or IgM. This antigen-specific suppressive activity implicates the autoreactive anergic B cell as an enforcer of immunological tolerance to self-antigens. PMID:23008448
Antigen-specific suppression of humoral immunity by anergic Ars/A1 B cells.
Aviszus, Katja; Macleod, Megan K L; Kirchenbaum, Greg A; Detanico, Thiago O; Heiser, Ryan A; St Clair, James B; Guo, Wenzhong; Wysocki, Lawrence J
2012-11-01
Autoreactive anergic B lymphocytes are considered to be dangerous because of their potential for activation and recruitment into autoimmune responses. However, they persist for days and constitute ∼5% of the B cell pool. We assessed their functional potential in the Ars/A1 transgene model, where anergic B cells express a dual-reactive Ag receptor that binds, in addition to a self-Ag, the hapten p-azophenylarsonate (Ars). When Ars/A1 B cells were transferred into adoptive recipients that were immunized with foreign proteins covalently conjugated with Ars, endogenous IgG immune responses to both were selectively and severely diminished, and the development of T helper cells was impaired. Approximately 95% inhibition of the anti-Ars response was attained with ∼4000 transferred Ars/A1 B cells through redundant mechanisms, one of which depended on their expression of MHC class II but not upon secretion of IL-10 or IgM. This Ag-specific suppressive activity implicates the autoreactive anergic B cell as an enforcer of immunological tolerance to self-Ags.
Influence of Flavonoids on Mechanism of Modulation of Insulin Secretion.
Soares, Juliana Mikaelly Dias; Pereira Leal, Ana Ediléia Barbosa; Silva, Juliane Cabral; Almeida, Jackson R G S; de Oliveira, Helinando Pequeno
2017-01-01
The development of alternatives for insulin secretion control in vivo or in vitro represents an important aspect to be investigated. In this direction, natural products have been progressively explored with this aim. In particular, flavonoids are potential candidates to act as insulin secretagogue. To study the influence of flavonoid on overall modulation mechanisms of insulin secretion. The research was conducted in the following databases and platforms: PubMed, Scopus, ISI Web of Knowledge, SciELO, LILACS, and ScienceDirect, and the MeSH terms used for the search were flavonoids, flavones, islets of Langerhans, and insulin-secreting cells. Twelve articles were included and represent the basis of discussion on mechanisms of insulin secretion of flavonoids. Papers in ISI Web of Knowledge were in number of 1, Scopus 44, PubMed 264, ScienceDirect 511, and no papers from LILACS and SciELO databases. According to the literature, the majority of flavonoid subclasses can modulate insulin secretion through several pathways, in an indication that corresponding molecule is a potential candidate for active materials to be applied in the treatment of diabetes. The action of natural products on insulin secretion represents an important investigation topic due to their importance in the diabetes controlIn addition to their typical antioxidant properties, flavonoids contribute to the insulin secretionThe modulation of insulin secretion is induced by flavonoids according to different mechanisms. Abbreviations used: K ATP channels: ATP-sensitive K + channels, GLUT4: Glucose transporter 4, ERK1/2: Extracellular signal-regulated protein kinases 1 and 2, L-VDCCs: L-type voltage-dependent Ca +2 channels, GLUT1: Glucose transporter 1, AMPK: Adenosine monophosphate-activated protein kinase, PTP1B: Protein tyrosine phosphatase 1B, GLUT2: Glucose transporter 2, cAMP: Cyclic adenosine monophosphate, PKA: Protein kinase A, PTK: Protein tyrosine kinase, CaMK II: Ca 2+ /calmodulin-dependent protein kinase II, GSIS: Glucose-stimulated insulin secretion, Insig-1: Insulin-induced gene 1, IRS-2: Insulin receptor substrate 2, PDX-1: Pancreatic and duodenal homeobox 1, SREBP-1c: Sterol regulatory element binding protein-1c, DMC: Dihydroxy-6'-methoxy-3',5'-dimethylchalcone, GLP-1: Glucagon-like peptide-1, GLP-1R: Glucagon-like peptide 1 receptor.
Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H.; Engel, Eli; Kaunitz, Jonathan D.
2012-01-01
Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal l-glutamate (l-Glu) and 5′-inosine monophosphate (IMP) synergistically increases duodenal HCO3− secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3− secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3− secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. l-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced l-Glu/IMP-induced HCO3− secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3− secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3− secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced l-Glu/IMP-induced HCO3− secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal l-Glu/IMP-induced and TGR5 agonist-induced HCO3− secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3− secretion. PMID:22821947
Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada
2012-10-01
Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion.
T cell mediated suppression of neurotropic coronavirus replication in neural precursor cells
Plaisted, Warren C.; Weinger, Jason G.; Walsh, Craig M.; Lane, Thomas E.
2014-01-01
Neural precursor cells (NPCs) are the subject of intense investigation for their potential to treat neurodegenerative disorders, yet the consequences of neuroinvasive virus infection of NPCs remain unclear. This study demonstrates that NPCs support replication following infection by the neurotropic JHM strain of mouse hepatitis virus (JHMV). JHMV infection leads to increased cell death and dampens IFN-γ-induced MHC class II expression. Importantly, cytokines secreted by CD4+ T cells inhibit JHMV replication in NPCs, and CD8+ T cells specifically target viral peptide-pulsed NPCs for lysis. Furthermore, treatment with IFN-γ inhibits JHMV replication in a dose-dependent manner. Together, these findings suggest that T cells play a critical role in controlling replication of a neurotropic virus in NPCs, a finding which has important implications when considering immune modulation for NPC-based therapies for treatment of human neurologic diseases. PMID:24418558
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, L.E.
1993-08-04
In October and November 1986, two secret U.S. Government operations were publicly exposed, potentially implicating Reagan Administration officials in illegal activities. These operations were the provision of assistance to the military activities of the Nicaraguan contra rebels during an October 1984 to October 1986 prohibition on such aid, and the sale of U.S. arms to Iran in contravention of stated U.S. policy and in possible violation of arms-export controls. In late November 1986, Reagan Administration officials announced that some of the proceeds from the sale of U.S. arms to Iran had been diverted to the contras. As a result, Attorneymore » General Edwin Meese III sought the appointment of an independent counsel to investigate and prosecute possible crimes. Volume II contains indictments, plea agreements, interim reports to Congress and administrative matters from that investigation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, L.E.
1993-08-04
In October and November 1986, two secret U.S. Government operations were publicly exposed, potentially implicating Reagan Administration officials in illegal activities. These operations were the provision of assistance to the military activities of the Nicaraguan contra rebels during an October 1984 to October 1986 prohibition on such aid, and the sale of U.S. arms to Iran in contravention of stated U.S. policy and in possible violation of arms-export controls. In late November 1986, Reagan Administration officials announced that some of the proceeds from the sale of U.S. arms to Iran had been diverted to the contras. As a result ofmore » the exposure of these operations, Attorney General Edwin Meese III sought the appointment of an independent counsel to investigate and, if necessary, prosecute possible crimes arising from them. This is the final report of that investigation.« less
Park, C B; Dufort, D
2011-03-01
Nodal, a secreted signaling protein in the transforming growth factor-beta (TGF-β) superfamily, has established roles in vertebrate development. However, components of the Nodal signaling pathway are also expressed at the maternal-fetal interface and have been implicated in many processes of mammalian reproduction. Emerging evidence indicates that Nodal and its extracellular inhibitor Lefty are expressed in the uterus and complex interactions between the two proteins mediate menstruation, decidualization and embryo implantation. Furthermore, several studies have shown that Nodal from both fetal and maternal sources may regulate trophoblast cell fate and facilitate placentation as both embryonic and uterine-specific Nodal knockout mouse strains exhibit disrupted placenta morphology. Here we review the established and prospective roles of Nodal signaling in facilitating successful pregnancy, including recent evidence supporting a potential link to parturition and preterm birth. Copyright © 2011 Elsevier Ltd. All rights reserved.
Endocrinology of recurrent pregnancy loss.
Arredondo, Francisco; Noble, Luis S
2006-02-01
Following implantation, the maintenance of the pregnancy is dependent on a multitude of endocrinological events that will eventually aid in the successful growth and development of the fetus. Although the great majority of pregnant women have no pre-existing endocrine abnormalities, a small number of women can have certain endocrine alterations that could potentially lead to recurrent pregnancy losses. It is estimated that approximately 8 to 12% of all pregnancy losses are the result of endocrine factors. During the preimplantation period, the uterus undergoes important developmental changes stimulated by estrogen, and more importantly, progesterone. Progesterone is essential for the successful implantation and maintenance of pregnancy. Therefore, disorders related to inadequate progesterone secretion by the corpus luteum are likely to affect the outcome of the pregnancy. Luteal phase deficiency, hyperprolactinemia, and polycystic ovarian syndrome are some examples. Several other endocrinological abnormalities such as thyroid disease, hypoparathyroidism, uncontrolled diabetes, and decreased ovarian reserve have been implicated as etiologic factors for recurrent pregnancy loss.
Tundo, Grazia; Ciaccio, Chiara; Sbardella, Diego; Boraso, Mariaserena; Viviani, Barbara; Coletta, Massimiliano; Marini, Stefano
2012-01-01
The deposition of β-amyloid (Aβ) into senile plaques and the impairment of somatostatin-mediated neurotransmission are key pathological events in the onset of Alzheimer's disease (AD). Insulin-degrading-enzyme (IDE) is one of the main extracellular protease targeting Aβ, and thus it represents an interesting pharmacological target for AD therapy. We show that the active form of somatostatin-14 regulates IDE activity by affecting its expression and secretion in microglia cells. A similar effect can also be observed when adding octreotide. Following a previous observation where somatostatin directly interacts with IDE, here we demonstrate that somatostatin regulates Aβ catabolism by modulating IDE proteolytic activity in IDE gene-silencing experiments. As a whole, these data indicate the relevant role played by somatostatin and, potentially, by analogue octreotide, in preventing Aβ accumulation by partially restoring IDE activity. PMID:22509294
Scotece, Morena; Conde, Javier; Gómez, Rodolfo; López, Verónica; Pino, Jesús; González, Antonio; Lago, Francisca; Gómez-Reino, Juan J.; Gualillo, Oreste
2012-01-01
Patients with rheumatic diseases have an increased risk of mortality by cardiovascular events. In fact, several rheumatic diseases such as rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, and ankylosing spondylitis are associated with a higher prevalence of cardiovascular diseases (CVDs). Although traditional cardiovascular risk factors have been involved in the pathogenesis of cardiovascular diseases in rheumatic patients, these alterations do not completely explain the enhanced cardiovascular risk in this population. Obesity and its pathologic alteration of fat mass and dysfunction, due to an altered pattern of secretion of proinflammatory adipokines, could be one of the links between cardiovascular and rheumatic diseases. Indeed, the incidence of CVDs is augmented in obese individuals with rheumatic disorders. Thus, in this paper we explore in detail the relationships among adipokines, rheumatic diseases, and cardiovascular complications by giving to the reader a holistic vision and several suggestions for future perspectives and potential clinical implications. PMID:22910888
Integrated Metagenomics/Metaproteomics Reveals Human Host-Microbiota Signatures of Crohn's Disease
Darzi, Youssef; Mongodin, Emmanuel F.; Pan, Chongle; Shah, Manesh; Halfvarson, Jonas; Tysk, Curt; Henrissat, Bernard; Raes, Jeroen; Verberkmoes, Nathan C.; Jansson, Janet K.
2012-01-01
Crohn's disease (CD) is an inflammatory bowel disease of complex etiology, although dysbiosis of the gut microbiota has been implicated in chronic immune-mediated inflammation associated with CD. Here we combined shotgun metagenomic and metaproteomic approaches to identify potential functional signatures of CD in stool samples from six twin pairs that were either healthy, or that had CD in the ileum (ICD) or colon (CCD). Integration of these omics approaches revealed several genes, proteins, and pathways that primarily differentiated ICD from healthy subjects, including depletion of many proteins in ICD. In addition, the ICD phenotype was associated with alterations in bacterial carbohydrate metabolism, bacterial-host interactions, as well as human host-secreted enzymes. This eco-systems biology approach underscores the link between the gut microbiota and functional alterations in the pathophysiology of Crohn's disease and aids in identification of novel diagnostic targets and disease specific biomarkers. PMID:23209564
[Effects of glutamic acid and glutathione on the secretory function of the stomach].
Shlygin, G K; Vasilevskaia, L S; Ignatenko, L G
1988-10-01
Experiments on dogs with Pavlov isolated pouches and gastric fistulas have shown that the ingested solution of MSG produces a potentiating effect on maximal gastric secretion caused by pentagastrin. This effect is apparently connected with the formation of glutathione in intestine. The glutathione concentration in blood after the intake of MSG is significantly elevated. It has been established that reduced glutathione administered in blood produced the similar potentiating effect on gastric secretion caused by pentagastrin.
Kroukamp, Heinrich; den Haan, Riaan; la Grange, Daniël C; Sibanda, Ntsako; Foulquié-Moreno, Maria R; Thevelein, Johan M; van Zyl, Willem H
2017-10-01
The yeast Saccharomyces cerevisiae has a long association with alcoholic fermentation industries and has received renewed interest as a biocatalyst for second-generation bioethanol production. Rational engineering strategies are used to create yeast strains for consolidated bioprocessing of lignocellulosic biomass. Although significant progress is made in this regard with the expression of different cellulolytic activities in yeast, cellobiohydrolase (CBH) titers remain well below ideal levels. Through classical breeding, S. cerevisiae strains with up to twofold increased CBH secretion titers is obtained in strains expressing a single gene copy. An increase of up to 3.5-fold in secreted cellobiohydrolase activity is subsequently shown for strains expressing the heterologous gene on a high copy episomal vector. To our knowledge, this is the first report of classical breeding being used to enhance heterologous protein secretion and also the most significant enhancement of CBH secretion in yeast yet reported. This enhanced secretion phenotype is specific for cellobiohydrolase I secretion, indicating that reporter protein properties might be a major determining factor for efficient protein secretion in yeast. By exploring the latent potential of different S. cerevisiae strains, the authors show that the allele pool of various strains is a valuable engineering resource to enhance secretion in yeast. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gursoy, U K; Könönen, E; Uitto, V-J
2008-10-01
Bacterial pathogens involved in periodontal diseases exert their destructive effects primarily by stimulating the host cells to increase their secretion of proinflammatory cytokines and matrix metalloproteinases (MMPs). This study aimed to determine the epithelial cell matrix metalloproteinase and interleukin-8 (IL-8) secretion upon exposure to fusobacteria. Eight different oral and non-oral Fusobacterium strains were incubated with HaCaT epithelial cells. Gelatin zymography and Western blot analysis were performed to detect collagenase 3 (MMP-13), gelatinase A (MMP-2), gelatinase B (MMP-9), and IL-8 secretion by epithelial cells. All Fusobacterium strains, especially Fusobacterium necrophorum ATCC 25286, Fusobacterium nucleatum ATCC 25586, and Fusobacterium varium ATCC 51644, increased MMP-9 and MMP-13 secretion. Fusobacterium simiae ATCC 33568, and to a lesser extent F. nucleatum and F. necrophorum, increased epithelial MMP-2 secretion. F. nucleatum and F. necrophorum also increased IL-8 secretion. F. varium ATCC 27725, a strain that only weakly stimulated MMP production, strongly increased the IL-8 production, suggesting that their expression is differently regulated. We conclude that the pathogenic potential of fusobacteria may partly result from their ability to stimulate secretion of MMP-9, MMP-13, and IL-8 from epithelial cells.
Zhang, Weigang; Yi, Xiuli; An, Yawen; Guo, Sen; Li, Shuli; Song, Pu; Chang, Yuqian; Zhang, Shaolong; Gao, Tianwen; Wang, Gang; Li, Chunying
2018-05-11
Keratinocytes are the main epidermal cell type that constitutes the skin barrier against environmental damages, which emphasizes the balance between the growth and the death of keratinocytes in maintaining skin homeostasis. Aberrant proliferation of keratinocytes and the secretion of inflammatory factors from keratinocytes are related to the formation of chronic inflammatory skin diseases like psoriasis. MicroRNA-17-92 (miRNA-17-92 or miR-17-92) is a miRNA cluster that regulates cell growth and immunity, but the role of miR-17-92 cluster in keratinocytes and its relation to skin diseases have not been well investigated. In the present study, we initially found that miR-17-92 cluster promoted the proliferation and the cell-cycle progression of keratinocytes via suppressing cyclin-dependent kinase inhibitor 2B (CDKN2B). Furthermore, miR-17-92 cluster facilitated the secretion of C-X-C motif chemokine ligand 9 (CXCL9) and C-X-C motif chemokine ligand 10 (CXCL10) from keratinocytes by inhibiting suppressor of cytokine signaling 1 (SOCS1), which enhanced the chemotaxis for T lymphocytes formed by keratinocytes. In addition, we detected increased expression of miR-17-92 cluster in psoriatic lesions and the level of lesional miR-17-92 cluster was positively correlated with the disease severity in psoriasis patients. At last, miR-17-92 cluster was increased in keratinocytes by cytokines through the activation of signal transducers and activators of transcription 1 (STAT1) signaling pathway. Our findings demonstrate that cytokine-induced overexpression of miR-17-92 cluster can promote the proliferation and the immune function of keratinocytes, and thus may contribute to the development of inflammatory skin diseases like psoriasis, which implicates miR-17-92 cluster as a potential therapeutic target for psoriasis and other skin diseases with similar inflammatory pathogenesis.
Glanowska, Katarzyna M; Moenter, Suzanne M
2015-01-01
GnRH release in the median eminence (ME) is the central output for control of reproduction. GnRH processes in the preoptic area (POA) also release GnRH. We examined region-specific regulation of GnRH secretion using fast-scan cyclic voltammetry to detect GnRH release in brain slices from adult male mice. Blocking endoplasmic reticulum calcium reuptake to elevate intracellular calcium evokes GnRH release in both the ME and POA. This release is action potential dependent in the ME but not the POA. Locally applied kisspeptin induced GnRH secretion in both the ME and POA. Local blockade of inositol triphospate-mediated calcium release inhibited kisspeptin-induced GnRH release in the ME, but broad blockade was required in the POA. In contrast, kisspeptin-evoked secretion in the POA was blocked by local gonadotropin-inhibitory hormone, but broad gonadotropin-inhibitory hormone application was required in the ME. Although action potentials are required for GnRH release induced by pharmacologically-increased intracellular calcium in the ME and kisspeptin-evoked release requires inositol triphosphate-mediated calcium release, blocking action potentials did not inhibit kisspeptin-induced GnRH release in the ME. Kisspeptin-induced GnRH release was suppressed after blocking both action potentials and plasma membrane Ca(2+) channels. This suggests that kisspeptin action in the ME requires both increased intracellular calcium and influx from the outside of the cell but not action potentials. Local interactions among kisspeptin and GnRH processes in the ME could thus stimulate GnRH release without involving perisomatic regions of GnRH neurons. Coupling between action potential generation and hormone release in GnRH neurons is thus likely physiologically labile and may vary with region.
Secreted production of Renilla luciferase in Bacillus subtilis.
Chiang, Chung-Jen; Chen, Po Ting; Chao, Yun-Peng
2010-01-01
Luciferase (Rluc) from the soft coral Renilla reniformis has been widely used as a bioluminescent reporter, and its secreted production has been solely performed in mammalian cells thus far. To make the production more efficient, a series of approaches was attempted to overproduce Rluc extracellularly in Bacillus subtilis. First, Cys124 in the Rluc gene was substituted with Ala. The mutant gene was subsequently incorporated into a pUB110/R6K-based plasmid, consequently, fusing with the P43 promoter and the sacB signal peptide. With the nitrogen-rich medium, B. subtilis strain bearing the plasmid became able to secret a detectable amount of Rluc. Moreover, the secretion signal for the Rluc gene was replaced by the aprN leader peptide with or without the propeptide. The result led to a more than twofold increase in the secreted Rluc. Finally, by enhancing the transcription of the Rluc gene implementing the P43 and spac tandem promoter, it resulted in the secreted Rluc with a yield of 100 mg/L. Overall, this study illustrates a potential strategy for improving the secretion efficiency of heterologous proteins in B. subtilis.
Eichenberger, Ramon M; Ramakrishnan, Chandra; Russo, Giancarlo; Deplazes, Peter; Hehl, Adrian B
2017-06-13
Infections of dogs with virulent strains of Babesia canis are characterized by rapid onset and high mortality, comparable to complicated human malaria. As in other apicomplexan parasites, most Babesia virulence factors responsible for survival and pathogenicity are secreted to the host cell surface and beyond where they remodel and biochemically modify the infected cell interacting with host proteins in a very specific manner. Here, we investigated factors secreted by B. canis during acute infections in dogs and report on in silico predictions and experimental analysis of the parasite's exportome. As a backdrop, we generated a fully annotated B. canis genome sequence of a virulent Hungarian field isolate (strain BcH-CHIPZ) underpinned by extensive genome-wide RNA-seq analysis. We find evidence for conserved factors in apicomplexan hemoparasites involved in immune-evasion (e.g. VESA-protein family), proteins secreted across the iRBC membrane into the host bloodstream (e.g. SA- and Bc28 protein families), potential moonlighting proteins (e.g. profilin and histones), and uncharacterized antigens present during acute crisis in dogs. The combined data provides a first predicted and partially validated set of potential virulence factors exported during fatal infections, which can be exploited for urgently needed innovative intervention strategies aimed at facilitating diagnosis and management of canine babesiosis.
The Movie "The Secret Life of Words:" Implications for Counselors
ERIC Educational Resources Information Center
Cook, Katrina
2008-01-01
Torture still occurs at an alarming rate in the world today. Because many torture victims suffer silently in isolation instead of seeking help for their symptoms of posttraumatic stress, it is impossible to know how many lives have been impacted. However, as more and more torture victims seek asylum in countries such as the United States,…
GnRH-II and its receptor are critical regulators of testicular steroidogenesis in swine
USDA-ARS?s Scientific Manuscript database
The second mammalian form of GnRH (GnRH-II) and its receptor (GnRHR-II) are produced in one livestock species, the pig. However, the interaction of GnRH-II with its receptor does not stimulate gonadotropin secretion. Instead, both are abundantly produced in the gonads and have been implicated in aut...
USDA-ARS?s Scientific Manuscript database
Glucagon-like peptide 2 (GLP-2) is a 33-amino acid peptide derived from proteolytic cleavage of proglucagon by prohormone convertase 1/3 in enteroendocrine L-cells. Studies conducted in humans, rodent models, and in vitro indicate that GLP-2 is secreted in response to the presence of molecules in th...
Renditions: Constraints Imposed by Laws on Torture
2009-01-22
AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY ...suspended after the Italian government said testimony could reveal state secrets threatening Italy’s national security . “CIA-Linked Kidnapping Trial...raised against U.S. officials implicated national security and foreign policy considerations, and assessing the propriety of those considerations was
The New Kid on the Block: A Specialized Secretion System during Bacterial Sporulation.
Morlot, Cécile; Rodrigues, Christopher D A
2018-02-02
The transport of proteins across the bacterial cell envelope is mediated by protein complexes called specialized secretion systems. These nanomachines exist in both Gram-positive and Gram-negative bacteria and have been categorized into different types based on their structural components and function. Interestingly, multiple studies suggest the existence of a protein complex in endospore-forming bacteria that appears to be a new type of specialized secretion system. This protein complex is called the SpoIIIA-SpoIIQ complex and is an exception to the categorical norm since it appears to be a hybrid composed of different parts from well-defined specialized secretion systems. Here we summarize and discuss the current understanding of this complex and its potential role as a specialized secretion system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nagano, Nobuo
2005-01-01
Calcimimetics are positive allosteric modulators that activate the parathyroid calcium receptor (CaR) and thereby immediately suppress parathyroid hormone (PTH) secretion. Preclinical studies have demonstrated that calcimimetics inhibit PTH secretion and parathyroid gland hyperplasia and ameliorates bone qualities in rats with chronic renal insufficiency. Clinical trials with cinacalcet hydrochloride, a calcimimetic compound, have shown that calcimimetics possess lowering effects not only on serum PTH levels but also on serum phosphorus levels in dialysis patients with secondary hyperparathyroidism (2HPT). Thus, calcimimetics have considerable potential as an innovative medical approach to manage 2HPT. In this review, the similarities are extrapolated between the pharmacological effect of calcimimetics on the set point of Ca-regulated PTH secretion and clinical observations in affected subjects with activating CaR mutations.
[Effect of glutamate and combined with inosine monophosphate on gastric secretion].
Vasilevskaia, L S; Rymshina, M V; Shlygin, G K
1993-01-01
Experiments on dogs with Pavlov pouch and gastric fistula demonstrate that monosodium glutamate (MSG) enriched with inosine monophosphate (IMP) potentiate pentagastrin-induced gastric secretion. The preparation (Chi-Mi) was introduced directly into the intestine through a fistula. When given alone in an equal quantity MSG produced the same effect. In per os administration Chi-Mi was more effective, probably due to a different response of the gustatory receptors to MSG and Chi-Mi. When the latter two were added to meat used as a food stimulus, Chi-Mi brought about more intensive gastric secretion in all its phases. In sham feeding Chi-Mi also intensified the secretion augmenting the reflex phase of gastric secretion when added to food substances. The findings may appear helpful in further search for medical application of glutamate and allied substances.
Secretome analysis of diarrhea-inducing strains of Escherichia coli
Nirujogi, Raja Sekhar; Muthusamy, Babylakshmi; Kim, Min-Sik; Sathe, Gajanan J.; Lakshmi, P.T.V.; Kovbasnjuk, Olga N.; Prasad, T.S. Keshava; Wade, Mary; Jabbour, Rabih E.
2017-01-01
Secreted proteins constitute a major part of virulence factors that are responsible for pathogenesis caused by Gram-negative bacteria. Enterohemorrhagic Escherichia coli, O157:H7, is the major pathogen often causing outbreaks. However, studies have reported that the significant outbreaks caused by non-O157:H7 E. coli strains, also known as “Big-Six” serogroup strains, are increasing. There is no systematic study describing differential secreted proteins from these non-O157:H7 E. coli strains. In this study, we carried out MS-based differential secretome analysis using tandem mass tags labeling strategy of non-O157:H7 E. coli strains, O103, O111, O121, O145, O26, and O45. We identified 1241 proteins, of which 565 proteins were predicted to be secreted. We also found that 68 proteins were enriched in type III secretion system and several of them were differentially expressed across the strains. Additionally, we identified several strain-specific secreted proteins that could be used for developing potential markers for the identification and strain-level differentiation. To our knowledge, this study is the first comparative proteomic study on secretome of E. coli Big-Six serogroup and the several of these strain-specific secreted proteins can be further studied to develop potential markers for identification and strain-level differentiation. Moreover, the results of this study can be utilized in several applications, including food safety, diagnostics of E. coli outbreaks, and detection and identification of bio threats in biodefense. PMID:28070933
Franta, Zdeněk; Vogel, Heiko; Lehmann, Rüdiger; Rupp, Oliver; Goesmann, Alexander; Vilcinskas, Andreas
2016-01-01
Lucilia sericata larvae are used as an alternative treatment for recalcitrant and chronic wounds. Their excretions/secretions contain molecules that facilitate tissue debridement, disinfect, or accelerate wound healing and have therefore been recognized as a potential source of novel therapeutic compounds. Among the substances present in excretions/secretions various peptidase activities promoting the wound healing processes have been detected but the peptidases responsible for these activities remain mostly unidentified. To explore these enzymes we applied next generation sequencing to analyze the transcriptomes of different maggot tissues (salivary glands, gut, and crop) associated with the production of excretions/secretions and/or with digestion as well as the rest of the larval body. As a result we obtained more than 123.8 million paired-end reads, which were assembled de novo using Trinity and Oases assemblers, yielding 41,421 contigs with an N50 contig length of 2.22 kb and a total length of 67.79 Mb. BLASTp analysis against the MEROPS database identified 1729 contigs in 577 clusters encoding five peptidase classes (serine, cysteine, aspartic, threonine, and metallopeptidases), which were assigned to 26 clans, 48 families, and 185 peptidase species. The individual enzymes were differentially expressed among maggot tissues and included peptidase activities related to the therapeutic effects of maggot excretions/secretions.
Ornek, D; Jayaraman, A; Syrett, B C; Hsu, C-H; Mansfeld, F B; Wood, T K
2002-04-01
Pitting corrosion of aluminum 2024 in Luria Bertani medium was reduced by the secretion of anionic peptides by engineered and natural Bacillus biofilms and was studied in continuous reactors using electrochemical impedance spectroscopy. Compared to sterile controls, pitting was reduced dramatically by the presence of the biofilms. The secretion of a 20 amino acid polyaspartate peptide by an engineered Bacillus subtilis WB600/pBE92-Asp biofilm slightly reduced the corrosion rate of the passive aluminum alloy at pH 6.5; however, the secretion of gamma-polyglutamate by a Bacillus licheniformis biofilm reduced the corrosion rate by 90% (compared to the B. subtilis WB600/pBE92 biofilm which did not secrete polyaspartate or gamma-polyglutamate). The corrosion potential ( E(corr)) of aluminum 2024 was increased by about 0.15-0.44 V due to the formation of B. subtilis and B. licheniformis biofilms as compared to sterile controls. The increase of E(corr) and the observed prevention of pitting indicate that the pitting potential ( E(pit)) had increased. This result and the further decrease of corrosion rates for the passive aluminum alloy suggest that the rate of the anodic metal dissolution reaction was reduced by an inhibitor produced by the biofilms. Purified gamma-polyglutamate also decreased the corrosion rates of aluminum 2024.
Protein kinase CK2 modulates IL-6 expression in inflammatory breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drygin, Denis, E-mail: ddrygin@cylenepharma.com; Ho, Caroline B.; Omori, Mayuko
Highlights: Black-Right-Pointing-Pointer We examine the potential cross-talk between CK2 and IL-6. Black-Right-Pointing-Pointer Inhibition of CK2 by siRNA or CX-4945 inhibits expression of IL-6 in models of IBC. Black-Right-Pointing-Pointer Treatment of IBC patient in the clinic with CX-4945 reduces her IL-6 plasma levels. Black-Right-Pointing-Pointer We demonstrate that CK2 is a potential therapeutic target for IL-6 driven diseases. -- Abstract: Inflammatory breast cancer is driven by pro-angiogenic and pro-inflammatory cytokines. One of them Interleukin-6 (IL-6) is implicated in cancer cell proliferation and survival, and promotes angiogenesis, inflammation and metastasis. While IL-6 has been shown to be upregulated by several oncogenes, the mechanismmore » behind this phenomenon is not well characterized. Here we demonstrate that the pleotropic Serine/Threonine kinase CK2 is implicated in the regulation of IL-6 expression in a model of inflammatory breast cancer. We used siRNAs targeted toward CK2 and a selective small molecule inhibitor of CK2, CX-4945, to inhibit the expression and thus suppress the secretion of IL-6 in in vitro as well as in vivo models. Moreover, we report that in a clinical trial, CX-4945 was able to dramatically reduce IL-6 levels in plasma of an inflammatory breast cancer patient. Our data shed a new light on the regulation of IL-6 expression and position CX-4945 and potentially other inhibitors of CK2, for the treatment of IL-6-driven cancers and possibly other diseases where IL-6 is instrumental, including rheumatoid arthritis.« less
Unconventional Secretion of Heat Shock Proteins in Cancer
Santos, Tiago Góss; Martins, Vilma Regina; Hajj, Glaucia Noeli Maroso
2017-01-01
Heat shock proteins (HSPs) are abundant cellular proteins involved with protein homeostasis. They have both constitutive and inducible isoforms, whose expression levels are further increased by stress conditions, such as temperature elevation, reduced oxygen levels, infection, inflammation and exposure to toxic substances. In these situations, HSPs exert a pivotal role in offering protection, preventing cell death and promoting cell recovery. Although the majority of HSPs functions are exerted in the cytoplasm and organelles, several lines of evidence reveal that HSPs are able to induce cell responses in the extracellular milieu. HSPs do not possess secretion signal peptides, and their secretion was subject to widespread skepticism until the demonstration of the role of unconventional secretion forms such as exosomes. Secretion of HSPs may confer immune system modulation and be a cell-to-cell mediated form of increasing stress resistance. Thus, there is a wide potential for secreted HSPs in resistance of cancer therapy and in the development new therapeutic strategies. PMID:28468249
MacDonald, Patrick E; De Marinis, Yang Zhang; Ramracheya, Reshma; Salehi, Albert; Ma, Xiaosong; Johnson, Paul R V; Cox, Roger; Eliasson, Lena; Rorsman, Patrik
2007-06-01
Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+) responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+) signalling was blocked, but was reversed by low concentrations (1-20 muM) of the ATP-sensitive K(+) (KATP) channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM). Higher diazoxide concentrations (>/=30 muM) decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+) responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (<1 muM) stimulated glucagon secretion, whereas high concentrations (>10 muM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+) (TTX) and N-type Ca(2+) channels (omega-conotoxin), but not L-type Ca(2+) channels (nifedipine), prevented glucagon secretion. Both the N-type Ca(2+) channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.
Mathematical modeling of urea transport in the kidney.
Layton, Anita T
2014-01-01
Mathematical modeling techniques have been useful in providing insights into biological systems, including the kidney. This article considers some of the mathematical models that concern urea transport in the kidney. Modeling simulations have been conducted to investigate, in the context of urea cycling and urine concentration, the effects of hypothetical active urea secretion into pars recta. Simulation results suggest that active urea secretion induces a "urea-selective" improvement in urine concentrating ability. Mathematical models have also been built to study the implications of the highly structured organization of tubules and vessels in the renal medulla on urea sequestration and cycling. The goal of this article is to show how physiological problems can be formulated and studied mathematically, and how such models may provide insights into renal functions.
MyRIP interaction with MyoVa on secretory granules is controlled by the cAMP-PKA pathway.
Brozzi, Flora; Lajus, Sophie; Diraison, Frederique; Rajatileka, Shavanthi; Hayward, Katy; Regazzi, Romano; Molnár, Elek; Váradi, Anikó
2012-11-01
Myosin- and Rab-interacting protein (MyRIP), which belongs to the protein kinase A (PKA)-anchoring family, is implicated in hormone secretion. However, its mechanism of action is not fully elucidated. Here we investigate the role of MyRIP in myosin Va (MyoVa)-dependent secretory granule (SG) transport and secretion in pancreatic beta cells. These cells solely express the brain isoform of MyoVa (BR-MyoVa), which is a key motor protein in SG transport. In vitro pull-down, coimmunoprecipitation, and colocalization studies revealed that MyRIP does not interact with BR-MyoVa in glucose-stimulated pancreatic beta cells, suggesting that, contrary to previous notions, MyRIP does not link this motor protein to SGs. Glucose-stimulated insulin secretion is augmented by incretin hormones, which increase cAMP levels and leads to MyRIP phosphorylation, its interaction with BR-MyoVa, and phosphorylation of the BR-MyoVa receptor rabphilin-3A (Rph-3A). Rph-3A phosphorylation on Ser-234 was inhibited by small interfering RNA knockdown of MyRIP, which also reduced cAMP-mediated hormone secretion. Demonstrating the importance of this phosphorylation, nonphosphorylatable and phosphomimic Rph-3A mutants significantly altered hormone release when PKA was activated. These data suggest that MyRIP only forms a functional protein complex with BR-MyoVa on SGs when cAMP is elevated and under this condition facilitates phosphorylation of SG-associated proteins, which in turn can enhance secretion.
Eccrine sweat gland development and sweat secretion.
Cui, Chang-Yi; Schlessinger, David
2015-09-01
Eccrine sweat glands help to maintain homoeostasis, primarily by stabilizing body temperature. Derived from embryonic ectoderm, millions of eccrine glands are distributed across human skin and secrete litres of sweat per day. Their easy accessibility has facilitated the start of analyses of their development and function. Mouse genetic models find sweat gland development regulated sequentially by Wnt, Eda and Shh pathways, although precise subpathways and additional regulators require further elucidation. Mature glands have two secretory cell types, clear and dark cells, whose comparative development and functional interactions remain largely unknown. Clear cells have long been known as the major secretory cells, but recent studies suggest that dark cells are also indispensable for sweat secretion. Dark cell-specific Foxa1 expression was shown to regulate a Ca(2+) -dependent Best2 anion channel that is the candidate driver for the required ion currents. Overall, it was shown that cholinergic impulses trigger sweat secretion in mature glands through second messengers - for example InsP3 and Ca(2+) - and downstream ion channels/transporters in the framework of a Na(+) -K(+) -Cl(-) cotransporter model. Notably, the microenvironment surrounding secretory cells, including acid-base balance, was implicated to be important for proper sweat secretion, which requires further clarification. Furthermore, multiple ion channels have been shown to be expressed in clear and dark cells, but the degree to which various ion channels function redundantly or indispensably also remains to be determined. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Lasica, Anna M.; Goulas, Theodoros; Mizgalska, Danuta; Zhou, Xiaoyan; de Diego, Iñaki; Ksiazek, Mirosław; Madej, Mariusz; Guo, Yonghua; Guevara, Tibisay; Nowak, Magdalena; Potempa, Barbara; Goel, Apoorv; Sztukowska, Maryta; Prabhakar, Apurva T.; Bzowska, Monika; Widziolek, Magdalena; Thøgersen, Ida B.; Enghild, Jan J.; Simonian, Mary; Kulczyk, Arkadiusz W.; Nguyen, Ky-Anh; Potempa, Jan; Gomis-Rüth, F. Xavier
2016-01-01
Porphyromonas gingivalis is a member of the human oral microbiome abundant in dysbiosis and implicated in the pathogenesis of periodontal (gum) disease. It employs a newly described type-IX secretion system (T9SS) for secretion of virulence factors. Cargo proteins destined for secretion through T9SS carry a recognition signal in the conserved C-terminal domain (CTD), which is removed by sortase PorU during translocation. Here, we identified a novel component of T9SS, PorZ, which is essential for surface exposure of PorU and posttranslational modification of T9SS cargo proteins. These include maturation of enzyme precursors, CTD removal and attachment of anionic lipopolysaccharide for anchorage in the outer membrane. The crystal structure of PorZ revealed two β-propeller domains and a C-terminal β-sandwich domain, which conforms to the canonical CTD architecture. We further documented that PorZ is itself transported to the cell surface via T9SS as a full-length protein with its CTD intact, independently of the presence or activity of PorU. Taken together, our results shed light on the architecture and possible function of a novel component of the T9SS. Knowledge of how T9SS operates will contribute to our understanding of protein secretion as part of host-microbiome interactions by dysbiotic members of the human oral cavity. PMID:27883039
Vaidya, Anand; Williams, Jonathan S.
2011-01-01
Objective Vitamin D has been implicated in the pathophysiology of extra-skeletal conditions such as hypertension, kidney disease, and diabetes, via its ability to negatively regulate the renin-angiotensin system (RAS). This article reviews the evidence supporting a link between vitamin D and the RAS in these conditions, with specific emphasis on translational observations and their limitations. Methods Literature review of animal and human studies evaluating the role of vitamin D in hypertension, kidney disease, and diabetes. Results Excess activity of the RAS has been implicated in the pathogenesis of hypertension, chronic kidney disease, decreased insulin secretion, and insulin resistance. Animal studies provide strong support for 1,25(OH)2D mediated down-regulation of renin expression and RAS activity via its interaction with the vitamin D receptor. Furthermore, the activity of vitamin D metabolites in animals is associated with reductions in blood pressure, proteinuria and renal injury, and with improved β–cell function. Many observational, and a few interventional, studies in humans have supported these findings; however, there is a lack of well designed prospective human interventional studies to definitively assess clinical outcomes. Conclusion Animal studies implicate vitamin D receptor agonist therapy to lower RAS activity as a potential method to reduce the risk of hypertension, kidney disease, and diabetes. There is a need for more well designed prospective interventional studies to validate this hypothesis in human clinical outcomes. PMID:22075270
Lactobacillus delivery of bioactive interleukin-22.
Lin, Yin; Krogh-Andersen, Kasper; Hammarström, Lennart; Marcotte, Harold
2017-08-23
Interleukin-22 (IL-22) plays a prominent role in epithelial regeneration and dampening of chronic inflammatory responses by protecting intestinal stem cells from immune-mediated tissue damage. IL-22 has a considerable therapeutic potential in graft-versus-host disease (GVHD), which is a frequent and challenging complication following allogeneic stem cell transplantation. The aim of our study was to engineer Lactobacillus for delivery of IL-22 directly to the intestinal mucosa as a new therapeutic strategy for GVHD. The secretion and surface anchoring of mouse IL-22 by Lactobacillus paracasei BL23 was demonstrated by Western blot and flow cytometry. Both secreted and anchored mouse IL-22 produced by Lactobacillus was biologically active, as determined by its ability to induce IL-10 secretion in the Colo 205 human colon cancer cell line. We have demonstrated the secretion and surface anchoring of bioactive IL-22 by Lactobacillus. Our results suggest that IL-22 expressing lactobacilli may potentially be a useful mucosal therapeutic agent for the treatment of GVHD, provided that chromosomal integration of the IL-22 expression cassettes can be achieved.
Zhao, Rui; Xie, Pengfei; Zhang, Kun; Tang, Zhurong; Chen, Xuening; Zhu, Xiangdong; Fan, Yujiang; Yang, Xiao; Zhang, Xingdong
2017-09-01
Adequate bone substitutes osseointegration has been difficult to achieve in osteoporosis. Hydroxyapatite of the osteoporotic bone, secreted by pathologic osteoblasts, had a smaller crystal size and lower crystallinity than that of the normal. To date, little is known regarding the interaction of synthetic hydroxyapatite nanoparticles (HANPs) with osteoblasts born in bone rarefaction. The present study investigated the biological effects of HANPs on osteoblastic cells derived from osteoporotic rat bone (OVX-OB), in comparison with the healthy ones (SHM-OB). A selective effect of different concentrations of HANPs on the two cell lines was observed that the osteoporotic osteoblasts had a higher tolerance. Reductions in cell proliferation, ALP activity, collagen secretion and osteoblastic gene expressions were found in the SHM-OB when administered with HANPs concentration higher than 25µg/ml. In contrast, those of the OVX-OB suffered no depression but benefited from 25 to 250µg/ml HANPs in a dose-dependent manner. We demonstrated that the different effects of HANPs on osteoblasts were associated with the intracellular calcium influx into the endoplasmic reticulum. The in vivo bone defect model further confirmed that, with a critical HANPs concentration administration, the osteoporotic rats had more and mechanically matured new bone formation than the non-treated ones, whilst the sham rats healed no better than the natural healing control. Collectively, the observed epigenetic regulation of osteoblastic cell function by HANPs has significant implication on defining design parameters for a potential therapeutic use of nanomaterials. In this study, we investigated the biological effects of hydroxyapatite nanoparticles (HANPs) on osteoporotic rat bone and the derived osteoblast. Our findings revealed a previously unrecognized phenomenon that the osteoporotic individuals could benefit from higher concentrations of HANPs, as compared with the healthy individuals. The in vivo bone defect model confirmed that, with a critical HANPs concentration administration, the osteoporotic rats had more mechanically matured new bone formation than the non-treated ones, whilst the sham rats healed no better than the natural healing control. The selective effect of HANPs might be associated with the intracellular calcium influx into the endoplasmic reticulum. Collectively, the observed epigenetic regulation by HANPs has significant implication on defining design parameters for a potential therapeutic use of nanomaterials in a pathological condition. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Campion, Katherine L; McCormick, Wanda D; Warwicker, Jim; Khayat, Mohd Ezuan Bin; Atkinson-Dell, Rebecca; Steward, Martin C; Delbridge, Leigh W; Mun, Hee-Chang; Conigrave, Arthur D; Ward, Donald T
2015-09-01
The calcium-sensing receptor (CaR) modulates renal calcium reabsorption and parathyroid hormone (PTH) secretion and is involved in the etiology of secondary hyperparathyroidism in CKD. Supraphysiologic changes in extracellular pH (pHo) modulate CaR responsiveness in HEK-293 (CaR-HEK) cells. Therefore, because acidosis and alkalosis are associated with altered PTH secretion in vivo, we examined whether pathophysiologic changes in pHo can significantly alter CaR responsiveness in both heterologous and endogenous expression systems and whether this affects PTH secretion. In both CaR-HEK and isolated bovine parathyroid cells, decreasing pHo from 7.4 to 7.2 rapidly inhibited CaR-induced intracellular calcium (Ca(2+)i) mobilization, whereas raising pHo to 7.6 potentiated responsiveness to extracellular calcium (Ca(2+)o). Similar pHo effects were observed for Ca(2+)o-induced extracellular signal-regulated kinase phosphorylation and actin polymerization and for L-Phe-induced Ca(2+)i mobilization. Intracellular pH was unaffected by acute 0.4-unit pHo changes, and the presence of physiologic albumin concentrations failed to attenuate the pHo-mediated effects. None of the individual point mutations created at histidine or cysteine residues in the extracellular domain of CaR attenuated pHo sensitivity. Finally, pathophysiologic pHo elevation reversibly suppressed PTH secretion from perifused human parathyroid cells, and acidosis transiently increased PTH secretion. Therefore, pathophysiologic pHo changes can modulate CaR responsiveness in HEK-293 and parathyroid cells independently of extracellular histidine residues. Specifically, pathophysiologic acidification inhibits CaR activity, thus permitting PTH secretion, whereas alkalinization potentiates CaR activity to suppress PTH secretion. These findings suggest that acid-base disturbances may affect the CaR-mediated control of parathyroid function and calcium metabolism in vivo. Copyright © 2015 by the American Society of Nephrology.
Bestrophin-2 mediates bicarbonate transport by goblet cells in mouse colon
Yu, Kuai; Lujan, Rafael; Marmorstein, Alan; Gabriel, Sherif; Hartzell, H. Criss
2010-01-01
Anion transport by the colonic mucosa maintains the hydration and pH of the colonic lumen, and its disruption causes a variety of diarrheal diseases. Cholinergic agonists raise cytosolic Ca2+ levels and stimulate anion secretion, but the mechanisms underlying this effect remain unclear. Cholinergic stimulation of anion secretion may occur via activation of Ca2+-activated Cl– channels (CaCCs) or an increase in the Cl– driving force through CFTR after activation of Ca2+-dependent K+ channels. Here we investigated the role of a candidate CaCC protein, bestrophin-2 (Best2), using Best2–/– mice. Cholinergic stimulation of anion current was greatly reduced in Best2–/– mice, consistent with our proposed role for Best2 as a CaCC. However, immunostaining revealed Best2 localized to the basolateral membrane of mucin-secreting colonic goblet cells, not the apical membrane of Cl–-secreting enterocytes. In addition, in the absence of HCO3–, cholinergic-activated current was identical in control and Best2–/– tissue preparations, which suggests that most of the Best2 current was carried by HCO3–. These data delineate an alternative model of cholinergic regulation of colonic anion secretion in which goblet cells play a critical role in HCO3– homeostasis. We therefore propose that Best2 is a HCO3– channel that works in concert with a Cl:HCO3– exchanger in the apical membrane to affect transcellular HCO3– transport. Furthermore, previous models implicating CFTR in cholinergic Cl– secretion may be explained by substantial downregulation of Best2 in Cftr–/– mice. PMID:20407206
Liu, Limei; Liu, Jian; Gao, Yuansheng; Yu, Xiaoxing; Xu, Gang; Huang, Yu
2014-01-01
BACKGROUND AND PURPOSE Uncoupling protein-2 (UCP2) may regulate glucose-stimulated insulin secretion. The current study investigated the effects of berberine, an alkaloid found in many medicinal plants, on oxidative stress and insulin secretion through restoration of UCP2 expression in high glucose (HG)-treated INS-1E cells and rat islets or in db/db mouse islets. EXPERIMENTAL APPROACH Mouse and rat pancreatic islets were isolated. Nitrotyrosine, superoxide dismutase (SOD)-1 and UCP2 expression and AMPK phosphorylation were examined by Western blotting. Insulin secretion was measured by elisa. Mitochondrial reactive oxygen species (ROS) production was detected by confocal microscopy. KEY RESULTS Incubation of INS-1E cells and rat islets with HG (30 mmol·L−1; 8 h) elevated nitrotyrosine level, reduced SOD-1 and UCP2 expression and AMPK phosphorylation, and inhibited glucose-stimulated insulin secretion. HG also increased mitochondrial ROS in INS-1E cells. Co-treatment with berberine inhibited such effects. The AMPK inhibitor compound C, the UCP2 inhibitor genipin and adenovirus ucp2 shRNA inhibited these protective effects of berberine. Furthermore, compound C normalized berberine-stimulated UCP2 expression but genipin did not affect AMPK phosphorylation. Islets from db/db mice exhibited elevated nitrotyrosine levels, reduced expression of SOD-1 and UCP2 and AMPK phosphorylation, and decreased insulin secretion compared with those from db/m+ mice. Berberine also improved these defects in diabetic islets and genipin blocked the effects of berberine. CONCLUSIONS AND IMPLICATIONS Berberine inhibited oxidative stress and restored insulin secretion in HG-treated INS-IE cells and diabetic mouse islets by activating AMPK and UCP2. UCP2 is an important signalling molecule in mediating anti-diabetic effects of berberine. PMID:24588674
Carta, Sonia; Penco, Federica; Lavieri, Rosa; Martini, Alberto; Dinarello, Charles Anthony; Gattorno, Marco; Rubartelli, Anna
2015-01-01
Cell stress is implicated in triggering bouts of systemic inflammation in patients with autoinflammatory disorders. Blood monocytes from patients affected by NLRP3-mediated cryopyrin-associated periodic syndromes (CAPS) release greater amounts of IL-1β than monocytes from unaffected subjects. Here we show that stress lowers the threshold of activation; blood monocytes from CAPS patients maintain the high levels of secreted IL-1β (fivefold) and IL-18 (10-fold) when stimulated with 1,000-fold less LPS than that required for full IL-1β secretion in control subjects. Unexpectedly, IL-1α secretion is increased 10-fold, indicating that inflammatory episodes in CAPS may not be entirely a result of IL-1β but may also involve IL-1α. In CAPS monocytes, LPS induces the externalization of copious amounts of ATP (10-fold), which drive IL-1β, IL-18, and IL-1α release via activation of the P2X purinoceptor 7. This enhanced ATP release appears to be the link between cell stress and increased cytokine secretion in CAPS. In the later phase after LPS stimulation, CAPS monocytes undergo oxidative stress, which impairs production of the anti-inflammatory IL-1 receptor antagonist (IL-1Ra). Remarkably, IL-1Ra secretion is fully restored by treatment with antioxidants. In two patients with the same NLRP3 mutation, but different disease severity, monocytes from the mildly affected patient exhibited more efficient redox response, lower ATP secretion, and more balanced cytokine production. Thus, the robustness of the individual antioxidant response increases the tolerance to stress and reduces the negative effect of the disease. Pharmacologic block of P2X purinoceptor 7 and improved stress tolerance may represent novel treatment strategies in stress-associated inflammatory diseases. PMID:25730877
Wu, D Z; Yuan, J Y; Shi, H L; Hu, Z B
2008-01-01
Background and purpose: The protoberberine alkaloid berberine has been reported to inhibit colonic Cl− secretion. However, it is not known if other protoberberine alkaloids share these effects. We have therefore selected another protoberberine alkaloid, palmatine, to assess its effects on active ion transport across rat colonic epithelium. Experimental approach: Rat colonic mucosa was mounted in Ussing chambers and short circuit current (I SC), apical Cl− current and basolateral K+ current were recorded. Intracellular cAMP content was determined by an enzyme immunoassay. Intracellular Ca2+ concentration was measured with Fura-2 AM. Key results: Palmatine inhibited carbachol-induced Ca2+-activated Cl− secretion and the carbachol-induced increase of intracellular Ca2+ concentration. Palmatine also inhibited cAMP-activated Cl− secretion induced by prostaglandin E2 (PGE2) or forskolin. Palmatine prevented the elevation of intracellular cAMP by forskolin. Determination of apical Cl− currents showed that palmatine suppressed the forskolin-stimulated, apical cAMP-activated Cl− current but not the carbachol-stimulated apical Ca2+-activated Cl− current. Following permeabilization of apical membranes with nystatin, we found that palmatine inhibited a carbachol-stimulated basolateral K+ current that was sensitive to charybdotoxin and resistant to chromanol 293B. However, the forskolin-stimulated basolateral K+ current inhibited by palmatine was specifically blocked by chromanol 293B and not by charybdotoxin. Conclusions and implications: Palmatine attenuated Ca2+-activated Cl− secretion through inhibiting basolateral charybdotoxin-sensitive, SK4 K+ channels, whereas it inhibited cAMP-activated Cl− secretion by inhibiting apical CFTR Cl− channels and basolateral chromanol 293B-sensitive, KvLQT1 K+ channels. PMID:18204477
Bandyopadhyay, Purnima; Liu, Shuqing; Gabbai, Carolina B; Venitelli, Zeah; Steinman, Howard M
2007-02-01
Legionella pneumophila, the causative organism of Legionnaires' disease, is a fresh-water bacterium and intracellular parasite of amoebae. This study examined the effects of incubation in water and amoeba encystment on L. pneumophila strain JR32 and null mutants in dot/icm genes encoding a type IVB secretion system required for entry, delayed acidification of L. pneumophila-containing phagosomes, and intracellular multiplication when stationary-phase bacteria infect amoebae and macrophages. Following incubation of stationary-phase cultures in water, mutants in dotA and dotB, essential for function of the type IVB secretion system, exhibited entry and delay of phagosome acidification comparable to that of strain JR32. Following encystment in Acanthamoeba castellanii and reversion of cysts to amoeba trophozoites, dotA and dotB mutants exhibited intracellular multiplication in amoebae. The L. pneumophila Lvh locus, encoding a type IVA secretion system homologous to that in Agrobacterium tumefaciens, was required for restoration of entry and intracellular multiplication in dot/icm mutants following incubation in water and amoeba encystment and was required for delay of phagosome acidification in strain JR32. These data support a model in which the Dot/Icm type IVB secretion system is conditionally rather than absolutely required for L. pneumophila virulence-related phenotypes. The data suggest that the Lvh type IVA secretion system, previously thought to be dispensable, is involved in virulence-related phenotypes under conditions mimicking the spread of Legionnaires' disease from environmental niches. Since environmental amoebae are implicated as reservoirs for an increasing number of environmental pathogens and for drug-resistant bacteria, the environmental mimics developed here may be useful in virulence studies of other pathogens.
Murdoch, Sarah L.; Trunk, Katharina; English, Grant; Fritsch, Maximilian J.; Pourkarimi, Ehsan; Coulthurst, Sarah J.
2011-01-01
The type VI secretion system (T6SS) is the most recently described and least understood of the protein secretion systems of Gram-negative bacteria. It is widely distributed and has been implicated in the virulence of various pathogens, but its mechanism and exact mode of action remain to be defined. Additionally there have been several very recent reports that some T6SSs can target bacteria rather than eukaryotic cells. Serratia marcescens is an opportunistic enteric pathogen, a class of bacteria responsible for a significant proportion of hospital-acquired infections. We describe the identification of a functional T6SS in S. marcescens strain Db10, the first report of type VI secretion by an opportunist enteric bacterium. The T6SS of S. marcescens Db10 is active, with secretion of Hcp to the culture medium readily detected, and is expressed constitutively under normal growth conditions from a large transcriptional unit. Expression of the T6SS genes did not appear to be dependent on the integrity of the T6SS. The S. marcescens Db10 T6SS is not required for virulence in three nonmammalian virulence models. It does, however, exhibit dramatic antibacterial killing activity against several other bacterial species and is required for S. marcescens to persist in a mixed culture with another opportunist pathogen, Enterobacter cloacae. Importantly, this antibacterial killing activity is highly strain specific, with the S. marcescens Db10 T6SS being highly effective against another strain of S. marcescens with a very similar and active T6SS. We conclude that type VI secretion plays a crucial role in the competitiveness, and thus indirectly the virulence, of S. marcescens and other opportunistic bacterial pathogens. PMID:21890705
Effects of salt secretion on psychrometric determinations of water potential of cotton leaves.
Klepper, B; Barrs, H D
1968-07-01
Thermocouple psychrometers gave lower estimates of water potential of cotton leaves than did a pressure chamber. This difference was considerable for turgid leaves, but progressively decreased for leaves with lower water potentials and fell to zero at water potentials below about -10 bars. The conductivity of washings from cotton leaves removed from the psychrometric equilibration chambers was related to the magnitude of this discrepancy in water potential, indicating that the discrepancy is due to salts on the leaf surface which make the psychrometric estimates too low. This error, which may be as great as 400 to 500%, cannot be eliminated by washing the leaves because salts may be secreted during the equilibration period. Therefore, a thermocouple psychrometer is not suitable for measuring the water potential of cotton leaves when it is above about -10 bars.
Liao, S B; Cheung, K H; Cheung, M P L; Wong, P F; O, W S; Tang, F
2014-05-01
In this study, we have investigated the effects of adrenomedullin on chloride and fluid secretion in the rat prostate. The presence of adrenomedullin (ADM) in rat prostate was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with an enzyme-linked assay for ADM. The effects of ADM on fluid secretion were studied by short-circuit current technique in a whole mount preparation of the prostate in an Ussing chamber. The results indicated that the ADM level was higher in the ventral than the dorso-lateral prostate and the major molecular species was the active peptide. ADM increased the short-circuit current through both the cAMP- and calcium-activated chloride channels in the ventral lobe, but only through the calcium-activated channels in the dorso-lateral lobe. These stimulatory effects were blocked by the calcitonin gene-related peptide (CGRP) receptor antagonist, hCGRP8-37. We conclude that ADM may regulate prostatic fluid secretion through the chloride channels, which may affect the composition of the seminal plasma bathing the spermatozoa and hence fertility. © 2014 American Society of Andrology and European Academy of Andrology.
Pannkuk, Evan L; Gilmore, David F; Fuller, Nathan W; Savary, Brett J; Risch, Thomas S
2013-12-01
White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans and is devastating North American bat populations. Sebaceous lipids secreted from host integumentary tissues are implicated in the initial attachment and recognition of host tissues by pathogenic fungi. We are interested in determining if ratios of lipid classes in sebum can be used as biomarkers to diagnose severity of fungal infection in bats. To first establish lipid compositions in bats, we isolated secreted and integral lipid fractions from the hair and wing tissues of three species: big brown bats (Eptesicus fuscus), Eastern red bats (Lasiurus borealis), and evening bats (Nycticeius humeralis). Sterols, FFAs, MAGs, and squalene were derivatized as trimethylsilyl esters, separated by gas chromatography, and identified by mass spectrometry. Ratios of sterol to squalene in different tissues were determined, and cholesterol as a disease biomarker was assessed. Free sterol was the dominant lipid class of bat integument. Squalene/sterol ratio is highest in wing sebum. Secreted wing lipid contained higher proportions of saturated FFAs and MAGs than integral wing or secreted hair lipid. These compounds are targets for investigating responses of P. destructans to specific host lipid compounds and as biomarkers to diagnose WNS. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
The effect of serum from women with preeclampsia on JAR (trophoblast-like) cell line.
Mahameed, Safa; Goldman, Shlomit; Gabarin, Diane; Weiss, Amir; Shalev, Eliezer
2005-09-01
Pathologic placentation has been implicated in the pathogenesis of preeclamsia. We sought to assess the effect serum obtained from women with preeclampsia would have on JAR human choriocarcinoma cells regarding growth, invasiveness, and matrix metalloproteinase (MMP) secretion as compared to normotensive pregnant woman. Blood was collected from 11 healthy pregnant women and from10 patients with preeclampsia at 28-33 weeks of gestation. The JAR human choriocarcinoma cell line was cultured in the presence of 10% serum obtained from each group. Cell proliferation, invasiveness, and MMP secretion was measured using a cell proliferation kit, the Matrigel (BD Biosciences, Beit-Ha'Emek, Israel) invasion assay, and gel zymography, respectively. Cell growth increased by 6% when exposed to serum from patients with preeclampsia compared to 30% from controls (P <.01). Trophoblast invasion was significantly (P <.01) reduced in the preeclampsia group (21 +/- 1.9%) compared to controls (27 +/- 2.5%). Valid MMP-2 secretion was reduced by 51% in the preeclampsia group compared to controls (P <.05). Serum obtained from women with preeclampsia contains a factor or factors that exhibit an inhibitory effect on JAR trophoblast cell proliferation, invasiveness, and MMP-2 secretion. These factors may be involved in the pathologic placentation associated with the pathogenesis of preeclampsia.
Tamura, Kazuhiro; Naraba, Hiroaki; Hara, Takahiko; Nakamura, Kota; Yoshie, Mikihiro; Kogo, Hiroshi; Tachikawa, Eiichi
2016-03-01
Microsomal prostaglandin E synthase-1 (mPGES-1) is primarily expressed in granulosa cells (GCs) in the preovulatory follicle. Both prostaglandin E2 (PGE2) and progesterone (P4) are implicated in various reproductive functions. Here, we demonstrate that mPges-1 may be a direct downstream target gene of the P4 receptor and P4-stimulated PGE2 secretion can stimulate P4 production in a newly generated mouse GC line (GtsT). Treatment of GtsT cells with a P4 receptor agonist, norgestrel, markedly increased mPGES-1 expression detected by RT-PCR analysis. PGE2 secretion measured by an enzyme-linked immunosorbent assay was enhanced by P4 treatment. Luciferase assays revealed that the proximal promoter region of the mPges-1 gene was responsible for the effects of P4 treatment. Conversely, PGE2 treatment stimulated P4 secretion, which coordinated with mRNA expression of steroidogenic acute regulatory protein. Taken together, P4 may regulate mPGES-1 expression to increase PGE2 secretion and in turn P4 production. An autocrine loop between P4 and PGE2 might function to maintain the increased levels of both in GCs. Copyright © 2016 Elsevier Inc. All rights reserved.
Pepsin as a Marker for Pulmonary Aspiration
Metheny, Norma A.; Chang, Yie-Hwa; Ye, Jing Song; Edwards, Sharon J.; Defer, Julie; Dahms, Thomas E.; Stewart, Barbara J.; Stone, Kathleen S.; Clouse, Ray E.
2008-01-01
BACKGROUND Although assessment for aspiration of small volumes of gastric contents in tube-fed patients receiving mechanical ventilation is important, available methods for this purpose are not wholly satisfactory. A potential method is immunoassay of tracheal secretions for the gastric enzyme pepsin. OBJECTIVES To determine the frequency with which pepsin in suctioned tracheal secretions from acutely ill, tube-fed patients receiving mechanical ventilation could be detected via an immunoassay. METHODS A convenience sample of 136 specimens of suctioned tracheal secretions was collected from 30 acutely ill, tube-fed adults receiving mechanical ventilation. Multiple samples were obtained from 26 of the 30 patients (range, 2−11 per subject). An immunoassay with rooster polyclonal antibodies to purified human pepsin was used to detect pepsin in the secretions. RESULTS Fourteen specimens tested positive for pepsin. Secretions from 5 patients accounted for the 14 pepsin-positive results. A significant relationship was found between the position of the head of the bed and the presence of pepsin in tracheal secretions (P< .001). Of the 14 pepsin-positive specimens, 13 (92.9%) were obtained from subjects in a flat position. CONCLUSIONS A pepsin immunoassay can be used to detect pepsin in human tracheal secretions. If pepsin in tracheal secretions is considered an indicator of aspiration of gastric contents, aspiration occurred in 5 of the 30 subjects. A flat position is strongly associated with the presence of pepsin in tracheal secretions. PMID:11888127
Allyl isothiocyanate increases carbohydrate oxidation through enhancing insulin secretion by TRPV1.
Mori, Noriyuki; Kurata, Manami; Yamazaki, Hanae; Matsumura, Shigenobu; Hashimoto, Takashi; Kanazawa, Kazuki; Nadamoto, Tomonori; Inoue, Kazuo; Fushiki, Tohru
2018-04-01
The transient receptor potential (TRP) V1 is a cation channel belonging to the TRP channel family and it has been reported to be involved in energy metabolism, especially glucose metabolism. While, we have previously shown that intragastric administration of allyl isothiocyanate (AITC) enhanced glucose metabolism via TRPV1, the underlying mechanism has not been elucidated. In this study, we examined the relationship between insulin secretion and the increase in carbohydrate oxidation due to AITC. Intragastric administration of AITC elevated blood insulin levels in mice and AITC directly enhanced insulin secretion from isolated islets. These observations were not reproduced in TRPV1 knockout mice. Furthermore, AITC did not increase carbohydrate oxidation in streptozotocin-treated mice. These results suggest that intragastric administration of AITC could induce insulin secretion from islets via TRPV1 and that enhancement of insulin secretion was related to the increased carbohydrate oxidation due to AITC.
McAuley, Julie L; Tate, Michelle D; MacKenzie-Kludas, Charley J; Pinar, Anita; Zeng, Weiguang; Stutz, Andrea; Latz, Eicke; Brown, Lorena E; Mansell, Ashley
2013-01-01
The ability for a host to recognize infection is critical for virus clearance and often begins with induction of inflammation. The PB1-F2 of pathogenic influenza A viruses (IAV) contributes to the pathophysiology of infection, although the mechanism for this is unclear. The NLRP3-inflammasome has been implicated in IAV pathogenesis, but whether IAV virulence proteins can be activators of the complex is unknown. We investigated whether PB1-F2-mediated activation of the NLRP3-inflammasome is a mechanism contributing to overt inflammatory responses to IAV infection. We show PB1-F2 induces secretion of pyrogenic cytokine IL-1β by activating the NLRP3-inflammasome, contributing to inflammation triggered by pathogenic IAV. Compared to infection with wild-type virus, mice infected with reverse engineered PB1-F2-deficient IAV resulted in decreased IL-1β secretion and cellular recruitment to the airways. Moreover, mice exposed to PB1-F2 peptide derived from pathogenic IAV had enhanced IL-1β secretion compared to mice exposed to peptide derived from seasonal IAV. Implicating the NLRP3-inflammasome complex specifically, we show PB1-F2 derived from pathogenic IAV induced IL-1β secretion was Caspase-1-dependent in human PBMCs and NLRP3-dependent in mice. Importantly, we demonstrate PB1-F2 is incorporated into the phagolysosomal compartment, and upon acidification, induces ASC speck formation. We also show that high molecular weight aggregated PB1-F2, rather than soluble PB1-F2, induces IL-1β secretion. Furthermore, NLRP3-deficient mice exposed to PB1-F2 peptide or infected with PB1-F2 expressing IAV were unable to efficiently induce the robust inflammatory response as observed in wild-type mice. In addition to viral pore forming toxins, ion channel proteins and RNA, we demonstrate inducers of NLRP3-inflammasome activation may include disordered viral proteins, as exemplified by PB1-F2, acting as host pathogen 'danger' signals. Elucidating immunostimulatory PB1-F2 mediation of NLRP3-inflammasome activation is a major step forward in our understanding of the aetiology of disease attributable to exuberant inflammatory responses to IAV infection.
Overexpression of p35 in Min6 pancreatic beta cells induces a stressed neuron-like apoptosis.
Zheng, Ya-Li; Hu, Ya-Fang; Zhang, Aiping; Wang, Wei; Li, Bo; Amin, Niranjana; Grant, Philip; Pant, Harish C
2010-12-15
Cdk5 activity has been implicated in brain development and the regulation of many neuronal processes. Recently, the expression of p35 and Cdk5 activity has been reported in pancreatic beta cells. Decreased Cdk5 activity enhanced glucose-stimulated insulin secretion. This suggests that Cdk5 may play an important role in the regulation of insulin secretion. To further understand how Cdk5 regulates insulin secretion in glucose-stimulated pancreatic β cells, we first confirmed the presence of a low level of p35 in pancreatic Min6 cells. Next, in a time-course experiment in high glucose (25 mM) we showed that endogenous p35 increased gradually accompanied by a 3-fold increase in Cdk5 activity by 16 h. Insulin secretion, however, doubled after 2 h followed by progressive downregulation, negatively correlated with Cdk5 activity. On the other hand, overexpression of p35 in these cells resulted in more than a three-fold increase in Cdk5 activity within 2 h coupled to a 50% reduction in insulin secretion in both high and low (3 mM) glucose. Most significantly, cells overexpressing p35, treated with high glucose for 4 h, showed induction of p25, the p35-derived truncated fragment which hyperactivates Cdk5 in neurons. As a result, insulin secretion was inhibited and cells became apoptotic. Roscovitine or co-infection of dominant negative Cdk5 (dnCdk5) with p35 increased insulin secretion and inhibited apoptosis. These results suggest that the model for deregulation and hyperactivation of Cdk5 in neurodegeneration may apply to the pathology seen in type 2 diabetes (T2DM). It is consistent with the view that Alzheimer's disease and T2DM are linked metabolically and pathologically by Cdk5 in a number of ways. Copyright © 2010. Published by Elsevier B.V.
Fritsch, Maximilian J.; Trunk, Katharina; Diniz, Juliana Alcoforado; Guo, Manman; Trost, Matthias; Coulthurst, Sarah J.
2013-01-01
It has recently become apparent that the Type VI secretion system (T6SS) is a complex macromolecular machine used by many bacterial species to inject effector proteins into eukaryotic or bacterial cells, with significant implications for virulence and interbacterial competition. “Antibacterial” T6SSs, such as the one elaborated by the opportunistic human pathogen, Serratia marcescens, confer on the secreting bacterium the ability to rapidly and efficiently kill rival bacteria. Identification of secreted substrates of the T6SS is critical to understanding its role and ability to kill other cells, but only a limited number of effectors have been reported so far. Here we report the successful use of label-free quantitative mass spectrometry to identify at least eleven substrates of the S. marcescens T6SS, including four novel effector proteins which are distinct from other T6SS-secreted proteins reported to date. These new effectors were confirmed as antibacterial toxins and self-protecting immunity proteins able to neutralize their cognate toxins were identified. The global secretomic study also unexpectedly revealed that protein phosphorylation-based post-translational regulation of the S. marcescens T6SS differs from that of the paradigm, H1-T6SS of Pseudomonas aeruginosa. Combined phosphoproteomic and genetic analyses demonstrated that conserved PpkA-dependent threonine phosphorylation of the T6SS structural component Fha is required for T6SS activation in S. marcescens and that the phosphatase PppA can reverse this modification. However, the signal and mechanism of PpkA activation is distinct from that observed previously and does not appear to require cell–cell contact. Hence this study has not only demonstrated that new and species-specific portfolios of antibacterial effectors are secreted by the T6SS, but also shown for the first time that PpkA-dependent post-translational regulation of the T6SS is tailored to fit the needs of different bacterial species. PMID:23842002
Vitamin E Secretion by Caco-2 Monolayers to APOA1, but Not to HDL, Is Vitamer Selective12
Nicod, Nathalie; Parker, Robert S.
2013-01-01
The aim of this study was to characterize the pathways of basolateral secretion of common dietary tocopherols from polarized Caco-2 monolayers, a model of intestinal absorption. Given differences in structure and physical properties, we hypothesized that secretion may differ between different forms of vitamin E, thus potentially contribute to the selectivity seen in vivo. Monolayers were incubated apically and simultaneously with 10 μmol/L α-, γ-, and δ-tocopherol (1:1:1) in lipid micelles. Treatment with the microsomal triglyceride transfer protein inhibitor BMS201038 revealed that the triglyceride-rich particle secretory pathway (apolipoprotein B–dependent pathway) accounted for ∼80% of total tocopherol secretion, without selectivity among the three forms of vitamin E. Apolipoprotein B–independent secretion of tocopherols (and cholesterol) was greatly enhanced by the liver X receptor agonist T0901317. T0901317 induced ATP-binding cassette transporter A1 (ABCA1) protein expression and basolateral secretion of tocopherols to apolipoprotein A1. ABCA1-dependent secretion demonstrated vitamer selectivity such that efficiency of secretion of α- and γ-tocopherols exceeded that of δ-tocopherol. Basal addition of HDL stimulated vitamin E secretion but without selectivity among the three forms, whereas LDL had no effect. Basal addition of scavenger receptor class B member I (SR-BI) blocking antibody, which inhibits the interaction between SR-BI and HDL, increased basal accumulation of all tocopherols, demonstrating a role for SR-BI in cellular re-uptake of secreted vitamin E. These findings demonstrated that vitamin E and cholesterol utilize common pathways of secretion and that secretion via the ABCA1 pathway favors certain forms of vitamin E. PMID:23946344
A Phytase-Based Reporter System for Identification of Functional Secretion Signals in Bifidobacteria
Osswald, Annika; Westermann, Christina; Sun, Zhongke; Riedel, Christian U.
2015-01-01
Health-promoting effects have been attributed to a number of Bifidobacterium sp. strains. These effects as well as the ability to colonise the host depend on secreted proteins. Moreover, rational design of protein secretion systems bears the potential for the generation of novel probiotic bifidobacteria with improved health-promoting or therapeutic properties. To date, there is only very limited data on secretion signals of bifidobacteria available. Using in silico analysis, we demonstrate that all bifidobacteria encode the major components of Sec-dependent secretion machineries but only B. longum strains harbour Tat protein translocation systems. A reporter plasmid for secretion signals in bifidobacteria was established by fusing the coding sequence of the signal peptide of a sialidase of Bifidobacterium bifidum S17 to the phytase gene appA of E. coli. The recombinant strain showed increased phytase activity in spent culture supernatants and reduced phytase levels in crude extracts compared to the control indicating efficient phytase secretion. The reporter plasmid was used to screen seven predicted signal peptides in B. bifidum S17 and B. longum E18. The tested signal peptides differed substantially in their efficacy to mediate protein secretion in different host strains. An efficient signal peptide was used for expression and secretion of a therapeutically relevant protein in B. bifidum S17. Expression of a secreted cytosine deaminase led to a 100-fold reduced sensitivity of B. bifidum S17 to 5-fluorocytosine compared to the non-secreted cytosine deaminase suggesting efficient conversion of 5-fluorocytosine to the cytotoxic cancer drug 5-fluorouracil by cytosine deaminase occurred outside the bacterial cell. Selection of appropriate signal peptides for defined protein secretion might improve therapeutic efficacy as well as probiotic properties of bifidobacteria. PMID:26086721
ERIC Educational Resources Information Center
Sun, Jeffrey C., Ed.; Baez, Benjamin, Ed.
2009-01-01
This monograph examines in great detail two kinds of intellectual property: copyrights and patents. Though the authors recognize the significance of trademarks and trade secrets, they focus primarily on copyrights and patents in this monograph because they represent the most significant issues in higher education in the information age.…
USDA-ARS?s Scientific Manuscript database
Glucagon-like peptide-2 (GLP-2) is a 33-amino acid peptide derived from proteolytic cleavage of proglucagon by prohormone convertase 1/3 in enteroendocrine L-cells. Studies conducted in humans, rodent models, and in vitro indicate that GLP-2 is secreted in response to the presence of molecules in th...
[Cylindroma of the breast. A histochemical and histogenetic study (author's transl)].
van Bogaert, L J; Maldague, P; Pham-Maldague, H; Staquet, J P
1975-10-20
The histochemical study of mucopolysaccharide components of the ground substance of the cylindroma lends force to their epithelial origine. The myoepithelial cell, which is ectodermal in origin, plays an essential role in their secretion. Silver impregnation of normal and dysplastic breast illustrates the secretory function of myoepithelial cells and their possible implication in the histogenesis of cylindroma.
AIDS: Secretions and Implications for Nursing Care-Givers.
1992-05-06
addition, infected cells may be found in many different organs, often at the same time: the brain, lymph nodes , thymus gland, bone marrow, lungs, skin...symptomatic disease with diffuse non-malignant lymph node hypertrophy. Aside from these symptoms of lymphadenopathy, patients are typically healthy...a person physically and mentally crippled. AIDS dementia complex (ADC) or subacute HIV encephalopathy, primary lymphomas, toxoplasmosis , cryptococcal
Interactions Between Adrenal and Calcium-Regulatory Hormones in Human Health
Brown, Jenifer M.; Vaidya, Anand
2014-01-01
Purpose of Review To summarize evidence characterizing the interactions between adrenal- and calcium-regulating hormones, and the relevance of these interactions to human cardiovascular and skeletal health. Recent Findings Human studies support the regulation of parathyroid hormone (PTH) by the renin-angiotensin-aldosterone system (RAAS): angiotensin II may stimulate PTH secretion via an acute and direct mechanism, whereas aldosterone may exert a chronic stimulation of PTH secretion. Studies in primary aldosteronism, congestive heart failure, and chronic kidney disease have identified associations between hyperaldosteronism, hyperparathyroidism, and bone loss, which appear to improve when inhibiting the RAAS. Conversely, elevated PTH and insufficient vitamin D status have been associated with adverse cardiovascular outcomes, which may be mediated by the RAAS. Studies of primary hyperparathyroidism implicate PTH-mediated stimulation of the RAAS, and recent evidence shows that the vitamin D-vitamin D receptor (VDR) complex may negatively regulate renin expression and RAAS activity. Ongoing human interventional studies are evaluating the influence of RAAS inhibition on PTH and the influence of VDR agonists on RAAS activity. Summary While previously considered independent endocrine systems, emerging evidence supports a complex web of interactions between adrenal and calcium-regulating hormones, with implications for human cardiovascular and skeletal health. PMID:24694551
E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet.
Rogers, Gareth J; Hodgkin, Matthew N; Squires, Paul E
2007-01-01
The efficient secretion of insulin from beta-cells requires extensive intra-islet communication. The cell surface adhesion protein epithelial (E)-cadherin (ECAD) establishes and maintains epithelial tissues such as the islets of Langerhans. In this study, the role of ECAD in regulating insulin secretion from pseudoislets was investigated. The effect of an immuno-neutralising ECAD on gross morphology, cytosolic calcium signalling, direct cell-to-cell communication and insulin secretion was assessed by fura-2 microfluorimetry, Lucifer Yellow dye injection and insulin ELISA in an insulin-secreting model system. Antibody blockade of ECAD reduces glucose-evoked changes in [Ca(2+)](i) and insulin secretion. Neutralisation of ECAD causes a breakdown in the glucose-stimulated synchronicity of calcium oscillations between discrete regions within the pseudoislet, and the transfer of dye from an individual cell within a cell cluster is attenuated in the absence of ECAD ligation, demonstrating that gap junction communication is disrupted. The functional consequence of neutralising ECAD is a significant reduction in insulin secretion. Cell adhesion via ECAD has distinct roles in the regulation of intercellular communication between beta-cells within islets, with potential repercussions for insulin secretion.
Ustione, Alessandro
2012-01-01
Pancreatic islets are critical for glucose homeostasis via the regulated secretion of insulin and other hormones. We propose a novel mechanism that regulates insulin secretion from β-cells within mouse pancreatic islets: a dopaminergic negative feedback acting on insulin secretion. We show that islets are a site of dopamine synthesis and accumulation outside the central nervous system. We show that both dopamine and its precursor l-dopa inhibit glucose-stimulated insulin secretion, and this inhibition correlates with a reduction in frequency of the intracellular [Ca2+] oscillations. We further show that the effects of dopamine are abolished by a specific antagonist of the dopamine receptor D3. Because the dopamine transporter and dopamine receptors are expressed in the islets, we propose that cosecretion of dopamine with insulin activates receptors on the β-cell surface. D3 receptor activation results in changes in intracellular [Ca2+] dynamics, which, in turn, lead to lowered insulin secretion. Because blocking dopaminergic negative feedback increases insulin secretion, expanding the knowledge of this pathway in β-cells might offer a potential new target for the treatment of type 2 diabetes. PMID:22918877
Colleters in Rubiaceae from forest and savanna: the link between secretion and environment
NASA Astrophysics Data System (ADS)
Tresmondi, Fernanda; Canaveze, Yve; Guimarães, Elza; Machado, Silvia Rodrigues
2017-04-01
This study aims to investigate colleters' secretory function, on cellular level, in Rubiaceae species from contrasting environments looking to explore the association between secretion and environment. We collected samples from eight species of Rubiaceae growing in forest and savanna having standard-type colleters with diverse histochemistry (hydrophilic, lipophilic and mixed secretions) and processed for both conventional and cytochemical study under transmission electron microscopy (TEM). The standard colleters, although similar in morphology and anatomy, exhibited marked differences on cellular level, especially in the abundance and topology of Golgi bodies, endoplasmic reticulum and plastids when comparing forest and savanna species. These differences were clearly aligned with the chemical nature of the secretions they produce, with predominance of hydrophilic secretions in forest species and lipophilic or mixed secretions in savanna species. The combination of methods in electron microscopy revealed the sites of synthesis and intracellular compartmentation of substances, the mechanisms of their secretion from the protoplast and confirmed the involvement of the outer walls of the epithelial cells in the elimination of exudates to the gland surface. Our study suggests a potential environment-associated plasticity of the secretory cells of standard-type colleters in modulating their secretory function performance.
Montgomery, Andrew P; Xiao, Kela; Wang, Xingyong; Skropeta, Danielle; Yu, Haibo
2017-01-01
Carbohydrate-active enzymes (CAZymes) are families of essential and structurally related enzymes, which catalyze the creation, modification, and degradation of glycosidic bonds in carbohydrates to maintain essentially all kingdoms of life. CAZymes play a key role in many biological processes underpinning human health and diseases (e.g., cancer, diabetes, Alzheimer's diseases, AIDS) and have thus emerged as important drug targets in the fight against pathogenesis. The realization of the full potential of CAZymes remains a significant challenge, relying on a deeper understanding of the molecular mechanisms of catalysis. Considering numerous unsettled questions in the literature, while with a large amount of structural, kinetic, and mutagenesis data available for CAZymes, there is a pressing need and an abundant opportunity for collaborative computational and experimental investigations with the aim to unlock the secrets of CAZyme catalysis at an atomic level. In this review, we briefly survey key methodology development in computational studies of CAZyme catalysis. This is complemented by selected case studies highlighting mechanistic insights provided by computational glycobiology. Implication for inhibitor design by mimicking the transition state is also illustrated for both glycoside hydrolases and glycosyltransferases. The challenges for such studies will be noted and finally an outlook for future directions will be provided. © 2017 Elsevier Inc. All rights reserved.
Moran, Elizabeth P.; Wang, Zhongxiao; Chen, Jing; Sapieha, Przemyslaw; Smith, Lois E. H.
2016-01-01
Diabetic retinopathy (DR) is the leading cause of blindness in the working-age population in developed countries, and its prevalence will increase as the global incidence of diabetes grows exponentially. DR begins with an early nonproliferative stage in which retinal blood vessels and neurons degenerate as a consequence of chronic hyperglycemia, resulting in vasoregression and persistent retinal ischemia, metabolic disequilibrium, and inflammation. This is conducive to overcompensatory pathological neovascularization associated with advanced proliferative DR. Although DR is considered a microvascular complication, the retinal microvasculature is intimately associated with and governed by neurons and glia; neurodegeneration, neuroinflammation, and dysregulation of neurovascular cross talk are responsible in part for vascular abnormalities in both early nonproliferative DR and advanced proliferative DR. Neuronal activity directly regulates microvascular dilation and blood flow in the process of neurovascular coupling. Retinal neurons also secrete guidance cues in response to injury, ischemia, or metabolic stress that may either promote or suppress vascular outgrowth, either alleviating or exacerbating DR, contingent on the stage of disease and retinal microenvironment. Neurodegeneration, impaired neurovascular coupling, and dysregulation of neuronal guidance cues are key events in the pathogenesis of DR, and correcting these events may prevent or delay development of advanced DR. The review discusses the mechanisms of neurovascular cross talk and its dysregulation in DR, and their potential therapeutic implications. PMID:27473938
Queering Curriculum: "Truth or Dare", Secret Nude Sketches, and Closeted Video Recordings
ERIC Educational Resources Information Center
Bey, Sharif; Washington, G. E.
2013-01-01
In this article, two art teacher trainers explore the possibility of saddling critical pedagogy with queer theory in order to question the art curriculum's potential for critiquing personal relationships. As a preadolescent boy, one author initiated his own sex education curriculum with his middle school peers by creating "secret nude…
Isolation and characterization of phytotoxins secreted by Phytophthora ramorum
Daniel K. Manter; Rick G. Kelsey; Joseph J. Karchesy
2006-01-01
Most Phythophthora species secrete a variety of small, hydrophilic proteins that induce a hypersensitive-like response to varying degrees in host and non-host plant species. Our research focuses on the potential role of these proteins in the biology and susceptibility of host species to sudden oak death (SOD). In this paper we reported on the...
Lylloff, Jeanette E; Hansen, Lea B S; Jepsen, Morten; Sanggaard, Kristian W; Vester, Jan K; Enghild, Jan J; Sørensen, Søren J; Stougaard, Peter; Glaring, Mikkel A
2016-03-01
Proteases active at low temperature or high pH are used in many commercial applications, including the detergent, food and feed industries, and bacteria specifically adapted to these conditions are a potential source of novel proteases. Environments combining these two extremes are very rare, but offer the promise of proteases ideally suited to work at both high pH and low temperature. In this report, bacteria from two cold and alkaline environments, the ikaite columns in Greenland and alkaline ponds in the McMurdo Dry Valley region, Antarctica, were screened for extracellular protease activity. Two isolates, Arsukibacterium ikkense from Greenland and a related strain, Arsukibacterium sp. MJ3, from Antarctica, were further characterized with respect to protease production. Genome sequencing identified a range of potential extracellular proteases including a number of putative secreted subtilisins. An extensive liquid chromatography-tandem mass spectrometry analysis of proteins secreted by A. ikkense identified six subtilisin-like proteases as abundant components of the exoproteome in addition to other peptidases potentially involved in complete degradation of extracellular protein. Screening of Arsukibacterium genome libraries in Escherichia coli identified two orthologous secreted subtilisins active at pH 10 and 20 °C, which were also present in the A. ikkense exoproteome. Recombinant production of both proteases confirmed the observed activity. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Constantin, Alina; Dumitrescu, Madalina; Mihai Corotchi, Maria Cristina; Jianu, Dana; Simionescu, Maya
2017-01-01
CO 2 laser has a beneficial effect on stem cells by mechanisms that are not clearly elucidated. We hypothesize that the effect of fractional CO 2 laser on human adipose-derived stem cells (ADSC) could be due to changes in redox homeostasis and secretion of factors contributing to cellular proliferation and angiogenic potential. ADSC incubated in medium containing 0.5 or 10 % FBS were exposed to a single irradiation of a 10,600-nm fractional CO 2 laser; non-irradiated ADSC were used as control. Viability/proliferation of ADSC was assessed by MTT assay; the intracellular reactive oxygen species (ROS) levels and the mitochondrial membrane potential (∆Ψ m ) were determined with DCFH-DA and JC-1 fluorescent probes, respectively. Molecules secreted by ADSC in the medium were determined by ELISA assay, and their capacity to support endothelial tube-like formation by the Matrigel assay. The results showed that compared to controls, ADSC kept in low FBS medium and irradiated with CO 2 laser at 9 W exhibited: (a) increased proliferation (∼20 %), (b) transient increase of mitochondrial ROS and the capacity to restore Δψ m after rotenone induced depolarization, and (c) augmented secretion in the conditioned medium of MMP-2 (twofold), MMP-9 (eightfold), VEGF (twofold), and adiponectin (∼50 %) that have the capacity to support angiogenesis of endothelial progenitor cells. In conclusion, the mechanisms underlying the benefic effect of CO 2 laser on ADSC are the activation of the redox pathways which increases cell proliferation and enhances secretion of angiogenic molecules. These results explain, in part, the mechanisms involved in the increased regenerative potential of CO 2 laser-exposed ADSC that could be exploited for clinical applications.
Nguyen, Thao Thi; Chon, Tae-Soo; Kim, Jaehan; Seo, Young-Su; Heo, Muyoung
2017-07-01
Secreted proteins (secretomes) play crucial roles during bacterial pathogenesis in both plant and human hosts. The identification and characterization of secretomes in the two plant pathogens Burkholderia glumae BGR1 and B. gladioli BSR3, which cause diseases in rice such as seedling blight, panicle blight, and grain rot, are important steps to not only understand the disease-causing mechanisms but also find remedies for the diseases. Here, we identified two datasets of secretomes in B. glumae BGR1 and B. gladioli BSR3, which consist of 118 and 111 proteins, respectively, using mass spectrometry approach and literature curation. Next, we characterized the functional properties, potential secretion pathways and sequence information properties of secretomes of two plant pathogens in a comparative analysis by various computational approaches. The ratio of potential non-classically secreted proteins (NCSPs) to classically secreted proteins (CSPs) in B. glumae BGR1 was greater than that in B. gladioli BSR3. For CSPs, the putative hydrophobic regions (PHRs) which are essential for secretion process of CSPs were screened in detail at their N-terminal sequences using hidden Markov model (HMM)-based method. Total 31 pairs of homologous proteins in two bacterial secretomes were indicated based on the global alignment (identity ≥ 70%). Our results may facilitate the understanding of the species-specific features of secretomes in two plant pathogenic Burkholderia species.
Franta, Zdeněk; Vogel, Heiko; Lehmann, Rüdiger; Rupp, Oliver; Goesmann, Alexander; Vilcinskas, Andreas
2016-01-01
Lucilia sericata larvae are used as an alternative treatment for recalcitrant and chronic wounds. Their excretions/secretions contain molecules that facilitate tissue debridement, disinfect, or accelerate wound healing and have therefore been recognized as a potential source of novel therapeutic compounds. Among the substances present in excretions/secretions various peptidase activities promoting the wound healing processes have been detected but the peptidases responsible for these activities remain mostly unidentified. To explore these enzymes we applied next generation sequencing to analyze the transcriptomes of different maggot tissues (salivary glands, gut, and crop) associated with the production of excretions/secretions and/or with digestion as well as the rest of the larval body. As a result we obtained more than 123.8 million paired-end reads, which were assembled de novo using Trinity and Oases assemblers, yielding 41,421 contigs with an N50 contig length of 2.22 kb and a total length of 67.79 Mb. BLASTp analysis against the MEROPS database identified 1729 contigs in 577 clusters encoding five peptidase classes (serine, cysteine, aspartic, threonine, and metallopeptidases), which were assigned to 26 clans, 48 families, and 185 peptidase species. The individual enzymes were differentially expressed among maggot tissues and included peptidase activities related to the therapeutic effects of maggot excretions/secretions. PMID:27119084
Effects of Salt Secretion on Psychrometric Determinations of Water Potential of Cotton Leaves
Klepper, Betty; Barrs, H. D.
1968-01-01
Thermocouple psychrometers gave lower estimates of water potential of cotton leaves than did a pressure chamber. This difference was considerable for turgid leaves, but progressively decreased for leaves with lower water potentials and fell to zero at water potentials below about −10 bars. The conductivity of washings from cotton leaves removed from the psychrometric equilibration chambers was related to the magnitude of this discrepancy in water potential, indicating that the discrepancy is due to salts on the leaf surface which make the psychrometric estimates too low. This error, which may be as great as 400 to 500%, cannot be eliminated by washing the leaves because salts may be secreted during the equilibration period. Therefore, a thermocouple psychrometer is not suitable for measuring the water potential of cotton leaves when it is above about −10 bars. PMID:16656895
Functional food addressing heart health: do we have to target the gut microbiota?
Ryan, Paul M; Ross, Reynolds Paul; Fitzgerald, Gerald F; Caplice, Noel M; Stanton, Catherine
2015-11-01
Health promoting functional food ingredients for cardiovascular health are generally aimed at modulating lipid metabolism in consumers. However, significant advances have furthered our understanding of the mechanisms involved in development, progression, and treatment of cardiovascular disease. In parallel, a central role of the gut microbiota, both in accelerating and attenuating cardiovascular disease, has emerged. Modulation of the gut microbiota, by use of prebiotics and probiotics, has recently shown promise in cardiovascular disease prevention. Certain prebiotics can promote a short chain fatty acid profile that alters hormone secretion and attenuates cholesterol synthesis, whereas bile salt hydrolase and exopolysaccharide-producing probiotics have been shown to actively correct hypercholesterolemia. Furthermore, specific microbial genera have been identified as potential cardiovascular disease risk factors. This effect is attributed to the ability of certain members of the gut microbiota to convert dietary quaternary amines to trimethylamine, the primary substrate of the putatively atherosclerosis-promoting compound trimethylamine-N-oxide. In this respect, current research is indicating trimethylamine-depleting Achaea - termed Archeabiotics as a potential novel dietary strategy for promoting heart health. The microbiota offers a modifiable target, which has the potential to progress or prevent cardiovascular disease development. Whereas host-targeted interventions remain the standard, current research implicates microbiota-mediated therapies as an effective means of modulating cardiovascular health.
Dimkić, Ivica; Stupar, Miloš; Stanković, Slaviša; Vukojević, Jelena; Ljaljević Grbić, Milica
2018-01-01
The principal purpose of the study was to evaluate in vitro the potential ability of fungal isolates obtained from the painted layer of frescoes and surrounding air to induce symptoms of fresco deterioration, associated with their growth and metabolism, so that the risk of such deterioration can be precisely assessed and appropriate conservation treatments formulated. Biodegradative properties of the tested microfungi were qualitatively characterized through the use of a set of special agar plates: CaCO3 glucose agar (calcite dissolution), casein nutrient agar (casein hydrolysis), Czapek-Dox minimal medium (pigment secretion); and Czapek-Dox minimal broth (acid and alkali production). Most of the tested isolates (71.05%) demonstrated at least one of the degradative properties, with Penicillium bilaiae as the most potent, since it tested positive in all four. The remaining isolates (28.95%) showed no deterioration capabilities and were hence considered unlikely to partake in the complex process of fungal deterioration of murals via the tested mechanisms. The obtained results clearly indicate that utilization of fast and simple plate assays can provide insight into the biodegradative potential of deteriogenic fungi and allow for their separation from allochthonous transients, a prerequisite for precise assessment of the amount of risk posed by a thriving mycobiota to mural paintings. PMID:29309432
Lamontagne, Julien; Al-Mass, Anfal; Nolan, Christopher J; Corkey, Barbara E; Madiraju, S R Murthy; Joly, Erik; Prentki, Marc
2017-11-24
Metabolic deceleration in pancreatic β-cells is associated with inhibition of glucose-induced insulin secretion (GIIS), but only in the presence of intermediate/submaximal glucose concentrations. Here, we used acute metformin treatment as a tool to induce metabolic deceleration in INS1 (832/13) β-cells, with the goal of identifying key pathways and metabolites involved in GIIS. Metabolites and pathways previously implicated as signals for GIIS were measured in the cells at 2-25 mm glucose, with or without 5 mm metformin. We defined three criteria to identify candidate signals: 1) glucose-responsiveness, 2) sensitivity to metformin-induced inhibition of the glucose effect at intermediate glucose concentrations, and 3) alleviation of metformin inhibition by elevated glucose concentrations. Despite the lack of recovery from metformin-induced impairment of mitochondrial energy metabolism (glucose oxidation, O 2 consumption, and ATP production), insulin secretion was almost completely restored at elevated glucose concentrations. Meeting the criteria for candidates involved in promoting GIIS were the following metabolic indicators and metabolites: cytosolic NAD + /NADH ratio (inferred from the dihydroxyacetone phosphate:glycerol-3-phosphate ratio), mitochondrial membrane potential, ADP, Ca 2+ , 1-monoacylglycerol, diacylglycerol, malonyl-CoA, and HMG-CoA. On the contrary, most of the purine and nicotinamide nucleotides, acetoacetyl-CoA, H 2 O 2 , reduced glutathione, and 2-monoacylglycerol were not glucose-responsive. Overall these results underscore the significance of mitochondrial energy metabolism-independent signals in GIIS regulation; in particular, the candidate lipid signaling molecules 1-monoacylglycerol, diacylglycerol, and malonyl-CoA; the predominance of K ATP /Ca 2+ signaling control by low ADP·Mg 2+ rather than by high ATP levels; and a role for a more oxidized state (NAD + /NADH) in the cytosol during GIIS that favors high glycolysis rates. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
2012-01-01
Background Common cold is caused by a variety of respiratory viruses. The prevalence in children is high, and it potentially contributes to significant morbidity. Iota-carragenan, a polymer derived from red seaweed, has reduced viral load in nasal secretions and alleviated symptoms in adults with common cold. Methods We have assessed the antiviral and therapeutic activity of a nasal spray containing iota-carrageenan in children with acute symptoms of common cold. A cohort of 153 children between 1–18 years (mean age 5 years), displaying acute symptoms of common cold were randomly assigned to treatment with a nasal spray containing iota-carrageenan (0.12%) as verum or 0.9% sodium chloride solution as placebo for seven days. Symptoms of common cold were recorded and the viral load of respiratory viruses in nasal secretions was determined at two consecutive visits. Results The results of the present study showed no significant difference between the iota carrageenan and the placebo group on the mean of TSS between study days 2–7. Secondary endpoints, such as reduced time to clearance of disease (7.6 vs 9.4 days; p = 0.038), reduction of viral load (p = 0.026), and lower incidence of secondary infections with other respiratory viruses (p = 0.046) indicated beneficial effects of iota-carrageenan in this population. The treatment was safe and well tolerated, with less side effects observed in the verum group compared to placebo. Conclusion In this study iota-carrageenan did not alleviate symptoms in children with acute symptoms of common cold, but significantly reduced viral load in nasal secretions that may have important implications for future studies. Trial registration ISRCTN52519535, http://www.controlled-trials.com/ISRCTN52519535/ PMID:22950667
Structural basis of the alternating-access mechanism in a bile acid transporter
Zhou, Xiaoming; Levin, Elena J.; Pan, Yaping; McCoy, Jason G.; Sharma, Ruchika; Kloss, Brian; Bruni, Renato; Quick, Matthias; Zhou, Ming
2014-01-01
Bile acids are synthesized from cholesterol in hepatocytes and secreted via the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for re-secretion1. In humans, there are two Na+-dependent bile acid transporters involved in enterohepatic recirculation, the Na+-taurocholate co-transporting polypeptide (NTCP or SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT or SLC10A2) expressed on enterocytes in the terminal ileum2. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption3,4. However, a lack of 3-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data2,5-8. The crystal structure of an ASBT homolog from Neisseria meningitidis (ASBTNM) in detergent was reported recently9, showing the protein in an inward-open conformation bound to two Na+ and a taurocholic acid. However, the structural changes that bring bile acid and Na+ across the membrane are difficult to infer from a single structure. To understand better the structural changes associated with the coupled transport of Na+ and bile acids, we crystallized and solved two structures of a ASBT homolog from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives alternate accessibility to the highly conserved “crossover” region, where two discontinuous transmembrane helices cross each other. This result has implications for the location and orientation of the bile acid during transport, as well as for the translocation pathway for Na+. PMID:24317697
Diamanti-Kandarakis, Evanthia; Livadas, Sarantis; Katsikis, Ilias; Piperi, Christine; Mantziou, Aimilia; Aimilia, Mantziou; Papavassiliou, Athanasios G; Panidis, Dimitrios
2011-03-01
Intriguing studies suggest that osteocalcin (OC) and its carboxylated (Gla)/uncarboxylated form are involved in the regulation of insulin secretion and action. Additionally, advanced glycated end products (AGEs) directly regulate the secretion of these osteoblast-derived molecules. In polycystic ovarian syndrome (PCOS), among the pathophysiological aberrations, deregulation of insulin secretion and action as well as elevated AGEs levels have been demonstrated. In this study, we evaluated the serum levels of osteocalcin and Gla osteocalcin and their possible associations with metabolic, hormonal, and ultrasonographic components of PSOS: 97 women were studied, 50 PCOS patients and 47 controls, matched for age and body mass index (BMI). In each subject, the levels of bone metabolism markers have been evaluated, and metabolic and hormonal profiles as well as ovarian ultrasound were carried out. Osteocalcin (4.30 ± 1.74 vs. 6.20 ± 1.78 ng/ml, P < 0.0005) values were significantly lower, whereas Gla osteocalcin (37.93 ± 6.87 vs. 9.64 ± 8.21 ng/ml, P < 0.0005) and receptor activator for nuclear factor-κB ligand (0.54 ± 0.26 vs. 0.16 ± 0.15 pmol/l, P < 0.0005) values were significantly higher in PCOS subjects compared to the control group, independently of obesity. A significant association was disclosed between osteocalcin and Gla osteocalcin with androgens, insulin resistance, AGEs, and ovarian morphology. Receiver operating curve analysis revealed that Gla osteocalcin [AUC, 0.975 (95% CI, 0.93-1.00)] as well as AGEs are significant prognostic factors of PCOS [AUC, 0.986 (95% CI, 0.97-1.00)]. Lower osteocalcin and elevated serum levels of its carboxylated form are displayed in PCOS subjects and are associated with several PCOS components. These findings suggest a potential interaction between bone-derived markers and the metabolic/hormonal abnormalities observed in PCOS. However, the pathophysiological mechanisms and moreover the possible clinical implications require further investigation.
Implications of adiponectin in linking metabolism to testicular function.
Martin, Luc J
2014-05-01
Obesity is a major health problem, contributing to the development of various diseases with aging. In humans, obesity has been associated with reduced testosterone production and subfertility. Adipose tissue is an important source of hormones having influences on both metabolism and reproduction. Among them, the production and secretion of adiponectin is inversely correlated to the severity of obesity. The purpose of this review of literature is to present the current state of knowledge on adiponectin research to determine whether this hormone affects reproduction in men. Surprisingly, evidences show negative influences of adiponectin on GnRH secretion from the hypothalamus, LH and FSH secretion from the pituitary and testosterone at the testicular level. Thus far, the involvement of adiponectin in the influence of metabolism on reproduction in men is limited. However, adiponectin and its receptors are expressed by different cell types of the male gonad, including Leydig cells, spermatozoa, and epididymis. In addition, actions of adiponectin at the testicular level have been shown to promote spermatogenesis and sperm maturation. Therefore, autocrine/paracrine actions of adiponectin in the testis may contribute to support male reproductive function.
Spencer, Robert L; Chun, Lauren E; Hartsock, Matthew J; Woodruff, Elizabeth R
2018-04-01
Glucocorticoid hormones are a powerful mammalian systemic hormonal signal that exerts regulatory effects on almost every cell and system of the body. Glucocorticoids act in a circadian and stress-directed manner to aid in adaptation to an ever-changing environment. Circadian glucocorticoid secretion provides for a daily waxing and waning influence on target cell function. In addition, the daily circadian peak of glucocorticoid secretion serves as a timing signal that helps entrain intrinsic molecular clock phase in tissue cells distributed throughout the body. Stress-induced glucocorticoid secretion also modulates the state of these same cells in response to both physiological and psychological stressors. We review the strong functional interrelationships between glucocorticoids and the circadian system, and discuss how these interactions optimize the appropriate cellular and systems response to stress throughout the day. We also discuss clinical implications of this dual aspect of glucocorticoid signaling, especially for conditions of circadian and HPA axis dysregulation. Copyright © 2018 Elsevier Inc. All rights reserved.
PKCalpha regulates platelet granule secretion and thrombus formation in mice.
Konopatskaya, Olga; Gilio, Karen; Harper, Matthew T; Zhao, Yan; Cosemans, Judith M E M; Karim, Zubair A; Whiteheart, Sidney W; Molkentin, Jeffery D; Verkade, Paul; Watson, Steve P; Heemskerk, Johan W M; Poole, Alastair W
2009-02-01
Platelets are central players in atherothrombosis development in coronary artery disease. The PKC family provides important intracellular mechanisms for regulating platelet activity, and platelets express several members of this family, including the classical isoforms PKCalpha and PKCbeta and novel isoforms PKCdelta and PKCtheta. Here, we used a genetic approach to definitively demonstrate the role played by PKCalpha in regulating thrombus formation and platelet function. Thrombus formation in vivo was attenuated in Prkca-/- mice, and PKCalpha was required for thrombus formation in vitro, although this PKC isoform did not regulate platelet adhesion to collagen. The ablation of in vitro thrombus formation in Prkca-/- platelets was rescued by the addition of ADP, consistent with the key mechanistic finding that dense-granule biogenesis and secretion depend upon PKCalpha expression. Furthermore, defective platelet aggregation in response to either collagen-related peptide or thrombin could be overcome by an increase in agonist concentration. Evidence of overt bleeding, including gastrointestinal and tail bleeding, was not seen in Prkca-/- mice. In summary, the effects of PKCalpha ablation on thrombus formation and granule secretion may implicate PKCalpha as a drug target for antithrombotic therapy.
Secreted Progranulin Is a Homodimer and Is Not a Component of High Density Lipoproteins (HDL)*
Nguyen, Andrew D.; Nguyen, Thi A.; Cenik, Basar; Yu, Gang; Herz, Joachim; Walther, Tobias C.; Davidson, W. Sean; Farese, Robert V.
2013-01-01
Progranulin is a secreted glycoprotein, and the GRN gene is mutated in some cases of frontotemporal dementia. Progranulin has also been implicated in cell growth, wound healing, inflammation, and cancer. We investigated the molecular nature of secreted progranulin and provide evidence that progranulin exists as a homodimer. Although recombinant progranulin has a molecular mass of ∼85 kDa by SDS-PAGE, it elutes in fractions corresponding to ∼170–180 kDa by gel-filtration chromatography. Additionally, recombinant progranulin can be intermolecularly cross-linked, yielding a complex corresponding to a dimer (∼180 kDa), and progranulins containing different epitope tags physically interact. In plasma, progranulin similarly forms complexes of ∼180–190 kDa. Although progranulin partially co-fractionated with high density lipoproteins (HDL) by gel-filtration chromatography, we found no evidence that progranulin in mouse or human plasma is a component of HDL either by ultracentrifugation or by lipid binding assays. We conclude that circulating progranulin exists as a dimer and is not likely a component of HDL. PMID:23364791
Secreted progranulin is a homodimer and is not a component of high density lipoproteins (HDL).
Nguyen, Andrew D; Nguyen, Thi A; Cenik, Basar; Yu, Gang; Herz, Joachim; Walther, Tobias C; Davidson, W Sean; Farese, Robert V
2013-03-22
Progranulin is a secreted glycoprotein, and the GRN gene is mutated in some cases of frontotemporal dementia. Progranulin has also been implicated in cell growth, wound healing, inflammation, and cancer. We investigated the molecular nature of secreted progranulin and provide evidence that progranulin exists as a homodimer. Although recombinant progranulin has a molecular mass of ∼85 kDa by SDS-PAGE, it elutes in fractions corresponding to ∼170-180 kDa by gel-filtration chromatography. Additionally, recombinant progranulin can be intermolecularly cross-linked, yielding a complex corresponding to a dimer (∼180 kDa), and progranulins containing different epitope tags physically interact. In plasma, progranulin similarly forms complexes of ∼180-190 kDa. Although progranulin partially co-fractionated with high density lipoproteins (HDL) by gel-filtration chromatography, we found no evidence that progranulin in mouse or human plasma is a component of HDL either by ultracentrifugation or by lipid binding assays. We conclude that circulating progranulin exists as a dimer and is not likely a component of HDL.
Buz'Zard, Amber R; Peng, Qiaoling; Lau, Benjamin H S
2002-02-01
The amount of human growth hormone (HGH) decreases significantly after the age of 30. This decrease has been implicated as one of the major causes in the signs of aging, such as thinning of the skin and bones, a decrease in lean muscle mass and an increase in adipose tissue. Supplementing the body's dwindling supply with recombinant human growth hormone (rHGH) has been shown to reverse the signs and symptoms of aging. However, drawbacks in rHGH replacement therapy include prohibitively high cost, the need for repeated injection and side effects such as carpel tunnel syndrome, gynecomastia and insulin resistance. The purpose of this study was to establish an in vitro model using genetically-engineered keratinocytes to screen natural compounds for the ability to stimulate HGH secretion. We now report that a combination of equal amounts of L-arginine and L-lysine, aged garlic extract (Kyolic), S-allyl cysteine and Pycnogenol significantly increased secretion of HGH in this in vitro model. The data indicate that this in vitro model may be used to screen for other secretagogues.
Zheng, Yadong
2013-11-01
Echinococcus species have been studied as a model to investigate parasite-host interactions. Echinococcus spp. can actively communicate dynamically with a host to facilitate infection, growth and proliferation partially via secretion of molecules, especially in terms of harmonization of host immune attacks. This review systematically outlines our current knowledge of how the Echinococcus species have evolved to adapt to their host's microenvironment. This understanding of parasite-host interplay has implications in profound appreciation of parasite plasticity and is informative in designing novel and effective tools including vaccines and drugs for the treatment of echinococcosis and other diseases. © 2013.
Wu, Yaobin; Wang, Ling; Guo, Baolin; Shao, Yongpin; Ma, Peter X
2016-05-01
Myelination of Schwann cells (SCs) is critical for the success of peripheral nerve regeneration, and biomaterials that can promote SCs' neurotrophin secretion as scaffolds are beneficial for nerve repair. Here we present a biomaterials-approach, specifically, a highly tunable conductive biodegradable flexible polyurethane by polycondensation of poly(glycerol sebacate) and aniline pentamer, to significantly enhance SCs' myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. SCs are cultured on these conductive polymer films, and the biocompatibility of these films and their ability to enhance myelin gene expressions and sustained neurotrophin secretion are successfully demonstrated. The mechanism of SCs' neurotrophin secretion on conductive films is demonstrated by investigating the relationship between intracellular Ca(2+) level and SCs' myelination. Furthermore, the neurite growth and elongation of PC12 cells are induced by adding the neurotrophin medium suspension produced from SCs-laden conductive films. These data suggest that these conductive degradable polyurethanes that enhance SCs' myelin gene expressions and sustained neurotrophin secretion perform great potential for nerve regeneration applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Discovery of digestive enzymes in carnivorous plants with focus on proteases.
Ravee, Rishiesvari; Mohd Salleh, Faris 'Imadi; Goh, Hoe-Han
2018-01-01
Carnivorous plants have been fascinating researchers with their unique characters and bioinspired applications. These include medicinal trait of some carnivorous plants with potentials for pharmaceutical industry. This review will cover recent progress based on current studies on digestive enzymes secreted by different genera of carnivorous plants: Drosera (sundews), Dionaea (Venus flytrap) , Nepenthes (tropical pitcher plants), Sarracenia (North American pitcher plants) , Cephalotus (Australian pitcher plants) , Genlisea (corkscrew plants) , and Utricularia (bladderworts). Since the discovery of secreted protease nepenthesin in Nepenthes pitcher, digestive enzymes from carnivorous plants have been the focus of many studies. Recent genomics approaches have accelerated digestive enzyme discovery. Furthermore, the advancement in recombinant technology and protein purification helped in the identification and characterisation of enzymes in carnivorous plants. These different aspects will be described and discussed in this review with focus on the role of secreted plant proteases and their potential industrial applications.
Yang, Zijiang; Concannon, John; Ng, Kelvin S; Seyb, Kathleen; Mortensen, Luke J; Ranganath, Sudhir; Gu, Fangqi; Levy, Oren; Tong, Zhixiang; Martyn, Keir; Zhao, Weian; Lin, Charles P; Glicksman, Marcie A; Karp, Jeffrey M
2016-07-26
Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy.
Extracellular vesicles from parasitic helminths and their potential utility as vaccines.
Mekonnen, Gebeyaw Getnet; Pearson, Mark; Loukas, Alex; Sotillo, Javier
2018-03-01
Helminths are multicellular parasites affecting nearly three billion people worldwide. To orchestrate a parasitic existence, helminths secrete different molecules, either in soluble form or contained within extracellular vesicles (EVs). EVs are secreted by most cell types and organisms, and have varied roles in intercellular communication, including immune modulation and pathogenesis. Areas covered: In this review, we describe the nucleic acid and proteomic composition of EVs from helminths, with a focus on the protein vaccine candidates present on the EV surface membrane, and discuss the potential utility of helminth EVs and their constituent proteins in the fight against helminth infections. Expert commentary: A significant number of proteins present in helminth-secreted EVs are known vaccine candidates. The characterization of helminth EV proteomes will shed light on host-pathogen interactions, facilitate the discovery of new diagnostic biomarkers, and provide a novel approach for the development of new control measures against helminth infections.
Whittamore, Jonathan M.; Hatch, Marguerite
2016-01-01
The intestine exerts a considerable influence over urinary oxalate in two ways, through the absorption of dietary oxalate and by serving as an adaptive extra-renal pathway for elimination of this waste metabolite. Knowledge of the mechanisms responsible for oxalate absorption and secretion by the intestine therefore have significant implications for understanding the etiology of hyperoxaluria, as well as offering potential targets for future treatment strategies for calcium oxalate kidney stone disease. In this review, we present the recent developments and advances in this area over the past 10 years, and put to the test some of the new ideas that have emerged during this time, using human and mouse models. A key focus for our discussion are the membrane-bound anion exchangers, belonging to the SLC26 gene family, some of which have been shown to participate in transcellular oxalate absorption and secretion. This has offered the opportunity to not only examine the roles of these specific transporters, revealing their importance to oxalate homeostasis, but to also probe the relative contributions made by the active transcellular and passive paracellular components of oxalate transport across the intestine. We also discuss some of the various physiological stimuli and signaling pathways which have been suggested to participate in the adaptation and regulation of intestinal oxalate transport. Finally, we offer an update on research into Oxalobacter formigenes, alongside recent investigations of other oxalate-degrading gut bacteria, in both laboratory animals and humans. PMID:27913853
Young, Lindsay E; Fujimoto, Kayo; Schneider, John A
2018-03-13
Online social networking sites (SNS)-the Internet-based platforms that enable connection and communication between users-are increasingly salient social environments for young adults and, consequently, offer tremendous opportunity for HIV behavioral research and intervention among vulnerable populations like young men who have sex with men (YMSM). Drawing from a cohort of 525 young Black MSM (YBMSM) living in Chicago, IL, USA April 2014-May 2015, we conducted social network analysis, estimating an exponential random graph model (ERGM) to model YBMSM's group affiliations on Facebook in relation to their sex behaviors and HIV prevention traits. A group's privacy setting-public, closed, or secret-was also modeled as a potential moderator of that relationship. Findings reveal that HIV positive individuals were more likely to affiliate with Facebook groups, while those who engaged in group sex were less likely to do so. When it came to the privacy of groups, we learned that HIV positive individuals tended not to belong to groups with greater privacy (e.g., closed and secret groups), while individuals who engaged in group sex and those who engaged in regular HIV testing were more likely to belong to those groups. Results also showed that individuals who engaged in condomless sex showed significant signs of clustering around the same set of groups. HIV positive individuals, on the other hand, were significantly less likely to demonstrate clustering. Implications for interventions and future research are discussed.
The strategic function of the P5-ATPase ATP13A2 in toxic waste disposal.
de Tezanos Pinto, Felicitas; Adamo, Hugo Pedro
2018-01-01
The P-type ATPase ATP13A2 protein was originally associated with a form of Parkinson's Disease (PD) known as Kufor Rakeb Syndrome (KRS). However, in the last years it has been found to underlay variants of neuronal ceroid-lipofuscinoses and hereditary spastic paraplegia. These findings expand the clinical and genetic spectrum of ATP13A2-associated disorders, which are commonly characterized by lysosomal dysfunction. Nowadays it is well known that lysosomes are not merely related to the degradation and recycling of cellular waste, but are also involved in fundamental processes such as secretion, plasma membrane repair, signaling, energy metabolism and autophagy. The essential role of lysosomes in these cellular processes has significant implications for health and disease. ATP13A2 is localized in lysosomes and late endosomes and its mutation leads to lysosome dysfunction, diminishes the exosome secretion and impairs autophagic flux. In this review, we first describe ATP13A2-associated disorders and their relation with the endolysosomal pathway. We then describe the ATP13A2-involvement in iron homeostasis and its potential linkage with new pathologies like cancer, and finally, we consider the putative role of ATP13A2 in lipid processing and degradation, opening the interesting possibility of a broader role of this protein providing protection against a variety of disease-associated changes affecting cellular homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.
El Fouhil, Ahmed F; Ahmed, Aly M; Atteya, Muhammad; Mohamed, Raeesa A; Moustafa, Amr S; Al-Roalle, Ali H; Darwish, Hasem H
2013-11-01
To investigate the possible mechanism, by which an extract from date seeds exert its hypoglycemic effect. This study was performed at the Anatomy Department, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia from May to December 2012. Eighty rats were divided into 4 groups. Group 1 received no treatment. Group 2 received daily ingestions of 10 ml of date seed extract for 8 weeks. Animals of groups 3 and 4 were made diabetic by streptozotocin injection, and were given daily subcutaneous injections of 3 IU/day of insulin for 8 weeks. Group 4 received, in addition, daily ingestions of 10 ml of seed extracts. Rats were sacrificed, and the sera were separated for estimation of serum C-peptide levels. Pancreatic tissues were processed for histological study of the islet cells, immunohistochemical study for insulin secretion and image analysis for insulin quantification. Mean serum C-peptide level was significantly higher in group 4 compared to group 3. Pancreatic islets from rats of group 3 showed weak immunoreactivity for insulin, while those of group 4 showed strong immunoreactivity in some hypertrophied beta cells. Immunopositive cells were detected in the wall of interlobular ducts and in centroacinar cells of pancreas only in group 4. Quantification of insulin immunoreactivity showed a marked reduction in islet size and extent of insulin immunoreactivity in diabetic compared to control groups. Date seed extracts may stimulate endogenous insulin secretion through extra-islet sources.
Enterochromaffin cells of the human gut: sensors for spices and odorants.
Braun, Thomas; Voland, Petra; Kunz, Lars; Prinz, Christian; Gratzl, Manfred
2007-05-01
Release of serotonin from mucosal enterochromaffin cells triggered by luminal substances is the key event in the regulation of gut motility and secretion. We were interested to know whether nasal olfactory receptors are also expressed in the human gut mucosa by enterochromaffin cells and whether their ligands and odorants present in spices, fragrances, detergents, and cosmetics cause serotonin release. Receptor expression was studied by the reverse-transcription polymerase chain reaction method in human mucosal enterochromaffin cells isolated by laser microdissection and in a cell line derived from human enterochromaffin cells. Activation of the cells by odorants was investigated by digital fluorescence imaging using the fluorescent Ca(2+) indicator Fluo-4. Serotonin release was measured in culture supernatants by a serotonin enzyme immunoassay and amperometry using carbon fiber microelectrodes placed on single cells. We found expression of 4 olfactory receptors in microdissected human mucosal enterochromaffin cells and in a cell line derived from human enterochromaffin cells. Ca(2+) imaging studies revealed that odorant ligands of the identified olfactory receptors cause Ca(2+) influx, elevation of intracellular free Ca(2+) levels, and, consequently, serotonin release. Our results show that odorants present in the luminal environment of the gut may stimulate serotonin release via olfactory receptors present in human enterochromaffin cells. Serotonin controls both gut motility and secretion and is implicated in pathologic conditions such as vomiting, diarrhea, and irritable bowel syndrome. Thus, olfactory receptors are potential novel targets for the treatment of gastrointestinal diseases and motility disorders.
Protease activity of Per a 10 potentiates Th2 polarization by increasing IL-23 and OX40L.
Agrawal, Komal; Kale, Sagar L; Arora, Naveen
2015-12-01
Proteases are implicated in exacerbation of allergic diseases. In this study, the role of proteolytic activity of Per a 10 was evaluated on Th2 polarization. Intranasal administration of Per a 10 in mice led to allergic airway inflammation as seen by higher IgE levels, cellular infiltration, IL-17A, and Th2 cytokines, whereas, inactive (Δ)Per a 10 showed attenuated response. There was an increased OX40L expression on lung and lymph node dendritic cells in Per a 10 immunized group and on Per a 10 stimulated BMDCs. Reduction in CD40 expression without any change at transcript level in lungs of Per a 10 immunized mice suggested CD40 cleavage. BMDCs pulsed with Per a 10 showed reduced CD40 expression with lower IL-12p70 secretion as compared to heat inactivated Per a 10. IL-23, TNF-α, and IL-6 levels were significantly higher in Per a 10 stimulated BMDCs supernatant. In DC-T cell coculture studies, Per a 10 pulsed BMDCs showed higher levels of IL-4 and IL-13 that were reduced on blocking of either IL-23 or OX40L. In conclusion, the data suggests a critical role of protease activity of Per a 10 in promoting Th2 polarization by increasing IL-23 secretion and OX40L expression on dendritic cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang
2012-01-01
The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis. PMID:22669945
Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang
2012-07-27
The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis.
Castells, M; Milhas, D; Gandy, C; Thibault, B; Rafii, A; Delord, J-P; Couderc, B
2013-01-01
Epithelial ovarian carcinoma is characterized by high frequency of recurrence (70% of patients) and carboplatin resistance acquisition. Carcinoma-associated mesenchymal stem cells (CA-MSC) have been shown to induce ovarian cancer chemoresistance through trogocytosis. Here we examined CA-MSC properties to protect ovarian cancer cells from carboplatin-induced apoptosis. Apoptosis was determined by Propidium Iodide and Annexin-V-FITC labelling and poly-ADP-ribose polymerase cleavage analysis. We showed a significant increase of inhibitory concentration 50 and a 30% decrease of carboplatin-induced apoptosis in ovarian cancer cells incubated in the presence of CA-MSC-conditioned medium (CM). A molecular analysis of apoptosis signalling pathway in response to carboplatin revealed that the presence of CA-MSC CM induced a 30% decrease of effector caspases-3 and -7 activation and proteolysis activity. CA-MSC secretions promoted Akt and X-linked inhibitor of apoptosis protein (XIAP; caspase inhibitor from inhibitor of apoptosis protein (IAP) family) phosphorylation. XIAP depletion by siRNA strategy permitted to restore apoptosis in ovarian cancer cells stimulated by CA-MSC CM. The factors secreted by CA-MSC are able to confer chemoresistance to carboplatin in ovarian cancer cells through the inhibition of effector caspases activation and apoptosis blockade. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway and the phosphorylation of its downstream target XIAP underlined the implication of this signalling pathway in ovarian cancer chemoresistance. This study reveals the potentialities of targeting XIAP in ovarian cancer therapy. PMID:24176845
Wine, Jeffrey J.
2007-01-01
Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences of this for gland secretion and airway defense are poorly understood, but it is possible that interventions to modify submucosal gland secretion in transplanted lungs might have therapeutic consequences. Introduction and overviewProtecting the Airways: mucus and submucosal glands.The airway intrinsic nervous system: a special role in innate defense?Innate defense: prophylactic secretion and local responses.Acute ‘Emergency’ airway defense reflexesAirway receptors: Improved methods reveal greater diversityHijacking emergency defense for innate defense: receptor plasticity and airways sensitization.Conclusion: Implications for cystic fibrosis and lung transplantation. PMID:17350348
Hypogonadism and metabolic syndrome: implications for testosterone therapy.
Makhsida, Nawras; Shah, Jay; Yan, Grace; Fisch, Harry; Shabsigh, Ridwan
2005-09-01
Metabolic syndrome, characterized by central obesity, insulin resistance, dyslipidemia and hypertension, is highly prevalent in the United States. When left untreated, it significantly increases the risk of diabetes mellitus and cardiovascular disease. It has been suggested that hypogonadism may be an additional component of metabolic syndrome. This has potential implications for the treatment of metabolic syndrome with testosterone. We reviewed the available literature on metabolic syndrome and hypogonadism with a particular focus on testosterone therapy. A comprehensive MEDLINE review of the world literature from 1988 to 2004 on hypogonadism, testosterone and metabolic syndrome was performed. Observational data suggest that metabolic syndrome is strongly associated with hypogonadism in men. Multiple interventional studies have shown that exogenous testosterone has a favorable impact on body mass, insulin secretion and sensitivity, lipid profile and blood pressure, which are the parameters most often disturbed in metabolic syndrome. Hypogonadism is likely a fundamental component of metabolic syndrome. Testosterone therapy may not only treat hypogonadism, but may also have tremendous potential to slow or halt the progression from metabolic syndrome to overt diabetes or cardiovascular disease via beneficial effects on insulin regulation, lipid profile and blood pressure. Furthermore, the use of testosterone to treat metabolic syndrome may also lead to the prevention of urological complications commonly associated with these chronic disease states, such as neurogenic bladder and erectile dysfunction. Physicians must be mindful to evaluate hypogonadism in all men diagnosed with metabolic syndrome as well as metabolic syndrome in all men diagnosed with hypogonadism. Future research in the form of randomized clinical trials should focus on further defining the role of testosterone for metabolic syndrome.
Mehta-Kolte, Misha G.
2012-01-01
The current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial genera Geobacter and Shewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of the Acidobacteria, Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE), G. fermentans required potentials as high as 0.55 V to respire at its maximum rate. In addition, G. fermentans secreted two different soluble redox-active electron shuttles with separate redox potentials (−0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found in G. fermentans supernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals that Geothrix is able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined to Shewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies of Geothrix and Geobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential. PMID:22843516
Droplet based microfluidics for highthroughput screening of antibody secreting cells
NASA Astrophysics Data System (ADS)
Cai, Liheng; Heyman, John; Mazutis, Linas; Ung, Lloyd; Guerra, Rodrigo; Aubrecht, Donald; Weitz, David
2014-03-01
We present a droplet based microfluidic platform that allows highthroughput screening of antibody secreting cells. We coencapsulate single cells, fluorescent probes, and detection beads into emulsion droplets with diameter of 40 micron. The beads capture antibodies secreted by cells, resulting in a pronounced fluorescent signal that activates dielectrophoresis sorting at rate about 500 droplets per second. Moreover, we demonstrate that Reverse Transcription Polymerase Chain Reaction (RT-PCR) can be successfully applied to the cell encapsulated in a single sorted droplet. Our work highlights the potential of droplet based microfluidics as a platform to generate recombinant antibodies.
Liu, Ruihua; Zuo, Zhenqiang; Xu, Yingming; Song, Cunjiang; Jiang, Hong; Qiao, Chuanling; Xu, Ping; Zhou, Qixing; Yang, Chao
2014-04-02
The twin-arginine translocation (Tat) pathway exports folded proteins across the cytoplasmic membranes of bacteria and archaea. Two parallel Tat pathways (TatAdCd and TatAyCy systems) with distinct substrate specificities have previously been discovered in Bacillus subtilis. In this study, to secrete methyl parathion hydrolase (MPH) into the growth medium, the twin-arginine signal peptide of B. subtilis YwbN was used to target MPH to the Tat pathway of B. subtilis. Western blot analysis and MPH assays demonstrated that active MPH was secreted into the culture supernatant of wild-type cells. No MPH secretion occurred in a total-tat2 mutant, indicating that the observed export in wild-type cells was mediated exclusively by the Tat pathway. Export was fully blocked in a tatAyCy mutant. In contrast, the tatAdCd mutant was still capable of secreting MPH. These results indicated that the MPH secretion directed by the YwbN signal peptide was specifically mediated by the TatAyCy system. The N-terminal sequence of secreted MPH was determined as AAPQVR, demonstrating that the YwbN signal peptide had been processed correctly. This is the first report of functional secretion of a heterologous protein via the B. subtilis TatAyCy system. This study highlights the potential of the TatAyCy system to be used for secretion of other heterologous proteins in B. subtilis.
Klinkmann, Gerd; Diesing, Karoline; Koensgen, Dominique; Burchardt, Martin
2017-01-01
The heat shock protein HSP27 has been correlated in ovarian cancer (OC) patients with aggressiveness and chemoresistance and, therefore, represents a promising potential biomarker for OC diagnosis, prognosis, and treatment response. Notably, secretion of soluble HSP27 has been described by a few cell types and may take place as well in OC cells. Therefore, we studied HSP27 secretion mechanisms under diverse cellular conditions in an OC cell model system. Secretion of HSP27 was characterized after overexpression of HSP27 by transfected plasmids and after heat shock. Intra- and extracellular HSP27 amounts were assessed by Western blotting and ELISA. Protein secretion was blocked by brefeldin A and the impact of the HSP27 phosphorylation status was analyzed overexpressing HSP27 phosphomutants. The present study demonstrated that HSP27 secretion by OVCAR-3 and SK-OV-3 cells depends on intracellular HSP27 concentrations. Moreover, HSP27 secretion is independent of the endoplasmic reticulum secretory pathway and HSP27 phosphorylation. Notably, analysis of OC cell-born exosomes not only confirmed the concentration-dependent correlation of HSP27 expression and secretion but also demonstrated a concentration-dependent incorporation of HSP27 protein into exosomes. Thus, secreted HSP27 may become more important as an extracellular factor which controls the tumor microenvironment and might be a noninvasive biomarker. PMID:28325957
Stope, Matthias B; Klinkmann, Gerd; Diesing, Karoline; Koensgen, Dominique; Burchardt, Martin; Mustea, Alexander
2017-01-01
The heat shock protein HSP27 has been correlated in ovarian cancer (OC) patients with aggressiveness and chemoresistance and, therefore, represents a promising potential biomarker for OC diagnosis, prognosis, and treatment response. Notably, secretion of soluble HSP27 has been described by a few cell types and may take place as well in OC cells. Therefore, we studied HSP27 secretion mechanisms under diverse cellular conditions in an OC cell model system. Secretion of HSP27 was characterized after overexpression of HSP27 by transfected plasmids and after heat shock. Intra- and extracellular HSP27 amounts were assessed by Western blotting and ELISA. Protein secretion was blocked by brefeldin A and the impact of the HSP27 phosphorylation status was analyzed overexpressing HSP27 phosphomutants. The present study demonstrated that HSP27 secretion by OVCAR-3 and SK-OV-3 cells depends on intracellular HSP27 concentrations. Moreover, HSP27 secretion is independent of the endoplasmic reticulum secretory pathway and HSP27 phosphorylation. Notably, analysis of OC cell-born exosomes not only confirmed the concentration-dependent correlation of HSP27 expression and secretion but also demonstrated a concentration-dependent incorporation of HSP27 protein into exosomes. Thus, secreted HSP27 may become more important as an extracellular factor which controls the tumor microenvironment and might be a noninvasive biomarker.
Fearon, Paula; Lonsdale-Eccles, Ann A; Ross, O Kehinde; Todd, Carole; Sinha, Aparna; Allain, Fabrice; Reynolds, Nick J
2011-05-01
Cyclophilin B (CypB) is an endoplasmic reticulum (ER)-resident member of the cyclophilin family of proteins that bind cyclosporin A (CsA). We report that as in other cell types, CypB trafficked from the ER and was secreted by keratinocytes into the media in response to CsA. Concentrations as low as 1 pM of CsA induced secretion of CypB. Using brefeldin A, we showed that CypB is secreted from keratinocytes via the constitutive secretory pathway. We defined that substitution of tryptophan residue 128 in the CsA-binding site of CypB with alanine resulted in dissociation of CypB(W128A)-green fluorescent protein (GFP) from the ER. Photobleaching studies revealed a significant reduction in the diffusible mobility of CypB(W128A)-GFP compared with CypB(WT)-GFP, consistent with redistribution of CypB(W128A)-GFP into secretory vesicles disconnected from the ER/Golgi network. Furthermore, CsA significantly decreased the mobility of CypB(WT)-GFP but not CypB(W128A)-GFP. These studies demonstrate that therapeutically relevant concentrations of CsA regulate secretion of CypB by keratinocytes, and that a key residue within the CsA-binding site of CypB controls retention of CypB within the ER and regulates entry into the secretory pathway. As keratinocytes express CypB receptors (CD147) and CypB exhibits chemotactic properties, these data have implications for the therapeutic effects of CsA in inflammatory skin disease.
Fearon, Paula; Lonsdale-Eccles, Ann A; Ross, O Kehinde; Todd, Carole; Sinha, Aparna; Allain, Fabrice; Reynolds, Nick J
2011-01-01
Cyclophilin B (CypB) is an endoplasmic reticulum (ER)-resident member of the cyclophilin family of proteins that bind cyclosporin A (CsA). We report that as in other cell types, CypB trafficked from the ER and was secreted by keratinocytes into the media in response to CsA. Concentrations as low as 1 p of CsA induced secretion of CypB. Using brefeldin A, we showed that CypB is secreted from keratinocytes via the constitutive secretory pathway. We defined that substitution of tryptophan residue 128 in the CsA-binding site of CypB with alanine resulted in dissociation of CypBW128A-green fluorescent protein (GFP) from the ER. Photobleaching studies revealed a significant reduction in the diffusible mobility of CypBW128A-GFP compared with CypBWT-GFP, consistent with redistribution of CypBW128A-GFP into secretory vesicles disconnected from the ER/Golgi network. Furthermore, CsA significantly decreased the mobility of CypBWT-GFP but not CypBW128A-GFP. These studies demonstrate that therapeutically relevant concentrations of CsA regulate secretion of CypB by keratinocytes, and that a key residue within the CsA-binding site of CypB controls retention of CypB within the ER and regulates entry into the secretory pathway. As keratinocytes express CypB receptors (CD147) and CypB exhibits chemotactic properties, these data have implications for the therapeutic effects of CsA in inflammatory skin disease. PMID:21270823
Martín, José; Chamut, Silvia; Manes, Mario E; López, Pilar
2011-01-01
In spite of the importance of chemical signals (pheromones) in the reproductive behaviour of lizards, the chemical compounds secreted by their femoral glands, which may be used as sexual signals, are only known for a few lizard species. Based on mass spectra, obtained by GC-MS, we found 49 lipophilic compounds in femoral gland secretions of male tegu lizards (Tupinambis merianae) (fam. Teiidae), including a very high proportion of carboxylic acids and their esters ranging between n-C8 and n-C20 (mainly octadecanoic and 9,12-octadecadienoic acids), with much less proportions of steroids, tocopherol, aldehydes, and squalene. We discuss the potential function of these compounds in secretions, and compare the compounds found here with those documented for other lizard species.
ERIC Educational Resources Information Center
Pollack, William S.; Modzeleski, William; Rooney, Georgeann
2008-01-01
In the wake of several high-profile shootings at schools in the United States, most notably the shootings that occurred at Columbine High School on April 20, 1999, the United States Secret Service (Secret Service) and the United States Department of Education (ED) embarked on a collaborative endeavor to study incidents of planned (or…
Lin, Yi
2012-01-01
Klotho is a recently discovered antiaging gene. Klotho is expressed in mouse pancreatic islets and in insulinoma β-cells (MIN6 β-cells). The purpose of this study was to investigate whether Klotho plays a role in the regulation of insulin secretion in MIN6 β-cells by overexpression and silencing of Klotho. It is interesting that overexpression of Klotho increased glucose-induced insulin secretion in MIN6 β-cells. Overexpression of mouse Klotho protein also significantly increased plasma membrane levels of transient receptor potential V2 (TRPV2), calcium entry, and the glucose-induced increase in intracellular calcium. On the other hand, knockdown of Klotho by siRNA significantly decreased plasma membrane levels of TRPV2 and attenuated glucose-induced calcium entry and insulin secretion. Tranilast, a selective inhibitor of TRPV2, abolished the promoting effects of overexpression of Klotho on glucose-induced calcium entry and insulin secretion in MIN6 cells. Thus, TRPV2 lies in the downstream of Klotho in the regulation of glucose-induced insulin secretion. This study demonstrated, for the first time, that Klotho may enhance glucose-induced insulin secretion by up-regulating plasma membrane levels of TRPV2 and thus glucose-induced calcium responses. These findings reveal a previously unidentified role of Klotho in the regulation of glucose-induced insulin secretion in MIN6 β-cells. PMID:22597535
Lin, Yi; Sun, Zhongjie
2012-07-01
Klotho is a recently discovered antiaging gene. Klotho is expressed in mouse pancreatic islets and in insulinoma β-cells (MIN6 β-cells). The purpose of this study was to investigate whether Klotho plays a role in the regulation of insulin secretion in MIN6 β-cells by overexpression and silencing of Klotho. It is interesting that overexpression of Klotho increased glucose-induced insulin secretion in MIN6 β-cells. Overexpression of mouse Klotho protein also significantly increased plasma membrane levels of transient receptor potential V2 (TRPV2), calcium entry, and the glucose-induced increase in intracellular calcium. On the other hand, knockdown of Klotho by siRNA significantly decreased plasma membrane levels of TRPV2 and attenuated glucose-induced calcium entry and insulin secretion. Tranilast, a selective inhibitor of TRPV2, abolished the promoting effects of overexpression of Klotho on glucose-induced calcium entry and insulin secretion in MIN6 cells. Thus, TRPV2 lies in the downstream of Klotho in the regulation of glucose-induced insulin secretion. This study demonstrated, for the first time, that Klotho may enhance glucose-induced insulin secretion by up-regulating plasma membrane levels of TRPV2 and thus glucose-induced calcium responses. These findings reveal a previously unidentified role of Klotho in the regulation of glucose-induced insulin secretion in MIN6 β-cells.
MacVinish, L J; Cope, G; Ropenga, A; Cuthbert, A W
2007-01-01
Background and purpose: Calu-3 cells are derived from serous cells of human lung submucosal glands, a prime target for therapy in cystic fibrosis (CF). Calu-3 cells can be cultured to form epithelia capable of transepithelial transport of chloride. A CF Calu-3 cell is not available. Experimental approach: A retroviral vector was used to cause persistent down regulation of CFTR using siRNA methodology, in Calu-3 cells. A Calu-3 cell line with CFTR content less than 5% of the original line has been established. Epithelia grown using the modified cells have been used in comparative studies of transporting capability. Key results: All aspects of cAMP activated chloride secretion were attenuated in the epithelia with reduced CFTR content. However transporting capability was reduced less than the CFTR content. From studies with the CFTR channel inhibitor, GlyH-101, it was concluded that wild type Calu-3 cells have a reserve of CFTR channels not located in the membrane, but available for replacement, while in the modified Calu-3 cell line there was little or no reserve. Lubiprostone, a putative ClC-2 activator, increased transepithelial chloride secretion in both modified and wild type Calu-3 epithelia. Modified Calu-3 epithelia with the residual CFTR currents blocked with GlyH-101 responded equally well to lubiprostone as those without the blocking agent. Conclusions and implications: It appears that lubiprostone is capable of stimulating a non-CFTR dependent transepithelial chloride secretion in Calu-3 monolayers, with obvious implications for CF therapy. Cell lines, however, do not always reflect the behaviour of the native tissue with integrity. PMID:17339840
Dogan, Belgin; Fu, Jing; Zhang, Shiying; Scherl, Ellen J; Simpson, Kenneth W
2018-05-01
Escherichia coli with an adherent and invasive pathotype (AIEC) is implicated in the pathogenesis of Crohn's disease (CD). Rifaximin improves symptoms in mild-to-moderate CD. It is unclear if this outcome is due to its effects on bacteria or intestinal epithelial inflammatory responses. We examined the effects of rifaximin on the growth and virulence of CD-associated E. coli and intestinal epithelial inflammatory responses. Seven well-characterized CD-associated E. coli strains (six AIEC, one non-AIEC; four rifaximin-resistant, three sensitive) were evaluated. We assessed the effects of rifaximin on CD-associated E. coli growth, adhesion to, and invasion of epithelial cells, virulence gene expression, motility, and survival in macrophages. Additionally, we determined the effects of rifaximin on intestinal epithelial inflammatory responses. In vitro rifaximin exerted a dose-dependent effect on the growth of sensitive strains but did not affect the growth of resistant strains. Rifaximin reduced adhesion, invasion, virulence gene expression and motility of CD-associated E. coli in a manner that was independent of its antimicrobial effect. Furthermore, rifaximin reduced IL-8 secretion from pregnane X receptor-expressing T84 colonic epithelial cells. The effect of rifaximin on adhesion was largely attributable to its action on bacteria, whereas decreases in invasion and cytokine secretion were due to its effect on the epithelium. In conclusion, our results show that rifaximin interferes with multiple steps implicated in host-AIEC interactions related to CD, including adhesion to, and invasion of epithelial cells, virulence gene expression, motility, and pro-inflammatory cytokine secretion. Further study is required to determine the relationship of these effects to clinical responses in CD patients.
Pitzschke, Andrea; Xue, Hui; Persak, Helene; Datta, Sneha; Seifert, Georg J.
2016-01-01
Arabidopsis EARLI-type hybrid proline-rich proteins (HyPRPs) consist of a putative N-terminal secretion signal, a proline-rich domain (PRD), and a characteristic eight-cysteine-motif (8-CM). They have been implicated in biotic and abiotic stress responses. AZI1 is required for systemic acquired resistance and it has recently been identified as a target of the stress-induced mitogen-activated protein kinase MPK3. AZI1 gel migration properties strongly indicate AZI1 to undergo major post-translational modifications. These occur in a stress-independent manner and are unrelated to phosphorylation by MAPKs. As revealed by transient expression of AZI1 in Nicotiana benthamiana and Tropaeolum majus, the Arabidopsis protein is similarly modified in heterologous plant species. Proline-rich regions, resembling arabinogalactan proteins point to a possible proline hydroxylation and subsequent O-glycosylation of AZI1. Consistently, inhibition of prolyl hydroxylase reduces its apparent protein size. AZI1 secretion was examined using Arabidopsis protoplasts and seedling exudates. Employing Agrobacterium-mediated leaf infiltration of N. benthamiana, we attempted to assess long-distance movement of AZI1. In summary, the data point to AZI1 being a partially secreted protein and a likely new member of the group of hydroxyproline-rich glycoproteins. Its dual location suggests AZI1 to exert both intra- and extracellular functions. PMID:26771603
Scillitani, Giovanni; Mentino, Donatella; Mastrodonato, Maria
2017-10-01
The secretion of the goblet cells in the intestine of Trachemys scripta elegans was studied in situ by histochemical methods to analyze the diversity of sugar chains, with particular regard to the acidic glycans. Conventional histochemical stains (Periodic acid-Schiff, Alcian Blue pH 2.5, High Iron Diamine) and binding with ten FITC-labelled lectins combined with chemical and enzymatic pre-treatments were used to characterize the oligosaccharidic chains. The intestine can be divided into three regions, i.e. a duodenum, a small intestine and a large intestine. Goblet cells were observed in all the three tracts and presented an acidic secretion. WGA, LFA, PNA and SBA binding was observed only after desulfation. Glycans secreted by the three tracts consist mainly of sulfosialomucins with 1,2-linked fucose, mannosylated, glucosaminylated and subterminal galactosyl/galactosaminylated residuals. Differences among tracts are quantitative rather than qualitative, with sulfated, galactosaminylated and glycosaminylated residuals increasing from duodenum to large intestine, and galactosylated and fucosylated residuals showing an opposite trend. Variation is observed also between apices and bases of villi in both duodenum and small intestine, where sulphation decreases from the base to the apex and glycosylation shows an opposite trend. Functional implication of these findings is discussed in a comparative context. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hydrogen peroxide stimulates rat colonic prostaglandin production and alters electrolyte transport.
Karayalcin, S S; Sturbaum, C W; Wachsman, J T; Cha, J H; Powell, D W
1990-01-01
The changes in short circuit current (electrogenic Cl- secretion) of rat colon brought about by xanthine/xanthine oxidase in the Ussing chamber were inhibited by catalase and diethyldithiocarbamate, but not by superoxide dismutase. These results, the reproduction of the response with glucose/glucose oxidase and with exogenous H2O2, and the lack of effect of preincubation with deferoxamine or thiourea implicate H2O2, and not O2- or OH., as the important reactive oxygen metabolite altering intestinal electrolyte transport. 1 mM H2O2 stimulated colonic PGE2 and PGI2 production 8- and 15-fold, respectively, inhibited neutral NaCl absorption, and stimulated biphasic electrogenic Cl secretion with little effect on enterocyte lactic dehydrogenase release, epithelial conductance, or histology. Cl- secretion was reduced by cyclooxygenase inhibition. Also, the Cl- secretion, but not the increase in prostaglandin production, was reduced by enteric nervous system blockade with tetrodotoxin, hexamethonium, or atropine. Thus, H2O2 appears to alter electrolyte transport by releasing prostaglandins that activate the enteric nervous system. The change in short circuit current in response to Iloprost, but not PGE2, was blocked by tetrodotoxin. Therefore, PGI2 may be the mediator of the H2O2 response. H2O2 produced in nontoxic concentrations in the inflamed gut could have significant physiologic effects on intestinal water and electrolyte transport. Images PMID:2164049
Pitzschke, Andrea; Xue, Hui; Persak, Helene; Datta, Sneha; Seifert, Georg J
2016-01-12
Arabidopsis EARLI-type hybrid proline-rich proteins (HyPRPs) consist of a putative N-terminal secretion signal, a proline-rich domain (PRD), and a characteristic eight-cysteine-motif (8-CM). They have been implicated in biotic and abiotic stress responses. AZI1 is required for systemic acquired resistance and it has recently been identified as a target of the stress-induced mitogen-activated protein kinase MPK3. AZI1 gel migration properties strongly indicate AZI1 to undergo major post-translational modifications. These occur in a stress-independent manner and are unrelated to phosphorylation by MAPKs. As revealed by transient expression of AZI1 in Nicotiana benthamiana and Tropaeolum majus, the Arabidopsis protein is similarly modified in heterologous plant species. Proline-rich regions, resembling arabinogalactan proteins point to a possible proline hydroxylation and subsequent O-glycosylation of AZI1. Consistently, inhibition of prolyl hydroxylase reduces its apparent protein size. AZI1 secretion was examined using Arabidopsis protoplasts and seedling exudates. Employing Agrobacterium-mediated leaf infiltration of N. benthamiana, we attempted to assess long-distance movement of AZI1. In summary, the data point to AZI1 being a partially secreted protein and a likely new member of the group of hydroxyproline-rich glycoproteins. Its dual location suggests AZI1 to exert both intra- and extracellular functions.
Absence of cell surface expression of human ACE leads to perinatal death
Michaud, Annie; Acharya, K. Ravi; Masuyer, Geoffrey; Quenech'du, Nicole; Gribouval, Olivier; Morinière, Vincent; Gubler, Marie-Claire; Corvol, Pierre
2014-01-01
Renal tubular dysgenesis (RTD) is a recessive autosomal disease characterized most often by perinatal death. It is due to the inactivation of any of the major genes of the renin-angiotensin system (RAS), one of which is the angiotensin I-converting enzyme (ACE). ACE is present as a tissue-bound enzyme and circulates in plasma after its solubilization. In this report, we present the effect of different ACE mutations associated with RTD on ACE intracellular trafficking, secretion and enzymatic activity. One truncated mutant, R762X, responsible for neonatal death was found to be an enzymatically active, secreted form, not inserted in the plasma membrane. In contrast, another mutant, R1180P, was compatible with life after transient neonatal renal insufficiency. This mutant was located at the plasma membrane and rapidly secreted. These results highlight the importance of tissue-bound ACE versus circulating ACE and show that the total absence of cell surface expression of ACE is incompatible with life. In addition, two missense mutants (W594R and R828H) and two truncated mutants (Q1136X and G1145AX) were also studied. These mutants were neither inserted in the plasma membrane nor secreted. Finally, the structural implications of these ACE mutations were examined by molecular modelling, which suggested some important structural alterations such as disruption of intra-molecular non-covalent interactions (e.g. salt bridges). PMID:24163131
The difficulties of pseudo-Cushing's syndrome (or "non-neoplastic hypercortisolism").
Chabre, Olivier
2018-06-01
Pseudo-Cushing's syndrome covers different pathological conditions responsible for mild-to-moderate ACTH-dependent hypercortisolism, related not to an ACTH-secreting tumor but rather to CRH and/or AVP hypothalamic secretion through activation of various neural pathways, in patients generally displaying excess central adiposity. It is better termed "non-neoplastic hypercortisolism" (NNH). The main conditions implicated in NNH comprise: neuropsychiatric disorder, alcohol abuse, insulin-resistant obesity, polycystic ovary syndrome, and end-stage kidney disease. Glucocorticoid resistance is one differential diagnosis, as are some cases of primary adrenal disease with incompletely suppressed ACTH. Differentiating between NNH and mild-to-moderate Cushing's disease can be a real challenge. Clinical analysis, based on thorough history taking and screening for catabolic signs is essential; useful explorations include midnight serum or salivary cortisol and Dex/CRH and ddAVP stimulation response. Pituitary MRI suffers from limitations regarding both sensitivity and specificity, while bilateral inferior petrosal sinus sampling cannot distinguish between pituitary ACTH secretion by a tumor or by normal cells stimulated by endogenous CRH. Definitive diagnosis of functional etiology requires demonstrating that treatment of the underlying condition restores normal secretion of ACTH and cortisol, but this is not always possible. Lingering diagnostic uncertainty has to be accepted in certain patients, who will have to be followed up for some time before diagnosis can be considered more or less definitive. Copyright © 2018. Published by Elsevier Masson SAS.
Carrascosa, J M; Rocamora, V; Fernandez-Torres, R M; Jimenez-Puya, R; Moreno, J C; Coll-Puigserver, N; Fonseca, E
2014-01-01
Obesity, particularly abdominal obesity, is currently considered a chronic low-grade inflammatory condition that plays an active role in the development of the pathophysiologic phenomena responsible for metabolic syndrome and cardiovascular disease through the secretion of proinflammatory adipokines and cytokines. In recent years clear genetic, pathogenic, and epidemiologic links have been established between psoriasis and obesity, with important implications for health. The relationship between the 2 conditions is probably bidirectional, with obesity predisposing to psoriasis and psoriasis favoring obesity. Obesity also has important implications in the treatment of psoriasis, such as a greater risk of adverse effects with conventional systemic drugs and reduced efficacy and/or increased cost with biologic agents, for which dosage should be adjusted to the patient's weight. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.
Wang, Guanghu; Dinkins, Michael; He, Qian; Zhu, Gu; Poirier, Christophe; Campbell, Andrew; Mayer-Proschel, Margot; Bieberich, Erhard
2012-01-01
Amyloid protein is well known to induce neuronal cell death, whereas only little is known about its effect on astrocytes. We found that amyloid peptides activated caspase 3 and induced apoptosis in primary cultured astrocytes, which was prevented by caspase 3 inhibition. Apoptosis was also prevented by shRNA-mediated down-regulation of PAR-4, a protein sensitizing cells to the sphingolipid ceramide. Consistent with a potentially proapoptotic effect of PAR-4 and ceramide, astrocytes surrounding amyloid plaques in brain sections of the 5xFAD mouse (and Alzheimer disease patient brain) showed caspase 3 activation and were apoptotic when co-expressing PAR-4 and ceramide. Apoptosis was not observed in astrocytes with deficient neutral sphingomyelinase 2 (nSMase2), indicating that ceramide generated by nSMase2 is critical for amyloid-induced apoptosis. Antibodies against PAR-4 and ceramide prevented amyloid-induced apoptosis in vitro and in vivo, suggesting that apoptosis was mediated by exogenous PAR-4 and ceramide, potentially associated with secreted lipid vesicles. This was confirmed by the analysis of lipid vesicles from conditioned medium showing that amyloid peptide induced the secretion of PAR-4 and C18 ceramide-enriched exosomes. Exosomes were not secreted by nSMase2-deficient astrocytes, indicating that ceramide generated by nSMase2 is critical for exosome secretion. Consistent with the ceramide composition in amyloid-induced exosomes, exogenously added C18 ceramide restored PAR-4-containing exosome secretion in nSMase2-deficient astrocytes. Moreover, isolated PAR-4/ceramide-enriched exosomes were taken up by astrocytes and induced apoptosis in the absence of amyloid peptide. Taken together, we report a novel mechanism of apoptosis induction by PAR-4/ceramide-enriched exosomes, which may critically contribute to Alzheimer disease. PMID:22532571
Giacomelli, S; Palmery, M; Romanelli, L; Cheng, C Y; Silvestrini, B
1998-01-01
The hallucinogenic effects of lysergic acid diethylamide (LSD) have mainly been attributed to the interaction of this drug with the serotoninergic system, but it seems more likely that they are the result of the complex interactions of the drug with both the serotoninergic and dopaminergic systems. The aim of the present study was to investigate the functional actions of LSD at dopaminergic receptors using prolactin secretion by primary cultures of rat pituitary cells as a model. LSD produced a dose-dependent inhibition of prolactin secretion in vitro with an IC50 at 1.7x10(-9) M. This action was antagonized by spiperone but not by SKF83566 or cyproheptadine, which indicates that LSD has a specific effect on D2 dopaminergic receptors. The maximum inhibition of prolactin secretion achieved by LSD was lower than that by dopamine (60% versus 80%). Moreover, the fact that LSD at 10(-8)-10(-6) M antagonized the inhibitory effect of dopamine (10(-7) M) and bromocriptine (10(-11) M) suggests that LSD acts as a partial agonist at D2 receptors on lactotrophs in vitro. Interestingly, LSD at 10(-13)-10(-10) M, the concentrations which are 10-1000-fold lower than those required to induce direct inhibition on pituitary prolactin secretion, potentiated the dopamine (10(-10)-2.5x10(-9) M)-mediated prolactin secretion by pituitary cells in vitro. These results suggest that LSD not only interacts with dopaminergic receptors but also has a unique capacity for modulating dopaminergic transmission. These findings may offer new insights into the hallucinogenic effect of LSD.
2010-01-01
Background Burkholderia pseudomallei is the causative agent of melioidosis where the highest reported incidence world wide is in the Northeast of Thailand, where saline soil and water are prevalent. Moreover, recent reports indicate a potential pathogenic role for B. pseudomallei in cystic fibrosis lung disease, where an increased sodium chloride (NaCl) concentration in airway surface liquid has been proposed. These observations raise the possibility that high salinity may represent a favorable niche for B. pseudomallei. We therefore investigated the global transcriptional response of B. pseudomallei to increased salinity using microarray analysis. Results Transcriptome analysis of B. pseudomallei under salt stress revealed several genes significantly up-regulated in the presence of 320 mM NaCl including genes associated with the bsa-derived Type III secretion system (T3SS). Microarray data were verified by reverse transcriptase-polymerase chain reactions (RT-PCR). Western blot analysis confirmed the increased expression and secretion of the invasion-associated type III secreted proteins BipD and BopE in B. pseudomallei cultures at 170 and 320 mM NaCl relative to salt-free medium. Furthermore, salt-treated B. pseudomallei exhibited greater invasion efficiency into the lung epithelial cell line A549 in a manner partly dependent on a functional Bsa system. Conclusions B. pseudomallei responds to salt stress by modulating the transcription of a relatively small set of genes, among which is the bsa locus associated with invasion and virulence. Expression and secretion of Bsa-secreted proteins was elevated in the presence of exogenous salt and the invasion efficiency was enhanced. Our data indicate that salinity has the potential to influence the virulence of B. pseudomallei. PMID:20540813
Xu, Qi; Knoshaug, Eric P.; Wang, Wei; ...
2017-07-24
Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose twomore » prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel production. Lastly, the effectiveness of the tested secretion signals will also benefit future secretion of other heterologous proteins in L. starkeyi and, given the effectiveness of the cross-genus secretion signal, possibly other oleaginous yeasts as well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Qi; Knoshaug, Eric P.; Wang, Wei
Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose twomore » prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel production. Lastly, the effectiveness of the tested secretion signals will also benefit future secretion of other heterologous proteins in L. starkeyi and, given the effectiveness of the cross-genus secretion signal, possibly other oleaginous yeasts as well.« less
Xu, Qi; Knoshaug, Eric P; Wang, Wei; Alahuhta, Markus; Baker, John O; Yang, Shihui; Vander Wall, Todd; Decker, Stephen R; Himmel, Michael E; Zhang, Min; Wei, Hui
2017-07-24
Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel production. The effectiveness of the tested secretion signals will also benefit future secretion of other heterologous proteins in L. starkeyi and, given the effectiveness of the cross-genus secretion signal, possibly other oleaginous yeasts as well.
Bardill, J Patrick; Miller, Jennifer L; Vogel, Joseph P
2005-04-01
Legionella pneumophila replicates inside alveolar macrophages and causes an acute, potentially fatal pneumonia called Legionnaires' disease. The ability of this bacterium to grow inside of macrophages is dependent on the presence of a functional dot/icm type IV secretion system (T4SS). Proteins secreted by the Dot/Icm T4SS are presumed to alter the host endocytic pathway, allowing L. pneumophila to establish a replicative niche within the host cell. Here we show that a member of the SidE family of proteins interacts with IcmS and is required for full virulence in the protozoan host Acanthamoeba castellanii. Using immunofluorescence microscopy and adenylate cyclase fusions, we show that SdeA is secreted into host cells by L. pneumophila in an IcmS-dependent manner. The SidE-like proteins are secreted very early during macrophage infection, suggesting that they are important in the initial formation of the replicative phagosome. Secreted SidE family members show a similar localization to other Dot/Icm substrates, specifically, to the poles of the replicative phagosome. This common localization of secreted substrates of the Dot/Icm system may indicate the formation of a multiprotein complex on the cytoplasmic face of the replicative phagosome.
Kong, Eric F; Tsui, Christina; Kucharíková, Sona; Andes, David; Van Dijck, Patrick; Jabra-Rizk, Mary Ann
2016-10-11
Biofilm-associated polymicrobial infections, particularly those involving fungi and bacteria, are responsible for significant morbidity and mortality and tend to be challenging to treat. Candida albicans and Staphylococcus aureus specifically are considered leading opportunistic fungal and bacterial pathogens, respectively, mainly due to their ability to form biofilms on catheters and indwelling medical devices. However, the impact of mixed-species biofilm growth on therapy remains largely understudied. In this study, we investigated the influence of C. albicans secreted cell wall polysaccharides on the response of S. aureus to antibacterial agents in biofilm. Results demonstrated significantly enhanced tolerance for S. aureus to drugs in the presence of C. albicans or its secreted cell wall polysaccharide material. Fluorescence confocal time-lapse microscopy revealed impairment of drug diffusion through the mixed biofilm matrix. Using C. albicans mutant strains with modulated cell wall polysaccharide expression, exogenous supplementation, and enzymatic degradation, the C. albicans-secreted β-1,3-glucan cell wall component was identified as the key matrix constituent providing the bacteria with enhanced drug tolerance. Further, antibody labeling demonstrated rapid coating of the bacteria by the C. albicans matrix material. Importantly, via its effect on the fungal biofilm matrix, the antifungal caspofungin sensitized the bacteria to the drugs. Understanding such symbiotic interactions with clinical relevance between microbial species in biofilms will greatly aid in overcoming the limitations of current therapies and in defining potential new targets for treating polymicrobial infections. The fungus Candida albicans and the bacterium Staphylococcus aureus are important microbial pathogens responsible for the majority of infections in hospitalized patients and are often coisolated from a host. In this study, we demonstrated that when grown together, the fungus provides the bacterium with enhanced tolerance to antimicrobial drugs. This process was mediated by polysaccharides secreted by the fungal cell into the environment. The biofilm matrix formed by these polysaccharides prevented penetration by the drugs and provided the bacteria with protection. Importantly, we show that by inhibiting the production of the fungal polysaccharides, a specific antifungal agent indirectly sensitized the bacteria to antimicrobials. Understanding the therapeutic implications of the interactions between these two diverse microbial species will aid in overcoming the limitations of current therapies and in defining new targets for treating complex polymicrobial infections. Copyright © 2016 Kong et al.
Savoy, C; Van Lieshout, R J; Steiner, M
2017-04-01
Major depressive disorder (MDD) is estimated to affect one in twenty people worldwide. MDD is highly comorbid with cardiovascular disease (CVD), itself one of the single largest causes of mortality worldwide. A number of pathological changes observed in MDD are believed to contribute to the development of cardiovascular disease, although no single mechanism has been identified. There are also no biological markers capable of predicting the future risk of developing heart disease in depressed individuals. Plasminogen activator inhibitor-1 (PAI-1) is a prothrombotic plasma protein secreted by endothelial tissue and has long been implicated in CVD. An expanding body of literature has recently implicated it in the pathogenesis of major depressive disorder as well. In this study, we review candidate pathways implicating MDD in CVD and consider how PAI-1 might act as a mediator by which MDD induces CVD development: chiefly through sleep disruption, adiposity, brain-derived neurotrophic factor (BDNF) metabolism, systemic inflammation and hypothalamic-pituitary-adrenal (HPA)-axis dysregulation. As both MDD and CVD are more prevalent in women than in men, and incidence of either condition is dramatically increased during reproductive milestones, we also explore hormonal and sex-specific associations between MDD, PAI-1 and CVD. Of special interest is the role PAI-1 plays in perinatal depression and in cardiovascular complications of pregnancy. Finally, we propose a theoretical model whereby PAI-1 might serve as a useful biomarker for CVD risk in those with depression, and as a potential target for future treatments. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Th9 cells: differentiation and disease
Kaplan, Mark H.
2014-01-01
Summary CD4+ T-helper cells regulate immunity and inflammation through the acquisition of potential to secrete specific cytokines. The acquisition of cytokine-secreting potential, in a process termed T-helper cell differentiation, is a response to multiple environmental signals including the cytokine milieu. The most recently defined subset of T-helper cells are termed Th9 and are identified by the potent production of interleukin-9 (IL-9). Given the pleiotropic functions of IL-9, Th9 cells might be involved in pathogen immunity and immune-mediated disease. In this review, I focus on recent developments in understanding the signals that promote Th9 differentiation, the transcription factors that regulate IL-9 expression, and finally the potential roles for Th9 cells in immunity in vivo. PMID:23405898
Nolan, C J; Leahy, J L; Delghingaro-Augusto, V; Moibi, J; Soni, K; Peyot, M-L; Fortier, M; Guay, C; Lamontagne, J; Barbeau, A; Przybytkowski, E; Joly, E; Masiello, P; Wang, S; Mitchell, G A; Prentki, M
2006-09-01
The aim of this study was to determine the role of fatty acid signalling in islet beta cell compensation for insulin resistance in the Zucker fatty fa/fa (ZF) rat, a genetic model of severe obesity, hyperlipidaemia and insulin resistance that does not develop diabetes. NEFA augmentation of insulin secretion and fatty acid metabolism were studied in isolated islets from ZF and Zucker lean (ZL) control rats. Exogenous palmitate markedly potentiated glucose-stimulated insulin secretion (GSIS) in ZF islets, allowing robust secretion at physiological glucose levels (5-8 mmol/l). Exogenous palmitate also synergised with glucagon-like peptide-1 and the cyclic AMP-raising agent forskolin to enhance GSIS in ZF islets only. In assessing islet fatty acid metabolism, we found increased glucose-responsive palmitate esterification and lipolysis processes in ZF islets, suggestive of enhanced triglyceride-fatty acid cycling. Interruption of glucose-stimulated lipolysis by the lipase inhibitor Orlistat (tetrahydrolipstatin) blunted palmitate-augmented GSIS in ZF islets. Fatty acid oxidation was also higher at intermediate glucose levels in ZF islets and steatotic triglyceride accumulation was absent. The results highlight the potential importance of NEFA and glucoincretin enhancement of insulin secretion in beta cell compensation for insulin resistance. We propose that coordinated glucose-responsive fatty acid esterification and lipolysis processes, suggestive of triglyceride-fatty acid cycling, play a role in the coupling mechanisms of glucose-induced insulin secretion as well as in beta cell compensation and the hypersecretion of insulin in obesity.
Fernández, A G; Massingham, R; Roberts, D J
1988-05-01
The substituted benzamide, clebopride, at doses (0.03-3 mg kg-1 i.p.) that were without effect per se on the secretion of gastric acid in pylorus ligated (Shay) rats, potentiated the antisecretory effects of the histamine H2 receptor antagonists cimetidine and ranitidine in this model but not those of the muscarine receptor antagonist pirenzepine nor those of the proton pump inhibitor omeprazole. By contrast, clebopride was without influence on the inhibitory effects of cimetidine on pentagastrin-induced secretion in perfused stomach (Ghosh and Schild) preparations in anaesthetized rats. The significance of these findings is discussed in relation to the previously described potentiating effects of clebopride on the anti-ulcer activity of cimetidine in various experimental models, and the potential beneficial effects of such combined therapy in the clinic.
Can GLP-1 preparations be used in children and adolescents with diabetes mellitus?
Shehadeh, Naim; Daich, Eena; Zuckerman-Levin, Nehama
2014-03-01
The number of young diabetics is increasing and therapeutic options for these patients are limited. Glucagon-like peptide-1 (GLP-1) is secreted from the gut after meals and enhances glucose-induced insulin secretion, inhibits glucagon secretion, suppresses appetite, and delays the gastric-emptying rate. GLP-1 analogs are already widely used in the adult population to improve glycemic control and induce weight loss in overweight subjects with type 2 diabetes. The glucose-lowering effects resulting from the inhibition of glucagon secretion and the gastric-emptying rate could be of clinical importance in type 1 diabetes. In this article we review clinical data regarding the use of GLP-1 receptor agonists in youth and address the potential benefits and safety aspects of these compounds. Large scale clinical trials are still needed in the pediatric population.
Yang, Rebecca; Roelfsema, Ferdinand; Takahashi, Paul
2016-01-01
Context: In the experimental animal, inflammatory signals quench LH's feedforward drive of testosterone (T) secretion and appear to impair GnRH-LH output. The degree to which such suppressive effects operate in the human is not known. Objective: To test the hypothesis that IL-2 impairs LH's feedforward drive on T and T's feedback inhibition of LH secretion in healthy men. Setting: Mayo Center for Translational Science Activities. Patients or Other Participants: A total of 35 healthy men, 17 young and 18 older. Interventions: Randomized prospective double-blind saline-controlled study of IL-2 infusion in 2 doses with concurrent 10-minute blood sampling for 24 hours. Main Outcome Measures: Deconvolution analysis of LH and T secretion. Results: After saline injection, older compared with young men exhibited reduced LH feedforward drive on T secretion (P < .001), and decreased T feedback inhibition of LH secretion (P < .01). After IL-2 injection, LH's feedforward onto T secretion declined markedly especially in young subjects (P < .001). Concomitantly, IL-2 potentiated T's proportional feedback on LH secretion especially in older volunteers. Conclusion: This investigation confirms combined feedforward and feedback deficits in older relative to young men given saline and demonstrates 1) joint mechanisms by which IL-2 enforces biochemical hypogonadism, viz, combined feedforward block and feedback amplification; and 2) unequal absolute inhibition of T and LH secretion by IL-2 in young and older men. These outcomes establish that the male gonadal axis is susceptible to dual-site suppression by a prototypic inflammatory mediator. Thus, we postulate that selected ILs might also enforce male hypogonadism in chronic systemic inflammation. PMID:26600270
Veldhuis, Johannes; Yang, Rebecca; Roelfsema, Ferdinand; Takahashi, Paul
2016-02-01
In the experimental animal, inflammatory signals quench LH's feedforward drive of testosterone (T) secretion and appear to impair GnRH-LH output. The degree to which such suppressive effects operate in the human is not known. To test the hypothesis that IL-2 impairs LH's feedforward drive on T and T's feedback inhibition of LH secretion in healthy men. Mayo Center for Translational Science Activities. A total of 35 healthy men, 17 young and 18 older. Randomized prospective double-blind saline-controlled study of IL-2 infusion in 2 doses with concurrent 10-minute blood sampling for 24 hours. Deconvolution analysis of LH and T secretion. After saline injection, older compared with young men exhibited reduced LH feedforward drive on T secretion (P < .001), and decreased T feedback inhibition of LH secretion (P < .01). After IL-2 injection, LH's feedforward onto T secretion declined markedly especially in young subjects (P < .001). Concomitantly, IL-2 potentiated T's proportional feedback on LH secretion especially in older volunteers. This investigation confirms combined feedforward and feedback deficits in older relative to young men given saline and demonstrates 1) joint mechanisms by which IL-2 enforces biochemical hypogonadism, viz, combined feedforward block and feedback amplification; and 2) unequal absolute inhibition of T and LH secretion by IL-2 in young and older men. These outcomes establish that the male gonadal axis is susceptible to dual-site suppression by a prototypic inflammatory mediator. Thus, we postulate that selected ILs might also enforce male hypogonadism in chronic systemic inflammation.
Koskimäki, Janne J; Pirttilä, Anna Maria; Ihantola, Emmi-Leena; Halonen, Outi; Frank, A Carolin
2015-03-24
Endophytes are microbes that inhabit plant tissues without any apparent signs of infection, often fundamentally altering plant phenotypes. While endophytes are typically studied in plant roots, where they colonize the apoplast or dead cells, Methylobacterium extorquens strain DSM13060 is a facultatively intracellular symbiont of the meristematic cells of Scots pine (Pinus sylvestris L.) shoot tips. The bacterium promotes host growth and development without the production of known plant growth-stimulating factors. Our objective was to examine intracellular colonization by M. extorquens DSM13060 of Scots pine and sequence its genome to identify novel molecular mechanisms potentially involved in intracellular colonization and plant growth promotion. Reporter construct analysis of known growth promotion genes demonstrated that these were only weakly active inside the plant or not expressed at all. We found that bacterial cells accumulate near the nucleus in intact, living pine cells, pointing to host nuclear processes as the target of the symbiont's activity. Genome analysis identified a set of eukaryote-like functions that are common as effectors in intracellular bacterial pathogens, supporting the notion of intracellular bacterial activity. These include ankyrin repeats, transcription factors, and host-defense silencing functions and may be secreted by a recently imported type IV secretion system. Potential factors involved in host growth include three copies of phospholipase A2, an enzyme that is rare in bacteria but implicated in a range of plant cellular processes, and proteins putatively involved in gibberellin biosynthesis. Our results describe a novel endophytic niche and create a foundation for postgenomic studies of a symbiosis with potential applications in forestry and agriculture. All multicellular eukaryotes host communities of essential microbes, but most of these interactions are still poorly understood. In plants, bacterial endophytes are found inside all tissues. M. extorquens DSM13060 occupies an unusual niche inside cells of the dividing shoot tissues of a pine and stimulates seedling growth without producing cytokinin, auxin, or other plant hormones commonly synthesized by plant-associated bacteria. Here, we tracked the bacteria using a fluorescent tag and confocal laser scanning microscopy and found that they localize near the nucleus of the plant cell. This prompted us to sequence the genome and identify proteins that may affect host growth by targeting processes in the host cytoplasm and nucleus. We found many novel genes whose products may modulate plant processes from within the plant cell. Our results open up new avenues to better understand how bacteria assist in plant growth, with broad implications for plant science, forestry, and agriculture. Copyright © 2015 Koskimäki et al.
Sales, Débora Lima; Morais-Braga, Maria Flaviana Bezerra; Santos, Antonia Thassya Lucas Dos; Machado, Antonio Judson Targino; Araujo Filho, João Antonio de; Dias, Diógenes de Queiroz; Cunha, Francisco Assis Bezerra da; Saraiva, Rogério de Aquino; Menezes, Irwin Rose Alencar de; Coutinho, Henrique Douglas Melo; Costa, José Galberto Martins; Ferreira, Felipe Silva; Alves, Rômulo Romeu da Nóbrega; Almeida, Waltécio de Oliveira
2017-08-01
The increase in microorganisms with resistance to medications has caused a strong preoccupation within the medical and scientific community. Animal toxins studies, such as parotoid glandular secretions from amphibians, possesses a great potential in the development of drugs, such as antimicrobials, as these possess bioactive compounds. It was evaluated Rhinella jimi (Stevaux, 2002) glandular secretions against standard and multi-resistant bacterial strains; the effect of secretions combined with drugs; and determined the toxicity using two biologic in vivo models, and a in vitro model with mice livers. Standard strains were used for the determination of the Minimum Inhibitory Concentration (MIC), while for the modulatory activity of antibiotics, the clinical isolates Escherichia coli 06, Pseudomonas aeruginosa 03 and Staphylococcus aureus 10 were used. Modulatory activity was evaluated by the broth microdilution method with aminoglycosides and β-lactams as target antibiotics. The secretions in association with the antibiotics have a significant reduction in MIC, both the aminoglycosides and β-lactams. The toxicity and cytotoxicity results were lower than the values used in the modulation. R. jimi glandular secretions demonstrated clinically relevant results regarding the modulation of the tested antimicrobials. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Wu, Chunsheng; Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping
2012-12-01
Adenosine triphosphate (ATP) is considered as the key neurotransmitter in taste buds for taste signal transmission and processing. Measurements of ATP secreted from single taste receptor cell (TRC) with high sensitivity and specificity are essential for investigating mechanisms underlying taste cell-to-cell communications. In this study, we presented an aptamer-based biosensor for the detection of ATP locally secreted from single TRC. ATP sensitive DNA aptamer was used as recognition element and its DNA competitor was served as signal transduction element that was covalently immobilized on the surface of light addressable potentiometric sensor (LAPS). Due to the light addressable capability of LAPS, local ATP secretion from single TRC can be detected by monitoring the working potential shifts of LAPS. The results show this biosensor can detect ATP with high sensitivity and specificity. It is demonstrated this biosensor can effectively detect the local ATP secretion from single TRC responding to tastant mixture. This biosensor could provide a promising new tool for the research of taste cell-to-cell communications as well as for the detection of local ATP secretion from other types of ATP secreting individual cells.
Wang, Fei; Song, Xiudao; Zhou, Liang; Liang, Guoqiang; Huang, Fei; Jiang, Guorong; Zhang, Lurong
2017-12-26
Sweet taste receptors (STRs) involve in regulating the release of glucose-stimulated glucagon-like peptide-1 (GLP-1). Our in vivo and in vitro studies found that 3-deoxyglucosone (3DG) inhibited glucose-stimulated GLP-1 secretion. This study investigated the role of STRs in 3DG-induced inhibition of high glucose-stimulated GLP-1 secretion. STC-1 cells were incubated with lactisole or 3DG for 1 h under 25 mM glucose conditions. Western blotting was used to study the expression of STRs signaling molecules and ELISA was used to analyse GLP-1 and cyclic adenosine monophosphate (cAMP) levels. Lactisole inhibited GLP-1 secretion. Exposure to 25 mM glucose increased the expressions of STRs subunits when compared with 5.6 mM glucose. 3DG decreased GLP-1 secretion and STRs subunits expressions, with affecting other components of STRs pathway, including the downregulation of transient receptor potential cation channel subfamily M member 5 (TRPM5) expression and the reduction of intracellular cAMP levels. 3DG attenuates high glucose-stimulated GLP-1 secretion by reducing STR subunit expression and downstream signaling components.
Adrenaline: insights into its metabolic roles in hypoglycaemia and diabetes
Korim, W S; Sabetghadam, A; Llewellyn‐Smith, I J
2016-01-01
Adrenaline is a hormone that has profound actions on the cardiovascular system and is also a mediator of the fight‐or‐flight response. Adrenaline is now increasingly recognized as an important metabolic hormone that helps mobilize energy stores in the form of glucose and free fatty acids in preparation for physical activity or for recovery from hypoglycaemia. Recovery from hypoglycaemia is termed counter‐regulation and involves the suppression of endogenous insulin secretion, activation of glucagon secretion from pancreatic α‐cells and activation of adrenaline secretion. Secretion of adrenaline is controlled by presympathetic neurons in the rostroventrolateral medulla, which are, in turn, under the control of central and/or peripheral glucose‐sensing neurons. Adrenaline is particularly important for counter‐regulation in individuals with type 1 (insulin‐dependent) diabetes because these patients do not produce endogenous insulin and also lose their ability to secrete glucagon soon after diagnosis. Type 1 diabetic patients are therefore critically dependent on adrenaline for restoration of normoglycaemia and attenuation or loss of this response in the hypoglycaemia unawareness condition can have serious, sometimes fatal, consequences. Understanding the neural control of hypoglycaemia‐induced adrenaline secretion is likely to identify new therapeutic targets for treating this potentially life‐threatening condition. PMID:26896587
Identification of Human Islet Amyloid Polypeptide as a BACE2 Substrate
Rulifson, Ingrid C.; Cao, Ping; Miao, Li; Kopecky, David; Huang, Linda; White, Ryan D.; Samayoa, Kim; Gardner, Jonitha; Wu, Xiaosu; Chen, Kui; Tsuruda, Trace; Homann, Oliver; Baribault, Helene; Yamane, Harvey; Carlson, Tim; Wiltzius, Jed; Li, Yang
2016-01-01
Pancreatic amyloid formation by islet amyloid polypeptide (IAPP) is a hallmark pathological feature of type 2 diabetes. IAPP is stored in the secretory granules of pancreatic beta-cells and co-secreted with insulin to maintain glucose homeostasis. IAPP is innocuous under homeostatic conditions but imbalances in production or processing of IAPP may result in homodimer formation leading to the rapid production of cytotoxic oligomers and amyloid fibrils. The consequence is beta-cell dysfunction and the accumulation of proteinaceous plaques in and around pancreatic islets. Beta-site APP-cleaving enzyme 2, BACE2, is an aspartyl protease commonly associated with BACE1, a related homolog responsible for amyloid processing in the brain and strongly implicated in Alzheimer’s disease. Herein, we identify two distinct sites of the mature human IAPP sequence that are susceptible to BACE2-mediated proteolytic activity. The result of proteolysis is modulation of human IAPP fibrillation and human IAPP protein degradation. These results suggest a potential therapeutic role for BACE2 in type 2 diabetes-associated hyperamylinaemia. PMID:26840340
Gümbel, Denis; Gelbrich, Nadine; Napp, Matthias; Daeschlein, Georg; Kramer, Axel; Sckell, Axel; Burchardt, Martin; Ekkernkamp, Axel; Stope, Matthias B
2017-03-01
To evaluate the potential involvement of redox-specific signalling pathways in cold atmospheric plasma (CAP)-induced apoptosis on human osteosarcoma cells. Osteosarcoma cell lines were treated with CAP with or without antioxidative agents and seeded in cell culture plates. Cell proliferation was determined by counting viable cells. Carrier gas-treated cells served as control. Peroxiredoxin (PRX) 1-3 expression and secretion were assessed. CAP treatment exhibited strongly attenuated proliferation rates. This effect was significantly attenuated by the addition of N-acetylcysteine (NAC). CAP-treated cells exhibited an increase of PRX 1 and 2 10 sec after treatment. The ratio of oxidized to reduced PRX1 and PRX2 was significantly altered with increasing cellular concentration of the oxidized dimer. Antioxidant supplementation with NAC increases proliferation of CAP-treated osteosarcoma cells, implicating an involvement of redox signalling. Activation of PRX1 and -2 indicate CAP affects redox homeostasis. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Thyroid Hormone and Seasonal Rhythmicity
Dardente, Hugues; Hazlerigg, David G.; Ebling, Francis J. P.
2014-01-01
Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of TH signaling within the medio-basal hypothalamus (MBH) through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, TH might also be involved in longer-term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal rhythmicity. PMID:24616714
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, L.E.
1993-08-04
In October and November 1986, two secret U.S. Government operations were publicly exposed, potentially implicating Reagan Administration officials in illegal activities. These operations were the provision of assistance to the military activities of the Nicaraguan contra rebels during an October 1984 to October 1986 prohibition on such aid, and the sale of U.S. arms to Iran in contravention of stated U.S. policy and in possible violation of arms-export controls. In late November 1986, Reagan Administration officials announced that some of the proceeds from the sale of U.S. arms to Iran had been diverted to the contras. As a result, Attorneymore » General Edwin Meese III sought the appointment of an independent counsel to investigate and prosecute possible crimes. Volume III contains comments and materials submitted by individuals and their attorneys from that investigation.« less
NASA Astrophysics Data System (ADS)
Pang, Petti T.; Nagappan, Guhan; Guo, Wei; Lu, Bai
2016-05-01
Although late-phase long-term potentiation (L-LTP) is implicated in long-term memory, its molecular mechanisms are largely unknown. Here we provide evidence that L-LTP can be divided into two stages: an induction stage (I) and a maintenance stage (II). Both stages require mature brain-derived neurotrophic factor (mBDNF), but involve distinct underlying mechanisms. Stage I requires secretion of existing proBDNF followed by extracellular cleavage by tPA/plasmin. Stage II depends on newly synthesized BDNF. Surprisingly, mBDNF at stage II is derived from intracellular cleavage of proBDNF by furin/PC1. Moreover, stage I involves BDNF-TrkB signaling mainly through MAP kinase, whereas all three signaling pathways (phospholipase C-γ, PI3 kinase, and MAP kinase) are required for the maintenance of L-LTP at stage II. These results reveal the molecular basis for two temporally distinct stages in L-LTP, and provide insights on how BDNF modulates this long-lasting synaptic alternation at two critical time windows.
Chemokines and chemokine receptors: new actors in neuroendocrine regulations.
Rostène, William; Guyon, Alice; Kular, Lara; Godefroy, David; Barbieri, Federica; Bajetto, Adriana; Banisadr, Ghazal; Callewaere, Céline; Conductier, Gregory; Rovère, Carole; Mélik-Parsadaniantz, Stéphane; Florio, Tullio
2011-01-01
Chemokines are small secreted proteins that chemoattract and activate immune and non-immune cells. Their role in the immune system is well-known, and it has recently been suggested that they may also play a role in the central nervous system (CNS). Indeed, they do not only act as immunoinflammatory mediators in the brain but they also act as potential modulators in neurotransmission. Although we are only beginning to be aware of the implication of chemokines in neuroendocrine functions, this review aims at summarizing what is known in that booming field of research. First we describe the expression of chemokines and their receptors in the CNS with a focus on the hypothalamo-pituitary system. Secondly, we present what is known on some chemokines in the regulation of neuroendocrine functions such as cell migration, stress, thermoregulation, drinking and feeding as well as anterior pituitary functions. We suggest that chemokines provide a fine modulatory tuning system of neuroendocrine regulations. Copyright © 2010 Elsevier Inc. All rights reserved.
Archile-Contreras, Anangelina C; Cha, Ming C; Mandell, Ira B; Miller, Stephen P; Purslow, Peter P
2011-01-26
Vitamins influence collagen metabolism in animals grown for meat. This study investigated whether vitamins E and C regulate collagen turnover in muscle by the balance of effects on the synthesis of collagen and its degradation by secretion of matrix metalloproteinases (MMPs) by bovine intramuscular fibroblasts. Fibroblasts isolated from longissimus dorsi (LD) and semitendinosus (ST) muscle were treated with different concentrations of vitamins. Pro-MMP-2, MMP-2, and total soluble collagen (TSC) synthesis were determined. Vitamins E and C each preferentially increased (P < 0.05) MMP-2 in cells derived from LD relative to those derived from ST. Higher TSC values (P < 0.05) were found for ST cells than for LD cells. Both vitamins may increase collagen turnover exerted by intramuscular connective tissue fibroblasts. These results may have implications in vivo on animal production, as a high rate of collagen turnover may lead to increased collagen solubility in muscles, which can affect meat tenderness.
Local Dkk1 Crosstalk from Breeding Ornaments Impedes Regeneration of Injured Male Zebrafish Fins
Kang, Junsu; Nachtrab, Gregory; Poss, Kenneth D.
2013-01-01
SUMMARY Precise spatiotemporal regulation of signaling activators and inhibitors can help limit developmental crosstalk between neighboring tissues during morphogenesis, homeostasis, and regeneration. Here, we find that the secreted Wnt inhibitor Dkk1b is abundantly produced by dense regions of androgen-regulated epidermal tubercles (ET) on the surfaces of adult male zebrafish pectoral fins. High-speed videos and amputation experiments reveal that pectoral fins and their ET are employed for male spawning. Formation and vigorous turnover of ET involve Dkk1b induction and maintenance, whereas Dkk1b is typically restricted from the regeneration blastema after amputation injury. When amputation occurs through an ET-containing region, a Dkk1b-enriched wound epidermis forms and blastema formation is disrupted, compromising regeneration. Thus, homeostatic signaling by key breeding ornaments can interfere with injury-activated tissue regeneration. Our findings help explain sexually dimorphic fin regeneration in zebrafish, and have implications for how regenerative potential might decline as development progresses or during species evolution. PMID:24135229
Vesentini, Damiano; Dickinson, David J; Murphy, Richard J
2006-10-01
This study shows the effect of two fungicides on the production of extracellular mucilaginous material (ECMM) in two wood-rotting basidiomycetes and identifies a mechanism that might be responsible for the variation observed. Increasing concentrations of the fungicides copper sulphate (CuSO4) and cyproconazole in the growth medium increased the proportion of ECMM in the biomass of Trametes versicolor and Gloeophyllum trabeum. These fungicides also caused a reduction in the length of the peripheral growth unit (PGU) of the mycelia leading to a more highly branched morphology and a larger number of hyphal tips, the sites for active secretion of ECMM, per unit length of mycelium. It is postulated that both in T. versicolor and G. trabeum this change in growth leads to the increases observed in the proportion of ECMM in the total biomass. The implications of these results are discussed with a view to a potential protective role of ECMM against stress and toxic environments.
Genetic secrets: Protecting privacy and confidentiality in the genetic era
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothstein, M.A.
1998-07-01
Few developments are likely to affect human beings more profoundly in the long run than the discoveries resulting from advances in modern genetics. Although the developments in genetic technology promise to provide many additional benefits, their application to genetic screening poses ethical, social, and legal questions, many of which are rooted in issues of privacy and confidentiality. The ethical, practical, and legal ramifications of these and related questions are explored in depth. The broad range of topics includes: the privacy and confidentiality of genetic information; the challenges to privacy and confidentiality that may be projected to result from the emergingmore » genetic technologies; the role of informed consent in protecting the confidentiality of genetic information in the clinical setting; the potential uses of genetic information by third parties; the implications of changes in the health care delivery system for privacy and confidentiality; relevant national and international developments in public policies, professional standards, and laws; recommendations; and the identification of research needs.« less
Genetic secrets: Protecting privacy and confidentiality in the genetic era. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothstein, M.A.
1998-09-01
Few developments are likely to affect human beings more profoundly in the long run than the discoveries resulting from advances in modern genetics. Although the developments in genetic technology promise to provide many additional benefits, their application to genetic screening poses ethical, social, and legal questions, many of which are rooted in issues of privacy and confidentiality. The ethical, practical, and legal ramifications of these and related questions are explored in depth. The broad range of topics includes: the privacy and confidentiality of genetic information; the challenges to privacy and confidentiality that may be projected to result from the emergingmore » genetic technologies; the role of informed consent in protecting the confidentiality of genetic information in the clinical setting; the potential uses of genetic information by third parties; the implications of changes in the health care delivery system for privacy and confidentiality; relevant national and international developments in public policies, professional standards, and laws; recommendations; and the identification of research needs.« less
Glial and Neuroimmune Mechanisms as Critical Modulators of Drug Use and Abuse.
Lacagnina, Michael J; Rivera, Phillip D; Bilbo, Staci D
2017-01-01
Drugs of abuse cause persistent alterations in synaptic plasticity that may underlie addiction behaviors. Evidence suggests glial cells have an essential and underappreciated role in the development and maintenance of drug abuse by influencing neuronal and synaptic functions in multifaceted ways. Microglia and astrocytes perform critical functions in synapse formation and refinement in the developing brain, and there is growing evidence that disruptions in glial function may be implicated in numerous neurological disorders throughout the lifespan. Linking evidence of function in health and under pathological conditions, this review will outline the glial and neuroimmune mechanisms that may contribute to drug-abuse liability, exploring evidence from opioids, alcohol, and psychostimulants. Drugs of abuse can activate microglia and astrocytes through signaling at innate immune receptors, which in turn influence neuronal function not only through secretion of soluble factors (eg, cytokines and chemokines) but also potentially through direct remodeling of the synapses. In sum, this review will argue that neural-glial interactions represent an important avenue for advancing our understanding of substance abuse disorders.
A pivotal role for galectin-1 in fetomaternal tolerance.
Blois, Sandra M; Ilarregui, Juan M; Tometten, Mareike; Garcia, Mariana; Orsal, Arif S; Cordo-Russo, Rosalia; Toscano, Marta A; Bianco, Germán A; Kobelt, Peter; Handjiski, Bori; Tirado, Irene; Markert, Udo R; Klapp, Burghard F; Poirier, Francoise; Szekeres-Bartho, Julia; Rabinovich, Gabriel A; Arck, Petra C
2007-12-01
A successful pregnancy requires synchronized adaptation of maternal immune-endocrine mechanisms to the fetus. Here we show that galectin-1 (Gal-1), an immunoregulatory glycan-binding protein, has a pivotal role in conferring fetomaternal tolerance. Consistently with a marked decrease in Gal-1 expression during failing pregnancies, Gal-1-deficient (Lgals1-/-) mice showed higher rates of fetal loss compared to wild-type mice in allogeneic matings, whereas fetal survival was unaffected in syngeneic matings. Treatment with recombinant Gal-1 prevented fetal loss and restored tolerance through multiple mechanisms, including the induction of tolerogenic dendritic cells, which in turn promoted the expansion of interleukin-10 (IL-10)-secreting regulatory T cells in vivo. Accordingly, Gal-1's protective effects were abrogated in mice depleted of regulatory T cells or deficient in IL-10. In addition, we provide evidence for synergy between Gal-1 and progesterone in the maintenance of pregnancy. Thus, Gal-1 is a pivotal regulator of fetomaternal tolerance that has potential therapeutic implications in threatened pregnancies.
Desmond, Nicola; Chiduo, Betty; Medard, Lemmy; Lees, Shelley S.; Vallely, Andrew; Francis, Suzanna C.; Ross, David A.; Hayes, Richard J.
2010-01-01
Intravaginal and menstrual practices may potentially influence results of trials of microbicides for HIV prevention through effects on the vaginal environment and on adherence to microbicide and placebo products. As part of the feasibility study for the Microbicides Development Programme Phase 3 trial of a vaginal microbicide in Mwanza, a variety of quantitative and qualitative methods were used to describe these practices, associations with behaviour and underlying social norms among women working in food and recreational facilities. Intravaginal cleansing by inserting fingers and either water alone or soap and water was thought necessary to remove “uchafu” (dirt), referring to vaginal secretions, including menstrual blood and post-coital discharge. Vaginal cleansing was carried out within 2 hours after 45% of sex acts. Sexual enhancement practices were less common. Intravaginal and menstrual practices and associated behaviours and demographic factors should be measured and monitored throughout microbicide trials to enable analyses of their impacts on microbicide effectiveness. PMID:20665101
Photoaging and skin cancer: Is the inflammasome the missing link?
Awad, Fawaz; Assrawi, Eman; Louvrier, Camille; Jumeau, Claire; Giurgea, Irina; Amselem, Serge; Karabina, Sonia-Athina
2018-03-12
Photoaging and epithelial skin tumorigenesis are complex processes triggered mainly by UV radiation from chronic sun exposure. This leads to DNA damage and reactive oxygen species (ROS) production, which initiate an inflammatory response that alters cell structure and function. Changes in cell homeostasis and ROS production activate intracellular multiprotein platforms called inflammasomes. Inflammasomes nucleate around cytoplasmic receptors mainly of the NLR (nucleotide-binding domain and leucine-rich repeat) family and regulate caspase-1-dependant secretion of pro-inflammatory interleukin (IL)1β and IL18 cytokines, and an inflammatory form of death named pyroptosis. NLRP1 inflammasomes have taken centre stage in skin biology, as mutations in NLRP1 underlie the genetic etiology of dermatological diseases and increase the susceptibility to skin cancer. Targeting inflammasome(s) might be an important approach to improve skin inflammation, photoaging and reduce the risk of epithelial skin tumorigenesis. In this context, we discuss the potential implication of NLRP1 and NLRP3 inflammasomes. Copyright © 2018 Elsevier B.V. All rights reserved.
Chemokine Function in Periodontal Disease and Oral Cavity Cancer
Sahingur, Sinem Esra; Yeudall, W. Andrew
2015-01-01
The chemotactic cytokines, or chemokines, comprise a superfamily of polypeptides with a wide range of activities that include recruitment of immune cells to sites of infection and inflammation, as well as stimulation of cell proliferation. As such, they function as antimicrobial molecules and play a central role in host defenses against pathogen challenge. However, their ability to recruit leukocytes and potentiate or prolong the inflammatory response may have profound implications for the progression of oral diseases such as chronic periodontitis, where tissue destruction may be widespread. Moreover, it is increasingly recognized that chronic inflammation is a key component of tumor progression. Interaction between cancer cells and their microenvironment is mediated in large part by secreted factors such as chemokines, and serves to enhance the malignant phenotype in oral and other cancers. In this article, we will outline the biological and biochemical mechanisms of chemokine action in host–microbiome interactions in periodontal disease and in oral cancer, and how these may overlap and contribute to pathogenesis. PMID:25999952
Ondrusova, Katarina; Fatehi, Mohammad; Barr, Amy; Czarnecka, Zofia; Long, Wentong; Suzuki, Kunimasa; Campbell, Scott; Philippaert, Koenraad; Hubert, Matthew; Tredget, Edward; Kwan, Peter; Touret, Nicolas; Wabitsch, Martin; Lee, Kevin Y; Light, Peter E
2017-11-27
Subcutaneous white adipose tissue (scWAT) is the major fat depot in humans and is a central player in regulating whole body metabolism. Skin exposure to UV wavelengths from sunlight is required for Vitamin D synthesis and pigmentation, although it is plausible that longer visible wavelengths that penetrate the skin may regulate scWAT function. In this regard, we discovered a novel blue light-sensitive current in human scWAT that is mediated by melanopsin coupled to transient receptor potential canonical cation channels. This pathway is activated at physiological intensities of light that penetrate the skin on a sunny day. Daily exposure of differentiated adipocytes to blue light resulted in decreased lipid droplet size, increased basal lipolytic rate and alterations in adiponectin and leptin secretion. Our results suggest that scWAT function may be directly under the influence of ambient sunlight exposure and may have important implications for our current understanding of adipocyte biology. (150 words).
Secreted and Transmembrane Wnt Inhibitors and Activators
Cruciat, Cristina-Maria; Niehrs, Christof
2013-01-01
Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand–receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease. PMID:23085770
The house economist and the eating paradox.
Woods, Stephen C
2002-04-01
An important observation of the experiments of George Collier is that animals normally prefer to maintain their body weight by eating a large number of small meals each day. However, as the effort to obtain access to food increases, the animals adapt by changing to a schedule of eating a small number of large meals each day. A strong implication of this is that there is a hidden cost to eating large meals, and this is the basis of the eating paradox that states that although food is a necessary commodity, the act of ingesting it poses certain metabolic problems for animals. Experiments on cephalic insulin secretion, conditioned insulin secretion and meal feeding are discussed to make the point that the economy demonstrated by rats in Collier's paradigm is dictated in part by predictions of the eating paradox. Copyright 2002 Elsevier Science Ltd.
ERIC Educational Resources Information Center
Vossekuil, Bryan; Fein, Robert A.; Reddy, Marisa; Borum, Randy; Modzeleski, William
This publication results from on ongoing collaboration between the U.S. Secret Service and the U.S. Department of Education. Its goals are to determine whether it could have been known that incidents of targeted violence at schools were being planned and whether anything could have been done to prevent them from occurring. Results from the Secret…
2014-11-05
including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215...necessary. Bloom writes that this support can come in several forms: Food, safe houses, recruits, financial support for weapons, remuneration of families...Virginia 2. Dudley Knox Library Naval Postgraduate School Monterey, California 3. Mark Sullivan, Director United States Secret Service Washington, DC
Mesenchymal Stem Cell Spheroids Retain Osteogenic Phenotype Through α2β1 Signaling
Murphy, Kaitlin C.; Hoch, Allison I.; Harvestine, Jenna N.; Zhou, Dejie
2016-01-01
The induction of mesenchymal stem cells (MSCs) toward the osteoblastic lineage using osteogenic supplements prior to implantation is one approach under examination to enhance their bone-forming potential. MSCs rapidly lose their induced phenotype upon removal of the soluble stimuli; however, their bone-forming potential can be sustained when provided with continued instruction via extracellular matrix (ECM) cues. In comparison with dissociated cells, MSC spheroids exhibit improved survival and secretion of trophic factors while maintaining their osteogenic potential. We hypothesized that entrapment of MSC spheroids formed from osteogenically induced cells would exhibit better preservation of their bone-forming potential than would dissociated cells from monolayer culture. Spheroids exhibited comparable osteogenic potential and increased proangiogenic potential with or without osteogenic preconditioning versus monolayer-cultured MSCs. Spheroids were then entrapped in collagen hydrogels, and the osteogenic stimulus was removed. In comparison with entrapped dissociated MSCs, spheroids exhibited significantly increased markers of osteogenic differentiation. The capacity of MSC spheroids to retain their osteogenic phenotype upon withdrawal of inductive cues was mediated by α2β1 integrin binding to cell-secreted ECM. These results demonstrate the capacity of spheroidal culture to sustain the mineral-producing phenotype of MSCs, thus enhancing their contribution toward bone formation and repair. Significance Despite the promise of mesenchymal stem cells (MSCs) for cell-based therapies for tissue repair and regeneration, there is little evidence that transplanted MSCs directly contribute to new bone formation, suggesting that induced cells rapidly lose their osteogenic phenotype or undergo apoptosis. In comparison with dissociated cells, MSC spheroids exhibit increased trophic factor secretion and improved cell survival. The loss of phenotype represents a significant clinical challenge for cell therapies, yet there is no evidence for whether MSC spheroids retain their osteogenic phenotype upon entrapment in a clinically relevant biomaterial. These findings demonstrate that MSC spheroids retain their osteogenic phenotype better than do dissociated MSCs, and this is due to integrin engagement with the cell-secreted extracellular matrix. These data provide evidence for a novel approach for potentiating the use of MSCs in bone repair. PMID:27365484
Ancient class of translocated oomycete effectors targets the host nucleus.
Schornack, Sebastian; van Damme, Mireille; Bozkurt, Tolga O; Cano, Liliana M; Smoker, Matthew; Thines, Marco; Gaulin, Elodie; Kamoun, Sophien; Huitema, Edgar
2010-10-05
Pathogens use specialized secretion systems and targeting signals to translocate effector proteins inside host cells, a process that is essential for promoting disease and parasitism. However, the amino acid sequences that determine host delivery of eukaryotic pathogen effectors remain mostly unknown. The Crinkler (CRN) proteins of oomycete plant pathogens, such as the Irish potato famine organism Phytophthora infestans, are modular proteins with predicted secretion signals and conserved N-terminal sequence motifs. Here, we provide direct evidence that CRN N termini mediate protein transport into plant cells. CRN host translocation requires a conserved motif that is present in all examined plant pathogenic oomycetes, including the phylogenetically divergent species Aphanomyces euteiches that does not form haustoria, specialized infection structures that have been implicated previously in delivery of effectors. Several distinct CRN C termini localized to plant nuclei and, in the case of CRN8, required nuclear accumulation to induce plant cell death. These results reveal a large family of ubiquitous oomycete effector proteins that target the host nucleus. Oomycetes appear to have acquired the ability to translocate effector proteins inside plant cells relatively early in their evolution and before the emergence of haustoria. Finally, this work further implicates the host nucleus as an important cellular compartment where the fate of plant-microbe interactions is determined.
Bouchlariotou, Sofia; Liakopoulos, Vassilios; Giannopoulou, Myrto; Arampatzis, Spyridon; Eleftheriadis, Theodoros; Mertens, Peter R; Zintzaras, Elias; Messinis, Ioannis E; Stefanidis, Ioannis
2014-08-01
Non-dipping circadian blood pressure (BP) is a common finding in preeclampsia, accompanied by adverse outcomes. Melatonin plays pivotal role in biological circadian rhythms. This study investigated the relationship between melatonin secretion and circadian BP rhythm in preeclampsia. Cases were women with preeclampsia treated between January 2006 and June 2007 in the University Hospital of Larissa. Volunteers with normal pregnancy, matched for chronological and gestational age, served as controls. Twenty-four hour ambulatory BP monitoring was applied. Serum melatonin and urine 6-sulfatoxymelatonin levels were determined in day and night time samples by enzyme-linked immunoassays. Measurements were repeated 2 months after delivery. Thirty-one women with preeclampsia and 20 controls were included. Twenty-one of the 31 women with preeclampsia were non-dippers. Compared to normal pregnancy, in preeclampsia there were significantly lower night time melatonin (48.4 ± 24.7 vs. 85.4 ± 26.9 pg/mL, p<0.001) levels. Adjustment for circadian BP rhythm status ascribed this finding exclusively to non-dippers (p<0.01). Two months after delivery, in 11 of the 21 non-dippers both circadian BP and melatonin secretion rhythm reappeared. In contrast, in cases with retained non-dipping status (n=10) melatonin secretion rhythm remained impaired: daytime versus night time melatonin (33.5 ± 13.0 vs. 28.0 ± 13.8 pg/mL, p=0.386). Urinary 6-sulfatoxymelatonin levels were, overall, similar to serum melatonin. Circadian BP and melatonin secretion rhythm follow parallel course in preeclampsia, both during pregnancy and, at least 2 months after delivery. Our findings may be not sufficient to implicate a putative therapeutic effect of melatonin, however, they clearly emphasize that its involvement in the pathogenesis of a non-dipping BP in preeclampsia needs intensive further investigation.
Tuo, Biguang; Wen, Guorong; Seidler, Ursula
2009-01-01
Background and purpose: Many cystic fibrosis (CF)-associated mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channels affect CFTR-activated HCO3− transport more than Cl− transport. Targeting the CFTR HCO3− conductance, if possible, may therefore be of major therapeutic benefit. In the present study, we examined the effects of genistein and forskolin on duodenal mucosal HCO3− and Cl− secretion. Experimental approach: Murine duodenal mucosal HCO3− and Cl− secretions were examined in vitro in Ussing chambers by the pH stat and short circuit current (Isc) techniques. Key results: Genistein markedly stimulated duodenal HCO3− secretion and Isc in a dose-dependent manner in CFTR wild-type mice, but not in CFTR null mice. CFTRinh-172, a highly specific CFTR inhibitor, inhibited genistein-stimulated duodenal HCO3− secretion and Isc in wild-type mice. Genistein induced 59% net HCO3− increase and 123% net Isc increase over basal value, whereas forskolin, an activator of adenylate cyclase, induced 94% net HCO3− increase and 507% net Isc increase, indicating that, compared with forskolin, genistein induced a relatively high HCO3−/Isc ratio. Further data showed that CFTR HCO3−/Cl− conductance ratio was 1.05 after genistein stimulation, whereas after forskolin stimulation, the CFTR HCO3−/Cl− conductance ratio was 0.27. Conclusions and implications: Genistein stimulates duodenal HCO3− and Cl− secretion through CFTR, and has a relatively high selectivity for the CFTR HCO3− conductance, compared with forskolin. This may indicate the feasibility of selective targeting of the HCO3− conductance of the CFTR channels. PMID:19788494
Porter, Katrina L.; Hileman, Stanley M.; Hardy, Steven L.; Nestor, Casey C; Lehman, Michael N.; Goodman, Robert L.
2014-01-01
Neurokinin B (NKB) is essential for human reproduction and has been shown to stimulate LH secretion in several species, including sheep. Ewes express the neurokinin-3 receptor (NK3R) in the retrochiasmatic area (RCh) and there is one report that placement of senktide, an NK3R agonist, therein stimulates LH secretion that resembles an LH surge in ewes. In this study, we first confirmed that local administration of senktide to the RCh produced a surge-like increase in LH secretion, and then tested the effects of this agonist in two other areas implicated in the control of LH secretion and where NK3R is found in high abundance: the preoptic area (POA) and arcuate nucleus (ARC). Bilateral microimplants containing senktide induced a dramatic surge-like increase in LH when given in the POA similar to that seen with RCh treatment. In contrast, senktide treatment in the ARC resulted in a much smaller, but significant, increase in LH concentrations suggestive of an effect on tonic secretion. The possible role of POA and RCh NK3R activation in the LH surge was next tested by treating ewes with SB222200, an NK3R antagonist, in each area during an E2-induced LH surge. SB222200 in the RCh, but not in the POA, reduced LH surge amplitude by about 40% compared to controls, indicating that NK3R activation in the former region is essential for full expression of the preovulatory LH surge. Based on these data, we propose that NKB actions in the RCh are an important component of the preovulatory LH surge in ewes. PMID:25040132
Roberts, Joseph L; He, Bo; Erickson, Anjeza; Moreau, Régis
2016-03-01
The activation of hepatic kinase mechanistic target of rapamycin complex 1 (mTORC1) is implicated in the development of obesity-related metabolic disorders. This study investigated the metabolic sequelae of mTORC1 hyperactivation in human hepatoma cells and the lipid-regulating mechanisms of two short-chain fatty acids: 4-phenylbutyric acid (PBA) and (R)-α-lipoic acid (LA). We created three stable cell lines that exhibit low, normal, or high mTORC1 activity. mTORC1 hyperactivation induced the expression of lipogenic (DGAT1 and DGAT2) and lipoprotein assembly (MTP and APOB) genes, thereby raising cellular triacylglyceride (TG) and exacerbating secretion of apoB-containing TG-rich lipoproteins. LYS6K2, a specific inhibitor of the p70 S6 kinase branch of mTORC1 signaling, reversed these effects. PBA and LA decreased secreted TG through distinct mechanisms. PBA repressed apoB expression (both mRNA and protein) and lowered secreted TG without mitigation of mTORC1 hyperactivity or activation of AMPK. LA decreased cellular and secreted TG by attenuating mTORC1 signaling in an AMPK-independent manner. LA did not regulate apoB expression but led to the secretion of apoB-containing TG-poor lipoproteins by repressing the expression of lipogenic genes, FASN, DGAT1, and DGAT2. Our studies provide new mechanistic insight into the hypolipidemic activity of PBA and LA in the context of mTORC1 hyperactivation and suggest that the short-chain fatty acids may aid in the prevention and treatment of hypertriglyceridemia. Copyright © 2015 Elsevier B.V. All rights reserved.
Login, Frédéric H; Shevchik, Vladimir E
2006-11-03
Many pathogenic Gram-negative bacteria secrete toxins and lytic enzymes via a multiprotein complex called the type II secretion system. This system, named Out in Erwinia chrysanthemi, consists of 14 proteins integrated or associated with the two bacterial membranes. OutC, a key player in this process, is probably implicated in the recognition of secreted proteins and signal transduction. OutC possesses a short cytoplasmic sequence, a single transmembrane segment (TMS), and a large periplasmic region carrying a putative PDZ domain. A hydrodynamic study revealed that OutC forms stable dimers of an elongated shape, whereas the PDZ domain adopts a globular shape. Bacterial two-hybrid, cross-linking, and pulldown assays revealed that the self-association of OutC is driven by the TMS, whereas the periplasmic region is dispensable for self-association. Site-directed mutagenesis of the TMS revealed that cooperative interactions between three polar residues located at the same helical face provide adequate stability for OutC self-assembly. An interhelical H-bonding mediated by Gln(29) appears to be the main driving force, and two Arg residues located at the TMS boundaries are essential for the stabilization of OutC oligomers. Stepwise mutagenesis of these residues gradually diminished OutC functionality and self-association ability. The triple OutC mutant R15V/Q29L/R36A became monomeric and nonfunctional. Self-association and functionality of the triple mutant were partially restored by the introduction of a polar residue at an alternative position in the interhelical interface. Thus, the OutC TMS is more than just a membrane anchor; it drives the protein self-association that is essential for formation of a functional secretion system.
Kumar, Avneesh; Shalmanova, Liliana; Hammad, Abdul; Christmas, Stephen E
2016-03-01
Renal transplantation can often be complicated due to delayed graft function, which is a direct sequel of ischaemia reperfusion injury. The adverse outcome of delayed graft function is not only short term but the long-term function of the graft is also affected. Therefore, it is important to understand the mechanisms of ischaemia reperfusion injury. Reactive oxygen species are the key mediators in ischaemia reperfusion injury causing direct cell damage which also initiate inflammation by inducing chemokines. The presence of inflammation is a marker of severe delayed graft function. However, the effect of oxidative stress on the expression of key chemokines has not been fully established yet. Therefore, the aim of this study was to measure the oxidative stress response and the secretion of chemokines in a cell culture model that mimics the effects of ischaemia reperfusion injury in immortalised human renal proximal tubular epithelial cells, HK-2. Cells were treated with varying concentrations of hydrogen peroxide and markers of oxidative stress response and chemokine release were measured. Exposure to hydrogen peroxide induced a significant increase in the activity of the antioxidant enzyme glutathione peroxidase and the levels of the chemokines Interleukin-8 (IL-8; CXCL8) and MCP-1 (CCL2). A dose related increase of chemokine secretion was also observed. The cytokine Interleukin-1β (IL-1β) at 1 ng/ml significantly potentiated the expression of both IL-8 (CXCL8) and MCP-1 (CCL2) which showed synergistic response in the presence of hydrogen peroxide. Pre-incubation of the cells with the anti-oxidant N-acetyl cysteine (NAC) strongly suppressed the induction of both IL-8 and MCP-1 when stimulated with hydrogen peroxide and IL-1β. This study demonstrates the potential of anti-oxidants like N-acetyl cysteine in ameliorating the effects of ischaemia reperfusion injury thus suggesting a new therapeutic approach in renal transplantation. These findings can have potential implications for clinical use to prevent ischaemia reperfusion injury in renal transplantation. Copyright © 2016 Elsevier B.V. All rights reserved.
Kravchenko-Balasha, Nataly; Shin, Young Shik; Sutherland, Alex; Levine, R D; Heath, James R
2016-05-17
Controlling cell migration is important in tissue engineering and medicine. Cell motility depends on factors such as nutrient concentration gradients and soluble factor signaling. In particular, cell-cell signaling can depend on cell-cell separation distance and can influence cellular arrangements in bulk cultures. Here, we seek a physical-based approach, which identifies a potential governed by cell-cell signaling that induces a directed cell-cell motion. A single-cell barcode chip (SCBC) was used to experimentally interrogate secreted proteins in hundreds of isolated glioblastoma brain cancer cell pairs and to monitor their relative motions over time. We used these trajectories to identify a range of cell-cell separation distances where the signaling was most stable. We then used a thermodynamics-motivated analysis of secreted protein levels to characterize free-energy changes for different cell-cell distances. We show that glioblastoma cell-cell movement can be described as Brownian motion biased by cell-cell potential. To demonstrate that the free-energy potential as determined by the signaling is the driver of motion, we inhibited two proteins most involved in maintaining the free-energy gradient. Following inhibition, cell pairs showed an essentially random Brownian motion, similar to the case for untreated, isolated single cells.
FNDC5 is produced in the stomach and associated to body composition
Barja-Fernández, S.; Folgueira, C.; Castelao, C.; Al-Massadi, O.; Bravo, S. B.; Garcia-Caballero, T.; Leis, R.; Pardo, M.; Casanueva, F. F.; Seoane, L. M.
2016-01-01
The fibronectin type III domain-containing protein 5 (FNDC5) discovered in 2002 has recently gained attention due to its potential role in protecting against obesity. In rat, no data exist regarding FNDC5 production and regulation in the stomach. The aim of the present work was to determine the expression of FNDC5 in the rat stomach and its potential regulation by body composition. The present data shows FNDC5 gene expression in the gastric mucosa. Immunohistochemical studies found FNDC5 immunopositivity in chief cells of gastric tissue. By the use of three different antibodies FNDC5 was found expressed in gastric mucosa and secreted by the stomach. The rate of gastric FNDC5 secretion parallels the circulating levels of FNDC5. The body fat mass increase after intervention with high fat diet coincided with a decrease in the secretion of FNDC5 from the stomach and a diminution in the FNDC5 circulating levels. In summary, the present data shows, for the first time, the expression of FNDC5 in the stomach of rats and its regulation by body composition, suggesting a potential role of gastric FNDC5 in energy homeostasis. PMID:26961074
Salunkhe, Vishal A.; Elvstam, Olof; Eliasson, Lena; Wendt, Anna
2016-01-01
Rosuvastatin is a member of the statin family. Like the other statins it is prescribed to lower cholesterol levels and thereby reduce the risk of cardiovascular events. Rosuvastatin lowers the cholesterol levels by inhibiting the key enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) in the cholesterol producing mevalonate pathway. It has been recognized that apart from their beneficial lipid lowering effects, statins also exhibit diabetogenic properties. The molecular mechanisms behind these remain unresolved. To investigate the effects of rosuvastatin on insulin secretion, we treated INS-1 832/13 cells with varying doses (20 nM to 20 μM) of rosuvastatin for 48 h. At concentrations of 2 μM and above basal insulin secretion was significantly increased. Using diazoxide we could determine that rosuvastatin did not increase basal insulin secretion by corrupting the KATP channels. Glucose-induced insulin secretion on the other hand seemed to be affected differently at different rosuvastatin concentrations. Rosuvastatin treatment (20 μM) for 24–48 h inhibited voltage-gated Ca2+ channels, which lead to reduced depolarization-induced exocytosis of insulin-containing granules. At lower concentrations of rosuvastatin (≤ 2 μM) the stimulus-secretion coupling pathway was intact downstream of the KATP channels as assessed by the patch clamp technique. However, a reduction in glucose-induced insulin secretion could be observed with rosuvastatin concentrations as low as 200 nM. The inhibitory effects of rosuvastatin on glucose-induced insulin secretion could be reversed with mevalonate, but not squalene, indicating that rosuvastatin affects insulin secretion through its effects on the mevalonate pathway, but not through the reduction of cholesterol biosynthesis. Taken together, these data suggest that rosuvastatin has the potential to increase basal insulin secretion and reduce glucose-induced insulin secretion. The latter is possibly an unavoidable side effect of rosuvastatin treatment as it occurs through the same mechanisms as the lipid-lowering effects of the drug. PMID:26986474
Jiang, Feng; Waterfield, Nicholas R; Yang, Jian; Yang, Guowei; Jin, Qi
2014-05-14
Widely found in animal and plant-associated proteobacteria, type VI secretion systems (T6SSs) are potentially capable of facilitating diverse interactions with eukaryotes and/or other bacteria. Pseudomonas aeruginosa encodes three distinct T6SS haemolysin coregulated protein (Hcp) secretion islands (H1, H2, and H3-T6SS), each involved in different aspects of the bacterium's interaction with other organisms. Here we describe the characterization of a P. aeruginosa H3-T6SS-dependent phospholipase D effector, PldB, and its three tightly linked cognate immunity proteins. PldB targets the periplasm of prokaryotic cells and exerts an antibacterial activity. Surprisingly, PldB also facilitates intracellular invasion of host eukaryotic cells by activation of the PI3K/Akt pathway, revealing it to be a trans-kingdom effector. Our findings imply a potentially widespread T6SS-mediated mechanism, which deploys a single phospholipase effector to influence both prokaryotic cells and eukaryotic hosts. Copyright © 2014 Elsevier Inc. All rights reserved.
HGG-22. TARGETING NEURONAL ACTIVITY-REGULATED NEUROLIGIN-3 DEPENDENCY FOR HIGH-GRADE GLIOMA THERAPY
Venkatesh, Humsa S; Tam, Lydia T; Woo, Pamelyn J; Monje, Michelle
2017-01-01
Abstract Neuronal activity promotes high-grade glioma (HGG) growth. An important mechanism mediating this neural regulation of brain cancer is activity-dependent cleavage and secretion of the synaptic molecule and glioma mitogen neuroligin-3 (Nlgn3), but the therapeutic potential of targeting Nlgn3 in glioma remains to be defined. Here, we demonstrate a striking dependence of HGG growth on microenvironmental Nlgn3 and determine a targetable mechanism of secretion. Patient-derived orthotopic xenografts of pediatric glioblastoma (pGBM) and diffuse intrinsic pontine glioma (DIPG) fail to grow in Nlgn3 knockout mice. Using genetic mouse models, we illustrate that Nlgn3 is cleaved from both neurons and oligodendrocyte precursor cells via the ADAM10 sheddase. Administration of an ADAM10 inhibitor robustly blocks pGBM and DIPG xenograft growth via modulation of the tumor microenvironment. This work defines the therapeutic potential of and a promising strategy for targeting Nlgn3 secretion in the glioma microenvironment, which could prove transformative for treatment of HGG.
Effect of ceftriaxone and cefepime on high-dose methotrexate clearance.
Tran, Hieu X; Herrington, Jon D
2016-12-01
Numerous drug interactions with methotrexate have been identified, which can lead to serious life-threatening effects. Up to 90% of methotrexate is excreted unchanged in the urine with primary excretion dependent on organic anion transport in the renal proximal tubule. The two pathways responsible for methotrexate secretion are organic anion transport 1 and primarily organic anion transport 3. Penicillins undergo tubular secretion via organic anion transport, and cephalosporins are believed to also possess a similar risk when administered with methotrexate; however, there are no human studies observing this interaction with cephalosporins and methotrexate. Ceftriaxone undergoes biliary clearance and has low affinity for the same organic anion transports as methotrexate; therefore, ceftriaxone has a low potential to interact with methotrexate. Cefepime is primarily secreted by organic cation transport N2, and also has a low potential to interact with methotrexate. This case report describes the pharmacokinetic effect of concomitant beta-lactam therapy in a patient receiving high-dose methotrexate. © The Author(s) 2015.
Caprani, A; Richert, A; Flaud, P
2004-05-01
We have used the EaHy926 endothelial cell line, able to secrete both pro and anti-aggregant platelet agents, as a model for thrombo-embolic diseases. We experimentally established, by comparing these two secretions with or without a Faraday cage, that the environmental electromagnetic field significantly increases the thrombo-embolic risks in this endothelial cell line. Copyright 2004 Wiley-Liss, Inc.
A Repulsive Electrostatic Mechanism for Protein Export through the Type III Secretion Apparatus
Rathinavelan, Thenmalarchelvi; Zhang, Lingling; Picking, Wendy L.; Weis, David D.; De Guzman, Roberto N.; Im, Wonpil
2010-01-01
Abstract Many Gram-negative bacteria initiate infections by injecting effector proteins into host cells through the type III secretion apparatus, which is comprised of a basal body, a needle, and a tip. The needle channel is formed by the assembly of a single needle protein. To explore the export mechanisms of MxiH needle protein through the needle of Shigella flexneri, an essential step during needle assembly, we have performed steered molecular dynamics simulations in implicit solvent. The trajectories reveal a screwlike rotation motion during the export of nativelike helix-turn-helix conformations. Interestingly, the channel interior with excessive electronegative potential creates an energy barrier for MxiH to enter the channel, whereas the same may facilitate the ejection of the effectors into host cells. Structurally known basal regions and ATPase underneath the basal region also have electronegative interiors. Effector proteins also have considerable electronegative potential patches on their surfaces. From these observations, we propose a repulsive electrostatic mechanism for protein translocation through the type III secretion apparatus. Based on this mechanism, the ATPase activity and/or proton motive force could be used to energize the protein translocation through these nanomachines. A similar mechanism may be applicable to macromolecular channels in other secretion systems or viruses through which proteins or nucleic acids are transported. PMID:20141759
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, G.Z.; Lu, L.; Qian, J.
In dispersed acini from rat pancreas, it was found that bovine pancreatic polypeptide (BPP) and its C-fragment hexapeptide amide (PP-6), at concentrations of 0.1 and 30 ..mu..M, respectively, could significantly inhibit amylase secretion stimulated by carbachol, and this inhibition by BPP was dose dependent. /sup 45/Ca outflux induced by carbachol was also inhibited by BPP or PP-6, but they had no effect on cholecystokinin octapeptide- (CCK-8) or A23187-stimulated /sup 45/Ca outflux. BPP was also capable of displacing the specific binding of (/sup 3/H)-quinuclidinyl benzilate to its receptors, and it possessed a higher affinity (K/sub i/35nM) than carbachol (K/sub i/ 1.8more » ..mu..M) in binding with M-receptors. It is concluded from this study that BPP acts as an antagonist of muscarinic cholinergic receptors in rat pancreatic acini. In addition, BPP inhibited the potentiation of amylase secretion caused by the combination of carbachol plus secretin or vasoactive intestinal peptide. This may be a possible explanation of the inhibitory effect of BPP on secretin-induced pancreatic enzyme secretion shown in vivo, since pancreatic enzyme secretion stimulated by secretin under experimental conditions may be the result of potentiation of enzyme release produced by the peptide in combination with a cholinergic stimulant.« less
Broset, Esther; Martín, Carlos; Gonzalo-Asensio, Jesús
2015-10-20
Different members of the Mycobacterium genus have evolved to cause tuberculosis in diverse human populations and in a variety of animal species. Our cumulative knowledge of mycobacterial genomes indicates that mutations in the PhoPR two-component virulence system were acquired not only during the natural evolution of mycobacterial species but also during in vitro subculture, which has given rise to the attenuated reference strain H37Ra or to different daughter strains of Mycobacterium bovis BCG. PhoPR is a well-known regulator of pathogenic phenotypes, including secretion of the virulence factor ESAT-6, biosynthesis of acyltrehalose-based lipids, and modulation of antigen export, in members of the Mycobacterium tuberculosis complex (MTBC). Evolutionarily conserved polymorphisms in PhoPR from Mycobacterium africanum, M. bovis, or M. tuberculosis H37Ra result in loss of functional phenotypes. Interestingly, some members of the MTBC have acquired compensatory mutations to counteract these polymorphisms and, probably, to maintain their pathogenic potential. Some of these compensatory mutations include the insertion of the IS6110 element upstream from phoPR in a particular M. bovis strain that is able to transmit between humans or polymorphisms in M. africanum and M. bovis that affect the regulatory region of the espACD operon, allowing PhoPR-independent ESAT-6 secretion. This review highlights the increasing knowledge of the significance of PhoPR in the evolution of the MTBC and its potential application in the construction of new attenuated vaccines based on phoPR inactivation. In this context, the live attenuated vaccine MTBVAC, based on a phoP fadD26 deletion mutant of M. tuberculosis, is the first vaccine of this kind to successfully enter into clinical development, representing a historic milestone in the field of human vaccinology. Copyright © 2015 Broset et al.
Broset, Esther
2015-01-01
ABSTRACT Different members of the Mycobacterium genus have evolved to cause tuberculosis in diverse human populations and in a variety of animal species. Our cumulative knowledge of mycobacterial genomes indicates that mutations in the PhoPR two-component virulence system were acquired not only during the natural evolution of mycobacterial species but also during in vitro subculture, which has given rise to the attenuated reference strain H37Ra or to different daughter strains of Mycobacterium bovis BCG. PhoPR is a well-known regulator of pathogenic phenotypes, including secretion of the virulence factor ESAT-6, biosynthesis of acyltrehalose-based lipids, and modulation of antigen export, in members of the Mycobacterium tuberculosis complex (MTBC). Evolutionarily conserved polymorphisms in PhoPR from Mycobacterium africanum, M. bovis, or M. tuberculosis H37Ra result in loss of functional phenotypes. Interestingly, some members of the MTBC have acquired compensatory mutations to counteract these polymorphisms and, probably, to maintain their pathogenic potential. Some of these compensatory mutations include the insertion of the IS6110 element upstream from phoPR in a particular M. bovis strain that is able to transmit between humans or polymorphisms in M. africanum and M. bovis that affect the regulatory region of the espACD operon, allowing PhoPR-independent ESAT-6 secretion. This review highlights the increasing knowledge of the significance of PhoPR in the evolution of the MTBC and its potential application in the construction of new attenuated vaccines based on phoPR inactivation. In this context, the live attenuated vaccine MTBVAC, based on a phoP fadD26 deletion mutant of M. tuberculosis, is the first vaccine of this kind to successfully enter into clinical development, representing a historic milestone in the field of human vaccinology. PMID:26489860
Neuromedin s as novel putative regulator of luteinizing hormone secretion.
Vigo, E; Roa, J; López, M; Castellano, J M; Fernandez-Fernandez, R; Navarro, V M; Pineda, R; Aguilar, E; Diéguez, C; Pinilla, L; Tena-Sempere, M
2007-02-01
Neuromedin S (NMS), a 36 amino acid peptide structurally related to neuromedin U, was recently identified in rat brain as ligand for the G protein-coupled receptor FM4/TGR-1, also termed neuromedin U receptor type-2 (NMU2R). Central expression of NMS appears restricted to the suprachiasmatic nucleus, and NMS has been involved in the regulation of dark-light rhythms and suppression of food intake. Reproduction is known to be tightly regulated by metabolic and photoperiodic cues. Yet the potential contribution of NMS to the control of reproductive axis remains unexplored. We report herein analyses of hypothalamic expression of NMS and NMU2R genes, as well as LH responses to NMS, in different developmental and functional states of the female rat. Expression of NMS and NMU2R genes was detected at the hypothalamus along postnatal development, with significant fluctuations of their relative levels (maximum at prepubertal stage and adulthood). In adult females, hypothalamic expression of NMS (which was confined to suprachiasmatic nucleus) and NMU2R significantly varied during the estrous cycle (maximum at proestrus) and was lowered after ovariectomy and enhanced after progesterone supplementation. Central administration of NMS evoked modest LH secretory responses in pubertal and cyclic females at diestrus, whereas exaggerated LH secretory bursts were elicited by NMS at estrus and after short-term fasting. Conversely, NMS significantly decreased elevated LH concentrations of ovariectomized rats. In summary, we provide herein novel evidence for the ability of NMS to modulate LH secretion in the female rat. Moreover, hypothalamic expression of NMS and NMU2R genes appeared dependent on the functional state of the female reproductive axis. Our data are the first to disclose the potential implication of NMS in the regulation of gonadotropic axis, a function that may contribute to the integration of circadian rhythms, energy balance, and reproduction.
Ling, H; Yang, H; Tan, S-H; Chui, W-K; Chew, E-H
2010-01-01
BACKGROUND AND PURPOSE Shogaols are reported to possess anti-inflammatory and anticancer activities. However, the antimetastatic potential of shogaols remains unexplored. This study was performed to assess the effects of shogaols against breast cancer cell invasion and to investigate the underlying mechanisms. EXPERIMENTAL APPROACH The anti-invasive effect of a series of shogaols was initially evaluated on MDA-MB-231 breast cancer cells using the matrigel invasion assay. The suppressive effects of 6-shogaol on phorbol 12-myristate 13-acetate (PMA)-induced matrix metalloproteinase-9 (MMP-9) gelatinolytic activity and nuclear factor-κB (NF-κB) activation were further determined. KEY RESULTS Shogaols (6-, 8- and 10-shogaol) inhibited PMA-stimulated MDA-MB-231 cell invasion with an accompanying decrease in MMP-9 secretion. 6-Shogaol was identified to display the greatest anti-invasive effect in association with a dose-dependent reduction in MMP-9 gene activation, protein expression and secretion. The NF-κB transcriptional activity was decreased by 6-shogaol; an effect mediated by inhibition of IκB phosphorylation and degradation that subsequently led to suppression of NF-κB p65 phosphorylation and nuclear translocation. In addition, 6-shogaol was found to inhibit JNK activation with no resulting reduction in activator protein-1 transcriptional activity. By using specific inhibitors, it was demonstrated that ERK and NF-κB signalling, but not JNK and p38 signalling, were involved in PMA-stimulated MMP-9 activation. CONCLUSIONS AND IMPLICATIONS 6-Shogaol is a potent inhibitor of MDA-MB-231 cell invasion, and the molecular mechanism involves at least in part the down-regulation of MMP-9 transcription by targeting the NF-κB activation cascade. This class of naturally occurring small molecules thus have potential for clinical use as antimetastatic treatments. PMID:20718733
Dissection of the Human Multipotent Adult Progenitor Cell Secretome by Proteomic Analysis
van't Hof, Wouter; Newell, Laura F.; Reddy, Ashok; Wilmarth, Phillip A.; David, Larry L.; Raber, Amy; Bogaerts, Annelies; Pinxteren, Jef; Deans, Robert J.; Maziarz, Richard T.
2013-01-01
Multipotent adult progenitor cells (MAPCs) are adult adherent stromal stem cells currently being assessed in acute graft versus host disease clinical trials with demonstrated immunomodulatory capabilities and the potential to ameliorate detrimental autoimmune and inflammation-related processes. Our previous studies documented that MAPCs secrete factors that play a role in regulating T-cell activity. Here we expand our studies using a proteomics approach to characterize and quantify MAPC secretome components secreted over 72 hours in vitro under steady-state conditions and in the presence of the inflammatory triggers interferon-γ and lipopolysaccharide, or a tolerogenic CD74 ligand, RTL1000. MAPCs differentially responded to each of the tested stimuli, secreting molecules that regulate the biological activity of the extracellular matrix (ECM), including proteins that make up the ECM itself, proteins that regulate its construction/deconstruction, and proteins that serve to attach and detach growth factors from ECM components for redistribution upon appropriate stimulation. MAPCs secreted a wide array of proteases, some detectable in their zymogen forms. MAPCs also secreted protease inhibitors that would regulate protease activity. MAPCs secreted chemokines and cytokines that could provide molecular guidance cues to various cell types, including neutrophils, macrophages, and T cells. In addition, MAPCs secreted factors involved in maintenance of a homeostatic environment, regulating such diverse programs as innate immunity, angiogenesis/angiostasis, targeted delivery of growth factors, and the matrix-metalloprotease cascade. PMID:23981727
Inhibitory effects of anthocyanins on secretion of Helicobacter pylori CagA and VacA toxins.
Kim, Sa-Hyun; Park, Min; Woo, Hyunjun; Tharmalingam, Nagendran; Lee, Gyusang; Rhee, Ki-Jong; Eom, Yong Bin; Han, Sang Ik; Seo, Woo Duck; Kim, Jong Bae
2012-01-01
Anthocyanins have been studied as potential antimicrobial agents against Helicobacter pylori. We investigated whether the biosynthesis and secretion of cytotoxin-associated protein A (CagA) and vacuolating cytotoxin A (VacA) could be suppressed by anthocyanin treatment in vitro. H. pylori reference strain 60190 (CagA(+)/VacA(+)) was used in this study to investigate the inhibitory effects of anthocyanins; cyanidin 3-O-glucoside (C3G), peonidin 3-O-glucoside (Peo3G), pelargonidin 3-O-glucoside (Pel3G), and malvidin 3-O-glucoside (M3G) on expression and secretion of H. pylori toxins. Anthocyanins were added to bacterial cultures and Western blotting was used to determine secretion of CagA and VacA. Among them, we found that C3G inhibited secretion of CagA and VacA resulting in intracellular accumulation of CagA and VacA. C3G had no effect on cagA and vacA expression but suppressed secA transcription. As SecA is involved in translocation of bacterial proteins, the down-regulation of secA expression by C3G offers a mechanistic explanation for the inhibition of toxin secretion. To our knowledge, this is the first report suggesting that C3G inhibits secretion of the H. pylori toxins CagA and VacA via suppression of secA transcription.
Inhibitory Effects of Anthocyanins on Secretion of Helicobacter pylori CagA and VacA Toxins
Kim, Sa-Hyun; Park, Min; Woo, Hyunjun; Tharmalingam, Nagendran; Lee, Gyusang; Rhee, Ki-Jong; Eom, Yong Bin; Han, Sang Ik; Seo, Woo Duck; Kim, Jong Bae
2012-01-01
Anthocyanins have been studied as potential antimicrobial agents against Helicobacter pylori. We investigated whether the biosynthesis and secretion of cytotoxin-associated protein A (CagA) and vacuolating cytotoxin A (VacA) could be suppressed by anthocyanin treatment in vitro. H. pylori reference strain 60190 (CagA+/VacA+) was used in this study to investigate the inhibitory effects of anthocyanins; cyanidin 3-O-glucoside (C3G), peonidin 3-O-glucoside (Peo3G), pelargonidin 3-O-glucoside (Pel3G), and malvidin 3-O-glucoside (M3G) on expression and secretion of H. pylori toxins. Anthocyanins were added to bacterial cultures and Western blotting was used to determine secretion of CagA and VacA. Among them, we found that C3G inhibited secretion of CagA and VacA resulting in intracellular accumulation of CagA and VacA. C3G had no effect on cagA and vacA expression but suppressed secA transcription. As SecA is involved in translocation of bacterial proteins, the down-regulation of secA expression by C3G offers a mechanistic explanation for the inhibition of toxin secretion. To our knowledge, this is the first report suggesting that C3G inhibits secretion of the H. pylori toxins CagA and VacA via suppression of secA transcription. PMID:23155357
Engineering Escherichia coli into a protein delivery system for mammalian cells.
Reeves, Analise Z; Spears, William E; Du, Juan; Tan, Kah Yong; Wagers, Amy J; Lesser, Cammie F
2015-05-15
Many Gram-negative pathogens encode type 3 secretion systems, sophisticated nanomachines that deliver proteins directly into the cytoplasm of mammalian cells. These systems present attractive opportunities for therapeutic protein delivery applications; however, their utility has been limited by their inherent pathogenicity. Here, we report the reengineering of a laboratory strain of Escherichia coli with a tunable type 3 secretion system that can efficiently deliver heterologous proteins into mammalian cells, thereby circumventing the need for virulence attenuation. We first introduced a 31 kB region of Shigella flexneri DNA that encodes all of the information needed to form the secretion nanomachine onto a plasmid that can be directly propagated within E. coli or integrated into the E. coli chromosome. To provide flexible control over type 3 secretion and protein delivery, we generated plasmids expressing master regulators of the type 3 system from either constitutive or inducible promoters. We then constructed a Gateway-compatible plasmid library of type 3 secretion sequences to enable rapid screening and identification of sequences that do not perturb function when fused to heterologous protein substrates and optimized their delivery into mammalian cells. Combining these elements, we found that coordinated expression of the type 3 secretion system and modified target protein substrates produces a nonpathogenic strain that expresses, secretes, and delivers heterologous proteins into mammalian cells. This reengineered system thus provides a highly flexible protein delivery platform with potential for future therapeutic applications.
Brendgen, M; Ouellet-Morin, I; Lupien, S J; Vitaro, F; Dionne, G; Boivin, M
2017-02-01
This study investigated the potential environmental effects of peer victimization and the quality of relationships with parents and friends on diurnal cortisol secretion in mid-adolescence. This study used the monozygotic (MZ) twin-difference design to control for genetic effects and thus estimate the unique environmental influences on diurnal cortisol. Participants were 136 MZ twin pairs (74 female pairs) for whom cortisol was assessed four times per day over four collection days grouped in a 2-week period in grade 8 (mean age = 14.07 years). Participants also provided self-reports of peer victimization from grade 4 to grade 8 and of the relationship quality with the mother, father and best friend in grade 8. The expected pattern of diurnal cortisol secretion was observed, with high levels at awakening followed by an increase 30 min later and a progressive decrease subsequently. Controlling for a host of confounders, only within-twin pair differences in peer victimization and a problematic relationship with the mother were significantly linked to twin differences in diurnal cortisol secretion. Specifically, whereas a more problematic mother-child relationship was associated with morning cortisol secretion, peer victimization was linked to cortisol secretion later in the day (diurnal slope). Controlling for genetic influences and other confounders, stressful relationships with peers and the mother exert unique and time-specific environmental influences on the pattern of diurnal cortisol secretion in mid-adolescence.
Epithelial organization and cyst lumen expansion require efficient Sec13-Sec31-driven secretion.
Townley, Anna K; Schmidt, Katy; Hodgson, Lorna; Stephens, David J
2012-02-01
Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13-Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture.
Epithelial organization and cyst lumen expansion require efficient Sec13–Sec31-driven secretion
Townley, Anna K.; Schmidt, Katy; Hodgson, Lorna; Stephens, David J.
2012-01-01
Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13–Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture. PMID:22331354
Xue, Shifeng; Maluenda, Jérôme; Marguet, Florent; Shboul, Mohammad; Quevarec, Loïc; Bonnard, Carine; Ng, Alvin Yu Jin; Tohari, Sumanty; Tan, Thong Teck; Kong, Mung Kei; Monaghan, Kristin G; Cho, Megan T; Siskind, Carly E; Sampson, Jacinda B; Rocha, Carolina Tesi; Alkazaleh, Fawaz; Gonzales, Marie; Rigonnot, Luc; Whalen, Sandra; Gut, Marta; Gut, Ivo; Bucourt, Martine; Venkatesh, Byrappa; Laquerrière, Annie; Reversade, Bruno; Melki, Judith
2017-04-06
Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Through genetic mapping of disease loci and whole-exome sequencing in four unrelated multiplex families presenting with severe AMC, we identified biallelic loss-of-function mutations in LGI4 (leucine-rich glioma-inactivated 4). LGI4 is a ligand secreted by Schwann cells that regulates peripheral nerve myelination via its cognate receptor ADAM22 expressed by neurons. Immunolabeling experiments and transmission electron microscopy of the sciatic nerve from one of the affected individuals revealed a lack of myelin. Functional tests using affected individual-derived iPSCs showed that these germline mutations caused aberrant splicing of the endogenous LGI4 transcript and in a cell-based assay impaired the secretion of truncated LGI4 protein. This is consistent with previous studies reporting arthrogryposis in Lgi4-deficient mice due to peripheral hypomyelination. This study adds to the recent reports implicating defective axoglial function as a key cause of AMC. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Cookson, Emma A; Conte, Ianina L; Dempster, John; Hannah, Matthew J; Carter, Tom
2013-12-01
Regulated secretion from endothelial cells is mediated by Weibel-Palade body (WPB) exocytosis. Plasma membrane cholesterol is implicated in regulating secretory granule exocytosis and fusion pore dynamics; however, its role in modulating WPB exocytosis is not clear. To address this we combined high-resolution electrochemical analysis of WPB fusion pore dynamics, by amperometry, with high-speed optical imaging of WPB exocytosis following cholesterol depletion or supplementation in human umbilical vein endothelial cells. We identified serotonin (5-HT) immunoreactivity in WPBs, and VMAT1 expression allowing detection of secreted 5-HT as discrete current spikes during exocytosis. A high proportion of spikes (∼75%) had pre-spike foot signals, indicating that WPB fusion proceeds via an initial narrow pore. Cholesterol depletion significantly reduced pre-spike foot signal duration and increased the rate of fusion pore expansion, whereas cholesterol supplementation had broadly the reverse effect. Cholesterol depletion slowed the onset of hormone-evoked WPB exocytosis, whereas its supplementation increased the rate of WPB exocytosis and hormone-evoked proregion secretion. Our results provide the first analysis of WPB fusion pore dynamics and highlight an important role for cholesterol in the regulation of WPB exocytosis.
Interleukin 33 as a Mechanically Responsive Cytokine Secreted by Living Cells*
Kakkar, Rahul; Hei, Hillary; Dobner, Stephan; Lee, Richard T.
2012-01-01
Interleukin 33 (IL-33), a member of the Interleukin 1 cytokine family, is implicated in numerous human inflammatory diseases such as asthma, atherosclerosis, and rheumatoid arthritis. Despite its pathophysiologic importance, fundamental questions regarding the basic biology of IL-33 remain. Nuclear localization and lack of an export signal sequence are consistent with the view of IL-33 as a nuclear factor with the ability to repress RNA transcription. However, signaling via the transmembrane receptor ST2 and documented caspase-dependent inactivation have suggested IL-33 is liberated during cellular necrosis to effect paracrine signaling. We determined the subcellular localization of IL-33 and tracked its intracellular mobility and extracellular release. In contrast to published data, IL-33 localized simultaneously to nuclear euchromatin and membrane-bound cytoplasmic vesicles. Fluorescent pulse-chase fate-tracking documented dynamic nucleo-cytoplasmic flux, which was dependent on nuclear pore complex function. In murine fibroblasts in vitro and in vivo, mechanical strain induced IL-33 secretion in the absence of cellular necrosis. These data document IL-33 dynamic inter-organelle trafficking and release during biomechanical overload. As such we recharacterize IL-33 as both an inflammatory as well as mechanically responsive cytokine secreted by living cells. PMID:22215666
Egli, Adrian; Santer, Deanna M; O'Shea, Daire; Tyrrell, D Lorne; Houghton, Michael
2014-07-01
Type-III interferons (IFN-λ, IFNL) are the most recently described family of IFNs. This family of innate cytokines are increasingly being ascribed pivotal roles in host-pathogen interactions. Herein, we will review the accumulating evidence detailing the immune biology of IFNL during viral infection, and the implications of this novel information on means to advance the development of therapies and vaccines against existing and emerging pathogens. IFNLs exert antiviral effects via induction of IFN-stimulated genes. Common single nucleotide polymorphisms (SNPs) in the IFNL3, IFNL4 and the IFNL receptor α-subunit genes have been strongly associated with IFN-α-based treatment of chronic hepatitis C virus infection. The clinical impact of these SNPs may be dependent on the status of viral infection (acute or chronic) and the potential to develop viral resistance. Another important function of IFNLs is macrophage and dendritic cell polarization, which prime helper T-cell activation and proliferation. It has been demonstrated that IFNL increase Th1- and reduce Th2-cytokines. Therefore, can such SNPs affect the IFNL signaling and thereby modulate the Th1/Th2 balance during infection? In turn, this may influence the subsequent priming of cytotoxic T cells versus antibody-secreting B cells, with implications for the breadth and durability of the host response.
TWEAK/Fn14 Axis-Targeted Therapeutics: Moving Basic Science Discoveries to the Clinic.
Cheng, Emily; Armstrong, Cheryl L; Galisteo, Rebeca; Winkles, Jeffrey A
2013-12-23
The TNF superfamily member TWEAK (TNFSF12) is a multifunctional cytokine implicated in physiological tissue regeneration and wound repair. TWEAK is initially synthesized as a membrane-anchored protein, but furin cleavage within the stalk region can generate a secreted TWEAK isoform. Both TWEAK isoforms bind to a small cell surface receptor named Fn14 (TNFRSF12A) and this interaction stimulates various cellular responses, including proliferation and migration. Fn14, like other members of the TNF receptor superfamily, is not a ligand-activated protein kinase. Instead, TWEAK:Fn14 engagement promotes Fn14 association with members of the TNFR associated factor family of adapter proteins, which triggers activation of various signaling pathways, including the classical and alternative NF-κB pathways. Numerous studies have revealed that Fn14 gene expression is significantly elevated in injured tissues and in most solid tumor types. Also, sustained Fn14 signaling has been implicated in the pathogenesis of cerebral ischemia, chronic inflammatory diseases, and cancer. Accordingly, several groups are developing TWEAK- or Fn14-targeted agents for possible therapeutic use in patients. These agents include monoclonal antibodies, fusion proteins, and immunotoxins. In this article, we provide an overview of some of the TWEAK/Fn14 axis-targeted agents currently in pre-clinical animal studies or in human clinical trials and discuss two other potential approaches to target this intriguing signaling node.
Pacheco-Rodriguez, Gustavo; Malide, Daniela; Meza-Carmen, Victor; Kato, Jiro; Cui, Ye; Padilla, Philip I.; Samidurai, Arun; Gochuico, Bernadette R.
2014-01-01
Lymphangiogenesis and angiogenesis are processes that are, in part, regulated by vascular endothelial growth factor (VEGF)-D. The formation of lymphatic structures has been implicated in multiple lung diseases, including pulmonary fibrosis. VEGF-D is a secreted protein produced by fibroblasts and macrophages, which induces lymphangiogenesis by signaling via VEGF receptor-3, and angiogenesis through VEGF receptor-2. VEGF-D contains a central VEGF homology domain, which is the biologically active domain, with flanking N- and C-terminal propeptides. Full-length VEGF-D (∼ 50 kD) is proteolytically processed in the extracellular space, to generate VEGF homology domain that contains the VEGF-D receptor–binding sites. Here, we report that, independent of its cell surface receptors, full-length VEGF-D accumulated in nuclei of fibroblasts, and that this process appears to increase with cell density. In nuclei, full-length VEGF-D associated with RNA polymerase II and c-Myc. In cells depleted of VEGF-D, the transcriptionally regulated genes appear to be modulated by c-Myc. These findings have potential clinical implications, as VEGF-D was found in fibroblast nuclei in idiopathic pulmonary fibrosis, a disease characterized by fibroblast proliferation. These findings are consistent with actions of full-length VEGF-D in cellular homeostasis in health and disease, independent of its receptors. PMID:24450584
Zhang, Linda S; Sato, Hirokazu; Yang, Qing; Ryan, Robert O; Wang, David Q-H; Howles, Philip N; Tso, Patrick
2015-12-01
Apolipoprotein (apo) A-V is a protein synthesized only in the liver that dramatically modulates plasma triglyceride levels. Recent studies suggest a novel role for hepatic apoA-V in regulating the absorption of dietary triglycerides, but its mode of action on the gut remains unknown. The aim of this study was to test for apoA-V in bile and to determine whether its secretion is regulated by dietary lipids. After an overnight recovery, adult male Sprague-Dawley bile fistula rats indeed secreted apoA-V into bile at a constant rate under fasting conditions. An intraduodenal bolus of intralipid (n = 12) increased the biliary secretion of apoA-V but not of other apolipoproteins, such as A-I, A-IV, B, and E. The lipid-induced increase of biliary apoA-V was abolished under conditions of poor lymphatic lipid transport, suggesting that the stimulation is regulated by the magnitude of lipids associated with chylomicrons transported into lymph. We also studied the secretion of apoA-V into bile immediately following bile duct cannulation. Biliary apoA-V increased over time (∼6-fold increase at hour 16, n = 8) but the secretions of other apolipoproteins remained constant. Replenishing luminal phosphatidylcholine and taurocholate (n = 9) only enhanced apoA-V secretion in bile, suggesting that the increase was not due to depletion of phospholipids or bile salts. This is the first study to demonstrate that apoA-V is secreted into bile, introducing a potential route of delivery of hepatic apoA-V to the gut lumen. Our study also reveals the uniqueness of apoA-V secretion into bile that is regulated by mechanisms different from other apolipoproteins. Copyright © 2015 the American Physiological Society.
Secretion of wound healing mediators by single and bi-layer skin substitutes.
Maarof, Manira; Law, Jia Xian; Chowdhury, Shiplu Roy; Khairoji, Khairul Anuar; Saim, Aminuddin Bin; Idrus, Ruszymah Bt Hj
2016-10-01
Limitations of current treatments for skin loss caused by major injuries leads to the use of skin substitutes. It is assumed that secretion of wound healing mediators by these skin substitutes plays a role in treating skin loss. In our previous study, single layer keratinocytes (SK), single layer fibroblast (SF) and bilayer (BL; containing keratinocytes and fibroblasts layers) skin substitutes were fabricated using fibrin that had shown potential to heal wounds in preclinical studies. This study aimed to quantify the secretion of wound healing mediators, and compare between single and bi-layer skin substitutes. Skin samples were digested to harvest fibroblasts and keratinocytes, and expanded to obtain sufficient cells for the construction of skin substitutes. Acellular fibrin (AF) construct was used as control. Substitutes i.e. AF, SK, SF and BL were cultured for 2 days, and culture supernatant was collected to analyze secretion of wound healing mediators via multiplex ELISA. Among 19 wound healing mediators tested, BL substitute secreted significantly higher amounts of CXCL1 and GCSF compared to SF and AF substitute but this was not significant with respect to SK substitute. The BL substitute also secreted significantly higher amounts of CXCL5 and IL-6 compared to other substitutes. In contrast, the SK substitute secreted significantly higher amounts of VCAM-1 compared to other substitutes. However, all three skin substitutes also secreted CCL2, CCL5, CCL11, GM-CSF, IL8, IL-1α, TNF-α, ICAM-1, FGF-β, TGF-β, HGF, VEGF-α and PDGF-BB factors, but no significant difference was seen. Secretion of these mediators after transplantation may play a significant role in promoting wound healing process for the treatment of skin loss.
Sato, Hirokazu; Yang, Qing; Ryan, Robert O.; Wang, David Q.-H.; Howles, Philip N.; Tso, Patrick
2015-01-01
Apolipoprotein (apo) A-V is a protein synthesized only in the liver that dramatically modulates plasma triglyceride levels. Recent studies suggest a novel role for hepatic apoA-V in regulating the absorption of dietary triglycerides, but its mode of action on the gut remains unknown. The aim of this study was to test for apoA-V in bile and to determine whether its secretion is regulated by dietary lipids. After an overnight recovery, adult male Sprague-Dawley bile fistula rats indeed secreted apoA-V into bile at a constant rate under fasting conditions. An intraduodenal bolus of intralipid (n = 12) increased the biliary secretion of apoA-V but not of other apolipoproteins, such as A-I, A-IV, B, and E. The lipid-induced increase of biliary apoA-V was abolished under conditions of poor lymphatic lipid transport, suggesting that the stimulation is regulated by the magnitude of lipids associated with chylomicrons transported into lymph. We also studied the secretion of apoA-V into bile immediately following bile duct cannulation. Biliary apoA-V increased over time (∼6-fold increase at hour 16, n = 8) but the secretions of other apolipoproteins remained constant. Replenishing luminal phosphatidylcholine and taurocholate (n = 9) only enhanced apoA-V secretion in bile, suggesting that the increase was not due to depletion of phospholipids or bile salts. This is the first study to demonstrate that apoA-V is secreted into bile, introducing a potential route of delivery of hepatic apoA-V to the gut lumen. Our study also reveals the uniqueness of apoA-V secretion into bile that is regulated by mechanisms different from other apolipoproteins. PMID:26505974
Lecocq, Thomas; Gérard, Maxence; Maebe, Kevin; Brasero, Nicolas; Dehon, Lauren; Smagghe, Guy; Valterová, Irena; De Meulemeester, Thibaut; Rasmont, Pierre; Michez, Denis
2017-08-01
The current bumblebee decline leads to inbreeding in populations that fosters a loss of allelic diversity and diploid male production. As diploid males are viable and their offspring are sterile, bumblebee populations can quickly fall in a vortex of extinction. In this article, we investigate for the first time a potential premating mechanism through a major chemical reproductive trait (male cephalic labial gland secretions) that could prevent monandrous virgin queens from mating with diploid males. We focus our study on the cephalic labial gland secretions of diploid and haploid males of Bombus terrestris (L.). Contrary to initial expectations, our results do not show any significant differentiation of cephalic labial gland secretions between diploid and haploid specimens. Queens seem therefore to be unable to avoid mating with diploid males based on their compositions of cephalic labial gland secretions. This suggests that the vortex of extinction of diploid males could not be stopped through premating avoidance based on the cephalic labial gland secretions but other mechanisms could avoid mating between diploid males and queens. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Device-independent secret-key-rate analysis for quantum repeaters
NASA Astrophysics Data System (ADS)
Holz, Timo; Kampermann, Hermann; Bruß, Dagmar
2018-01-01
The device-independent approach to quantum key distribution (QKD) aims to establish a secret key between two or more parties with untrusted devices, potentially under full control of a quantum adversary. The performance of a QKD protocol can be quantified by the secret key rate, which can be lower bounded via the violation of an appropriate Bell inequality in a setup with untrusted devices. We study secret key rates in the device-independent scenario for different quantum repeater setups and compare them to their device-dependent analogon. The quantum repeater setups under consideration are the original protocol by Briegel et al. [Phys. Rev. Lett. 81, 5932 (1998), 10.1103/PhysRevLett.81.5932] and the hybrid quantum repeater protocol by van Loock et al. [Phys. Rev. Lett. 96, 240501 (2006), 10.1103/PhysRevLett.96.240501]. For a given repeater scheme and a given QKD protocol, the secret key rate depends on a variety of parameters, such as the gate quality or the detector efficiency. We systematically analyze the impact of these parameters and suggest optimized strategies.
Pachanski, Michele J.; Kirkland, Melissa E.; Kosinski, Daniel T.; Mane, Joel; Cheewatrakoolpong, Boonlert; Xue, Jiyan; Szeto, Daphne; Forrest, Gail; Miller, Corin; Bunzel, Michelle; Plummer, Christopher W.; Chobanian, Harry R.; Miller, Michael W.; Souza, Sarah; Thomas-Fowlkes, Brande S.; Ogawa, Aimie M.; Weinglass, Adam B.; Di Salvo, Jerry; Li, Xiaoyan; Feng, Yue; Tatosian, Daniel A.; Howard, Andrew D.; Colletti, Steven L.
2017-01-01
GPR40 agonists are effective antidiabetic agents believed to lower glucose through direct effects on the beta cell to increase glucose stimulated insulin secretion. However, not all GPR40 agonists are the same. Partial agonists lower glucose through direct effects on the pancreas, whereas GPR40 AgoPAMs may incorporate additional therapeutic effects through increases in insulinotrophic incretins secreted by the gut. Here we describe how GPR40 AgoPAMs stimulate both insulin and incretin secretion in vivo over time in diabetic GK rats. We also describe effects of AgoPAMs in vivo to lower glucose and body weight beyond what is seen with partial GPR40 agonists in both the acute and chronic setting. Further comparisons of the glucose lowering profile of AgoPAMs suggest these compounds may possess greater glucose control even in the presence of elevated glucagon secretion, an unexpected feature observed with both acute and chronic treatment with AgoPAMs. Together these studies highlight the complexity of GPR40 pharmacology and the potential additional benefits AgoPAMs may possess above partial agonists for the diabetic patient. PMID:29053717
Dawson, Alistair
2015-04-01
This paper reviews current knowledge of photoperiod control of GnRH-1 secretion and proposes a model in which two processes act together to regulate GnRH1 secretion. Photo-induction controls GnRH1 secretion and is directly related to prevailing photoperiod. Photo-inhibition, a longer term process, acts through GnRH1 synthesis. It progresses each day during daylight hours, but reverses during darkness. Thus, photo-inhibition gradually increases when photoperiods exceed 12h, and reverses under shorter photoperiods. GnRH1 secretion on any particular day is the net result of these two processes acting in tandem. The only difference between species is their sensitivity to photo-inhibition. This can potentially explain differences in timing and duration of breeding seasons between species, why some species become absolutely photorefractory and others relatively photorefractory, why breeding seasons end at the same time at different latitudes within species, and why experimental protocols sometimes produce results that appear counter to what happens naturally. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.
Steen, V M; Tysnes, O B; Holmsen, H
1988-01-01
We have studied synergism between adrenaline (epinephrine) and low concentrations of thrombin in gel-filtered human platelets prelabelled with [32P]Pi. Suspensions of platelets, which did not contain added fibrinogen, were incubated at 37 degrees C to measure changes in the levels of 32P-labelled phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP) and phosphatidate (PA), aggregation and dense-granule secretion after stimulation. Adrenaline alone (3.5-4.0 microM) did not cause a change in any parameter (phosphoinositide metabolism, aggregation and dense-granule secretion), but markedly enhanced the thrombin-induced responses over a narrow range of thrombin concentrations (0.03-0.08 units/ml). The thrombin-induced hydrolysis of inositol phospholipids by phospholipase C, which was measured as the formation of [32P]PA, was potentiated by adrenaline, as was the increase in the levels of [32P]PIP2 and [32P]PIP. The presence of adrenaline caused a shift to the left for the thrombin-induced changes in the phosphoinositide metabolism, without affecting the maximal levels of 32P-labelled compounds obtained. A similar shift by adrenaline in the dose-response relationship was previously demonstrated for thrombin-induced aggregation and dense-granule secretion. Also, the narrow range of concentrations of thrombin over which adrenaline potentiates thrombin-induced platelet responses is the same for changes in phosphoinositide metabolism and physiological responses (aggregation and dense-granule secretion). Our observations clearly indicate that adrenaline directly or indirectly influences thrombin-induced changes in phosphoinositide metabolism. PMID:2845924
Skin-to-skin contact: multicultural perspectives on birth fluids and birth ‘dirt’
Finigan, V; Long, T
2014-01-01
Aim To explore the experiences of women from three population groups of immediate skin-to-skin contact (SSC) with their newborn babies. Method A mixed methods approach was adopted in a phenomenological study to elicit the experiences of English, Pakistani and Bangladeshi women. Audiotaped diaries, semi-structured interviews, photographs and video recordings were employed. Concept mapping was central to data analysis. Results This paper reports novel findings that women contextualized and accepted secretions and bodily fluids from birth. This contradicts the beliefs of midwives that Asian women find bodily secretions abhorrent and culturally unacceptable. All participants reported positive experiences of SSC despite varying degrees of soiling from birth fluids. Limitations The study was conducted in a single setting, and participants may not have been representative of others in their cultural groups. Third-party translation may have added an unsought layer of interpretation. The imposition of cultural expectations by peers in the recruitment process excluded some potential participants. Conclusion Stereotypical assumptions about cultural background often characterize professional responses. When this stereotyping was put aside, women of all three cultures, whether breastfeeding or bottle-feeding, were able to enjoy SSC with their babies. Implications for Nursing and Health Policy The findings suggest that changes will be needed in professional practice to be more open to women's expressed preferences, in local policy to ensure that choices are made clear and are available, and in national strategic direction to ensure widespread adoption of positive practices for opportunities to increase breastfeeding, promote parent–child bonding and support patient choice to be realized. PMID:24712443
Aschbacher, Kirstin; Derakhshandeh, Ronak; Flores, Abdiel J; Narayan, Shilpa; Mendes, Wendy Berry; Springer, Matthew L
2016-05-01
Psychological stress and glucocorticoids are associated with heightened cardiovascular disease risk. We investigated whether stress or cortisol would be associated with reduced circulating angiogenic cell (CAC) function, an index of impaired vascular repair. We hypothesized that minority-race individuals who experience threat in interracial interactions would exhibit reduced CAC function, and that this link might be explained by cortisol. To test this experimentally, we recruited 106 African American participants for a laboratory interracial interaction task, in which they received socially evaluative feedback from Caucasian confederates. On a separate day, a subset of 32 participants (mean age=26years, 47% female) enrolled in a separate biological substudy and provided blood samples for CAC isolation and salivary samples to quantify the morning peak in cortisol (the cortisol awakening response, CAR). CAC function was quantified using cell culture assays of migration to vascular endothelial growth factor (VEGF) and secretion of VEGF into the culture medium. Heightened threat in response to an interracial interaction and trait anxiety in vivo were both associated with poorer CAC migratory function in vitro. Further, threat and poorer sustained attention during the interracial interaction were associated with a higher CAR, which in turn, was related to lower CAC sensitivity to glucocorticoids. In vitro, higher doses of cortisol impaired CAC migratory function and VEGF protein secretion. The glucocorticoid receptor antagonist RU486 reversed this functional impairment. These data identify a novel, neuroendocrine pathway by which psychological stress may reduce CAC function, with potential implications for cardiovascular health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aschbacher, Kirstin; Derakhshandeh, Ronak; Flores, Abdiel J.; Narayan, Shilpa; Mendes, Wendy Berry; Springer, Matthew L.
2016-01-01
Psychological stress and glucocorticoids are associated with heightened cardiovascular disease risk. We investigated whether stress or cortisol would be associated with reduced circulating angiogenic cell (CAC) function, an index of impaired vascular repair. We hypothesized that minority-race individuals who experience threat in interracial interactions would exhibit reduced CAC function, and that this link might be explained by cortisol. To test this experimentally, we recruited 106 African American participants for a laboratory interracial interaction task, in which they received socially evaluative feedback from Caucasian confederates. On a separate day, a subset of 32 participants (mean age = 26 years, 47% female) enrolled in a separate biological substudy and provided blood samples for CAC isolation and salivary samples to quantify the morning peak in cortisol (the cortisol awakening response, CAR). CAC function was quantified using cell culture assays of migration to vascular endothelial growth factor (VEGF) and secretion of VEGF into the culture medium. Heightened threat in response to an interracial interaction and trait anxiety in vivo were both associated with poorer CAC migratory function in vitro. Further, threat and poorer sustained attention during the interracial interaction were associated with a higher CAR, which in turn, was related to lower CAC sensitivity to glucocorticoids. In vitro, higher doses of cortisol impaired CAC migratory function and VEGF protein secretion. The glucocorticoid receptor antagonist RU486 reversed this functional impairment. These data identify a novel, neuroendocrine pathway by which psychological stress may reduce CAC function, with potential implications for cardiovascular health. PMID:26925833
Doxycycline and HIV Infection Suppress Tuberculosis-induced Matrix Metalloproteinases
Walker, Naomi F.; Clark, Simon O.; Oni, Tolu; Andreu, Nuria; Tezera, Liku; Singh, Shivani; Saraiva, Luísa; Pedersen, Bernadette; Kelly, Dominic L.; Tree, Julia A.; D'Armiento, Jeanine M.; Meintjes, Graeme; Mauri, Francesco A.; Williams, Ann; Wilkinson, Robert J.; Friedland, Jon S.
2012-01-01
Rationale: Tuberculosis kills more than 1.5 million people per year, and standard treatment has remained unchanged for more than 30 years. Tuberculosis (TB) drives matrix metalloproteinase (MMP) activity to cause immunopathology. In advanced HIV infection, tissue destruction is reduced, but underlying mechanisms are poorly defined and no current antituberculous therapy reduces host tissue damage. Objectives: To investigate MMP activity in patients with TB with and without HIV coinfection and to determine the potential of doxycycline to inhibit MMPs and decrease pathology. Methods: Concentrations of MMPs and cytokines were analyzed by Luminex array in a prospectively recruited cohort of patients. Modulation of MMP secretion and Mycobacterium tuberculosis growth by doxycycline was studied in primary human cells and TB-infected guinea pigs. Measurements and Main Results: HIV coinfection decreased MMP concentrations in induced sputum of patients with TB. MMPs correlated with clinical markers of tissue damage, further implicating dysregulated protease activity in TB-driven pathology. In contrast, cytokine concentrations were no different. Doxycycline, a licensed MMP inhibitor, suppressed TB-dependent MMP-1 and -9 secretion from primary human macrophages and epithelial cells by inhibiting promoter activation. In the guinea pig model, doxycycline reduced lung TB colony forming units after 8 weeks in a dose-dependent manner compared with untreated animals, and in vitro doxycycline inhibited mycobacterial proliferation. Conclusions: HIV coinfection in patients with TB reduces concentrations of immunopathogenic MMPs. Doxycycline decreases MMP activity in a cellular model and suppresses mycobacterial growth in vitro and in guinea pigs. Adjunctive doxycycline therapy may reduce morbidity and mortality in TB. PMID:22345579
Sapoznik, Sivan; Ortenberg, Rona; Galore-Haskel, Gilli; Kozlovski, Stav; Levy, Daphna; Avivi, Camila; Barshack, Iris; Cohen, Cyrille J; Besser, Michal J; Schachter, Jacob; Markel, Gal
2012-10-01
Adoptive cell transfer therapy with reactive T cells is one of the most promising immunotherapeutic modalities for metastatic melanoma patients. Homing of the transferred T cells to all tumor sites in sufficient numbers is of great importance. Here, we seek to exploit endogenous chemotactic signals in order to manipulate and enhance the directional trafficking of transferred T cells toward melanoma. Chemokine profiling of 15 melanoma cultures shows that CXCL1 and CXCL8 are abundantly expressed and secreted from melanoma cultures. However, the complimentary analysis on 40 melanoma patient-derived tumor-infiltrating lymphocytes (TIL) proves that the corresponding chemokine receptors are either not expressed (CXCR2) or expressed at low levels (CXCR1). Using the in vitro transwell system, we demonstrate that TIL cells preferentially migrate toward melanoma and that endogenously expressing CXCR1 TIL cells are significantly enriched among the migrating lymphocytes. The role of the chemokines CXCL1 and CXCL8 is demonstrated by partial abrogation of this enrichment with anti-CXCL1 and anti-CXCL8 neutralizing antibodies. The role of the chemokine receptor CXCR1 is validated by the enhanced migration of CXCR1-engineered TIL cells toward melanoma or recombinant CXCL8. Cytotoxicity and IFNγ secretion activity are unaltered by CXCR1 expression profile. Taken together, these results mark CXCR1 as a candidate for genetic manipulations to enhance trafficking of adoptively transferred T cells. This approach is complimentary and potentially synergistic with other genetic strategies designed to enhance anti-tumor potency.
Bernhart, Eva; Kogelnik, Nora; Prasch, Jürgen; Gottschalk, Benjamin; Goeritzer, Madeleine; Depaoli, Maria Rosa; Reicher, Helga; Nusshold, Christoph; Plastira, Ioanna; Hammer, Astrid; Fauler, Günter; Malli, Roland; Graier, Wolfgang F; Malle, Ernst; Sattler, Wolfgang
2018-05-01
Peripheral leukocytes induce blood-brain barrier (BBB) dysfunction through the release of cytotoxic mediators. These include hypochlorous acid (HOCl) that is formed via the myeloperoxidase-H 2 O 2 -chloride system of activated phagocytes. HOCl targets the endogenous pool of ether phospholipids (plasmalogens) generating chlorinated inflammatory mediators like e.g. 2-chlorohexadecanal and its conversion product 2-chlorohexadecanoic acid (2-ClHA). In the cerebrovasculature these compounds inflict damage to brain microvascular endothelial cells (BMVEC) that form the morphological basis of the BBB. To follow subcellular trafficking of 2-ClHA we synthesized a 'clickable' alkyne derivative (2-ClHyA) that phenocopied the biological activity of the parent compound. Confocal and superresolution structured illumination microscopy revealed accumulation of 2-ClHyA in the endoplasmic reticulum (ER) and mitochondria of human BMVEC (hCMEC/D3 cell line). 2-ClHA and its alkyne analogue interfered with protein palmitoylation, induced ER-stress markers, reduced the ER ATP content, and activated transcription and secretion of interleukin (IL)-6 as well as IL-8. 2-ClHA disrupted the mitochondrial membrane potential and induced procaspase-3 and PARP cleavage. The protein kinase R-like ER kinase (PERK) inhibitor GSK2606414 suppressed 2-ClHA-mediated activating transcription factor 4 synthesis and IL-6/8 secretion, but showed no effect on endothelial barrier dysfunction and cleavage of procaspase-3. Our data indicate that 2-ClHA induces potent lipotoxic responses in brain endothelial cells and could have implications in inflammation-induced BBB dysfunction. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Janardhanan, Rajiv; Kilari, Sreenivasulu; Leof, Edward B; Misra, Sanjay
2015-01-01
It is hypothesized that venous stenosis formation associated with hemodialysis vascular-access failure is caused by hypoxia-mediated fibroblast-to-myofibroblast differentiation accompanied by proliferation and migration, and that diabetic patients have worse clinical outcomes. The aim of this study was to determine the functional and gene expression outcomes of matrix metalloproteinase-2 (Mmp-2) silencing in fibroblasts cultured under hyperglycemia and euglycemia with hypoxic and normoxic stimuli. AKR-2B fibroblasts were stably transduced using lentivirus-mediated shRNA-Mmp-2 or scrambled controls and subjected to hypoxia or normoxia under hyperglycemic or euglycemic conditions for 24 and 72 h. Gene expression of vascular endothelial growth factor-A (Vegf-A), Vegfr-1, Mmp-2, Mmp-9 and tissue inhibitors of matrix metalloproteinases (Timps) were determined by RT-PCR. Collagen I and IV secretion and cellular proliferation and migration were determined. Under hyperglycemic conditions, there is a significant reduction in the average gene expression of Vegf-A and Mmp-9, with an increase in Timp-1 at 24 h of hypoxia (p < 0.05) in Mmp-2-silenced fibroblasts when compared to controls. In addition, there is a decrease in collagen I and IV secretion and cellular migration. The euglycemic cells were able to reverse these findings. These findings demonstrate the rationale for using anti-Mmp-2 therapy in dialysis patients with hemodialysis vascular access in helping to reduce stenosis formation. © 2016 The Author(s) Published by S. Karger AG, Basel.
CD14{sup +} monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ding, E-mail: qqhewd@gmail.com; TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin; Chen, Ke, E-mail: chenke_59@hotmail.com
2010-09-10
Here, the effect of CD14{sup +} monocytes on human umbilical cord matrix stem cell (hUC-MSC)-mediated immunosuppression was studied in vitro. hUC-MSCs exerted a potent inhibitory effect on the proliferation and interferon-{gamma} (IFN-{gamma}) secretion capacities of CD4{sup +} and CD8{sup +} T cells in response to anti-CD3/CD28 stimulation. Transwell co-culture system revealed that the suppressive effect was primarily mediated by soluble factors. Addition of prostaglandin synthesis inhibitors (indomethacin or NS-398) almost completely abrogated the immunosuppression activity of hUC-MSCs, identifying prostaglandin E{sub 2} (PGE{sub 2}) as an important soluble mediator. CD14{sup +} monocytes were found to be able to enhance significantly themore » immunosuppressive effect of hUC-MSCs in a dose-dependent fashion. Moreover, the inflammatory cytokine IL-1{beta}, either exogenously added or produced by CD14{sup +} monocytes in culture, could trigger expression of high levels of PGE{sub 2} by hUC-MSCs, whereas inclusion of the IL-1 receptor antagonist (IL-1RA) in the culture down-regulated not only PGE{sub 2} expression, but also reversed the promotional effect of CD14{sup +} monocytes and partially restored CD4{sup +} and CD8{sup +} T cell proliferation and IFN-{gamma} secretion. Our data demonstrate an important role of monocytes in the hUC-MSC-induced immunomodulation, which may have important implications in future efforts to explore the clinical potentials of hUC-MSCs.« less
The secretion and biological function of tumor suppressor maspin as an exosome cargo protein.
Dean, Ivory; Dzinic, Sijana H; Bernardo, M Margarida; Zou, Yi; Kimler, Vickie; Li, Xiaohua; Kaplun, Alexander; Granneman, James; Mao, Guangzhao; Sheng, Shijie
2017-01-31
Maspin is an epithelial-specific tumor suppressor shown to exert its biological effects as an intracellular, cell membrane-associated, and secreted free molecule. A recent study suggests that upon DNA-damaging g-irradiation, tumor cells can secrete maspin as an exosome-associated protein. To date, the biological significance of exosomal secretion of maspin is unknown. The current study aims at addressing whether maspin is spontaneously secreted as an exosomal protein to regulate tumor/stromal interactions. We prepared exosomes along with cell extracts and vesicle-depleted conditioned media (VDCM) from normal epithelial (CRL2221, MCF-10A and BEAS-2B) and cancer (LNCaP, PC3 and SUM149) cell lines. Atomic force microscopy and dynamic light scattering analysis revealed similar size distribution patterns and surface zeta potentials between the normal cells-derived and tumor cells-derived exosomes. Electron microscopy revealed that maspin was encapsulated by the exosomal membrane as a cargo protein. While western blotting revealed that the level of exosomal maspin from tumor cell lines was disproportionally lower relative to the levels of corresponding intracellular and VDCM maspin, as compared to that from normal cell lines, maspin knockdown in MCF-10A cells led to maspin-devoid exosomes, which exhibited significantly reduced suppressive effects on the chemotaxis activity of recipient NIH3T3 fibroblast cells. These data are the first to demonstrate the potential of maspin delivered by exosomes to block tumor-induced stromal response, and support the clinical application of exosomal maspin in cancer diagnosis and treatment.