Veenendaal, Andreas K J; Hodgkinson, Julie L; Schwarzer, Lynn; Stabat, David; Zenk, Sebastian F; Blocker, Ariel J
2007-03-01
Type III secretion systems (T3SSs) are essential virulence determinants of many Gram-negative bacterial pathogens. The Shigella T3SS consists of a cytoplasmic bulb, a transmembrane region and a hollow 'needle' protruding from the bacterial surface. Physical contact with host cells initiates secretion and leads to assembly of a pore, formed by IpaB and IpaC, in the host cell membrane, through which proteins that facilitate host cell invasion are translocated. As the needle is implicated in host cell sensing and secretion regulation, its tip should contain components that initiate host cell contact. Through biochemical and immunological studies of wild-type and mutant Shigella T3SS needles, we reveal tip complexes of differing compositions and functional states, which appear to represent the molecular events surrounding host cell sensing and pore formation. Our studies indicate that the interaction between IpaB and IpaD at needle tips is key to host cell sensing, orchestration of IpaC secretion and its subsequent assembly at needle tips. This allows insertion into the host cell membrane of a translocation pore that is continuous with the needle.
A Repulsive Electrostatic Mechanism for Protein Export through the Type III Secretion Apparatus
Rathinavelan, Thenmalarchelvi; Zhang, Lingling; Picking, Wendy L.; Weis, David D.; De Guzman, Roberto N.; Im, Wonpil
2010-01-01
Abstract Many Gram-negative bacteria initiate infections by injecting effector proteins into host cells through the type III secretion apparatus, which is comprised of a basal body, a needle, and a tip. The needle channel is formed by the assembly of a single needle protein. To explore the export mechanisms of MxiH needle protein through the needle of Shigella flexneri, an essential step during needle assembly, we have performed steered molecular dynamics simulations in implicit solvent. The trajectories reveal a screwlike rotation motion during the export of nativelike helix-turn-helix conformations. Interestingly, the channel interior with excessive electronegative potential creates an energy barrier for MxiH to enter the channel, whereas the same may facilitate the ejection of the effectors into host cells. Structurally known basal regions and ATPase underneath the basal region also have electronegative interiors. Effector proteins also have considerable electronegative potential patches on their surfaces. From these observations, we propose a repulsive electrostatic mechanism for protein translocation through the type III secretion apparatus. Based on this mechanism, the ATPase activity and/or proton motive force could be used to energize the protein translocation through these nanomachines. A similar mechanism may be applicable to macromolecular channels in other secretion systems or viruses through which proteins or nucleic acids are transported. PMID:20141759
Self-Chaperoning of the Type III Secretion System needle tip proteins IpaD and BipD
Johnson, Steven; Roversi, Pietro; Espina, Marianela; Olive, Andrew; Deane, Janet E.; Birket, Susan; Field, Terry; Picking, William D.; Blocker, Ariel; Galyov, Edouard E.; Picking, Wendy L.; Lea, Susan M.
2007-01-01
Bacteria expressing type III secretion systems (T3SS) have been responsible for the deaths of millions worldwide, acting as key virulence elements in diseases ranging from plague to typhoid fever. The T3SS is composed of a basal body, which traverses both bacterial membranes, and an external needle through which effector proteins are secreted. We report multiple crystal structures of two proteins that sit at the tip of the needle and are essential for virulence; IpaD from Shigella flexneri and BipD from Burkholderia pseudomallei. The structures reveal that the N-terminal domains of the molecules are intra-molecular chaperones that prevent premature oligomerization, as well as sharing structural homology with proteins involved in eukaryotic actin rearrangement. Crystal packing has allowed us to construct a model for the tip complex that is supported by mutations designed using the structure. PMID:17077085
Self-chaperoning of the type III secretion system needle tip proteins IpaD and BipD.
Johnson, Steven; Roversi, Pietro; Espina, Marianela; Olive, Andrew; Deane, Janet E; Birket, Susan; Field, Terry; Picking, William D; Blocker, Ariel J; Galyov, Edouard E; Picking, Wendy L; Lea, Susan M
2007-02-09
Bacteria expressing type III secretion systems (T3SS) have been responsible for the deaths of millions worldwide, acting as key virulence elements in diseases ranging from plague to typhoid fever. The T3SS is composed of a basal body, which traverses both bacterial membranes, and an external needle through which effector proteins are secreted. We report multiple crystal structures of two proteins that sit at the tip of the needle and are essential for virulence: IpaD from Shigella flexneri and BipD from Burkholderia pseudomallei. The structures reveal that the N-terminal domains of the molecules are intramolecular chaperones that prevent premature oligomerization, as well as sharing structural homology with proteins involved in eukaryotic actin rearrangement. Crystal packing has allowed us to construct a model for the tip complex that is supported by mutations designed using the structure.
a Computational Approach to Explore Protein Translocation Through Type III Secretion Apparatus
NASA Astrophysics Data System (ADS)
Rathinavelan, Thenmalarchelvi; Im, Wonpil
2010-01-01
Many Gram-negative bacteria initiate infections by injecting effector proteins into host cells through the type III secretion apparatus (TTSA) that is comprised of a basal body, a needle, and a tip. The needle channel is formed by the assembly of a single needle protein. To explore the export mechanisms of MxiH needle protein through the needle of Shigella flexneri, an essential step during needle assembly, we have performed steered molecular dynamics simulations in implicit solvent. Interestingly, the electronegative channel interior creates an energy barrier for MxiH to enter the channel, while the same may facilitate the ejection of the effectors into host cells. Structurally-known basal regions and ATPase underneath the basal region have also such electronegative interior, while effector proteins have considerable electronegative patches on their surfaces. Based on these observations, we propose a repulsive electrostatic mechanism for protein translocation through the TTSA. This mechanism is supported by the suggestion that an ATPase is required for protein translocation through these nanomachines, which may provide the energy to overcome the initial electrostatic energy barrier. A similar mechanism may be applicable to macromolecular channels in other secretion systems or viruses through which proteins or nucleic acids are transported.
A Bacterial Pathogen uses Distinct Type III Secretion Systems to Alternate between Host Kingdom
USDA-ARS?s Scientific Manuscript database
Gram-negative bacterial pathogens of eukaryotes often secrete proteins directly into host cells via a needle-like protein channel called a ‘type III secretion system’ (T3SS). Bacteria that are adapted to either animal or plant hosts use phylogenetically distinct T3SSs for secreting proteins. Here, ...
Rathinavelan, Thenmalarchelvi; Tang, Chun; De Guzman, Roberto N.
2011-01-01
Many Gram-negative bacteria that cause major diseases and mortality worldwide require the type III secretion system (T3SS) to inject virulence proteins into their hosts and cause infections. A structural component of the T3SS is the needle apparatus, which consists of a base, an external needle, and a tip complex. In Salmonella typhimurium, the external needle is assembled by the polymerization of the needle protein PrgI. On top of this needle sits a tip complex, which is partly formed by the tip protein SipD. How SipD interacts with PrgI during the assembly of the T3SS needle apparatus remains unknown. The central region of PrgI forms an α-helical hairpin, whereas SipD has a long central coiled-coil, which is a defining structural feature of other T3SS tip proteins as well. Using NMR paramagnetic relaxation enhancement, we have identified a specific region on the SipD coiled-coil that interacts directly with PrgI. We present a model of how SipD might dock at the tip of the needle based on our paramagnetic relaxation enhancement results, thus offering new insight about the mechanism of assembly of the T3SS needle apparatus. PMID:21138848
Rathinavelan, Thenmalarchelvi; Lara-Tejero, Maria; Lefebre, Matthew; Chatterjee, Srirupa; McShan, Andrew C.; Guo, Da-Chuan; Tang, Chun; Galan, Jorge E.; De Guzman, Roberto N.
2014-01-01
Salmonella and other pathogenic bacteria use the type III secretion system (T3SS) to inject virulence proteins into human cells to initiate infections. The structural component of the T3SS contains a needle and a needle tip. The needle is assembled from PrgI needle protomers and the needle tip is capped with several copies of the SipD tip protein. How a tip protein docks on the needle is unclear. A crystal structure of a PrgI-SipD fusion protein docked on the PrgI needle results in steric clash of SipD at the needle tip when modeled on the recent atomic structure of the needle. Thus, there is currently no good model of how SipD is docked on the PrgI needle tip. Previously, we showed by NMR paramagnetic relaxation enhancement (PRE) methods that a specific region in the SipD coiled-coil is the binding site for PrgI. Others have hypothesized that a domain of the tip protein – the N-terminal α-helical hairpin, has to swing away during the assembly of the needle apparatus. Here, we show by PRE methods that a truncated form of SipD lacking the α-helical hairpin domain binds more tightly to PrgI. Further, PRE-based structure calculations revealed multiple PrgI binding sites on the SipD coiled-coil. Our PRE results together with the recent NMR-derived atomic structure of the Salmonella needle suggest a possible model of how SipD might dock at the PrgI needle tip. SipD and PrgI are conserved in other bacterial T3SSs, thus our results have wider implication in understanding other needle-tip complexes. PMID:24951833
Structure of the heterotrimeric complex that regulates type III secretion needle formation
Quinaud, Manuelle; Plé, Sophie; Job, Viviana; Contreras-Martel, Carlos; Simorre, Jean-Pierre; Attree, Ina; Dessen, Andréa
2007-01-01
Type III secretion systems (T3SS), found in several Gram-negative pathogens, are nanomachines involved in the transport of virulence effectors directly into the cytoplasm of target cells. T3SS are essentially composed of basal membrane-embedded ring-like structures and a hollow needle formed by a single polymerized protein. Within the bacterial cytoplasm, the T3SS needle protein requires two distinct chaperones for stabilization before its secretion, without which the entire T3SS is nonfunctional. The 2.0-Å x-ray crystal structure of the PscE-PscF55–85-PscG heterotrimeric complex from Pseudomonas aeruginosa reveals that the C terminus of the needle protein PscF is engulfed within the hydrophobic groove of the tetratricopeptide-like molecule PscG, indicating that the macromolecular scaffold necessary to stabilize the T3SS needle is totally distinct from chaperoned complexes between pilus- or flagellum-forming molecules. Disruption of specific PscG–PscF interactions leads to impairment of bacterial cytotoxicity toward macrophages, indicating that this essential heterotrimer, which possesses homologs in a wide variety of pathogens, is a unique attractive target for the development of novel antibacterials. PMID:17470796
Veenendaal, Andreas K J; Sundin, Charlotta; Blocker, Ariel J
2009-01-01
Type III secretion systems (T3SSs) are essential virulence devices for many gram-negative bacteria that are pathogenic for plants, animals, and humans. They serve to translocate virulence effector proteins directly into eukaryotic host cells. T3SSs are composed of a large cytoplasmic bulb and a transmembrane region into which a needle is embedded, protruding above the bacterial surface. The emerging antibiotic resistance of bacterial pathogens urges the development of novel strategies to fight bacterial infections. Therapeutics that rather than kill bacteria only attenuate their virulence may reduce the frequency or progress of resistance emergence. Recently, a group of salicylidene acylhydrazides were identified as inhibitors of T3SSs in Yersinia, Chlamydia, and Salmonella species. Here we show that these are also effective on the T3SS of Shigella flexneri, where they block all related forms of protein secretion so far known, as well as the epithelial cell invasion and induction of macrophage apoptosis usually demonstrated by this bacterium. Furthermore, we show the first evidence for the detrimental effect of these compounds on T3SS needle assembly, as demonstrated by increased numbers of T3S apparatuses without needles or with shorter needles. Therefore, the compounds generate a phenocopy of T3SS export apparatus mutants but with incomplete penetrance. We discuss why this would be sufficient to almost completely block the later secretion of effector proteins and how this begins to narrow the search for the molecular target of these compounds.
Structure and biophysics of type III secretion in bacteria.
Chatterjee, Srirupa; Chaudhury, Sukanya; McShan, Andrew C; Kaur, Kawaljit; De Guzman, Roberto N
2013-04-16
Many plant and animal bacterial pathogens assemble a needle-like nanomachine, the type III secretion system (T3SS), to inject virulence proteins directly into eukaryotic cells to initiate infection. The ability of bacteria to inject effectors into host cells is essential for infection, survival, and pathogenesis for many Gram-negative bacteria, including Salmonella, Escherichia, Shigella, Yersinia, Pseudomonas, and Chlamydia spp. These pathogens are responsible for a wide variety of diseases, such as typhoid fever, large-scale food-borne illnesses, dysentery, bubonic plague, secondary hospital infections, and sexually transmitted diseases. The T3SS consists of structural and nonstructural proteins. The structural proteins assemble the needle apparatus, which consists of a membrane-embedded basal structure, an external needle that protrudes from the bacterial surface, and a tip complex that caps the needle. Upon host cell contact, a translocon is assembled between the needle tip complex and the host cell, serving as a gateway for translocation of effector proteins by creating a pore in the host cell membrane. Following delivery into the host cytoplasm, effectors initiate and maintain infection by manipulating host cell biology, such as cell signaling, secretory trafficking, cytoskeletal dynamics, and the inflammatory response. Finally, chaperones serve as regulators of secretion by sequestering effectors and some structural proteins within the bacterial cytoplasm. This review will focus on the latest developments and future challenges concerning the structure and biophysics of the needle apparatus.
Veenendaal, Andreas K. J.; Sundin, Charlotta; Blocker, Ariel J.
2009-01-01
Type III secretion systems (T3SSs) are essential virulence devices for many gram-negative bacteria that are pathogenic for plants, animals, and humans. They serve to translocate virulence effector proteins directly into eukaryotic host cells. T3SSs are composed of a large cytoplasmic bulb and a transmembrane region into which a needle is embedded, protruding above the bacterial surface. The emerging antibiotic resistance of bacterial pathogens urges the development of novel strategies to fight bacterial infections. Therapeutics that rather than kill bacteria only attenuate their virulence may reduce the frequency or progress of resistance emergence. Recently, a group of salicylidene acylhydrazides were identified as inhibitors of T3SSs in Yersinia, Chlamydia, and Salmonella species. Here we show that these are also effective on the T3SS of Shigella flexneri, where they block all related forms of protein secretion so far known, as well as the epithelial cell invasion and induction of macrophage apoptosis usually demonstrated by this bacterium. Furthermore, we show the first evidence for the detrimental effect of these compounds on T3SS needle assembly, as demonstrated by increased numbers of T3S apparatuses without needles or with shorter needles. Therefore, the compounds generate a phenocopy of T3SS export apparatus mutants but with incomplete penetrance. We discuss why this would be sufficient to almost completely block the later secretion of effector proteins and how this begins to narrow the search for the molecular target of these compounds. PMID:18996990
NASA Astrophysics Data System (ADS)
Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam
2017-10-01
In this report we present site-specific measurements of amide hydrogen-deuterium exchange rates in a protein in the solid state phase by MAS NMR. Employing perdeuteration, proton detection and a high external magnetic field we could adopt the highly efficient Relax-EXSY protocol previously developed for liquid state NMR. According to this method, we measured the contribution of hydrogen exchange on apparent 15N longitudinal relaxation rates in samples with differing D2O buffer content. Differences in the apparent T1 times allowed us to derive exchange rates for multiple residues in the type III secretion system needle protein.
Discovery of the type VII ESX-1 secretion needle?
Ates, Louis S; Brosch, Roland
2017-01-01
Mycobacterium tuberculosis, the etiological agent of human tuberculosis, harbours five ESAT-6/type VII secretion (ESX/T7S) systems. The first esx gene clusters were identified during the genome-sequencing project of M. tuberculosis H37Rv. Follow-up studies revealed additional genes playing important roles in ESX/T7S systems. Among the latter genes, one can find those that encode Pro-Glu (PE) and Pro-Pro-Glu (PPE) proteins as well as a gene cluster that is encoded >260 kb upstream of the esx-1 locus and encodes ESX-1 secretion-associated proteins EspA (Rv3616c), EspC (Rv3615c) and EspD (Rv3614c). The espACD cluster has been suggested to have an important function in ESX-1 secretion since EspA-EspC and EsxA-EsxB are mutually co-dependent on each other for secretion. However, the molecular mechanism of this co-dependence and interaction between the substrates remained unknown. In this issue of Molecular Microbiology, Lou and colleagues show that EspC forms high-molecular weight polymerization complexes that resemble selected components of type II, III and/or IV secretion systems of Gram-negative bacteria. Indeed, EspC-multimeric complexes form filamentous structures that could well represent a secretion needle of ESX-1 type VII secretion systems. This exciting observation opens new avenues for research to discover and characterize ESX/T7S components and elucidates the co-dependence of EsxA/B secretion with EspA/C. © 2016 John Wiley & Sons Ltd.
2012-01-01
Summary: Flagellar and translocation-associated type III secretion (T3S) systems are present in most Gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria. PMID:22688814
A gatekeeper chaperone complex directs translocator secretion during Type Three Secretion
Archuleta, Tara L.; Spiller, Benjamin W.; Kubori, Tomoko
2014-11-06
Many Gram-negative bacteria use Type Three Secretion Systems (T3SS) to deliver effector proteins into host cells. These protein delivery machines are composed of cytosolic components that recognize substrates and generate the force needed for translocation, the secretion conduit, formed by a needle complex and associated membrane spanning basal body, and translocators that form the pore in the target cell. A defined order of secretion in which needle component proteins are secreted first, followed by translocators, and finally effectors, is necessary for this system to be effective. While the secreted effectors vary significantly between organisms, the ~20 individual protein components thatmore » form the T3SS are conserved in many pathogenic bacteria. One such conserved protein, referred to as either a plug or gatekeeper, is necessary to prevent unregulated effector release and to allow efficient translocator secretion. The mechanism by which translocator secretion is promoted while effector release is inhibited by gatekeepers is unknown. We present the structure of the Chlamydial gatekeeper, CopN, bound to a translocator-specific chaperone. The structure identifies a previously unknown interface between gatekeepers and translocator chaperones and reveals that in the gatekeeper-chaperone complex the canonical translocator-binding groove is free to bind translocators. Thus, structure-based mutagenesis of the homologous complex in Shigella reveals that the gatekeeper-chaperone-translocator complex is essential for translocator secretion and for the ordered secretion of translocators prior to effectors.« less
Zenk, Sebastian F; Stabat, David; Hodgkinson, Julie L; Veenendaal, Andreas K J; Johnson, Steven; Blocker, Ariel J
2007-08-01
Type III secretion systems (T3SSs or secretons) are central virulence factors of many Gram-negative bacteria, used to inject protein effectors of virulence into eukaryotic host cells. Their overall morphology, consisting of a cytoplasmic region, an inner- and outer-membrane section and an extracellular needle, is conserved in various species. A portion of the secreton, containing the transmembrane regions and needle, has been isolated biochemically and termed the 'needle complex' (NC). However, there are still unsolved questions concerning the nature and relative arrangement of the proteins assembling the NC. Until these are resolved, the mode of function of the NC cannot be clarified. This paper describes an affinity purification method that enables highly efficient purification of Shigella NCs under near-physiological conditions. Using this method, three new minor components of the NC were identified by mass spectrometry: IpaD, a known component of the needle tip complex, and two predicted components of its central inner-membrane export apparatus, Spa40 and Spa24. A further minor component of the NC, MxiM, is only detected by immunoblotting. MxiM is a 'pilotin'-type protein for the outer-membrane 'secretin' ring formed of MxiD. As expected, it localized to the outer rim of the upper ring of NCs, validating the other findings.
Espina, Marianela; Ausar, S. Fernando; Middaugh, C. Russell; Baxter, M. Aaron; Picking, William D.; Picking, Wendy L.
2007-01-01
Diverse Gram-negative bacteria use type III secretion systems (T3SS) to translocate effector proteins into the cytoplasm of eukaryotic cells. The type III secretion apparatus (T3SA) consists of a basal body spanning both bacterial membranes and an external needle. A sensor protein lies at the needle tip to detect environmental signals that trigger type III secretion. The Shigella flexneri T3SA needle tip protein, invasion plasmid antigen D (IpaD), possesses two independently folding domains in vitro. In this study, the solution behavior and thermal unfolding properties of IpaD's functional homologs SipD (Salmonella spp.), BipD (Burkholderia pseudomallei), LcrV (Yersinia spp.), and PcrV (Pseudomonas aeruginosa) were examined to identify common features within this protein family. CD and FTIR data indicate that all members within this group are α-helical with properties consistent with an intramolecular coiled-coil. SipD showed the most complex unfolding profile consisting of two thermal transitions, suggesting the presence of two independently folding domains. No evidence of multiple folding domains was seen, however, for BipD, LcrV, or PcrV. Thermal studies, including DSC, revealed significant destabilization of LcrV, PcrV, and BipD after N-terminal deletions. This contrasted with SipD and IpaD, which behaved like two-domain proteins. The results suggest that needle tip proteins share significant core structural similarity and thermal stability that may be the basis for their common function. Moreover, IpaD and SipD possess properties that distinguish them from the other tip proteins. PMID:17327391
Dickenson, Nicholas E.; Arizmendi, Olivia; Patil, Mrinalini K.; Toth, Ronald T.; Middaugh, C. Russell; Picking, William D.; Picking, Wendy L.
2014-01-01
The type III secretion system (T3SS) is an essential virulence factor for Shigella flexneri, providing a conduit through which host-altering effectors are injected directly into a host cell to promote uptake. The type III secretion apparatus (T3SA) is comprised of a basal body, external needle, and regulatory tip complex. The nascent needle is a polymer of MxiH capped by a pentamer of invasion plasmid antigen D (IpaD). Exposure to bile salts (e.g. deoxycholate) causes a conformational change in IpaD and promotes recruitment of IpaB to the needle tip. It has been proposed that IpaB senses contact with host cell membranes, recruiting IpaC and inducing full secretion of T3SS effectors. While the steps of T3SA maturation and their external triggers have been identified, details of specific protein interactions and mechanisms have remained difficult to study due to the hydrophobic nature of the IpaB and IpaC translocator proteins. Here we explored the ability for a series of soluble N-terminal IpaB peptides to interact with IpaD. We found that DOC is required for the interaction and that a region of IpaB between residues 11–27 is required for maximum binding, which was confirmed in vivo. Furthermore, intramolecular FRET measurements indicated that movement of the IpaD distal domain away from the protein core accompanied the binding of IpaB11-226. Together these new findings provide important new insight into the interactions and potential mechanisms that define the maturation of the Shigella T3SA needle tip complex and provide a foundation for further studies probing T3SS activation. PMID:24236510
Darboe, Numukunda; Kenjale, Roma; Picking, Wendy L; Picking, William D; Middaugh, C Russell
2006-03-01
Shigella and Salmonella use similar type III secretion systems for delivering effector proteins into host cells. This secretion system consists of a base anchored in both bacterial membranes and an extracellular "needle" that forms a rod-like structure exposed on the pathogen surface. The needle is composed of multiple subunits of a single protein and makes direct contact with host cells to facilitate protein delivery. The proteins that make up the needle of Shigella and Salmonella are MxiH and PrgI, respectively. These proteins are attractive vaccine candidates because of their essential role in virulence and surface exposure. We therefore isolated, purified, and characterized the monomeric forms of MxiH and PrgI. Their far-UV circular dichroism spectra show structural similarities with hints of subtle differences in their secondary structure. Both proteins are highly helical and thermally unstable, with PrgI having a midpoint of thermal unfolding (Tm) near 37 degrees C and MxiH having a value near 42 degrees C. The two proteins also have comparable intrinsic stabilities as measured by chemically induced (urea) unfolding. MxiH, however, with a free energy of unfolding (DeltaG degrees 0,un) of 1.6 kcal/mol, is slightly more stable than PrgI (1.2 kcal/mol). The relatively low m-values obtained for the urea-induced unfolding of the proteins suggest that they undergo only a small change in solvent-accessible surface area. This argues that when MxiH and PrgI are incorporated into the needle complex, they obtain a more stable structural state through the introduction of protein-protein interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ping; Tropea, Joseph E.; Austin, Brian P.
2008-05-03
The plague-causing bacterium Yersinia pestis utilizes a type III secretion system to deliver effector proteins into mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. Effector proteins are injected through a hollow needle structure composed of the protein YscF. YscG and YscE act as 'chaperones' to prevent premature polymerization of YscF in the cytosol of the bacterium prior to assembly of the needle. Here, we report the crystal structure of the YscEFG protein complex at 1.8 {angstrom} resolution. Overall, the structure is similar to that of the analogous PscEFG complex from the Pseudomonasmore » aeruginosa type III secretion system, but there are noteworthy differences. The structure confirms that, like PscG, YscG is a member of the tetratricopeptide repeat family of proteins. YscG binds tightly to the C-terminal half of YscF, implying that it is this region of YscF that controls its polymerization into the needle structure. YscE interacts with the N-terminal tetratricopeptide repeat motif of YscG but makes very little direct contact with YscF. Its function may be to stabilize the structure of YscG and/or to participate in recruiting the complex to the secretion apparatus. No electron density could be observed for the 49 N-terminal residues of YscF. This and additional evidence suggest that the N-terminus of YscF is disordered in the complex with YscE and YscG. As expected, conserved residues in the C-terminal half of YscF mediate important intra- and intermolecular interactions in the complex. Moreover, the phenotypes of some previously characterized mutations in the C-terminal half of YscF can be rationalized in terms of the structure of the heterotrimeric YscEFG complex.« less
What's the point of the type III secretion system needle?
Blocker, Ariel J.; Deane, Janet E.; Veenendaal, Andreas K. J.; Roversi, Pietro; Hodgkinson, Julie L.; Johnson, Steven; Lea, Susan M.
2008-01-01
Recent work by several groups has significantly expanded our knowledge of the structure, regulation of assembly, and function of components of the extracellular portion of the type III secretion system (T3SS) of Gram-negative bacteria. This perspective presents a structure-informed analysis of functional data and discusses three nonmutually exclusive models of how a key aspect of T3SS biology, the sensing of host cells, may be performed. PMID:18458349
Darboe, Numukunda; Kenjale, Roma; Picking, Wendy L.; Picking, William D.; Middaugh, C. Russell
2006-01-01
Shigella and Salmonella use similar type III secretion systems for delivering effector proteins into host cells. This secretion system consists of a base anchored in both bacterial membranes and an extracellular “needle” that forms a rod-like structure exposed on the pathogen surface. The needle is composed of multiple subunits of a single protein and makes direct contact with host cells to facilitate protein delivery. The proteins that make up the needle of Shigella and Salmonella are MxiH and PrgI, respectively. These proteins are attractive vaccine candidates because of their essential role in virulence and surface exposure. We therefore isolated, purified, and characterized the monomeric forms of MxiH and PrgI. Their far-UV circular dichroism spectra show structural similarities with hints of subtle differences in their secondary structure. Both proteins are highly helical and thermally unstable, with PrgI having a midpoint of thermal unfolding (Tm) near 37°C and MxiH having a value near 42°C. The two proteins also have comparable intrinsic stabilities as measured by chemically induced (urea) unfolding. MxiH, however, with a free energy of unfolding (ΔG°0,un) of 1.6 kcal/mol, is slightly more stable than PrgI (1.2 kcal/mol). The relatively low m-values obtained for the urea-induced unfolding of the proteins suggest that they undergo only a small change in solvent-accessible surface area. This argues that when MxiH and PrgI are incorporated into the needle complex, they obtain a more stable structural state through the introduction of protein–protein interactions. PMID:16501225
Barrett, Brooke S.; Markham, Aaron P.; Esfandiary, Reza; Picking, Wendy L.; Picking, William D.; Joshi, Sangeeta B.; Middaugh, C. Russell
2013-01-01
Bacterial infections caused by Shigella flexneri, Salmonella typhimurium and Burkholderia pseudomallei are currently difficult to prevent due to the lack of a licensed vaccine. Here we present formulation and immunogenicity studies for the three type III secretion system (TTSS) needle proteins MxiHΔ5, PrgIΔ5 and BsaLΔ5 (each truncated by five residues at its C terminus) as potential candidates for vaccine development. These antigens are found to be thermally stabilized by the presence of carbohydrates and polyols. Additionally, all adsorb readily to aluminum hydroxide apparently through a combination of hydrogen bonds and/or Van der Waals forces. The interaction of these proteins with the aluminum-based adjuvant changes with time to resulting in varying degrees of irreversible binding. Peptide maps of desorbed protein, however, suggest that chemical changes are not responsible for this irreversible association. The ability of MxiHΔ5 and PrgIΔ5 to elicit strong humoral immune responses was tested in a murine model. When administered intramuscularly as monomers, the needle components exhibited dose dependent immunogenic behavior. The polymerized version of MxiH was exceptionally immunogenic even at low doses. The responses of both monomeric and polymerized forms were boosted by adsorption to an aluminum salt adjuvant. PMID:20845448
Sun, Ping; Tropea, Joseph E.; Austin, Brian P.; Cherry, Scott; Waugh, David S.
2008-01-01
Summary The plague-causing bacterium Yersinia pestis utilizes a Type III Secretion System (T3SS) to deliver effector proteins into mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. Effector proteins are injected through a hollow needle structure composed of the protein YscF. YscG and YscE act as "chaperones" to prevent premature polymerization of YscF in the cytosol of the bacterium prior to assembly of the needle. Here, we report the crystal structure of the YscEFG protein complex at 1.8 Å resolution. Overall, the structure is similar to that of the analogous PscEFG complex from the Pseudomonas aeruginosa T3SS, but there are noteworthy differences. The structure confirms that, like PscG, YscG is a member of the tetratricopeptide repeat (TPR) family of proteins. YscG binds tightly to the C-terminal half of YscF, implying that it is this region of YscF that controls its polymerization into the needle structure. YscE interacts with the N-terminal TPR motif of YscG but makes very little direct contact with YscF. Its function may be to stabilize the structure of YscG and/or to participate in recruiting the complex to the secretion apparatus. No electron density could be observed for the N-terminal 49 residues of YscF. This and additional evidence suggest that the N-terminus of YscF is disordered in the complex with YscE and YscG. As expected, conserved residues in the C-terminal half of YscF mediate important intra- and intermolecular interactions in the complex. Moreover, the phenotypes of some previously characterized mutations in the C-terminal half of YscF can be rationalized in terms of the structure of the heterotrimeric YscEFG complex. PMID:18281060
LcrV Mutants That Abolish Yersinia Type III Injectisome Function
Ligtenberg, Katherine Given; Miller, Nathan C.; Mitchell, Anthony; Plano, Gregory V.
2013-01-01
LcrV, the type III needle cap protein of pathogenic Yersinia, has been proposed to function as a tether between YscF, the needle protein, and YopB-YopD to constitute the injectisome, a conduit for the translocation of effector proteins into host cells. Further, insertion of LcrV-capped needles from a calcium-rich environment into host cells may trigger the low-calcium signal for effector translocation. Here, we used a genetic approach to test the hypothesis that the needle cap responds to the low-calcium signal by promoting injectisome assembly. Growth restriction of Yersinia pestis in the absence of calcium (low-calcium response [LCR+] phenotype) was exploited to isolate dominant negative lcrV alleles with missense mutations in its amber stop codon (lcrV*327). The addition of at least four amino acids or the eight-residue Strep tag to the C terminus was sufficient to generate an LCR− phenotype, with variant LcrV capping type III needles that cannot assemble the YopD injectisome component. The C-terminal Strep tag appears buried within the cap structure, blocking effector transport even in Y. pestis yscF variants that are otherwise calcium blind, a constitutive type III secretion phenotype. Thus, LcrV*327 mutants arrest the needle cap in a state in which it cannot respond to the low-calcium signal with either injectisome assembly or the activation of type III secretion. Insertion of the Strep tag at other positions of LcrV produced variants with wild-type LCR+, LCR−, or dominant negative LCR− phenotypes, thereby allowing us to identify discrete sites within LcrV as essential for its attributes as a secretion substrate, needle cap, and injectisome assembly factor. PMID:23222719
Deane, Janet E.; Cordes, Frank S.; Roversi, Pietro; Johnson, Steven; Kenjale, Roma; Picking, William D.; Picking, Wendy L.; Lea, Susan M.; Blocker, Ariel
2006-01-01
A monodisperse truncation mutant of MxiH, the subunit of the needle from the Shigella flexneri type III secretion system (TTSS), has been overexpressed and purified. Crystals were grown of native and selenomethionine-labelled MxiHCΔ5 and diffraction data were collected to 1.9 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 183.4, b = 28.1, c = 27.8 Å, β = 96.5°. An anomalous difference Patterson map calculated with the data from the SeMet-labelled crystals revealed a single peak on the Harker section v = 0. Inspection of a uranyl derivative also revealed one peak in the isomorphous difference Patterson map on the Harker section v = 0. Analysis of the self-rotation function indicates the presence of a twofold non-crystallographic symmetry axis approximately along a. The calculated Matthews coefficient is 1.9 Å3 Da−1 for two molecules per asymmetric unit, corresponding to a solvent content of 33%. PMID:16511329
Deane, Janet E; Cordes, Frank S; Roversi, Pietro; Johnson, Steven; Kenjale, Roma; Picking, William D; Picking, Wendy L; Lea, Susan M; Blocker, Ariel
2006-03-01
A monodisperse truncation mutant of MxiH, the subunit of the needle from the Shigella flexneri type III secretion system (TTSS), has been overexpressed and purified. Crystals were grown of native and selenomethionine-labelled MxiH(CDelta5) and diffraction data were collected to 1.9 A resolution. The crystals belong to space group C2, with unit-cell parameters a = 183.4, b = 28.1, c = 27.8 A, beta = 96.5 degrees. An anomalous difference Patterson map calculated with the data from the SeMet-labelled crystals revealed a single peak on the Harker section v = 0. Inspection of a uranyl derivative also revealed one peak in the isomorphous difference Patterson map on the Harker section v = 0. Analysis of the self-rotation function indicates the presence of a twofold non-crystallographic symmetry axis approximately along a. The calculated Matthews coefficient is 1.9 A3 Da(-1) for two molecules per asymmetric unit, corresponding to a solvent content of 33%.
Nutritional hotspots and the secret life of forests
Jane Smith; Laurel Kluber; Noreen Parks
2014-01-01
The floor of a Douglas-fir forest may be rich in organic matter, but nutrients essential to plant growth are locked within the decomposing needles, leaves, and fallen wood. Before nitrogen, phosphorus, and other nutrients can be cycled back through the forest system, they need to be further broken down into forms accessible to plants. Understanding how nutrients become...
Hodgkinson, Julie L.; Horsley, Ashley; Stabat, David; Simon, Martha; Johnson, Steven; da Fonseca, Paula C. A.; Morris, Edward P.; Wall, Joseph S.; Lea, Susan M.; Blocker, Ariel J.
2009-01-01
Type III secretion systems (T3SSs) mediate bacterial protein translocation into eukaryotic cells, a process essential for virulence of many Gram-negative pathogens. They are composed of a cytoplasmic secretion machinery and a base bridging both bacterial membranes into which a hollow, external needle is embedded. When isolated, the latter two parts are termed ‘needle complex’ (NC). Incomplete understanding of NC structure hampers studies of T3SS function. To estimate the stoichiometry of its components, the mass f its sub-domains was measured by scanning transmission electron microscopy (STEM). Subunit symmetries were determined by analysis of top and side views within negatively stained samples in low dose transmission electron microscopy (TEM). Application of 12-fold symmetry allowed generation of a 21-25Å resolution three-dimensional (3D) reconstruction of the NC base, revealing many new features and permitting tentative docking of the crystal structure of EscJ, an inner membrane component. PMID:19396171
Wang, Yu; Ouellette, Andrew N; Egan, Chet W; Rathinavelan, Thenmalarchelvi; Im, Wonpil; De Guzman, Roberto N
2007-08-31
Gram-negative bacteria use a needle-like protein assembly, the type III secretion apparatus, to inject virulence factors into target cells to initiate human disease. The needle is formed by the polymerization of approximately 120 copies of a small acidic protein that is conserved among diverse pathogens. We previously reported the structure of the BsaL needle monomer from Burkholderia pseudomallei by nuclear magnetic resonance (NMR) spectroscopy and others have determined the crystal structure of the Shigella flexneri MxiH needle. Here, we report the NMR structure of the PrgI needle protein of Salmonella typhimurium, a human pathogen associated with food poisoning. PrgI, BsaL, and MxiH form similar two helix bundles, however, the electrostatic surfaces of PrgI differ radically from those of BsaL or MxiH. In BsaL and MxiH, a large negative area is on a face formed by the helix alpha1-alpha2 interface. In PrgI, the major negatively charged surface is not on the "face" but instead is on the "side" of the two-helix bundle, and only residues from helix alpha1 contribute to this negative region. Despite being highly acidic proteins, these molecules contain large basic regions, suggesting that electrostatic contacts are important in needle assembly. Our results also suggest that needle-packing interactions may be different among these bacteria and provide the structural basis for why PrgI and MxiH, despite 63% sequence identity, are not interchangeable in S. typhimurium and S. flexneri.
YscU/FlhB of Yersinia pseudotuberculosis Harbors a C-terminal Type III Secretion Signal*
Login, Frédéric H.; Wolf-Watz, Hans
2015-01-01
All type III secretion systems (T3SS) harbor a member of the YscU/FlhB family of proteins that is characterized by an auto-proteolytic process that occurs at a conserved cytoplasmic NPTH motif. We have previously demonstrated that YscUCC, the C-terminal peptide generated by auto-proteolysis of Yersinia pseudotuberculosis YscU, is secreted by the T3SS when bacteria are grown in Ca2+-depleted medium at 37 °C. Here, we investigated the secretion of this early T3S-substrate and showed that YscUCC encompasses a specific C-terminal T3S signal within the 15 last residues (U15). U15 promoted C-terminal secretion of reporter proteins like GST and YopE lacking its native secretion signal. Similar to the “classical” N-terminal secretion signal, U15 interacted with the ATPase YscN. Although U15 is critical for YscUCC secretion, deletion of the C-terminal secretion signal of YscUCC did neither affect Yop secretion nor Yop translocation. However, these deletions resulted in increased secretion of YscF, the needle subunit. Thus, these results suggest that YscU via its C-terminal secretion signal is involved in regulation of the YscF secretion. PMID:26338709
Barta, Michael L.; Dickenson, Nicholas E.; Patil, Mrinalini; Keightley, Andrew; Wyckoff, Gerald J.; Picking, William D.; Picking, Wendy L.; Geisbrecht, Brian V.
2012-01-01
Many pathogenic Gram-negative bacteria utilize type III secretion systems (T3SS) to alter the normal functions of target cells. Shigella flexneri uses its T3SS to invade human intestinal cells to cause bacillary dysentery (shigellosis) which is responsible for over one million deaths per year. The Shigella type III secretion apparatus (T3SA) is comprised of a basal body spanning both bacterial membranes and an exposed oligomeric needle. Host altering effectors are secreted through this energized unidirectional conduit to promote bacterial invasion. The active needle tip complex of S. flexneri is composed of a tip protein, IpaD, and two pore-forming translocators, IpaB and IpaC. While the atomic structure of IpaD has been elucidated and studied, structural data on the hydrophobic translocators from the T3SS family remain elusive. We present here the crystal structures of a protease-stable fragment identified within the N-terminal regions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.1 Å and 2.8 Å limiting resolution, respectively. These newly identified domains are comprised of extended length (114 Å in IpaB and 71 Å in SipB) coiled-coil motifs that display a high degree of structural homology to one another despite the fact that they share only 21% sequence identity. Further structural comparisons also reveal substantial similarity to the coiled-coil regions of pore-forming proteins from other Gram-negative pathogens, notably colicin Ia. This suggests that these mechanistically-separate and functionally-distinct membrane-targeting proteins may have diverged from a common ancestor during the course of pathogen-specific evolutionary events. PMID:22321794
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barta, Michael L.; Dickenson, Nicholas E.; Patil, Mrinalini
2012-03-26
Many pathogenic Gram-negative bacteria utilize type III secretion systems (T3SSs) to alter the normal functions of target cells. Shigella flexneri uses its T3SS to invade human intestinal cells to cause bacillary dysentery (shigellosis) that is responsible for over one million deaths per year. The Shigella type III secretion apparatus is composed of a basal body spanning both bacterial membranes and an exposed oligomeric needle. Host altering effectors are secreted through this energized unidirectional conduit to promote bacterial invasion. The active needle tip complex of S. flexneri is composed of a tip protein, IpaD, and two pore-forming translocators, IpaB and IpaC.more » While the atomic structure of IpaD has been elucidated and studied, structural data on the hydrophobic translocators from the T3SS family remain elusive. We present here the crystal structures of a protease-stable fragment identified within the N-terminal regions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.1 {angstrom} and 2.8 {angstrom} limiting resolution, respectively. These newly identified domains are composed of extended-length (114 {angstrom} in IpaB and 71 {angstrom} in SipB) coiled-coil motifs that display a high degree of structural homology to one another despite the fact that they share only 21% sequence identity. Further structural comparisons also reveal substantial similarity to the coiled-coil regions of pore-forming proteins from other Gram-negative pathogens, notably, colicin Ia. This suggests that these mechanistically separate and functionally distinct membrane-targeting proteins may have diverged from a common ancestor during the course of pathogen-specific evolutionary events.« less
Cutting Edge: Inflammasome Activation in Primary Human Macrophages Is Dependent on Flagellin
Kortmann, Jens; Brubaker, Sky W.
2015-01-01
Murine NLR family, apoptosis inhibitory protein (Naip)1, Naip2, and Naip5/6 are host sensors that detect the cytosolic presence of needle and rod proteins from bacterial type III secretion systems and flagellin, respectively. Previous studies using human-derived macrophage-like cell lines indicate that human macrophages sense the cytosolic needle protein, but not bacterial flagellin. In this study, we show that primary human macrophages readily sense cytosolic flagellin. Infection of primary human macrophages with Salmonella elicits robust cell death and IL-1β secretion that is dependent on flagellin. We show that flagellin detection requires a full-length isoform of human Naip. This full-length Naip isoform is robustly expressed in primary macrophages from healthy human donors, but it is drastically reduced in monocytic tumor cells, THP-1, and U937, rendering them insensitive to cytosolic flagellin. However, ectopic expression of full-length Naip rescues the ability of U937 cells to sense flagellin. In conclusion, human Naip functions to activate the inflammasome in response to flagellin, similar to murine Naip5/6. PMID:26109648
NASA Astrophysics Data System (ADS)
Demers, Jean-Philippe; Habenstein, Birgit; Loquet, Antoine; Kumar Vasa, Suresh; Giller, Karin; Becker, Stefan; Baker, David; Lange, Adam; Sgourakis, Nikolaos G.
2014-09-01
We introduce a general hybrid approach for determining the structures of supramolecular assemblies. Cryo-electron microscopy (cryo-EM) data define the overall envelope of the assembly and rigid-body orientation of the subunits while solid-state nuclear magnetic resonance (ssNMR) chemical shifts and distance constraints define the local secondary structure, protein fold and inter-subunit interactions. Finally, Rosetta structure calculations provide a general framework to integrate the different sources of structural information. Combining a 7.7-Å cryo-EM density map and 996 ssNMR distance constraints, the structure of the type-III secretion system needle of Shigella flexneri is determined to a precision of 0.4 Å. The calculated structures are cross-validated using an independent data set of 691 ssNMR constraints and scanning transmission electron microscopy measurements. The hybrid model resolves the conformation of the non-conserved N terminus, which occupies a protrusion in the cryo-EM density, and reveals conserved pore residues forming a continuous pattern of electrostatic interactions, thereby suggesting a mechanism for effector protein translocation.
YscU/FlhB of Yersinia pseudotuberculosis Harbors a C-terminal Type III Secretion Signal.
Login, Frédéric H; Wolf-Watz, Hans
2015-10-23
All type III secretion systems (T3SS) harbor a member of the YscU/FlhB family of proteins that is characterized by an auto-proteolytic process that occurs at a conserved cytoplasmic NPTH motif. We have previously demonstrated that YscUCC, the C-terminal peptide generated by auto-proteolysis of Yersinia pseudotuberculosis YscU, is secreted by the T3SS when bacteria are grown in Ca(2+)-depleted medium at 37 °C. Here, we investigated the secretion of this early T3S-substrate and showed that YscUCC encompasses a specific C-terminal T3S signal within the 15 last residues (U15). U15 promoted C-terminal secretion of reporter proteins like GST and YopE lacking its native secretion signal. Similar to the "classical" N-terminal secretion signal, U15 interacted with the ATPase YscN. Although U15 is critical for YscUCC secretion, deletion of the C-terminal secretion signal of YscUCC did neither affect Yop secretion nor Yop translocation. However, these deletions resulted in increased secretion of YscF, the needle subunit. Thus, these results suggest that YscU via its C-terminal secretion signal is involved in regulation of the YscF secretion. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Regulation of the Yersinia type III secretion system: traffic control
Dewoody, Rebecca S.; Merritt, Peter M.; Marketon, Melanie M.
2013-01-01
Yersinia species, as well as many other Gram-negative pathogens, use a type III secretion system (T3SS) to translocate effector proteins from the bacterial cytoplasm to the host cytosol. This T3SS resembles a molecular syringe, with a needle-like shaft connected to a basal body structure, which spans the inner and outer bacterial membranes. The basal body of the injectisome shares a high degree of homology with the bacterial flagellum. Extending from the T3SS basal body is the needle, which is a polymer of a single protein, YscF. The distal end of the needle serves as a platform for the assembly of a tip complex composed of LcrV. Though never directly observed, prevailing models assume that LcrV assists in the insertion of the pore-forming proteins YopB and YopD into the host cell membrane. This completes a bridge between the bacterium and host cell to provide a continuous channel through which effectors are delivered. Significant effort has gone into understanding how the T3SS is assembled, how its substrates are recognized and how substrate delivery is controlled. Arguably the latter topic is the least understood; however, recent advances have provided new insight, and therefore, this review will focus primarily on summarizing the current state of knowledge regarding the control of substrate delivery by the T3SS. Specifically, we will discuss the roles of YopK, as well as YopN and YopE, which have long been linked to regulation of translocation. We also propose models whereby the YopK regulator communicates with the basal body of the T3SS to control translocation. PMID:23390616
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meshcheryakov, Vladimir A.; Kitao, Akio; Core Research for Evolutionary Science and Technology, Tokyo 113-0032
2013-05-01
Crystal structures of the cytoplasmic domain of FlhB from S. typhimurium and A. aeolicus were solved at 2.45 and 2.55 Å resolution, respectively. The deletion of a short loop in the cytoplasmic domain of Salmonella FlhB completely abolishes secretion by the type III secretion system. A molecular-dynamics simulation shows that the deletion of the loop affects the flexibility of a linker between the transmembrane and cytoplasmic domains of FlhB. The membrane protein FlhB is a highly conserved component of the flagellar secretion system. It is composed of an N-terminal transmembrane domain and a C-terminal cytoplasmic domain (FlhB{sub C}). Here, themore » crystal structures of FlhB{sub C} from Salmonella typhimurium and Aquifex aeolicus are described at 2.45 and 2.55 Å resolution, respectively. These flagellar FlhB{sub C} structures are similar to those of paralogues from the needle type III secretion system, with the major difference being in a linker that connects the transmembrane and cytoplasmic domains of FlhB. It was found that deletion of a short flexible loop in a globular part of Salmonella FlhB{sub C} leads to complete inhibition of secretion by the flagellar secretion system. Molecular-dynamics calculations demonstrate that the linker region is the most flexible part of FlhB{sub C} and that the deletion of the loop reduces this flexibility. These results are in good agreement with previous studies showing the importance of the linker in the function of FlhB and provide new insight into the relationship between the different parts of the FlhB{sub C} molecule.« less
Dickenson, Nicholas E.; Zhang, Lingling; Epler, Chelsea R.; Adam, Philip R.; Picking, Wendy L.; Picking, William D.
2011-01-01
Shigella flexneri uses its type III secretion apparatus (TTSA) to inject host-altering proteins into targeted eukaryotic cells. The TTSA is composed of a basal body and an exposed needle with invasion plasmid antigen D (IpaD) forming a tip complex that controls secretion. The bile salt deoxycholate (DOC) stimulates recruitment of the translocator protein IpaB into the maturing TTSA needle tip complex. This process appears to be triggered by a direct interaction between DOC and IpaD. Fluorescence spectroscopy and NMR spectroscopy are used here to confirm the DOC-IpaD interaction and to reveal that IpaD conformational changes upon DOC binding trigger the appearance of IpaB at the needle tip. Förster resonance energy transfer between specific sites on IpaD was used here to identify changes in distances between IpaD domains as a result of DOC binding. To further explore the effects of DOC binding on IpaD structure, NMR chemical shift mapping was employed. The environments of residues within the proposed DOC binding site and additional residues within the “distal” globular domain were perturbed upon DOC binding, further indicating that conformational changes occur within IpaD upon DOC binding. These events are proposed to be responsible for the recruitment of IpaB at the TTSA needle tip. Mutation analyses combined with additional spectroscopic analyses confirms that conformational changes in IpaD induced by DOC binding contribute to the recruitment of IpaB to the S. flexneri TTSA needle tip. These findings lay the foundation for determining how environmental factors promote TTSA needle tip maturation prior to host cell contact. PMID:21126091
Broadly Protective Shigella Vaccine Based on Type III Secretion Apparatus Proteins
Martinez-Becerra, Francisco J.; Kissmann, Julian M.; Diaz-McNair, Jovita; Choudhari, Shyamal P.; Quick, Amy M.; Mellado-Sanchez, Gabriela; Clements, John D.
2012-01-01
Shigella spp. are food- and waterborne pathogens that cause severe diarrheal and dysenteric disease associated with high morbidity and mortality. Individuals most often affected are children under 5 years of age in the developing world. The existence of multiple Shigella serotypes and the heterogenic distribution of pathogenic strains, as well as emerging antibiotic resistance, require the development of a broadly protective vaccine. All Shigella spp. utilize a type III secretion system (TTSS) to initiate infection. The type III secretion apparatus (TTSA) is the molecular needle and syringe that form the energized conduit between the bacterial cytoplasm and the host cell to transport effector proteins that manipulate cellular processes to benefit the pathogen. IpaB and IpaD form a tip complex atop the TTSA needle and are required for pathogenesis. Because they are common to all virulent Shigella spp., they are ideal candidate antigens for a subunit-based, broad-spectrum vaccine. We examined the immunogenicity and protective efficacy of IpaB and IpaD, alone or combined, coadministered with a double mutant heat-labile toxin (dmLT) from Escherichia coli, used as a mucosal adjuvant, in a mouse model of intranasal immunization and pulmonary challenge. Robust systemic and mucosal antibody- and T cell-mediated immunities were induced against both proteins, particularly IpaB. Mice immunized in the presence of dmLT with IpaB alone or IpaB combined with IpaD were fully protected against lethal pulmonary infection with Shigella flexneri and Shigella sonnei. We provide the first demonstration that the Shigella TTSAs IpaB and IpaD are promising antigens for the development of a cross-protective Shigella vaccine. PMID:22202122
Adam, Philip R; Dickenson, Nicholas E; Greenwood, Jamie C; Picking, Wendy L; Picking, William D
2014-11-01
Shigella flexneri causes bacillary dysentery, an important cause of mortality among children in the developing world. Shigella secretes effector proteins via its type III secretion system (T3SS) to promote bacterial uptake into human colonic epithelial cells. The T3SS basal body spans the bacterial cell envelope anchoring a surface-exposed needle. A pentamer of invasion plasmid antigen D lies at the nascent needle tip and invasion plasmid antigen B (IpaB) is recruited into the needle tip complex on exposure to bile salts. From here, IpaB forms a translocon pore in the host cell membrane. Although the mechanism by which IpaB inserts into the membrane is unknown, it was recently shown that recombinant IpaB can exist as either a monomer or tetramer. Both of these forms of IpaB associate with membranes, however, only the tetramer forms pores in liposomes. To reveal differences between these membrane-binding events, Cys mutations were introduced throughout IpaB, allowing site-specific fluorescence labeling. Fluorescence quenching was used to determine the influence of oligomerization and/or membrane association on the accessibility of different IpaB regions to small solutes. The data show that the hydrophobic region of tetrameric IpaB is more accessible to solvent relative to the monomer. The hydrophobic region appears to promote membrane interaction for both forms of IpaB, however, more of the hydrophobic region is protected from solvent for the tetramer after membrane association. Limited proteolysis demonstrated that changes in IpaB's oligomeric state may determine the manner by which it associates with phospholipid membranes and the subsequent outcome of this association. © 2014 Wiley Periodicals, Inc.
Adam, Philip R.; Dickenson, Nicholas E.; Greenwood, Jamie C.; Picking, Wendy L.; Picking, William D.
2014-01-01
Shigella flexneri causes bacillary dysentery, an important cause of mortality among children in the developing world. Shigella secretes effector proteins via its type III secretion system (T3SS) to promote bacterial uptake into human colonic epithelial cells. The T3SS basal body spans the bacterial cell envelope anchoring a surface-exposed needle. A pentamer of invasion plasmid antigen D (IpaD) lies at the nascent needle tip and IpaB is recruited into the needle tip complex upon exposure to bile salts. From here, IpaB forms a translocon pore in the host cell membrane. Although the mechanism by which IpaB inserts into the membrane is unknown, it was recently shown that recombinant IpaB can exist as either a monomer or tetramer. Both of these forms of IpaB associate with membranes, however, only the tetramer forms pores in liposomes. To reveal differences between these membrane-binding events, Cys mutations were introduced throughout IpaB, allowing site-specific fluorescence labeling. Fluorescence quenching was used to determine the influence of oligomerization and/or membrane association on the accessibility of different IpaB regions to small solutes. The data show that the hydrophobic region of tetrameric IpaB is more accessible to solvent relative to the monomer. The hydrophobic region appears to promote membrane interaction for both forms of IpaB, however, more of the hydrophobic region is protected from solvent for the tetramer after membrane association. Limited proteolysis demonstrated that changes in IpaB’s oligomeric state may determine the manner by which it associates with phospholipid membranes and the subsequent outcome of this association. PMID:25103195
Adam, Philip R.; Patil, Mrinalini K.; Dickenson, Nicholas E.; Choudhari, Shyamal; Barta, Michael; Geisbrecht, Brian V.; Picking, Wendy L.; Picking, William D.
2012-01-01
Shigella flexneri uses its type III secretion system (T3SS) to promote invasion of human intestinal epithelial cells as the first step in causing shigellosis, a life threatening form of dysentery. The Shigella type III secretion apparatus (T3SA) consists of a basal body that spans the bacterial envelope and an exposed needle that injects effector proteins into target cells. The nascent Shigella T3SA needle is topped with a pentamer of the needle tip protein invasion plasmid antigen D (IpaD). Bile salts trigger recruitment of the first hydrophobic translocator protein, IpaB, to the tip complex where it senses contact with a host membrane. In the bacterial cytoplasm, IpaB exists in a complex with its chaperone IpgC. Several structures of IpgC have been solved and we recently reported the 2.1-Å crystal structure of the N-terminal domain (IpaB74.224) of IpaB. Like IpgC, the IpaB N-terminal domain exists as a homodimer in solution. We now report that when the two are mixed, these homodimers dissociate and form heterodimers having a nanomolar dissociation constant. This is consistent with the equivalent complexes co-purified after being co-expressed in E. coli. Fluorescence data presented here also indicate that the N-terminal domain of IpaB possesses two regions that appear to contribute additively to chaperone binding. It is also likely that the IpaB N terminus adopts an alternative conformation as a result of chaperone binding. The importance of these findings within the functional context of these proteins is discussed. PMID:22497344
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barta, Michael L.; Guragain, Manita; Adam, Philip
2012-10-25
Type III secretion (TTS) is an essential virulence factor for Shigella flexneri, the causative agent of shigellosis. The Shigella TTS apparatus (TTSA) is an elegant nano-machine that is composed of a basal body, an external needle to deliver effectors into human cells, and a needle tip complex that controls secretion activation. IpaD is at the tip of the nascent TTSA needle where it controls the first step of TTS activation. The bile salt deoxycholate (DOC) binds to IpaD to induce recruitment of the translocator protein IpaB into the maturing tip complex. We recently used spectroscopic analyses to show that IpaDmore » undergoes a structural rearrangement that accompanies binding to DOC. Here, we report a crystal structure of IpaD with DOC bound and test the importance of the residues that make up the DOC binding pocket on IpaD function. IpaD binds DOC at the interface between helices {alpha}3 and {alpha}7, with concomitant movement in the orientation of helix {alpha}7 relative to its position in unbound IpaD. When the IpaD residues involved in DOC binding are mutated, some are found to lead to altered invasion and secretion phenotypes. These findings suggest that adoption of a DOC-bound structural state for IpaD primes the Shigella TTSA for contact with host cells. The data presented here and in the studies leading up to this work provide the foundation for developing a model of the first step in Shigella TTS activation.« less
Structure of a bacterial type III secretion system in contact with a host membrane in situ
NASA Astrophysics Data System (ADS)
Nans, Andrea; Kudryashev, Mikhail; Saibil, Helen R.; Hayward, Richard D.
2015-12-01
Many bacterial pathogens of animals and plants use a conserved type III secretion system (T3SS) to inject virulence effector proteins directly into eukaryotic cells to subvert host functions. Contact with host membranes is critical for T3SS activation, yet little is known about T3SS architecture in this state or the conformational changes that drive effector translocation. Here we use cryo-electron tomography and sub-tomogram averaging to derive the intact structure of the primordial Chlamydia trachomatis T3SS in the presence and absence of host membrane contact. Comparison of the averaged structures demonstrates a marked compaction of the basal body (4 nm) occurs when the needle tip contacts the host cell membrane. This compaction is coupled to a stabilization of the cytosolic sorting platform-ATPase. Our findings reveal the first structure of a bacterial T3SS from a major human pathogen engaged with a eukaryotic host, and reveal striking `pump-action' conformational changes that underpin effector injection.
Structure of a bacterial type III secretion system in contact with a host membrane in situ.
Nans, Andrea; Kudryashev, Mikhail; Saibil, Helen R; Hayward, Richard D
2015-12-11
Many bacterial pathogens of animals and plants use a conserved type III secretion system (T3SS) to inject virulence effector proteins directly into eukaryotic cells to subvert host functions. Contact with host membranes is critical for T3SS activation, yet little is known about T3SS architecture in this state or the conformational changes that drive effector translocation. Here we use cryo-electron tomography and sub-tomogram averaging to derive the intact structure of the primordial Chlamydia trachomatis T3SS in the presence and absence of host membrane contact. Comparison of the averaged structures demonstrates a marked compaction of the basal body (4 nm) occurs when the needle tip contacts the host cell membrane. This compaction is coupled to a stabilization of the cytosolic sorting platform-ATPase. Our findings reveal the first structure of a bacterial T3SS from a major human pathogen engaged with a eukaryotic host, and reveal striking 'pump-action' conformational changes that underpin effector injection.
Bittner, Norbert; Trauer-Kizilelma, Ute; Hilker, Monika
2017-05-01
Pinus sylvestris responds to insect egg deposition by ROS accumulation linked with reduced activity of the ROS scavenger catalase. Egg mortality in needles with hypersensitive response (HR)-like symptoms is enhanced. Aggressive reactive oxygen species (ROS) play an important role in plant defence against biotic stressors, including herbivorous insects. Plants may even generate ROS in response to insect eggs, thus effectively fighting against future larval herbivory. However, so far nothing is known on how ROS-mediated plant defence against insect eggs is enzymatically regulated. Neither do we know how insects cope with egg-induced plant ROS. We addressed these gaps of knowledge by studying the activities of ROS-related enzymes in Pinus sylvestris deposited with eggs of the herbivorous sawfly Diprion pini. This species cuts a slit into pine needles and inserts its eggs into the needle tissue. About a quarter of egg-deposited needles show chlorotic tissue at the oviposition sites, indicating hypersensitive response-like direct defence responses resulting in reduced larval hatching from eggs. Hydrogen peroxide and peroxidase sensitive staining of sections of egg-deposited pine needles revealed the presence of hydrogen peroxide and peroxidase activity in needle tissue close to the eggs. Activity of ROS-producing NADPH-oxidase did not increase after egg deposition. However, the activity of the ROS-detoxifying enzyme catalase decreased after egg deposition and ovipositional wounding of needles. These results show that local ROS accumulation at the oviposition site is not caused by increased NADPH-oxidase activity, but reduced activity of pine needle catalase may contribute to it. However, our data suggest that pine sawflies can counteract the egg deposition-induced hydrogen peroxide accumulation in pine needles by high catalase activity in their oviduct secretion which is released with the eggs into pine tissue.
Flaugnatti, Nicolas; Le, Thi Thu Hang; Canaan, Stéphane; Aschtgen, Marie-Stéphanie; Nguyen, Van Son; Blangy, Stéphanie; Kellenberger, Christine; Roussel, Alain; Cambillau, Christian; Cascales, Eric; Journet, Laure
2016-03-01
The Type VI secretion system (T6SS) is a multiprotein machine that delivers protein effectors in both prokaryotic and eukaryotic cells, allowing interbacterial competition and virulence. The mechanism of action of the T6SS requires the contraction of a sheath-like structure that propels a needle towards target cells, allowing the delivery of protein effectors. Here, we provide evidence that the entero-aggregative Escherichia coli Sci-1 T6SS is required to eliminate competitor bacteria. We further identify Tle1, a toxin effector encoded by this cluster and showed that Tle1 possesses phospholipase A1 and A2 activities required for the interbacterial competition. Self-protection of the attacker cell is secured by an outer membrane lipoprotein, Tli1, which binds Tle1 in a 1:1 stoichiometric ratio with nanomolar affinity, and inhibits its phospholipase activity. Tle1 is delivered into the periplasm of the prey cells using the VgrG1 needle spike protein as carrier. Further analyses demonstrate that the C-terminal extension domain of VgrG1, including a transthyretin-like domain, is responsible for the interaction with Tle1 and its subsequent delivery into target cells. Based on these results, we propose an additional mechanism of transport of T6SS effectors in which cognate effectors are selected by specific motifs located at the C-terminus of VgrG proteins. © 2015 John Wiley & Sons Ltd.
McShan, Andrew C; Kaur, Kawaljit; Chatterjee, Srirupa; Knight, Kevin M; De Guzman, Roberto N
2016-08-01
The type III secretion system (T3SS) is essential for the pathogenesis of many bacteria including Salmonella and Shigella, which together are responsible for millions of deaths worldwide each year. The structural component of the T3SS consists of the needle apparatus, which is assembled in part by the protein-protein interaction between the tip and the translocon. The atomic detail of the interaction between the tip and the translocon proteins is currently unknown. Here, we used NMR methods to identify that the N-terminal domain of the Salmonella SipB translocon protein interacts with the SipD tip protein at a surface at the distal region of the tip formed by the mixed α/β domain and a portion of its coiled-coil domain. Likewise, the Shigella IpaB translocon protein and the IpaD tip protein interact with each other using similar surfaces identified for the Salmonella homologs. Furthermore, removal of the extreme N-terminal residues of the translocon protein, previously thought to be important for the interaction, had little change on the binding surface. Finally, mutations at the binding surface of SipD reduced invasion of Salmonella into human intestinal epithelial cells. Together, these results reveal the binding surfaces involved in the tip-translocon protein-protein interaction and advance our understanding of the assembly of the T3SS needle apparatus. Proteins 2016; 84:1097-1107. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Diepold, Andreas; Kudryashev, Mikhail; Delalez, Nicolas J; Berry, Richard M; Armitage, Judith P
2015-01-01
Many gram-negative pathogens employ a type III secretion injectisome to translocate effector proteins into eukaryotic host cells. While the structure of the distal "needle complex" is well documented, the composition and role of the functionally important cytosolic complex remain less well understood. Using functional fluorescent fusions, we found that the C-ring, an essential and conserved cytosolic component of the system, is composed of ~22 copies of SctQ (YscQ in Yersinia enterocolitica), which require the presence of YscQC, the product of an internal translation initiation site in yscQ, for their cooperative assembly. Photoactivated localization microscopy (PALM) reveals that in vivo, YscQ is present in both a free-moving cytosolic and a stable injectisome-bound state. Notably, fluorescence recovery after photobleaching (FRAP) shows that YscQ exchanges between the injectisome and the cytosol, with a t½ of 68 ± 8 seconds when injectisomes are secreting. In contrast, the secretin SctC (YscC) and the major export apparatus component SctV (YscV) display minimal exchange. Under non-secreting conditions, the exchange rate of YscQ is reduced to t½ = 134 ± 16 seconds, revealing a correlation between C-ring exchange and injectisome activity, which indicates a possible role for C-ring stability in regulation of type III secretion. The stabilization of the C-ring depends on the presence of the functional ATPase SctN (YscN). These data provide new insights into the formation and composition of the injectisome and present a novel aspect of type III secretion, the exchange of C-ring subunits, which is regulated with respect to secretion.
Amino acid residues 196-225 of LcrV represent a plague protective epitope.
Quenee, Lauriane E; Berube, Bryan J; Segal, Joshua; Elli, Derek; Ciletti, Nancy A; Anderson, Deborah; Schneewind, Olaf
2010-02-17
LcrV, a protein that resides at the tip of the type III secretion needles of Yersinia pestis, is the single most important plague protective antigen. Earlier work reported monoclonal antibody MAb 7.3, which binds a conformational epitope of LcrV and protects experimental animals against lethal plague challenge. By screening monoclonal antibodies directed against LcrV for their ability to protect immunized mice against bubonic plague challenge, we examined here the possibility of additional protective epitopes. MAb BA5 protected animals against plague, neutralized the Y. pestis type III secretion pathway and promoted opsonophagocytic clearance of bacteria in blood. LcrV residues 196-225 were necessary and sufficient for MAb BA5 binding. Compared to full-length LcrV, a variant lacking its residues 196-225 retained the ability of eliciting plague protection. These results identify LcrV residues 196-225 as a linear epitope that is recognized by the murine immune system to confer plague protection. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Amino acid residues 196–225 of LcrV represent a plague protective epitope
Quenee, Lauriane E.; Berube, Bryan J.; Segal, Joshua; Elli, Derek; Ciletti, Nancy A.; Anderson, Deborah; Schneewind, Olaf
2010-01-01
LcrV, a protein that resides at the tip of the type III secretion needles of Yersinia pestis, is the single most important plague protective antigen. Earlier work reported monoclonal antibody MAb 7.3, which binds a conformational epitope of LcrV and protects experimental animals against lethal plague challenge. By screening monoclonal antibodies directed against LcrV for their ability to protect immunized mice against bubonic plague challenge, we examined here the possibility of additional protective epitopes. MAb BA5 protected animals against plague, neutralized the Y. pestis type III secretion pathway and promoted opsonophagocytic clearance of bacteria in blood. LcrV residues 196–225 were necessary and sufficient for MAb-BA5 binding. Compared to full length LcrV, a variant lacking its residues 196–225 retained the ability of eliciting plague protection. These results identify LcrV residues 196–225 as a linear epitope that is recognized by the murine immune system to confer plague protection. PMID:20005318
Gravett, Matthew; Cepek, Jeremy; Fenster, Aaron
2017-11-01
The purpose of this study was to develop and validate an image-guided robotic needle delivery system for accurate and repeatable needle targeting procedures in mouse brains inside the 12 cm inner diameter gradient coil insert of a 9.4 T MR scanner. Many preclinical research techniques require the use of accurate needle deliveries to soft tissues, including brain tissue. Soft tissues are optimally visualized in MR images, which offer high-soft tissue contrast, as well as a range of unique imaging techniques, including functional, spectroscopy and thermal imaging, however, there are currently no solutions for delivering needles to small animal brains inside the bore of an ultra-high field MR scanner. This paper describes the mechatronic design, evaluation of MR compatibility, registration technique, mechanical calibration, the quantitative validation of the in-bore image-guided needle targeting accuracy and repeatability, and demonstrated the system's ability to deliver needles in situ. Our six degree-of-freedom, MR compatible, mechatronic system was designed to fit inside the bore of a 9.4 T MR scanner and is actuated using a combination of piezoelectric and hydraulic mechanisms. The MR compatibility and targeting accuracy of the needle delivery system are evaluated to ensure that the system is precisely calibrated to perform the needle targeting procedures. A semi-automated image registration is performed to link the robot coordinates to the MR coordinate system. Soft tissue targets can be accurately localized in MR images, followed by automatic alignment of the needle trajectory to the target. Intra-procedure visualization of the needle target location and the needle were confirmed through MR images after needle insertion. The effects of geometric distortions and signal noise were found to be below threshold that would have an impact on the accuracy of the system. The system was found to have negligible effect on the MR image signal noise and geometric distortion. The system was mechanically calibrated and the mean image-guided needle targeting and needle trajectory accuracies were quantified in an image-guided tissue mimicking phantom experiment to be 178 ± 54 μm and 0.27 ± 0.65°, respectively. An MR image-guided system for in-bore needle deliveries to soft tissue targets in small animal models has been developed. The results of the needle targeting accuracy experiments in phantoms indicate that this system has the potential to deliver needles to the smallest soft tissue structures relevant in preclinical studies, at a wide variety of needle trajectories. Future work in the form of a fully-automated needle driver with precise depth control would benefit this system in terms of its applicability to a wider range of animal models and organ targets. © 2017 American Association of Physicists in Medicine.
Bond, L; Schulz, B; VanMeter, T; Martin, R C G
2017-02-01
Irreversible electroporation (IRE) uses multiple needles and a series of electrical pulses to create pores in cell membranes and cause cell apoptosis. One of the demands of IRE is the precise needle spacing required. Two-dimensional intraoperative ultrasound (2-D iUS) is currently used to measure inter-needle distances but requires significant expertise. This study evaluates the potential of three-dimensional (3-D) image guidance for placing IRE needles and calculating needle spacing. A prospective clinical evaluation of a 3-D needle localization system (Explorer™) was evaluated in consecutive patients from April 2012 through June 2013 for unresectable pancreatic adenocarcinoma. 3-D reconstructions of patients' anatomy were generated from preoperative CT images, which were aligned to the intraoperative space. Thirty consecutive patients with locally advanced pancreatic cancer were treated with IRE. The needle localization system setup added an average of 6.5 min to each procedure. The 3-D needle localization system increased surgeon confidence and ultimately reduced needle placement time. IRE treatment efficacy is highly dependent on accurate needle spacing. The needle localization system evaluated in this study aims to mitigate these issues by providing the surgeon with additional visualization and data in 3-D. The Explorer™ system provides valuable guidance information and inter-needle distance calculations. Copyright © 2016 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.
Red tree vole / Arborimus longicaudus.
A.B. Carey
1999-01-01
The secretive nocturnal red tree vole is one of least studied and most specialized voles in North America. It is found only along the coast and in the Western Cascades of Oregon where it spends most of its life in the tops of tall conifers. eating needles of Douglas-fir (Pseudotsuga menziesii) and. Occasionally, other conifers. The voles clip small...
NASA Astrophysics Data System (ADS)
Irisawa, Kaku; Murakoshi, Dai; Hashimoto, Atsushi; Yamamoto, Katsuya; Hayakawa, Toshiro
2017-03-01
Visualization of the tip of medical devices like needles or catheters under ultrasound imaging has been a continuous topic since the early 1980's. In this study, a needle tip visualization system utilizing photoacoustic effects is proposed. In order to visualize the needle tip, an optical fiber was inserted into a needle. The optical fiber tip is placed on the needle bevel and affixed with black glue. The pulsed laser light from laser diode was transferred to the optical fiber and converted to ultrasound due to laser light absorption of the black glue and the subsequent photoacoustic effect. The ultrasound is detected by transducer array and reconstructed into photoacoustic images in the ultrasound unit. The photoacoustic image is displayed with a superposed ultrasound B-mode image. As a system evaluation, the needle is punctured into bovine meat and the needle tip is observed with commercialized conventional linear transducers or convex transducers. The needle tip is visualized clearly at 7 and 12 cm depths with linear and convex probes, respectively, even with a steep needle puncture angle of around 90 degrees. Laser and acoustic outputs, and thermal rise at the needle tip, were measured and were well below the limits of the safety standards. Compared with existing needle tip visualization technologies, the photoacoustic needle tip visualization system has potential distinguishable features for clinical procedures related with needle puncture and injection.
Calder, Thomas; de Souza Santos, Marcela; Attah, Victoria; Klimko, John; Fernandez, Jessie; Salomon, Dor; Krachler, Anne-Marie; Orth, Kim
2014-12-01
The Gram-negative bacterium, Vibrio parahaemolyticus, is a major cause of seafood-derived food poisoning throughout the world. The pathogenicity of V. parahaemolyticus is attributed to several virulence factors, including two type III secretion systems (T3SS), T3SS1 and T3SS2. Herein, we compare the virulence of V. parahaemolyticus POR strains, which harbor a mutation in the T3SS needle apparatus of either system, to V. parahaemolyticus CAB strains, which harbor mutations in positive transcriptional regulators of either system. These strains are derived from the clinical RIMD 2210633 strain. We demonstrate that each mutation affects the virulence of the bacterium in a different manner. POR and CAB strains exhibited similar levels of swarming motility and T3SS effector production and secretion, but the CAB3 and CAB4 strains, which harbor a mutation in the T3SS2 master regulator gene, formed reduced biofilm growth under T3SS2 inducing conditions. Additionally, while the cytotoxicity of the POR and CAB strains was similar, the CAB2 (T3SS1 regulatory mutant) strain was strikingly more invasive than the comparable POR2 (T3SS1 structural mutant) strain. In summary, creating structural or regulatory mutations in either T3SS1 or T3SS2 causes differential downstream effects on other virulence systems. Understanding the biological differences of strains created from a clinical isolate is critical for interpreting and understanding the pathogenic nature of V. parahaemolyticus. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Keklik, Muzaffer; Eser, Bulent; Kaynar, Leylagul; Sivgin, Serdar; Keklik, Ertugrul; Solmaz, Musa; Ozturk, Ahmet; Buyukoglan, Ruksan; Yay, Mehmet; Cetin, Mustafa; Unal, Ali
2015-06-01
Blood component donations by apheresis have become more common in modern blood transfusion practices. We compared three apheresis instruments (Fenwal Amicus, Fresenius COM.TEC, and Trima Accel) with regard to platelet (PLT) yield, collection efficiency (CE), and collection rate (CR). The single-needle or double-needle plateletpheresis procedures of the three instruments were compared in a retrospective, randomized study in 270 donors. The blood volume processed was higher in the COM.TEC compared with the Amicus and Trima. Also there was a significantly higher median volume of ACD used in collections on the COM.TEC compared with the Amicus and Trima. The PLT yield was significantly lower with the COM.TEC compared with the Amicus and Trima. Additionally, the CE was significantly lower with the COM.TEC compared with the Amicus and Trima. There was no significant difference in median separation time and CR between the three groups. When procedures were compared regarding CE by using Amicus device, it was significantly higher in single-needle than double-needle plateletpheresis. When double-needle Amicus system was compared with double-needle COM.TEC system, CE and PLT yield were significantly higher with Amicus system. When single-needle Amicus system was compared with single-needle Trima system, CE and PLT yield were significantly higher with Trima system. All instruments collected PLTs efficiently. However, the CE was lower with the COM.TEC compared with the Amicus and Trima. Also, we found Amicus single-needle system collected PLTs more efficiently compared with the double-needle system. CE and PLT yields were significantly higher with the single-needle Trima instrument compared with the single-needle Amicus device. © 2014 Wiley Periodicals, Inc.
Watanabe, Kisaki; Shimizu, Nobuhiro
2015-09-01
The exotic insect pest Corythucha marmorata (Uhler) is increasingly spreading in Japan using the weed Solidago canadensis L. as a major host plant. The nymphs form colonies on the backs of leaves where they crowd together; however, aggregation does not occur in the adults. When an individual nymph is crushed using a needle tip and further the needle tip covered with the nymph's bodily fluids is moved slowly toward the center of the crowd, the surrounding nymphs display an escape behavior and their aggregation is disrupted. We detected geraniol as a nymph-specific volatile component. Bioassay results indicated that geraniol was effective as an alarm pheromone on second to fifth instar nymphs. Furthermore, we found that male and female adults responded sensitively to the alarm pheromone produced by nymphs. These results suggest that although the adult insects do not secrete geraniol, they can detect it produced by nymphs, thereby retaining the ability to escape from danger while suppressing the cost of geraniol production. The present study is the first to demonstrate that an alarm pheromone secreted by nymphs is also effective in adults among Tingidae.
Measurement of bio-impedance with a smart needle to confirm percutaneous kidney access.
Hernandez, D J; Sinkov, V A; Roberts, W W; Allaf, M E; Patriciu, A; Jarrett, T W; Kavoussi, L R; Stoianovici, D
2001-10-01
The traditional method of percutaneous renal access requires freehand needle placement guided by C-arm fluoroscopy, ultrasonography, or computerized tomography. This approach provides limited objective means for verifying successful access. We developed an impedance based percutaneous Smart Needle system and successfully used it to confirm collecting system access in ex vivo porcine kidneys. The Smart Needle consists of a modified 18 gauge percutaneous access needle with the inner stylet electrically insulated from the outer sheath. Impedance is measured between the exposed stylet tip and sheath using Model 4275 LCR meter (Hewlett-Packard, Sunnyvale, California). An ex vivo porcine kidney was distended by continuous gravity infusion of 100 cm. water saline from a catheter passed through the parenchyma into the collecting system. The Smart Needle was gradually inserted into the kidney to measure depth precisely using a robotic needle placement system, while impedance was measured continuously. The Smart Needle was inserted 4 times in each of 4 kidneys. When the needle penetrated the distended collecting system in 11 of 16 attempts, a characteristic sharp drop in resistivity was noted from 1.9 to 1.1 ohm m. Entry into the collecting system was confirmed by removing the stylet and observing fluid flow from the sheath. This characteristic impedance change was observed only at successful entry into the collecting system. A characteristic sharp drop in impedance signifies successful entry into the collecting system. The Smart Needle system may prove useful for percutaneous kidney access.
Master-slave robotic system for needle indentation and insertion.
Shin, Jaehyun; Zhong, Yongmin; Gu, Chengfan
2017-12-01
Bilateral control of a master-slave robotic system is a challenging issue in robotic-assisted minimally invasive surgery. It requires the knowledge on contact interaction between a surgical (slave) robot and soft tissues. This paper presents a master-slave robotic system for needle indentation and insertion. This master-slave robotic system is able to characterize the contact interaction between the robotic needle and soft tissues. A bilateral controller is implemented using a linear motor for robotic needle indentation and insertion. A new nonlinear state observer is developed to online monitor the contact interaction with soft tissues. Experimental results demonstrate the efficacy of the proposed master-slave robotic system for robotic needle indentation and needle insertion.
Case, Heather B; Dickenson, Nicholas E
2018-04-17
Shigella rely entirely on the action of a single type three secretion system (T3SS) to support cellular invasion of colonic epithelial cells and to circumvent host immune responses. The ATPase Spa47 resides at the base of the Shigella needle-like type three secretion apparatus (T3SA), supporting protein secretion through the apparatus and providing a likely means for native virulence regulation by Shigella and a much needed target for non-antibiotic therapeutics to treat Shigella infections. Here, we show that MxiN is a differential regulator of Spa47 and that its regulatory impact is determined by the oligomeric state of the Spa47 ATPase, with which it interacts. In vitro and in vivo characterization shows that interaction of MxiN with Spa47 requires the six N-terminal residues of Spa47 that are also necessary for stable Spa47 oligomer formation and activation. This interaction with MxiN negatively influences the activity of Spa47 oligomers while upregulating the ATPase activity of monomeric Spa47. Detailed kinetic analyses of monomeric and oligomeric Spa47 in the presence and absence of MxiN uncover additional mechanistic insights into the regulation of Spa47 by MxiN, suggesting that the MxiN/Spa47 species resulting from interaction with monomeric and oligomeric Spa47 are functionally distinct and that both could be involved in Shigella T3SS regulation. Uncovering regulation of Spa47 by MxiN addresses an important gap in the current understanding of how Shigella controls T3SA activity and provides the first description of differential T3SS ATPase regulation by a native T3SS protein.
The research of knitting needle status monitoring setup
NASA Astrophysics Data System (ADS)
Liu, Lu; Liao, Xiao-qing; Zhu, Yong-kang; Yang, Wei; Zhang, Pei; Zhao, Yong-kai; Huang, Hui-jie
2013-09-01
In textile production, quality control and testing is the key to ensure the process and improve the efficiency. Defect of the knitting needles is the main factor affecting the quality of the appearance of textiles. Defect detection method based on machine vision and image processing technology is universal. This approach does not effectively identify the defect generated by damaged knitting needles and raise the alarm. We developed a knitting needle status monitoring setup using optical imaging, photoelectric detection and weak signal processing technology to achieve real-time monitoring of weaving needles' position. Depending on the shape of the knitting needle, we designed a kind of Glass Optical Fiber (GOF) light guides with a rectangular port used for transmission of the signal light. To be able to capture the signal of knitting needles accurately, we adopt a optical 4F system which has better imaging quality and simple structure and there is a rectangle image on the focal plane after the system. When a knitting needle passes through position of the rectangle image, the reflected light from needle surface will back to the GOF light guides along the same optical system. According to the intensity of signals, the computer control unit distinguish that the knitting needle is broken or curving. The experimental results show that this system can accurately detect the broken needles and the curving needles on the knitting machine in operating condition.
Hyper- and viscoelastic modeling of needle and brain tissue interaction.
Lehocky, Craig A; Yixing Shi; Riviere, Cameron N
2014-01-01
Deep needle insertion into brain is important for both diagnostic and therapeutic clinical interventions. We have developed an automated system for robotically steering flexible needles within the brain to improve targeting accuracy. In this work, we have developed a finite element needle-tissue interaction model that allows for the investigation of safe parameters for needle steering. The tissue model implemented contains both hyperelastic and viscoelastic properties to simulate the instantaneous and time-dependent responses of brain tissue. Several needle models were developed with varying parameters to study the effects of the parameters on tissue stress, strain and strain rate during needle insertion and rotation. The parameters varied include needle radius, bevel angle, bevel tip fillet radius, insertion speed, and rotation speed. The results will guide the design of safe needle tips and control systems for intracerebral needle steering.
Augmented reality guidance system for peripheral nerve blocks
NASA Astrophysics Data System (ADS)
Wedlake, Chris; Moore, John; Rachinsky, Maxim; Bainbridge, Daniel; Wiles, Andrew D.; Peters, Terry M.
2010-02-01
Peripheral nerve block treatments are ubiquitous in hospitals and pain clinics worldwide. State of the art techniques use ultrasound (US) guidance and/or electrical stimulation to verify needle tip location. However, problems such as needle-US beam alignment, poor echogenicity of block needles and US beam thickness can make it difficult for the anesthetist to know the exact needle tip location. Inaccurate therapy delivery raises obvious safety and efficacy issues. We have developed and evaluated a needle guidance system that makes use of a magnetic tracking system (MTS) to provide an augmented reality (AR) guidance platform to accurately localize the needle tip as well as its projected trajectory. Five anesthetists and five novices performed simulated nerve block deliveries in a polyvinyl alcohol phantom to compare needle guidance under US alone to US placed in our AR environment. Our phantom study demonstrated a decrease in targeting attempts, decrease in contacting of critical structures, and an increase in accuracy of 0.68 mm compared to 1.34mm RMS in US guidance alone. Currently, the MTS uses 18 and 21 gauge hypodermic needles with a 5 degree of freedom sensor located at the needle tip. These needles can only be sterilized using an ethylene oxide process. In the interest of providing clinicians with a simple and efficient guidance system, we also evaluated attaching the sensor at the needle hub as a simple clip-on device. To do this, we simultaneously performed a needle bending study to assess the reliability of a hub-based sensor.
Needle Steering in 3-D Via Rapid Replanning
Patil, Sachin; Burgner, Jessica; Webster, Robert J.; Alterovitz, Ron
2014-01-01
Steerable needles have the potential to improve the effectiveness of needle-based clinical procedures such as biopsy and drug delivery by improving targeting accuracy and reaching previously inaccessible targets that are behind sensitive or impenetrable anatomical regions. We present a new needle steering system capable of automatically reaching targets in 3-D environments while avoiding obstacles and compensating for real-world uncertainties. Given a specification of anatomical obstacles and a clinical target (e.g., from preoperative medical images), our system plans and controls needle motion in a closed-loop fashion under sensory feedback to optimize a clinical metric. We unify planning and control using a new fast algorithm that continuously replans the needle motion. Our rapid replanning approach is enabled by an efficient sampling-based rapidly exploring random tree (RRT) planner that achieves orders-of-magnitude reduction in computation time compared with prior 3-D approaches by incorporating variable curvature kinematics and a novel distance metric for planning. Our system uses an electromagnetic tracking system to sense the state of the needle tip during the procedure. We experimentally evaluate our needle steering system using tissue phantoms and animal tissue ex vivo. We demonstrate that our rapid replanning strategy successfully guides the needle around obstacles to desired 3-D targets with an average error of less than 3 mm. PMID:25435829
Electrostatic Technology for Control of Dust and Hydrocarbon Vapors in High Power Laser Systems.
1982-04-01
interest in that there is an intense corona discharge from the high volt- age (-17 kV) needles to the grounded screen as shown in Figure 1. This generates a...optimum arrangement, in terms of needle -to- needle spacing, needle -to-screen distance and screen opening dimensions? b. How shall the repulsion system be...the optical path? 5 To settle question a, it was necessary to build and test a number of needle -screen systems since there was no theory that could be
Reliability and performance of innovative surgical double-glove hole puncture indication systems.
Edlich, Richard F; Wind, Tyler C; Heather, Cynthia L; Thacker, John G
2003-01-01
During operative procedures, operating room personnel wear sterile surgical gloves designed to protect them and their patients against transmissible infections. The Food and Drug Administration (FDA) has set compliance policy guides for manufacturers of gloves. The FDA allows surgeons' gloves whose leakage defect rates do not exceed 1.5 acceptable quality level (AQL) to be used in operating rooms. The implications of this policy are potentially enormous to operating room personnel and patients. This unacceptable risk to the personnel and patient could be significantly reduced by the use of sterile double surgical gloves. Because double-gloves are also susceptible to needle puncture, a double-glove hole indication system is urgently needed to immediately detect surgical needle glove punctures. This warning would allow surgeons to remove the double-gloves, wash their hands, and then don a sterile set of double-gloves with an indication system. During the last decade, Regent Medical has devised non-latex and latex double-glove hole puncture indication systems. The purpose of this comprehensive study is to detect the accuracy of the non-latex and latex double-glove hole puncture indication systems using five commonly used sterile surgical needles: the taper point surgical needle, tapercut surgical needle, reverse cutting edge surgical needle, taper cardiopoint surgical needle, and spatula surgical needle. After subjecting both the non-latex and latex double-glove hole puncture indication systems to surgical needle puncture in each glove fingertip, these double-glove systems were immersed in a sterile basin of saline, after which the double-gloved hands manipulated surgical instruments. Within two minutes, both the non-latex and latex hole puncture indication systems accurately detected needle punctures in all of the surgical gloves, regardless of the dimensions of the surgical needles. In addition, the size of the color change visualized through the translucent outer glove did not correlate with needle diameter. On the basis of this extensive experimental evaluation, both the non-latex and latex double-glove hole puncture indication systems should be used in all operative procedures by all operating room personnel.
Mignon, Paul; Poignet, Philippe; Troccaz, Jocelyne
2018-05-29
Robotic control of needle bending aims at increasing the precision of percutaneous procedures. Ultrasound feedback is preferable for its clinical ease of use, cost and compactness but raises needle detection issues. In this paper, we propose a complete system dedicated to robotized guidance of a flexible needle under 3D ultrasound imaging. This system includes a medical robot dedicated to transperineal needle positioning and insertion, a rapid path planning for needle steering using bevel-tip needle natural curvature in tissue, and an ultrasound-based automatic needle detection algorithm. Since ultrasound-based automatic needle steering is often made difficult by the needle localization in biological tissue, we quantify the benefit of using flexible echogenic needles for robotized guidance under 3D ultrasound. The "echogenic" term refers to the etching of microstructures on the needle shaft. We prove that these structures improve needle visibility and detection robustness in ultrasound images. We finally present promising results when reaching targets using needle steering. The experiments were conducted with various needles in different media (synthetic phantoms and ex vivo biological tissue). For instance, with nitinol needles the mean accuracy is 1.2 mm (respectively 3.8 mm) in phantoms (resp. biological tissue).
Dual mode fuel injection system and fuel injector for same
Lawrence, Keith E.; Tian, Ye
2005-09-20
A fuel injection system has the ability to produce two different spray patterns depending on the positioning of a needle control valve member. Positioning of the needle control valve member determines which of the two needle control chambers are placed in a low pressure condition. First and second needle valve members have closing hydraulic surfaces exposed to fluid pressure in the two needle control chambers. The injector preferably includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by the first and second needle valve members.
Teleoperated master-slave needle insertion.
Abolhassani, Niki; Patel, Rajni V
2009-12-01
Accuracy of needle tip placement and needle tracking in soft tissue are of particular importance in many medical procedures. In recent years, developing autonomous and teleoperated systems for needle insertion has become an active area of research. In this study, needle insertion was performed using a master-slave set-up with multi-degrees of freedom. The effect of force feedback on the accuracy of needle insertion was investigated. In addition, this study compared autonomous, teleoperated and semi-autonomous needle insertion. The results of this study show that incorporation of force feedback can improve teleoperated needle insertion. However, autonomous and semi-autonomous needle insertions, which use feedback from a deflection model, provide significantly better performance. Development of a haptic master-slave needle insertion system, which is capable of performing some autonomous tasks based on feedback from tissue deformation and needle deflection models, can improve the performance of autonomous robotics-based insertions as well as non-autonomous teleoperated manual insertions. Copyright (c) 2009 John Wiley & Sons, Ltd.
Robot-Assisted Needle Steering
Reed, Kyle B.; Majewicz, Ann; Kallem, Vinutha; Alterovitz, Ron; Goldberg, Ken; Cowan, Noah J.; Okamura, Allison M.
2012-01-01
Needle insertion is a critical aspect of many medical treatments, diagnostic methods, and scientific studies, and is considered to be one of the simplest and most minimally invasive medical procedures. Robot-assisted needle steering has the potential to improve the effectiveness of existing medical procedures and enable new ones by allowing increased accuracy through more dexterous control of the needle tip path and acquisition of targets not accessible by straight-line trajectories. In this article, we describe a robot-assisted needle steering system that uses three integrated controllers: a motion planner concerned with guiding the needle around obstacles to a target in a desired plane, a planar controller that maintains the needle in the desired plane, and a torsion compensator that controls the needle tip orientation about the axis of the needle shaft. Experimental results from steering an asymmetric-tip needle in artificial tissue demonstrate the effectiveness of the system and its sensitivity to various environmental and control parameters. In addition, we show an example of needle steering in ex vivo biological tissue to accomplish a clinically relevant task, and highlight challenges of practical needle steering implementation. PMID:23028210
Vrooijink, Gustaaf J.; Abayazid, Momen; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak
2015-01-01
Needle insertion is commonly performed in minimally invasive medical procedures such as biopsy and radiation cancer treatment. During such procedures, accurate needle tip placement is critical for correct diagnosis or successful treatment. Accurate placement of the needle tip inside tissue is challenging, especially when the target moves and anatomical obstacles must be avoided. We develop a needle steering system capable of autonomously and accurately guiding a steerable needle using two-dimensional (2D) ultrasound images. The needle is steered to a moving target while avoiding moving obstacles in a three-dimensional (3D) non-static environment. Using a 2D ultrasound imaging device, our system accurately tracks the needle tip motion in 3D space in order to estimate the tip pose. The needle tip pose is used by a rapidly exploring random tree-based motion planner to compute a feasible needle path to the target. The motion planner is sufficiently fast such that replanning can be performed repeatedly in a closed-loop manner. This enables the system to correct for perturbations in needle motion, and movement in obstacle and target locations. Our needle steering experiments in a soft-tissue phantom achieves maximum targeting errors of 0.86 ± 0.35 mm (without obstacles) and 2.16 ± 0.88 mm (with a moving obstacle). PMID:26279600
A portable integrated system to control an active needle
NASA Astrophysics Data System (ADS)
Konh, Bardia; Motalleb, Mahdi; Ashrafiuon, Hashem
2017-04-01
The primary objective of this work is to introduce an integrated portable system to operate a flexible active surgical needle with actuation capabilities. The smart needle uses the robust actuation capabilities of the shape memory alloy wires to drastically improve the accuracy of in medical procedures such as brachytherapy. This, however, requires an integrated system aimed to control the insertion of the needle via a linear motor and its deflection by the SMA wire in real-time. The integrated system includes a flexible needle prototype, a Raspberry Pi computer, a linear stage motor, an SMA wire actuator, a power supply, electromagnetic tracking system, and various communication supplies. The linear stage motor guides the needle into tissue. The power supply provides appropriate current to the SMA actuator. The tracking system measures tip movement for feedback, The Raspberry Pi is the central tool that receives the tip movement feedback and controls the linear stage motor and the SMA actuator via the power supply. The implemented algorithms required for communication and feedback control are also described. This paper demonstrates that the portable integrated system may be a viable solution for more effective procedures requiring surgical needles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borot de Battisti, M; Maenhout, M; Lagendijk, J J W
Purpose: To develop a new method which adaptively determines the optimal needle insertion sequence for HDR prostate brachytherapy involving divergent needle-by-needle dose delivery by e.g. a robotic device. A needle insertion sequence is calculated at the beginning of the intervention and updated after each needle insertion with feedback on needle positioning errors. Methods: Needle positioning errors and anatomy changes may occur during HDR brachytherapy which can lead to errors in the delivered dose. A novel strategy was developed to calculate and update the needle sequence and the dose plan after each needle insertion with feedback on needle positioning errors. Themore » dose plan optimization was performed by numerical simulations. The proposed needle sequence determination optimizes the final dose distribution based on the dose coverage impact of each needle. This impact is predicted stochastically by needle insertion simulations. HDR procedures were simulated with varying number of needle insertions (4 to 12) using 11 patient MR data-sets with PTV, prostate, urethra, bladder and rectum delineated. Needle positioning errors were modeled by random normally distributed angulation errors (standard deviation of 3 mm at the needle’s tip). The final dose parameters were compared in the situations where the needle with the largest vs. the smallest dose coverage impact was selected at each insertion. Results: Over all scenarios, the percentage of clinically acceptable final dose distribution improved when the needle selected had the largest dose coverage impact (91%) compared to the smallest (88%). The differences were larger for few (4 to 6) needle insertions (maximum difference scenario: 79% vs. 60%). The computation time of the needle sequence optimization was below 60s. Conclusion: A new adaptive needle sequence determination for HDR prostate brachytherapy was developed. Coupled to adaptive planning, the selection of the needle with the largest dose coverage impact increases chances of reaching the clinical constraints. M. Borot de Battisti is funded by Philips Medical Systems Nederland B.V.; M. Moerland is principal investigator on a contract funded by Philips Medical Systems Nederland B.V.; G. Hautvast and D. Binnekamp are fulltime employees of Philips Medical Systems Nederland B.V.« less
Experimental analysis of robot-assisted needle insertion into porcine liver.
Wang, Wendong; Shi, Yikai; Goldenberg, Andrew A; Yuan, Xiaoqing; Zhang, Peng; He, Lijing; Zou, Yingjie
2015-01-01
How to improve placement accuracy of needle insertion into liver tissue is of paramount interest to physicians. A robot-assisted system was developed to experimentally demonstrate its advantages in needle insertion surgeries. Experiments of needle insertion into porcine liver tissue were performed with conic tip needle (diameter 8 mm) and bevel tip needle (diameter 1.5 mm) in this study. Manual operation was designed to compare the performance of the presented robot-assisted system. The real-time force curves show outstanding advantages of robot-assisted operation in improving the controllability and stability of needle insertion process by comparing manual operation. The statistics of maximum force and average force further demonstrates robot-assisted operation causes less oscillation. The difference of liver deformation created by manual operation and robot-assisted operation is very low, 1 mm for average deformation and 2 mm for maximum deformation. To conclude, the presented robot-assisted system can improve placement accuracy of needle by stably control insertion process.
New platform for evaluating ultrasound-guided interventional technologies
NASA Astrophysics Data System (ADS)
Kim, Younsu; Guo, Xiaoyu; Boctor, Emad M.
2016-04-01
Ultrasound-guided needle tracking systems are frequently used in surgical procedures. Various needle tracking technologies have been developed using ultrasound, electromagnetic sensors, and optical sensors. To evaluate these new needle tracking technologies, 3D volume information is often acquired to compute the actual distance from the needle tip to the target object. The image-guidance conditions for comparison are often inconsistent due to the ultrasound beam-thickness. Since 3D volumes are necessary, there is often some time delay between the surgical procedure and the evaluation. These evaluation methods will generally only measure the final needle location because they interrupt the surgical procedure. The main contribution of this work is a new platform for evaluating needle tracking systems in real-time, resolving the problems stated above. We developed new tools to evaluate the precise distance between the needle tip and the target object. A PZT element transmitting unit is designed as needle introducer shape so that it can be inserted in the needle. We have collected time of flight and amplitude information in real-time. We propose two systems to collect ultrasound signals. We demonstrate this platform on an ultrasound DAQ system and a cost-effective FPGA board. The results of a chicken breast experiment show the feasibility of tracking a time series of needle tip distances. We performed validation experiments with a plastisol phantom and have shown that the preliminary data fits a linear regression model with a RMSE of less than 0.6mm. Our platform can be applied to more general needle tracking methods using other forms of guidance.
NASA Astrophysics Data System (ADS)
Rodgers, Jessica R.; Surry, Kathleen; D'Souza, David; Leung, Eric; Fenster, Aaron
2017-03-01
Treatment for gynaecological cancers often includes brachytherapy; in particular, in high-dose-rate (HDR) interstitial brachytherapy, hollow needles are inserted into the tumour and surrounding area through a template in order to deliver the radiation dose. Currently, there is no standard modality for visualizing needles intra-operatively, despite the need for precise needle placement in order to deliver the optimal dose and avoid nearby organs, including the bladder and rectum. While three-dimensional (3D) transrectal ultrasound (TRUS) imaging has been proposed for 3D intra-operative needle guidance, anterior needles tend to be obscured by shadowing created by the template's vaginal cylinder. We have developed a 360-degree 3D transvaginal ultrasound (TVUS) system that uses a conventional two-dimensional side-fire TRUS probe rotated inside a hollow vaginal cylinder made from a sonolucent plastic (TPX). The system was validated using grid and sphere phantoms in order to test the geometric accuracy of the distance and volumetric measurements in the reconstructed image. To test the potential for visualizing needles, an agar phantom mimicking the geometry of the female pelvis was used. Needles were inserted into the phantom and then imaged using the 3D TVUS system. The needle trajectories and tip positions in the 3D TVUS scan were compared to their expected values and the needle tracks visualized in magnetic resonance images. Based on this initial study, 360-degree 3D TVUS imaging through a sonolucent vaginal cylinder is a feasible technique for intra-operatively visualizing needles during HDR interstitial gynaecological brachytherapy.
Guglielmo, Andrew; Sabra, Adham; Elbery, Mostafa; Cerveira, Milena M; Ghenov, Fernanda; Sunasee, Rajesh; Ckless, Karina
2017-08-25
Recently we have demonstrated that needle-like cationic cellulose nanocrystals (CNC-AEMA2) evoke immunological responses through NLRP3 inflammasome/IL-1β inflammatory pathway. In this study we demonstrated that curcumin, a naturally occurring polyphenolic compound isolated from Curcuma longa (Zingiberaceae), was able to suppress, at least in part, this immunological response, as observed by diminished IL-1β secretion in CNC-AEMA2-stimulated macrophages primed with LPS. Curcumin is a well-known antioxidant and anti-inflammatory natural compound and in addition to acting as "scavenger" of reactive oxygen species (ROS), it can also upregulates antioxidant enzymes. However, the mechanisms by which this natural compound exerts its protective activity is still under investigation. We hypothesize that curcumin may also affect S-glutathionylation of key proteins involved in the NLRP3 inflammasome/IL-1β pathway, and therefore impact their protein-protein interactions. The goal of this study was to investigate the effects of curcumin on the S-glutathionylation of NLRP3 induced by CNC-AEMA2 in LPS-primed mouse macrophages (J774A.1), as well as interactions among proteins of the NLRP3 inflammasome complex. Our main finding indicates that the addition of curcumin concomitantly with LPS caused the greatest decrease in NLRP3 S-glutathionylation and a respective increase in caspase-1 S-glutathionylation, which appears to favor protein-protein interactions in the NLRP3 complex. Taking together, our results suggest that, at least in part, the anti-inflammatory activity of curcumin is associated with changes in S-glutathionylation of key NLRP3 inflammasome components, and perhaps resulting in sustained complex assembly and suppression of IL-1β secretion. Copyright © 2017 Elsevier B.V. All rights reserved.
Detection of Membrane Puncture with Haptic Feedback using a Tip-Force Sensing Needle.
Elayaperumal, Santhi; Bae, Jung Hwa; Daniel, Bruce L; Cutkosky, Mark R
2014-09-01
This paper presents calibration and user test results of a 3-D tip-force sensing needle with haptic feedback. The needle is a modified MRI-compatible biopsy needle with embedded fiber Bragg grating (FBG) sensors for strain detection. After calibration, the needle is interrogated at 2 kHz, and dynamic forces are displayed remotely with a voice coil actuator. The needle is tested in a single-axis master/slave system, with the voice coil haptic display at the master, and the needle at the slave end. Tissue phantoms with embedded membranes were used to determine the ability of the tip-force sensors to provide real-time haptic feedback as compared to external sensors at the needle base during needle insertion via the master/slave system. Subjects were able to determine the position of the embedded membranes with significantly better accuracy using FBG tip feedback than with base feedback using a commercial force/torque sensor (p = 0.045) or with no added haptic feedback (p = 0.0024).
Detection of Membrane Puncture with Haptic Feedback using a Tip-Force Sensing Needle
Elayaperumal, Santhi; Bae, Jung Hwa; Daniel, Bruce L.; Cutkosky, Mark R.
2015-01-01
This paper presents calibration and user test results of a 3-D tip-force sensing needle with haptic feedback. The needle is a modified MRI-compatible biopsy needle with embedded fiber Bragg grating (FBG) sensors for strain detection. After calibration, the needle is interrogated at 2 kHz, and dynamic forces are displayed remotely with a voice coil actuator. The needle is tested in a single-axis master/slave system, with the voice coil haptic display at the master, and the needle at the slave end. Tissue phantoms with embedded membranes were used to determine the ability of the tip-force sensors to provide real-time haptic feedback as compared to external sensors at the needle base during needle insertion via the master/slave system. Subjects were able to determine the position of the embedded membranes with significantly better accuracy using FBG tip feedback than with base feedback using a commercial force/torque sensor (p = 0.045) or with no added haptic feedback (p = 0.0024). PMID:26509101
A needle guidance system for biopsy and therapy using two-dimensional ultrasound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluvol, Nathan; Sheikh, Allison; Kornecki, Anat
2008-02-15
Image-guided needle biopsies are currently used to provide a definitive diagnosis of breast cancer; however, difficulties in tumor targeting exist as the ultrasound (United States) scan plane and biopsy needle must remain coplanar throughout the procedure to display the actual needle tip position. The additional time associated with aligning and maintaining this coplanar relationship results in increased patient discomfort. Biopsy procedural efficiency is further hindered since needle pathway interpretation is often difficult, especially for needle insertions at large depths that usually require multiple reinsertions. The authors developed a system that would increase the speed and accuracy of current breast biopsymore » procedures using readily available two-dimensional (2D) US technology. This system is composed of a passive articulated mechanical arm that attaches to a 2D US transducer. The arm is connected to a computer through custom electronics and software, which were developed as an interface for tracking the positioning of the mechanical components in real time. The arm couples to the biopsy needle and provides visual guidance for the physician performing the procedure in the form of a real-time projected needle pathway overlay on an US image of the breast. An agar test phantom, with stainless steel targets interspersed randomly throughout, was used to validate needle trajectory positioning accuracy. The biopsy needle was guided by both the software and hardware components to the targets. The phantom, with the needle inserted and device decoupled, was placed in an x-ray stereotactic mammography (SM) machine. The needle trajectory and bead target locations were determined in three dimensions from the SM images. Results indicated a mean needle trajectory accuracy error of 0.75{+-}0.42 mm. This is adequate to sample lesions that are <2 mm in diameter. Chicken tissue test phantoms were used to compare core needle biopsy procedure times between experienced radiologists and inexperienced resident radiologists using free-hand US and the needle guidance system. Cylindrical polyvinyl alcohol cryogel lesions, colored blue, were embedded in chicken tissue. Radiologists identified the lesions, visible as hypoechoic masses in the US images, and performed biopsy using a 14-gauge needle. Procedure times were compared based on experience and the technique performed. Using a pair-wise t test, lower biopsy procedure times were observed when using the guidance system versus the free-hand technique (t=12.59, p<0.001). The authors believe that with this improved biopsy guidance they will be able to reduce the ''false negative'' rate of biopsies, especially in the hands of less experienced physicians.« less
Siebert, Frank-André; Hirt, Markus; Niehoff, Peter; Kovács, György
2009-08-01
Ultrasound imaging is becoming increasingly important in prostate brachytherapy. In high-dose-rate (HDR) real-time planning procedures the definition of the implant needles is often performed by transrectal ultrasound. This article describes absolute measurements of the visibility and accuracy of manual detection of implant needle tips and compares measurement results of different biplane ultrasound systems in transversal and longitudinal (i.e., sagittal) ultrasound modes. To obtain a fixed coordinate system and stable conditions the measurements were carried out in a water tank using a dedicated marker system. Needles were manually placed in the phantom until the observer decided by the real-time ultrasound image that the zero position was reached. A comparison of three different ultrasound systems yielded an offset between 0.8 and 3.1 mm for manual detection of the needle tip in ultrasound images by one observer. The direction of the offset was discovered to be in the proximal direction, i.e., the actual needle position was located more distally compared to the ultrasound-based definition. In the second part of the study, the ultrasound anisotropy of trocar implant needles is reported. It was shown that the integrated optical density in a region of interest around the needle tip changes with needle rotation. Three peaks were observed with a phase angle of 120 degrees. Peaks appear not only in transversal but also in longitudinal ultrasound images, with a phase shift of 60 degrees. The third section of this study shows results of observer dependent influences on needle tip detection in sagittal ultrasound images considering needle rotation. These experiments were carried out using the marker system in a water tank. The needle tip was placed exactly at the position z=0 mm. It was found that different users tend to differently interpret the same ultrasound images. The needle tip was manually detected five times in the ultrasound images by three experienced observers at positions (+/- standard deviation) -0.53 +/- 0.16, -0.16 +/- 0.14, and -0.30 +/- 0.16 mm using a gain of 15 dB. The minus sign indicates that the needle tips were detected more proximally than the actual position of the needle tip. When using a gain of -15 dB the mean values of two observers resulted in -0.62 +/- 0.08 and -0.51 +/- 0.12 mm. Additionally an alternative approach to the direct needle tip definition was investigated. Two observers detected the solid part of the needle tip in sagittal images. This solid part, often named as "dead space end," is the distance between the needle tip and the beginning of the hollow part of the implant needle. The dead space end is 6.2 mm for the investigated needle type. Two users found mean values of -6.70 +/- 0.16 and -7.00 +/- 0.06 mm, respectively, for 15 dB gain and -6.90 +/- 0.09 and -7.02 +/- 0.06 mm using the -15 dB gain setting. The results show that ultrasound-based needle tip definition in sagittal viewing mode is accurate. The inter- and intraobserver errors should, however, be taken into account. A lower gain setting of the ultrasound system reduces the intraobserver error.
Rodgers, Jessica Robin; Surry, Kathleen; Leung, Eric; D'Souza, David; Fenster, Aaron
2017-05-01
Treatment for gynecologic cancers, such as cervical, recurrent endometrial, and vaginal malignancies, commonly includes external-beam radiation and brachytherapy. In high-dose-rate (HDR) interstitial gynecologic brachytherapy, radiation treatment is delivered via hollow needles that are typically inserted through a template on the perineum with a cylinder placed in the vagina for stability. Despite the need for precise needle placement to minimize complications and provide optimal treatment, there is no standard intra-operative image-guidance for this procedure. While some image-guidance techniques have been proposed, including magnetic resonance (MR) imaging, X-ray computed tomography (CT), and two-dimensional (2D) transrectal ultrasound (TRUS), these techniques have not been widely adopted. In order to provide intra-operative needle visualization and localization during interstitial brachytherapy, we have developed a three-dimensional (3D) TRUS system. This study describes the 3D TRUS system and reports on the system validation and results from a proof-of-concept patient study. To obtain a 3D TRUS image, the system rotates a conventional 2D endocavity transducer through 170 degrees in 12 s, reconstructing the 2D frames into a 3D image in real-time. The geometry of the reconstruction was validated using two geometric phantoms to ensure the accuracy of the linear measurements in each of the image coordinate directions and the volumetric accuracy of the system. An agar phantom including vaginal and rectal canals, as well as a model uterus and tumor, was designed and used to test the visualization and localization of the interstitial needles under idealized conditions by comparing the needles' positions between the 3D TRUS scan and a registered MR image. Five patients undergoing HDR interstitial gynecologic brachytherapy were imaged using the 3D TRUS system following the insertion of all needles. This image was manually, rigidly registered to the clinical postinsertion CT scan based on the vaginal cylinder of the needle template. The positions of the tips and the trajectory of the needle paths were compared between the modalities. The observed geometric errors of the system were ≤ 0.3 mm in each of the three coordinate planes of the 3D US image and the mean measured volumetric error was 0.10 cm 3 . In the phantom study, the mean needle tip difference was 1.54 ± 0.71 mm and the mean trajectory difference was 0.94 ± 0.89 degrees (n = 14). In the in vivo study, a total of 73 needles were placed, of which 88% of needles were visible and 79% of tips were identifiable in the 3D TRUS images. Six of the nine needles that were not visible were due to shadowing artifacts created by the presence of the vaginal cylinder of the needle template. The mean distance between corresponding needle tips in the two modalities was 3.82 ± 1.86 mm and the mean trajectory difference was 3.04 ± 1.63 degrees for the five patients. In this proof-of-concept study, the 3D TRUS system allowed for localization of needles not obscured by shadowing artifacts, providing a method for visualizing needles intra-operatively during HDR interstitial brachytherapy of gynecologic cancers and providing the potential for 3D image-guidance. © 2017 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borot de Battisti, Maxence, E-mail: M.E.P.Borot@um
Purpose: The development of MR-guided high dose rate (HDR) brachytherapy is under investigation due to the excellent tumor and organs at risk visualization of MRI. However, MR-based localization of needles (including catheters or tubes) has inherently a low update rate and the required image interpretation can be hampered by signal voids arising from blood vessels or calcifications limiting the precision of the needle guidance and reconstruction. In this paper, a new needle tracking prototype is investigated using fiber Bragg gratings (FBG)-based sensing: this prototype involves a MR-compatible stylet composed of three optic fibers with nine sets of embedded FBG sensorsmore » each. This stylet can be inserted into brachytherapy needles and allows a fast measurement of the needle deflection. This study aims to assess the potential of FBG-based sensing for real-time needle (including catheter or tube) tracking during MR-guided intervention. Methods: First, the MR compatibility of FBG-based sensing and its accuracy was evaluated. Different known needle deflections were measured using FBG-based sensing during simultaneous MR-imaging. Then, a needle tracking procedure using FBG-based sensing was proposed. This procedure involved a MR-based calibration of the FBG-based system performed prior to the interventional procedure. The needle tracking system was assessed in an experiment with a moving phantom during MR imaging. The FBG-based system was quantified by comparing the gold-standard shapes, the shape manually segmented on MRI and the FBG-based measurements. Results: The evaluation of the MR compatibility of FBG-based sensing and its accuracy shows that the needle deflection could be measured with an accuracy of 0.27 mm on average. Besides, the FBG-based measurements were comparable to the uncertainty of MR-based measurements estimated at half the voxel size in the MR image. Finally, the mean(standard deviation) Euclidean distance between MR- and FBG-based needle position measurements was equal to 0.79 mm(0.37 mm). The update rate and latency of the FBG-based needle position measurement were 100 and 300 ms, respectively. Conclusions: The FBG-based needle tracking procedure proposed in this paper is able to determine the position of the complete needle, under MR-imaging, with better accuracy and precision, higher update rate, and lower latency compared to current MR-based needle localization methods. This system would be eligible for MR-guided brachytherapy, in particular, for an improved needle guidance and reconstruction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siauw, Timmy; Cunha, Adam; Berenson, Dmitry
Purpose: In this study, the authors introduce skew line needle configurations for high dose rate (HDR) brachytherapy and needle planning by integer program (NPIP), a computational method for generating these configurations. NPIP generates needle configurations that are specific to the anatomy of the patient, avoid critical structures near the penile bulb and other healthy structures, and avoid needle collisions inside the body. Methods: NPIP consisted of three major components: a method for generating a set of candidate needles, a needle selection component that chose a candidate needle subset to be inserted, and a dose planner for verifying that the finalmore » needle configuration could meet dose objectives. NPIP was used to compute needle configurations for prostate cancer data sets from patients previously treated at our clinic. NPIP took two user-parameters: a number of candidate needles, and needle coverage radius, {delta}. The candidate needle set consisted of 5000 needles, and a range of {delta} values was used to compute different needle configurations for each patient. Dose plans were computed for each needle configuration. The number of needles generated and dosimetry were analyzed and compared to the physician implant. Results: NPIP computed at least one needle configuration for every patient that met dose objectives, avoided healthy structures and needle collisions, and used as many or fewer needles than standard practice. These needle configurations corresponded to a narrow range of {delta} values, which could be used as default values if this system is used in practice. The average end-to-end runtime for this implementation of NPIP was 286 s, but there was a wide variation from case to case. Conclusions: The authors have shown that NPIP can automatically generate skew line needle configurations with the aforementioned properties, and that given the correct input parameters, NPIP can generate needle configurations which meet dose objectives and use as many or fewer needles than the current HDR brachytherapy workflow. Combined with robot assisted brachytherapy, this system has the potential to reduce side effects associated with treatment. A physical trial should be done to test the implant feasibility of NPIP needle configurations.« less
Role of T3SS-1 SipD Protein in Protecting Mice against Non-typhoidal Salmonella Typhimurium
Jneid, Bakhos; Moreau, Karine; Plaisance, Marc; Rouaix, Audrey; Dano, Julie
2016-01-01
Background Salmonella enterica species are enteric pathogens that cause severe diseases ranging from self-limiting gastroenteritis to enteric fever and sepsis in humans. These infectious diseases are still the major cause of morbidity and mortality in low-income countries, especially in children younger than 5 years and immunocompromised adults. Vaccines targeting typhoidal diseases are already marketed, but none protect against non-typhoidal Salmonella. The existence of multiple non-typhoidal Salmonella serotypes as well as emerging antibiotic resistance highlight the need for development of a broad-spectrum protective vaccine. All Salmonella spp. utilize two type III Secretion Systems (T3SS 1 and 2) to initiate infection, allow replication in phagocytic cells and induce systemic disease. T3SS-1, which is essential to invade epithelial cells and cross the barrier, forms an extracellular needle and syringe necessary to inject effector proteins into the host cell. PrgI and SipD form, respectively, the T3SS-1 needle and the tip complex at the top of the needle. Because they are common and highly conserved in all virulent Salmonella spp., they might be ideal candidate antigens for a subunit-based, broad-spectrum vaccine. Principal Findings We investigated the immunogenicity and protective efficacy of PrgI and SipD administered by subcutaneous, intranasal and oral routes, alone or combined, in a mouse model of Salmonella intestinal challenge. Robust IgG (in all immunization routes) and IgA (in intranasal and oral immunization routes) antibody responses were induced against both proteins, particularly SipD. Mice orally immunized with SipD alone or SipD combined with PrgI were protected against lethal intestinal challenge with Salmonella Typhimurium (100 Lethal Dose 50%) depending on antigen, route and adjuvant. Conclusions and Significance Salmonella T3SS SipD is a promising antigen for the development of a protective Salmonella vaccine, and could be developed for vaccination in tropical endemic areas to control infant mortality. PMID:27992422
Menacé, Cécilia; Choquet, Olivier; Abbal, Bertrand; Bringuier, Sophie; Capdevila, Xavier
2017-04-01
The real-time ultrasound-guided paramedian sagittal oblique approach for neuraxial blockade is technically demanding. Innovative technologies have been developed to improve nerve identification and the accuracy of needle placement. The aim of this study was to evaluate three types of ultrasound scans during ultrasound-guided epidural lumbar punctures in a spine phantom. Eleven sets of 20 ultrasound-guided epidural punctures were performed with 2D, GPS, and multiplanar ultrasound machines (660 punctures) on a spine phantom using an in-plane approach. For all punctures, execution time, number of attempts, bone contacts, and needle redirections were noted by an independent physician. Operator comfort and visibility of the needle (tip and shaft) were measured using a numerical scale. The use of GPS significantly decreased the number of punctures, needle repositionings, and bone contacts. Comfort of the physician was also significantly improved with the GPS system compared with the 2D and multiplanar systems. With the multiplanar system, the procedure was not facilitated and execution time was longer compared with 2D imaging after Bonferroni correction but interaction between the type of ultrasound system and mean execution time was not significant in a linear mixed model. There were no significant differences regarding needle tip and shaft visibility between the systems. Multiplanar and GPS needle-tracking systems do not reduce execution time compared with 2D imaging using a real-time ultrasound-guided paramedian sagittal oblique approach in spine phantoms. The GPS needle-tracking system can improve performance in terms of operator comfort, the number of attempts, needle redirections and bone contacts. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodgers, J.; Tessier, D.; D'Souza, D.; Leung, E.; Hajdok, G.; Fenster, A.
2016-04-01
High-dose-rate (HDR) interstitial brachytherapy is often included in standard-of-care for gynaecological cancers. Needles are currently inserted through a perineal template without any standard real-time imaging modality to assist needle guidance, causing physicians to rely on pre-operative imaging, clinical examination, and experience. While two-dimensional (2D) ultrasound (US) is sometimes used for real-time guidance, visualization of needle placement and depth is difficult and subject to variability and inaccuracy in 2D images. The close proximity to critical organs, in particular the rectum and bladder, can lead to serious complications. We have developed a three-dimensional (3D) transrectal US system and are investigating its use for intra-operative visualization of needle positions used in HDR gynaecological brachytherapy. As a proof-of-concept, four patients were imaged with post-insertion 3D US and x-ray CT. Using software developed in our laboratory, manual rigid registration of the two modalities was performed based on the perineal template's vaginal cylinder. The needle tip and a second point along the needle path were identified for each needle visible in US. The difference between modalities in the needle trajectory and needle tip position was calculated for each identified needle. For the 60 needles placed, the mean trajectory difference was 3.23 +/- 1.65° across the 53 visible needle paths and the mean difference in needle tip position was 3.89 +/- 1.92 mm across the 48 visible needles tips. Based on the preliminary results, 3D transrectal US shows potential for the development of a 3D US-based needle guidance system for interstitial gynaecological brachytherapy.
Verasdonck, Joeri; Shen, Da-Kang; Treadgold, Alexander; Arthur, Christopher; Böckmann, Anja; Meier, Beat H; Blocker, Ariel J
2015-12-01
T3SSs are essential virulence determinants of many Gram-negative bacteria, used to inject bacterial effectors of virulence into eukaryotic host cells. Their major extracellular portion, a ∼50 nm hollow, needle-like structure, is essential to host cell sensing and the conduit for effector secretion. It is formed of a small, conserved subunit arranged as a helical polymer. The structure of the subunit has been studied by electron cryomicroscopy within native polymers and by solid-state NMR in recombinant polymers, yielding two incompatible atomic models. To resolve this controversy, we re-examined the native polymer used for electron cryomicroscopy via surface labelling and solid-state NMR. Our data show the orientation and overall fold of the subunit within this polymer is as established by solid-state NMR for recombinant polymers. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Physical evaluation of a needle photostimulable phosphor based CR mammography system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Nicholas W.; Lemmens, Kim; Bosmans, Hilde
2012-02-15
Purpose: Needle phosphor based computed radiography (CR) systems promise improved image quality compared to powder phosphor based CR units for x-ray screening mammography. This paper compares the imaging performance of needle CR cassettes, powder based CR cassettes and a well established amorphous selenium (a-Se) based flat panel based mammography system, using consistent beam qualities. Methods: Detector performance was assessed using modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE). Mammography system performance was assessed against levels from the European Guidelines, including threshold gold thickness (c-d), relative signal difference to noise (SdNR) and mean glandular dose,more » for automatic exposure control settings suggested by the manufacturers. The needle based Agfa HM5.0 CR detector was compared against the single sided readout Agfa MM3.0R and dual sided readout Fuji Profect CS powder CR plates using a 28 kV Mo/Rh spectrum, while a 28 kV W/Rh spectrum was used to compare the Agfa HM5.0 against the Siemens MAMMOMAT Inspiration a-Se based system. Results: MTF at 5 mm{sup -1} was 0.16 and 0.24 for the needle CR detector in the fast and slow scan directions, respectively, indicating a slight improvement ({approx}20%) over the two powder CR systems but remained 50% lower than the result at 5 mm{sup -1} for the a-Se detector ({approx}0.55). Structured screen noise was lower for the needle phosphor compared to the powder plates. CR system gain, estimated from the measured absorption fraction and NNPS results, was 6.3 for the (single sided) needle phosphor and 5.1 and 7.2 for the single sided and dual sided powder phosphor systems. Peak DQE at {approx}100 {mu}Gy was 0.47 for the needle system compared to peak DQE figures of 0.33 and 0.46 for the single sided readout powder plates and dual sided readout plates. The high frequency DQE (at 5 mm{sup -1}) was 0.19 for the needle CR plates, a factor of approximately 3 greater than for the powder CR plates. At 28 kV W/Rh, 2 mm Al, peak DQE for the needle CR system was 0.45 against a value of 0.50 for the a-Se detector. The needle CR detector reached the Acceptable limit for 0.1 mm details in the European Guidelines at a mean glandular dose (MGD) of approximately 1.31 mGy imaged at 28 kV Mo/Rh, compared to figures of 2.19 and 1.43 mGy for the single sided and dual sided readout powder CR systems. The a-Se detector could reach the limit at 0.65 mGy using a 28 kV W/Rh spectrum, while the needle CR system required 1.09 mGy for the same spectrum. Conclusions: Imaging performance for the needle CR phosphor technology, characterized using MTF and DQE and threshold gold thickness demonstrated a clear improvement compared to both single and dual sided reading powder phosphor based CR systems.« less
Dickenson, Nicholas E; Choudhari, Shyamal P; Adam, Philip R; Kramer, Ryan M; Joshi, Sangeeta B; Middaugh, C Russell; Picking, Wendy L; Picking, William D
2013-01-01
The Shigella flexneri Type III secretion system (T3SS) senses contact with human intestinal cells and injects effector proteins that promote pathogen entry as the first step in causing life threatening bacillary dysentery (shigellosis). The Shigella Type III secretion apparatus (T3SA) consists of an anchoring basal body, an exposed needle, and a temporally assembled tip complex. Exposure to environmental small molecules recruits IpaB, the first hydrophobic translocator protein, to the maturing tip complex. IpaB then senses contact with a host cell membrane, forming the translocon pore through which effectors are delivered to the host cytoplasm. Within the bacterium, IpaB exists as a heterodimer with its chaperone IpgC; however, IpaB's structural state following secretion is unknown due to difficulties isolating stable protein. We have overcome this by coexpressing the IpaB/IpgC heterodimer and isolating IpaB by incubating the complex in mild detergents. Interestingly, preparation of IpaB with n-octyl-oligo-oxyethylene (OPOE) results in the assembly of discrete oligomers while purification in N,N-dimethyldodecylamine N-oxide (LDAO) maintains IpaB as a monomer. In this study, we demonstrate that IpaB tetramers penetrate phospholipid membranes to allow a size-dependent release of small molecules, suggesting the formation of discrete pores. Monomeric IpaB also interacts with liposomes but fails to disrupt them. From these and additional findings, we propose that IpaB can exist as a tetramer having inherent flexibility, which allows it to cooperatively interact with and insert into host cell membranes. This event may then lay the foundation for formation of the Shigella T3SS translocon pore. PMID:23456854
Fevre, Marie-Cécile; Vincent, Caroline; Picard, Julien; Vighetti, Arnaud; Chapuis, Claire; Detavernier, Maxime; Allenet, Benoît; Payen, Jean-François; Bosson, Jean-Luc; Albaladejo, Pierre
2018-02-01
Ultrasound (US) guided needle positioning is safer than anatomical landmark techniques for central venous access. Hand-eye coordination and execution time depend on the professional's ability, previous training and personal skills. Needle guidance positioning systems (GPS) may theoretically reduce execution time and facilitate needle positioning in specific targets, thus improving patient comfort and safety. Three groups of healthcare professionals (41 anaesthesiologists and intensivists, 41 residents in anaesthesiology and intensive care, 39 nurse anaesthetists) were included and required to perform 3 tasks (positioning the tip of a needle in three different targets in a silicon phantom) by using successively a conventional US-guided needle positioning and a needle GPS. We measured execution times to perform the tasks, hand-eye coordination and the number of repositioning occurrences or errors in handling the needle or the probe. Without the GPS system, we observed a significant inter-individual difference for execution time (P<0.05), hand-eye coordination and the number of errors/needle repositioning between physicians, residents and nurse anaesthetists. US training and video gaming were found to be independent factors associated with a shorter execution time. Use of GPS attenuated the inter-individual and group variability. We observed a reduced execution time and improved hand-eye coordination in all groups as compared to US without GPS. Neither US training, video gaming nor demographic personal or professional factors were found to be significantly associated with reduced execution time when GPS was used. US associated with GPS systems may improve safety and decrease execution time by reducing inter-individual variability between professionals for needle-handling procedures. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.
[Needle-free injection--science fiction or comeback of an almost forgotten drug delivery system?].
Ziegler, Andreas
2007-08-01
The first to create a "needle-free injector" was the American anesthetist Robert A. Hingson, 65 year ago. Since that time those devices underwent a changeful history. In 1986 an outbreak of hepatitis B among patients receiving injections from a needle-free multiple-use-nozzle injector was documented and related to the use of the injector device. Due to such risk of transmission of infection with these reusable devices, their application has been restricted. In 1998 the WHO recommended that only conventional needles and syringes should be used for immunization until safe needle-free injectors are identified through independent safety testing. Since needle-free injection has shown numerous advantages in comparison to conventional injection, new systems were developed that combine the advantages of needle-free injection with sufficient safety in mass vaccination programs. As an alternative to this early injector type, the disposable-cartridge injectors were developed. The newest research field in the area of the needle-free injection systems opened with the development of powder injectors, in which the drug preparation is no longer a suspension or solution, but a powdered solid. This injector type using powder formulations shows a number of advantages in comparison with the conventional needle/syringe injection technique as well as towards the liquid jet injectors. Due to this new kind of injectors the comeback of the needle-free injection technique in large-scale vaccination programs of the WHO seems reasonable and within reach.
Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system.
Kuo, Wei-Cheng; Kim, Jongsik; Shemonski, Nathan D; Chaney, Eric J; Spillman, Darold R; Boppart, Stephen A
2012-06-01
Advances in optical imaging modalities, such as optical coherence tomography (OCT), enable us to observe tissue microstructure at high resolution and in real time. Currently, core-needle biopsies are guided by external imaging modalities such as ultrasound imaging and x-ray computed tomography (CT) for breast and lung masses, respectively. These image-guided procedures are frequently limited by spatial resolution when using ultrasound imaging, or by temporal resolution (rapid real-time feedback capabilities) when using x-ray CT. One feasible approach is to perform OCT within small gauge needles to optically image tissue microstructure. However, to date, no system or core-needle device has been developed that incorporates both three-dimensional OCT imaging and tissue biopsy within the same needle for true OCT-guided core-needle biopsy. We have developed and demonstrate an integrated core-needle biopsy system that utilizes catheter-based 3-D OCT for real-time image-guidance for target tissue localization, imaging of tissue immediately prior to physical biopsy, and subsequent OCT imaging of the biopsied specimen for immediate assessment at the point-of-care. OCT images of biopsied ex vivo tumor specimens acquired during core-needle placement are correlated with corresponding histology, and computational visualization of arbitrary planes within the 3-D OCT volumes enables feedback on specimen tissue type and biopsy quality. These results demonstrate the potential for using real-time 3-D OCT for needle biopsy guidance by imaging within the needle and tissue during biopsy procedures.
Rossa, Carlos; Lehmann, Thomas; Sloboda, Ronald; Usmani, Nawaid; Tavakoli, Mahdi
2017-08-01
Global modelling has traditionally been the approach taken to estimate needle deflection in soft tissue. In this paper, we propose a new method based on local data-driven modelling of needle deflection. External measurement of needle-tissue interactions is collected from several insertions in ex vivo tissue to form a cloud of data. Inputs to the system are the needle insertion depth, axial rotations, and the forces and torques measured at the needle base by a force sensor. When a new insertion is performed, the just-in-time learning method estimates the model outputs given the current inputs to the needle-tissue system and the historical database. The query is compared to every observation in the database and is given weights according to some similarity criteria. Only a subset of historical data that is most relevant to the query is selected and a local linear model is fit to the selected points to estimate the query output. The model outputs the 3D deflection of the needle tip and the needle insertion force. The proposed approach is validated in ex vivo multilayered biological tissue in different needle insertion scenarios. Experimental results in five different case studies indicate an accuracy in predicting needle deflection of 0.81 and 1.24 mm in the horizontal and vertical lanes, respectively, and an accuracy of 0.5 N in predicting the needle insertion force over 216 needle insertions.
Teleoperation of steerable flexible needles by combining kinesthetic and vibratory feedback.
Pacchierotti, Claudio; Abayazid, Momen; Misra, Sarthak; Prattichizzo, Domenico
2014-01-01
Needle insertion in soft-tissue is a minimally invasive surgical procedure that demands high accuracy. In this respect, robotic systems with autonomous control algorithms have been exploited as the main tool to achieve high accuracy and reliability. However, for reasons of safety and responsibility, autonomous robotic control is often not desirable. Therefore, it is necessary to focus also on techniques enabling clinicians to directly control the motion of the surgical tools. In this work, we address that challenge and present a novel teleoperated robotic system able to steer flexible needles. The proposed system tracks the position of the needle using an ultrasound imaging system and computes needle's ideal position and orientation to reach a given target. The master haptic interface then provides the clinician with mixed kinesthetic-vibratory navigation cues to guide the needle toward the computed ideal position and orientation. Twenty participants carried out an experiment of teleoperated needle insertion into a soft-tissue phantom, considering four different experimental conditions. Participants were provided with either mixed kinesthetic-vibratory feedback or mixed kinesthetic-visual feedback. Moreover, we considered two different ways of computing ideal position and orientation of the needle: with or without set-points. Vibratory feedback was found more effective than visual feedback in conveying navigation cues, with a mean targeting error of 0.72 mm when using set-points, and of 1.10 mm without set-points.
An Innovative Needle-free Injection System: Comparison to 1 ml Standard Subcutaneous Injection.
Kojic, Nikola; Goyal, Pragun; Lou, Cheryl Hamer; Corwin, Michael J
2017-11-01
A needle-free delivery system may lead to improved satisfaction and compliance, as well as reduced anxiety among patients requiring frequent or ongoing injections. This report describes a first-in-man assessment comparing Portal Instruments' innovative needle-free injection system with subcutaneous injections using a 27G needle. Forty healthy volunteer participants each received a total of four injections of 1.0 mL sterile saline solution, two with a standard subcutaneous injection using a 27G needle, and two using the Portal injection system. Perception of pain was measured using a 100-mm visual analog scale (VAS). Injection site reactions were assessed at 2 min and at 20-30 min after each injection. Follow-up contact was made 24-48 h after the injections. Subject preference regarding injection type was also assessed. VAS pain scores at Portal injection sites met the criteria to be considered non-inferior to the pain reported at 27G needle injection sites (i.e., upper 95% confidence bound less than +5 mm). Based on a mixed effects model, at time 0, accounting for potential confounding variables, the adjusted difference in VAS scores indicated that Portal injections were 6.5 mm lower than the 27G needle injections (95% CI -10.5, -2.5). No clinically important adverse events were noted. Portal injections were preferred by 24 (60%) of the subjects (P = 0.0015). As an early step in the development of this new needle-free delivery system, the current study has shown that a 1.0-mL saline injection can be given with less pain reported than a standard subcutaneous injection using a 27G needle.
Johnson, Steven; Roversi, Pietro; Espina, Marianela; Deane, Janet E.; Birket, Susan; Picking, William D.; Blocker, Ariel; Picking, Wendy L.; Lea, Susan M.
2006-01-01
IpaD, the putative needle-tip protein of the Shigella flexneri type III secretion system, has been overexpressed and purified. Crystals were grown of the native protein in space group P212121, with unit-cell parameters a = 55.9, b = 100.7, c = 112.0 Å, and data were collected to 2.9 Å resolution. Analysis of the native Patterson map revealed a peak at 50% of the origin on the Harker section v = 0.5, suggesting twofold non-crystallographic symmetry parallel to the b crystallographic axis. As attempts to derivatize or grow selenomethionine-labelled protein crystals failed, in-drop proteolysis was used to produce new crystal forms. A trace amount of subtilisin Carlsberg was added to IpaD before sparse-matrix screening, resulting in the production of several new crystal forms. This approach produced SeMet-labelled crystals and diffraction data were collected to 3.2 Å resolution. The SeMet crystals belong to space group C2, with unit-cell parameters a = 139.4, b = 45.0, c = 99.5 Å, β = 107.9°. An anomalous difference Patterson map revealed peaks on the Harker section v = 0, while the self-rotation function indicates the presence of a twofold noncrystallographic symmetry axis, which is consistent with two molecules per asymmetric unit. PMID:16946465
Johnson, Steven; Roversi, Pietro; Espina, Marianela; Deane, Janet E; Birket, Susan; Picking, William D; Blocker, Ariel; Picking, Wendy L; Lea, Susan M
2006-09-01
IpaD, the putative needle-tip protein of the Shigella flexneri type III secretion system, has been overexpressed and purified. Crystals were grown of the native protein in space group P2(1)2(1)2(1), with unit-cell parameters a = 55.9, b = 100.7, c = 112.0 A, and data were collected to 2.9 A resolution. Analysis of the native Patterson map revealed a peak at 50% of the origin on the Harker section v = 0.5, suggesting twofold non-crystallographic symmetry parallel to the b crystallographic axis. As attempts to derivatize or grow selenomethionine-labelled protein crystals failed, in-drop proteolysis was used to produce new crystal forms. A trace amount of subtilisin Carlsberg was added to IpaD before sparse-matrix screening, resulting in the production of several new crystal forms. This approach produced SeMet-labelled crystals and diffraction data were collected to 3.2 A resolution. The SeMet crystals belong to space group C2, with unit-cell parameters a = 139.4, b = 45.0, c = 99.5 A, beta = 107.9 degrees . An anomalous difference Patterson map revealed peaks on the Harker section v = 0, while the self-rotation function indicates the presence of a twofold noncrystallographic symmetry axis, which is consistent with two molecules per asymmetric unit.
Furusho, Junji; Kobayashi, Hiroshi; Kikuchi, Takehito; Yamamoto, Tatsuro; Tanaka, Hidekazu; Terayama, Motokazu; Monden, Morito
2008-01-01
The purpose of this study is to realize the mechanically-controllable needle-insertion system using the CMTD (Curved Multi-Tube Device) which was developed by Furusho Laboratory. A CMTD, was developed for minimally-invasive surgery and needle insertion. And we use ultrasonograph as a sensing device to detect the position of bible duct or tumor and the orientation and position of the needle which is inserted into liver. This system makes safe minimally-invasive surgery possible, because all complex mechanisms are arranged outside of the body.
Limited retention of micro-organisms using commercialized needle filters.
Elbaz, W; McCarthy, G; Mawhinney, T; Goldsmith, C E; Moore, J E
2015-03-01
A study was undertaken to compare a commercialized needle filter with a 0.2-μm filtered epidural set and a non-filtered standard needle. No culturable bacteria were detected following filtration through the 0.2-μm filter. Bacterial breakthrough was observed with the filtered needle (pore size 5 μm) and the non-filtered needle. Filtered systems (0.2 μm) should be employed to achieve total bacterial retention. This highlights that filtration systems with different pore sizes will have varying ability to retain bacteria. Healthcare professionals need to know what type/capability of filter is implied on labels used by manufacturers, and to assess whether the specification has the desired functionality to prevent bacterial translocation through needles. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
[Our experience using "Huber Plus" needles in our infusion center].
Tazumi, Keiko; Kouji, Keiko; Matsumura, Natsuko; Nabetani, Yoshiko; Kondo, Motoi; Tomono, Kazunori; Mizuki, Masao
2008-01-01
We conducted a pilot trial to compare the operability and safety of two huber needles in the infusion center. In the present study, we used huber needles without the safety cover and one huber needle with the safety cover (Huber Plus(R)). Both huber needles were used nine times. The successful puncture rate of the first time puncture and the incidence of needle accidents with both huber needles were 100% and 0%, respectively. The evaluation of pain and uneasiness by VAS (Visual Analogue scale)revealed the superiority of the safety needle over the than non-safety needle(pain: 3.8 vs 2.6, uneasiness: 3.7 vs 0.5). To our knowledge, this is the first report of the safety of the huber needle in Japan. This system may be recommended in Japan to avoid needle stick injuries, patient pain and uneasiness.
Glutathionylation of Yersinia pestis LcrV and Its Effects on Plague Pathogenesis.
Mitchell, Anthony; Tam, Christina; Elli, Derek; Charlton, Thomas; Osei-Owusu, Patrick; Fazlollahi, Farbod; Faull, Kym F; Schneewind, Olaf
2017-05-16
Glutathionylation, the formation of reversible mixed disulfides between glutathione and protein cysteine residues, is a posttranslational modification previously observed for intracellular proteins of bacteria. Here we show that Yersinia pestis LcrV, a secreted protein capping the type III secretion machine, is glutathionylated at Cys 273 and that this modification promotes association with host ribosomal protein S3 (RPS3), moderates Y. pestis type III effector transport and killing of macrophages, and enhances bubonic plague pathogenesis in mice and rats. Secreted LcrV was purified and analyzed by mass spectrometry to reveal glutathionylation, a modification that is abolished by the codon substitution Cys 273 Ala in lcrV Moreover, the lcrV C273A mutation enhanced the survival of animals in models of bubonic plague. Investigating the molecular mechanism responsible for these virulence attributes, we identified macrophage RPS3 as a ligand of LcrV, an association that is perturbed by the Cys 273 Ala substitution. Furthermore, macrophages infected by the lcrV C273A variant displayed accelerated apoptotic death and diminished proinflammatory cytokine release. Deletion of gshB , which encodes glutathione synthetase of Y. pestis , resulted in undetectable levels of intracellular glutathione, and we used a Y. pestis Δ gshB mutant to characterize the biochemical pathway of LcrV glutathionylation, establishing that LcrV is modified after its transport to the type III needle via disulfide bond formation with extracellular oxidized glutathione. IMPORTANCE Yersinia pestis , the causative agent of plague, has killed large segments of the human population; however, the molecular bases for the extraordinary virulence attributes of this pathogen are not well understood. We show here that LcrV, the cap protein of bacterial type III secretion needles, is modified by host glutathione and that this modification contributes to the high virulence of Y. pestis in mouse and rat models for bubonic plague. These data suggest that Y. pestis exploits glutathione in host tissues to activate a virulence strategy, thereby accelerating plague pathogenesis. Copyright © 2017 Mitchell et al.
NASA Astrophysics Data System (ADS)
Baghdadchi, Saharnaz; Chao, Cherng; Esener, Sadik; Mattrey, Robert F.; Eghtedari, Mohammad A.
2017-02-01
Image-guided procedures are performed frequently by radiologists to insert a catheter within a target vessel or lumen or to perform biopsy of a lesion. For instance, an interventional radiologist uses fluoroscopy during percutaneous biliary drainage procedure (a procedure during which a catheter is inserted through the skin to drain the bile from liver) to identify the location of the needle tip within liver parenchyma, hepatic blood vessel or bile duct. However, the identification of the target organ under fluoroscopy exposes the patient to x-ray irradiation, which may be significant if the time of procedure is prolonged. We have designed a fiber core needle system that may help the radiologist identify the location of the needle tip in real time without exposing the patient to x-ray. Our needle system transmits a low power modulated light into the tissue through a fiber cable embedded in the needle and detects the backscattered light using another fiber inside the needle. We were able to successfully distinguish the location of our prototype needle tip inside a cow liver phantom to identify if the needle tip was within liver parenchyma, liver vessels, or in the bile duct based on the recorded backscattered light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borot de Battisti, M; Maenhout, M; Lagendijk, J J W
Purpose: This study assesses the potential of Fiber Bragg Grating (FBG)-based sensing for real-time needle (including catheter or tube) tracking during MR-guided HDR brachytherapy. Methods: The proposed FBG-based sensing tracking approach involves a MR-compatible stylet composed of three optic fibers with nine sets of embedded FBG sensors each. When the stylet is inserted inside the lumen of the needle, the FBG sensing system can measure the needle’s deflection. For localization of the needle in physical space, the position and orientation of the stylet base are mandatory. For this purpose, we propose to fix the stylet base and determine its positionmore » and orientation using a MR-based calibration as follows. First, the deflection of a needle inserted in a phantom in two different configurations is measured during simultaneous MR-imaging. Then, after segmentation of the needle shapes on the MR-images, the position and orientation of the stylet base is determined using a rigid registration of the needle shapes on both MR and FBG-based measurements. The calibration method was assessed by measuring the deflection of a needle in a prostate phantom in five different configurations using FBG-based sensing during simultaneous MR-imaging. Any two needle shapes were employed for the calibration step and the proposed FGB-tracking approach was subsequently evaluated on the other three needles configurations. The tracking accuracy was evaluated by computing the Euclidian distance between the 3D FBG vs. MR-based measurements. Results: Over all needle shapes tested, the average(standard deviation) Euclidian distance between the FBG and MR-based measurements was 0.79mm(0.37mm). The update rate and latency of the FBG-based measurements were 100ms and 300ms respectively. Conclusion: The proposed FBG-based protocol can measure the needle position with an accuracy, precision, update rate and latency eligible for accurate needle steering during MR-guided HDR brachytherapy. M. Borot de Battisti is funded by Philips Medical Systems Nederland B.V.; M. Moerland is principal investigator on a contract funded by Philips Medical Systems Nederland B.V.; G. Hautvast and D. Binnekamp are fulltime employees of Philips Medical Systems Nederland B.V.« less
Accuracy Study of a Robotic System for MRI-guided Prostate Needle Placement
Seifabadi, Reza; Cho, Nathan BJ.; Song, Sang-Eun; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Fichtinger, Gabor; Iordachita, Iulian
2013-01-01
Background Accurate needle placement is the first concern in percutaneous MRI-guided prostate interventions. In this phantom study, different sources contributing to the overall needle placement error of a MRI-guided robot for prostate biopsy have been identified, quantified, and minimized to the possible extent. Methods and Materials The overall needle placement error of the system was evaluated in a prostate phantom. This error was broken into two parts: the error associated with the robotic system (called before-insertion error) and the error associated with needle-tissue interaction (called due-to-insertion error). The before-insertion error was measured directly in a soft phantom and different sources contributing into this part were identified and quantified. A calibration methodology was developed to minimize the 4-DOF manipulator’s error. The due-to-insertion error was indirectly approximated by comparing the overall error and the before-insertion error. The effect of sterilization on the manipulator’s accuracy and repeatability was also studied. Results The average overall system error in phantom study was 2.5 mm (STD=1.1mm). The average robotic system error in super soft phantom was 1.3 mm (STD=0.7 mm). Assuming orthogonal error components, the needle-tissue interaction error was approximated to be 2.13 mm thus having larger contribution to the overall error. The average susceptibility artifact shift was 0.2 mm. The manipulator’s targeting accuracy was 0.71 mm (STD=0.21mm) after robot calibration. The robot’s repeatability was 0.13 mm. Sterilization had no noticeable influence on the robot’s accuracy and repeatability. Conclusions The experimental methodology presented in this paper may help researchers to identify, quantify, and minimize different sources contributing into the overall needle placement error of an MRI-guided robotic system for prostate needle placement. In the robotic system analyzed here, the overall error of the studied system remained within the acceptable range. PMID:22678990
Accuracy study of a robotic system for MRI-guided prostate needle placement.
Seifabadi, Reza; Cho, Nathan B J; Song, Sang-Eun; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M; Fichtinger, Gabor; Iordachita, Iulian
2013-09-01
Accurate needle placement is the first concern in percutaneous MRI-guided prostate interventions. In this phantom study, different sources contributing to the overall needle placement error of a MRI-guided robot for prostate biopsy have been identified, quantified and minimized to the possible extent. The overall needle placement error of the system was evaluated in a prostate phantom. This error was broken into two parts: the error associated with the robotic system (called 'before-insertion error') and the error associated with needle-tissue interaction (called 'due-to-insertion error'). Before-insertion error was measured directly in a soft phantom and different sources contributing into this part were identified and quantified. A calibration methodology was developed to minimize the 4-DOF manipulator's error. The due-to-insertion error was indirectly approximated by comparing the overall error and the before-insertion error. The effect of sterilization on the manipulator's accuracy and repeatability was also studied. The average overall system error in the phantom study was 2.5 mm (STD = 1.1 mm). The average robotic system error in the Super Soft plastic phantom was 1.3 mm (STD = 0.7 mm). Assuming orthogonal error components, the needle-tissue interaction error was found to be approximately 2.13 mm, thus making a larger contribution to the overall error. The average susceptibility artifact shift was 0.2 mm. The manipulator's targeting accuracy was 0.71 mm (STD = 0.21 mm) after robot calibration. The robot's repeatability was 0.13 mm. Sterilization had no noticeable influence on the robot's accuracy and repeatability. The experimental methodology presented in this paper may help researchers to identify, quantify and minimize different sources contributing into the overall needle placement error of an MRI-guided robotic system for prostate needle placement. In the robotic system analysed here, the overall error of the studied system remained within the acceptable range. Copyright © 2012 John Wiley & Sons, Ltd.
Shahriari, Navid; Hekman, Edsko; Oudkerk, Matthijs; Misra, Sarthak
2015-11-01
Percutaneous needle insertion procedures are commonly used for diagnostic and therapeutic purposes. Although current technology allows accurate localization of lesions, they cannot yet be precisely targeted. Lung cancer is the most common cause of cancer-related death, and early detection reduces the mortality rate. Therefore, suspicious lesions are tested for diagnosis by performing needle biopsy. In this paper, we have presented a novel computed tomography (CT)-compatible needle insertion device (NID). The NID is used to steer a flexible needle (φ0.55 mm) with a bevel at the tip in biological tissue. CT images and an electromagnetic (EM) tracking system are used in two separate scenarios to track the needle tip in three-dimensional space during the procedure. Our system uses a control algorithm to steer the needle through a combination of insertion and minimal number of rotations. Noise analysis of CT images has demonstrated the compatibility of the device. The results for three experimental cases (case 1: open-loop control, case 2: closed-loop control using EM tracking system and case 3: closed-loop control using CT images) are presented. Each experimental case is performed five times, and average targeting errors are 2.86 ± 1.14, 1.11 ± 0.14 and 1.94 ± 0.63 mm for case 1, case 2 and case 3, respectively. The achieved results show that our device is CT-compatible and it is able to steer a bevel-tipped needle toward a target. We are able to use intermittent CT images and EM tracking data to control the needle path in a closed-loop manner. These results are promising and suggest that it is possible to accurately target the lesions in real clinical procedures in the future.
How Placebo Needles Differ From Placebo Pills?
Chae, Younbyoung; Lee, Ye-Seul; Enck, Paul
2018-01-01
Because acupuncture treatment is defined by the process of needles penetrating the body, placebo needles were originally developed with non-penetrating mechanisms. However, whether placebo needles are valid controls in acupuncture research is subject of an ongoing debate. The present review provides an overview of the characteristics of placebo needles and how they differ from placebo pills in two aspects: (1) physiological response and (2) blinding efficacy. We argue that placebo needles elicit physiological responses similar to real acupuncture and therefore provide similar clinical efficacy. We also demonstrate that this efficacy is further supported by ineffective blinding (even in acupuncture-naïve patients) which may lead to opposite guesses that will further enhances efficacy, as compared to no-treatment, e.g., with waiting list controls. Additionally, the manner in which placebo needles can exhibit therapeutic effects relative to placebo pills include enhanced touch sensations, direct stimulation of the somatosensory system and activation of multiple brain systems. We finally discuss alternative control strategies for the placebo effects in acupuncture therapy.
Liu, Shaoli; Xia, Zeyang; Liu, Jianhua; Xu, Jing; Ren, He; Lu, Tong; Yang, Xiangdong
2016-01-01
The “robotic-assisted liver tumor coagulation therapy” (RALTCT) system is a promising candidate for large liver tumor treatment in terms of accuracy and speed. A prerequisite for effective therapy is accurate surgical planning. However, it is difficult for the surgeon to perform surgical planning manually due to the difficulties associated with robot-assisted large liver tumor therapy. These main difficulties include the following aspects: (1) multiple needles are needed to destroy the entire tumor, (2) the insertion trajectories of the needles should avoid the ribs, blood vessels, and other tissues and organs in the abdominal cavity, (3) the placement of multiple needles should avoid interference with each other, (4) an inserted needle will cause some deformation of liver, which will result in changes in subsequently inserted needles’ operating environment, and (5) the multiple needle-insertion trajectories should be consistent with the needle-driven robot’s movement characteristics. Thus, an effective multiple-needle surgical planning procedure is needed. To overcome these problems, we present an automatic multiple-needle surgical planning of optimal insertion trajectories to the targets, based on a mathematical description of all relevant structure surfaces. The method determines the analytical expression of boundaries of every needle “collision-free reachable workspace” (CFRW), which are the feasible insertion zones based on several constraints. Then, the optimal needle insertion trajectory within the optimization criteria will be chosen in the needle CFRW automatically. Also, the results can be visualized with our navigation system. In the simulation experiment, three needle-insertion trajectories were obtained successfully. In the in vitro experiment, the robot successfully achieved insertion of multiple needles. The proposed automatic multiple-needle surgical planning can improve the efficiency and safety of robot-assisted large liver tumor therapy, significantly reduce the surgeon’s workload, and is especially helpful for an inexperienced surgeon. The methodology should be easy to adapt in other body parts. PMID:26982341
Methods for Improving the Curvature of Steerable Needles in Biological Tissue
Adebar, Troy K.; Greer, Joseph D.; Laeseke, Paul F.; Hwang, Gloria L.; Okamura, Allison M.
2016-01-01
Robotic needle steering systems have the potential to improve percutaneous interventions such as radiofrequency ablation of liver tumors, but steering techniques described to date have not achieved sufficiently small radius of curvature in biological tissue to be relevant to this application. In this work, the impact of tip geometry on steerable needle curvature is examined. Finite-element simulations and experiments with bent-tip needles in ex vivo liver tissue demonstrate that selection of tip length and angle can greatly improve curvature, with radius of curvature below 5 cm in liver tissue possible through judicious selection of these parameters. Motivated by the results of this analysis, a new articulated-tip steerable needle is described, in which a distal section is actively switched by a robotic system between a straight tip (resulting in a straight path) and a bent tip (resulting in a curved path). This approach allows the tip length and angle to be increased, while the straight configuration allows the needle tip to still pass through an introducer sheath and rotate inside the body. Validation testing in liver tissue shows that the new articulated-tip steerable needle achieves smaller radius of curvature compared to bent-tip needles described in previous work. Steerable needles with optimized tip parameters, which can generate tight curves in liver tissue, increase the clinical relevance of needle steering to percutaneous interventions. PMID:26441438
Park, Samuel Byeongjun; Kim, Jung-Gun; Lim, Ki-Woong; Yoon, Chae-Hyun; Kim, Dong-Jun; Kang, Han-Sung; Jo, Yung-Ho
2017-08-01
We developed an image-guided intervention robot system that can be operated in a magnetic resonance (MR) imaging gantry. The system incorporates a bendable needle intervention robot for breast cancer patients that overcomes the space limitations of the MR gantry. Most breast coil designs for breast MR imaging have side openings to allow manual localization. However, for many intervention procedures, the patient must be removed from the gantry. A robotic manipulation system with integrated image guidance software was developed. Our robotic manipulator was designed to be slim, so as to fit between the patient's side and the MR gantry wall. Only non-magnetic materials were used, and an electromagnetic shield was employed for cables and circuits. The image guidance software was built using open source libraries. In situ feasibility tests were performed in a 3-T MR system. One target point in the breast phantom was chosen by the clinician for each experiment, and our robot moved the needle close to the target point. Without image-guided feedback control, the needle end could not hit the target point (distance = 5 mm) in the first experiment. Using our robotic system, the needle hits the target lesion of the breast phantom at a distance of 2.3 mm from the same target point using image-guided feedback. The second experiment was performed using other target points, and the distance between the final needle end point and the target point was 0.8 mm. We successfully developed an MR-guided needle intervention robot for breast cancer patients. Further research will allow the expansion of these interventions.
Zhang, Ao; Yan, Xing-Ke; Liu, An-Guo
2016-12-25
In the present paper, the authors introduce a newly-developed "Acupuncture Needle Manipulation Training-evaluation System" based on optical motion capture technique. It is composed of two parts, sensor and software, and overcomes some shortages of mechanical motion capture technique. This device is able to analyze the data of operations of the pressing-hand and needle-insertion hand during acupuncture performance and its software contains personal computer (PC) version, Android version, and Internetwork Operating System (IOS) Apple version. It is competent in recording and analyzing information of any ope-rator's needling manipulations, and is quite helpful for teachers in teaching, training and examining students in clinical practice.
Lee, Wonyou; Song, Kilyoung; Lee, Inhyung; Shin, Hyungdo; Lee, Byeong Chun; Yeon, Seongchan; Jang, Goo
2015-01-01
Transvaginal ultrasound-guided follicle aspiration is one method of obtaining recipient oocytes for equine somatic cell nuclear transfer (SCNT). This study was conducted: (1) to evaluate the possibility of oocyte aspiration from pre-ovulatory follicles using a short disposable needle system (14-G) by comparing the oocyte recovery rate with that of a long double lumen needle (12-G); (2) to investigate the developmental competence of recovered oocytes after SCNT and embryo transfer. The recovery rates with the short disposable needle vs. the long needle were not significantly different (47.5% and 35.0%, respectively). Twenty-six SCNT embryos were transferred to 13 mares, and one mare delivered a live offspring at Day 342. There was a perfect identity match between the cloned foal and the cell donor after analysis of microsatellite DNA, and the mitochondrial DNA of the cloned foal was identical with that of the oocyte donor. These results demonstrated that the short disposable needle system can be used to recover oocytes to use as cytoplasts for SCNT, in the production of cloned foals and for other applications in equine embryology.
Wong, Simon W; Niazi, Ahtsham U; Chin, Ki J; Chan, Vincent W
2013-01-01
The SonixGPS® is an electromagnetic needle tracking system for ultrasound-guided needle intervention. Both current and predicted needle tip position are displayed on the ultrasound screen in real-time, facilitating needle-beam alignment and guidance to the target. This case report illustrates the use of the SonixGPS system for successful performance of real-time ultrasound-guided spinal anesthesia in a patient with difficult spinal anatomy. A 67-yr-old male was admitted to our hospital to undergo revision of total right hip arthroplasty. His four previous arthroplasties for hip revision were performed under general anesthesia because he had undergone L3-L5 instrumentation for spinal stenosis. The L4-L5 interspace was viewed with the patient in the left lateral decubitus position. A 19G 80-mm proprietary needle (Ultrasonix Medical Corp, Richmond, BC, Canada) was inserted and directed through the paraspinal muscles to the ligamentum flavum in plane to the ultrasound beam. A 120-mm 25G Whitacre spinal needle was then inserted through the introducer needle in a conventional fashion. Successful dural puncture was achieved on the second attempt, as indicated by a flow of clear cerebrospinal fluid. The patient tolerated the procedure well, and the spinal anesthetic was adequate for the duration of the surgery. The SonixGPS is a novel technology that can reduce the technical difficulty of real-time ultrasound-guided neuraxial blockade. It may also have applications in other advanced ultrasound-guided regional anesthesia techniques where needle-beam alignment is critical.
Needle Steering in Biological Tissue using Ultrasound-based Online Curvature Estimation
Moreira, Pedro; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak
2014-01-01
Percutaneous needle insertions are commonly performed for diagnostic and therapeutic purposes. Accurate placement of the needle tip is important to the success of many needle procedures. The current needle steering systems depend on needle-tissue-specific data, such as maximum curvature, that is unavailable prior to an interventional procedure. In this paper, we present a novel three-dimensional adaptive steering method for flexible bevel-tipped needles that is capable of performing accurate tip placement without previous knowledge about needle curvature. The method steers the needle by integrating duty-cycled needle steering, online curvature estimation, ultrasound-based needle tracking, and sampling-based motion planning. The needle curvature estimation is performed online and used to adapt the path and duty cycling. We evaluated the method using experiments in a homogenous gelatin phantom, a two-layer gelatin phantom, and a biological tissue phantom composed of a gelatin layer and in vitro chicken tissue. In all experiments, virtual obstacles and targets move in order to represent the disturbances that might occur due to tissue deformation and physiological processes. The average targeting error using our new adaptive method is 40% lower than using the conventional non-adaptive duty-cycled needle steering method. PMID:26229729
NASA Astrophysics Data System (ADS)
Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam
2015-03-01
Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively 13C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved.
Dynamics of translational friction in needle-tissue interaction during needle insertion.
Asadian, Ali; Patel, Rajni V; Kermani, Mehrdad R
2014-01-01
In this study, a distributed approach to account for dynamic friction during needle insertion in soft tissue is presented. As is well known, friction is a complex nonlinear phenomenon. It appears that classical or static models are unable to capture some of the observations made in systems subjected to significant frictional effects. In needle insertion, translational friction would be a matter of importance when the needle is very flexible, or a stop-and-rotate motion profile at low insertion velocities is implemented, and thus, the system is repeatedly transitioned from a pre-sliding to a sliding mode and vice versa. In order to characterize friction components, a distributed version of the LuGre model in the state-space representation is adopted. This method also facilitates estimating cutting force in an intra-operative manner. To evaluate the performance of the proposed family of friction models, experiments were conducted on homogeneous artificial phantoms and animal tissue. The results illustrate that our approach enables us to represent the main features of friction which is a major force component in needle-tissue interaction during needle-based interventions.
Transbronchial needle aspiration with a new electromagnetically-tracked TBNA needle
NASA Astrophysics Data System (ADS)
Choi, Jae; Popa, Teo; Gruionu, Lucian
2009-02-01
Transbronchial needle aspiration (TBNA) is a common method used to collect tissue for diagnosis of different chest diseases and for staging lung cancer, but the procedure has technical limitations. These limitations are mostly related to the difficulty of accurately placing the biopsy needles into the target mass. Currently, pulmonologists plan TBNA by examining a number of Computed Tomography (CT) scan slices before the operation. Then, they manipulate the bronchoscope down the respiratory track and blindly direct the biopsy. Thus, the biopsy success rate is low. The diagnostic yield of TBNA is approximately 70 percent. To enhance the accuracy of TBNA, we developed a TBNA needle with a tip position that can be electromagnetically tracked. The needle was used to estimate the bronchoscope's tip position and enable the creation of corresponding virtual bronchoscopic images from a preoperative CT scan. The TBNA needle was made with a flexible catheter embedding Wang Transbronchial Histology Needle and a sensor tracked by electromagnetic field generator. We used Aurora system for electromagnetic tracking. We also constructed an image-guided research prototype system incorporating the needle and providing a user-friendly interface to assist the pulmonologist in targeting lesions. To test the feasibility of the accuracy of the newly developed electromagnetically-tracked needle, a phantom study was conducted in the interventional suite at Georgetown University Hospital. Five TBNA simulations with a custom-made phantom with a bronchial tree were performed. The experimental results show that our device has potential to enhance the accuracy of TBNA.
Development of a high frequency single-element ultrasound needle transducer for anesthesia delivery
NASA Astrophysics Data System (ADS)
Ameri, Golafsoun; Son, Jungik; Liang, Jingwei; Foster, F. Stuart; Ganapathy, Sugantha; Peters, Terry M.
2017-03-01
Epidural anesthesia is one of the most commonly used and yet challenging techniques employed for pain management and anesthesia delivery. The major complications of this procedure are due to accidental dural puncture, with an incidence of 1-3%, which could lead to both temporary and irreversible permanent neurological complications. Needle placement under ultrasound (US) guidance has received increasing interest for improving needle placement accuracy. However, poor needle visibility in US, difficulties in displaying relevant anatomical structure such as dura mater due to attenuation and bone shadowing, and image interpretation variability among users pose significant hurdles for any US guidance system. As a result, US guidance for epidural injections has not been widely adopted for everyday use for the performance of neuraxial blocks. The difficulties in localizing the ligamentum flavum and dura with respect to the needle tip can be addressed by integrating A-mode US, provided by a single-element transducer at the needle tip, into the B-mode US guidance system. We have taken the first steps towards providing such a guidance system. Our goal is to improve the safety of this procedure with minimal changes to the clinical workflow. This work presents the design and development of a 20 MHz single-element US transducer housed at the tip of a 19 G needle hypodermic tube, which can fit inside an epidural introducer needle. In addition, the results from initial transducer characterization tests and performance evaluation of the transducer in a euthanized porcine model are provided.
Evaluation of Needle Gun and Abrasive Blasting Technologies in Bridge Paint Removal Practices.
Randall, Paul M; Kranz, Paul B; Sonntag, Mary L; Stadelmaier, James E
1998-03-01
This paper reviews the results of a U.S. Environmental Protection Agency (EPA) study that assessed needle gun technology as an alternative to conventional abrasive blasting technology to remove lead-based paint from steel bridges in western New York State. The study analyzed the operational and logistical aspects as they relate to worker health and safety, environmental protection, hazardous waste generation, and costs as compared to those arising from conventional abrasive blasting. In this 1992 EPA study, the costs and the product quality aspects favored conventional abrasive blasting over the needle gun technology for removing lead paint. However, abrasive blasting exposed workers to airborne lead levels that exceeded Permissible Exposure Limits (PELs) as established by the Occupational Safety and Health Administration (OSHA), as well as emitting high levels of lead-contaminated dusts and debris into the environment. It was estimated that more than 500 lbs of lead-contaminated spent abrasives and paint waste were released into the environment during paint removal operations. The needle gun system reduced (up to 97.5%) the generation of hazardous waste and the airborne concentrations (up to 99%) of respirable dusts and lead-containing particulates generated during paint removal operations. However, labor costs for the needle gun were three times higher than those for abrasive blasting primarily because of slower production rates that necessitated more operating personnel. The higher labor costs of the needle gun are partially offset by the increased costs associated with the expendable abrasive blast media and hazardous waste disposal. In the EPA study, the productivity of the needle gun system was 12.2 ft 2 /hr vs. 147.5 ft 2 /hr for abrasive blasting. A post blast was needed for the needle gun system to meet surface preparation specifications. When factoring in the costs of full containment structures to meet OSHA's 1993 Lead Exposure in Construction regulation, the needle gun system has the potential to be economically competitive with conventional abrasive blasting.
Pili and flagella biology, structure, and biotechnological applications.
Van Gerven, Nani; Waksman, Gabriel; Remaut, Han
2011-01-01
Bacteria and Archaea expose on their outer surfaces a variety of thread-like proteinaceous organelles with which they interact with their environments. These structures are repetitive assemblies of covalently or non-covalently linked protein subunits, organized into filamentous polymers known as pili ("hair"), flagella ("whips") or injectisomes ("needles"). They serve different roles in cell motility, adhesion and host invasion, protein and DNA secretion and uptake, conductance, or cellular encapsulation. Here we describe the functional, morphological and genetic diversity of these bacterial filamentous protein structures. The organized, multi-copy build-up and/or the natural function of pili and flagella have lead to their biotechnological application as display and secretion tools, as therapeutic targets or as molecular motors. We review the documented and potential technological exploitation of bacterial surface filaments in light of their structural and functional traits. Copyright © 2011 Elsevier Inc. All rights reserved.
Analysis of the NovoTwist Pen Needle in Comparison with Conventional Screw-Thread Needles
Aye, Tandy
2011-01-01
Administration of insulin via a pen device may be advantageous over a vial and syringe system. Hofman and colleagues introduce a new insulin pen needle, the NovoTwist, to simplify injections to a small group of children and adolescents. Their overall preferences and evaluation of the handling of the needle are reported in the study. This new needle has the potential to ease administration of insulin via a pen device that may increase both the use of a pen device and adherence to insulin therapy. PMID:22226270
NASA Astrophysics Data System (ADS)
Kumar, Saurabh; Shrikanth, Venkoba; Amrutur, Bharadwaj; Asokan, Sundarrajan; Bobji, Musuvathi S.
2016-12-01
Several medical procedures involve the use of needles. The advent of robotic and robot assisted procedures requires dynamic estimation of the needle tip location during insertion for use in both assistive systems as well as for automatic control. Most prior studies have focused on the maneuvering of solid flexible needles using external force measurements at the base of the needle holder. However, hollow needles are used in several procedures and measurements of forces in proximity of such needles can eliminate the need for estimating frictional forces that have high variations. These measurements are also significant for endoscopic procedures in which measurement of forces at the needle holder base is difficult. Fiber Bragg grating sensors, due to their small size, inert nature, and multiplexing capability, provide a good option for this purpose. Force measurements have been undertaken during needle insertion into tissue mimicking phantoms made of polydimethylsiloxane as well as chicken tissue using an 18-G needle instrumented with FBG sensors. The results obtained show that it is possible to estimate the different stages of needle penetration including partial rupture, which is significant for procedures in which precise estimation of needle tip position inside the organ or tissue is required.
Modeling, Production, and Testing of an Echogenic Needle for Ultrasound-Guided Nerve Blocks.
Bigeleisen, Paul E; Hess, Aaron; Zhu, Richard; Krediet, Annelot
2016-06-01
We have designed, produced, and tested an echogenic needle based on a sawtooth pattern where the height of the tooth was 1.25 times the wavelength of the ultrasound transducer. A numeric solution to the time-independent wave equation (Helmholtz equation) was used to create a model of backscattering from a needle. A 21-gauge stainless steel prototype was manufactured and tested in a water bath. Backscattering from the needle was compared to theoretical predications from our model. Based on these results, an 18-gauge prototype needle was fabricated from stainless steel and tested in a pig cadaver. This needle was compared to a commercial 18-gauge echogenic needle (Pajunk Medical Systems, Tucker, GA) by measuring the brightness of the needle relative to the background of sonograms of a needle in a pig cadaver. The backscattering from the 21-gauge prototype needle reproduced the qualitative predictions of our model. At 30° and 45° of insonation, our prototype performed equivalently to the Pajunk needle. At 60°, our prototype was significantly brighter than the Pajunk needle (P = .017). In conclusion, we chose a model for the design of an echogenic needle and modeled it on the basis of a solution to the Helmholtz equation. A prototype needle was tested in a water bath and compared to the model prediction. After verification of our model, we designed an 18-gauge needle, which performed better than an existing echogenic needle (Pajunk) at 60° of insonation. Our needle will require further testing in human trials. © 2016 by the American Institute of Ultrasound in Medicine.
Lee, Wonyou; Song, Kilyoung; Lee, Inhyung; Shin, Hyungdo; Lee, Byeong Chun
2015-01-01
Transvaginal ultrasound-guided follicle aspiration is one method of obtaining recipient oocytes for equine somatic cell nuclear transfer (SCNT). This study was conducted: (1) to evaluate the possibility of oocyte aspiration from pre-ovulatory follicles using a short disposable needle system (14-G) by comparing the oocyte recovery rate with that of a long double lumen needle (12-G); (2) to investigate the developmental competence of recovered oocytes after SCNT and embryo transfer. The recovery rates with the short disposable needle vs. the long needle were not significantly different (47.5% and 35.0%, respectively). Twenty-six SCNT embryos were transferred to 13 mares, and one mare delivered a live offspring at Day 342. There was a perfect identity match between the cloned foal and the cell donor after analysis of microsatellite DNA, and the mitochondrial DNA of the cloned foal was identical with that of the oocyte donor. These results demonstrated that the short disposable needle system can be used to recover oocytes to use as cytoplasts for SCNT, in the production of cloned foals and for other applications in equine embryology PMID:26119166
Real-time tracking of liver motion and deformation using a flexible needle
Lei, Peng; Moeslein, Fred; Wood, Bradford J.
2012-01-01
Purpose A real-time 3D image guidance system is needed to facilitate treatment of liver masses using radiofrequency ablation, for example. This study investigates the feasibility and accuracy of using an electromagnetically tracked flexible needle inserted into the liver to track liver motion and deformation. Methods This proof-of-principle study was conducted both ex vivo and in vivo with a CT scanner taking the place of an electromagnetic tracking system as the spatial tracker. Deformations of excised livers were artificially created by altering the shape of the stage on which the excised livers rested. Free breathing or controlled ventilation created deformations of live swine livers. The positions of the needle and test targets were determined through CT scans. The shape of the needle was reconstructed using data simulating multiple embedded electromagnetic sensors. Displacement of liver tissues in the vicinity of the needle was derived from the change in the reconstructed shape of the needle. Results The needle shape was successfully reconstructed with tracking information of two on-needle points. Within 30 mm of the needle, the registration error of implanted test targets was 2.4 ± 1.0 mm ex vivo and 2.8 ± 1.5 mm in vivo. Conclusion A practical approach was developed to measure the motion and deformation of the liver in real time within a region of interest. The approach relies on redesigning the often-used seeker needle to include embedded electromagnetic tracking sensors. With the nonrigid motion and deformation information of the tracked needle, a single- or multimodality 3D image of the intraprocedural liver, now clinically obtained with some delay, can be updated continuously to monitor intraprocedural changes in hepatic anatomy. This capability may be useful in radiofrequency ablation and other percutaneous ablative procedures. PMID:20700662
NASA Astrophysics Data System (ADS)
Kao, Meng-Chun; Ting, Chien-Kun; Kuo, Wen-Chuan
2018-02-01
Incorrect placement of the needle causes medical complications in the epidural block, such as dural puncture or spinal cord injury. This study proposes a system which combines an optical coherence tomography (OCT) imaging probe with an automatic identification (AI) system to objectively identify the position of the epidural needle tip. The automatic identification system uses three features as image parameters to distinguish the different tissue by three classifiers. Finally, we found that the support vector machine (SVM) classifier has highest accuracy, specificity, and sensitivity, which reached to 95%, 98%, and 92%, respectively.
Multi-resolution Gabor wavelet feature extraction for needle detection in 3D ultrasound
NASA Astrophysics Data System (ADS)
Pourtaherian, Arash; Zinger, Svitlana; Mihajlovic, Nenad; de With, Peter H. N.; Huang, Jinfeng; Ng, Gary C.; Korsten, Hendrikus H. M.
2015-12-01
Ultrasound imaging is employed for needle guidance in various minimally invasive procedures such as biopsy guidance, regional anesthesia and brachytherapy. Unfortunately, a needle guidance using 2D ultrasound is very challenging, due to a poor needle visibility and a limited field of view. Nowadays, 3D ultrasound systems are available and more widely used. Consequently, with an appropriate 3D image-based needle detection technique, needle guidance and interventions may significantly be improved and simplified. In this paper, we present a multi-resolution Gabor transformation for an automated and reliable extraction of the needle-like structures in a 3D ultrasound volume. We study and identify the best combination of the Gabor wavelet frequencies. High precision in detecting the needle voxels leads to a robust and accurate localization of the needle for the intervention support. Evaluation in several ex-vivo cases shows that the multi-resolution analysis significantly improves the precision of the needle voxel detection from 0.23 to 0.32 at a high recall rate of 0.75 (gain 40%), where a better robustness and confidence were confirmed in the practical experiments.
Casimir interaction of rodlike particles in a two-dimensional critical system.
Eisenriegler, E; Burkhardt, T W
2016-09-01
We consider the fluctuation-induced interaction of two thin, rodlike particles, or "needles," immersed in a two-dimensional critical fluid of Ising symmetry right at the critical point. Conformally mapping the plane containing the needles onto a simpler geometry in which the stress tensor is known, we analyze the force and torque between needles of arbitrary length, separation, and orientation. For infinite and semi-infinite needles we utilize the mapping of the plane bounded by the needles onto the half plane, and for two needles of finite length we use the mapping onto an annulus. For semi-infinite and infinite needles the force is expressed in terms of elementary functions, and we also obtain analytical results for the force and torque between needles of finite length with separation much greater than their length. Evaluating formulas in our approach numerically for several needle geometries and surface universality classes, we study the full crossover from small to large values of the separation to length ratio. In these two limits the numerical results agree with results for infinitely long needles and with predictions of the small-particle operator expansion, respectively.
NASA Astrophysics Data System (ADS)
Borot de Battisti, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; Maenhout, M.; Moerland, M. A.
2017-05-01
MR-guided high-dose-rate (HDR) brachytherapy has gained increasing interest as a treatment for patients with localized prostate cancer because of the superior value of MRI for tumor and surrounding tissues localization. To enable needle insertion into the prostate with the patient in the MR bore, a single needle MR-compatible robotic system involving needle-by-needle dose delivery has been developed at our institution. Throughout the intervention, dose delivery may be impaired by: (1) sub-optimal needle positioning caused by e.g. needle bending, (2) intra-operative internal organ motion such as prostate rotations or swelling, or intra-procedural rectum or bladder filling. This may result in failure to reach clinical constraints. To assess the first aforementioned challenge, a recent study from our research group demonstrated that the deposited dose may be greatly improved by real-time adaptive planning with feedback on the actual needle positioning. However, the needle insertion sequence is left to the doctor and therefore, this may result in sub-optimal dose delivery. In this manuscript, a new method is proposed to determine and update automatically the needle insertion sequence. This strategy is based on the determination of the most sensitive needle track. The sensitivity of a needle track is defined as its impact on the dose distribution in case of sub-optimal positioning. A stochastic criterion is thus presented to determine each needle track sensitivity based on needle insertion simulations. To assess the proposed sequencing strategy, HDR prostate brachytherapy was simulated on 11 patients with varying number of needle insertions. Sub-optimal needle positioning was simulated at each insertion (modeled by typical random angulation errors). In 91% of the scenarios, the dose distribution improved when the needle was inserted into the most compared to the least sensitive needle track. The computation time for sequencing was less than 6 s per needle track. The proposed needle insertion sequencing can therefore assist in delivering an optimal dose in HDR prostate brachytherapy.
MRI-guided prostate focal laser ablation therapy using a mechatronic needle guidance system
NASA Astrophysics Data System (ADS)
Cepek, Jeremy; Lindner, Uri; Ghai, Sangeet; Davidson, Sean R. H.; Trachtenberg, John; Fenster, Aaron
2014-03-01
Focal therapy of localized prostate cancer is receiving increased attention due to its potential for providing effective cancer control in select patients with minimal treatment-related side effects. Magnetic resonance imaging (MRI)-guided focal laser ablation (FLA) therapy is an attractive modality for such an approach. In FLA therapy, accurate placement of laser fibers is critical to ensuring that the full target volume is ablated. In practice, error in needle placement is invariably present due to pre- to intra-procedure image registration error, needle deflection, prostate motion, and variability in interventionalist skill. In addition, some of these sources of error are difficult to control, since the available workspace and patient positions are restricted within a clinical MRI bore. In an attempt to take full advantage of the utility of intraprocedure MRI, while minimizing error in needle placement, we developed an MRI-compatible mechatronic system for guiding needles to the prostate for FLA therapy. The system has been used to place interstitial catheters for MRI-guided FLA therapy in eight subjects in an ongoing Phase I/II clinical trial. Data from these cases has provided quantification of the level of uncertainty in needle placement error. To relate needle placement error to clinical outcome, we developed a model for predicting the probability of achieving complete focal target ablation for a family of parameterized treatment plans. Results from this work have enabled the specification of evidence-based selection criteria for the maximum target size that can be confidently ablated using this technique, and quantify the benefit that may be gained with improvements in needle placement accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golshan, Maryam, E-mail: maryam.golshan@bccancer.bc.ca; Spadinger, Ingrid; Chng, Nick
2016-06-15
Purpose: Current methods of low dose rate brachytherapy source strength verification for sources preloaded into needles consist of either assaying a small number of seeds from a separate sample belonging to the same lot used to load the needles or performing batch assays of a subset of the preloaded seed trains. Both of these methods are cumbersome and have the limitations inherent to sampling. The purpose of this work was to investigate an alternative approach that uses an image-based, autoradiographic system capable of the rapid and complete assay of all sources without compromising sterility. Methods: The system consists of amore » flat panel image detector, an autoclavable needle holder, and software to analyze the detected signals. The needle holder was designed to maintain a fixed vertical spacing between the needles and the image detector, and to collimate the emissions from each seed. It also provides a sterile barrier between the needles and the imager. The image detector has a sufficiently large image capture area to allow several needles to be analyzed simultaneously.Several tests were performed to assess the accuracy and reproducibility of source strengths obtained using this system. Three different seed models (Oncura 6711 and 9011 {sup 125}I seeds, and IsoAid Advantage {sup 103}Pd seeds) were used in the evaluations. Seeds were loaded into trains with at least 1 cm spacing. Results: Using our system, it was possible to obtain linear calibration curves with coverage factor k = 1 prediction intervals of less than ±2% near the centre of their range for the three source models. The uncertainty budget calculated from a combination of type A and type B estimates of potential sources of error was somewhat larger, yielding (k = 1) combined uncertainties for individual seed readings of 6.2% for {sup 125}I 6711 seeds, 4.7% for {sup 125}I 9011 seeds, and 11.0% for Advantage {sup 103}Pd seeds. Conclusions: This study showed that a flat panel detector dosimetry system is a viable option for source strength verification in preloaded needles, as it is capable of measuring all of the sources intended for implantation. Such a system has the potential to directly and efficiently estimate individual source strengths, the overall mean source strength, and the positions within the seed-spacer train.« less
Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.
2014-01-01
This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N. PMID:25126446
Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S
2013-01-01
This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N.
Transdermal power transfer for recharging implanted drug delivery devices via the refill port.
Evans, Allan T; Chiravuri, Srinivas; Gianchandani, Yogesh B
2010-04-01
This paper describes a system for transferring power across a transdermal needle into a smart refill port for recharging implantable drug delivery systems. The device uses a modified 26 gauge (0.46 mm outer diameter) Huber needle with multiple conductive elements designed to couple with mechanical springs in the septum of the refill port of a drug delivery device to form an electrical connection that can sustain the current required to recharge a battery during a reservoir refill session. The needle is fabricated from stainless steel coated with Parylene, and the refill port septum is made from micromachined stainless steel contact springs and polydimethylsiloxane. The device properties were characterized with dry and wet ambient conditions. The needle and port pair had an average contact resistance of less than 2 Omega when mated in either environment. Electrical isolation between the system, the liquid in the needle lumen, and surrounding material has been demonstrated. The device was used to recharge a NiMH battery with currents up to 500 mA with less than 15 degrees C of resistive heating. The system was punctured 100 times to provide preliminary information with regard to device longevity, and exhibited about 1 Omega variation in contact resistance. The results suggest that this needle and refill port system can be used in an implant to enable battery recharging. This allows for smaller batteries to be used and ultimately increases the volume efficiency of an implantable drug delivery device.
Analysis of the NovoTwist pen needle in comparison with conventional screw-thread needles.
Aye, Tandy
2011-11-01
Administration of insulin via a pen device may be advantageous over a vial and syringe system. Hofman and colleagues introduce a new insulin pen needle, the NovoTwist, to simplify injections to a small group of children and adolescents. Their overall preferences and evaluation of the handling of the needle are reported in the study. This new needle has the potential to ease administration of insulin via a pen device that may increase both the use of a pen device and adherence to insulin therapy. © 2011 Diabetes Technology Society.
Learning Ultrasound-Guided Needle Insertion Skills through an Edutainment Game
NASA Astrophysics Data System (ADS)
Chan, Wing-Yin; Ni, Dong; Pang, Wai-Man; Qin, Jing; Chui, Yim-Pan; Yu, Simon Chun-Ho; Heng, Pheng-Ann
Ultrasound-guided needle insertion is essential in many of minimally invasive surgeries or procedures, such as biopsy, drug delivery, spinal anaesthesia, etc. Accurate and safe needle insertion is a difficult task due to the high requirement of hand-eye coordination skills. Many proposed virtual reality (VR) based training systems put their emphasis on realistic simulation instead of pedagogical efficiency. The lack of schematic training scenario leads to boredom of repetitive operations. To solve this, we present our novel training system with the integration of game elements in order to retain the trainees' enthusiasm. Task-oriented scenarios, time attack scenarios and performance evaluation are introduced. Besides, some state-of-art technologies are also presented, including ultrasound simulation, needle haptic rendering as well as a mass-spring-based needle-tissue interaction simulation. These works are shown to be effective to keep the trainees up with learning.
Ancient Chinese medicine and mechanistic evidence of acupuncture physiology.
Yang, Edward S; Li, Pei-Wen; Nilius, Bernd; Li, Geng
2011-11-01
Acupuncture has been widely used in China for three millennia as an art of healing. Yet, its physiology is not yet understood. The current interest in acupuncture started in 1971. Soon afterward, extensive research led to the concept of neural signaling with possible involvement of opioid peptides, glutamate, adenosine and identifying responsive parts in the central nervous system. In the last decade scientists began investigating the subject with anatomical and molecular imaging. It was found that mechanical movements of the needle, ignored in the past, appear to be central to the method and intracellular calcium ions may play a pivotal role. In this review, we trace the technique of clinical treatment from the first written record about 2,200 years ago to the modern time. The ancient texts have been used to introduce the concepts of yin, yang, qi, de qi, and meridians, the traditional foundation of acupuncture. We explore the sequence of the physiological process, from the turning of the needle, the mechanical wave activation of calcium ion channel to beta-endorphin secretion. By using modern terminology to re-interpret the ancient texts, we have found that the 2nd century B.C.: physiologists were meticulous investigators and their explanation fits well with the mechanistic model derived from magnetic resonance imaging (MRI) and confocal microscopy. In conclusion, the ancient model appears to have withstood the test of time surprisingly well confirming the popular axiom that the old wine is better than the new.
Chen, D; Periwal, S B; Larrivee, K; Zuleger, C; Erickson, C A; Endres, R L; Payne, L G
2001-09-01
Both circulating and mucosal antibodies are considered important for protection against infection by influenza virus in humans and animals. However, current inactivated vaccines administered by intramuscular injection using a syringe and needle elicit primarily circulating antibodies. In this study, we report that epidermal powder immunization (EPI) via a unique powder delivery system elicits both serum and mucosal antibodies to an inactivated influenza virus vaccine. Serum antibody responses to influenza vaccine following EPI were enhanced by codelivery of cholera toxin (CT), a synthetic oligodeoxynucleotide containing immunostimulatory CpG motifs (CpG DNA), or the combination of these two adjuvants. In addition, secretory immunoglobulin A (sIgA) antibodies were detected in the saliva and mucosal lavages of the small intestine, trachea, and vaginal tract, although the titers were much lower than the IgG titers. The local origin of the sIgA antibodies was further shown by measuring antibodies released from cultured tracheal and small intestinal fragments and by detecting antigen-specific IgA-secreting cells in the lamina propria using ELISPOT assays. EPI with a single dose of influenza vaccine containing CT or CT and CpG DNA conferred complete protection against lethal challenges with an influenza virus isolated 30 years ago, whereas a prime and boost immunizations were required for protection in the absence of an adjuvant. The ability to elicit augmented circulating antibody and mucosal antibody responses makes EPI a promising alternative to needle injection for administering vaccines against influenza and other diseases.
Joshi, Neha; Duhan, Vikas; Lingwal, Neelam; Bhaskar, Sangeeta; Upadhyay, Pramod
2012-01-01
Hyperthermia enhanced transdermal (HET) immunization is a novel needle free immunization strategy employing application of antigen along with mild local hyperthermia (42°C) to intact skin resulting in detectable antigen specific Ig in serum. In the present study, we investigated the adjuvant effect of thermal component of HET immunization in terms of maturation of dendritic cells and its implication on the quality of the immune outcome in terms of antibody production upon HET immunization with tetanus toxoid (TT). We have shown that in vitro hyperthermia exposure at 42°C for 30 minutes up regulates the surface expression of maturation markers on bone marrow derived DCs. This observation correlated in vivo with an increased and accelerated expression of maturation markers on DCs in the draining lymph node upon HET immunization in mice. This effect was found to be independent of the antigen delivered and depends only on the thermal component of HET immunization. In vitro hyperthermia also led to enhanced capacity to stimulate CD4+ T cells in allo MLR and promotes the secretion of IL-10 by BMDCs, suggesting a potential for Th2 skewing of T cell response. HET immunization also induced a systemic T cell response to TT, as suggested by proliferation of splenocytes from immunized animal upon in vitro stimulation by TT. Exposure to heat during primary immunization led to generation of mainly IgG class of antibodies upon boosting, similar to the use of conventional alum adjuvant, thus highlighting the adjuvant potential of heat during HET immunization. Lastly, we have shown that mice immunized by tetanus toxoid using HET route exhibited protection against challenge with a lethal dose of tetanus toxin. Thus, in addition to being a painless, needle free delivery system it also has an immune modulatory potential.
NASA Astrophysics Data System (ADS)
Zhang, Haichong K.; Lin, Melissa; Kim, Younsu; Paredes, Mateo; Kannan, Karun; Patel, Nisu; Moghekar, Abhay; Durr, Nicholas J.; Boctor, Emad M.
2017-03-01
Lumbar punctures (LPs) are interventional procedures used to collect cerebrospinal fluid (CSF), a bodily fluid needed to diagnose central nervous system disorders. Most lumbar punctures are performed blindly without imaging guidance. Because the target window is small, physicians can only accurately palpate the appropriate space about 30% of the time and perform a successful procedure after an average of three attempts. Although various forms of imaging based guidance systems have been developed to aid in this procedure, these systems complicate the procedure by including independent image modalities and requiring image-to-needle registration to guide the needle insertion. Here, we propose a simple and direct needle insertion platform utilizing a single ultrasound element within the needle through dynamic sensing and imaging. The needle-shaped ultrasound transducer can not only sense the distance between the tip and a potential obstacle such as bone, but also visually locate structures by combining transducer location tracking and back projection based tracked synthetic aperture beam-forming algorithm. The concept of the system was validated through simulation first, which revealed the tolerance to realistic error. Then, the initial prototype of the single element transducer was built into a 14G needle, and was mounted on a holster equipped with a rotation tracking encoder. We experimentally evaluated the system using a metal wire phantom mimicking high reflection bone structures and an actual spine bone phantom with both the controlled motion and freehand scanning. An ultrasound image corresponding to the model phantom structure was reconstructed using the beam-forming algorithm, and the resolution was improved compared to without beam-forming. These results demonstrated the proposed system has the potential to be used as an ultrasound imaging system for lumbar puncture procedures.
NASA Astrophysics Data System (ADS)
Lee, Seung Yup; Na, Kyounghwan; Pakela, Julia M.; Scheiman, James M.; Yoon, Euisik; Mycek, Mary-Ann
2017-02-01
We present the design, development, and bench-top verification of an innovative compact clinical system including a miniaturized handheld optoelectronic sensor. The integrated sensor was microfabricated with die-level light-emitting diodes and photodiodes and fits into a 19G hollow needle (internal diameter: 0.75 mm) for optical sensing applications in solid tissues. Bench-top studies on tissue-simulating phantoms have verified system performance relative to a fiberoptic based tissue spectroscopy system. With dramatically reduced system size and cost, the technology affords spatially configurable designs for optoelectronic light sources and detectors, thereby enabling customized sensing configurations that would be impossible to achieve with needle-based fiber-optic probes.
Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy
Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.
2014-01-01
This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure. PMID:26412962
Stunting of southern pine seedlings by a needle nematode (Longidorus sp.)
M.M. Cram; S.W. Fraedrich; J. Fields
2003-01-01
An undescribed needle nematode (Longidorus sp.) was consistently associated with stunted loblolly pine seedlings at the Flint River Nursery in south Georgia. Seedlings in affected areas had root systems that were greatly reduced in size, and lacked lateral and fine roots. In a growth chamber experiment, the needle nematode significantly reduced the...
Stress fields in soft material induced by injection of highly-focused microjets
NASA Astrophysics Data System (ADS)
Miyazaki, Yuta; Endo, Nanami; Kawamoto, Sennosuke; Kiyama, Akihito; Tagawa, Yoshiyuki
2017-11-01
Needle-free drug injection systems using high-speed microjets are of great importance for medical innovations since they can solve problems of the conventional needle injection systems. However, the mechanical stress acting on the skin/muscle of patients during the penetration of liquid-drug microjets had not been clarified. In this study we investigate the stress caused by the penetration of microjets into soft materials, which is compared with the stress induced by the penetration of needles. In order to capture high-speed temporal evolution of the stress field inside the material, we utilized a high-speed polarized camera and gelatin that resembles human skin. Remarkably we find clear differences in the stress fields induced by microjets and needles. On one hand, high shear stress induced by the microjets is attenuated immediately after the injection, even though the liquid stays inside the soft material. On the other hand, high-shear stress induced by the needles stays and never decays unless the needles are entirely removed from the material. JSPS KAKENHI Grant Numbers 26709007 and 17H01246.
Enterobacter aerogenes Needle Stick Leads to Improved Biological Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johanson, Richard E.
2004-08-01
A laboratory worker who received a needle stick from a contaminated needle while working with a culture containing Enterobactor aerogenes developed a laboratory acquired infection. Although this organism has been shown to cause community and nosocomial infections, there have been no documented cases of a laboratory acquired infections. Lessons learned from the event led to corrective actions which included modification of lab procedures, development of a biological inventory tracking and risk identification system and the establishment of an effective biological safety program.
Bonmati, Ester; Hu, Yipeng; Villarini, Barbara; Rodell, Rachael; Martin, Paul; Han, Lianghao; Donaldson, Ian; Ahmed, Hashim U; Moore, Caroline M; Emberton, Mark; Barratt, Dean C
2018-04-01
Image-guided systems that fuse magnetic resonance imaging (MRI) with three-dimensional (3D) ultrasound (US) images for performing targeted prostate needle biopsy and minimally invasive treatments for prostate cancer are of increasing clinical interest. To date, a wide range of different accuracy estimation procedures and error metrics have been reported, which makes comparing the performance of different systems difficult. A set of nine measures are presented to assess the accuracy of MRI-US image registration, needle positioning, needle guidance, and overall system error, with the aim of providing a methodology for estimating the accuracy of instrument placement using a MR/US-guided transperineal approach. Using the SmartTarget fusion system, an MRI-US image alignment error was determined to be 2.0 ± 1.0 mm (mean ± SD), and an overall system instrument targeting error of 3.0 ± 1.2 mm. Three needle deployments for each target phantom lesion was found to result in a 100% lesion hit rate and a median predicted cancer core length of 5.2 mm. The application of a comprehensive, unbiased validation assessment for MR/US guided systems can provide useful information on system performance for quality assurance and system comparison. Furthermore, such an analysis can be helpful in identifying relationships between these errors, providing insight into the technical behavior of these systems. © 2018 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laredo, Jean-Denis, E-mail: jean-denis.laredo@lrb.aphp.fr; Hamze, Bassam; Jeribi, Riadh
2009-09-15
Biopsy is usually performed as the first step in percutaneous treatment of osteoid osteomas prior to laser photocoagulation. At our institution, 117 patients with a presumed diagnosis of osteoid osteoma had a trephine biopsy before a percutaneous laser photocoagulation. Biopsies were made using two different types of needles. A Bonopty biopsy needle (14-gauge cannula, 16-gauge trephine needle; Radi Medical Systems, Uppsala, Sweden) was used in 65 patients, and a Laurane biopsy needle (11-gauge cannula, 12.5-gauge trephine needle; Laurane Medical, Saint-Arnoult, France) in 43 patients. Overall biopsy results were positive for osteoid osteoma in 83 (70.9%) of the 117 cases. Themore » Laurane needle provided a significantly higher positive rate (81.4%) than the Bonopty needle (66.1%; p < 0.05). This difference was not due to the size of the nidus, which was similar in the two groups (p < 0.05) and may be an effect of differences in needle caliber (12.5 vs. 14 gauge) as well as differences in needle design. The rate of positive biopsy results obtained in the present series with the Laurane biopsy needle is, to our knowledge, the highest rate reported in series dealing with percutaneous radiofrequency ablation and laser photocoagulation of osteoid osteomas.« less
Niazi, A U; Chin, K J; Jin, R; Chan, V W
2014-08-01
Real-time ultrasound-guided neuraxial blockade remains a largely experimental technique. SonixGPS® is a new needle tracking system that displays needle tip position on the ultrasound screen. We investigated if this novel technology might aid performance of real-time ultrasound-guided spinal anesthesia. Twenty patients with body mass index < 35 kg/m(2) undergoing elective total joint arthroplasty under spinal anesthesia were recruited. Patients with previous back surgery and spinal abnormalities were excluded. Following a pre-procedural ultrasound scan, a 17G proprietary needle-sensor assembly was inserted in-plane to the transducer in four patients and out-of-plane in 16 patients. In both approaches, the trajectory of insertion was adjusted in real-time until the needle tip lay just superficial to the ligamentum flavum-dura mater complex. At this point, a 25G 120 mm Whitacre spinal needle was inserted through the 17G SonixGPS® needle. Successful dural puncture was confirmed by backflow of cerebrospinal fluid from the spinal needle. An overall success rate of 14/20 (70%) was seen with two failures (50%) and four failures (25%) in the in-plane and out-of-plane groups respectively. Dural puncture was successful on the first skin puncture in 71% of patients and in a single needle pass in 57% of patients. The median total procedure time was 16.4 and 11.1 min in the in-plane and out-of-plane groups respectively. The SonixGPS® system simplifies real-time ultrasound-guided spinal anesthesia to a large extent, especially the out-of-plane approach. Nevertheless, it remains a complex multi-step procedure that requires time, specialized equipment, and a working knowledge of spinal sonoanatomy. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Simplified stereo-optical ultrasound plane calibration
NASA Astrophysics Data System (ADS)
Hoßbach, Martin; Noll, Matthias; Wesarg, Stefan
2013-03-01
Image guided therapy is a natural concept and commonly used in medicine. In anesthesia, a common task is the injection of an anesthetic close to a nerve under freehand ultrasound guidance. Several guidance systems exist using electromagnetic tracking of the ultrasound probe as well as the needle, providing the physician with a precise projection of the needle into the ultrasound image. This, however, requires additional expensive devices. We suggest using optical tracking with miniature cameras attached to a 2D ultrasound probe to achieve a higher acceptance among physicians. The purpose of this paper is to present an intuitive method to calibrate freehand ultrasound needle guidance systems employing a rigid stereo camera system. State of the art methods are based on a complex series of error prone coordinate system transformations which makes them susceptible to error accumulation. By reducing the amount of calibration steps to a single calibration procedure we provide a calibration method that is equivalent, yet not prone to error accumulation. It requires a linear calibration object and is validated on three datasets utilizing di erent calibration objects: a 6mm metal bar and a 1:25mm biopsy needle were used for experiments. Compared to existing calibration methods for freehand ultrasound needle guidance systems, we are able to achieve higher accuracy results while additionally reducing the overall calibration complexity. Ke
Dimensions of stabident intraosseous perforators and needles.
Ramlee, R A; Whitworth, J
2001-09-01
Problems can be encountered inserting intraosseous injection needles through perforation sites. This in vitro study examined the variability and size compatibility of Stabident intraosseous injection components. The diameters of 40 needles and perforators from a single Stabident kit were measured in triplicate with a toolmakers microscope. One-way ANOVA revealed that mean needle diameter (0.411 mm) was significantly narrower than mean perforator diameter (0.427 mm) (p < 0.001). A frequency distribution plot revealed that needle diameter followed a normal distribution, indicating tight quality control during manufacture. The diameter of perforators was haphazardly distributed, with a clustering of 15% at the lower limit of the size range. However on no occasion was the diameter of a perforator smaller than that of an injection needle. We conclude that components of the Stabident intraosseous anaesthetic system are size-compatible, but there is greater and more haphazard variability in the diameter of perforators than injection needles.
An augmented reality haptic training simulator for spinal needle procedures.
Sutherland, Colin; Hashtrudi-Zaad, Keyvan; Sellens, Rick; Abolmaesumi, Purang; Mousavi, Parvin
2013-11-01
This paper presents the prototype for an augmented reality haptic simulation system with potential for spinal needle insertion training. The proposed system is composed of a torso mannequin, a MicronTracker2 optical tracking system, a PHANToM haptic device, and a graphical user interface to provide visual feedback. The system allows users to perform simulated needle insertions on a physical mannequin overlaid with an augmented reality cutaway of patient anatomy. A tissue model based on a finite-element model provides force during the insertion. The system allows for training without the need for the presence of a trained clinician or access to live patients or cadavers. A pilot user study demonstrates the potential and functionality of the system.
Jammed systems of oriented needles always percolate on square lattices
NASA Astrophysics Data System (ADS)
Kondrat, Grzegorz; Koza, Zbigniew; Brzeski, Piotr
2017-08-01
Random sequential adsorption (RSA) is a standard method of modeling adsorption of large molecules at the liquid-solid interface. Several studies have recently conjectured that in the RSA of rectangular needles, or k -mers, on a square lattice, percolation is impossible if the needles are sufficiently long (k of order of several thousand). We refute these claims and present rigorous proof that in any jammed configuration of nonoverlapping, fixed-length, horizontal, or vertical needles on a square lattice, all clusters are percolating clusters.
2003-07-20
known, that at atmospheric pressure in oxygen- I" - contained gases a various modes of discharge can be realized in the needle -to-plane electrode geometry... needle -to-plane electrode system was located in the discharge chamber (volume I dmi3) with controlled gas feeding. The gas pressure was an atmospheric...The 3. Experimental results positive DC voltage was applied to the needle electrode . The discharge voltage was varied from 3 to 15kV. The analysis of
Bhatt, Shantanu; Edwards, Adrianne Nehrling; Nguyen, Hang Thi Thu; Merlin, Didier; Romeo, Tony; Kalman, Daniel
2009-01-01
The attaching and effacing (A/E) pathogen enteropathogenic Escherichia coli (EPEC) forms characteristic actin-filled membranous protrusions upon infection of host cells termed pedestals. Here we examine the role of the RNA binding protein CsrA in the expression of virulence genes and proteins that are necessary for pedestal formation. The csrA mutant was defective in forming actin pedestals on epithelial cells and in disrupting transepithelial resistance across polarized epithelial cells. Consistent with reduced pedestal formation, secretion of the translocators EspA, EspB, and EspD and the effector Tir was substantially reduced in the csrA mutant. Purified CsrA specifically bound to the sepL espADB mRNA leader, and the corresponding transcript levels were reduced in the csrA mutant. In contrast, Tir synthesis was unaffected in the csrA mutant. Reduced secretion of Tir appeared to be in part due to decreased synthesis of EscD, an inner membrane architectural protein of the type III secretion system (TTSS) and EscF, a protein that forms the protruding needle complex of the TTSS. These effects were not mediated through the locus of enterocyte effacement (LEE) transcriptional regulator GrlA or Ler. In contrast to the csrA mutant, multicopy expression of csrA repressed transcription from LEE1, grlRA, LEE2, LEE5, escD, and LEE4, an effect mediated by GrlA and Ler. Consistent with its role in other organisms, CsrA also regulated flagellar motility and glycogen levels. Our findings suggest that CsrA governs virulence factor expression in an A/E pathogen by regulating mRNAs encoding translocators, effectors, or transcription factors. PMID:19581394
von Horn, Kyra; Depenbusch, Marion; Schultze-Mosgau, Askan; Griesinger, Georg
2017-04-01
Is a modified double-lumen aspiration needle system with follicular flushing able to increase the mean oocyte yield by at least one in poor response IVF patients as compared to single-lumen needle aspiration without flushing? Follicular flushing with the modified flushing system did not increase the number of oocytes, but increased the procedure duration. Most studies on follicular flushing were performed with conventional double-lumen needles in patients who were normal responders. Overall, these studies indicated no benefit of follicular flushing. Prospective, single-centre, randomized, controlled, open, superiority trial comparing the 17 G Steiner-Tan Needle® flushing system with a standard 17 G single-lumen aspiration needle (Gynetics®); time frame February 2015-March 2016. Eighty IVF patients, 18-45 years, BMI >18 kg/m2 to <35 kg/m2, presenting with ≤ five follicles >10 mm in both ovaries at the end of the follicular phase were randomized to either aspirating and flushing each follicle 3× with the Steiner-Tan-Needle® automated flushing system (n = 40) or a conventional single-lumen needle aspiration (n = 40). Primary outcome was the number of cumulus-oocyte-complexes (COCs). Procedure duration, burden (Depression Anxiety and Stress Scale; DASS-21) and post-procedure pain were also assessed. Flushing was not superior with a mean (SD) number of COCs of 2.4 (2.0) and 3.1 (2.3) in the Steiner-Tan Needle® and in the Gynectics® group, respectively (mean difference -0.7, 95% CI: 0.3 to -1.6; P = 0.27). Likewise no differences were observed in metaphase II oocytes, two pronuclear oocytes, number of patients having an embryo transfer and DASS 21 scores. The procedure duration was significantly 2-fold increased. Testing for differences in the number of patients achieving an embryo transfer or differences in pregnancy rate would require a much larger sample size. The use of follicular flushing is unlikely to benefit the prognosis of patients with poor ovarian response. The Steiner-Tan Needles® and the flushing system were provided for free by the manufacturer. K.v.H. has received personal fees from Finox and non-financial support from Merck-Serono; M.D. has received personal fees from Finox and non-financial support from Merck-Serono. A.S.-M. has received personal fees and non-financial support from M.D., Ferring, Merck-Serono, Finox, TEVA. G.G. has received personal fees and non-financial support from M.D., Ferring, Merck-Serono, Finox, TEVA, IBSA, Glycotope, as well as personal fees from VitroLife, NMC Healthcare LLC, ReprodWissen LLC and ZIVA LLC. NCT 02365350 (clinicaltrials.gov). Sixth of February 2015. Ninth of February 2015. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Ebert, Lars Christian; Ptacek, Wolfgang; Breitbeck, Robert; Fürst, Martin; Kronreif, Gernot; Martinez, Rosa Maria; Thali, Michael; Flach, Patricia M
2014-06-01
In this paper we present the second prototype of a robotic system to be used in forensic medicine. The system is capable of performing automated surface documentation using photogrammetry, optical surface scanning and image-guided, post-mortem needle placement for tissue sampling, liquid sampling, or the placement of guide wires. The upgraded system includes workflow optimizations, an automatic tool-change mechanism, a new software module for trajectory planning and a fully automatic computed tomography-data-set registration algorithm. We tested the placement accuracy of the system by using a needle phantom with radiopaque markers as targets. The system is routinely used for surface documentation and resulted in 24 surface documentations over the course of 11 months. We performed accuracy tests for needle placement using a biopsy phantom, and the Virtobot placed introducer needles with an accuracy of 1.4 mm (±0.9 mm). The second prototype of the Virtobot system is an upgrade of the first prototype but mainly focuses on streamlining the workflow and increasing the level of automation and also has an easier user interface. These upgrades make the Virtobot a potentially valuable tool for case documentation in a scalpel-free setting that uses purely imaging techniques and minimally invasive procedures and is the next step toward the future of virtual autopsy.
Methods for prostate stabilization during transperineal LDR brachytherapy.
Podder, Tarun; Sherman, Jason; Rubens, Deborah; Messing, Edward; Strang, John; Ng, Wan-Sing; Yu, Yan
2008-03-21
In traditional prostate brachytherapy procedures for a low-dose-rate (LDR) radiation seed implant, stabilizing needles are first inserted to provide some rigidity and support to the prostate. Ideally this will provide better seed placement and an overall improved treatment. However, there is much speculation regarding the effectiveness of using regular brachytherapy needles as stabilizers. In this study, we explored the efficacy of two types of needle geometries (regular brachytherapy needle and hooked needle) and several clinically feasible configurations of the stabilization needles. To understand and assess the prostate movement during seed implantation, we collected in vivo data from patients during actual brachytherapy procedures. In vitro experimentation with tissue-equivalent phantoms allowed us to further understand the mechanics behind prostate stabilization. We observed superior stabilization with the hooked needles compared to the regular brachytherapy needles (more than 40% in bilateral parallel needle configuration). Prostate movement was also reduced significantly when regular brachytherapy needles were in an angulated configuration as compared to the parallel configuration (more than 60%). When the hooked needles were angulated for stabilization, further reduction in prostate displacement was observed. In general, for convenience of dosimetric planning and to avoid needle collision, all needles are desired to be in a parallel configuration. In this configuration, hooked needles provide improved stabilization of the prostate. On the other hand, both regular and hooked needles appear to be equally effective in reducing prostate movement when they are in angulated configurations, which will be useful in seed implantation using a robotic system. We have developed nonlinear spring-damper model for the prostate movement which can be used for adapting dosimetric planning during brachytherapy as well as for developing more realistic haptic devices and training simulators.
Automatic needle segmentation in 3D ultrasound images using 3D Hough transform
NASA Astrophysics Data System (ADS)
Zhou, Hua; Qiu, Wu; Ding, Mingyue; Zhang, Songgeng
2007-12-01
3D ultrasound (US) is a new technology that can be used for a variety of diagnostic applications, such as obstetrical, vascular, and urological imaging, and has been explored greatly potential in the applications of image-guided surgery and therapy. Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese woman, and a minimally invasive ablation system using an RF button electrode which is needle-like is being used to destroy tumor cells or stop bleeding currently. Now a 3D US guidance system has been developed to avoid accidents or death of the patient by inaccurate localizations of the electrode and the tumor position during treatment. In this paper, we described two automated techniques, the 3D Hough Transform (3DHT) and the 3D Randomized Hough Transform (3DRHT), which is potentially fast, accurate, and robust to provide needle segmentation in 3D US image for use of 3D US imaging guidance. Based on the representation (Φ , θ , ρ , α ) of straight lines in 3D space, we used the 3DHT algorithm to segment needles successfully assumed that the approximate needle position and orientation are known in priori. The 3DRHT algorithm was developed to detect needles quickly without any information of the 3D US images. The needle segmentation techniques were evaluated using the 3D US images acquired by scanning water phantoms. The experiments demonstrated the feasibility of two 3D needle segmentation algorithms described in this paper.
Shen, Elizabeth P; Tsay, Ruey-Yug; Chia, Jean-San; Wu, Semon; Lee, Jing-Wen; Hu, Fung-Rong
2012-09-21
To determine the distribution of invasive and cytotoxic genotypes among ocular isolates of P. aeruginosa and investigate the influence of the type III secretion system (T3SS) on adhesion to conventional, cosmetic, and silicone hydrogel contact lenses (CL). Clinical isolates from 2001 to 2010 were analyzed by multiplex PCR for exoS, exoU, and exoT genes. Bacterial adhesion to etafilcon, nelfilcon (gray colored), balafilcon, and galyfilcon CL with or without artificial tear fluid (ATF) incubation were compared. Surface characteristics were determined with scanning electron microscopy (SEM). Among 87 total isolates, 64 strains were from microbial keratitis cases. CL-related microbial keratitis (CLMK) isolates were mostly of the cytotoxic genotype (expressing exoU) (P = 0.002). No significant differences were found in bacterial adhesion to all types of CL between the genotypes under T3SS-inducing conditions. A trend for least bacterial adhesion of galyfilcon compared to the other CL was noted for both genotypes. Needle complex pscC mutants adhered less to all materials than the wild type (P < 0.05), indicating a role of the T3SS in contact lens adhesion. ATF-incubated CL had significantly more bacterial adhesion (P < 0.05). SEM showed most of the bacteria adhering on CL surfaces. CLMK isolates were mostly of cytotoxic genotype. Different genotypes did not significantly differ in its adhesion to various CL. T3SS and other adhesins are involved in bacteria-contact lens adhesion through complex interactions. Contact lens materials may also play an important role in the adherence of both genotypes of P. aeruginosa.
Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors
Ceccarelli, Daniela; Hasan, Nur A.; Huq, Anwar; Colwell, Rita R.
2013-01-01
Vibrio parahaemolyticus, autochthonous to estuarine, marine, and coastal environments throughout the world, is the causative agent of food-borne gastroenteritis. More than 80 serotypes have been described worldwide, based on antigenic properties of the somatic (O) and capsular (K) antigens. Serovar O3:K6 emerged in India in 1996 and subsequently was isolated worldwide, leading to the conclusion that the first V. parahaemolyticus pandemic had taken place. Most strains of V. parahaemolyticus isolated from the environment or seafood, in contrast to clinical strains, do not produce a thermostable direct hemolysin (TDH) and/or a TDH-related hemolysin (TRH). Type 3 secretion systems (T3SSs), needle-like apparatuses able to deliver bacterial effectors into host cytoplasm, were identified as triggering cytotoxicity and enterotoxicity. Type 6 secretion systems (T6SS) predicted to be involved in intracellular trafficking and vesicular transport appear to play a role in V. parahaemolyticus virulence. Recent advances in V. parahaemolyticus genomics identified several pathogenicity islands (VpaIs) located on either chromosome in both epidemic and pandemic strains and comprising additional colonization factors, such as restriction-modification complexes, chemotaxis proteins, classical bacterial surface virulence factors, and putative colicins. Furthermore, studies indicate strains lacking toxins and genomic regions associated with pathogenicity may also be pathogenic, suggesting other important virulence factors remain to be identified. The unique repertoire of virulence factors identified to date, their occurrence and distribution in both epidemic and pandemic strains worldwide are described, with the aim of highlighting the complexity of V. parahaemolyticus pathogenicity as well as its dynamic genome. PMID:24377090
SU-F-BRA-04: Prostate HDR Brachytherapy with Multichannel Robotic System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, F Maria; Podder, T; Yu, Y
Purpose: High-dose-rate (HDR) brachytherapy is gradually becoming popular in treating patients with prostate cancers. However, placement of the HDR needles at desired locations into the patient is challenging. Application of robotic system may improve the accuracy of the clinical procedure. This experimental study is to evaluate the feasibility of using a multichannel robotic system for prostate HDR brachytherapy. Methods: In this experimental study, the robotic system employed was a 6-DOF Multichannel Image-guided Robotic Assistant for Brachytherapy (MIRAB), which was designed and fabricated for prostate seed implantation. The MIRAB has the provision of rotating 16 needles while inserting them. Ten prostatemore » HDR brachytherapy needles were simultaneously inserted using MIRAB into a commercially available prostate phantom. After inserting the needles into the prostate phantom at desired locations, 2mm thick CT slices were obtained for dosimetric planning. HDR plan was generated using Oncetra planning system with a total prescription dose of 34Gy in 4 fractions. Plan quality was evaluated considering dose coverage to prostate and planning target volume (PTV), with 3mm margin around prostate, as well as the dose limit to the organs at risk (OARs) following the American Brachytherapy Society (ABS) guidelines. Results: From the CT scan, it is observed that the needles were inserted straight into the desired locations and they were adequately spaced and distributed for a clinically acceptable HDR plan. Coverage to PTV and prostate were about 91% (V100= 91%) and 96% (V100=96%), respectively. Dose to 1cc of urethra, rectum, and bladder were within the ABS specified limits. Conclusion: The MIRAB was able to insert multiple needles simultaneously into the prostate precisely. By controlling the MIRAB to insert all the ten utilized needles into the prostate phantom, we could achieve the robotic HDR brachytherapy successfully. Further study for assessing the system’s performance and reliability is in progress.« less
Cohen, Micah G; McMahon, Colm J; Kung, Justin W; Wu, Jim S
2016-05-01
The purpose of this study was to compare manual and battery-powered bone biopsy systems for diagnostic yield and procedural factors during core needle biopsy of sclerotic bone lesions. A total of 155 consecutive CT-guided core needle biopsies of sclerotic bone lesions were performed at one institution from January 2006 to November 2014. Before March 2012, lesions were biopsied with manual bone drill systems. After March 2012, most biopsies were performed with a battery-powered system and either noncoaxial or coaxial biopsy needles. Diagnostic yield, crush artifact, CT procedure time, procedure radiation dose, conscious sedation dose, and complications were compared between the manual and battery-powered core needle biopsy systems by Fisher exact test and t test. One-way ANOVA was used for subgroup analysis of the two battery-powered systems for procedure time and radiation dose. The diagnostic yield for all sclerotic lesions was 60.0% (93/155) and was significantly higher with the battery-powered system (73.0% [27/37]) than with the manual systems (55.9% [66/118]) (p = 0.047). There was no significant difference between the two systems in terms of crush artifact, procedure time, radiation dose, conscious sedation administered, or complications. In subgroup analysis, the coaxial battery-powered biopsies had shorter procedure times (p = 0.01) and lower radiation doses (p = 0.002) than the coaxial manual systems, but the noncoaxial battery-powered biopsies had longer average procedure times and higher radiation doses than the coaxial manual systems. In biopsy of sclerotic bone lesions, use of a battery-powered bone drill system improves diagnostic yield over use of a manual system.
System for Manipulating Drops and Bubbles Using Acoustic Radiation Pressure
NASA Technical Reports Server (NTRS)
Oeftering, Richard C. (Inventor)
1999-01-01
The manipulation and control of drops of liquid and gas bubbles is achieved using high intensity acoustics in the form of and/or acoustic radiation pressure and acoustic streaming. generated by a controlled wave emission from a transducer. Acoustic radiation pressure is used to deploy or dispense drops into a liquid or a gas or bubbles into a liquid at zero or near zero velocity from the discharge end of a needle such as a syringe needle. Acoustic streaming is useful in manipulating the drop or bubble during or after deployment. Deployment and discharge is achieved by focusing the acoustic radiation pressure on the discharge end of the needle, and passing the acoustic waves through the fluid in the needle. through the needle will itself, or coaxially through the fluid medium surrounding the needle. Alternatively, the acoustic waves can be counter-deployed by focusing on the discharge end of the needle from a transducer axially aligned with the needle, but at a position opposite the needle, to prevent premature deployment of the drop or bubble. The acoustic radiation pressure can also be used for detecting the presence or absence of a drop or a bubble at the tip of a needle or for sensing various physical characteristics of the drop or bubble such as size or density.
Hing, James T; Brooks, Ari D; Desai, Jaydev P
2007-02-01
A methodology for modeling the needle and soft-tissue interaction during needle insertion is presented. The approach consists of the measurement of needle and tissue motion using a dual C-arm fluoroscopy system. Our dual C-arm fluoroscopy setup allows real time 3-D extraction of the displacement of implanted fiducials in the soft tissue during needle insertion to obtain the necessary parameters for accurate modeling of needle and soft-tissue interactions. The needle and implanted markers in the tissue are tracked during the insertion and withdrawal of the needle at speeds of 1.016 mm/s, 12.7 mm/s and 25.4 mm/s. Both image and force data are utilized to determine important parameters such as the approximate cutting force, puncture force, the local effective modulus (LEM) during puncture, and the relaxation of tissue. We have also validated the LEM computed from our finite element model with arbitrary needle puncture tasks. Based on these measurements, we developed a model for needle insertion and withdrawal that can be used to generate a 1-DOF force versus position profile that can be experienced by a user operating a haptic device. This profile was implemented on a 7-DOf haptic device designed in our laboratory.
Improving needle tip identification during ultrasound-guided procedures in anaesthetic practice.
Scholten, H J; Pourtaherian, A; Mihajlovic, N; Korsten, H H M; A Bouwman, R
2017-07-01
Ultrasound guidance is becoming standard practice for needle-based interventions in anaesthetic practice, such as vascular access and peripheral nerve blocks. However, difficulties in aligning the needle and the transducer can lead to incorrect identification of the needle tip, possibly damaging structures not visible on the ultrasound screen. Additional techniques specifically developed to aid alignment of needle and probe or identification of the needle tip are now available. In this scoping review, advantages and limitations of the following categories of those solutions are presented: needle guides; alterations to needle or needle tip; three- and four-dimensional ultrasound; magnetism, electromagnetic or GPS systems; optical tracking; augmented (virtual) reality; robotic assistance; and automated (computerised) needle detection. Most evidence originates from phantom studies, case reports and series, with few randomised clinical trials. Improved first-pass success and reduced performance time are the most frequently cited benefits, whereas the need for additional and often expensive hardware is the greatest limitation to widespread adoption. Novice ultrasound users seem to benefit most and great potential lies in education. Future research should focus on reporting relevant clinical parameters to learn which technique will benefit patients most in terms of success and safety. © 2017 The Association of Anaesthetists of Great Britain and Ireland.
Needle free injection technology: A complete insight
Ravi, Ansh Dev; Sadhna, D; Nagpaal, D; Chawla, L
2015-01-01
Needle free injection technology (NFIT)is an extremely broad concept which include a wide range of drug delivery systems that drive drugs through the skin using any of the forces as Lorentz, Shock waves, pressure by gas or electrophoresis which propels the drug through the skin, virtually nullifying the use of hypodermic needle. This technology is not only touted to be beneficial for the pharma industry but developing world too find it highly useful in mass immunization programmes, bypassing the chances of needle stick injuries and avoiding other complications including those arising due to multiple use of single needle. The NFIT devices can be classified based on their working, type of load, mechanism of drug delivery and site of delivery. To administer a stable, safe and an effective dose through NFIT, the sterility, shelf life and viscosity of drug are the main components which should be taken care of. Technically superior needle-free injection systems are able to administer highly viscous drug products which cannot be administered by traditional needle and syringe systems, further adding to the usefulness of the technology. NFIT devices can be manufactured in a variety of ways; however the widely employed procedure to manufacture it is by injection molding technique. There are many variants of this technology which are being marketed, such as Bioject® ZetaJetTM, Vitajet 3, Tev-Tropin® and so on. Larger investment has been made in developing this technology with several devices already being available in the market post FDA clearance and a great market worldwide. PMID:26682189
De Bardi, M; Müller, R; Grünzweig, C; Mannes, D; Rigollet, M; Bamberg, F; Jung, T A; Yang, K
2018-06-01
Staked-in needle pre-fillable syringes (SIN-PFS) are a convenient delivery system widely established in the growing pharmaceutical market. Under specific storage conditions, the needle of PFS containing high concentration drug product (DP) solution is prone to clogging, which prevents administration of the liquid. The purpose of this study is to clarify the clogging phenomenon of SIN-PFS and to elucidate the role of water vapor transmission via the needle shield. The presence of liquid within needles is a prerequisite condition for clogging and was investigated non-invasively by neutron imaging (NI) to confirm that liquid can migrate into the needle under certain processing conditions. The water vapor transmission rate (WVTR) of different needle shields was measured and the impact of temperature and relative humidity (rH) on the WVTR was investigated on sheets with the same composition as used in commercial needle shields. Our study clearly showed that the partial vapor pressure difference (ΔPP) across the needle shield is the dominant driving factor for water vapor transmission. A linear correlation between ΔPP and WVTR was found and a model to predict the water vapor transmission for PFS under specific storage conditions was developed. The impact of the WVTR on needle clogging was confirmed by clogging tests performed on SIN-PFS stored under different conditions. Thereby, we clearly show that high water loss induced by higher WVTR can be correlated to an increased occurrence of needle clogging. In conclusion, the WVTR of the needle shield plays a key role in needle clogging and the established WVTR model can be employed to assess the clogging risk for product development. Copyright © 2018 Elsevier B.V. All rights reserved.
Electrode structure for uniform corona discharge
NASA Technical Reports Server (NTRS)
Gange, R. A.; Steinmetz, C. C.
1976-01-01
Single corona-discharge needle is used to apply uniform charge to thermoplastic medium in holograph-storage system. Needle is connected to flat transparent electrode that is parallel to thermoplastic.
Shahriari, Navid; Heerink, Wout; van Katwijk, Tim; Hekman, Edsko; Oudkerk, Matthijs; Misra, Sarthak
2017-07-01
Lung cancer is the most common cause of cancer-related death, and early detection can reduce the mortality rate. Patients with lung nodules greater than 10 mm usually undergo a computed tomography (CT)-guided biopsy. However, aligning the needle with the target is difficult and the needle tends to deflect from a straight path. In this work, we present a CT-compatible robotic system, which can both position the needle at the puncture point and also insert and rotate the needle. The robot has a remote-center-of-motion arm which is achieved through a parallel mechanism. A new needle steering scheme is also developed where CT images are fused with electromagnetic (EM) sensor data using an unscented Kalman filter. The data fusion allows us to steer the needle using the real-time EM tracker data. The robot design and the steering scheme are validated using three experimental cases. Experimental Case I and II evaluate the accuracy and CT-compatibility of the robot arm, respectively. In experimental Case III, the needle is steered towards 5 real targets embedded in an anthropomorphic gelatin phantom of the thorax. The mean targeting error for the 5 experiments is 1.78 ± 0.70 mm. The proposed robotic system is shown to be CT-compatible with low targeting error. Small nodule size and large needle diameter are two risk factors that can lead to complications in lung biopsy. Our results suggest that nodules larger than 5 mm in diameter can be targeted using our method which may result in lower complication rate. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Buldur, B; Kapdan, A
2017-09-01
This study aimed to compare the EndoVac system and conventional needle irrigation in removing smear layer (SR) from primary molar root canals. Fifty extracted human primary second molar roots were instrumented up to an apical size of 0.04/35 and randomly divided into two main groups; Group 1: EndoVac system (n = 25) and Group 2: Conventional needle irrigation (n = 25) and three subgroups (a) NaOCl + ethylenediaminetetraacetic acid (EDTA) (n = 20) (b) ozonated water (OW) + EDTA (n = 20) and (c) saline (control, n = 10). After a standardized final irrigation protocol performed for all teeth, scanning electron microscope images were taken at ×1000 magnification for each thirds of each root canal. Data were analyzed by the weighted kappa, Kruskal-Wallis, and Wilcoxon signed rank tests. EndoVac was more effective than conventional needle in the removal of SR from the apical third of the root canal system (P < 0.05). The OW + EDTA regimen provided similar SR removal compared with NaOCl + EDTA. EndoVac has better performance than conventional needle irrigation in the removal of the SR in the apical thirds of the primary molar root canals. As a final irrigation regimen, the OW + EDTA regimen is as effective as the NaOCl + EDTA regimen.
CT-Guided Interventions Using a Free-Hand, Optical Tracking System: Initial Clinical Experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schubert, Tilman, E-mail: TSchubert@uhbs.ch; Jacob, Augustinus L.; Pansini, Michele
2013-08-01
PurposeThe present study was designed to evaluate the geometrical accuracy and clinical applicability of a new, free-hand, CT-guided, optical navigation system.MethodsFifteen procedures in 14 consecutive patients were retrospectively analyzed. The navigation system was applied for interventional procedures on small target lesions, in cases with long needle paths, narrow access windows, or when an out-of-plane access was expected. Mean lesion volume was 27.9 ml, and mean distance to target measured was 107.5 mm. Eleven of 15 needle trajectories were planned as out-of-plane approaches regarding the axial CT plane.ResultsNinety-one percent of the biopsies were diagnostic. All therapeutic interventions were technically successful. Targetingmore » precision was high with a mean distance of the needle tip from planned target of 1.98 mm. Mean intervention time was 1:12 h. A statistically significant correlation between angular needle deviation and intervention time (p = 0.007), respiratory movement of the target (p = 0.008), and body mass index (p = 0.02) was detected. None of the evaluated parameters correlated significantly with the distance from the needle tip to the planned target.ConclusionsThe application of a navigation system for complex CT-guided procedures provided safe and effective targeting within a reasonable intervention time in our series.« less
Design of a Teleoperated Needle Steering System for MRI-guided Prostate Interventions
Seifabadi, Reza; Iordachita, Iulian; Fichtinger, Gabor
2013-01-01
Accurate needle placement plays a key role in success of prostate biopsy and brachytherapy. During percutaneous interventions, the prostate gland rotates and deforms which may cause significant target displacement. In these cases straight needle trajectory is not sufficient for precise targeting. Although needle spinning and fast insertion may be helpful, they do not entirely resolve the issue. We propose robot-assisted bevel-tip needle steering under MRI guidance as a potential solution to compensate for the target displacement. MRI is chosen for its superior soft tissue contrast in prostate imaging. Due to the confined workspace of the MRI scanner and the requirement for the clinician to be present inside the MRI room during the procedure, we designed a MRI-compatible 2-DOF haptic device to command the needle steering slave robot which operates inside the scanner. The needle steering slave robot was designed to be integrated with a previously developed pneumatically actuated transperineal robot for MRI-guided prostate needle placement. We describe design challenges and present the conceptual design of the master and slave robots and the associated controller. PMID:24649480
Investigation of a single barrier discharge in submillimeter air gaps. Nonuniform field
NASA Astrophysics Data System (ADS)
Bondarenko, P. N.; Emel'yanov, O. A.; Shemet, M. V.
2014-08-01
Pulse characteristics of single barrier discharges as well as parameters of charges accumulated on the surface of a dielectric under the atmospheric pressure in the "needle-(0.1-2.0)-mm air gap-polymer barrier-plane" system are investigated. It is found experimentally that for the positive polarity of the needle, the voltage for the discharge initiation is higher than in the case of the negative polarity by ˜25-35%. The reversal of the needle polarity from negative to positive increases the amplitude of the discharge current and the accumulated surface charge by ˜1.5-3 times. For the positive polarity of the needle, the discharge is governed by a streamer mechanism, while for the negative polarity, the discharge is initiated by the formation of a single Trichel pulse. The single pulse regime is observed for the discharge current up to a certain electrode gap d CR. For the positive needle and for air gap width d air > d CR ≈ 1.5 mm, a multipulse burst corona is formed, while for the negative needle and d air > d CR ≈ 0.9 mm, a damped sequence of Trichel pulses evolves in the system.
Haapasalo, Markus; Shen, Ya; Wang, Zhejun; Park, Ellen; Curtis, Allison; Patel, Payal; Vandrangi, Prashanthi
2016-09-01
The purpose of this study is to compare pressures at the apical foramen created by conventional syringe irrigation and the GentleWave™ System, which releases high-velocity degassed irrigants to the pulp chamber and uses broad-spectrum sound energy for cleaning. The apical pressure generated during irrigation was measured for palatal and distobuccal root canals of four extracted maxillary molars after no instrumentation, minimal instrumentation to a size #15/.04, instrumentation to a size #40/.04 taper, and after perforating the apical foramen to size #40. The root canals opened into an air-tight custom fixture coupled to a piezoresistive pressure transducer. Apical pressures were measured for the GentleWave™ System and syringe-needle irrigation at different irrigant flow rates, with the needle tip at 1 and 3 mm from the apical foramen using 30-gauge (G) open-ended or side-vented safety tip needles. The GentleWave™ System generated negative apical pressures (P < 0.001 compared with syringe irrigation); the mean pressures were between -13.07 and -17.19 mmHg. The 30 G needles could not reach the 1 and 3 mm from the working length in uninstrumented and 1 mm in minimally instrumented canals. The mean positive pressures between 6.46 and 110.34 mmHg were measured with needle irrigation depending on the flow rate, needle insertion depth, and size of the root canal. The GentleWave™ System creates negative pressure at the apical foramen during root canal cleaning irrespective of the size of canal instrumentation. Positive apical pressures were measured for syringe irrigation. Negative pressure during irrigation contributes to improved safety as compared to high-positive pressure.
Infrared needle mapping to assist biopsy procedures and training.
Shar, Bruce; Leis, John; Coucher, John
2018-04-01
A computed tomography (CT) biopsy is a radiological procedure which involves using a needle to withdraw tissue or a fluid specimen from a lesion of interest inside a patient's body. The needle is progressively advanced into the patient's body, guided by the most recent CT scan. CT guided biopsies invariably expose patients to high dosages of radiation, due to the number of scans required whilst the needle is advanced. This study details the design of a novel method to aid biopsy procedures using infrared cameras. Two cameras are used to image the biopsy needle area, from which the proposed algorithm computes an estimate of the needle endpoint, which is projected onto the CT image space. This estimated position may be used to guide the needle between scans, and results in a reduction in the number of CT scans that need to be performed during the biopsy procedure. The authors formulate a 2D augmentation system which compensates for camera pose, and show that multiple low-cost infrared imaging devices provide a promising approach.
To determine interactive effects of important environmental stresses on biochemical defense mechanisms of tree seedlings, we studied responses to elevated O3 and elevated atmospheric CO2 on antioxidative and photoprotective systems in needles of ponderosa pine (Pinus ponderosa Do...
Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam
2015-03-01
Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively (13)C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huché, Frédéric, E-mail: huche@pasteur.fr; Unité des Membranes Bactériennes, CNRS URA 2172, Département de Microbiologie Fondamentale et Médicale, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris CEDEX 15; Delepelaire, Philippe
2006-01-01
The expression, purification, and crystallization in space group P2{sub 1}2{sub 1}2{sub 1} of the complex HasA-HasR from S. marcescens are reported. Diffraction data have been collected and processed to 6.8 Å. Serratia marcescens is able to acquire iron using its haem-acquisition system (‘has’), which contains an outer membrane receptor HasR and a soluble haemophore HasA. After secretion, HasA binds free haem in the extracellular medium or extracts it from haemoproteins and delivers it to the receptor. Here, the crystallization of a HasA–HasR complex is reported. HasA and HasR have been overexpressed in Escherichia coli and the complex formed and crystallized.more » Small platelets and bunches of needles of dimensions 0.01 × 0.1 × 1 mm were obtained. A native data set has been collected to 6.8 Å.« less
Evaluating the use of the Cleo 90 infusion set for patients on a palliative care unit.
Schneider, Michael; Hoffmann, Martin; Lorenzl, Stefan
2009-08-01
Although the use of subcutaneous infusion is common in palliative care, problems can occur. Normally, butterfly needles are used; however, there are occasional issues with patients being able to walk around or with restless patients who suffer from delirium. In these cases, needles often dislocate; therefore, a small observational study was undertaken to evaluate the use of the Cleo 90 infusion set. The use of this needle system has been well established in diabetic patients who require continuous subcutaneous infusion of insulin, but has never been tested in a wider range of patients with other medications. In this 6-month study, 45 patients were identified for subcutaneous infusion and a total of 112 needles were used for this study, since we initially changed each site after 2 days to control the local site for adverse reactions. We have not observed any complications with drug combinations delivered via the attached tube and the needle, and have used up to five different drugs mixed together in a single syringe. Needles could be used for a mean time of 5 +/- 2 days (range 2-12 days). Local site reactions have been observed only with sodium chloride infusions, which were not delivered via a pump system. Reddening and induration of the skin occurred, but they were reversible after removing the needle. As this was a small study in only one unit, without standardization the results can only be observational. However, it has shown, for the first time, that the Cleo 90 needle can be safe and comfortable.
Simulation and experimental studies in needle-tissue interactions.
Konh, Bardia; Honarvar, Mohammad; Darvish, Kurosh; Hutapea, Parsaoran
2017-08-01
This work aims to introduce a new needle insertion simulation to predict the deflection of a bevel-tip needle inside soft tissue. The development of such a model, which predicts the steering behavior of the needle during needle-tissue interactions, could improve the performance of many percutaneous needle-based procedures such as brachytherapy and thermal ablation, by means of the virtual path planning and training systems of the needle toward the target and thus reducing possible incidents of complications in clinical practices. The Arbitrary-Lagrangian-Eulerian (ALE) formulation in LS-DYNA software was used to model the solid-fluid interactions between the needle and tissue. Since both large deformation and fracture of the continuum need to be considered in this model, applying ALE method for fluid analysis was considered a suitable approach. A 150 mm long needle was used to bend within the tissue due to the interacting forces on its asymmetric bevel tip. Three experimental cases of needle steering in a soft phantom were performed to validate the simulation. An error measurement of less than 10 % was found between the predicted deflection by the simulations and the one observed in experiments, validating our approach with reasonable accuracy. The effect of the needle diameter and its bevel tip angle on the final shape of the needle was investigated using this model. To maneuver around the anatomical obstacles of the human body and reach the target location, thin sharp needles are recommended, as they would create a smaller radius of curvature. The insertion model presented in this work is intended to be used as a base structure for path planning and training purposes for future studies.
NASA Astrophysics Data System (ADS)
Kim, Ick-Jun; Yang, Sunhye; Jeon, Min-Je; Moon, Seong-In; Kim, Hyun-Soo; Lee, Yoon-Pyo; An, Kye-Hyeok; Lee, Young-Hee
The structural features and the electrochemical performances of pyrolized needle cokes from oxidized cokes are examined and compared with those of KOH-activated needle coke. The structure of needle coke is changed to a single phase of graphite oxide after oxidation treatment with an acidic solution having an NaClO 3/needle coke composition ratio of above 7.5, and the inter-layer distance of the oxidized needle coke is expanded to 6.9 Å with increasing oxygen content. After heating at 200 °C, the oxidized needle coke is reduced to a graphite structure with an inter-layer distance of 3.6 Å. By contrast, a change in the inter-layer distance in KOH-activated needle coke is not observed. An intercalation of pyrolized needle coke, observed on first charge, occurs at 1.0 V. This value is lower than that of KOH-activation needle coke. A capacitor using pyrolized needle coke exhibits a lower internal resistance of 0.57 Ω in 1 kHz, and a larger capacitance per weight and volume of 30.3 F g -1 and 26.9 F ml -1, in the two-electrode system over the potential range 0-2.5 V compared with those of a capacitor using KOH-activation of needle coke. This better electrochemical performance is attributed to a distorted graphene layer structure derived from the process of the inter-layer expansion and shrinkage.
Real-time MRI-guided needle intervention for cryoablation: a phantom study
NASA Astrophysics Data System (ADS)
Gao, Wenpeng; Jiang, Baichuan; Kacher, Dan F.; Fetics, Barry; Nevo, Erez; Lee, Thomas C.; Jayender, Jagadeesan
2017-03-01
MRI-guided needle intervention for cryoablation is a promising way to relieve the pain and treat the cancer. However, the limited size of MRI bore makes it impossible for clinicians to perform the operation in the bore. The patients had to be moved into the bore for scanning to verify the position of the needle's tip and out for adjusting the needle's trajectory. Real-time needle tracking and shown in MR images is of importance for clinicians to perform the operation more efficiently. In this paper, we have instrumented the cryotherapy needle with a MRI-safe electromagnetic (EM) sensor and optical sensor to measure the needle's position and orientation. To overcome the limitation of line-of-sight for optical sensor and the poor dynamic performance of the EM sensor, Kalman filter based data fusion is developed. Further, we developed a navigation system in open-source software, 3D Slicer, to provide accurate visualization of the needle and the surrounding anatomy. Experiment of simulation the needle intervention at the entrance was performed with a realistic spine phantom to quantify the accuracy of the navigation using the retrospective analysis method. Eleven trials of needle insertion were performed independently. The target accuracy with the navigation using only EM sensor, only optical sensor and data fusion are 2.27 +/-1.60 mm, 4.11 +/- 1.77 mm and 1.91 - 1.10 mm, respectively.
Preibsch, Heike; Baur, Astrid; Wietek, Beate M; Krämer, Bernhard; Staebler, Annette; Claussen, Claus D; Siegmann-Luz, Katja C
2015-09-01
Published national and international guidelines and consensus meetings on the use of vacuum-assisted biopsy (VAB) give different recommendations regarding the required numbers of tissue specimens depending on needle size and imaging method. To evaluate the weights of specimens obtained with different VAB needles to facilitate the translation of the required number of specimens between different breast biopsy systems and needle sizes, respectively. Five different VAB systems and seven different needle sizes were used: Mammotome® (11-gauge (G), 8-G), Vacora® (10-G), ATEC Sapphire™ (9-G), 8-G Mammotome® Revolve™, and EnCor Enspire® (10-G, 7-G). We took 24 (11-G) or 20 (7-10-G) tissue cores from a turkey breast phantom. The mean weight of a single tissue core was calculated for each needle size. A matrix, which allows the translation of the required number of tissue cores for different needle sizes, was generated. Results were compared to the true cumulative tissue weights of consecutively harvested tissue cores. The mean tissue weights obtained with the 11-G / 10-G Vacora® / 10-G Enspire® / 9-G / 8-G Original / 8-G Revolve™ / 7-G needles were 0.084 g / 0.142 g / 0.221 g / 0.121 g / 0.192 g / 0.334 g / 0.363 g, respectively. The calculated required numbers of VAB tissue cores for each needle size build the matrix. For example, the minimum calculated number of required cores according to the current German S3 guideline is 20 / 12 / 8 / 14 / 9 / 5 / 5 for needles of 11-G / 10-G Vacora® / 10-G Enspire® / 9-G / 8-G Original / 8-G Revolve™ / 7-G size. These numbers agree with the true cumulative tissue weights. The presented matrix facilitates the translation of the required number of VAB specimens between different needle sizes and thereby eases the implementation of current guidelines and consensus recommendations into clinical practice. © The Foundation Acta Radiologica 2014.
[Comparison of port needle with safety device between Huber Plus (HP) and Poly PERF Safe (PPS)].
Shimono, Chigusa; Tanaka, Atsuko; Fujita, Ai; Ishimoto, Miki; Oura, Shoji; Yamaue, Hiroki; Sato, Morio
2010-05-01
An embedded port is frequently used for outpatients with advanced cancer in central venous chemotherapy or hepatic arterial chemoinfusion. The port needle with a safety device in an ambulatory treatment center is indispensable for medical employees and patient plus family to reduce the risk of a needle puncture accident and to prevent iatrogenic infection. The port needle with safety system has been already introduced in our chemotherapy center. There are two types of port needle with safety device; Huber Plus (HP, Medicon Co., Ltd.) and POLY PERF Safe (PPS, Pyolax Device, Co., Ltd.). The comparison of the feasibility between HP and PPS was conducted by both medical employees and patients plus family using an inquiry score method. HP was highly regarded for its stability plus fixation and PPS for its usefulness in puncture and extraction of the needle. PPS was found to be preferable to HP based on the overall evaluation.
Space shuttle galley water system test program
NASA Technical Reports Server (NTRS)
1975-01-01
A water system for food rehydration was tested to determine the requirements for a space shuttle gallery flight system. A new food package concept had been previously developed in which water was introduced into the sealed package by means of a needle and septum. The needle configuration was developed and the flow characteristics measured. The interface between the food package and the water system, oven, and food tray was determined.
Optimized Delivery System Achieves Enhanced Endomyocardial Stem Cell Retention
Behfar, Atta; Latere, Jean-Pierre; Bartunek, Jozef; Homsy, Christian; Daro, Dorothee; Crespo-Diaz, Ruben J.; Stalboerger, Paul G.; Steenwinckel, Valerie; Seron, Aymeric; Redfield, Margaret M.; Terzic, Andre
2014-01-01
Background Regenerative cell-based therapies are associated with limited myocardial retention of delivered stem cells. The objective of this study is to develop an endocardial delivery system for enhanced cell retention. Methods and Results Stem cell retention was simulated in silico using one and three-dimensional models of tissue distortion and compliance associated with delivery. Needle designs, predicted to be optimal, were accordingly engineered using nitinol – a nickel and titanium alloy displaying shape memory and super-elasticity. Biocompatibility was tested with human mesenchymal stem cells. Experimental validation was performed with species-matched cells directly delivered into Langendorff-perfused porcine hearts or administered percutaneously into the endocardium of infarcted pigs. Cell retention was quantified by flow cytometry and real time quantitative polymerase chain reaction methodology. Models, computing optimal distribution of distortion calibrated to favor tissue compliance, predicted that a 75°-curved needle featuring small-to-large graded side holes would ensure the highest cell retention profile. In isolated hearts, the nitinol curved needle catheter (C-Cath) design ensured 3-fold superior stem cell retention compared to a standard needle. In the setting of chronic infarction, percutaneous delivery of stem cells with C-Cath yielded a 37.7±7.1% versus 10.0±2.8% retention achieved with a traditional needle, without impact on biocompatibility or safety. Conclusions Modeling guided development of a nitinol-based curved needle delivery system with incremental side holes achieved enhanced myocardial stem cell retention. PMID:24326777
Psooy, B J; Clark, T W; Beecroft, J R; Malatjalian, D
2001-01-01
Obtaining transjugular liver biopsy specimens with use of single-use needle systems is expensive, whereas biopsy specimens obtained with use of reusable needle systems are frequently associated with inadequate core specimens. The authors report their experience with the reusable Cook Shark Jaw biopsy needle, including diagnostic yield, complications, and cost-effectiveness. A retrospective audit was performed of a cohort of 134 patients who underwent 136 transjugular liver biopsies with use of a reusable 16-gauge Shark Jaw needle during a 30-month period. Specimen adequacy and complication rates were assessed and direct costs of expendable components calculated. Cost-effectiveness was expressed as cost-per-successful biopsy. Biopsies were technically successful in 126 of 136 (93%) patients, with diagnostic histologic core specimens obtained in 124 of 126 (98%) patients, for an overall success rate of 91%. Complications included capsular penetration in six (4.4%) patients, cardiac arrhythmia in two (1.5%) patients, and puncture site hematoma or bleeding in 10 (7.4%) patients. Three tract embolizations were performed for capsular penetration. No instances of subcapsular hematoma, hemoperitoneum, or sepsis occurred, and no deaths were attributed to the procedure. The cost of expendable components totaled $103 per biopsy, corresponding to a cost-effectiveness of $113/successful biopsy. Transjugular liver biopsy specimens obtained with use of the Shark Jaw needle have a diagnostic yield comparable to those obtained with use of single-use biopsy systems, at a substantially lower cost with no increase in serious complications.
Mixed Mode Fuel Injector And Injection System
Stewart, Chris Lee; Tian, Ye; Wang, Lifeng; Shafer, Scott F.
2005-12-27
A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set that are controlled respectively by first and second three way needle control valves. Each fuel injector includes first and second concentric needle valve members. One of the needle valve members moves to an open position for a homogenous charge injection event, while the other needle valve member moves to an open position for a conventional injection event. The fuel injector has the ability to operate in a homogenous charge mode with a homogenous charge spray pattern, a conventional mode with a conventional spray pattern or a mixed mode.
2010-01-01
Background Due to controversially discussed results in scientific literature concerning changes of electrical skin impedance before and during acupuncture a new measurement system has been developed. Methods The prototype measures and analyzes the electrical skin impedance computer-based and simultaneously in 48 channels within a 2.5×3.5 cm matrix. Preliminary measurements in one person were performed using metal needle and violet laser (405 nm) acupuncture at the acupoint Kongzui (LU6). The new system is an improvement on devices previously developed by other researchers for this purpose. Results Skin impedance in the immediate surroundings of the acupoint was lowered reproducibly following needle stimulation and also violet laser stimulation. Conclusions A new instrumentation for skin impedance measurements is presented. The following hypotheses suggested by our results will have to be tested in further studies: Needle acupuncture causes significant, specific local changes of electrical skin impedance parameters. Optical stimulation (violet laser) at an acupoint causes direct electrical biosignal changes. PMID:21092296
Yeo, Caitlin T; Ungi, Tamas; U-Thainual, Paweena; Lasso, Andras; McGraw, Robert C; Fichtinger, Gabor
2011-07-01
The purpose of this study was to determine if augmented reality image overlay and laser guidance systems can assist medical trainees in learning the correct placement of a needle for percutaneous facet joint injection. The Perk Station training suite was used to conduct and record the needle insertion procedures. A total of 40 volunteers were randomized into two groups of 20. 1) The Overlay group received a training session that consisted of four insertions with image and laser guidance, followed by two insertions with laser overlay only. 2) The Control group received a training session of six classical freehand insertions. Both groups then conducted two freehand insertions. The movement of the needle was tracked during the series of insertions. The final insertion procedure was assessed to determine if there was a benefit to the overlay method compared to the freehand insertions. The Overlay group had a better success rate (83.3% versus 68.4%, p=0.002), and potential for less tissue damage as measured by the amount of needle movement inside the phantom (3077.6 mm(2) versus 5607.9 mm(2) , p =0.01). These results suggest that an augmented reality overlay guidance system can assist medical trainees in acquiring technical competence in a percutaneous needle insertion procedure. © 2011 IEEE
Convolution neural networks for real-time needle detection and localization in 2D ultrasound.
Mwikirize, Cosmas; Nosher, John L; Hacihaliloglu, Ilker
2018-05-01
We propose a framework for automatic and accurate detection of steeply inserted needles in 2D ultrasound data using convolution neural networks. We demonstrate its application in needle trajectory estimation and tip localization. Our approach consists of a unified network, comprising a fully convolutional network (FCN) and a fast region-based convolutional neural network (R-CNN). The FCN proposes candidate regions, which are then fed to a fast R-CNN for finer needle detection. We leverage a transfer learning paradigm, where the network weights are initialized by training with non-medical images, and fine-tuned with ex vivo ultrasound scans collected during insertion of a 17G epidural needle into freshly excised porcine and bovine tissue at depth settings up to 9 cm and [Formula: see text]-[Formula: see text] insertion angles. Needle detection results are used to accurately estimate needle trajectory from intensity invariant needle features and perform needle tip localization from an intensity search along the needle trajectory. Our needle detection model was trained and validated on 2500 ex vivo ultrasound scans. The detection system has a frame rate of 25 fps on a GPU and achieves 99.6% precision, 99.78% recall rate and an [Formula: see text] score of 0.99. Validation for needle localization was performed on 400 scans collected using a different imaging platform, over a bovine/porcine lumbosacral spine phantom. Shaft localization error of [Formula: see text], tip localization error of [Formula: see text] mm, and a total processing time of 0.58 s were achieved. The proposed method is fully automatic and provides robust needle localization results in challenging scanning conditions. The accurate and robust results coupled with real-time detection and sub-second total processing make the proposed method promising in applications for needle detection and localization during challenging minimally invasive ultrasound-guided procedures.
10. NEEDLE SHOWER IN COOLING ROOM. Hot Springs National ...
10. NEEDLE SHOWER IN COOLING ROOM. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR
9. NEEDLE SHOWER IN MEN'S PACK ROOM. Hot Springs ...
9. NEEDLE SHOWER IN MEN'S PACK ROOM. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR
Microencapsulation Of Living Cells
NASA Technical Reports Server (NTRS)
Chang, Manchium; Kendall, James M.; Wang, Taylor G.
1989-01-01
In experimental technique, living cells and other biological materials encapsulated within submillimeter-diameter liquid-filled spheres. Sphere material biocompatible, tough, and compliant. Semipermeable, permitting relatively small molecules to move into and out of sphere core but preventing passage of large molecules. New technique promises to make such spherical capsules at high rates and in uniform, controllable sizes. Capsules injected into patient through ordinary hypodermic needle. Promising application for technique in treatment of diabetes. Also used to encapsulate pituitary cells and thyroid hormone adrenocortical cells for treatment of other hormonal disorders, to encapsulate other secreting cells for transplantation, and to package variety of pharmaceutical products and agricultural chemicals for controlled release.
Nevler, Avinoam; Har-Zahav, Gil; Rosin, Danny; Gutman, Mordechai
2016-02-01
Laparoscopic surgery is widely practiced surgical technique in the modern surgical toolbox. The Veress needle insertion technique, while faster and easier, is associated with higher rates of iatrogenic complications (injury to internal organs, major blood vessels, etc.), morbidity and even mortality with a reported overall risk of 0.32% during surgical interventions. In order to increase the safety and ease of closed insertion technique, we designed and tested an improved prototype of the Veress needle. The new Veress needle includes a distal expandable portion that allows elevation of the abdominal wall and safe insertion of the first trocar over it. The needle was assessed by measurement of ease of insertion, ease of trocar advancement, associated tissue damage, device integrity and weight-bearing capacity on an ex vivo Gallus domesticus animal model: The prototype was tested over 20 times using different traction forces. The experiment was qualitatively repeated on an ex vivo porcine model. In the G. domesticus model, the improved needle supported forces of up to 5.75 kg F. No damage or mechanical malfunction was seen at any stage of the experiment. Needle penetration, ease of trocar insertion, system anchoring and weight-bearing capacity were rated (1-5) by four raters--mean 4.9 ± 0.31. Inter-rater agreement was high (free marginal κ 0.75). The porcine experiment revealed similar ease of use with neither complication nor damage to the abdominal wall. We believe that the new Veress system is easy to use, requires no additional training, non-inferior in its capabilities compared to the traditional Veress needle, with the advantage of improving the safety of the first trocar insertion phase of the operation.
Transversely polarized sub-diffraction optical needle with ultra-long depth of focus
NASA Astrophysics Data System (ADS)
Guan, Jian; Lin, Jie; Chen, Chen; Ma, Yuan; Tan, Jiubin; Jin, Peng
2017-12-01
We generated purely transversely polarized sub-diffraction optical needles with ultra-long depth of focus (DOF) by focusing azimuthally polarized (AP) beams that were modulated by a vortex 0-2 π phase plate and binary phase diffraction optical elements (DOEs). The concentric belts' radii of the DOEs were optimized by a hybrid genetic particle swarm optimization (HGPSO) algorithm. For the focusing system with the numerical aperture (NA) of 0.95, an optical needle with the full width at half maximum (FWHM) of 0.40 λ and the DOF of 6.23 λ was generated. Similar optical needles were also generated by binary phase DOEs with different belts. The results demonstrated that the binary phase DOEs could achieve smaller FWHMs and longer DOFs simultaneously. The generated needles were circularly polarized on the z-axis and there were no longitudinally polarized components in the focal fields. The radius fabrication errors of a DOE have little effect on the optical needle produced by itself. The generated optical needles can be applied to the fields of photolithography, high-density optical data storage, microscope imaging and particle trapping.
Bak, Mihály; Péter, Ilona; Nyári, Tibor; Simon, Péter; Újlaky, Mátyás; Boér, András; Kásler, Miklós
2015-10-11
The methods available for the diagnosis of thyroid nodules include physical examination, imaging, laboratory and fine-needle aspiration cytology tests. The aim of this study was to determine the quality assurance of fine-needle aspiration cytology of thyroid nodules. Cytology results were rated to 6 categories according to the Bethesda System for Reporting Thyroid Cytopathology (2008) (I. nondiagnostic; II. benign; III. atypia of undetermined significance; IV. follicular neoplasia; V. suspicious for malignancy; VI. malignant). All cytology reports were compared with the final histology diagnosis. A total of 1384 patient with thyroid nodule underwent fine-needle aspiration biopsy cytology. Smears were classified I. inadequate in 214 (15.9%); II. benign 986; III. atypical 56; IV. follicular neoplasm 41; V. suspicious for malignancy 18; VI. malignant 33 cases. Two hundred and twenty seven (16.8%) of the cases were operated and histologically verified. The positive predictive value in the benign category was 98.25% and in the malignant 88.46%. The sensitivity of the follicular neoplasm was 66.67%. The results suggest that fine-needle aspiration cytology of thyroid nodules using the Bethesda System for Reporting Thyroid Cytopathology has a high diagnostic accuracy. The auditing values of the results meet the proposed threshold values.
Benchmarking of state-of-the-art needle detection algorithms in 3D ultrasound data volumes
NASA Astrophysics Data System (ADS)
Pourtaherian, Arash; Zinger, Svitlana; de With, Peter H. N.; Korsten, Hendrikus H. M.; Mihajlovic, Nenad
2015-03-01
Ultrasound-guided needle interventions are widely practiced in medical diagnostics and therapy, i.e. for biopsy guidance, regional anesthesia or for brachytherapy. Needle guidance using 2D ultrasound can be very challenging due to the poor needle visibility and the limited field of view. Since 3D ultrasound transducers are becoming more widely used, needle guidance can be improved and simplified with appropriate computer-aided analyses. In this paper, we compare two state-of-the-art 3D needle detection techniques: a technique based on line filtering from literature and a system employing Gabor transformation. Both algorithms utilize supervised classification to pre-select candidate needle voxels in the volume and then fit a model of the needle on the selected voxels. The major differences between the two approaches are in extracting the feature vectors for classification and selecting the criterion for fitting. We evaluate the performance of the two techniques using manually-annotated ground truth in several ex-vivo situations of different complexities, containing three different needle types with various insertion angles. This extensive evaluation provides better understanding on the limitations and advantages of each technique under different acquisition conditions, which is leading to the development of improved techniques for more reliable and accurate localization. Benchmarking results that the Gabor features are better capable of distinguishing the needle voxels in all datasets. Moreover, it is shown that the complete processing chain of the Gabor-based method outperforms the line filtering in accuracy and stability of the detection results.
Yeo, Boon Y.; McLaughlin, Robert A.; Kirk, Rodney W.; Sampson, David D.
2012-01-01
We present a high-resolution three-dimensional position tracking method that allows an optical coherence tomography (OCT) needle probe to be scanned laterally by hand, providing the high degree of flexibility and freedom required in clinical usage. The method is based on a magnetic tracking system, which is augmented by cross-correlation-based resampling and a two-stage moving window average algorithm to improve upon the tracker's limited intrinsic spatial resolution, achieving 18 µm RMS position accuracy. A proof-of-principle system was developed, with successful image reconstruction demonstrated on phantoms and on ex vivo human breast tissue validated against histology. This freehand scanning method could contribute toward clinical implementation of OCT needle imaging. PMID:22808429
High-Temperature Nonequilibrium Bose Condensation Induced by a Hot Needle.
Schnell, Alexander; Vorberg, Daniel; Ketzmerick, Roland; Eckardt, André
2017-10-06
We investigate theoretically a one-dimensional ideal Bose gas that is driven into a steady state far from equilibrium via the coupling to two heat baths: a global bath of temperature T and a "hot needle," a bath of temperature T_{h}≫T with localized coupling to the system. Remarkably, this system features a crossover to finite-size Bose condensation at temperatures T that are orders of magnitude larger than the equilibrium condensation temperature. This counterintuitive effect is explained by a suppression of long-wavelength excitations resulting from the competition between both baths. Moreover, for sufficiently large needle temperatures ground-state condensation is superseded by condensation into an excited state, which is favored by its weaker coupling to the hot needle. Our results suggest a general strategy for the preparation of quantum degenerate nonequilibrium steady states with unconventional properties and at large temperatures.
Larzábal, Mariano; Mercado, Elsa C.; Vilte, Daniel A.; Salazar-González, Hector; Cataldi, Angel; Navarro-Garcia, Fernando
2010-01-01
Background Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are two categories of E. coli strains associated with human disease. A major virulence factor of both pathotypes is the expression of a type three secretion system (TTSS), responsible for their ability to adhere to gut mucosa causing a characteristic attaching and effacing lesion (A/E). The TTSS translocates effector proteins directly into the host cell that subvert mammalian cell biochemistry. Methods/Principal Findings We examined synthetic peptides designed to inhibit the TTSS. CoilA and CoilB peptides, both representing coiled-coil regions of the translocator protein EspA, and CoilD peptide, corresponding to a coiled–coil region of the needle protein EscF, were effective in inhibiting the TTSS dependent hemolysis of red blood cells by the EPEC E2348/69 strain. CoilA and CoilB peptides also reduced the formation of actin pedestals by the same strain in HEp-2 cells and impaired the TTSS-mediated protein translocation into the epithelial cell. Interestingly, CoilA and CoilB were able to block EspA assembly, destabilizing the TTSS and thereby Tir translocation. This blockage of EspA polymerization by CoilA or CoilB peptides, also inhibited the correct delivery of EspB and EspD as detected by immunoblotting. Interestingly, electron microscopy of bacteria incubated with the CoilA peptide showed a reduction of the length of EspA filaments. Conclusions Our data indicate that coiled-coil peptides can prevent the assembly and thus the functionality of the TTSS apparatus and suggest that these peptides could provide an attractive tool to block EPEC and EHEC pathogenesis. PMID:20140230
Ji, Hongtao; Dong, Hansong
2015-09-01
Many plant- and animal-pathogenic Gram-negative bacteria employ the type III secretion system (T3SS) to translocate effector proteins from bacterial cells into the cytosol of eukaryotic host cells. The effector translocation occurs through an integral component of T3SS, the channel-like translocon, assembled by hydrophilic and hydrophobic proteinaceous translocators in a two-step process. In the first, hydrophilic translocators localize to the tip of a proteinaceous needle in animal pathogens, or a proteinaceous pilus in plant pathogens, and associate with hydrophobic translocators, which insert into host plasma membranes in the second step. However, the pilus needs to penetrate plant cell walls in advance. All hydrophilic translocators so far identified in plant pathogens are characteristic of harpins: T3SS accessory proteins containing a unitary hydrophilic domain or an additional enzymatic domain. Two-domain harpins carrying a pectate lyase domain potentially target plant cell walls and facilitate the penetration of the pectin-rich middle lamella by the bacterial pilus. One-domain harpins target plant plasma membranes and may play a crucial role in translocon assembly, which may also involve contrapuntal associations of hydrophobic translocators. In all cases, sensory components in the target plasma membrane are indispensable for the membrane recognition of translocators and the functionality of the translocon. The conjectural sensors point to membrane lipids and proteins, and a phosphatidic acid and an aquaporin are able to interact with selected harpin-type translocators. Interactions between translocators and their sensors at the target plasma membrane are assumed to be critical for translocon assembly. © 2014 BSPP AND JOHN WILEY & SONS LTD.
Event-chain Monte Carlo algorithms for three- and many-particle interactions
NASA Astrophysics Data System (ADS)
Harland, J.; Michel, M.; Kampmann, T. A.; Kierfeld, J.
2017-02-01
We generalize the rejection-free event-chain Monte Carlo algorithm from many-particle systems with pairwise interactions to systems with arbitrary three- or many-particle interactions. We introduce generalized lifting probabilities between particles and obtain a general set of equations for lifting probabilities, the solution of which guarantees maximal global balance. We validate the resulting three-particle event-chain Monte Carlo algorithms on three different systems by comparison with conventional local Monte Carlo simulations: i) a test system of three particles with a three-particle interaction that depends on the enclosed triangle area; ii) a hard-needle system in two dimensions, where needle interactions constitute three-particle interactions of the needle end points; iii) a semiflexible polymer chain with a bending energy, which constitutes a three-particle interaction of neighboring chain beads. The examples demonstrate that the generalization to many-particle interactions broadens the applicability of event-chain algorithms considerably.
Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography
NASA Astrophysics Data System (ADS)
Shin, Sungwon; Bae, Jung Kweon; Ahn, Yujin; Kim, Hyeongeun; Choi, Geonho; Yoo, Young-Sik; Joo, Choun-Ki; Moon, Sucbei; Jung, Woonggyu
2017-12-01
Deep anterior lamellar keratoplasty (DALK) is an emerging surgical technique for the restoration of corneal clarity and vision acuity. The big-bubble technique in DALK surgery is the most essential procedure that includes the air injection through a thin syringe needle to separate the dysfunctional region of the cornea. Even though DALK is a well-known transplant method, it is still challenged to manipulate the needle inside the cornea under the surgical microscope, which varies its surgical yield. Here, we introduce the DALK protocol based on the position-guided needle and M-mode optical coherence tomography (OCT). Depth-resolved 26-gage needle was specially designed, fabricated by the stepwise transitional core fiber, and integrated with the swept source OCT system. Since our device is feasible to provide both the position information inside the cornea as well as air injection, it enables the accurate management of bubble formation during DALK. Our results show that real-time feedback of needle end position was intuitionally visualized and fast enough to adjust the location of the needle. Through our research, we realized that position-guided needle combined with M-mode OCT is a very efficient and promising surgical tool, which also to enhance the accuracy and stability of DALK.
Needle puncture in rabbit functional spinal units alters rotational biomechanics.
Hartman, Robert A; Bell, Kevin M; Quan, Bichun; Nuzhao, Yao; Sowa, Gwendolyn A; Kang, James D
2015-04-01
An in vitro biomechanical study for rabbit lumbar functional spinal units (FSUs) using a robot-based spine testing system. To elucidate the effect of annular puncture with a 16 G needle on mechanical properties in flexion/extension, axial rotation, and lateral bending. Needle puncture of the intervertebral disk has been shown to alter mechanical properties of the disk in compression, torsion, and bending. The effect of needle puncture in FSUs, where intact spinal ligaments and facet joints may mitigate or amplify these changes in the disk, on spinal motion segment stability subject to physiological rotations remains unknown. Rabbit FSUs were tested using a robot testing system whose force/moment and position precision were assessed to demonstrate system capability. Flexibility testing methods were developed by load-to-failure testing in flexion/extension, axial rotation, and lateral bending. Subsequent testing methods were used to examine a 16 G needle disk puncture and No. 11 blade disk stab (positive control for mechanical disruption). Flexibility testing was used to assess segmental range-of-motion (degrees), neutral zone stiffness (N m/degrees) and width (degrees and N m), and elastic zone stiffness before and after annular injury. The robot-based system was capable of performing flexibility testing on FSUs-mean precision of force/moment measurements and robot system movements were <3% and 1%, respectively, of moment-rotation target values. Flexibility moment targets were 0.3 N m for flexion and axial rotation and 0.15 N m for extension and lateral bending. Needle puncture caused significant (P<0.05) changes only in flexion/extension range-of-motion and neutral zone stiffness and width (N m) compared with preintervention. No. 11 blade-stab significantly increased range-of-motion in all motions, decreased neutral zone stiffness and width (N m) in flexion/extension, and increased elastic zone stiffness in flexion and lateral bending. These findings suggest that disk puncture and stab can destabilize FSUs in primary rotations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borot de Battisti, M; Maenhout, M; Lagendijk, J J W
Purpose: To develop adaptive planning with feedback for MRI-guided focal HDR prostate brachytherapy with a single divergent needle robotic implant device. After each needle insertion, the dwell positions for that needle are calculated and the positioning of remaining needles and dosimetry are both updated based on MR imaging. Methods: Errors in needle positioning may occur due to inaccurate needle insertion (caused by e.g. the needle’s bending) and unpredictable changes in patient anatomy. Consequently, the dose plan quality might dramatically decrease compared to the preplan. In this study, a procedure was developed to re-optimize, after each needle insertion, the remaining needlemore » angulations, source positions and dwell times in order to obtain an optimal coverage (D95% PTV>19 Gy) without exceeding the constraints of the organs at risk (OAR) (D10% urethra<21 Gy, D1cc bladder<12 Gy and D1cc rectum<12 Gy). Complete HDR procedures with 6 needle insertions were simulated for a patient MR-image set with PTV, prostate, urethra, bladder and rectum delineated. Random angulation errors, modeled by a Gaussian distribution (standard deviation of 3 mm at the needle’s tip), were generated for each needle insertion. We compared the final dose parameters for the situations (I) without re-optimization and (II) with the automatic feedback. Results: The computation time of replanning was below 100 seconds on a current desk computer. For the patient tested, a clinically acceptable dose plan was achieved while applying the automatic feedback (median(range) in Gy, D95% PTV: 19.9(19.3–20.3), D10% urethra: 13.4(11.9–18.0), D1cc rectum: 11.0(10.7–11.6), D1cc bladder: 4.9(3.6–6.8)). This was not the case without re-optimization (median(range) in Gy, D95% PTV: 19.4(14.9–21.3), D10% urethra: 12.6(11.0–15.7), D1cc rectum: 10.9(8.9–14.1), D1cc bladder: 4.8(4.4–5.2)). Conclusion: An automatic guidance strategy for HDR prostate brachytherapy was developed to compensate errors in needle positioning and improve the dose distribution. Without re-optimization, target coverage and OAR constraints may not be achieved. M. Borot de Battisti is funded by Philips Medical Systems Nederland B.V.; M. Moerland is principal investigator on a contract funded by Philips Medical Systems Nederland B.V.; G. Hautvast and D. Binnekamp are full-time employees of Philips Medical Systems Nederland B.V.« less
Grading of severity of postdural puncture headache after 27-gauge Quincke and Whitacre needles.
Corbey, M P; Bach, A B; Lech, K; Frørup, A M
1997-06-01
Small-gauge needles are reported to have a low incidence of complications. Pencil-point needles are associated with a lower frequency of postdural puncture headache (PDPH), but a higher failure rate than Quincke needles. The incidence of PDPH was investigated in 200 patients under the age of 45, undergoing day-care surgery, after spinal anaesthesia with either 27-gauge Quincke or Whitacre needle. The severity of headache was graded as I (mild), II (moderate) or III (severe) using a grading system based on the visual analogue scale (VAS) associated with a functional rating (FG). The frequency of PDPH following the Whitacre needle was 0% and 5.6% after the Quincke needle (P = 0.05). Two PDPHs were assessed as grade III, and three as grade II. All PDPHs occurred when the Quincke needle bevel was withdrawn perpendicular to the dural fibres following parallel insertion. No PDPH occurred when the bevel was inserted and removed parallel to the dural fibres (P < 0.05). There was no statistical difference (P > 0.08) in the incidence of PDPH and postdural puncture-related headaches (PDPR-H) in patients with recurrent headaches or migraine compared to patients with no previous history of headaches. We conclude that the 27-gauge Whitacre needle is the 'needle of choice' in patients with normal body stature. The incidence of PDPH following Quincke needles may not only be affected by the direction of the bevel during insertion but also during removal. Statistically, there was no gender variation in PDPH in this study (P = 0.5). A previous history of recurrent headache or migraine does not predispose to PDPH.
NASA Astrophysics Data System (ADS)
Rodrigues, Pedro L.; Moreira, António H. J.; Rodrigues, Nuno F.; Pinho, A. C. M.; Fonseca, Jaime C.; Lima, Estevão.; Vilaça, João. L.
2014-03-01
Background: Precise needle puncture of renal calyces is a challenging and essential step for successful percutaneous nephrolithotomy. This work tests and evaluates, through a clinical trial, a real-time navigation system to plan and guide percutaneous kidney puncture. Methods: A novel system, entitled i3DPuncture, was developed to aid surgeons in establishing the desired puncture site and the best virtual puncture trajectory, by gathering and processing data from a tracked needle with optical passive markers. In order to navigate and superimpose the needle to a preoperative volume, the patient, 3D image data and tracker system were previously registered intraoperatively using seven points that were strategically chosen based on rigid bone structures and nearby kidney area. In addition, relevant anatomical structures for surgical navigation were automatically segmented using a multi-organ segmentation algorithm that clusters volumes based on statistical properties and minimum description length criterion. For each cluster, a rendering transfer function enhanced the visualization of different organs and surrounding tissues. Results: One puncture attempt was sufficient to achieve a successful kidney puncture. The puncture took 265 seconds, and 32 seconds were necessary to plan the puncture trajectory. The virtual puncture path was followed correctively until the needle tip reached the desired kidney calyceal. Conclusions: This new solution provided spatial information regarding the needle inside the body and the possibility to visualize surrounding organs. It may offer a promising and innovative solution for percutaneous punctures.
Microneedle arrays for biosensing and drug delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Joseph; Windmiller, Joshua Ray; Narayan, Roger
Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a^ device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce amore » probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.« less
Microneedle arrays for biosensing and drug delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Joseph; Windmiller, Joshua Ray; Narayan, Roger
Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce amore » probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.« less
Hepp, Christof; Maier, Berenike
2017-10-01
Secretion systems enable bacteria to import and secrete large macromolecules including DNA and proteins. While most components of these systems have been identified, the molecular mechanisms of macromolecular transport remain poorly understood. Recent findings suggest that various bacterial secretion systems make use of the translocation ratchet mechanism for transporting polymers across the cell envelope. Translocation ratchets are powered by chemical potential differences generated by concentration gradients of ions or molecules that are specific to the respective secretion systems. Bacteria employ these potential differences for biasing Brownian motion of the macromolecules within the conduits of the secretion systems. Candidates for this mechanism include DNA import by the type II secretion/type IV pilus system, DNA export by the type IV secretion system, and protein export by the type I secretion system. Here, we propose that these three secretion systems employ different molecular implementations of the translocation ratchet mechanism. © 2017 The Authors. BioEssays Published by WILEY Periodicals, Inc.
Hand gesture guided robot-assisted surgery based on a direct augmented reality interface.
Wen, Rong; Tay, Wei-Liang; Nguyen, Binh P; Chng, Chin-Boon; Chui, Chee-Kong
2014-09-01
Radiofrequency (RF) ablation is a good alternative to hepatic resection for treatment of liver tumors. However, accurate needle insertion requires precise hand-eye coordination and is also affected by the difficulty of RF needle navigation. This paper proposes a cooperative surgical robot system, guided by hand gestures and supported by an augmented reality (AR)-based surgical field, for robot-assisted percutaneous treatment. It establishes a robot-assisted natural AR guidance mechanism that incorporates the advantages of the following three aspects: AR visual guidance information, surgeon's experiences and accuracy of robotic surgery. A projector-based AR environment is directly overlaid on a patient to display preoperative and intraoperative information, while a mobile surgical robot system implements specified RF needle insertion plans. Natural hand gestures are used as an intuitive and robust method to interact with both the AR system and surgical robot. The proposed system was evaluated on a mannequin model. Experimental results demonstrated that hand gesture guidance was able to effectively guide the surgical robot, and the robot-assisted implementation was found to improve the accuracy of needle insertion. This human-robot cooperative mechanism is a promising approach for precise transcutaneous ablation therapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Virtual remote center of motion control for needle placement robots.
Boctor, Emad M; Webster, Robert J; Mathieu, Herve; Okamura, Allison M; Fichtinger, Gabor
2004-01-01
We present an algorithm that enables percutaneous needle-placement procedures to be performed with unencoded, unregistered, minimally calibrated robots while removing the constraint of placing the needle tip on a mechanically enforced Remote Center of Motion (RCM). The algorithm requires only online tracking of the surgical tool and a five-degree-of-freedom (5-DOF) robot comprising three prismatic DOF and two rotational DOF. An incremental adaptive motion control cycle guides the needle to the insertion point and also orients it to align with the target-entry-point line. The robot executes RCM motion without having a physically constrained fulcrum point. The proof-of-concept prototype system achieved 0.78 mm translation accuracy and 1.4 degrees rotational accuracy (this is within the tracker accuracy) within 17 iterative steps (0.5-1 s). This research enables robotic assistant systems for image-guided percutaneous procedures to be prototyped/constructed more quickly and less expensively than has been previously possible. Since the clinical utility of such systems is clear and has been demonstrated in the literature, our work may help promote widespread clinical adoption of this technology by lowering system cost and complexity.
Development of an MRI-Guided Intra-Prostatic Needle Placement System
2011-07-01
and intra-operative imaging using techniques such as those described by Haker , et al. [18]. Target points for the needle insertion are selected... Haker , S., Fichtinger, G., Tem- pany, C.: Transperineal prostate biopsy under magnetic resonance image guid- ance: A needle placement accuracy study 26...clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 42(3), 507–515 (1998) 9. DiMaio, S.P., Pieper, S., Chinzei, K., Hata, N., Haker , S.J
Robotic Needle Guide for Prostate Brachytherapy: Clinical Testing of Feasibility and Performance
Song, Danny Y; Burdette, Everette C; Fiene, Jonathan; Armour, Elwood; Kronreif, Gernot; Deguet, Anton; Zhang, Zhe; Iordachita, Iulian; Fichtinger, Gabor; Kazanzides, Peter
2010-01-01
Purpose Optimization of prostate brachytherapy is constrained by tissue deflection of needles and fixed spacing of template holes. We developed and clinically tested a robotic guide towards the goal of allowing greater freedom of needle placement. Methods and Materials The robot consists of a small tubular needle guide attached to a robotically controlled arm. The apparatus is mounted and calibrated to operate in the same coordinate frame as a standard template. Translation in x and y directions over the perineum ±40mm are possible. Needle insertion is performed manually. Results Five patients were treated in an IRB-approved study. Confirmatory measurements of robotic movements for initial 3 patients using infrared tracking showed mean error of 0.489 mm (SD 0.328 mm). Fine adjustments in needle positioning were possible when tissue deflection was encountered; adjustments were performed in 54/179 (30.2%) needles placed, with 36/179 (20.1%) adjustments of > 2mm. Twenty-seven insertions were intentionally altered to positions between the standard template grid to improve the dosimetric plan or avoid structures such as pubic bone and blood vessels. Conclusions Robotic needle positioning provided a means of compensating for needle deflections as well as the ability to intentionally place needles into areas between the standard template holes. To our knowledge, these results represent the first clinical testing of such a system. Future work will be incorporation of direct control of the robot by the physician, adding software algorithms to help avoid robot collisions with the ultrasound, and testing the angulation capability in the clinical setting. PMID:20729152
DOE Office of Scientific and Technical Information (OSTI.GOV)
DaSilva, L.; Marion, J.; Chase, C.
BioLuminate, Inc. planned to develop, produce and market a revolutionary diagnostic device for early breast cancer diagnosis. The device was originally invented by NASA; and exclusively licensed to BioLuminate for commercialization. At the time of the CRADA, eighty-five percent (85%) of all biopsies in the United States were found negative each year. The number of biopsies cost the health care system $23 billio n annually. A multi-sensor probe would allow surgeons to improve breast cancer scre ening and significantly reduce the number of biopsies. BioLuminate was developing an in-vivo system for the detection of cancer using a multi-sensor needle/probe. Themore » first system would be developed for the detection of breast cancer. LLNL, in collaboration with BioLuminate worked toward a detailed concept specification for the prototype multi-sensor needle/probe suitable for breast cancer analysis. BioLuminate in collaboration with LLNL, worked to develop a new version of the needle probe that would be the same size as needles commonly used to draw blood.« less
Marks, Zach
2014-01-01
Today's health-system pharmacists and those in independent practice face risks, including exposure to potent cytotoxic drugs via needlesticks, that are associated with preparing intravenous compounded sterile preparations for immediate use. Healthcare givers who administer such medications also risk exposure to needlesticks. Those hazards can be minimized when the pharmacist thoroughly understands and complies with current standard operating procedures for preparing intravenous compounded sterile preparations and the healthcare giver uses a needle-free system for drug reconstitution and administration. The components of an overall needlestick risk-reduction strategy to ensure safety in the preparation (and eventual administration) of intravenous compounded sterile preparations should therefore include the use of needle-free connection and administration devices as well as hand-hygiene training, aseptic technique competency evaluation and training, and the maximum use of commercially available or ready-to-use dosage forms. This article, which focuses on the pharmacist's use of a needle-free reconstitution and transfer system for compounded sterile intravenous drug solutions, uses as an example the Vial2Bag (Medimop Medical Projects, Ltd., [a subsidiary of West Pharmaceutical Services, Inc., Exton, Pennsylvania], Ra'anana, Israel), which complies with United States Pharmacopeia Chapter <797> standards. Features of that system are summarized for easy reference.
Calibration of 3D ultrasound to an electromagnetic tracking system
NASA Astrophysics Data System (ADS)
Lang, Andrew; Parthasarathy, Vijay; Jain, Ameet
2011-03-01
The use of electromagnetic (EM) tracking is an important guidance tool that can be used to aid procedures requiring accurate localization such as needle injections or catheter guidance. Using EM tracking, the information from different modalities can be easily combined using pre-procedural calibration information. These calibrations are performed individually, per modality, allowing different imaging systems to be mixed and matched according to the procedure at hand. In this work, a framework for the calibration of a 3D transesophageal echocardiography probe to EM tracking is developed. The complete calibration framework includes three required steps: data acquisition, needle segmentation, and calibration. Ultrasound (US) images of an EM tracked needle must be acquired with the position of the needles in each volume subsequently extracted by segmentation. The calibration transformation is determined through a registration between the segmented points and the recorded EM needle positions. Additionally, the speed of sound is compensated for since calibration is performed in water that has a different speed then is assumed by the US machine. A statistical validation framework has also been developed to provide further information related to the accuracy and consistency of the calibration. Further validation of the calibration showed an accuracy of 1.39 mm.
Treatment feasibility study of osteoporosis using minimal invasive laser needle system
NASA Astrophysics Data System (ADS)
Kang, Dongyeon; Ko, Chang-Yong; Ryu, Yeon-Hang; Park, Sunwook; Kim, Han-Sung; Jung, Byungjo
2010-02-01
Although the mechanism of laser stimulation effect in bone has not completely understood, laser stimulation is recommended in the treatment of osteoporosis due to positive treatment efficacy. In this study, a minimal invasive laser needle system (MILNS) was developed using a fine hollow needle in order to stimulate directly bone site by guiding an optical fiber. In order to evaluate the MILNS as a treatment method, in-vivo animal experiment study was performed using osteopenic mice. Twelve virginal ICR mice were employed and divided two groups: SHAM-group and LASERgroup. SHARM-group was stimulated by only fine hollow needle and LASER-group by fine hollow needle combined with laser stimulation. All mice were served in-vivo micro-CT images before and after treatment. Three dimensional (3D) structural parameters and vBMD (volume bone mineral density, g/cm3) in the trabecular bone were measured. After 2 weeks of stimulation, the vBMD, BV/TV, Tb.Th and Tb.N in LASER-group were significantly higher than those in SHAM-group (p<0.05). Potentially, this study suggested that the MILNS might prevent the bone loss and maintains the bone mineral density of osteopenic mice.
Design and evaluation of an intraocular B-scan OCT-guided 36-gauge needle
NASA Astrophysics Data System (ADS)
Shen, Jin H.; Joos, Karen M.
2015-03-01
Optical coherence tomography imaging is widely used in ophthalmology and optometry clinics for diagnosing retinal disorders. External microscope-mounted OCT operating room systems have imaged retinal changes immediately following surgical manipulations. However, the goal is to image critical surgical maneuvers in real time. External microscope-mounted OCT systems have some limitations with problems tracking constantly moving intraocular surgical instruments, and formation of absolute shadows by the metallic surgical instruments upon the underlying tissues of interest. An intraocular OCT-imaging probe was developed to resolve these problems. A disposable 25-gauge probe tip extended beyond the handpiece, with a 36-gauge needle welded to a disposable tip with its end extending an additional 3.5 mm. A sealed 0.35 mm diameter GRIN lens protected the fiber scanner and focused the scanning beam at a 3 to 4 mm distance. The OCT engine was a very high-resolution spectral-domain optical coherence tomography (SDOCT) system (870 nm, Bioptigen, Inc. Durham, NC) which produced 2000 A-scan lines per B-scan image at a frequency of 5 Hz with the fiber optic oscillations matched to this frequency. Real-time imaging of the needle tip as it touched infrared paper was performed. The B-scan OCT-needle was capable of real-time performance and imaging of the phantom material. In the future, the B-scan OCT-guided needle will be used to perform sub-retinal injections.
Percutaneous needle placement using laser guidance: a practical solution
NASA Astrophysics Data System (ADS)
Xu, Sheng; Kapoor, Ankur; Abi-Jaoudeh, Nadine; Imbesi, Kimberly; Hong, Cheng William; Mazilu, Dumitru; Sharma, Karun; Venkatesan, Aradhana M.; Levy, Elliot; Wood, Bradford J.
2013-03-01
In interventional radiology, various navigation technologies have emerged aiming to improve the accuracy of device deployment and potentially the clinical outcomes of minimally invasive procedures. While these technologies' performance has been explored extensively, their impact on daily clinical practice remains undetermined due to the additional cost and complexity, modification of standard devices (e.g. electromagnetic tracking), and different levels of experience among physicians. Taking these factors into consideration, a robotic laser guidance system for percutaneous needle placement is developed. The laser guidance system projects a laser guide line onto the skin entry point of the patient, helping the physician to align the needle with the planned path of the preoperative CT scan. To minimize changes to the standard workflow, the robot is integrated with the CT scanner via optical tracking. As a result, no registration between the robot and CT is needed. The robot can compensate for the motion of the equipment and keep the laser guide line aligned with the biopsy path in real-time. Phantom experiments showed that the guidance system can benefit physicians at different skill levels, while clinical studies showed improved accuracy over conventional freehand needle insertion. The technology is safe, easy to use, and does not involve additional disposable costs. It is our expectation that this technology can be accepted by interventional radiologists for CT guided needle placement procedures.
Ultrasound-guided three-dimensional needle steering in biological tissue with curved surfaces
Abayazid, Momen; Moreira, Pedro; Shahriari, Navid; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak
2015-01-01
In this paper, we present a system capable of automatically steering a bevel-tipped flexible needle under ultrasound guidance toward a physical target while avoiding a physical obstacle embedded in gelatin phantoms and biological tissue with curved surfaces. An ultrasound pre-operative scan is performed for three-dimensional (3D) target localization and shape reconstruction. A controller based on implicit force control is developed to align the transducer with curved surfaces to assure the maximum contact area, and thus obtain an image of sufficient quality. We experimentally investigate the effect of needle insertion system parameters such as insertion speed, needle diameter and bevel angle on target motion to adjust the parameters that minimize the target motion during insertion. A fast sampling-based path planner is used to compute and periodically update a feasible path to the target that avoids obstacles. We present experimental results for target reconstruction and needle insertion procedures in gelatin-based phantoms and biological tissue. Mean targeting errors of 1.46 ± 0.37 mm, 1.29 ± 0.29 mm and 1.82 ± 0.58 mm are obtained for phantoms with inclined, curved and combined (inclined and curved) surfaces, respectively, for insertion distance of 86–103 mm. The achieved targeting errors suggest that our approach is sufficient for targeting lesions of 3 mm radius that can be detected using clinical ultrasound imaging systems. PMID:25455165
Pneumatically Operated MRI-Compatible Needle Placement Robot for Prostate Interventions
Fischer, Gregory S.; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; Mewes, Philip W.; Tempany, Clare M.; Hata, Nobuhiko; Fichtinger, Gabor
2011-01-01
Magnetic Resonance Imaging (MRI) has potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. The strong magnetic field prevents the use of conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intra-prostatic needle placement inside closed high-field MRI scanners. The robot performs needle insertion under real-time 3T MR image guidance; workspace requirements, MR compatibility, and workflow have been evaluated on phantoms. The paper explains the robot mechanism and controller design and presents results of preliminary evaluation of the system. PMID:21686038
Pneumatically Operated MRI-Compatible Needle Placement Robot for Prostate Interventions.
Fischer, Gregory S; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; Mewes, Philip W; Tempany, Clare M; Hata, Nobuhiko; Fichtinger, Gabor
2008-06-13
Magnetic Resonance Imaging (MRI) has potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. The strong magnetic field prevents the use of conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intra-prostatic needle placement inside closed high-field MRI scanners. The robot performs needle insertion under real-time 3T MR image guidance; workspace requirements, MR compatibility, and workflow have been evaluated on phantoms. The paper explains the robot mechanism and controller design and presents results of preliminary evaluation of the system.
Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.
2015-01-01
Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379
NASA Astrophysics Data System (ADS)
Tokuda, Junichi; Chauvin, Laurent; Ninni, Brian; Kato, Takahisa; King, Franklin; Tuncali, Kemal; Hata, Nobuhiko
2018-04-01
Patient-mounted needle guide devices for percutaneous ablation are vulnerable to patient motion. The objective of this study is to develop and evaluate a software system for an MRI-compatible patient-mounted needle guide device that can adaptively compensate for displacement of the device due to patient motion using a novel image-based automatic device-to-image registration technique. We have developed a software system for an MRI-compatible patient-mounted needle guide device for percutaneous ablation. It features fully-automated image-based device-to-image registration to track the device position, and a device controller to adjust the needle trajectory to compensate for the displacement of the device. We performed: (a) a phantom study using a clinical MR scanner to evaluate registration performance; (b) simulations using intraoperative time-series MR data acquired in 20 clinical cases of MRI-guided renal cryoablations to assess its impact on motion compensation; and (c) a pilot clinical study in three patients to test its feasibility during the clinical procedure. FRE, TRE, and success rate of device-to-image registration were mm, mm, and 98.3% for the phantom images. The simulation study showed that the motion compensation reduced the targeting error for needle placement from 8.2 mm to 5.4 mm (p < 0.0005) in patients under general anesthesia (GA), and from 14.4 mm to 10.0 mm () in patients under monitored anesthesia care (MAC). The pilot study showed that the software registered the device successfully in a clinical setting. Our simulation study demonstrated that the software system could significantly improve targeting accuracy in patients treated under both MAC and GA. Intraprocedural image-based device-to-image registration was feasible.
Robotic Assistance for Ultrasound-Guided Prostate Brachytherapy
Fichtinger, Gabor; Fiene, Jonathan P.; Kennedy, Christopher W.; Kronreif, Gernot; Iordachita, Iulian; Song, Danny Y.; Burdette, Everette C.; Kazanzides, Peter
2016-01-01
We present a robotically assisted prostate brachytherapy system and test results in training phantoms and Phase-I clinical trials. The system consists of a transrectal ultrasound (TRUS) and a spatially co-registered robot, fully integrated with an FDA-approved commercial treatment planning system. The salient feature of the system is a small parallel robot affixed to the mounting posts of the template. The robot replaces the template interchangeably, using the same coordinate system. Established clinical hardware, workflow and calibration remain intact. In all phantom experiments, we recorded the first insertion attempt without adjustment. All clinically relevant locations in the prostate were reached. Non-parallel needle trajectories were achieved. The pre-insertion transverse and rotational errors (measured with a Polaris optical tracker relative to the template’s coordinate frame) were 0.25mm (STD=0.17mm) and 0.75° (STD=0.37°). In phantoms, needle tip placement errors measured in TRUS were 1.04mm (STD=0.50mm). A Phase-I clinical feasibility and safety trial has been successfully completed with the system. We encountered needle tip positioning errors of a magnitude greater than 4mm in only 2 out of 179 robotically guided needles, in contrast to manual template guidance where errors of this magnitude are much more common. Further clinical trials are necessary to determine whether the apparent benefits of the robotic assistant will lead to improvements in clinical efficacy and outcomes. PMID:18650122
An alternative and inexpensive percutaneous access needle in pediatric patients.
Penbegul, Necmettin; Soylemez, Haluk; Bozkurt, Yasar; Sancaktutar, Ahmet Ali; Bodakci, Mehmet Nuri; Hatipoglu, Namik Kemal; Atar, Murat; Yildirim, Kadir
2012-10-01
The most important factor that increases the cost of percutaneous surgery is the disposable instruments used for the surgery. In this study we present the advantages of using an intravenous cannula instead of a percutaneous access needle for renal access. Recently, percutaneous stone surgery has grown in use in pediatric cases and is considered a minimally invasive surgery. The most important step in this surgery is access to the renal collecting systems. Although fluoroscopy has been used frequently at this stage, the use of ultrasound has recently increased. During percutaneous accesses under all types of imaging techniques, disposable 11- to 15-cm-long 18-ga needles are used. In pediatric cases, these longer needles are difficult to use. Using disposable materials in percutaneous nephrolithotomy increases the cost of the procedure. Therefore, we asserted that percutaneous access especially in pediatric cases could be performed using a 16-ga intravenous cannula (angiocath). Indeed, percutaneous access was performed successfully, especially in pediatric preschool patients. Shorter needle length, easy skin entry, comfort of manipulation, clear visualization of the metal needle on ultrasound, and wide availability can be considered advantages of this method. The angiocath is also less expensive than a percutaneous access needle. Angiocath is inexpensive, easily available, and practical, and it is the shortest needle to perform percutaneous access in pediatric patients. Copyright © 2012 Elsevier Inc. All rights reserved.
A new biolistic intradermal injector
NASA Astrophysics Data System (ADS)
Brouillette, M.; Doré, M.; Hébert, C.; Spooner, M.-F.; Marchand, S.; Côté, J.; Gobeil, F.; Rivest, M.; Lafrance, M.; Talbot, B. G.; Moutquin, J.-M.
2016-01-01
We present a novel intradermal needle-free drug delivery device which exploits the unsteady high-speed flow produced by a miniature shock tube to entrain drug or vaccine particles onto a skin target. A first clinical study of pain and physiological response of human subjects study is presented, comparing the new injector to intramuscular needle injection. This clinical study, performed according to established pain assessment protocols, demonstrated that every single subject felt noticeably less pain with the needle-free injector than with the needle injection. Regarding local tolerance and skin reaction, bleeding was observed on all volunteers after needle injection, but on none of the subjects following powder injection. An assessment of the pharmacodynamics, via blood pressure, of pure captopril powder using the new device on spontaneously hypertensive rats was also performed. It was found that every animal tested with the needle-free injector exhibited the expected pharmacodynamic response following captopril injection. Finally, the new injector was used to study the delivery of an inactivated influenza vaccine in mice. The needle-free device induced serum antibody response to the influenza vaccine that was comparable to that of subcutaneous needle injection, but without requiring the use of an adjuvant. Although no effort was made to optimize the formulation or the injection parameters in the present study, the novel injector demonstrates great promise for the rapid, safe and painless intradermal delivery of systemic drugs and vaccines.
Saeter, Thorstein; Vlatkovic, Ljiljana; Waaler, Gudmund; Servoll, Einar; Nesland, Jahn M; Axcrona, Karol; Axcrona, Ulrika
2017-06-01
Intraductal carcinoma of the prostate (IDC-P) is a distinct histopathologic feature associated with high-grade, advanced prostate cancer. Although studies have shown that IDC-P is a predictor of progression following surgical or radiation treatment for prostate cancer, there are sparse data regarding IDC-P on diagnostic needle biopsy as a prognosticator of prostate cancer mortality. This was a population-based study of all prostate cancer patients diagnosed using needle biopsy and without evidence of systemic disease between 1991 and 1999 within a defined geographic region of Norway. Patients were identified by cross-referencing the Norwegian Cancer Registry. Of 318 eligible patients, 283 had biopsy specimens available for central pathology review. Clinical data were obtained from medical charts. We examined whether IDC-P on diagnostic needle biopsy was associated with adverse clinicopathological features and prostate cancer mortality. Patients with IDC-P on diagnostic needle biopsy had a more advanced stage and a higher Gleason score compared to patients without IDC-P. IDC-P was also associated with an intensively reactive stroma. The 10-year prostate cancer-specific survival was 69% for patients with IDC-P on diagnostic needle biopsy and 89% for patients without IDC-P (Log rank P-value < 0.005). The presence of IDC-P on diagnostic needle biopsy remained an independent predictor of prostate cancer mortality after adjustments for clinical prognostic factors and treatment. After adjustment for the newly implemented Grade Group system of prostate cancer, IDC-P showed a strong tendency toward statistical significance. However, IDC-P did not remain a statistically significant predictor in the multivariable analysis. IDC-P on diagnostic needle biopsy is an indicator of prostate cancer with a high risk of mortality. Accordingly, a diagnosis of IDC-P on needle biopsy should be reported and considered a feature of high-risk prostate cancer. Moreover, the association between IDC-P and reactive stroma provides evidence in support of the idea that stromal factors facilitate carcinoma invasion to the prostatic acini and ducts. Prostate 77:859-865, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Stone, Nelson N; Mouraviev, Vladimir; Schechter, David; Lucia, M Scott; Smith, Elizabeth E; Arangua, Paul; Hoenemeyer, John; Rosa, Jim; Bawa, Rajan; Crawford, E David
2017-09-01
To increase the likelihood of detecting anterior cancers within the prostate and provide a specimen that spans the length of the gland. Newly designed 17- and 15-gauge (G) biopsy needles, a variable actuator, and an integrated pathology system intended for the longer cores were developed and tested for this purpose. Testing was performed comparing 2 common cannula tip grinds, a Vet-point (sharp tip) and a Menghini-point (atraumatic tip), and were tested against 18-G Bard Monopty in porcine kidney. A variable actuator was developed to fire the needle 20-60 mm and tested in cadaver prostates. The aggregate firings for 3 different shot lengths comparing the Vet- with the Menghini-tip cannulas demonstrated 91% vs 85.2% fill (length of specimen/length of core bed, P = .007). A 15-G trocar needle with the Vet-tip cannula also had the best performance, with an aggregate standard deviation of 6.4% across 3 firing ranges and a minimum to maximum specimen length of 81%-105% of potential fill. Cadaver testing with the Vet-tip needles in the actuator for the transrectal (17-G) and transperineal (15-G) biopsies demonstrated mean fills of 93.3% and 76.5%, respectively. The new transrectal ultrasound needle obtained a 2-fold increase in specimen length over the standard Bard device (P <.001). Longer and consistent cores were obtained using the new biopsy needles. Combined with an adjustable actuator, the physician can obtain specimens that include peripheral and anterior zone tissue in 1 core. Determination of cancer location on the longer specimens could enhance focal therapy planning. Copyright © 2017 Elsevier Inc. All rights reserved.
Mabray, Marc C; Datta, Sanjit; Lillaney, Prasheel V; Moore, Teri; Gehrisch, Sonja; Talbott, Jason F; Levitt, Michael R; Ghodke, Basavaraj V; Larson, Paul S; Cooke, Daniel L
2016-07-01
Fluoroscopic systems in modern interventional suites have the ability to perform flat panel detector CT (FDCT) with navigational guidance. Fusion with MR allows navigational guidance towards FDCT occult targets. We aim to evaluate the accuracy of this system using single-pass needle placement in a deep brain stimulation (DBS) phantom. MR was performed on a head phantom with DBS lead targets. The head phantom was placed into fixation and FDCT was performed. FDCT and MR datasets were automatically fused using the integrated guidance system (iGuide, Siemens). A DBS target was selected on the MR dataset. A 10 cm, 19 G needle was advanced by hand in a single pass using laser crosshair guidance. Radial error was visually assessed against measurement markers on the target and by a second FDCT. Ten needles were placed using CT-MR fusion and 10 needles were placed without MR fusion, with targeting based solely on FDCT and fusion steps repeated for every pass. Mean radial error was 2.75±1.39 mm as defined by visual assessment to the centre of the DBS target and 2.80±1.43 mm as defined by FDCT to the centre of the selected target point. There were no statistically significant differences in error between MR fusion and non-MR guided series. Single pass needle placement in a DBS phantom using FDCT guidance is associated with a radial error of approximately 2.5-3.0 mm at a depth of approximately 80 mm. This system could accurately target sub-centimetre intracranial lesions defined on MR. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
A novel semi-robotized device for high-precision 18F-FDG-guided breast cancer biopsy.
Hellingman, D; Teixeira, S C; Donswijk, M L; Rijkhorst, E J; Moliner, L; Alamo, J; Loo, C E; Valdés Olmos, R A; Stokkel, M P M
To assess the 3D geometric sampling accuracy of a new PET-guided system for breast cancer biopsy (BCB) from areas within the tumour with high 18 F-FDG uptake. In the context of the European Union project MammoCare, a prototype semi-robotic stereotactic prototype BCB-device was incorporated into a dedicated high resolution PET-detector for breast imaging. The system consists of 2 stacked rings, each containing 12 plane detectors, forming a dodecagon with a 186mm aperture for 3D reconstruction (1mm 3 voxel). A vacuum-assisted biopsy needle attached to a robot-controlled arm was used. To test the accuracy of needle placement, the needle tip was labelled with 18 F-FDG and positioned at 78 target coordinates distributed over a 35mm×24mm×28mm volume within the PET-detector field-of-view. At each position images were acquired from which the needle positioning accuracy was calculated. Additionally, phantom-based biopsy proofs, as well as MammoCare images of 5 breast cancer patients, were evaluated for the 3D automated locating of 18 F-FDG uptake areas within the tumour. Needle positioning tests revealed an average accuracy of 0.5mm (range 0-1mm), 0.6mm (range 0-2mm), and 0.4mm (range 0-2mm) for the x/y/z-axes, respectively. Furthermore, the MammoCare system was able to visualize and locate small (<10mm) regions with high 18 F-FDG uptake within the tumour suitable for PET-guided biopsy after being located by the 3D automated application. Accuracy testing demonstrated high-precision of this semi-automatic 3D PET-guided system for breast cancer core needle biopsy. Its clinical feasibility evaluation in breast cancer patients scheduled for neo-adjuvant chemotherapy will follow. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
Characterization of tissue-simulating phantom materials for ultrasound-guided needle procedures
NASA Astrophysics Data System (ADS)
Buchanan, Susan; Moore, John; Lammers, Deanna; Baxter, John; Peters, Terry
2012-02-01
Needle biopsies are standard protocols that are commonly performed under ultrasound (US) guidance or computed tomography (CT)1. Vascular access such as central line insertions, and many spinal needle therapies also rely on US guidance. Phantoms for these procedures are crucial as both training tools for clinicians and research tools for developing new guidance systems. Realistic imaging properties and material longevity are critical qualities for needle guidance phantoms. However, current commercially available phantoms for use with US guidance have many limitations, the most detrimental of which include harsh needle tracks obfuscating US images and a membrane comparable to human skin that does not allow seepage of inner media. To overcome these difficulties, we tested a variety of readily available media and membranes to evaluate optimal materials to fit our current needs. It was concluded that liquid hand soap was the best medium, as it instantly left no needle tracks, had an acceptable depth of US penetration and portrayed realistic imaging conditions, while because of its low leakage, low cost, acceptable durability and transparency, the optimal membrane was 10 gauge vinyl.
Kulkarni, H R; Kamal, M M; Arjune, D G
1999-12-01
The scoring system developed by Mair et al. (Acta Cytol 1989;33:809-813) is frequently used to grade the quality of cytology smears. Using a one-factor analytic structural equations model, we demonstrate that the errors in measurement of the parameters used in the Mair scoring system are highly and significantly correlated. We recommend the use of either a multiplicative scoring system, using linear scores, or an additive scoring system, using exponential scores, to correct for the correlated errors. We suggest that the 0, 1, and 2 points used in the Mair scoring system be replaced by 1, 2, and 4, respectively. Using data on fine-needle biopsies of 200 thyroid lesions by both fine-needle aspiration (FNA) and fine-needle capillary sampling (FNC), we demonstrate that our modification of the Mair scoring system is more sensitive and more consistent with the structural equations model. Therefore, we recommend that the modified Mair scoring system be used for classifying the diagnostic adequacy of cytology smears. Diagn. Cytopathol. 1999;21:387-393. Copyright 1999 Wiley-Liss, Inc.
Boutsioukis, C; Lambrianidis, T; Kastrinakis, E; Bekiaroglou, P
2007-07-01
To monitor ex vivo intra-canal irrigation with three endodontic needles (25, 27 and 30 gauge) and compare them in terms of irrigant flow rate, intra-barrel pressure, duration of irrigation and volume of irrigant delivered. A testing system was constructed to allow measurement of selected variables with pressure and displacement transducers during ex vivo intra-canal irrigation with a syringe and three different needles (groups A, B, C) into a prepared root canal. Ten specialist endodontists performed the irrigation procedure. Each operator performed ten procedures with each needle. Data recorded by the transducers were analysed using Friedman's test, Wilcoxon Signed Rank test, Mann-Whitney U-test and Kendall's T(b) test. The level of significance was set to 95%. Significant differences were detected among the three needles for most variables. Duration of delivery and flow rates significantly decreased as the needle diameter increased, whilst pressure increased up to 400-550 kPa. Gender of the operator had a significant impact on the results. Experience of the operators (years) were negatively correlated to volume of irrigant (all groups), to the duration of delivery (groups A, B) and to the average flow rate (group A). Finer diameter needles require increased effort to deliver the irrigant and result in higher intra-barrel pressure. The syringe and needles used tolerated the pressure developed. Irrigant flow rate should be considered as a factor directly influencing flow beyond the needle. Wide variations of flow rate were observed among operators. Syringe irrigation appears difficult to standardize and control.
Perk Station – Percutaneous Surgery Training and Performance Measurement Platform
Vikal, Siddharth; U-Thainual, Paweena; Carrino, John A.; Iordachita, Iulian; Fischer, Gregory S.; Fichtinger, Gabor
2009-01-01
Motivation Image-guided percutaneous (through the skin) needle-based surgery has become part of routine clinical practice in performing procedures such as biopsies, injections and therapeutic implants. A novice physician typically performs needle interventions under the supervision of a senior physician; a slow and inherently subjective training process that lacks objective, quantitative assessment of the surgical skill and performance[S1]. Shortening the learning curve and increasing procedural consistency are important factors in assuring high-quality medical care. Methods This paper describes a laboratory validation system, called Perk Station, for standardized training and performance measurement under different assistance techniques for needle-based surgical guidance systems. The initial goal of the Perk Station is to assess and compare different techniques: 2D image overlay, biplane laser guide, laser protractor and conventional freehand. The main focus of this manuscript is the planning and guidance software system developed on the 3D Slicer platform, a free, open source software package designed for visualization and analysis of medical image data. Results The prototype Perk Station has been successfully developed, the associated needle insertion phantoms were built, and the graphical user interface was fully implemented. The system was inaugurated in undergraduate teaching and a wide array of outreach activities. Initial results, experiences, ongoing activities and future plans are reported. PMID:19539446
An Optical Actuation System and Curvature Sensor for a MR-compatible Active Needle
Ryu, Seok Chang; Quek, Zhan Fan; Renaud, Pierre; Black, Richard J.; Daniel, Bruce L.; Cutkosky, Mark R.
2015-01-01
A side optical actuation method is presented for a slender MR-compatible active needle. The needle includes an active region with a shape memory alloy (SMA) wire actuator, where the wire generates a contraction force when optically heated by a laser delivered though optical fibers, producing needle tip bending. A prototype, with multiple side heating spots, demonstrates twice as fast an initial response compared to fiber tip heating when 0.8 W of optical power is applied. A single-ended optical sensor with a gold reflector is also presented to measure the curvature as a function of optical transmission loss. Preliminary tests with the sensor prototype demonstrate approximately linear response and a repeatable signal, independent of the bending history. PMID:26509099
Brewer, Zachary E; Fann, Hutchinson C; Ogden, W David; Burdon, Thomas A; Sheikh, Ahmad Y
2016-01-01
It is speculated that, in operative environments, real-time visualization of the trainee's viewpoint by the instructor may improve performance and teaching efficacy. We hypothesized that introduction of a wearable surgical visualization system allowing the instructor to visualize otherwise "blind" areas in the operative field could improve trainee performance in a simulated operative setting. A total of 11 surgery residents (4 in general surgery training and 7 in an integrated 6-year cardiothoracic surgery program) participated in the study. Google (Mountain View, CA) Glass hardware running proprietary software from CrowdOptic (San Francisco, CA) was utilized for creation of the wearable surgical visualization system. Both the learner and trainer wore the system, and video was streamed from the learner's system in real time to the trainer, who directed the learner to place needles in a simulated operative field. Subjects placed a total of 5 needles in each of 4 quadrants. A composite error score was calculated based on the accuracy of needle placement in relation to the intended needle trajectories as described by the trainer. Time to task completion (TTC) was also measured and participants completed an exit questionnaire. All residents completed the protocol tasks and the survey. Introduction of the wearable surgical visualization system did not affect mean time to task completion (278 ± 50 vs. 282 ± 69 seconds, p = NS). However, mean composite error score fell significantly once the wearable system was deployed (18 ± 5 vs. 15 ± 4, p < 0.05), demonstrating improved accuracy of needle placement. Most of the participants deemed the device unobtrusive, easy to operate, and useful for communication and instruction. This study suggests that wearable surgical visualization systems allowing for adoption of the learner's perspective may be a useful educational adjunct in the training of surgeons. Further evaluations of the efficacy of wearable technology in the operating room environment are warranted. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
SU-E-J-81: Beveled Needle Tip Detection Error in Ultrasound-Guided Prostate Brachytherapy.
Leu, S; Ruiz, B; Podder, T
2012-06-01
To quantify the needle tip detection errors in ultrasound images due to bevel-tip orientation in relation to the location on template grid. Transrectal ultrasound (TRUS) system (BK Medical) with physical template grid and 18-gauge bevel-tip (20-deg beveled angle) brachytherapy needle (Bard Medical, Covington, GA) were used. The TRUS was set at 6.5MHz in water phantom at 40°C and measurements were taken with 50% and 100% TRUS gains. Needles were oriented with bevel-tip facing up (0-degree) and inserted through template grid-holes. Reference needle depths were measured when needle tip image intensity was bright enough for potentially consistent readings. High-resolution digital vernier caliper was used to measure needle depth. Needle bevel-tip orientation was then changed to bevel down (by rotating 180-degree) and needle depth was adjusted by retracting so that the needle-tip image intensity appeared similar to when the needle bevel-tip was at 0-degree orientation. Clinically relevant locations were considered for needle placement on the template grids (1st row to 9th row, and 'a-f' columns). For 50% TRUS gain, bevel tip detection errors/differences were 0.69±0.30mm (1st row) to 3.23±0.22mm (9th row) and 0.78±0.71mm (1st row) to 4.14±0.56mm (9th row) in columns 'a' and 'D', respectively. The corresponding errors for 100% TRUS gain were 0.57±0.25mm to 5.24±0.36mm and 0.84±0.30mm to 4.2±0.20mm in columns 'a' and 'D', respectively. These errors/differences varied linearly for grid-hole locations on the rows and columns in between, smaller to large depending on distance from the TRUS probe. Observed no effect of gains (50% vs. 100%) along 'D' column, which was directly above the TRUS probe. Experiment results revealed that the beveled needle tip orientation could significantly impact the detection accuracy of the needle tips, based on which the seeds might be delivered. These errors may lead to considerable dosimetric deviations in prostate brachytherapy seed implantation. © 2012 American Association of Physicists in Medicine.
Needle-free delivery of macromolecules through the skin using controllable jet injectors.
Hogan, Nora C; Taberner, Andrew J; Jones, Lynette A; Hunter, Ian W
2015-01-01
Transdermal delivery of drugs has a number of advantages in comparison to other routes of administration. The mechanical properties of skin, however, impose a barrier to administration and so most compounds are administered using hypodermic needles and syringes. In order to overcome some of the issues associated with the use of needles, a variety of non-needle devices based on jet injection technology has been developed. Jet injection has been used primarily for vaccine administration but has also been used to deliver macromolecules such as hormones, monoclonal antibodies and nucleic acids. A critical component in the more recent success of jet injection technology has been the active control of pressure applied to the drug during the time course of injection. Jet injection systems that are electronically controllable and reversible offer significant advantages over conventional injection systems. These devices can consistently create the high pressures and jet speeds necessary to penetrate tissue and then transition smoothly to a lower jet speed for delivery of the remainder of the desired dose. It seems likely that in the future this work will result in smart drug delivery systems incorporated into personal medical devices and medical robots for in-home disease management and healthcare.
NASA Astrophysics Data System (ADS)
Kim, Younsu; Kim, Sungmin; Boctor, Emad M.
2017-03-01
An ultrasound image-guided needle tracking systems have been widely used due to their cost-effectiveness and nonionizing radiation properties. Various surgical navigation systems have been developed by utilizing state-of-the-art sensor technologies. However, ultrasound transmission beam thickness causes unfair initial evaluation conditions due to inconsistent placement of the target with respect to the ultrasound probe. This inconsistency also brings high uncertainty and results in large standard deviations for each measurement when we compare accuracy with and without the guidance. To resolve this problem, we designed a complete evaluation platform by utilizing our mid-plane detection and time of flight measurement systems. The evaluating system uses a PZT element target and an ultrasound transmitting needle. In this paper, we evaluated an optical tracker-based surgical ultrasound-guided navigation system whereby the optical tracker tracks marker frames attached on the ultrasound probe and the needle. We performed ten needle trials of guidance experiment with a mid-plane adjustment algorithm and with a B-mode segmentation method. With the midplane adjustment, the result showed a mean error of 1.62+/-0.72mm. The mean error increased to 3.58+/-2.07mm without the mid-plane adjustment. Our evaluation system can reduce the effect of the beam-thickness problem, and measure ultrasound image-guided technologies consistently with a minimal standard deviation. Using our novel evaluation system, ultrasound image-guided technologies can be compared under equal initial conditions. Therefore, the error can be evaluated more accurately, and the system provides better analysis on the error sources such as ultrasound beam thickness.
Remenyik, Carl J.; Woychik, Richard P.; Patek, David R.; Hawk, James A.; Turner, John C.
1999-01-01
An electromechanical device for driving the tip of a microinjection cannula, or needle, through the outer barrier of a blastocyst, cell, or cell nucleus for the injection of cells or other bioactive materials. Either a flexible frame or a ram moving within a base member is employed. Cannula motion is achieved by means of a piezoelectric stack and spring return system. The thrust motion over a predetermined microscopic distance is achieved without cannula setback prior to the thrust movement. Instead of specially prepared beveled and tipped needles, standard unimproved cannulas or needles can be used.
Remenyik, C.J.; Woychik, R.P.; Patek, D.R.; Hawk, J.A.; Turner, J.C.
1999-03-02
An electromechanical device is disclosed for driving the tip of a microinjection cannula, or needle, through the outer barrier of a blastocyst, cell, or cell nucleus for the injection of cells or other bioactive materials. Either a flexible frame or a ram moving within a base member is employed. Cannula motion is achieved by means of a piezoelectric stack and spring return system. The thrust motion over a predetermined microscopic distance is achieved without cannula setback prior to the thrust movement. Instead of specially prepared beveled and tipped needles, standard unimproved cannulas or needles can be used. 6 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, S.
1990-09-01
Since 1984, perineal template/needle techniques for interstitial implantation of gynecologic cancer-cervix, vagina, vulva-have been developed at the Peter MacCallum Cancer Institute. The Paris System of dosimetry has been used resulting in greater dose homogeneity, fewer needles and radioactive sources and considerable simplification and ease of implantation compared with comparable techniques developed in the United States. Principles and techniques of implantation are described in detail.
Dahan, J; Semin, M O; Monton, C; Amiriantz, S; Concordet, D; Raymond-Letron, I; Dossin, O
2017-03-01
To compare the quality of duodenal and ileal samples obtained with different biopsy forceps. Fifteen dogs were included in a prospective ex vivo study. After euthanasia, the duodenum and the ileum were sampled with four different forceps and evaluated according to a standardised scoring system. The biopsy forceps evaluated had alligator jaws or cups with smooth edge with or without a needle. The global quality of the biopsies was better in the ileum that in the duodenum regardless of the biopsy forceps. Biopsy forceps with smooth edge including a needle resulted in fewer artefacts than biopsy forceps with smooth edge but no needle in both sites and those with alligator jaws without a needle provided deeper biopsies than those with smooth edge without a needle only in the duodenum. There was no effect of the biopsy forceps type on the size of the biopsies. Our findings may aid in choosing the appropriate type of forceps for intestinal biopsy. © 2017 British Small Animal Veterinary Association.
Smart surgical needle actuated by shape memory alloys for percutaneous procedures
NASA Astrophysics Data System (ADS)
Konh, Bardia
Background: Majority of cancer interventions today are performed percutaneously using needle-based procedures, i.e. through the skin and soft tissue. Insufficient accuracy using conventional surgical needles motivated researchers to provide actuation forces to the needle's body for compensating the possible errors of surgeons/physicians. Therefore, active needles were proposed recently where actuation forces provided by shape memory alloys (SMAs) are utilized to assist the maneuverability and accuracy of surgical needles. This work also aims to introduce a novel needle insertion simulation to predict the deflection of a bevel tip needle inside the tissue. Methods: In this work first, the actuation capability of a single SMA wire was studied. The complex response of SMAs was investigated via a MATLAB implementation of the Brinson model and verified via experimental tests. The material characteristics of SMAs were simulated by defining multilinear elastic isothermal stress-strain curves. Rigorous experiments with SMA wires were performed to determine the material properties as well as to show the capability of the code to predict a stabilized SMA transformation behavior with sufficient accuracy. The isothermal stress-strain curves of SMAs were simulated and defined as a material model for the Finite Element Analysis of the active needle. In the second part of this work, a three-dimensional finite element (FE) model of the active steerable needle was developed to demonstrate the feasibility of using SMA wires as actuators to bend the surgical needle. In the FE model, birth and death method of defining boundary conditions, available in ANSYS, was used to achieve the pre-strain condition on SMA wire prior to actuation. This numerical model was validated with needle deflection experiments with developed prototypes of the active needle. The third part of this work describes the design optimization of the active using genetic algorithm aiming for its maximum flexibility. Design parameters influencing the steerability include the needle's diameter, wire diameter, pre-strain, and its offset from the needle. A simplified model was developed to decrease the computation time in iterative analyses of the optimization algorithm. In the fourth part of this work a design of an active needling system was proposed where actuation forces of SMAs as well as shape memory polymers (SMPs) were incorporated. SMP elements provide two major additional advantages to the design: (i) recovery of the SMP's plastic deformation by heating the element above its glass transition temperature, and (ii) achieving a higher needle deflection by having a softer stage of SMP at higher temperatures with less amount of actuation force. Finally, in the fifth and last part of this study, an Arbitrary-Lagrangian-Eulerian formulation in LS-DYNA software was used to model the solid-fluid interactions between the needle and tissue. A 150mm long needle was considered to bend within the tissue due to the interacting forces on its asymmetric bevel tip. Some additional assumptions were made to maintain a reasonable computational time, with no need of parallel processing, while having practical accuracies. Three experimental tests of needle steering in a soft phantom were performed to validate the simulation. Results: The finite element model of the active needle was first validated experimentally with developed prototypes. Several design parameters affecting the needle's deflection such as the needle's Young's modulus, the SMA's pre-strain and its offset from the neutral axis of the cannula were studied using the FE model. Then by the integration of the SMA characteristics with the automated optimization schemes an improved design of the active needle was obtained. Real-time experiments with different prototypes showed that the quickest response and the maximum deflection were achieved by the needle with two sections of actuation compared to a single section of actuation. Also the feasibility of providing actuation forces using both SMAs and SMPs for the surgical needle was demonstrated in this study. The needle insertion simulation was validated while observing less than 10% deviation between the estimated amount of needle deflection by the simulation and by the experiments. Using this model the effect of needle diameter and its bevel tip angle on the final shape of the needle was investigated. Conclusion: The numerical and experimental studies of this work showed that a highly maneuverable active needle can be made using the actuation of multiple SMA wires in series. To maneuver around the anatomical obstacles of the human body and reach the target location, thin sharp needles are recommended as they would create a smaller radius of curvature. The insertion model presented in this work is intended to be used as a base structure for path planning and training purposes for future studies. (Abstract shortened by UMI.).
Bienvenu, Boris; Aouba, Achille; Gottenberg, Jacques-Eric; Verstuyft, Celine
2017-04-01
Zeneo 1 is a needle-free injection device. We performed a pharmacokinetic study to investigate the bioequivalence of methotrexate administered subcutaneously using either the needle-free injection device or a conventional needle and syringe. This was a single-dose, open-label, laboratory-blind, randomized crossover study performed in adult healthy volunteers. Each participant received two methotrexate injections (each 25 mg), one via needle-free injection device and one via conventional injection, with a 21-28 day wash-out interval between dosing. For each participant, the administration site for both injections was either the abdomen or the thigh. The primary pharmacokinetic outcome parameters were AUC (0- t ) and C max . Bioequivalence was assessed by standard criteria: whether 90% confidence intervals of geometric mean ratios for the two administration methods were within 80-125%. Fifty-two individuals completed the study. Bioequivalence criteria were met for AUC (0- t ) , for the overall analysis (both injection sites: 90% confidence interval: 99.4-103.1%), and for each injection site separately. Bioequivalence was similarly demonstrated with AUC (0-∞) . Bioequivalence criteria for C max were fulfilled for abdominal administration but not for the overall analysis. Injection via the needle-free injection device was well tolerated. Limitations include conducting the study in healthy volunteers and the relatively small subject number (albeit satisfactory for bioequivalence). This study shows that methotrexate injection via needle-free injection device is bioequivalent to a conventional needle and syringe in relation to AUC (0- t ) and AUC (0-∞) . Studies of needle-free injection device use in patients requiring methotrexate therapy are planned.
NASA Astrophysics Data System (ADS)
Ueno, Hideki; Kawano, Taichi; Sakamoto, Naoki; Nakayama, Hiroshi
For a needle-plane electrode system with a barrier, which establishes the electric field across the axis of a groove, creeping discharge characteristics in N2 gas under µs pulse voltage applications have been investigated. The distance h between the barrier surface and the needle tip as well as the distance M between the groove center and the needle tip were changed. In the case of h=0.3mm, when the needle tip is located near the far-side groove edge from the plane electrode (M=0.6mm), the flashover voltage has the maximum value. At that time, a growth of a corona is suppressed near the groove edge. These unique characteristics should associate with a field relaxation.
C-arm cone beam computed tomography needle path overlay for fluoroscopic guided vertebroplasty.
Tam, Alda L; Mohamed, Ashraf; Pfister, Marcus; Chinndurai, Ponraj; Rohm, Esther; Hall, Andrew F; Wallace, Michael J
2010-05-01
Retrospective review. To report our early clinical experience using C-arm cone beam computed tomography (C-arm CBCT) with fluoroscopic overlay for needle guidance during vertebroplasty. C-arm CBCT is advanced three-dimensional (3-D) imaging technology that is currently available on state-of-the-art flat panel based angiography systems. The imaging information provided by C-arm CBCT allows for the acquisition and reconstruction of "CT-like" images in flat panel based angiography/interventional suites. As part of the evolution of this technology, enhancements allowing the overlay of cross-sectional imaging information can now be integrated with real time fluoroscopy. We report our early clinical experience with C-arm CBCT with fluoroscopic overlay for needle guidance during vertebroplasty. This is a retrospective review of 10 consecutive oncology patients who underwent vertebroplasty of 13 vertebral levels using C-arm CBCT with fluoroscopic overlay for needle guidance from November 2007 to December 2008. Procedural data including vertebral level, approach (transpedicular vs. extrapedicular), access (bilateral vs. unilateral) and complications were recorded. Technical success with the overlay technology was assessed based on accuracy which consisted of 4 measured parameters: distance from target to needle tip, distance from planned path to needle tip, distance from midline to needle tip, and distance from the anterior 1/3 of the vertebral body to needle tip. Success within each parameter required that the distance between the needle tip and parameter being evaluated be no more than 5 mm on multiplanar CBCT or fluoroscopy. Imaging data for 12 vertebral levels was available for review. All vertebral levels were treated using unilateral access and 9 levels were treated with an extrapedicular approach. Technical success rates were 92% for both distance from planned path and distance from midline to final needle tip, 100% when distance from needle tip to the anterior 1/3 border of the vertebral body was measured, and 75% when distance from target to needle tip was measured. There were no major complications. Minor complications consisted of 3 cases (25%) of cement extravasation. C-arm CBCT with needle path overlay for fluoroscopic guided vertebroplasty is feasible and allows for reliable unilateral therapy of both lumbar and thoracic vertebral bodies. Extrapedicular approaches were performed safely and with good accuracy of reaching the targets.
Buldur, Burak; Kapdan, Arife
The purpose of this study was to compare the antimicrobial efficacy of the EndoVac system and conventional needle irrigation to eliminate E faecalis in primary molar root canals. 60 extracted human primary second molar roots were instrumented up to an apical size .04/35 and randomly divided into two groups; Group 1: conventional needle (n=30) and Group 2: EndoVac (n=30), and four subgroups (two experimental subgroups; (a) 2.5% sodium hypochlorite (NaOCl) + ethylenediaminetetraacetic acid (EDTA) (n=20), (b) ozonated water (OW) + EDTA (n=20), and control groups (c) 5.25% NaOCl (n=10) and (d) saline (n=10). All roots were sterilized and then inoculated with E.faecalis. Before and after final irrigation procedures, root canals were sampled and the grown colony forming units (CFUs) were counted. Data were analyzed by Kruskall-Wallis and Mann-Whitney U tests using a 0.05 significance level. The EndoVac reduced more bacteria than the conventional needle did but it was not statistically significant (p>0.05). NaOCl alone or followed by EDTA totally eliminated bacteria. OW + EDTA showed higher reduction of bacteria but could not totally eliminate bacterias. In the context of bacterial elimination, the EndoVac was not significantly better than the conventional needle. Although, there were fewer CFU/mg when using EndoVac, there was not any statistically significant superiority to conventional needle irrigation. An OW+EDTA regimen showed antibacterial effect in the primary molar root canals but it was significantly less effective than NaOCl+EDTA.
SU-F-J-10: Sliding Mode Control of a SMA Actuated Active Flexible Needle for Medical Procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podder, T
Purpose: In medical interventional procedures such as brachytherapy, ablative therapies and biopsy precise steering and accurate placement of needles are very important for anatomical obstacle avoidance and accurate targeting. This study presents the efficacy of a sliding mode controller for Shape Memory Alloy (SMA) actuated flexible needle for medical procedures. Methods: Second order system dynamics of the SMA actuated active flexible needle was used for deriving the sliding mode control equations. Both proportional-integral-derivative (PID) and adaptive PID sliding mode control (APIDSMC) algorithms were developed and implemented. The flexible needle was attached at the end of a 6 DOF robotic system.more » Through LabView programming environment, the control commands were generated using the PID and APIDSMC algorithms. Experiments with artificial tissue mimicking phantom were performed to evaluate the performance of the controller. The actual needle tip position was obtained using an electromagnetic (EM) tracking sensor (Aurora, NDI, waterloo, Canada) at a sampling period of 1ms. During experiment, external disturbances were created applying force and thermal shock to investigate the robustness of the controllers. Results: The root mean square error (RMSE) values for APIDSMC and PID controllers were 0.75 mm and 0.92 mm, respectively, for sinusoidal reference input. In the presence of external disturbances, the APIDSMC controller showed much smoother and less overshooting response compared to that of the PID controller. Conclusion: Performance of the APIDSMC was superior to the PID controller. The APIDSMC was proved to be more effective controller in compensating the SMA uncertainties and external disturbances with clinically acceptable thresholds.« less
Development of Needle Insertion Manipulator for Central Venous Catheterization
NASA Astrophysics Data System (ADS)
Kobayashi, Yo; Hong, Jaesung; Hamano, Ryutaro; Hashizume, Makoto; Okada, Kaoru; Fujie, Masakatsu G.
Central venous catheterization is a procedure, which a doctor insert a catheter into the patient’s vein for transfusion. Since there are risks of bleeding from arterial puncture or pneumothorax from pleural puncture. Physicians are strictly required to make needle reach up into the vein and to stop the needle in the middle of vein. We proposed a robot system for assisting the venous puncture, which can relieve the difficulties in conventional procedure, and the risks of complication. This paper reports the design structuring and experimental results of needle insertion manipulator. First, we investigated the relationship between insertion force and angle into the vein. The results indicated that the judgment of perforation using the reaction force is possible in case where the needling angle is from 10 to 20 degree. The experiment to evaluate accuracy of the robot also revealed that it has beyond 0.5 mm accuracy. We also evaluated the positioning accuracy in the ultrasound images. The results displays that the accuracy is beyond 1.0 mm and it has enough for venous puncture. We also carried out the venous puncture experiment to the phantom and confirm our manipulator realized to make needle reach up into the vein.
Yang, Sunhye; Kim, Ick-Jun; Choi, In-Sik; Bae, Mi-Kyeong; Kim, Hyun-Soo
2013-05-01
The structure of needle coke was changed to graphite oxide structure after oxidation treatment with 70 wt.% of nitric acid and sodium chlorate (NaClO3), and the inter-layer distance of the oxidized needle coke was expanded to 6.9 angstroms. The first charge profile of the oxidized needle coke-cell with 1.2 M TEMABF4/acetonitrile solution displayed that the intercalation of electrolyte ions into the inter-layer occurred at 1.0 V, which value is lower than 1.3 V of the oxidized needle coke-cell with 1.2 M TEABF4/acetonitrile solution. After first charge/discharge, the cell using TEMABF4 electrolyte exhibited smaller electrode resistance of 0.05 omega, and larger specific volume capacitance of 25.5 F/ml at the two-electrode system in the potential range 0-2.5 V than those of the cell using TEABF4 electrolyte. Compared to the TEABF4 electrolyte, better electrochemical performance of the TEMABF4 electrolyte in the oxidized needle coke may be caused by the smaller cation (TEMA+) size and better ion mobility in the nanopores between inter-layers.
Antioxidant, antimutagenic, and antitumor effects of pine needles (Pinus densiflora).
Kwak, Chung Shil; Moon, Sung Chae; Lee, Mee Sook
2006-01-01
Pine needles (Pinus densiflora Siebold et Zuccarini) have long been used as a traditional health-promoting medicinal food in Korea. To investigate their potential anticancer effects, antioxidant, antimutagenic, and antitumor activities were assessed in vitro and/or in vivo. Pine needle ethanol extract (PNE) significantly inhibited Fe(2+)-induced lipid peroxidation and scavenged 1,1-diphenyl- 2-picrylhydrazyl radical in vitro. PNE markedly inhibited mutagenicity of 2-anthramine, 2-nitrofluorene, or sodium azide in Salmonella typhimurium TA98 or TA100 in Ames tests. PNE exposure effectively inhibited the growth of cancer cells (MCF-7, SNU-638, and HL-60) compared with normal cell (HDF) in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In in vivo antitumor studies, freeze-dried pine needle powder supplemented (5%, wt/wt) diet was fed to mice inoculated with Sarcoma-180 cells or rats treated with mammary carcinogen, 7,12-dimethylbenz[a]anthracene (DMBA, 50 mg/kg body weight). Tumorigenesis was suppressed by pine needle supplementation in the two model systems. Moreover, blood urea nitrogen and aspartate aminotransferase levels were significantly lower in pine needle-supplemented rats in the DMBA-induced mammary tumor model. These results demonstrate that pine needles exhibit strong antioxidant, antimutagenic, and antiproliferative effects on cancer cells and also antitumor effects in vivo and point to their potential usefulness in cancer prevention.
Islam, Anwarul
2018-06-01
The optimal clinical evaluation of the bone marrow requires an examination of air-dried and well-stained films of the aspirated tissue along with a histopathological evaluation of adequately processed and properly stained core biopsy specimens. A bone marrow evaluation can be essential in establishing a diagnosis, determining the efficacy of treatment in haematological disorders and to monitor haematological status of patients following bone marrow/stem cell transplantation. It is also an essential component of the staging process for newly diagnosed malignancies. Currently available bone marrow aspiration needles are quite satisfactory and if properly used provide good-quality specimens for morphological evaluation. However, if a bone marrow core biopsy is concerned, several needles are currently in use but not all of them provide good-quality biopsy specimens for histological evaluation or are user friendly. We have compared the recently introduced Moeller Medical single use bone marrow core biopsy needle with the Jamshidi needle with marrow acquisition cradle (CareFusion), J-needle (Cardinal Health) and OnControl device (Vidacare). It is concluded that the Moeller Medical needle system has definite advantages over others and is recommended for routine use. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Neo, Shirlyn Hui-Shan; Khemlani, Mansha Hari; Sim, Lai Kiow; Seah, Angeline Soek Tian
2016-03-01
A comparison of metal needles and plastic cannulae (winged and nonwinged) for continuous subcutaneous infusion was done during a quality improvement project to reduce device-induced complications at our hospital. Design, Setting, and Measurements: Data were collected on incidence of site reactions (bruising, swelling, erythema, and blisters); mechanical complications (kinking and dislodgement); device durability; type, and volume of medications; and incidence of needle-stick injuries. All infusion devices used for patients in the Palliative Care Service from February 3 to March 26, 2014 were studied. Devices examined were: winged metal needle (Venofix(®), 23G, B. Braun Melsungen AG, Melsungen, Germany), winged vialon cannula (BD Nexiva™, 24G, Becton Dickinson Infusion Therapy Systems Inc., Sandy, UT), and nonwinged polyurethane cannula (Introcan Safety(®), 24G, B. Braun Medical, Mundelein, IL). Thirty devices (10 per type) were used. Incidence of site reactions was 50.0%, 10.0%, and 0.0% for the metal needles, polyurethane cannulae, and vialon cannulae, respectively. Incidence of mechanical complications was 20.0% for the polyurethane cannulae and 0.0% for the metal needles and vialon cannulae. Duration of use was up to 60 hours, 83 hours, and 113 hours for the metal needles, polyurethane cannulae, and vialon cannulae, respectively. Daily volumes infused were up to 28.9 mL, 60.0 mL, and 29.4 mL for the metal needles, polyurethane cannulae, and vialon cannulae, respectively. No needle-stick injuries occurred. The winged vialon cannula was the most durable, with no site reactions or mechanical complications, tolerating a volume comparable to that of the metal needle. We suggest its utilization for continuous subcutaneous infusions and consideration of future randomized controlled trials with an integrated economic evaluation for further in-depth comparisons of subcutaneous indwelling devices.
NASA Astrophysics Data System (ADS)
Borot de Battisti, M.; Maenhout, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; van Vulpen, M.; Moerland, M. A.
2015-10-01
Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5 cm3to 23.3 cm3) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20 min and a clinically acceptable plan was reached on average using only four needle insertions.
2013-01-01
An injector needle is shown for each test in Figure 41. UNCLASSIFIED 37 UNCLASSIFIED Full Needle 60°C Ultra Low Sulfur Diesel 60°C...UNCLASSIFIED EVALUATION OF FUTURE FUELS IN A HIGH PRESSURE COMMON RAIL SYSTEM – PART 2 2011 FORD 6.7L DIESEL ENGINE INTERIM REPORT TFLRF...UNCLASSIFIED UNCLASSIFIED EVALUATION OF FUTURE FUELS IN A HIGH PRESSURE COMMON RAIL SYSTEM – PART 2 2011 FORD 6.7L DIESEL ENGINE INTERIM REPORT TFLRF
DBSecSys: a database of Burkholderia mallei secretion systems.
Memišević, Vesna; Kumar, Kamal; Cheng, Li; Zavaljevski, Nela; DeShazer, David; Wallqvist, Anders; Reifman, Jaques
2014-07-16
Bacterial pathogenicity represents a major public health concern worldwide. Secretion systems are a key component of bacterial pathogenicity, as they provide the means for bacterial proteins to penetrate host-cell membranes and insert themselves directly into the host cells' cytosol. Burkholderia mallei is a Gram-negative bacterium that uses multiple secretion systems during its host infection life cycle. To date, the identities of secretion system proteins for B. mallei are not well known, and their pathogenic mechanisms of action and host factors are largely uncharacterized. We present the Database of Burkholderia malleiSecretion Systems (DBSecSys), a compilation of manually curated and computationally predicted bacterial secretion system proteins and their host factors. Currently, DBSecSys contains comprehensive experimentally and computationally derived information about B. mallei strain ATCC 23344. The database includes 143 B. mallei proteins associated with five secretion systems, their 1,635 human and murine interacting targets, and the corresponding 2,400 host-B. mallei interactions. The database also includes information about 10 pathogenic mechanisms of action for B. mallei secretion system proteins inferred from the available literature. Additionally, DBSecSys provides details about 42 virulence attenuation experiments for 27 B. mallei secretion system proteins. Users interact with DBSecSys through a Web interface that allows for data browsing, querying, visualizing, and downloading. DBSecSys provides a comprehensive, systematically organized resource of experimental and computational data associated with B. mallei secretion systems. It provides the unique ability to study secretion systems not only through characterization of their corresponding pathogen proteins, but also through characterization of their host-interacting partners.The database is available at https://applications.bhsai.org/dbsecsys.
Kara Tuncer, Aysun; Unal, Bayram
2014-05-01
The aim of this study was to compare the effect of the EndoVac irrigation system (SybronEndo, Orange, CA) and conventional endodontic needle irrigation on sealer penetration into dentinal tubules. Forty single-rooted, recently extracted human maxillary central incisors were randomly divided into 2 groups according to the irrigation technique used: conventional endodontic needle irrigation and EndoVac irrigation. All teeth were instrumented using the ProFile rotary system (Dentsply Maillefer, Ballaigues, Switzerland) and obturated with gutta-percha and AH Plus sealer (Dentsply DeTrey, Konstanz, Germany) labeled with fluorescent dye. Transverse sections at 1, 3, and 5 mm from the root apex were examined using confocal laser scanning microscopy. The total percentage and maximum depth of sealer penetration were then measured. Mann-Whitney test results showed that EndoVac irrigation resulted in a significantly higher percentage of sealer penetration than conventional irrigation at both the 1- and 3-mm levels (P < .05). However, no difference was found at the 5-mm level. The 5-mm sections in each group showed a significantly higher percentage and maximum depth of sealer penetration than did the 1- and 3-mm sections (P < .05). The EndoVac irrigation system significantly improved the sealer penetration at the 1- to 3-mm level over that of conventional endodontic needle irrigation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornelis, F.; Takaki, H.; Laskhmanan, M.
PurposeTo compare CT fluoroscopy-guided manual and CT-guided robotic positioning system (RPS)-assisted needle placement by experienced IR physicians to targets in swine liver.Materials and MethodsManual and RPS-assisted needle placement was performed by six experienced IR physicians to four 5 mm fiducial seeds placed in swine liver (n = 6). Placement performance was assessed for placement accuracy, procedure time, number of confirmatory scans, needle manipulations, and procedure radiation dose. Intra-modality difference in performance for each physician was assessed using paired t test. Inter-physician performance variation for each modality was analyzed using Kruskal–Wallis test.ResultsPaired comparison of manual and RPS-assisted placements to a target by the samemore » physician indicated accuracy outcomes was not statistically different (manual: 4.53 mm; RPS: 4.66 mm; p = 0.41), but manual placement resulted in higher total radiation dose (manual: 1075.77 mGy/cm; RPS: 636.4 mGy/cm; p = 0.03), required more confirmation scans (manual: 6.6; RPS: 1.6; p < 0.0001) and needle manipulations (manual: 4.6; RPS: 0.4; p < 0.0001). Procedure time for RPS was longer than manual placement (manual: 6.12 min; RPS: 9.7 min; p = 0.0003). Comparison of inter-physician performance during manual placement indicated significant differences in the time taken to complete placements (p = 0.008) and number of repositions (p = 0.04) but not in other study measures (p > 0.05). Comparison of inter-physician performance during RPS-assisted placement suggested statistically significant differences in procedure time (p = 0.02) and not in other study measures (p > 0.05).ConclusionsCT-guided RPS-assisted needle placement reduced radiation dose, number of confirmatory scans, and needle manipulations when compared to manual needle placement by experienced IR physicians, with equivalent accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Racine, E; Hautvast, G; Binnekamp, D
Purpose: To report on the results of a complete permanent implant brachytherapy procedure assisted by an electromagnetic (EM) hollow needle possessing both 3D tracking and seed drop detection abilities. Methods: End-to-end in-phantom EM-assisted LDR procedures were conducted. The novel system consisted of an EM tracking apparatus (NDI Aurora V2, Planar Field Generator), a 3D US scanner (Philips CX50), a hollow needle prototype allowing 3D tracking and seed drop detection and a specially designed treatment planning software (Philips Healthcare). A tungsten-doped 30 cc spherical agarose prostate immersed in gelatin was used for the treatment. A cylindrical shape of 0.8 cc wasmore » carved along its diameter to mimic the urethra. An initial plan of 26 needles and 47 seeds was established with the system. The plan was delivered with the EM-tracked hollow needle, and individual seed drop locations were recorded on the fly. The phantom was subsequently imaged with a CT scanner from which seed positions and contour definitions were obtained. The DVHs were then independently recomputed and compared with those produced by the planning system, both before and after the treatment. Results: Of the 47 seeds, 45 (96%) were detected by the EM technology embedded in the hollow needle design. The executed plan (from CT analysis) differed from the initial plan by 2%, 14% and 8% respectively in terms of V100, D90 and V150 for the prostate, and by 8%, 7% and 10% respectively in terms of D5, V100 and V120 for the urethra. Conclusion: The average DVH deviations between initial and executed plans were within a 5% tolerance imposed for this proof-of-concept assessment. This relatively good concordance demonstrates the feasibility and potential benefits of combining EM tracking and seed drop detection for real-time dosimetry validation and assistance in permanent implant brachytherapy procedures. This project has been entirely funded by Philips Healthcare.« less
Samaratunga, Hemamali; Delahunt, Brett; Gianduzzo, Troy; Coughlin, Geoff; Duffy, David; LeFevre, Ian; Johannsen, Shulammite; Egevad, Lars; Yaxley, John
2015-10-01
The 2005 International Society of Urological Pathology (ISUP) modified Gleason grading system was further amended in 2014 with the establishment of grade groupings (ISUP grading). This study examined the predictive value of ISUP grading, comparing results with recognised prognostic parameters.Of 3700 men undergoing radical prostatectomy (RP) reported at Aquesta Pathology between 2008 and 2013, 2079 also had a positive needle biopsy available for review. We examined the association between needle biopsy 2014 ISUP grade and 2005 modified Gleason score, tumour volume, pathological stage of the subsequent RP tumour, as well as biochemical recurrence-free survival (BRFS). The median age was 62 (range 32-79 years). Median serum prostate specific antigen was 5.9 (range 0.4-69 ng/mL). For needle biopsies, 280 (13.5%), 1031 (49.6%), 366 (17.6%), 77 (3.7%) and 325 (15.6%) were 2014 ISUP grades 1-5, respectively. Needle biopsy 2014 ISUP grade showed a significant association with RP tumour volume (p < 0.001), TNM pT and N stage (p < 0.001) and BRFS (p < 0.001). Multivariate analysis using Cox proportional hazards regression model showed serum prostate specific antigen (PSA) at the time of diagnosis and ISUP grade >2 to be significantly associated with BRFS.This study provides evidence of the prognostic significance of ISUP grading for thin core needle biopsy of prostate.
A computerized system to evaluate volumetric infusion pumps.
Kobayashi, S; Ogata, T
1992-01-01
A computerized system was developed to examine the performance characteristics of infusion pumps. This system collects solution delivered by an infusion pump through an intravenous needle into a collection vessel. Using an inductor-type weight sensor and a semiconductor type of strain-gauge pressure sensor, the weight of the collection vessel and the pressure at the needle were monitored over a specific period (the sampling time), and changes in pressure, flow rate, and volume of fluid were calculated. This system was applied to five volumetric infusion pumps with different pumping mechanisms. Test conditions involved two different solutions, two sizes of needle gauge, and seven flow rates, for a total of 28 measurements per pump. Results showed considerable variation in the infusion pumps' performances based on differences in these indices. Use of an inductance weight sensor as a means to evaluate gravimetric performance appears to be an improvement over conventional methods, which use analytical balances for data generation. The results indicate that this system will be useful in evaluating the performances of commercially available infusion pumps as well as those in development.
Probable Mechanisms of Needling Therapies for Myofascial Pain Control
Chou, Li-Wei; Kao, Mu-Jung; Lin, Jaung-Geng
2012-01-01
Myofascial pain syndrome (MPS) has been defined as a regional pain syndrome characterized by muscle pain caused by myofascial trigger points (MTrPs) clinically. MTrP is defined as the hyperirritable spot in a palpable taut band of skeletal muscle fibers. Appropriate treatment to MTrPs can effectively relieve the clinical pain of MPS. Needling therapies, such as MTrP injection, dry needling, or acupuncture (AcP) can effectively eliminate pain immediately. AcP is probably the first reported technique in treating MPS patients with dry needling based on the Traditional Chinese Medicine (TCM) theory. The possible mechanism of AcP analgesia were studied and published in recent decades. The analgesic effect of AcP is hypothesized to be related to immune, hormonal, and nervous systems. Compared to slow-acting hormonal system, nervous system acts in a faster manner. Given these complexities, AcP analgesia cannot be explained by any single mechanism. There are several principles for selection of acupoints based on the TCM principles: “Ah-Shi” point, proximal or remote acupoints on the meridian, and extra-meridian acupoints. Correlations between acupoints and MTrPs are discussed. Some clinical and animal studies of remote AcP for MTrPs and the possible mechanisms of remote effectiveness are reviewed and discussed. PMID:23346211
In-plane ultrasonic needle tracking using a fiber-optic hydrophone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Wenfeng, E-mail: wenfeng.xia@ucl.ac.uk; Desjardins, Adrien E.; Mari, Jean Martial
Purpose: Accurate and efficient guidance of needles to procedural targets is critically important during percutaneous interventional procedures. Ultrasound imaging is widely used for real-time image guidance in a variety of clinical contexts, but with this modality, uncertainties about the location of the needle tip within the image plane lead to significant complications. Whilst several methods have been proposed to improve the visibility of the needle, achieving accuracy and compatibility with current clinical practice is an ongoing challenge. In this paper, the authors present a method for directly visualizing the needle tip using an integrated fiber-optic ultrasound receiver in conjunction withmore » the imaging probe used to acquire B-mode ultrasound images. Methods: Needle visualization and ultrasound imaging were performed with a clinical ultrasound imaging system. A miniature fiber-optic ultrasound hydrophone was integrated into a 20 gauge injection needle tip to receive transmissions from individual transducer elements of the ultrasound imaging probe. The received signals were reconstructed to create an image of the needle tip. Ultrasound B-mode imaging was interleaved with needle tip imaging. A first set of measurements was acquired in water and tissue ex vivo with a wide range of insertion angles (15°–68°) to study the accuracy and sensitivity of the tracking method. A second set was acquired in an in vivo swine model, with needle insertions to the brachial plexus. A third set was acquired in an in vivo ovine model for fetal interventions, with insertions to different locations within the uterine cavity. Two linear ultrasound imaging probes were used: a 14–5 MHz probe for the first and second sets, and a 9–4 MHz probe for the third. Results: During insertions in tissue ex vivo and in vivo, the imaged needle tip had submillimeter axial and lateral dimensions. The signal-to-noise (SNR) of the needle tip was found to depend on the insertion angle. With the needle tip in water, the SNR of the needle tip varied with insertion angle, attaining values of 284 at 27° and 501 at 68°. In swine tissue ex vivo, the SNR decreased from 80 at 15° to 16 at 61°. In swine tissue in vivo, the SNR varied with depth, from 200 at 17.5 mm to 48 at 26 mm, with a constant insertion angle of 40°. In ovine tissue in vivo, within the uterine cavity, the SNR varied from 46.4 at 25 mm depth to 18.4 at 32 mm depth, with insertion angles in the range of 26°–65°. Conclusions: A fiber-optic ultrasound receiver integrated into the needle cannula in combination with single-element transmissions from the imaging probe allows for direct visualization of the needle tip within the ultrasound imaging plane. Visualization of the needle tip was achieved at depths and insertion angles that are encountered during nerve blocks and fetal interventions. The method presented in this paper has strong potential to improve the safety and efficiency of ultrasound-guided needle insertions.« less
Plague in Guinea Pigs and Its Prevention by Subunit Vaccines
Quenee, Lauriane E.; Ciletti, Nancy; Berube, Bryan; Krausz, Thomas; Elli, Derek; Hermanas, Timothy; Schneewind, Olaf
2011-01-01
Human pneumonic plague is a devastating and transmissible disease for which a Food and Drug Administration–approved vaccine is not available. Suitable animal models may be adopted as a surrogate for human plague to fulfill regulatory requirements for vaccine efficacy testing. To develop an alternative to pneumonic plague in nonhuman primates, we explored guinea pigs as a model system. On intranasal instillation of a fully virulent strain, Yersinia pestis CO92, guinea pigs developed lethal lung infections with hemorrhagic necrosis, massive bacterial replication in the respiratory system, and blood-borne dissemination to other organ systems. Expression of the Y. pestis F1 capsule was not required for the development of pulmonary infection; however, the capsule seemed to be important for the establishment of bubonic plague. The mean lethal dose (MLD) for pneumonic plague in guinea pigs was estimated to be 1000 colony-forming units. Immunization of guinea pigs with the recombinant forms of LcrV, a protein that resides at the tip of Yersinia type III secretion needles, or F1 capsule generated robust humoral immune responses. Whereas LcrV immunization resulted in partial protection against pneumonic plague challenge with 250 MLD Y. pestis CO92, immunization with recombinant F1 did not. rV10, a vaccine variant lacking LcrV residues 271-300, elicited protection against pneumonic plague, which seemed to be based on conformational antibodies directed against LcrV. PMID:21406168
Chen, Chen; Gao, George F.
2012-01-01
A growing number of pathogens are being found to possess specialized secretion systems which they use in various ways to subvert host defenses. Type IV secretion system (T4SS) is one of versatile secretion systems essential for the virulence and even survival of some bacteria species, and they enable the secretion of protein and DNA substrates across the cell envelope. T4SS was once believed to be present only in Gram-negative bacteria. In this study, we present evidence of a new subclass of T4SS, Type-IVC secretion system and indicate its common existence in the Gram-positive bacterial genus Streptococcus. We further identified that VirB1, VirB4, VirB6 and VirD4 are the minimal key components of this system. Using genome comparisons and evolutionary relationship analysis, we proposed that Type-IVC secretion system is movable via transposon factors and mediates the conjugative transfer of DNA, enhances bacterial pathogenicity, and could cause large-scale outbreaks of infections in humans. PMID:23056296
Glutathionylation of Yersinia pestis LcrV and Its Effects on Plague Pathogenesis
Mitchell, Anthony; Tam, Christina; Elli, Derek; Charlton, Thomas; Osei-Owusu, Patrick; Fazlollahi, Farbod; Faull, Kym F.
2017-01-01
ABSTRACT Glutathionylation, the formation of reversible mixed disulfides between glutathione and protein cysteine residues, is a posttranslational modification previously observed for intracellular proteins of bacteria. Here we show that Yersinia pestis LcrV, a secreted protein capping the type III secretion machine, is glutathionylated at Cys273 and that this modification promotes association with host ribosomal protein S3 (RPS3), moderates Y. pestis type III effector transport and killing of macrophages, and enhances bubonic plague pathogenesis in mice and rats. Secreted LcrV was purified and analyzed by mass spectrometry to reveal glutathionylation, a modification that is abolished by the codon substitution Cys273Ala in lcrV. Moreover, the lcrVC273A mutation enhanced the survival of animals in models of bubonic plague. Investigating the molecular mechanism responsible for these virulence attributes, we identified macrophage RPS3 as a ligand of LcrV, an association that is perturbed by the Cys273Ala substitution. Furthermore, macrophages infected by the lcrVC273A variant displayed accelerated apoptotic death and diminished proinflammatory cytokine release. Deletion of gshB, which encodes glutathione synthetase of Y. pestis, resulted in undetectable levels of intracellular glutathione, and we used a Y. pestis ΔgshB mutant to characterize the biochemical pathway of LcrV glutathionylation, establishing that LcrV is modified after its transport to the type III needle via disulfide bond formation with extracellular oxidized glutathione. PMID:28512097
... needle biopsy procedures include fine-needle aspiration and core needle biopsy. Needle biopsy may be used to ... hollow needle to draw cells from your body. Core needle biopsy. This type of needle biopsy uses ...
[Data Mining-revealed Characteristics of Clinical Application of Scalp Acupuncture].
Wang, Qiong; Xing, Hai-Jiao; Bao, Na; Kong, Ling-Juan; Jia, Ye-Juan; Yang, Ke; Sun, Yan-Hui; Wang, Jian-Ling; Shi, Jing; Li, Xiao-Feng; Xu, Jing; Zhang, Xuan-Ping; Zhang, Xin; Jia, Chun-Sheng; Li, Ren-Ling
2018-03-25
To explore the regularity and characteristics of clinical application of scalp acupuncture therapy for different types of clinical conditions so as to provide a reference for clinical practice. In the present study, "head acupuncture" and"scalp acupuncture" were used as the keywords to search papers and academic dissertations having definite standards for diagnosis and therapeutic effect assessment and published in journals and academic conferences collected in database China National Knowledge Internet(CNKI) from January 1 of 1959 to December 31 of 2016, followed by constructing a database after sorting, screening, recording, extracting, and statistical analysis by using a computer. Then, the data mining was conducted for summarizing the indications of disease categories, involved medical departments, needle-insertion methods, needle manipulation techniques, academic schools, and clinical efficacy of scalp acupuncture therapy. As a result, a total of 587 papers met our including criteria were analyzed. The scalp acupuncture therapy was widely employed in the treatment of various clinical conditions of different departments, with the application frequency being the internal medicine (438 times), surgery (75 times), pediatrics (44 times), etc. Of the indicated 102 types of clinical problems, 55 belong to the internal medicine, constituting of 53.92%, particularly the cerebral apoplexy and its sequelae with the top application frequency being 102 and 115 times, respectively. In terms of needle inserting methods mentioned in partial papers (most papers do not mention), fingernail-pressing-aided needle insertion, needle-twirling insertion, fingers-squeezed-needle insertion, particularly the swiftly rotating needle insertion and rapid needle-propelling insertion were most commonly used.Regarding the needle manipulation method, rapid needle twirling technique was frequently employed, usually at a frequency of approximately 200 times per min. In regard to the academic schools, JIAO Shun-fa's scalp acupuncture system was most frequently used, followed by the international standardized scalp acupuncture. The therapeutic effect of scalp acupuncture is effective in the treatment of different conditions of various departments, especially those of the dermatology and gynecology. Scalp acupuncture has superiority in the treatment disorders of the internal medicine and has been demonstrated to have positive effects for many types of problems, particularly for apoplexy and its sequelae. Rapid needle-propelling insertion and rapid needle-twirling technique are often employed.
Bigu-del-Blanco, J; Romero-Sierra, C
1977-08-01
The design of a microwave monopole radiator, using a hollow hypodermic needle, is described. This radiator has two unique features. It allows both i) irradiation of deep biological structures by simple needle injection and ii) simultaneous chemotherapic treatment of tissue. The matching characteristics of the monopole in saline solutions are given.
Interventional robotic systems: Applications and technology state-of-the-art
CLEARY, KEVIN; MELZER, ANDREAS; WATSON, VANCE; KRONREIF, GERNOT; STOIANOVICI, DAN
2011-01-01
Many different robotic systems have been developed for invasive medical procedures. In this article we will focus on robotic systems for image-guided interventions such as biopsy of suspicious lesions, interstitial tumor treatment, or needle placement for spinal blocks and neurolysis. Medical robotics is a young and evolving field and the ultimate role of these systems has yet to be determined. This paper presents four interventional robotics systems designed to work with MRI, CT, fluoroscopy, and ultrasound imaging devices. The details of each system are given along with any phantom, animal, or human trials. The systems include the AcuBot for active needle insertion under CT or fluoroscopy, the B-Rob systems for needle placement using CT or ultrasound, the INNOMOTION for MRI and CT interventions, and the MRBot for MRI procedures. Following these descriptions, the technology issues of image compatibility, registration, patient movement and respiration, force feedback, and control mode are briefly discussed. It is our belief that robotic systems will be an important part of future interventions, but more research and clinical trials are needed. The possibility of performing new clinical procedures that the human cannot achieve remains an ultimate goal for medical robotics. Engineers and physicians should work together to create and validate these systems for the benefits of patients everywhere. PMID:16754193
Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro.
Donnelly, Ryan F; Singh, Thakur Raghu Raj; Tunney, Michael M; Morrow, Desmond I J; McCarron, Paul A; O'Mahony, Conor; Woolfson, A David
2009-11-01
In this study we determined, for the first time, the ability of microorganisms to traverse microneedle-induced holes using two different in vitro models. When employing Silescol membranes, the numbers of Candida albicans, Pseudomonas aeruginosa and Staphylococcus epidermidis crossing the membranes were an order of magnitude lower when the membranes were punctured by microneedles rather than a 21G hypodermic needle. Apart from the movement of C. albicans across hypodermic needle-punctured membranes, where 40.2% of the microbial load on control membranes permeated the barrier over 24 h, the numbers of permeating microorganisms was less than 5% of the original microbial load on control membranes. Experiments employing excised porcine skin and radiolabelled microorganisms showed that the numbers of microorganisms penetrating skin beyond the stratum corneum were approximately an order of magnitude greater than the numbers crossing Silescol membranes in the corresponding experiments. Approximately 10(3) cfu of each microorganism adhered to hypodermic needles during insertion. The numbers of microorganisms adhering to MN arrays were an order of magnitude higher in each case. We have shown here that microneedle puncture resulted in significantly less microbial penetration than did hypodermic needle puncture and that no microorganisms crossed the viable epidermis in microneedle-punctured skin, in contrast to needle-punctured skin. Given the antimicrobial properties of skin, it is, therefore, likely that application of microneedle arrays to skin in an appropriate manner would not cause either local or systemic infection in normal circumstances in immune-competent patients. In supporting widespread clinical use of microneedle-based delivery systems, appropriate animal studies are now needed to conclusively demonstrate this in vivo. Safety in patients will be enhanced by aseptic or sterile manufacture and by fabricating microneedles from self-disabling materials (e.g. dissolving or biodegradable polymers) to prevent inappropriate or accidental reuse.
Latest advances in chronic pancreatitis.
Enrique Domínguez-Muñoz, J
2016-09-01
This article summarizes some of the recent and clinically relevant advances in chronic pancreatitis. These advances mainly concern the definition of the disease, the etiological diagnosis of idiopathic disease, the correlation between fibrosis degree and pancreatic secretion in the early stages of chronic pancreatitis, the treatment of the disease and of pain, the clinical relevance of pancreatic exocrine insufficiency, and the diagnosis of autoimmune pancreatitis. A new mechanistic definition of chronic pancreatitis has been proposed. Genetic testing is mainly of help in patients with relapsing idiopathic pancreatitis. A significant correlation has been shown between the degree of pancreatic fibrosis as evaluated by elastography and pancreatic secretion of bicarbonate. New data supports the efficacy of antioxidants and simvastatin for the therapy of chronic pancreatitis. The pancreatoscopy-guided intraductal lithotripsy is an effective alternative to extracorporeal shock wave lithotripsy in patients with chronic calcifying pancreatitis. The presence of pancreatic exocrine insufficiency in patients with chronic pancreatitis is associated with a significant risk of cardiovascular events. Fine needle biopsy and contrast enhanced harmonic endoscopic ultrasonography are of help for the diagnosis of autoimmune pancreatitis and its differential diagnosis with pancreatic cancer. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Uemura, Munenori; Kenmotsu, Hajime; Tomikawa, Morimasa; Kumashiro, Ryuichi; Yamashita, Makoto; Ikeda, Testuo; Yamashita, Hiromasa; Chiba, Toshio; Hayashi, Koichi; Sakae, Eiji; Eguchi, Mitsuo; Fukuyo, Tsuneo; Chittmittrapap, Soottiporn; Navicharern, Patpong; Chotiwan, Pornarong; Pattana-Arum, Jirawat; Hashizume, Makoto
2015-05-01
Traditionally, laparoscopy has been based on 2-D imaging, which represents a considerable challenge. As a result, 3-D visualization technology has been proposed as a way to better facilitate laparoscopy. We compared the latest 3-D systems with high-end 2-D monitors to validate the usefulness of new systems for endoscopic diagnoses and treatment in Thailand. We compared the abilities of our high-definition 3-D endoscopy system with real-time compression communication system with a conventional high-definition (2-D) endoscopy system by asking health-care staff to complete tasks. Participants answered questionnaires and whether procedures were easier using our system or the 2-D endoscopy system. Participants were significantly faster at suture insertion with our system (34.44 ± 15.91 s) than with the 2-D system (52.56 ± 37.51 s) (P < 0.01). Most surgeons thought that the 3-D system was good in terms of contrast, brightness, perception of the anteroposterior position of the needle, needle grasping, inserting the needle as planned, and needle adjustment during laparoscopic surgery. Several surgeons highlighted the usefulness of exposing and clipping the bile duct and gallbladder artery, as well as dissection from the liver bed during laparoscopic surgery. In an image-transfer experiment with RePure-L®, participants at Rajavithi Hospital could obtain reconstructed 3-D images that were non-inferior to conventional images from Chulalongkorn University Hospital (10 km away). These data suggest that our newly developed system could be of considerable benefit to the health-care system in Thailand. Transmission of moving endoscopic images from a center of excellence to a rural hospital could help in the diagnosis and treatment of various diseases. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.
Kohler, Petra L; Hamilton, Holly L; Cloud-Hansen, Karen; Dillard, Joseph P
2007-08-01
Type IV secretion systems require peptidoglycan lytic transglycosylases for efficient secretion, but the function of these enzymes is not clear. The type IV secretion system gene cluster of Neisseria gonorrhoeae encodes two peptidoglycan transglycosylase homologues. One, LtgX, is similar to peptidoglycan transglycosylases from other type IV secretion systems. The other, AtlA, is similar to endolysins from bacteriophages and is not similar to any described type IV secretion component. We characterized the enzymatic function of AtlA in order to examine its role in the type IV secretion system. Purified AtlA was found to degrade macromolecular peptidoglycan and to produce 1,6-anhydro peptidoglycan monomers, characteristic of lytic transglycosylase activity. We found that AtlA can functionally replace the lambda endolysin to lyse Escherichia coli. In contrast, a sensitive measure of lysis demonstrated that AtlA does not lyse gonococci expressing it or gonococci cocultured with an AtlA-expressing strain. The gonococcal type IV secretion system secretes DNA during growth. A deletion of ltgX or a substitution in the putative active site of AtlA severely decreased DNA secretion. These results indicate that AtlA and LtgX are actively involved in type IV secretion and that AtlA is not involved in lysis of gonococci to release DNA. This is the first demonstration that a type IV secretion peptidoglycanase has lytic transglycosylase activity. These data show that AtlA plays a role in type IV secretion of DNA that requires peptidoglycan breakdown without cell lysis.
Xie, Yu; Liu, Shuang; Sun, Dong
2018-01-01
Robot-assisted surgery is of growing interest in the surgical and engineering communities. The use of robots allows surgery to be performed with precision using smaller instruments and incisions, resulting in shorter healing times. However, using current technology, an operator cannot directly feel the operation because the surgeon-instrument and instrument-tissue interaction force feedbacks are lost during needle insertion. Advancements in force feedback and control not only help reduce tissue deformation and needle deflection but also provide the surgeon with better control over the surgical instruments. The goal of this review is to summarize the key components surrounding the force feedback and control during robot-assisted needle insertion. The literature search was conducted during the middle months of 2017 using mainstream academic search engines with a combination of keywords relevant to the field. In total, 166 articles with valuable contents were analyzed and grouped into five related topics. This survey systemically summarizes the state-of-the-art force control technologies for robot-assisted needle insertion, such as force modeling, measurement, the factors that influence the interaction force, parameter identification, and force control algorithms. All studies show force control is still at its initial stage. The influence factors, needle deflection or planning remain open for investigation in future. PMID:29439539
Miller, Todd A; Baumgartner, J Craig
2010-03-01
The purpose of this investigation was to compare the antimicrobial efficacy of root canal irrigation with the EndoVac (Discus Dental, Culver City, CA) to endodontic needle irrigation in the apical 5 mm of root canals infected with Enterococcus faecalis. Bilaterally matched, extracted human teeth were sterilized and inoculated with E. faecalis. Specimens in the EndoVac group were irrigated using the EndoVac system, whereas those in the needle group were irrigated with a 30-G side-vented needle. After chemomechanical preparation, the apical 5 mm of the roots were removed, frozen in liquid nitrogen, and pulverized to expose E. faecalis in dentinal tubules or other morphologic irregularities. The number of colony forming units (cfus) of E. faecalis per mg dentin was determined. The EndoVac Group had a mean of 31.6 cfu/mg, whereas the needle group had a mean of 157 cfu/mg. This represents a bacterial reduction of 99.7% in group A and 98.8% in group B when compared with positive controls. Although there were fewer cfu/mg when using the EndoVac, there was not a statistically significant difference between the EndoVac and needle groups. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Yang, Chongjun; Xie, Yu; Liu, Shuang; Sun, Dong
2018-02-12
Robot-assisted surgery is of growing interest in the surgical and engineering communities. The use of robots allows surgery to be performed with precision using smaller instruments and incisions, resulting in shorter healing times. However, using current technology, an operator cannot directly feel the operation because the surgeon-instrument and instrument-tissue interaction force feedbacks are lost during needle insertion. Advancements in force feedback and control not only help reduce tissue deformation and needle deflection but also provide the surgeon with better control over the surgical instruments. The goal of this review is to summarize the key components surrounding the force feedback and control during robot-assisted needle insertion. The literature search was conducted during the middle months of 2017 using mainstream academic search engines with a combination of keywords relevant to the field. In total, 166 articles with valuable contents were analyzed and grouped into five related topics. This survey systemically summarizes the state-of-the-art force control technologies for robot-assisted needle insertion, such as force modeling, measurement, the factors that influence the interaction force, parameter identification, and force control algorithms. All studies show force control is still at its initial stage. The influence factors, needle deflection or planning remain open for investigation in future.
DNA duplication is essential for the repair of gastrointestinal perforation in the insect midgut
Huang, Wuren; Zhang, Jie; Yang, Bing; Beerntsen, Brenda T.; Song, Hongsheng; Ling, Erjun
2016-01-01
Invertebrate animals have the capacity of repairing wounds in the skin and gut via different mechanisms. Gastrointestinal perforation, a hole in the human gastrointestinal system, is a serious condition, and surgery is necessary to repair the perforation to prevent an abdominal abscess or sepsis. Here we report the repair of gastrointestinal perforation made by a needle-puncture wound in the silkworm larval midgut. Following insect gut perforation, only a weak immune response was observed because the growth of Escherichia coli alone was partially inhibited by plasma collected at 6 h after needle puncture of the larval midgut. However, circulating hemocytes did aggregate over the needle-puncture wound to form a scab. While, cell division and apoptosis were not observed at the wound site, the needle puncture significantly enhanced DNA duplication in cells surrounding the wound, which was essential to repair the midgut perforation. Due to the repair capacity and limited immune response caused by needle puncture to the midgut, this approach was successfully used for the injection of small compounds (ethanol in this study) into the insect midgut. Consequently, this needle-puncture wounding of the insect gut can be developed for screening compounds for use as gut chemotherapeutics in the future. PMID:26754166
Spectral signatures of viewing a needle approaching one's body when anticipating pain.
Höfle, Marion; Pomper, Ulrich; Hauck, Michael; Engel, Andreas K; Senkowski, Daniel
2013-10-01
When viewing the needle of a syringe approaching your skin, anticipation of a painful prick may lead to increased arousal. How this anticipation is reflected in neural oscillatory activity and how it relates to activity within the autonomic nervous system is thus far unknown. Recently, we found that viewing needle pricks compared with Q-tip touches increases the pupil dilation response (PDR) and perceived unpleasantness of electrical stimuli. Here, we used high-density electroencephalography to investigate whether anticipatory oscillatory activity predicts the unpleasantness of electrical stimuli and PDR while viewing a needle approaching a hand that is perceived as one's own. We presented video clips of needle pricks and Q-tip touches, and delivered spatiotemporally aligned painful and nonpainful intracutaneous electrical stimuli. The perceived unpleasantness of electrical stimuli and the PDR were enhanced when participants viewed needle pricks compared with Q-tip touches. Source reconstruction using linear beamforming revealed reduced alpha-band activity in the posterior cingulate cortex (PCC) and fusiform gyrus before the onset of electrical stimuli when participants viewed needle pricks compared with Q-tip touches. Moreover, alpha-band activity in the PCC predicted PDR on a single trial level. The anticipatory reduction of alpha-band activity in the PCC may reflect a neural mechanism that serves to protect the body from forthcoming harm by facilitating the preparation of adequate defense responses. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Time effect and aliquot concentration in Streptococcus mutans elimination by plasma needle
NASA Astrophysics Data System (ADS)
García-Alcantara, E.; López-Callejas, R.; Peña-Eguiluz, R.; Lagunas-Bernabé, S.; Valencia-Alvarado, R.; Mercado-Cabrera, A.; Barocio, S. R.; Muñoz-Castro, A. E.; Rodríguez-Méndez, B. G.; de la Piedad-Beneitez, A.
2012-06-01
Atmospheric plasma needle systems are being intensively studied with a view to potential applications in medicine. The aim of this in vitro study is the improved elimination of Streptococcus Mutants (S. mutans) bacteria. A 5 ml volume of Luria-Bertani culture medium has been inoculated with a test bacterial population and incubated during 24 hours, followed by ten dilutions producing aliquots at 20, 50 and 100 micro l per dilution. Each aliquot is deposited on a paper filter and then exposed to a 2 W RF room pressure helium plasma needle discharge at a 1.5 l.p.m. rate for 1, 3, 5 or 7 minutes. Each sample paper is placed in a test tube, again containing Luria-Bertani fluid, in order to develop a new bacterium colony after a 24h incubation period. The plasma needle lethality has been evaluated from absorbance studies by means of a 6305 Jeway spectrophotometer at a 600 nm wavelength, indicating a clear correlation with exposure time. These studies validate the high disinfection efficacy of the plasma needle.
[CT-guided intervention by means of a laser marking and targeting aid].
Klöppel, R; Wilke, W; Weisse, T; Steinecke, R
1997-08-01
The present study evaluates the use of a laser guidance system for CT-guided intervention. 94 cases of diagnostic biopsies and lumbar sympathectomies (54 cases with laser guidance system and 40 without) were compared. Using the laser guidance system, the number of control scans decreased by 30 to 50%, and necessary corrections of needle location were reduced by a maximum of 30%. The average target deviation of the needle decreased to less than 5 mm in 50% of cases. The laser guidance system is strongly recommended in CT-guided interventions for quality assurance and higher efficiency. The advantage is especially marked if the target area is small.
Waspe, Adam C; McErlain, David D; Pitelka, Vasek; Holdsworth, David W; Lacefield, James C; Fenster, Aaron
2010-04-01
Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 microm tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 microm, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154 +/- 113 microm. The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.
Bryant, Joanne; Topp, Libby; Hopwood, Max; Iversen, Jenny; Treloar, Carla; Maher, Lisa
2010-07-01
The comprehensive needle and syringe distribution system in New South Wales is partly based on the premise that different points of access to injecting equipment may attract different groups of injecting drug users. This paper examines patterns of equipment acquisition and risk for blood-borne virus transmission among injecting drug users who use pharmacies and needle and syringe programs (NSP) in south-east Sydney. Clients obtaining injecting equipment from four NSP (n = 147) and eight pharmacies (n = 227) in 2006 voluntarily completed a self-administered questionnaire. Respondents were grouped into three categories based on their needle and syringe acquisition patterns: exclusive use of NSP, exclusive use of pharmacies and use of both. Although it was common for respondents to report using both pharmacies and NSP to obtain needles and syringes (57%), a proportion reported exclusive use of pharmacies (17%) and NSP (14%). Exclusive pharmacy users were more likely to have never received treatment for their drug use and the least likely to have had a recent test for hepatitis C. Compared with respondents who exclusively used NSP, respondents who exclusively used pharmacies were more likely to report receptive sharing of injecting equipment (adjusted odds ratio 5.9, 95% confidence interval 2.02-17.14), as were respondents who reported using both sources (adjusted odds ratio 5.8, 95% confidence interval 2.35-14.40). The high prevalence of receptive equipment sharing among pharmacy clients indicates a need to improve access to needles and syringes and ancillary equipment, possibly by including ancillary equipment at no cost in existing pre-packaged pharmacy products.
PERTINENT DRY NEEDLING CONSIDERATIONS FOR MINIMIZING ADVERSE EFFECTS – PART ONE
Halle, Rob J.
2016-01-01
ABSTRACT Background Dry needling is an evidence-based treatment technique that is accepted and used by physical therapists in the United States. This treatment approach focuses on releasing or inactivating muscular trigger points to decrease pain, reduce muscle tension, and assist patients with an accelerated return to active rehabilitation. Issue While commonly used, the technique has some patient risk and value of the treatment should be based on benefit compared to the potential risk. Adverse effects (AEs) with dry needling can be mild or severe, with overall incidence rates varying from zero to rates of approximately 10 percent. While mild AEs are the rule, any procedure that involves a needle insertion has the potential for an AE, with select regions and the underlying anatomy increasing the risk. Known significant AEs from small diameter needle insertion include pneumothorax, cardiac tamponade, hematoma, infection, central nervous system injury, and other complications. Purpose/Objective Underlying anatomy across individuals has variability, requiring an in-depth knowledge of anatomy prior to any needle placement. This commentary is an overview of pertinent anatomy in the region of the thorax, with a ‘part two’ that addresses the abdomen, pelvis, back, vasovagal response, informed consent and other pertinent issues. The purpose of the commentary is to minimize the risk of a dry needling AE. Conclusions/Implications Dry needling is an effective adjunct treatment procedure that is within the recognized scope of physical therapy practice. Physical therapy education and training provides practitioners with the anatomy, basic sciences, and clinical foundation to use this intervention safely and effectively. A safe and evidenced-based implementation of the procedure is based on a thorough understanding of the underlying anatomy and the potential risks, with risks coordinated with patients via informed consent. Levels of Evidence Level 5 PMID:27525188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek
Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting amore » barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 {mu}m tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 {mu}m, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154{+-}113 {mu}m. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.« less
Computational and Experimental Analysis of the Secretome of Methylococcus capsulatus (Bath)
Indrelid, Stine; Mathiesen, Geir; Jacobsen, Morten; Lea, Tor; Kleiveland, Charlotte R.
2014-01-01
The Gram-negative methanotroph Methylococcus capsulatus (Bath) was recently demonstrated to abrogate inflammation in a murine model of inflammatory bowel disease, suggesting interactions with cells involved in maintaining mucosal homeostasis and emphasizing the importance of understanding the many properties of M. capsulatus. Secreted proteins determine how bacteria may interact with their environment, and a comprehensive knowledge of such proteins is therefore vital to understand bacterial physiology and behavior. The aim of this study was to systematically analyze protein secretion in M. capsulatus (Bath) by identifying the secretion systems present and the respective secreted substrates. Computational analysis revealed that in addition to previously recognized type II secretion systems and a type VII secretion system, a type Vb (two-partner) secretion system and putative type I secretion systems are present in M. capsulatus (Bath). In silico analysis suggests that the diverse secretion systems in M.capsulatus transport proteins likely to be involved in adhesion, colonization, nutrient acquisition and homeostasis maintenance. Results of the computational analysis was verified and extended by an experimental approach showing that in addition an uncharacterized protein and putative moonlighting proteins are released to the medium during exponential growth of M. capsulatus (Bath). PMID:25479164
Yadav, Rajanikant R; Boruah, Deb K; Bhattacharyya, Vishwaroop; Prasad, Raghunandan; Kumar, Sheo; Saraswat, V A; Kapoor, V K; Saxena, Rajan
2016-01-01
Aims: The aim of this study was to evaluate the safety and clinical efficacy of percutaneous direct needle puncture and transcatheter N-butyl cyanoacrylate (NBCA) injection techniques for the embolization of pseudoaneurysms and aneurysms of arteries supplying the hepato-pancreato-biliary (HPB) system and gastrointestinal (GI) tract. Subjects and Methods: A hospital-based cross-sectional retrospective study was conducted, where the study group comprised 11 patients with pseudoaneurysms/aneurysms of arteries supplying the HPB system and GI tract presenting to a tertiary care center from January 2015 to June 2016. Four patients (36.4%) underwent percutaneous direct needle puncture of pseudoaneurysms with NBCA injection, 3 patients (27.3%) underwent transcatheter embolization with NBCA as sole embolic agent, and in 4 patients (36.4%), transcatheter NBCA injection was done along with coil embolization. Results: This retrospective study comprised 11 patients (8 males and 3 females) with mean age of 35.8 years ± 1.6 (standard deviation [SD]). The mean volume of NBCA: ethiodized oil (lipiodol) mixture injected by percutaneous direct needle puncture was 0.62 ml ± 0.25 (SD) (range = 0.5–1 ml), and by transcatheter injection, it was 0.62 ml ± 0.37 (SD) (range = 0.3–1.4 ml). Embolization with NBCA was technically and clinically successful in all patients (100%). No recurrence of bleeding or recurrence of pseudoaneurysm/aneurysm was noted in our study. Conclusions: Percutaneous direct needle puncture of visceral artery pseudoaneurysms and NBCA glue injection and transcatheter NBCA injection for embolization of visceral artery pseudoaneurysms and aneurysms are cost-effective techniques that can be used when coil embolization is not feasible or has failed. PMID:28123838
MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement.
Fischer, Gregory S; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; Dimaio, Simon P; Tempany, Clare M; Hata, Nobuhiko; Fichtinger, Gabor
2008-06-01
Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of prostate and surrounding tissue, thus granting potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. However, the benefits cannot be readily harnessed for interventional procedures due to difficulties that surround the use of high-field (1.5T or greater) MRI. The inability to use conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intraprostatic needle placement inside closed high-field MRI scanners. MRI compatibility of the robot has been evaluated under 3T MRI using standard prostate imaging sequences and average SNR loss is limited to 5%. Needle alignment accuracy of the robot under servo pneumatic control is better than 0.94 mm rms per axis. The complete system workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the robot mechanism and controller design, the system integration, and presents results of preliminary evaluation of the system.
Simulated microsurgery monitoring using intraoperative multimodal surgical microscopy
NASA Astrophysics Data System (ADS)
Lee, Donghyun; Lee, Changho; Kim, Sehui; Zhou, Qifa; Kim, Jeehyun; Kim, Chulhong
2016-03-01
We have developed an intraoperative multimodal surgical microscopy system that provides simultaneous real-time enlarged surface views and subsurface anatomic information during surgeries by integrating spectral domain optical coherence tomography (SD-OCT), optical-resolution photoacoustic microscopy (OR-PAM), and conventional surgical microscopy. By sharing the same optical path, both OCT and PAM images were simultaneously acquired. Additionally, the custom-made needle-type transducer received the generated PA signals enabling convenient surgical operation without using a water bath. Using a simple augmented device, the OCT and PAM images were projected on the view plane of the surgical microscope. To quantify the performance of our system, we measured spatial resolutions of our system. Then, three microsurgery simulation and analysis were processed: (1) ex vivo needle tracking and monitoring injection of carbon particles in biological tissues, (2) in vivo needle tracking and monitoring injection of carbon particles in tumor-bearing mice, and (3) in vivo guiding of melanoma removal in melanoma-bearing mice. The results indicate that this triple modal system is useful for intraoperative purposes, and can potentially be a vital tool in microsurgeries.
Browne, Ingrid M; Birnbach, David J; Stein, Deborah J; O'Gorman, David A; Kuroda, Maxine
2005-08-01
When using the needle-through-needle combined spinal-epidural (CSE) technique for labor analgesia, failure to obtain cerebrospinal fluid (CSF), paresthesias, and intrathecal or intravascular migration of the catheter are of concern. Epidural needles with spinal needle apertures, such as the back-hole Espocan (ES) needles, are available and may reduce these risks. We describe the efficacy and adverse events associated with a modified epidural needle (ES) versus a conventional Tuohy needle for CSE. One-hundred parturients requesting labor analgesia (CSE) were randomized into 2 groups: 50-ES 18-gauge modified epidural needle with 27-gauge Pencan atraumatic spinal needle, 50-conventional 18-gauge Tuohy needle with 27-gauge Gertie Marx atraumatic spinal needle. Information on intrathecal or intravascular catheter placement, paresthesia on introduction of spinal needle, failure to obtain CSF through the spinal needle after placement of epidural needle, unintentional dural puncture, and epidural catheter function was obtained. No intrathecal catheter placement occurred in either group. Rates of intravascular catheter placement and unintentional dural puncture were similar between the groups. Significant differences were noted regarding spinal needle-induced paresthesia (14% ES versus 42% Tuohy needles, P = 0.009) and failure to obtain CSF on first attempt (8% ES versus 28% Tuohy needles, P < 0.02). Use of ES needles for CSE significantly reduces paresthesia associated with the insertion of the spinal needle and is associated with more frequent successful spinal needle placement on the first attempt. The use of modified epidural needles with a back hole for combined spinal-epidural technique significantly reduces paresthesia associated with the insertion of the spinal needle and is associated with more frequent successful spinal needle placement on the first attempt.
Influence of the capillary on the ignition of the transient spark discharge
NASA Astrophysics Data System (ADS)
Gerling, T.; Hoder, T.; Brandenburg, R.; Bussiahn, R.; Weltmann, K.-D.
2013-04-01
A self-pulsing negative dc discharge in argon generated in a needle-to-plane geometry at open atmosphere is investigated. Additionally, the needle electrode can be surrounded by a quartz capillary. It is shown that the relative position of the capillary end to the needle tip strongly influences the discharge inception and its spatio-temporal dynamics. Without the capillary for the selected working parameters a streamer corona is ignited, but when the capillary surrounds the needle, the transient spark (TS) discharge is ignited after a pre-streamer (PS) occurs. The time between PS and TS discharge depends on the relative capillary end position. The existence of the PS is confirmed by electro-optical characterization. Furthermore, spectrally and spatio-temporally resolved cross-correlation spectroscopy is applied to show the most active region of pre-phase emission activity as indicators for high local electric field strength. The results indicate that with a capillary in place, the necessary energy input of the pre-phase into the system is mainly reduced by additional electrical fields at the capillary edge. Even such a small change as a shift of dielectric surface close to the plasma largely changes the energy balance in the system.
A structured light system to guide percutaneous punctures in interventional radiology
NASA Astrophysics Data System (ADS)
Nicolau, S. A.; Brenot, J.; Goffin, L.; Graebling, P.; Soler, L.; Marescaux, J.
2008-04-01
Interventional radiology is a new medical field which allows percutaneous punctures on patients for tumoral destruction or tissue analysis. The patient lies on a CT or MRI table and the practitioner guides the needle insertion iteratively using repetitive acquisitions (2D slices). We aim at designing a guidance system to reduce the number of CT/MRI acquisitions, and therefore decrease the irradiation and shorten the duration of intervention. We propose a system composed of two calibrated cameras and a structured light videoprojector. The cameras track at 15Hz the needle manipulated by the practitioner and a software displays the needle position with respect to a preoperative segmented image of the patient. To register the preoperative image in the camera frame, we firstly reconstruct the patient skin in 3D using the structured light. Then, the surfacic registration between the reconstructed skin and the segmented skin from the preoperative image is performed using the Iterative Closest Point (ICP) algorithm. Ensuring the quality of this registration is the most challenging task of the system. Indeed, a surfacic registration cannot correctly converge if the surfaces to be registered are too smooth. The main contribution of our work is the evaluation on patients of the conditions that can ensure a correct registration of the preoperative skin surface with the reconstructed one. Furthermore, in case of unfavourable conditions, we propose a method to create enough singularities on the patient abdomen so that the convergence is guaranteed. In the coming months, we plan to evaluate the full system during standard needle insertion on patients.
Chen, Xiaotong; Choudhari, Shyamal P.; Martinez-Becerra, Francisco J.; Kim, Jae Hyun; Dickenson, Nicholas E.; Toth, Ronald T.; Joshi, Sangeeta B.; Greenwood, Jamie C.; Clements, John D.; Picking, William D.; Middaugh, C. Russell
2014-01-01
Shigella spp. are causative agents of bacillary dysentery, a human illness with high global morbidity levels, particularly among elderly and infant populations. Shigella infects via the fecal-oral route, and its virulence is dependent upon a type III secretion system (T3SS). Two components of the exposed needle tip complex of the Shigella T3SS, invasion plasmid antigen D (IpaD) and IpaB, have been identified as broadly protective antigens in the mouse lethal pneumonia model. A recombinant fusion protein (DB fusion) was created by joining the coding sequences of IpaD and IpaB. The DB fusion is coexpressed with IpaB's cognate chaperone, IpgC, for proper recombinant expression. The chaperone can then be removed by using the mild detergents octyl oligooxyethelene (OPOE) or N,N-dimethyldodecylamine N-oxide (LDAO). The DB fusion in OPOE or LDAO was used for biophysical characterization and subsequent construction of an empirical phase diagram (EPD). The EPD showed that the DB fusion in OPOE is most stable at neutral pH below 55°C. In contrast, the DB fusion in LDAO exhibited remarkable thermal plasticity, since this detergent prevents the loss of secondary and tertiary structures after thermal unfolding at 90°C, as well as preventing thermally induced aggregation. Moreover, the DB fusion in LDAO induced higher interleukin-17 secretion and provided a higher protective efficacy in a mouse challenge model than did the DB fusion in OPOE. These data indicate that LDAO might introduce plasticity to the protein, promoting thermal resilience and enhanced protective efficacy, which may be important in its use as a subunit vaccine. PMID:25368115
Schulman, Allison R; Thompson, Christopher C; Odze, Robert; Chan, Walter W; Ryou, Marvin
2017-02-01
EUS-guided liver biopsy sampling using FNA and, more recently, fine-needle biopsy (FNB) needles has been reported with discrepant diagnostic accuracy, in part due to differences in methodology. We aimed to compare liver histologic yields of 4 EUS-based needles and 2 percutaneous needles to identify optimal number of needle passes and suction. Six needle types were tested on human cadaveric tissue: one 19G FNA needle, one existing 19G FNB needle, one novel 19G FNB needle, one 22G FNB needle, and two 18G percutaneous needles (18G1 and 18G2). Two needle excursion patterns (1 vs 3 fanning passes) were performed on all EUS needles. Primary outcome was number of portal tracts. Secondary outcomes were degree of fragmentation and specimen adequacy. Pairwise comparisons were performed using t tests, with a 2-sided P < .05 considered to be significant. Multivariable regression analysis was performed. In total, 288 liver biopsy samplings (48 per needle type) were performed. The novel 19G FNB needle had significantly increased mean portal tracts compared with all needle types. The 22G FNB needle had significantly increased portal tracts compared with the 18G1 needle (3.8 vs 2.5, P < .001) and was not statistically different from the 18G2 needle (3.8 vs 3.5, P = .68). FNB needles (P < .001) and 3 fanning passes (P ≤ .001) were independent predictors of the number of portal tracts. A novel 19G EUS-guided liver biopsy needle provides superior histologic yield compared with 18G percutaneous needles and existing 19G FNA and core needles. Moreover, the 22G FNB needle may be adequate for liver biopsy sampling. Investigations are underway to determine whether these results can be replicated in a clinical setting. Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
[Design of warm-acupuncture technique training evaluation device].
Gao, Ming; Xu, Gang; Yang, Huayuan; Liu, Tangyi; Tang, Wenchao
2017-01-12
To design a warm-acupuncture teaching instrument to train and evaluate its manipulation. We refer to the principle and technical operation characteristics of traditional warm-acupuncture, as well as the mechanical design and single-chip microcomputer technology. The device is consisted of device noumenon, universal acupoints simulator, vibration reset system and circuit control system, including frame, platform framework, the swing framework, universal acupoints simulator, vibration reset outfit, operation time circuit, acupuncture sensation display, and vibration control circuit, etc. It can be used to train needle inserting with different angles and moxa rubbing and loading. It displays whether a needle point meets the location required. We determine whether the moxa group on a needle handle is easy to fall off through vibration test, and operation time is showed. The device can objectively help warm-acupuncture training and evaluation so as to promote its clinical standardization manipulation.
Investigation of an acoustical holography system for real-time imaging
NASA Astrophysics Data System (ADS)
Fecht, Barbara A.; Andre, Michael P.; Garlick, George F.; Shelby, Ronald L.; Shelby, Jerod O.; Lehman, Constance D.
1998-07-01
A new prototype imaging system based on ultrasound transmission through the object of interest -- acoustical holography -- was developed which incorporates significant improvements in acoustical and optical design. This system is being evaluated for potential clinical application in the musculoskeletal system, interventional radiology, pediatrics, monitoring of tumor ablation, vascular imaging and breast imaging. System limiting resolution was estimated using a line-pair target with decreasing line thickness and equal separation. For a swept frequency beam from 2.6 - 3.0 MHz, the minimum resolution was 0.5 lp/mm. Apatite crystals were suspended in castor oil to approximate breast microcalcifications. Crystals from 0.425 - 1.18 mm in diameter were well resolved in the acoustic zoom mode. Needle visibility was examined with both a 14-gauge biopsy needle and a 0.6 mm needle. The needle tip was clearly visible throughout the dynamic imaging sequence as it was slowly inserted into a RMI tissue-equivalent breast biopsy phantom. A selection of human images was acquired in several volunteers: a 25 year-old female volunteer with normal breast tissue, a lateral view of the elbow joint showing muscle fascia and tendon insertions, and the superficial vessels in the forearm. Real-time video images of these studies will be presented. In all of these studies, conventional sonography was used for comparison. These preliminary investigations with the new prototype acoustical holography system showed favorable results in comparison to state-of-the-art pulse-echo ultrasound and demonstrate it to be suitable for further clinical study. The new patient interfaces will facilitate orthopedic soft tissue evaluation, study of superficial vascular structures and potentially breast imaging.
Needle Thoracostomy: Does Changing Needle Length and Location Change Patient Outcome?
Weichenthal, Lori A; Owen, Scott; Stroh, Geoffory; Ramos, John
2018-06-01
Needle thoracostomy (NT) is a common prehospital intervention for patients in extremis or cardiac arrest due to trauma. The purpose of this study is to compare outcomes, efficacy, and complications after a change in policy related to NT in a four-county Emergency Medical Services (EMS) system with a catchment area of greater than 1.6 million people. This is a before and after observational study of all patients who had NT performed in the Central California (USA) EMS system. The before, anterior midclavicular line (MCL) group consisted of all patients who underwent NT from May 7, 2007 through February 28, 2013. The after, midaxillary line (MAL) axillary group consisted of all patients who underwent NT from March 1, 2013 through January 30, 2016, after policy revisions changed the timing, needle size, and placement location for NT. All prehospital and hospital records where NT was performed were queried for demographics, mechanism of injury, initial status and post-NT clinical change, reported complications, and final outcome. The trauma registry was accessed to obtain Injury Severity Scores (ISS). Information was manually abstracted by study investigators and examined utilizing univariate and multivariate analyses. Three-hundred and five trauma patients treated with NT were included in this study, of which, 169 patients (the MCL group) were treated with a 14-guage intravenous (IV) catheter at least 5.0-cm long at the second intercostal space (ICS), MCL after being placed in the ambulance; and 136 patients (the MAL group) were treated with a 10-guage IV catheter at least 9.5-cm long at the fifth ICS, MAL on scene. The mean ISS was lower in the MAL cohort (64.5 versus 69.2; P=.007). The mortality rate was 79% in both groups. The multivariate model with regard to survival supported that a lower ISS (P<.001) and reported clinical change after NT (P=.003) were significant indicators of survival. No complications from NT were reported. Changing the timing, length of needle, and location of placement did not change mortality in patients requiring NT. Needle thoracostomy was used more frequently after the change in policy, and the MAL cohort was less injured. No increase in reported complications was noted. WeichenthalLA, OwenS, StrohG, RamosJ. Needle thoracostomy: does changing needle length and location change patient outcome? Prehosp Disaster Med. 2018;33(3):237-244.
Blumenfeld, Philip; Hata, Nobuhiko; DiMaio, Simon; Zou, Kelly; Haker, Steven; Fichtinger, Gabor; Tempany, Clare M C
2007-09-01
To quantify needle placement accuracy of magnetic resonance image (MRI)-guided core needle biopsy of the prostate. A total of 10 biopsies were performed with 18-gauge (G) core biopsy needle via a percutaneous transperineal approach. Needle placement error was assessed by comparing the coordinates of preplanned targets with the needle tip measured from the intraprocedural coherent gradient echo images. The source of these errors was subsequently investigated by measuring displacement caused by needle deflection and needle susceptibility artifact shift in controlled phantom studies. Needle placement error due to misalignment of the needle template guide was also evaluated. The mean and standard deviation (SD) of errors in targeted biopsies was 6.5 +/- 3.5 mm. Phantom experiments showed significant placement error due to needle deflection with a needle with an asymmetrically beveled tip (3.2-8.7 mm depending on tissue type) but significantly smaller error with a symmetrical bevel (0.6-1.1 mm). Needle susceptibility artifacts observed a shift of 1.6 +/- 0.4 mm from the true needle axis. Misalignment of the needle template guide contributed an error of 1.5 +/- 0.3 mm. Needle placement error was clinically significant in MRI-guided biopsy for diagnosis of prostate cancer. Needle placement error due to needle deflection was the most significant cause of error, especially for needles with an asymmetrical bevel. (c) 2007 Wiley-Liss, Inc.
Needle tip visibility in 3D ultrasound images
NASA Astrophysics Data System (ADS)
Arif, Muhammad; Moelker, Adriaan; van Walsum, Theo
2017-03-01
Needle visibility is of crucial importance for ultrasound guided interventional procedures. However, several factors, such as shadowing by bone or gas and tissue echogenic properties similar to needles, may compromise needle visibility. Additionally, small angle between the ultrasound beam and the needle, as well as small gauged needles may reduce visibility. Variety in needle tips design may also affect needle visibility. Whereas several studies have investigated needle visibility in 2D ultrasound imaging, no data is available for 3D ultrasound imaging, a modality that has great potential for image guidance interventions1. In this study, we evaluated needle visibility using a 3D ultrasound transducer. We examined different needles in a tissue mimicking liver phantom at three angles (200, 550 and 900) and quantify their visibility. The liver phantom was made by 5% polyvinyl alcohol solution containing 1% Silica gel particles to act as ultrasound scattering particles. We used four needles; two biopsy needles (Quick core 14G and 18G), one Ablation needle (Radiofrequency Ablation 17G), and Initial puncture needle (IP needle 17G). The needle visibility was quantified by calculating contrast to noise ratio. The results showed that the visibility for all needles were almost similar at large angles. However the difference in visibility at lower angles is more prominent. Furthermore, the visibility increases with the increase in angle of ultrasound beam with needles.
The type III secretion system is involved in Escherichia coli K1 interactions with Acanthamoeba.
Siddiqui, Ruqaiyyah; Malik, Huma; Sagheer, Mehwish; Jung, Suk-Yul; Khan, Naveed Ahmed
2011-08-01
The type III secretion system among Gram-negative bacteria is known to deliver effectors into host cell to interfere with host cellular processes. The type III secretion system in Yersina, Pseudomonas and Enterohemorrhagic Escherichia coli have been well documented to be involved in the bacterial pathogenicity. The existence of type III secretion system has been demonstrated in neuropathogenic E. coli K1 strains. Here, it is observed that the deletion mutant of type III secretion system in E. coli strain EC10 exhibited defects in the invasion and intracellular survival in Acanthamoeba castellanii (a keratitis isolate) compared to its parent strain. Next, it was determined whether type III secretion system plays a role in E. coli K1 survival inside Acanthamoeba during the encystment process. Using encystment assays, our findings revealed that the type III secretion system-deletion mutant exhibited significantly reduced survival inside Acanthamoeba cysts compared with its parent strain, EC10 (P<0.01). This is the first demonstration that the type III secretion system plays an important role in E. coli interactions with Acanthamoeba. A complete understanding of how amoebae harbor bacterial pathogens will help design strategies against E. coli transmission to the susceptible hosts. Copyright © 2011 Elsevier Inc. All rights reserved.
Distribution and diversity of bacterial secretion systems across metagenomic datasets.
Barret, Matthieu; Egan, Frank; O'Gara, Fergal
2013-02-01
Bacteria can manipulate their surrounding environment through the secretion of proteins into other living organisms and into the extracellular milieu. In Gram stain negative bacteria this process is mediated by different types of secretion systems from type I through type VI secretion system (T1SS-T6SS). In this study the prevalence of these secretion systems in 312 publicly available microbiomes derived from a wide range of ecosystems was investigated by a gene-centric approach. Our analysis demonstrates that some secretion systems are over-represented in some specific samples. In addition, some T3SS and T6SS phylogenetic clusters were specifically enriched in particular ecological niches, which could indicate specific bacterial adaptation to these environments. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
The Incidence of Intravascular Needle Entrance during Inferior Alveolar Nerve Block Injection.
Taghavi Zenouz, Ali; Ebrahimi, Hooman; Mahdipour, Masoumeh; Pourshahidi, Sara; Amini, Parisa; Vatankhah, Mahdi
2008-01-01
Dentists administer thousands of local anesthetic injections every day. Injection to a highly vascular area such as pterygomandibular space during an inferior alveolar nerve block has a high risk of intravascular needle entrance. Accidental intravascular injection of local anesthetic agent with vasoconstrictor may result in cardiovascular and central nervous system toxicity, as well as tachycardia and hypertension. There are reports that indicate aspiration is not performed in every injection. The aim of the present study was to assess the incidence of intravascular needle entrance in inferior alveolar nerve block injections. Three experienced oral and maxillofacial surgeons performed 359 inferior alveolar nerve block injections using direct or indirect techniques, and reported the results of aspiration. Aspirable syringes and 27 gauge long needles were used, and the method of aspiration was similar in all cases. Data were analyzed using t-test. 15.3% of inferior alveolar nerve block injections were aspiration positive. Intravascular needle entrance was seen in 14.2% of cases using direct and 23.3% of cases using indirect block injection techniques. Of all injections, 15.8% were intravascular on the right side and 14.8% were intravascular on the left. There were no statistically significant differences between direct or indirect block injection techniques (P = 0.127) and between right and left injection sites (P = 0.778). According to our findings, the incidence of intravascular needle entrance during inferior alveolar nerve block injection was relatively high. It seems that technique and maneuver of injection have no considerable effect in incidence of intravascular needle entrance.
The Incidence of Intravascular Needle Entrance during Inferior Alveolar Nerve Block Injection
Taghavi Zenouz, Ali; Ebrahimi, Hooman; Mahdipour, Masoumeh; Pourshahidi, Sara; Amini, Parisa; Vatankhah, Mahdi
2008-01-01
Background and aims Dentists administer thousands of local anesthetic injections every day. Injection to a highly vascular area such as pterygomandibular space during an inferior alveolar nerve block has a high risk of intravascular needle entrance. Accidental intravascular injection of local anesthetic agent with vasoconstrictor may result in cardiovascular and central nervous system toxicity, as well as tachycardia and hypertension. There are reports that indicate aspiration is not performed in every injection. The aim of the present study was to assess the incidence of intravascular needle entrance in inferior alveolar nerve block injections. Materials and methods Three experienced oral and maxillofacial surgeons performed 359 inferior alveolar nerve block injections using direct or indirect techniques, and reported the results of aspiration. Aspirable syringes and 27 gauge long needles were used, and the method of aspiration was similar in all cases. Data were analyzed using t-test. Results 15.3% of inferior alveolar nerve block injections were aspiration positive. Intravascular needle entrance was seen in 14.2% of cases using direct and 23.3% of cases using indirect block injection techniques. Of all injections, 15.8% were intravascular on the right side and 14.8% were intravascular on the left. There were no statistically significant differences between direct or indirect block injection techniques (P = 0.127) and between right and left injection sites (P = 0.778). Conclusion According to our findings, the incidence of intravascular needle entrance during inferior alveolar nerve block injection was relatively high. It seems that technique and maneuver of injection have no considerable effect in incidence of intravascular needle entrance. PMID:23285329
Xiao, Xiao; Li, Wei; Clawson, Corbin; Karvani, David; Sondag, Perceval; Hahn, James K
2018-01-01
The study aimed to develop a motion capture system that can track, visualize, and analyze the entire performance of self-injection with the auto-injector. Each of nine healthy subjects and 29 rheumatoid arthritic (RA) patients with different degrees of hand disability performed two simulated injections into an injection pad while six degrees of freedom (DOF) motions of the auto-injector and the injection pad were captured. We quantitatively measured the performance of the injection by calculating needle displacement from the motion trajectories. The max, mean, and SD of needle displacement were analyzed. Assessments of device acceptance and usability were evaluated by a survey questionnaire and independent observations of compliance with the device instruction for use (IFU). A total of 80 simulated injections were performed. Our results showed a similar level of performance among all the subjects with slightly larger, but not statistically significant, needle displacement in the RA group. In particular, no significant effects regarding previous experience in self-injection, grip method, pain in hand, and Cochin score in the RA group were found to have an impact on the mean needle displacement. Moreover, the analysis of needle displacement for different durations of injections indicated that most of the subjects reached their personal maximum displacement in 15 seconds and remained steady or exhibited a small amount of increase from 15 to 60 seconds. Device acceptance was high for most of the questions (ie, >4; >80%) based on a 0-5-point scale or percentage of acceptance. The overall compliance with the device IFU was high for the first injection (96.05%) and reached 98.02% for the second injection. We demonstrated the feasibility of tracking the motions of injection to measure the performance of simulated self-injection. The comparisons of needle displacement showed that even RA patients with severe hand disability could properly perform self-injection with this auto-injector at a similar level with the healthy subjects. Finally, the observed high device acceptance and compliance with device IFU suggest that the system is convenient and easy to use.
Single-operator real-time ultrasound-guided spinal injection using SonixGPS™: a case series.
Brinkmann, Silke; Tang, Raymond; Sawka, Andrew; Vaghadia, Himat
2013-09-01
The SonixGPS™ is a novel needle tracking system that has recently been approved in Canada for ultrasound-guided needle interventions. It allows optimization of needle-beam alignment by providing a real-time display of current and predicted needle tip position. Currently, there is limited evidence on the effectiveness of this technique for performance of real-time spinal anesthesia. This case series reports performance of the SonixGPS system for real-time ultrasound-guided spinal anesthesia in elective patients scheduled for joint arthroplasty. In this single-centre case series, 20 American Society of Anesthesiologists' class I-II patients scheduled for lower limb joint arthroplasty were recruited to undergo real-time ultrasound-guided spinal anesthesia with the SonixGPS after written informed consent. The primary outcome for this clinical cases series was the success rate of spinal anesthesia, and the main secondary outcome was time required to perform spinal anesthesia. Successful spinal anesthesia for joint arthroplasty was achieved in 18/20 patients, and 17 of these required only a single skin puncture. In 7/20 (35%) patients, dural puncture was achieved on the first needle pass, and in 11/20 (55%) patients, dural puncture was achieved with two or three needle redirections. Median (range) time taken to perform the block was 8 (5-14) min. The study procedure was aborted in two cases because our clinical protocol dictated using a standard approach if spinal anesthesia was unsuccessful after three ultrasound-guided insertion attempts. These two cases were classified as failures. No complications, including paresthesia, were observed during the procedure. All patients with successful spinal anesthesia found the technique acceptable and were willing to undergo a repeat procedure if deemed necessary. This case series shows that real-time ultrasound-guided spinal anesthesia with the SonixGPS system is possible within an acceptable time frame. It proved effective with a low rate of failure and a low rate of complications. Our clinical experience suggests that a randomized trial is warranted to compare the SonixGPS with a standard block technique.
Recovering Infectious HIV from Novel Syringe-Needle Combinations with Low Dead Space Volumes.
Abdala, Nadia; Patel, Amisha; Heimer, Robert
This study determines if detachable syringe-needle combinations redesigned to reduce their dead space volume may substantially reduce the burden of exposure to infectious HIV among people who inject drugs. Two novel, low dead space (LDS) syringe-needle designs-one added a piston to the plunger (LDS syringe) and the other added a filler to the needle (LDS needle) to reduce their dead space-were compared to standard detachable needle-syringe combinations and to syringes with fixed needles. LDS and standard syringes attached to LDS and standard needles of 23-, 25-, and 27-gauge size were contaminated with HIV-infected blood in the laboratory. The proportion of syringe-needle combinations containing infectious HIV was analyzed after syringes were (1) stored up to 7 days at 22°C or (2) rinsed with water. Detachable syringes attached to 25-gauge needles yielded comparable proportions of syringes with infectious HIV, whether the needle was standard or LDS. Among needles of greater diameter (23 gauge), LDS needles tended to reduce recoverable HIV to a greater extent than standard needles. Syringes with fixed needles showed superior results to LDS syringes attached to needles of equivalent diameter and were less likely to get clogged by blood. Detachable LDS syringe-needle designs must be recommended with caution since they still pose potential risk for HIV transmission. Distribution of LDS syringes and needles must be accompanied by recommendations and instructions for their proper rinsing and disinfection in order to reduce viral burden and chances of needle clogging.
Wolf, Bruce L; Marks, Albert; Fahrenholz, John M
2006-07-01
Current Occupational Safety and Health Administration (OSHA) guidelines mandate the use of safety needles when allergy injections are given. Safety needles for intradermal testing remain optional. Whether safety needles reduce the number of accidental needle sticks (ANSs) in the outpatient setting has yet to be proven. To determine the rate of ANSs with new (safety) needles vs old needles used in allergy immunotherapy and intradermal testing. Allergy practices from 22 states were surveyed by e-mail. Seventy practices (28%) responded to the survey. Twice as many ANSs occurred in practices giving immunotherapy when using new needles vs old needles (P < .01). The rate of ANSs was roughly the same for intradermal testing with new needles vs old needles. These findings further question whether OSHA's guidelines for safety needle use in outpatient practice need revision and if allergy practices might be excluded from the requirement to use safety needles.
An Automated Mouse Tail Vascular Access System by Vision and Pressure Feedback.
Chang, Yen-Chi; Berry-Pusey, Brittany; Yasin, Rashid; Vu, Nam; Maraglia, Brandon; Chatziioannou, Arion X; Tsao, Tsu-Chin
2015-08-01
This paper develops an automated vascular access system (A-VAS) with novel vision-based vein and needle detection methods and real-time pressure feedback for murine drug delivery. Mouse tail vein injection is a routine but critical step for preclinical imaging applications. Due to the small vein diameter and external disturbances such as tail hair, pigmentation, and scales, identifying vein location is difficult and manual injections usually result in poor repeatability. To improve the injection accuracy, consistency, safety, and processing time, A-VAS was developed to overcome difficulties in vein detection noise rejection, robustness in needle tracking, and visual servoing integration with the mechatronics system.
[Design and establishment of modern literature database about acupuncture Deqi].
Guo, Zheng-rong; Qian, Gui-feng; Pan, Qiu-yin; Wang, Yang; Xin, Si-yuan; Li, Jing; Hao, Jie; Hu, Ni-juan; Zhu, Jiang; Ma, Liang-xiao
2015-02-01
A search on acupuncture Deqi was conducted using four Chinese-language biomedical databases (CNKI, Wan-Fang, VIP and CBM) and PubMed database and using keywords "Deqi" or "needle sensation" "needling feeling" "needle feel" "obtaining qi", etc. Then, a "Modern Literature Database for Acupuncture Deqi" was established by employing Microsoft SQL Server 2005 Express Edition, introducing the contents, data types, information structure and logic constraint of the system table fields. From this Database, detailed inquiries about general information of clinical trials, acupuncturists' experience, ancient medical works, comprehensive literature, etc. can be obtained. The present databank lays a foundation for subsequent evaluation of literature quality about Deqi and data mining of undetected Deqi knowledge.
Stinson, W.J.
1958-09-16
A valve designed to selectively sample fluids from a number of sources is described. The valve comprises a rotatable operating lever connected through a bellows seal to a rotatable assembly containing a needle valve, bearings, and a rotational lock. The needle valve is connected through a flexible tube to the sample fluid outlet. By rotating the lever the needle valve is placed over . one of several fluid sources and locked in position so that the fluid is traasferred through the flexible tubing and outlet to a remote sampling system. The fluids from the nonselected sources are exhausted to a waste line. This valve constitutes a simple, dependable means of selecting a sample from one of several scurces.
Eusemann, Pascal; Schnittler, Martin; Nilsson, R Henrik; Jumpponen, Ari; Dahl, Mathilde B; Würth, David G; Buras, Allan; Wilmking, Martin; Unterseher, Martin
2016-09-01
Plant-associated mycobiomes in extreme habitats are understudied and poorly understood. We analysed Illumina-generated ITS1 sequences from the needle mycobiome of white spruce (Picea glauca) at the northern treeline in Alaska (USA). Sequences were obtained from the same DNA that was used for tree genotyping. In the present study, fungal metabarcoding and tree microsatellite data were compared for the first time. In general, neighbouring trees shared more fungal taxa with each other than trees growing in further distance. Mycobiomes correlated strongly with phenological host traits and local habitat characteristics contrasting a dense forest stand with an open treeline site. Genetic similarity between trees did not influence fungal composition and no significant correlation existed between needle mycobiome and tree genotype. Our results suggest the pronounced influence of local habitat conditions and phenotypic tree traits on needle-inhabiting fungi. By contrast, the tree genetic identity cannot be benchmarked as a dominant driver for needle-inhabiting mycobiomes, at least not for white spruce in this extreme environment. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Perception of risk and potential occupational exposure to HIV/AIDS among medical interns in Delhi.
Lal, Panna; Singh, M M; Malhotra, Rahul; Ingle, G K
2007-06-01
A cross sectional study was conducted among 129 medical interns of Maulana Azad Medical College, New Delhi for assessing the perceived levels of risk of acquiring HIV infection in the health care settings among medical interns, reasons for the same and their exposure to situations having potential of HIV transmission. Majority of the interns (68.3%) perceived themselves to be at a very high/high risk of acquiring HIV infection during their medical career. The common reasons for perceived risk of acquiring HIV infection were getting injuries due to needle pricks/cuts during surgical procedures (32.4%), frequent exposure to the blood/ secretions of patients (28.5%) and insufficient availability of gloves (17.6%). Some (23.2%) were of the opinion that students in future might lose interest in the medical profession due to increasing risk of HIV infection and few (3.1%) were even considering to leave the medical profession for the same reason. Majority of the interns (72.9%) had experienced needle pricks and more than half (53.7%) of them even had had blood splashes in their eyes/ nose/ mouth during surgical procedures. The findings of the study call for efforts for bringing a reduction in the risk perception of the interns through awareness campaigns and reorientation trainings, ensuring availability of gloves and other items necessary for observing universal work precautions and proper disposal of potentially contaminated articles.
Fiuzy, Mohammad; Haddadnia, Javad; Mollania, Nasrin; Hashemian, Maryam; Hassanpour, Kazem
2012-01-01
Accurate Diagnosis of Breast Cancer is of prime importance. Fine Needle Aspiration test or "FNA", which has been used for several years in Europe, is a simple, inexpensive, noninvasive and accurate technique for detecting breast cancer. Expending the suitable features of the Fine Needle Aspiration results is the most important diagnostic problem in early stages of breast cancer. In this study, we introduced a new algorithm that can detect breast cancer based on combining artificial intelligent system and Fine Needle Aspiration (FNA). We studied the Features of Wisconsin Data Base Cancer which contained about 569 FNA test samples (212 patient samples (malignant) and 357 healthy samples (benign)). In this research, we combined Artificial Intelligence Approaches, such as Evolutionary Algorithm (EA) with Genetic Algorithm (GA), and also used Exact Classifier Systems (here by Fuzzy C-Means (FCM)) to separate malignant from benign samples. Furthermore, we examined artificial Neural Networks (NN) to identify the model and structure. This research proposed a new algorithm for an accurate diagnosis of breast cancer. According to Wisconsin Data Base Cancer (WDBC) data base, 62.75% of samples were benign, and 37.25% were malignant. After applying the proposed algorithm, we achieved high detection accuracy of about "96.579%" on 205 patients who were diagnosed as having breast cancer. It was found that the method had 93% sensitivity, 73% specialty, 65% positive predictive value, and 95% negative predictive value, respectively. If done by experts, Fine Needle Aspiration (FNA) can be a reliable replacement for open biopsy in palpable breast masses. Evaluation of FNA samples during aspiration can decrease insufficient samples. FNA can be the first line of diagnosis in women with breast masses, at least in deprived regions, and may increase health standards and clinical supervision of patients. Such a smart, economical, non-invasive, rapid and accurate system can be introduced as a useful diagnostic system for comprehensive treatment of breast cancer. Another advantage of this method is the possibility of diagnosing breast abnormalities. If done by experts, FNA can be a reliable replacement for open biopsy in palpable breast masses. Evaluation of FNA samples during aspiration can decrease insufficient samples.
Comparison of Spinal Needle Deflection in a Ballistic Gel Model.
Rand, Ethan; Christolias, George; Visco, Christopher; R Singh, Jaspal
2016-10-01
Percutaneous diagnostic and therapeutic procedures are commonly used in the treatment of spinal pain. The success of these procedures depends on the accuracy of needle placement, which is influenced by needle size and shape. The purpose of this study is to examine and quantify the deviation of commonly used spinal needles based on needle tip design and gauge, using a ballistic gel tissue simulant. Six needles commonly used in spinal procedures (Quincke, Short Bevel, Chiba, Tuohy, Hustead, Whitacre) were selected for use in this study. Ballistic gel samples were made in molds of two depths, 40mm and 80 mm. Each needle was mounted in a drill press to ensure an accurate needle trajectory. Distance of deflection was recorded for each needle. In comparing the mean deflection of 22 gauge needles of all types at 80 mm of depth, deflection was greatest among beveled needles [Short Bevel (9.96 ± 0.77 mm), Quincke (8.89 ± 0.17 mm), Chiba (7.71 ± 1.16 mm)], moderate among epidural needles [Tuohy (7.64 ± 0.16 mm) and least among the pencil-point needles [Whitacre (0.73 ± 0.34 mm)]. Increased gauge (25 g) led to a significant increase in deflection among beveled needles. The direction of deflection was away from the bevel with Quincke, Chiba and Short Beveled needles and toward the bevel of the Tuohy and Hustead needles. Deflection of the Whitacre pencil-point needle was minimal. There is clinical utility in knowing the relative deflection of various needle tips. When a procedure requires a needle to be steered around obstacles, or along non-collinear targets, the predictable and large amount of deflection obtained through use of a beveled spinal needle may prove beneficial.
Comparison of Spinal Needle Deflection in a Ballistic Gel Model
Rand, Ethan; Christolias, George; Visco, Christopher; R. Singh, Jaspal
2016-01-01
Background Percutaneous diagnostic and therapeutic procedures are commonly used in the treatment of spinal pain. The success of these procedures depends on the accuracy of needle placement, which is influenced by needle size and shape. Objectives The purpose of this study is to examine and quantify the deviation of commonly used spinal needles based on needle tip design and gauge, using a ballistic gel tissue simulant. Materials and Methods Six needles commonly used in spinal procedures (Quincke, Short Bevel, Chiba, Tuohy, Hustead, Whitacre) were selected for use in this study. Ballistic gel samples were made in molds of two depths, 40mm and 80 mm. Each needle was mounted in a drill press to ensure an accurate needle trajectory. Distance of deflection was recorded for each needle. Results In comparing the mean deflection of 22 gauge needles of all types at 80 mm of depth, deflection was greatest among beveled needles [Short Bevel (9.96 ± 0.77 mm), Quincke (8.89 ± 0.17 mm), Chiba (7.71 ± 1.16 mm)], moderate among epidural needles [Tuohy (7.64 ± 0.16 mm) and least among the pencil-point needles [Whitacre (0.73 ± 0.34 mm)]. Increased gauge (25 g) led to a significant increase in deflection among beveled needles. The direction of deflection was away from the bevel with Quincke, Chiba and Short Beveled needles and toward the bevel of the Tuohy and Hustead needles. Deflection of the Whitacre pencil-point needle was minimal. Conclusions There is clinical utility in knowing the relative deflection of various needle tips. When a procedure requires a needle to be steered around obstacles, or along non-collinear targets, the predictable and large amount of deflection obtained through use of a beveled spinal needle may prove beneficial. PMID:27847693
Augmented reality system for CT-guided interventions: system description and initial phantom trials
NASA Astrophysics Data System (ADS)
Sauer, Frank; Schoepf, Uwe J.; Khamene, Ali; Vogt, Sebastian; Das, Marco; Silverman, Stuart G.
2003-05-01
We are developing an augmented reality (AR) image guidance system, in which information derived from medical images is overlaid onto a video view of the patient. The interventionalist wears a head-mounted display (HMD) that presents him with the augmented stereo view. The HMD is custom fitted with two miniature color video cameras that capture the stereo view of the scene. A third video camera, operating in the near IR, is also attached to the HMD and is used for head tracking. The system achieves real-time performance of 30 frames per second. The graphics appears firmly anchored in the scne, without any noticeable swimming or jitter or time lag. For the application of CT-guided interventions, we extended our original prototype system to include tracking of a biopsy needle to which we attached a set of optical markers. The AR visualization provides very intuitive guidance for planning and placement of the needle and reduces radiation to patient and radiologist. We used an interventional abdominal phantom with simulated liver lesions to perform an inital set of experiments. The users were consistently able to locate the target lesion with the first needle pass. These results provide encouragement to move the system towards clinical trials.
Belij, Sandra; Marinkovic, Emilija; Stojicevic, Ivana; Montanaro, Jacqueline; Stein, Elisabeth; Bintner, Nora; Stojanovic, Marijana
2013-01-01
Background In a quest for a needle-free vaccine administration strategy, we evaluated the ocular conjunctiva as an alternative mucosal immunization route by profiling and comparing the local and systemic immune responses to the subcutaneous or conjunctival administration of tetanus toxoid (TTd), a model antigen. Materials and methods BALB/c and C57BL/6 mice were immunized either subcutaneously with TTd alone or via the conjunctiva with TTd alone, TTd mixed with 2% glycerol or TTd with merthiolate-inactivated whole-cell B. pertussis (wBP) as adjuvants. Mice were immunized on days 0, 7 and 14 via both routes, and an evaluation of the local and systemic immune responses was performed two weeks after the last immunization. Four weeks after the last immunization, the mice were challenged with a lethal dose (2 × LD50) of tetanus toxin. Results The conjunctival application of TTd in BALB/c mice induced TTd-specific secretory IgA production and skewed the TTd-specific immune response toward a Th1/Th17 profile, as determined by the stimulation of IFNγ and IL-17A secretion and/or the concurrent pronounced reduction of IL-4 secretion, irrespective of the adjuvant. In conjunctivaly immunized C57BL/6 mice, only TTd administered with wBP promoted the establishment of a mixed Th1/Th17 TTd-specific immune response, whereas TTd alone or TTd in conjunction with glycerol initiated a dominant Th1 response against TTd. Immunization via the conjunctiva with TTd plus wBP adjuvant resulted in a 33% survival rate of challenged mice compared to a 0% survival rate in non-immunized animals (p<0.05). Conclusion Conjunctival immunization with TTd alone or with various adjuvants induced TTd-specific local and systemic immune responses, predominantly of the Th1 type. The strongest immune responses developed in mice that received TTd together with wBP, which implies that this alternative route might tailor the immune response to fight intracellular bacteria or viruses more effectively. PMID:23637758
Barisani-Asenbauer, Talin; Inic-Kanada, Aleksandra; Belij, Sandra; Marinkovic, Emilija; Stojicevic, Ivana; Montanaro, Jacqueline; Stein, Elisabeth; Bintner, Nora; Stojanovic, Marijana
2013-01-01
In a quest for a needle-free vaccine administration strategy, we evaluated the ocular conjunctiva as an alternative mucosal immunization route by profiling and comparing the local and systemic immune responses to the subcutaneous or conjunctival administration of tetanus toxoid (TTd), a model antigen. BALB/c and C57BL/6 mice were immunized either subcutaneously with TTd alone or via the conjunctiva with TTd alone, TTd mixed with 2% glycerol or TTd with merthiolate-inactivated whole-cell B. pertussis (wBP) as adjuvants. Mice were immunized on days 0, 7 and 14 via both routes, and an evaluation of the local and systemic immune responses was performed two weeks after the last immunization. Four weeks after the last immunization, the mice were challenged with a lethal dose (2 × LD50) of tetanus toxin. The conjunctival application of TTd in BALB/c mice induced TTd-specific secretory IgA production and skewed the TTd-specific immune response toward a Th1/Th17 profile, as determined by the stimulation of IFNγ and IL-17A secretion and/or the concurrent pronounced reduction of IL-4 secretion, irrespective of the adjuvant. In conjunctivaly immunized C57BL/6 mice, only TTd administered with wBP promoted the establishment of a mixed Th1/Th17 TTd-specific immune response, whereas TTd alone or TTd in conjunction with glycerol initiated a dominant Th1 response against TTd. Immunization via the conjunctiva with TTd plus wBP adjuvant resulted in a 33% survival rate of challenged mice compared to a 0% survival rate in non-immunized animals (p<0.05). Conjunctival immunization with TTd alone or with various adjuvants induced TTd-specific local and systemic immune responses, predominantly of the Th1 type. The strongest immune responses developed in mice that received TTd together with wBP, which implies that this alternative route might tailor the immune response to fight intracellular bacteria or viruses more effectively.
Evidence for alternative quaternary structure in a bacterial Type III secretion system chaperone
2010-01-01
Background Type III secretion systems are a common virulence mechanism in many Gram-negative bacterial pathogens. These systems use a nanomachine resembling a molecular needle and syringe to provide an energized conduit for the translocation of effector proteins from the bacterial cytoplasm to the host cell cytoplasm for the benefit of the pathogen. Prior to translocation specialized chaperones maintain proper effector protein conformation. The class II chaperone, Invasion plasmid gene (Ipg) C, stabilizes two pore forming translocator proteins. IpgC exists as a functional dimer to facilitate the mutually exclusive binding of both translocators. Results In this study, we present the 3.3 Å crystal structure of an amino-terminally truncated form (residues 10-155, denoted IpgC10-155) of the class II chaperone IpgC from Shigella flexneri. Our structure demonstrates an alternative quaternary arrangement to that previously described for a carboxy-terminally truncated variant of IpgC (IpgC1-151). Specifically, we observe a rotationally-symmetric "head-to- head" dimerization interface that is far more similar to that previously described for SycD from Yersinia enterocolitica than to IpgC1-151. The IpgC structure presented here displays major differences in the amino terminal region, where extended coil-like structures are seen, as opposed to the short, ordered alpha helices and asymmetric dimerization interface seen within IpgC1-151. Despite these differences, however, both modes of dimerization support chaperone activity, as judged by a copurification assay with a recombinant form of the translocator protein, IpaB. Conclusions From primary to quaternary structure, these results presented here suggest that a symmetric dimerization interface is conserved across bacterial class II chaperones. In light of previous data which have described the structure and function of asymmetric dimerization, our results raise the possibility that class II chaperones may transition between asymmetric and symmetric dimers in response to changes in either biochemical modifications (e.g. proteolytic cleavage) or other biological cues. Such transitions may contribute to the broad range of protein-protein interactions and functions attributed to class II chaperones. PMID:20633281
Geographical and climatic limits of needle types of one- and two-needled pinyon pines
Cole, K.L.; Fisher, J.; Arundel, S.T.; Cannella, J.; Swift, S.
2008-01-01
Aim: The geographical extent and climatic tolerances of one- and two-needled pinyon pines (Pinus subsect. Cembroides) are the focus of questions in taxonomy, palaeoclimatology and modelling of future distributions. The identification of these pines, traditionally classified by one- versus two-needled fascicles, is complicated by populations with both one- and two-needled fascicles on the same tree, and the description of two more recently described one-needled varieties: the fallax-type and californiarum-type. Because previous studies have suggested correlations between needle anatomy and climate, including anatomical plasticity reflecting annual precipitation, we approached this study at the level of the anatomy of individual pine needles rather than species. Location: Western North America. Methods: We synthesized available and new data from field and herbarium collections of needles to compile maps of their current distributions across western North America. Annual frequencies of needle types were compared with local precipitation histories for some stands. Historical North American climates were modelled on a c. 1-km grid using monthly temperature and precipitation values. A geospatial model (ClimLim), which analyses the effect of climate-modulated physiological and ecosystem processes, was used to rank the importance of seasonal climate variables in limiting the distributions of anatomical needle types. Results: The pinyon needles were classified into four distinct types based upon the number of needles per fascicle, needle thickness and the number of stomatal rows and resin canals. The individual needles fit well into four categories of needle types, whereas some trees exhibit a mixture of two needle types. Trees from central Arizona containing a mixture of Pinus edulis and fallax-type needles increased their percentage of fallax-type needles following dry years. All four needle types occupy broader geographical regions with distinctive precipitation regimes. Pinus monophylla and californiarum-type needles occur in regions with high winter precipitation. Pinus edulis and fallax-type needles are found in regions with high monsoon precipitation. Areas supporting californiarum-type and fallax-type needle distributions are additionally characterized by a more extreme May-June drought. Main conclusions: These pinyon needle types seem to reflect the amount and seasonality of precipitation. The single needle fascicle characterizing the fallax type may be an adaptation to early summer or periodic drought, while the single needle of Pinus monophylla may be an adaptation to summer-autumn drought. Although the needles fit into four distinct categories, the parent trees are sometimes less easily classified, especially near their ancestral Pleistocene ranges in the Mojave and northern Sonoran deserts. The abundance of trees with both one- and two-needled fascicles in the zones between P. monophylla, P. edulis and fallax-type populations suggest that needle fascicle number is an unreliable characteristic for species classification. Disregarding needle fascicle number, the fallax-type needles are nearly identical to P. edulis, supporting Little's (1968) initial classification of these trees as P. edulis var. fallax, while the californiarum-type needles have a distinctive morphology supporting Bailey's (1987) classification of this tree as Pinus californiarum.
Sibbitt, Wilmer; Sibbitt, Randy R; Michael, Adrian A; Fu, Druce I; Draeger, Hilda T; Twining, Jon M; Bankhurst, Arthur D
2006-04-01
To evaluate physician control of needle and syringe during aspiration-injection syringe procedures by comparing the new reciprocating procedure syringe to a traditional conventional syringe. Twenty-six physicians were tested for their individual ability to control the reciprocating and conventional syringes in typical aspiration-injection procedures using a novel quantitative needle-based displacement procedure model. Subsequently, the physicians performed 48 clinical aspiration-injection (arthrocentesis) procedures on 32 subjects randomized to the reciprocating or conventional syringes. Clinical outcomes included procedure time, patient pain, and operator satisfaction. Multivariate modeling methods were used to determine the experimental variables in the syringe control model most predictive of clinical outcome measures. In the model system, the reciprocating syringe significantly improved physician control of the syringe and needle, with a 66% reduction in unintended forward penetration (p < 0.001) and a 68% reduction in unintended retraction (p < 0.001). In clinical arthrocentesis, improvements were also noted: 30% reduction in procedure time (p < 0.03), 57% reduction in patient pain (p < 0.001), and a 79% increase in physician satisfaction (p < 0.001). The variables in the experimental system--unintended forward penetration, unintended retraction, and operator satisfaction--independently predicted the outcomes of procedure time, patient pain, and physician satisfaction in the clinical study (p < or = 0.001). The reciprocating syringe reduces procedure time and patient pain and improves operator satisfaction with the procedure syringe. The reciprocating syringe improves physician performance in both the validated quantitative needle-based displacement model and in real aspiration-injection syringe procedures, including arthrocentesis.
Kuang, Y; Hilgers, A; Sadiq, M; Cochran, S; Corner, G; Huang, Z
2016-07-01
Clear needle visualisation is recognised as an unmet need for ultrasound guided percutaneous needle procedures including regional anaesthesia and tissue biopsy. With inadequate needle visibility, these procedures may result in serious complications or a failed operation. This paper reports analysis of the modal behaviour of a previously proposed ultrasound-actuated needle configuration, which may overcome this problem by improving needle visibility in colour Doppler imaging. It uses a piezoelectric transducer to actuate longitudinal resonant modes in needles (outer diameter 0.8-1.2mm, length>65mm). The factors that affect the needle's vibration mode are identified, including the needle length, the transducer's resonance frequency and the gripping position. Their effects are investigated using finite element modelling, with the conclusions validated experimentally. The actuated needle was inserted into porcine tissue up to 30mm depth and its visibility was observed under colour Doppler imaging. The piezoelectric transducer is able to generate longitudinal vibration with peak-to-peak amplitude up to 4μm at the needle tip with an actuating voltage of 20Vpp. Actuated in longitudinal vibration modes (distal mode at 27.6kHz and transducer mode at 42.2kHz) with a drive amplitude of 12-14Vpp, a 120mm needle is delineated as a coloured line in colour Doppler images, with both needle tip and shaft visualised. The improved needle visibility is maintained while the needle is advanced into the tissue, thus allowing tracking of the needle position in real time. Moreover, the needle tip is highlighted by strong coloured artefacts around the actuated needle generated by its flexural vibration. A limitation of the technique is that the transducer mode requires needles of specific lengths so that the needle's resonance frequency matches the transducer. This may restrict the choice of needle lengths in clinical applications. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Shang, Weijian; Su, Hao; Li, Gang; Furlong, Cosme; Fischer, Gregory S.
2014-01-01
Robot-assisted surgical procedures, taking advantage of the high soft tissue contrast and real-time imaging of magnetic resonance imaging (MRI), are developing rapidly. However, it is crucial to maintain tactile force feedback in MRI-guided needle-based procedures. This paper presents a Fabry-Perot interference (FPI) based system of an MRI-compatible fiber optic sensor which has been integrated into a piezoelectrically actuated robot for prostate cancer biopsy and brachytherapy in 3T MRI scanner. The opto-electronic sensing system design was minimized to fit inside an MRI-compatible robot controller enclosure. A flexure mechanism was designed that integrates the FPI sensor fiber for measuring needle insertion force, and finite element analysis was performed for optimizing the correct force-deformation relationship. The compact, low-cost FPI sensing system was integrated into the robot and calibration was conducted. The root mean square (RMS) error of the calibration among the range of 0–10 Newton was 0.318 Newton comparing to the theoretical model which has been proven sufficient for robot control and teleoperation. PMID:25126153
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iver; Siemon, John
The initial three atomization attempts resulted in “freeze-outs” within the pour tubes in the pilot-scale system and yielded no powder. Re-evaluation of the alloy liquidus temperatures and melting characteristics, in collaboration with Alcoa, showed further superheat to be necessary to allow the liquid metal to flow through the pour tube to the atomization nozzle. A subsequent smaller run on the experimental atomization system verified these parameters and was successful, as were all successive runs on the larger pilot scale system. One alloy composition froze-out part way through the atomization on both pilot scale runs. SEM images showed needle formation andmore » phase segregations within the microstructure. Analysis of the pour tube freeze-out microstructures showed that large needles formed within the pour tube during the atomization experiment, which eventually blocked the melt stream. Alcoa verified the needle formation in this alloy using theoretical modeling of phase solidification. Sufficient powder of this composition was still generated to allow powder characterization and additive manufacturing trials at Alcoa.« less
Feasibility of Prostate Cancer Diagnosis by Transrectal Photoacoustic Imaging
2012-03-01
cancer detection; needle biopsy is the current practice for diagnosis of the disease, aiming randomly in the prostate. Transrectal ultrasound has...been used as a guiding tool to direct tissue needle biopsy for prostate cancer diagnosis; it cannot be utilized for detecting prostate cancer due to...Research Systems, CA) and used as a reference signal. The sample and the ultrasound transducer (UST, Olympus NDT, one inch in focal length) are
Zhou, Xiuteng; Zhao, Manxi; Zhou, Liangyun; Yang, Guang; Huang, Luqi; Yan, Cuiqi; Huang, Quanshu; Ye, Liang; Zhang, Xiaobo; Guo, Lanpin; Ke, Xiao; Guo, Jiao
2016-01-01
Pine needles have been widely used in the development of anti-hypertensive and anti-hyperlipidemic agents and health food. However, the widespread distribution of this tree poses great obstacles to the quality control and efficacy evaluation. To facilitate the effective and rational exploitation of Masson’s pine (Pinus massoniana Lamb), as well as ensure effective development of Masson’s pine needles as a medicinal agent, we investigated the spatial distribution of habitat suitability and evaluated the optimal ranges of ecological factors of P. massoniana with 280 samples collected from 12 provinces in China through the evaluation of four constituents known to be effective medicinally. The results of habitat suitability evaluation were also verified by Root Mean Square Error (RMSE). Finally, five ecological factors were chosen in the establishment of a habitat suitability evaluation system. The most suitable areas for P. massoniana growth were mainly concentrated in the middle and lower reaches of the Yangtze River basin, such as Sichuan, Guizhou, and Jiangxi provinces, while the best quality needles were from Guizhou, Sichuan, and the junction area of Chongqing, Hunan, and Hubei provinces. This information revealed that suitable areas for effective constituent accumulation of Masson’s pine needles accounted for only 7.41% of its distribution area. PMID:27694967
NASA Astrophysics Data System (ADS)
Zhou, Xiuteng; Zhao, Manxi; Zhou, Liangyun; Yang, Guang; Huang, Luqi; Yan, Cuiqi; Huang, Quanshu; Ye, Liang; Zhang, Xiaobo; Guo, Lanpin; Ke, Xiao; Guo, Jiao
2016-10-01
Pine needles have been widely used in the development of anti-hypertensive and anti-hyperlipidemic agents and health food. However, the widespread distribution of this tree poses great obstacles to the quality control and efficacy evaluation. To facilitate the effective and rational exploitation of Masson’s pine (Pinus massoniana Lamb), as well as ensure effective development of Masson’s pine needles as a medicinal agent, we investigated the spatial distribution of habitat suitability and evaluated the optimal ranges of ecological factors of P. massoniana with 280 samples collected from 12 provinces in China through the evaluation of four constituents known to be effective medicinally. The results of habitat suitability evaluation were also verified by Root Mean Square Error (RMSE). Finally, five ecological factors were chosen in the establishment of a habitat suitability evaluation system. The most suitable areas for P. massoniana growth were mainly concentrated in the middle and lower reaches of the Yangtze River basin, such as Sichuan, Guizhou, and Jiangxi provinces, while the best quality needles were from Guizhou, Sichuan, and the junction area of Chongqing, Hunan, and Hubei provinces. This information revealed that suitable areas for effective constituent accumulation of Masson’s pine needles accounted for only 7.41% of its distribution area.
Temporal response improvement for computed tomography fluoroscopy
NASA Astrophysics Data System (ADS)
Hsieh, Jiang
1997-10-01
Computed tomography fluoroscopy (CTF) has attracted significant attention recently. This is mainly due to the growing clinical application of CTF in interventional procedures, such as guided biopsy. Although many studies have been conducted for its clinical efficacy, little attention has been paid to the temporal response and the inherent limitations of the CTF system. For example, during a biopsy operation, when needle is inserted at a relatively high speed, the true needle position will not be correctly depicted in the CTF image due to the time delay. This could result in an overshoot or misplacement of the biopsy needle by the operator. In this paper, we first perform a detailed analysis of the temporal response of the CTF by deriving a set of equations to describe the average location of a moving object observed by the CTF system. The accuracy of the equations is verified by computer simulations and experiments. We show that the CT reconstruction process acts as a low pass filter to the motion function. As a result, there is an inherent time delay in the CTF process to the true biopsy needle motion and locations. Based on this study, we propose a generalized underscan weighting scheme which significantly improve the performance of CTF in terms of time lag and delay.
Automating fruit fly Drosophila embryo injection for high throughput transgenic studies
NASA Astrophysics Data System (ADS)
Cornell, E.; Fisher, W. W.; Nordmeyer, R.; Yegian, D.; Dong, M.; Biggin, M. D.; Celniker, S. E.; Jin, J.
2008-01-01
To decipher and manipulate the 14 000 identified Drosophila genes, there is a need to inject a large number of embryos with transgenes. We have developed an automated instrument for high throughput injection of Drosophila embryos. It was built on an inverted microscope, equipped with a motorized xy stage, autofocus, a charge coupled device camera, and an injection needle mounted on a high speed vertical stage. A novel, micromachined embryo alignment device was developed to facilitate the arrangement of a large number of eggs. The control system included intelligent and dynamic imaging and analysis software and an embryo injection algorithm imitating a human operator. Once the injection needle and embryo slide are loaded, the software automatically images and characterizes each embryo and subsequently injects DNA into all suitable embryos. The ability to program needle flushing and monitor needle status after each injection ensures reliable delivery of biomaterials. Using this instrument, we performed a set of transformation injection experiments. The robot achieved injection speeds and transformation efficiencies comparable to those of a skilled human injector. Because it can be programed to allow injection at various locations in the embryo, such as the anterior pole or along the dorsal or ventral axes, this system is also suitable for injection of general biochemicals, including drugs and RNAi.
MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement
Fischer, Gregory S.; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; DiMaio, Simon P.; Tempany, Clare M.; Hata, Nobuhiko; Fichtinger, Gabor
2010-01-01
Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of prostate and surrounding tissue, thus granting potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. However, the benefits cannot be readily harnessed for interventional procedures due to difficulties that surround the use of high-field (1.5T or greater) MRI. The inability to use conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intraprostatic needle placement inside closed high-field MRI scanners. MRI compatibility of the robot has been evaluated under 3T MRI using standard prostate imaging sequences and average SNR loss is limited to 5%. Needle alignment accuracy of the robot under servo pneumatic control is better than 0.94 mm rms per axis. The complete system workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the robot mechanism and controller design, the system integration, and presents results of preliminary evaluation of the system. PMID:21057608
The enteric nervous system modulates mammalian duodenal mucosal bicarbonate secretion.
Hogan, D L; Yao, B; Steinbach, J H; Isenberg, J I
1993-08-01
Interaction of the enteric nerves in regulating mammalian duodenal mucosal bicarbonate secretion is not well understood. The purpose of the present experiments was to evaluate the role of the enteric nervous system on bicarbonate secretion from rabbit duodenal mucosa in vitro. Proximal duodenum from male New Zealand White rabbits was stripped of seromuscular layers, mounted in Ussing chambers, and studied under short-circuited conditions. Effects of electrical field stimulation, vasoactive intestinal polypeptide (VIP), carbachol, prostaglandin E2 (PGE2), dibutyryl-cyclic adenosine monophosphate (db-cAMP), and the neurotoxin tetrodotoxin (TTX) and muscarinic blockade by atropine were studied. Electrical field stimulation significantly (P < 0.01) stimulated bicarbonate secretion, short-circuit current (Isc), and electrical potential difference (PD) that was sensitive to both TTX and atropine. VIP-stimulated bicarbonate secretion was significantly inhibited by TTX (-73%), yet Isc and PD remained unchanged. Atropine decreased VIP-induced bicarbonate secretion (-69%) and Isc (-43%). Carbachol-stimulated bicarbonate secretion, Isc, and PD were abolished by atropine, whereas TTX was without affect. Neither TTX nor atropine had a significant effect on PGE2 or db-cAMP-stimulated bicarbonate secretion. These results suggest that (1) enteric nerve stimulation activates an acetylcholine receptor that in turn stimulates duodenal epithelial bicarbonate secretion; (2) VIP stimulates bicarbonate secretion, in large part, via the enteric nervous system; and (3) PGE2 and cAMP stimulate bicarbonate secretion independent of the enteric nervous system.
Microneedle Arrays Allow Lower Microbial Penetration Than Hypodermic Needles In Vitro
Donnelly, Ryan F.; Singh, Thakur Raghu Raj; Tunney, Michael M.; Morrow, Desmond I. J.; McCarron, Paul A.; O’Mahony, Conor; Woolfson, A. David
2010-01-01
Methods In this study we determined, for the first time, the ability of microorganisms to traverse microneedle-induced holes using two different in vitro models. Results When employing Silescol® membranes, the numbers of Candida albicans, Pseudomonas aeruginosa and Staphylococcus epidermidis crossing the membranes were an order of magnitude lower when the membranes were punctured by microneedles rather than a 21G hypodermic needle. Apart from the movement of C. albicans across hypodermic needle-punctured membranes, where 40.2% of the microbial load on control membranes permeated the barrier over 24 h, the numbers of permeating microorganisms was less than 5% of the original microbial load on control membranes. Experiments employing excised porcine skin and radiolabelled microorganisms showed that the numbers of microorganisms penetrating skin beyond the stratum corneum were approximately an order of magnitude greater than the numbers crossing Silescol® membranes in the corresponding experiments. Approximately 103cfu of each microorganism adhered to hypodermic needles during insertion. The numbers of microorganisms adhering to MN arrays were an order of magnitude higher in each case. Conclusion We have shown here that microneedle puncture resulted in significantly less microbial penetration than did hypodermic needle puncture and that no microorganisms crossed the viable epidermis in microneedle—punctured skin, in contrast to needle-punctured skin. Given the antimicrobial properties of skin, it is, therefore, likely that application of microneedle arrays to skin in an appropriate manner would not cause either local or systemic infection in normal circumstances in immune-competent patients. In supporting widespread clinical use of microneedle-based delivery systems, appropriate animal studies are now needed to conclusively demonstrate this in vivo. Safety in patients will be enhanced by aseptic or sterile manufacture and by fabricating microneedles from self-disabling materials (e.g. dissolving or biodegradable polymers) to prevent inappropriate or accidental reuse. PMID:19756972
Morse, J; Terrasini, N; Wehbe, M; Philippona, C; Zaouter, C; Cyr, S; Hemmerling, T M
2014-06-01
This study focuses on a recently developed robotic nerve block system and its impact on learning regional anaesthesia skills. We compared success rates, learning curves, performance times, and inter-subject performance variability of robot-assisted vs manual ultrasound (US)-guided nerve block needle guidance. The hypothesis of this study is that robot assistance will result in faster skill acquisition than manual needle guidance. Five co-authors with different experience with nerve blocks and the robotic system performed both manual and robot-assisted, US-guided nerve blocks on two different nerves of a nerve phantom. Ten trials were performed for each of the four procedures. Time taken to move from a shared starting position till the needle was inserted into the target nerve was defined as the performance time. A successful block was defined as the insertion of the needle into the target nerve. Average performance times were compared using analysis of variance. P<0.05 was considered significant. Data presented as mean (standard deviation). All blocks were successful. There were significant differences in performance times between co-authors to perform the manual blocks, either superficial (P=0.001) or profound (P=0.0001); no statistical difference between co-authors was noted for the robot-assisted blocks. Linear regression indicated that the average decrease in time between consecutive trials for robot-assisted blocks of 1.8 (1.6) s was significantly (P=0.007) greater than the decrease for manual blocks of 0.3 (0.3) s. Robot assistance of nerve blocks allows for faster learning of needle guidance over manual positioning and reduces inter-subject performance variability. © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ning, Shaoli; Zhao, Lihua; Xu, Lingjun; Huang, Yu; Pang, Yong; Huang, Dingjian
2016-01-01
To compare the effects between slow twisting needle insertion and tubing needle insertion. With cross-over design, 100 healthy young subjects (half male and half female) aged from 19 to 23 years were randomly divided into two groups by random digital table, 50 cases in each one. At the first stage, subjects in the group A were treated with slow twisting needle insertion while, subjects in,the group B were treated with tubing needle insertion. One week later, the procedure of second stage was performed alternately. The needle was inserted into Neiguan (PC 6) with two methods by one acupuncturist. The needle was retained for 5 min before removal. Five min before needle insertion as well as needle withdrawal and 30 min after needle withdrawal, ZXG-E automatic cardiovascular diagnostic apparatus was used to test cardiovascular function. At the tim of needle withdrawal, slow twisting needle insertion could improve effect work of kinetics (EWK), effective blood volume (BV) and reduce elastic expansion coefficient of blood vessel (FEK) and left ventricular spray blood impedance (VER), which was significantly different from tubing needle insertion (all P < 0.05). Thirty min after needle withdrawal, the differences of the indices of cardiovascular function between the two groups were not significant (all P > 0.05). The slow twisting needle insertion is significantly superior to tubing needle insertion on lowering vascular tension and VER, improving EWK and BV.
Karpinski, S.; Wingsle, G.; Karpinska, B.; Hallgren, J. E.
1993-01-01
The influence of photooxidative stress on genes expressing superoxide dismutase (Sod) and glutathione reductase (Gor) was analyzed in needles of top and side shoots of 3-year-old Pinus sylvestris (L.) seedlings. The study was carried out in the field during spring recovery. From mid-April the top shoots of seedlings protruded above the snow and thus were exposed to sunlight, whereas the side shoots were covered with snow until May 4. Needles were sampled from top and side shoots on five different occasions. At the beginning of May the mRNA levels for cytosolic CuZn-Sod were significantly higher in top-shoot needles than in side-shoot needles. Similar results were obtained for chloroplastic CuZn-Sod mRNA. After May 6 we could not detect any significant differences between top- and side-shoot needles for either CuZn-Sod mRNA level. Transcript accumulation for the chloroplastic CuZn-Sod was up to 4-fold higher than for cytosolic CuZn-Sod in both types of shoots. On June 1 minimum transcript levels were observed for both CuZn-SOD isoforms. Protein activity analysis for CuZn-SOD isozymes did not reveal any significant differences between top- and side-shoot needles during the whole period of measurements. The mRNA level for chloroplastic Gor was similar in both types of shoots. However, the total GR activity was significantly higher in top-shoot needles than in side-shoot needles at the beginning of May. The analysis of mRNA accumulation for chloroplastic CuZn-Sod and Gor indicates that transcript levels were at least 5- to 20-fold higher for CuZn-Sod than for chloroplastic Gor. The differential expressions of Sod and Gor genes are discussed in relation to regulation of the enzymic scavenging system during photooxidative stress conditions. PMID:12232032
[Needle breakage during mandibular block anaesthesia: prevention and retrieval].
Baart, J A; van Amerongen, W E; de Jong, K J M; Allard, R H B
2006-12-01
Disposable needles for dental local anaesthesia do not break easily. Still, needle breakage does occur, and is mainly caused by unexpected movements of the patient or pre-use bending of the needle by the dentist. If a dental needle breaks while administering local anaesthesia, the dentist should prevent panic. If the patient opens his mouth wide the needle might still be visible. If so, the needle is removed. If the needle is no longer visible, the site where the needle has penetrated the mucosa should be marked with a permanent marker. The dentist will contact a maxillofacial surgeon for immediate consultation. The maxillofacial surgeon will try to retrieve the broken dental needle under general anaesthesia.
A clinical evaluation of four non-Luer spinal needle and syringe systems.
Kinsella, S M; Goswami, A; Laxton, C; Kirkham, L; Wharton, N; Bowen, M
2012-11-01
We performed an evaluation of non-Luer spinal devices supplied by four manufacturers or suppliers: Polymedic; Pajunk; Sarstedt; and Smiths. For each supplier, 100 evaluations were performed using a 25-G 90-mm spinal needle, 3-ml syringe, 5-ml syringe and filter needle; for comparison, 100 evaluations were performed with our standard Luer equipment. The non-Luer devices were associated with more qualitative problems compared with the Luer devices, for example, poor feel of dural puncture (9-32% vs 10%, respectively), poor observation of cerebrospinal fluid in the hub (3-27% vs 0%), and connection problem of the syringe to the spinal needle (7-33% vs 0%). There was also more frequent failure to achieve the spinal injection due to equipment-related causes (4-7% vs 0%, respectively). Median (IQR [range]) numeric satisfaction scores for the spinal needles were: Luer 10 (9-10 [7-10]); Polymedic 7 (4-8 [0-10]; Pajunk 7 (5-8 [0-10]); Sarstedt 7 (6-8 [0-10]); and Smiths 9 (7-10 [0-10]) (p<0.0001). Satisfaction scores for all spinal equipment were: Luer 10 (9-10 [5-10]); Polymedic 8 (6-8 [0-10]); Pajunk 7 (5-7 [1-9]); Sarstedt 8 (6-8 [0-10]); and Smiths 8 (8-9 [2-10]) (p<0.0001). Between 21% and 75% of non-Luer evaluations were rated with satisfaction worse than the usual Luer needle compared with 0-10% rated better, depending on the needle type. Between 22% and 76% of non-Luer evaluations were rated with satisfaction worse than the usual Luer equipment compared with 0-14% rated better. Specific concerns included poor feel of tissue planes and observation of cerebrospinal fluid (Polymedic), difficulty with connection of the syringe to the spinal needle and trocar removal (Pajunk), poor feel of tissue planes and needle flexibility (Sarstedt) and difficulty with connection of the syringe to the spinal needle (Smiths). We could not demonstrate a short-term learning curve for the new devices. Decisions on purchasing and implementation of the new non-Luer equipment will have to acknowledge that clinicians may have greater technical problems and reduced satisfaction compared with the current equipment. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.
Real-time needle guidance with photoacoustic and laser-generated ultrasound probes
NASA Astrophysics Data System (ADS)
Colchester, Richard J.; Mosse, Charles A.; Nikitichev, Daniil I.; Zhang, Edward Z.; West, Simeon; Beard, Paul C.; Papakonstantinou, Ioannis; Desjardins, Adrien E.
2015-03-01
Detection of tissue structures such as nerves and blood vessels is of critical importance during many needle-based minimally invasive procedures. For instance, unintentional injections into arteries can lead to strokes or cardiotoxicity during interventional pain management procedures that involve injections in the vicinity of nerves. Reliable detection with current external imaging systems remains elusive. Optical generation and reception of ultrasound allow for depth-resolved sensing and they can be performed with optical fibers that are positioned within needles used in clinical practice. The needle probe developed in this study comprised separate optical fibers for generating and receiving ultrasound. Photoacoustic generation of ultrasound was performed on the distal end face of an optical fiber by coating it with an optically absorbing material. Ultrasound reception was performed using a high-finesse Fabry-Pérot cavity. The sensor data was displayed as an M-mode image with a real-time interface. Imaging was performed on a biological tissue phantom.
Phoenix Conductivity Probe after Extraction from Martian Soil on Sol 99
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008). The Surface Stereo Imager on Phoenix took this image on the morning of Sol 99 after the probe was lifted away from the soil. This imaging served as a check of whether soil had stuck to the needles. The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water. The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.A serious game for learning ultrasound-guided needle placement skills.
Chan, Wing-Yin; Qin, Jing; Chui, Yim-Pan; Heng, Pheng-Ann
2012-11-01
Ultrasound-guided needle placement is a key step in a lot of radiological intervention procedures such as biopsy, local anesthesia and fluid drainage. To help training future intervention radiologists, we develop a serious game to teach the skills involved. We introduce novel techniques for realistic simulation and integrate game elements for active and effective learning. This game is designed in the context of needle placement training based on the some essential characteristics of serious games. Training scenarios are interactively generated via a block-based construction scheme. A novel example-based texture synthesis technique is proposed to simulate corresponding ultrasound images. Game levels are defined based on the difficulties of the generated scenarios. Interactive recommendation of desirable insertion paths is provided during the training as an adaptation mechanism. We also develop a fast physics-based approach to reproduce the shadowing effect of needles in ultrasound images. Game elements such as time-attack tasks, hints and performance evaluation tools are also integrated in our system. Extensive experiments are performed to validate its feasibility for training.
Phoenix Conductivity Probe Inserted into Martian Soil
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008). The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 while the probe's needles were in the ground. The science team informally named this soil target 'Gandalf.' The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water. The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Behavior of Tip-Steerable Needles in ex vivo and in vivo Tissue
Majewicz, Ann; Marra, Steven P.; van Vledder, Mark G.; Lin, MingDe; Choti, Michael A.; Song, Danny Y.; Okamura, Allison M.
2012-01-01
Robotic needle steering is a promising technique to improve the effectiveness of needle-based clinical procedures, such as biopsies and ablation, by computer-controlled, curved insertions of needles within solid organs. In this paper, we explore the capabilities, challenges, and clinical relevance of asymmetric-tip needle steering though experiments in ex vivo and in vivo tissue. We evaluate the repeatability of needle insertion in inhomogeneous biological tissue and compare ex vivo and in vivo needle curvature and insertion forces. Steerable needles curved more in kidney than in liver and prostate, likely due to differences in tissue properties. Pre-bent needles produced higher insertion forces in liver and more curvature in vivo than ex vivo. When compared to straight stainless steel needles, steerable needles did not cause a measurable increase in tissue damage and did not exert more force during insertion. The minimum radius of curvature achieved by pre-bent needles was 5.23 cm in ex vivo tissue, and 10.4 cm in in vivo tissue. The curvatures achieved by bevel tip needles were negligible for in vivo tissue. The minimum radius of curvature for bevel tip needles in ex vivo tissue was 16.4 cm; however, about half of the bevel tip needles had negligible curvatures. We also demonstrate a potential clinical application of needle steering by targeting and ablating overlapping regions of cadaveric canine liver. PMID:22711767
Plague in Guinea pigs and its prevention by subunit vaccines.
Quenee, Lauriane E; Ciletti, Nancy; Berube, Bryan; Krausz, Thomas; Elli, Derek; Hermanas, Timothy; Schneewind, Olaf
2011-04-01
Human pneumonic plague is a devastating and transmissible disease for which a Food and Drug Administration-approved vaccine is not available. Suitable animal models may be adopted as a surrogate for human plague to fulfill regulatory requirements for vaccine efficacy testing. To develop an alternative to pneumonic plague in nonhuman primates, we explored guinea pigs as a model system. On intranasal instillation of a fully virulent strain, Yersinia pestis CO92, guinea pigs developed lethal lung infections with hemorrhagic necrosis, massive bacterial replication in the respiratory system, and blood-borne dissemination to other organ systems. Expression of the Y. pestis F1 capsule was not required for the development of pulmonary infection; however, the capsule seemed to be important for the establishment of bubonic plague. The mean lethal dose (MLD) for pneumonic plague in guinea pigs was estimated to be 1000 colony-forming units. Immunization of guinea pigs with the recombinant forms of LcrV, a protein that resides at the tip of Yersinia type III secretion needles, or F1 capsule generated robust humoral immune responses. Whereas LcrV immunization resulted in partial protection against pneumonic plague challenge with 250 MLD Y. pestis CO92, immunization with recombinant F1 did not. rV10, a vaccine variant lacking LcrV residues 271-300, elicited protection against pneumonic plague, which seemed to be based on conformational antibodies directed against LcrV. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Needle Exchange and the Geography of Survival in the South Bronx
McLean, Katherine
2012-01-01
This paper explores the position of needle exchange programs (NEPs) in the “geography of survival” in the South Bronx neighborhood of New York City. Stemming the spread of HIV through the provision of sterile injecting equipment, needle exchange promotes the survival of injection drug users (IDUs) in the starkest sense; yet NEPs also attract a diverse population of service users whose attendance is not necessarily related to drugs. This paper locates NEPs among a larger constellation of social services accessed by residents of poor neighborhoods, including injection drug users, the homeless, the hungry, and those in need of medical services or just safe space. Drawing on ethnographic and interview data from a needle exchange in the South Bronx, I describe how both IDUs and others employed the organization to make ends meet, elaborating four “off-label” usages of needle exchange: as a place to obtain basic necessities, as a source of income, as a safe space, and as a site of social contact. As harm reduction in the United States moves towards an increasingly clinical model of care, this paper considers these latent functions of needle exchange within the context of a larger struggle over the content and meaning of harm reduction services. By themselves, NEPs are clearly an unsatisfactory solution to the economic and political circumstances that drive a variety of individuals through their doors; yet, in a country that lacks a comprehensive welfare system, needle exchange arguably represents an important thread within a social safety net that is being woven from the ground up. This study may be used argue for a (re)expanded mission for harm reduction in the United States, in the face of constant moves to narrow its mandate and reduce its budget. PMID:22417824
Treatment planning for prostate focal laser ablation in the face of needle placement uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cepek, Jeremy, E-mail: jcepek@robarts.ca; Fenster, Aaron; Lindner, Uri
2014-01-15
Purpose: To study the effect of needle placement uncertainty on the expected probability of achieving complete focal target destruction in focal laser ablation (FLA) of prostate cancer. Methods: Using a simplified model of prostate cancer focal target, and focal laser ablation region shapes, Monte Carlo simulations of needle placement error were performed to estimate the probability of completely ablating a region of target tissue. Results: Graphs of the probability of complete focal target ablation are presented over clinically relevant ranges of focal target sizes and shapes, ablation region sizes, and levels of needle placement uncertainty. In addition, a table ismore » provided for estimating the maximum target size that is treatable. The results predict that targets whose length is at least 5 mm smaller than the diameter of each ablation region can be confidently ablated using, at most, four laser fibers if the standard deviation in each component of needle placement error is less than 3 mm. However, targets larger than this (i.e., near to or exceeding the diameter of each ablation region) require more careful planning. This process is facilitated by using the table provided. Conclusions: The probability of completely ablating a focal target using FLA is sensitive to the level of needle placement uncertainty, especially as the target length approaches and becomes greater than the diameter of ablated tissue that each individual laser fiber can achieve. The results of this work can be used to help determine individual patient eligibility for prostate FLA, to guide the planning of prostate FLA, and to quantify the clinical benefit of using advanced systems for accurate needle delivery for this treatment modality.« less
1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections
Marker, David R.; U-Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J.; Fichtinger, Gabor; Iordachita, Iulian I.; Carrino, John A.; Fritz, Jan
2017-01-01
PURPOSE The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. METHODS A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. RESULTS Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1–5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. CONCLUSION 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus. PMID:28420598
1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections.
Marker, David R; U Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J; Fichtinger, Gabor; Iordachita, Iulian I; Carrino, John A; Fritz, Jan
2017-01-01
The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1-5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus.
NASA Astrophysics Data System (ADS)
Beigi, Parmida; Salcudean, Tim; Rohling, Robert; Lessoway, Victoria A.; Ng, Gary C.
2015-03-01
This paper presents a new needle detection technique for ultrasound guided interventions based on the spectral properties of small displacements arising from hand tremour or intentional motion. In a block-based approach, the displacement map is computed for each block of interest versus a reference frame, using an optical flow technique. To compute the flow parameters, the Lucas-Kanade approach is used in a multiresolution and regularized form. A least-squares fit is used to estimate the flow parameters from the overdetermined system of spatial and temporal gradients. Lateral and axial components of the displacement are obtained for each block of interest at consecutive frames. Magnitude-squared spectral coherency is derived between the median displacements of the reference block and each block of interest, to determine the spectral correlation. In vivo images were obtained from the tissue near the abdominal aorta to capture the extreme intrinsic body motion and insertion images were captured from a tissue-mimicking agar phantom. According to the analysis, both the involuntary and intentional movement of the needle produces coherent displacement with respect to a reference window near the insertion site. Intrinsic body motion also produces coherent displacement with respect to a reference window in the tissue; however, the coherency spectra of intrinsic and needle motion are distinguishable spectrally. Blocks with high spectral coherency at high frequencies are selected, estimating a channel for needle trajectory. The needle trajectory is detected from locally thresholded absolute displacement map within the initial estimate. Experimental results show the RMS localization accuracy of 1:0 mm, 0:7 mm, and 0:5 mm for hand tremour, vibrational and rotational needle movements, respectively.
Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, Evolution, and Function
Filloux, Alain
2011-01-01
Protein secretion systems are molecular nanomachines used by Gram-negative bacteria to thrive within their environment. They are used to release enzymes that hydrolyze complex carbon sources into usable compounds, or to release proteins that capture essential ions such as iron. They are also used to colonize and survive within eukaryotic hosts, causing acute or chronic infections, subverting the host cell response and escaping the immune system. In this article, the opportunistic human pathogen Pseudomonas aeruginosa is used as a model to review the diversity of secretion systems that bacteria have evolved to achieve these goals. This diversity may result from a progressive transformation of cell envelope complexes that initially may not have been dedicated to secretion. The striking similarities between secretion systems and type IV pili, flagella, bacteriophage tail, or efflux pumps is a nice illustration of this evolution. Differences are also needed since various secretion configurations call for diversity. For example, some proteins are released in the extracellular medium while others are directly injected into the cytosol of eukaryotic cells. Some proteins are folded before being released and transit into the periplasm. Other proteins cross the whole cell envelope at once in an unfolded state. However, the secretion system requires conserved basic elements or features. For example, there is a need for an energy source or for an outer membrane channel. The structure of this review is thus quite unconventional. Instead of listing secretion types one after each other, it presents a melting pot of concepts indicating that secretion types are in constant evolution and use basic principles. In other words, emergence of new secretion systems could be predicted the way Mendeleïev had anticipated characteristics of yet unknown elements. PMID:21811488
Fusion of electromagnetic trackers to improve needle deflection estimation: simulation study.
Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor
2013-10-01
We present a needle deflection estimation method to anticipate needle bending during insertion into deformable tissue. Using limited additional sensory information, our approach reduces the estimation error caused by uncertainties inherent in the conventional needle deflection estimation methods. We use Kalman filters to combine a kinematic needle deflection model with the position measurements of the base and the tip of the needle taken by electromagnetic (EM) trackers. One EM tracker is installed on the needle base and estimates the needle tip position indirectly using the kinematic needle deflection model. Another EM tracker is installed on the needle tip and estimates the needle tip position through direct, but noisy measurements. Kalman filters are then employed to fuse these two estimates in real time and provide a reliable estimate of the needle tip position, with reduced variance in the estimation error. We implemented this method to compensate for needle deflection during simulated needle insertions and performed sensitivity analysis for various conditions. At an insertion depth of 150 mm, we observed needle tip estimation error reductions in the range of 28% (from 1.8 to 1.3 mm) to 74% (from 4.8 to 1.2 mm), which demonstrates the effectiveness of our method, offering a clinically practical solution.
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare, a member of the phylum Bacteroidetes, causes columnaris disease in wild and aquaculture-reared freshwater fish. The mechanisms responsible for columnaris disease are not known. Many members of the phylum Bacteroidetes use type IX secretion systems (T9SSs) to secrete enzymes...
Does Needle Rotation Improve Lesion Targeting?
Badaan, Shadi; Petrisor, Doru; Kim, Chunwoo; Mozer, Pierre; Mazilu, Dumitru; Gruionu, Lucian; Patriciu, Alex; Cleary, Kevin; Stoianovici, Dan
2011-01-01
Background Image-guided robots are manipulators that operate based on medical images. Perhaps the most common class of image-guided robots are robots for needle interventions. Typically, these robots actively position and/or orient a needle guide, but needle insertion is still done by the physician. While this arrangement may have safety advantages and keep the physician in control of needle insertion, actuated needle drivers can incorporate other useful features. Methods We first present a new needle driver that can actively insert and rotate a needle. With this device we investigate the use of needle rotation in controlled in-vitro experiments performed with a specially developed revolving needle driver. Results These experiments show that needle rotation can improve targeting and may reduce errors by as much as 70%. Conclusion The new needle driver provides a unique kinematic architecture that enables insertion with a compact mechanism. Perhaps the most interesting conclusion of the study is that lesions of soft tissue organs may not be perfectly targeted with a needle without using special techniques, either manually or with a robotic device. The results of this study show that needle rotation may be an effective method of reducing targeting errors. PMID:21360796
Kwon, Eun Ji; Emanuel, Patrick O; Gribetz, Canin H; Mudgil, Adarsh V; Phelps, Robert G
2007-12-01
Poststeroid panniculitis (PSP) is a rare complication of systemic corticosteroid therapy. Clinically, erythematous nodules and indurated plaques develop on the cheeks of children within days or weeks following rapid systemic steroid tapering or cessation. The clinical differential diagnosis of childhood cheek erythema is broad. However, PSP can be identified by clinical history and, if necessary, with a biopsy. Histologically, PSP presents as lobular panniculitis with a mixed inflammatory infiltrates without vasculitis. Needle-shaped clefts within adipocytes are characteristic. The histological differential diagnosis of adipocytes containing needle-shaped crystals is limited. We describe a case of poststeroid panniculitis and discuss the clinicopathological features and pertinent differential diagnoses.
Injection-depth-locking axial motion guided handheld micro-injector using CP-SSOCT.
Cheon, Gyeong Woo; Huang, Yong; Kwag, Hye Rin; Kim, Ki-Young; Taylor, Russell H; Gehlbach, Peter L; Kang, Jin U
2014-01-01
This paper presents a handheld micro-injector system using common-path swept source optical coherence tomography (CP-SSOCT) as a distal sensor with highly accurate injection-depth-locking. To achieve real-time, highly precise, and intuitive freehand control, the system used graphics processing unit (GPU) to process the oversampled OCT signal with high throughput and a smart customized motion monitoring control algorithm. A performance evaluation was conducted with 60-insertions and fluorescein dye injection tests to show how accurately the system can guide the needle and lock to the target depth. The evaluation tests show our system can guide the injection needle into the desired depth with 4.12 um average deviation error while injecting 50 nl of fluorescein dye.
Ahn, H J; Choi, D H; Kim, C S
2006-07-01
Paraesthesia during regional anaesthesia is an unpleasant sensation for patients and, more importantly, in some cases it is related to neurological injury. Relatively few studies have been conducted on the frequency of paraesthesia during combined spinal epidural anaesthesia. We compared two combined spinal epidural anaesthesia techniques: the needle-through-needle technique and the double segment technique in this respect. We randomly allocated 116 parturients undergoing elective Caesarean section to receive anaesthesia using one of these techniques. Both techniques were performed using a 27G pencil point needle, an 18G Tuohy needle, and a 20G multiport epidural catheter from the same manufacturer. The overall frequency of paraesthesia was higher in the needle-through-needle technique group (56.9% vs. 31.6%, p = 0.011). The frequency of paraesthesia at spinal needle insertion was 20.7% in the needle-through-needle technique group and 8.8% in the double segment technique group; whereas the frequency of paraesthesia at epidural catheter insertion was 46.6% in the needle-through-needle technique group and 24.6% in the double segment technique group.
Adams, Stephen B; Moore, George E; Elrashidy, Mohammed; Mohamed, Ahmed; Snyder, Paul W
2010-08-01
To assess joint contamination with tissue and hair after arthrocentesis of equine fetlock joints. Experimental. Limb specimens from 8 equine cadavers. Soft tissues including the joint capsule were harvested from the dorsal aspect of the fetlock joints and mounted on a wooden frame. Needles inserted through the joint tissue preparation were flushed into tissue culture plates that were examined for tissue and hair debris. Variables evaluated were gauge and type of needle (16, 18, 20, and 22 G sharp disposable needles and 20 G disposable spinal needles with stylet), number of times each needle was used (1, 2, 3, 4), length of hair (unclipped, clipped, shaved with razor), and needle insertion speed (fast, slow). Descriptive and statistical evaluations were performed. Tissue contamination was identified in 1145 of 1260 wells and hair contamination was identified in 384 of 1260 wells. Twenty gauge needles inserted through unclipped hair resulted in the least amount of hair contamination. Compared with 20 G needles with fast insertion 1 time through unclipped hair the odds ratios for contamination with hair were significantly greater for 16 G sharp disposable needles, 20 G spinal needles, clipped hair, shaved hair, and reuse of the needles. Spinal needles inserted through unclipped hair transferred many long hairs into the joint space. Reuse of needles for arthrocentesis should be avoided. Removal of hair is not indicated for arthrocentesis with sharp injection needles but is recommended when using spinal needles with stylets. Joint contamination with hair and tissue debris will be decreased by specific needle insertion techniques. Decreased contamination of joints may reduce the frequency of joint infections after arthrocentesis.
EUS Needle Identification Comparison and Evaluation study (with videos).
Tang, Shou-Jiang; Vilmann, Andreas S; Saftoiu, Adrian; Wang, Wanmei; Streba, Costin Teodor; Fink, Peter P; Griswold, Michael; Wu, Ruonan; Dietrich, Christoph F; Jenssen, Christian; Hocke, Michael; Kantowski, Marcus; Pohl, Jürgen; Fockens, Paul; Annema, Jouke T; van der Heijden, Erik H F M; Havre, Roald Flesland; Pham, Khanh Do-Cong; Kunda, Rastislav; Deprez, Pierre H; Mariana, Jinga; Vazquez-Sequeiros, Enrique; Larghi, Alberto; Buscarini, Elisabetta; Fusaroli, Pietro; Lahav, Maor; Puri, Rajesh; Garg, Pramod Kumar; Sharma, Malay; Maluf-Filho, Fauze; Sahai, Anand; Brugge, William R; Lee, Linda S; Aslanian, Harry R; Wang, Andrew Y; Shami, Vanessa M; Markowitz, Arnold; Siddiqui, Ali A; Mishra, Girish; Scheiman, James M; Isenberg, Gerard; Siddiqui, Uzma D; Shah, Raj J; Buxbaum, James; Watson, Rabindra R; Willingham, Field F; Bhutani, Manoop S; Levy, Michael J; Harris, Cynthia; Wallace, Michael B; Nolsøe, Christian Pállson; Lorentzen, Torben; Bang, Niels; Sørensen, Sten Mellerup; Gilja, Odd Helge; D'Onofrio, Mirko; Piscaglia, Fabio; Gritzmann, Norbert; Radzina, Maija; Sparchez, Zeno Adrian; Sidhu, Paul S; Freeman, Simon; McCowan, Timothy C; de Araujo, Cyrillo Rodrigues; Patel, Akash; Ali, Mohammad Adel; Campbell, Garth; Chen, Edward; Vilmann, Peter
2016-09-01
EUS-guided FNA or biopsy sampling is widely practiced. Optimal sonographic visualization of the needle is critical for image-guided interventions. Of the several commercially available needles, bench-top testing and direct comparison of these needles have not been done to reveal their inherent echogenicity. The aims are to provide bench-top data that can be used to guide clinical applications and to promote future device research and development. Descriptive bench-top testing and comparison of 8 commonly used EUS-FNA needles (all size 22 gauge): SonoTip Pro Control (Medi-Globe); Expect Slimline (Boston Scientific); EchoTip, EchoTip Ultra, EchoTip ProCore High Definition (Cook Medical); ClearView (Conmed); EZ Shot 2 (Olympus); and BNX (Beacon Endoscopic), and 2 new prototype needles, SonoCoat (Medi-Globe), coated by echogenic polymers made by Encapson. Blinded evaluation of standardized and unedited videos by 43 EUS endoscopists and 17 radiologists specialized in GI US examination who were unfamiliar with EUS needle devices. There was no significant difference in the ratings and rankings of these needles between endosonographers and radiologists. Overall, 1 prototype needle was rated as the best, ranking 10% to 40% higher than all other needles (P < .01). Among the commercially available needles, the EchoTip Ultra needle and the ClearView needle were top choices. The EZ Shot 2 needle was ranked statistically lower than other needles (30%-75% worse, P < .001). All FNA needles have their inherent and different echogenicities, and these differences are similarly recognized by EUS endoscopists and radiologists. Needles with polymeric coating from the entire shaft to the needle tip may offer better echogenicity. Copyright © 2016 American Society for Gastrointestinal Endoscopy. All rights reserved.
Tabedar, S; Maharjan, S K; Shrestha, B R; Shrestha, B M
2003-01-01
The study was designed to compare the insertion characteristics and incidence of PDPH between 25 gauge Quincke needle and 26 gauge Eldor needle for spinal anaesthesia in elective c/s. 60 pregnant women (aged 19-35 yrs and weighing 58 -67 kg) undergoing elective caesarean section were randomized into group A (Quincke spinal needle group) or group B (Eldor spinal needle group). Spinal anaesthesia was performed with 2.9 ml 0.5% heavy bupivacaine using 25 gauge Quincke spinal needle in group A and 26 Gauge Eldor spinal needle in group B. Onset, time of first identification of backflow of CSF, number of attempts, level of sensory and motor blockade, failure of anaesthesia, inadequate anaesthesia and incidence of PDPH were recorded. Quincke spinal needle was found easy at insertion, first attempt was successful in 90% of cases, whereas Eldor spinal needle was successful at first attempt in only 60% of cases. Early identification of CSF was seen in Eldor spinal needle group in 3.5 seconds vs. 5.2 seconds in Quincke spinal needle group. Blood mixed CSF was seen in 8 Quincke spinal needle group vs. none in Eldor spinal needle group. Onset was similar between both groups i.e. in 6 minutes. Failure of anaesthesia was none in Eldor spinal needle group vs. 2 in quincke spinal needle group. Height of sensory block achieved was T4 level in 26 parturients,T6 in 1 ,T8 in 1 and no anaesthesia at all in another 2 parturient as compared to T4 level in 29 and T3 in 1 parturient in Eldor spinal needle group. The degree of motor block with the use of Bromage criteria showed a motor score of 1 or 2 in 26 parturients in Quincke spinal needle group vs. same in all cases in Eldor spinal needle group. The total incidence of PDPH was 8.3 % (5 out of 60 parturient) which occurred all in Quincke spinal needle group. 2 parturient who developed severe PDPH required epidural blood patch. 26 gauge Eldor spinal needle was found to be better than 25 gauge Quincke spinal needle for caesarian sections to decrease the incidence of PDPH, though not all insertion characteristics were in favour of the Eldor needle.
Study of geographical trends of polycyclic aromatic hydrocarbons using pine needles
NASA Astrophysics Data System (ADS)
Amigo, José Manuel; Ratola, Nuno; Alves, Arminda
2011-10-01
In this work, pine needles were used as polycyclic aromatic hydrocarbons (PAHs) markers to study the PAHs distribution over several geographical locations in Portugal and over time. Four pine needle sampling campaigns (winter, spring, summer and autumn 2007) were carried out in 29 sites, covering the major urban centres, some industrial points, smaller cities, rural areas and remote locations. Needles from Pinus pinaster Ait. and Pinus pinea L. trees were collected from 2005 and 2006 shoots, corresponding to one up to three years of exposure. Spatial trends of the incidence of PAHs indicate an increase from the remote to the urban and industrial sites. The mean values for the sum of 16 PAHs ranged from 96 ± 30 ng g -1 (dry weight) for remote sites to 866 ± 304 ng g -1 (dw) for industrial sites for P. pinaster needles and from 188 ± 117 ng g -1 (dw) for rural sites to 337 ± 153 ng g -1 (dw) for urban sites for P. pinea. Geographic information system tools and principal component analysis revealed that the contamination patterns of PAHs are somehow related to several socio-geographic parameters of the sampling sites. The geographical trend for the PAHs is similar between seasons in terms of PAH levels, but some diverse behaviour is found on the separation of lighter and heavier PAHs. Differences between P. pinaster and P. pinea needles are stronger in terms of PAH uptake loads than in the site type fingerprints.
Sterile Product Packaging and Delivery Systems.
Akers, Michael J
2015-01-01
Both conventional and more advanced product container and delivery systems are the focus of this brief article. Six different product container systems will be discussed, plus advances in primary packaging for special delivery systems and needle technology.
Amaki, Yoshikiyo; Moriyama, Michihiko; Kuzuta, Toshimichi; Yabe, Keiko; Kaneko, Misato
1997-12-01
This research investigated whether the Sprotte needle causes less leakage of CSF than the Quincke needle in the artificial spinal cord. The changes in intradural pressure, extradural pressure, and leaked volume of CSF were evaluated following puncture with Sprotte and Quincke needles in the artificial spinal cord. The decrease in intradural pressure was 9.7±1.8 mm H 2 O with the Sprotte needle and 20.5±2.7 mm H 2 O with the Quincke needle (P<0.05). The volume of leakage of artificial CSF was 2.0±0.3 ml with the Sprotte needle and 3.3 ±0.3 ml with the Quincke needle (P<0.01). The extradural pressure increase was 166.1±8.2 mm H 2 O with the Sprotte needle and 186.8±13.2 mm H 2 O with the Quincke needle (P<0.05). The Sprotte needle produces less CSF leakage than the Quincke needle.
[Observation on therapeutic effect of three needling method on piriformis injury syndrome].
Yang, Jun-xiong; Zhu, Xiao-yi
2008-03-01
To search for an effective needling method for treatment of piriformis injury syndrome. Eighty-two cases were randomly divided into a three needling group and a routine needling group, 41 cases in each group. The three needling group were treated by acupuncture at Huantiao (GB 30), Yanglingquan (GB 34) and Shenmai (BL 62), with needling shallow, middle and deep layers for Huantiao, Yanglingquan, and after acupuncture massage was given at the Foot-Taiyang Channel and the Foot-Shaoyang Channel on lumbosacral region and the affected foot. The routine needling group were treated by routine needling at Huantiao (GB 30), Juliao (GB 29), Chengfu (BL 36), Yanglingquan (GB 34), massage was given also. Their therapeutic effects were compared. The cured rate was 87.8% in the three needling group and 63.4% in the routine needling group, with a significant difference between the two groups (P < 0.05). The therapeutic effect of three needling method on piriformis injury syndrome is better than that of routine needling.
Kuusk, Vivian; Niinemets, Ülo; Valladares, Fernando
2018-04-01
Pine (Pinus) species exhibit extensive variation in needle shape and size between juvenile (primary) and adult (secondary) needles (heteroblasty), but few studies have quantified the changes in needle morphological, anatomical and chemical traits upon juvenile-to-adult transition. Mediterranean pines keep juvenile needles longer than most other pines, implying that juvenile needles play a particularly significant role in seedling and sapling establishment in this environment. We studied needle anatomical, morphological and chemical characteristics in juvenile and different-aged adult needles in Mediterranean pines Pinus halepensis Mill., Pinus pinea L. and Pinus nigra J. F. Arnold subsp. salzmannii (Dunal) Franco hypothesizing that needle anatomical modifications upon juvenile-to-adult transition lead to a trade-off between investments in support and photosynthetic tissues, and that analogous changes occur with needle aging albeit to a lower degree. Compared with adult needles, juvenile needles of all species were narrower with 1.6- to 2.4-fold lower leaf dry mass per unit area, and had ~1.4-fold thinner cell walls, but needle nitrogen content per dry mass was similar among plant ages. Juvenile needles also had ~1.5-fold greater mesophyll volume fraction, ~3-fold greater chloroplast volume fraction and ~1.7-fold greater chloroplast exposed to mesophyll exposed surface area ratio, suggesting overall greater photosynthetic activity. Changes in needle traits were similar in aging adult needles, but the magnitude was generally less than the changes upon juvenile to adult transition. In adult needles, the fraction in support tissues scaled positively with known ranking of species tolerance of drought (P. halepensis > P. pinea > P. nigra). Across all species, and needle and plant ages, a negative correlation between volume fractions of mesophyll and structural tissues was observed, manifesting a trade-off between biomass investments in different needle functions. These results demonstrate that within the broad trade-off, juvenile and adult needle morphophysiotypes are separated by varying investments in support and photosynthetic functions. We suggest that the ecological advantage of the juvenile morphophysiotype is maximization of carbon gain of establishing saplings, while adult needle physiognomy enhances environmental stress tolerance of established plants.
Xie, Yi Min; Xu, Shanqing; Zhang, Claire Shuiqing; Xue, Charlie Changli
2014-04-01
The present work examined the surface conditions and various other physical properties of sterilised single-use stainless steel acupuncture needles from two of the most popular brands widely used in many countries. Scanning electron microscope (SEM) images were taken for 10 randomly chosen needles from each brand. Further SEM images were taken after each of these needles underwent a standard manipulation with an acupuncture needling practice gel. A comparison of forces and torques during the needling process was also carried out. The SEM images revealed significant surface irregularities and inconsistencies at the needle tips, especially for needles from one of the two brands. Metallic lumps and small, loosely attached pieces of material were observed on the surfaces of some needles. Some of the lumps and pieces of material seen on the needle surfaces disappeared after the acupuncture manipulation. If these needles had been used on patients, the metallic lumps and small pieces of material could have been deposited in human tissues, which could have caused adverse events such as dermatitis. Malformed needle tips might also cause other adverse effects including bleeding, haematoma/bruising, or strong pain during needling. An off-centre needle tip could result in the needle altering its direction during insertion and consequently failing to reach the intended acupuncture point or damaging adjacent tissues. These findings highlight the need for improved quality control of acupuncture needles, with a view to further enhancing the safety and comfort of acupuncture users.
Oliveira-Santos, Thiago; Klaeser, Bernd; Weitzel, Thilo; Krause, Thomas; Nolte, Lutz-Peter; Peterhans, Matthias; Weber, Stefan
2011-01-01
Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well as highlighting the differences between bone and soft tissue punctures. An overall average error of 4.23 mm and 3.07 mm for bone and soft tissue punctures, respectively, demonstrated the feasibility of using this system for such interventions. The proposed system workflow was shown to be effective in separating the preparation from the sterile phase, as well as in keeping the system manageable by a single operator. Among the distinct sources of error, the user error based on the system accuracy (defined as the distance from the planned target to the actual needle tip) appeared to be the most significant. Bone punctures showed higher user error, whereas soft tissue punctures showed higher tissue deformation error.
Giraldo, Martha C.; Dagdas, Yasin F.; Gupta, Yogesh K.; Mentlak, Thomas A.; Yi, Mihwa; Martinez-Rocha, Ana Lilia; Saitoh, Hiromasa; Terauchi, Ryohei; Talbot, Nicholas J.; Valent, Barbara
2013-01-01
To cause plant diseases, pathogenic micro-organisms secrete effector proteins into host tissue to suppress immunity and support pathogen growth. Bacterial pathogens have evolved several distinct secretion systems to target effector proteins, but whether fungi, which cause the major diseases of most crop species, also require different secretory mechanisms is not known. Here we report that the rice blast fungus Magnaporthe oryzae possesses two distinct secretion systems to target effectors during plant infection. Cytoplasmic effectors, which are delivered into host cells, preferentially accumulate in the biotrophic interfacial complex, a novel plant membrane-rich structure associated with invasive hyphae. We show that the biotrophic interfacial complex is associated with a novel form of secretion involving exocyst components and the Sso1 t-SNARE. By contrast, effectors that are secreted from invasive hyphae into the extracellular compartment follow the conventional secretory pathway. We conclude that the blast fungus has evolved distinct secretion systems to facilitate tissue invasion. PMID:23774898
Puder, Jardena J; Atar, Michael; Muller, Beat; Pavan, Marco; Keller, Ulrich
2005-02-01
Reusing insulin pen needles could help to reduce the increasing economic burden of diabetes. We tested the hypothesis that reusing insulin pen needles leads to needle tip deformity and increased pain. Three blinded reviewers assessed 123 electron microscope pictures analyzing needle tip deformity of insulin pen needles used up to four times by diabetic subjects and up to five times by blinded non-diabetic volunteers. The estimated frequency of needle use was correlated to the actual number of needle use. Pain intensity and unpleasantness of each injection were measured by a visual analogue scale and their differences analyzed by Kruskal-Wallis analysis of variance. Unused needles could be differentiated visually from used needles. However, there was no correlation between the actual and guessed number of times a needle was used (r = 0.07, P = 0.2). Evaluating all 270 injections, neither pain intensity nor unpleasantness increased with repeated injections of the same needles in people with diabetes (P = 0.1 and 0.96) and in the volunteers (P = 0.63 and 0.92). Using pen needles four to five times does not lead to progressive needle tip deformity and does not increase pain intensity or unpleasantness, but could increase convenience and lead to substantial financial savings in Europe of around EUR 100 million/year.
Kokki, H; Hendolin, H
1996-01-01
A comparison of a 25 G with a 29 G Quincke needle was performed in paediatric day case surgery. Sixty healthy children aged 1 year to 13 years were randomly allocated to have spinal anaesthesia with either 25 G or 29 G Quincke needle without an introducer needle. There was a failure rate of 10% with the 29 G spinal needle compared with 0% with the 25 G needle. The time needed to perform dural puncture was shorter using 25 G than 29 G needle, 22 (+/- 31)(SD) vs 59 (+/- 63) s. The time taken for cerebrospinal fluid to appear at the needle hub was also longer, 4 (+/- 3) vs 8 (+/- 5) s. The number of puncture attempts was similar, 1.2 (+/- 0.6) vs 1.4 (+/- 0.8), with 25 G and 29 G needle. Low back pain, 5 vs1, and nonpositional headache, 2 vs 4, after 25 G and 29 G needles, respectively, were the most frequent postoperative complaints. Mild postdural puncture headache occurred in one eight year old male patient in the 25 G group. In conclusion, lumbar puncture without introducer needle was possible with both needles. The puncture characteristics favoured the 25 G needle. A shorter needle could partly alleviate the difficulties with the 29 G needle.
Molecular dynamics simulation of a needle-sphere binary mixture
NASA Astrophysics Data System (ADS)
Raghavan, Karthik
This paper investigates the dynamic behaviour of a hard needle-sphere binary system using a novel numerical technique called the Newton homotopy continuation (NHC) method. This mixture is representative of a polymer melt where both long chain molecules and monomers coexist. Since the intermolecular forces are generated from hard body interactions, the consequence of missed collisions or incorrect collision sequences have a significant bearing on the dynamic properties of the fluid. To overcome this problem, in earlier work NHC was chosen over traditional Newton-Raphson methods to solve the hard body dynamics of a needle fluid in random media composed of overlapping spheres. Furthermore, the simplicity of interactions and dynamics allows us to focus our research directly on the effects of particle shape and density on the transport behaviour of the mixture. These studies are also compared with earlier works that examined molecular chains in porous media primarily to understand the differences in molecular transport in the bulk versus porous systems.
Future robotic platforms in urologic surgery: Recent Developments
Herrell, S. Duke; Webster, Robert; Simaan, Nabil
2014-01-01
Purpose of review To review recent developments at Vanderbilt University of new robotic technologies and platforms designed for minimally invasive urologic surgery and their design rationale and potential roles in advancing current urologic surgical practice. Recent findings Emerging robotic platforms are being developed to improve performance of a wider variety of urologic interventions beyond the standard minimally invasive robotic urologic surgeries conducted presently with the da Vinci platform. These newer platforms are designed to incorporate significant advantages of robotics to improve the safety and outcomes of transurethral bladder surgery and surveillance, further decrease the invasiveness of interventions by advancing LESS surgery, and allow for previously impossible needle access and ablation delivery. Summary Three new robotic surgical technologies that have been developed at Vanderbilt University are reviewed, including a robotic transurethral system to enhance bladder surveillance and TURBT, a purpose-specific robotic system for LESS, and a needle sized robot that can be used as either a steerable needle or small surgeon-controlled micro-laparoscopic manipulator. PMID:24253803
Numerical modelling of needle-grid electrodes for negative surface corona charging system
NASA Astrophysics Data System (ADS)
Zhuang, Y.; Chen, G.; Rotaru, M.
2011-08-01
Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.
Eom, H-J; Lee, J H; Ko, M-S; Choi, Y J; Yoon, R G; Cho, K J; Nam, S Y; Baek, J H
2015-06-01
Diagnostic test accuracy studies for ultrasonography-guided fine-needle aspiration and ultrasonography-guided core needle biopsy have shown inconclusive results due to their heterogenous study designs. Our aim was to compare the diagnostic accuracy of ultrasonography-guided fine-needle aspiration versus ultrasonography-guided core needle biopsy for detecting malignant tumors of the salivary gland and for the tissue-specific diagnosis of salivary gland tumors in a single tertiary hospital. This retrospective study was approved by our institutional review board and informed consent was waived. Four hundred twelve patients who underwent ultrasonography-guided fine-needle aspiration (n = 155) or ultrasonography-guided core needle biopsy (n = 257) with subsequent surgical confirmation or clinical follow-up were enrolled. We compared the diagnostic accuracy of ultrasonography-guided fine-needle aspiration and ultrasonography-guided core needle biopsy regarding malignant salivary gland tumors and the correct tissue-specific diagnosis of benign and malignant tumors. We also tested the difference between these procedures according to the operator's experience and lesion characteristics. The inconclusive rates of ultrasonography-guided fine-needle aspiration and ultrasonography-guided core needle biopsy were 19% and 4%, respectively (P < .001). The overall accuracy of ultrasonography-guided core needle biopsy for diagnosing malignant tumors was significantly higher than that of ultrasonography-guided fine-needle aspiration (P = .024). The correct tissue-specific diagnosis rates of ultrasonography-guided fine-needle aspiration and ultrasonography-guided core needle biopsy were 95% versus 97% for benign tumors (P = .648) and 67% versus 80% for malignant tumors (P = .310). Trainees showed significantly lower accuracy with ultrasonography-guided fine-needle aspiration than with ultrasonography-guided core needle biopsy for diagnosing malignant tumors (P = .021). There was no difference between the diagnostic accuracy of ultrasonography-guided fine-needle aspiration and ultrasonography-guided core needle biopsy according to the internal composition of the lesions. There were no complications requiring intervention or hospitalization in our patients. Ultrasonography-guided core needle biopsy is superior to ultrasonography-guided fine-needle aspiration in detecting and characterizing malignant tumors of the salivary gland and could emerge as the diagnostic method of choice for patients presenting with a salivary gland mass. © 2015 by American Journal of Neuroradiology.
McAllister, Linda; Anderson, Jonathan; Werth, Kristen; Cho, Iksung; Copeland, Karen; Le Cam Bouveret, Nancy; Plant, David; Mendelman, Paul M; Cobb, David K
2014-08-23
Administration of vaccines by needle-free technology such as jet injection might offer an alternative to needles and syringes that avoids the issue of needle phobia and the risk of needle-stick injury. We aimed to assess the immunogenicity and safety of trivalent influenza vaccine given by needle-free jet injector compared with needle and syringe. For this randomised, comparator-controlled trial, we randomly assigned (1:1) healthy adults (aged 18-64 years) who attended one of four employee health clinics in the University of Colorado health system, with stratification by site, to receive one dose of the trivalent inactivated influenza vaccine Afluria given either intramuscularly with a needle-free jet injector (Stratis; PharmaJet, Golden, CO, USA) or with needle and syringe. Randomisation was done with a computer-generated randomisation schedule with a block size of 100. Because of the nature of the study, masking of participants was not possible. Immunogenicity was assessed by measurement of the hemagglutination inhibition antibody titres in serum for the three viral strains included in the vaccine. We included six coprimary endpoints: three strain-specific geometric mean titre ratios and the absolute differences in three strain-specific seroconversion rates. The immune response of the jet injector group was regarded as non-inferior to that of the needle and syringe group if both the upper bound of each of the three 95% CIs for the strain-specific geometric mean titre ratios was 1.5 or less, and the upper bound of the three 95% CIs for the strain-specific seroconversion rate differences was less than 10 percentage points. We used t test for group comparison. This study is registered with ClinicalTrials.gov, number NCT01688921. During the 2012-13 influenza season of the northern hemisphere, we allocated 1250 participants to receive vaccination by needle-free jet injector (n=627) or needle and syringe (n=623). In the intention-to-treat immunogenicity population, all participants with two serum samples were included (575 in the jet injector group and 574 in the needle and syringe group). The immune response to Afluria when given by needle-free jet injector met the criteria for non-inferiority for all six coprimary endpoints. The jet injector group met the geometric mean titre criterion for non-inferiority for the A/H1N1, A/H3N2, and B strains (upper bound of the 95% CI for the geometric mean titre ratios were 1·10 for A/H1N1, 1·17 for A/H3N2, and 1·04 for B strains). The jet injector group met the seroconversion rate criterion for non-inferiority for the A/H1N1, A/H3N2, and B strains (upper bound of the 95% CI of the seroconversion rate differences were 6·0% for A/H1N1, 7·0% for A/H3N2, and 5·7% for B strains). We recorded serious adverse events in three participants, none of which were study related. The immune response to influenza vaccine given with the jet injector device was non-inferior to the immune response to influenza vaccine given with needle and syringe. The device had a clinically acceptable safety profile, but was associated with a higher frequency of local injection site reactions than was the use of needle and syringe. The Stratis needle-free jet injector device could be used as an alternative method of administration of Afluria trivalent influenza vaccine. Biomedical Advanced Research and Development Authority (BARDA), PATH, bioCSL, and PharmaJet. Copyright © 2014 Elsevier Ltd. All rights reserved.
Imai, Saki; Kusakabe, Takahiro; Xu, Jian; Li, Zhiqing; Shirai, Shintaro; Mon, Hiroaki; Morokuma, Daisuke; Lee, Jae Man
2015-11-01
Baculovirus expression vector system (BEVS) is widely used for production of recombinant eukaryotic proteins in insect larvae or cultured cells. BEVS has advantages over bacterial expression system in producing post-translationally modified secreted proteins. However, for some unknown reason, it is very difficult for insects to secrete sufficiently for certain proteins of interest. To understand the reasons why insect cells fail to secrete some kinds of recombinant proteins, we here employed three mammalian proteins as targets, EPO, HGF, and Wnt3A, with different secretion levels in BEVS and investigated their mRNA transcriptions from the viral genome, subcellular localizations, and interactions with silkworm ER chaperones. Moreover, we observed that no significantly influence on the secretion amounts of all three proteins when depleting or overexpressing most endogenous ER chaperone genes in cultured silkworm cells. However, among all detected ER chaperones, the depletion of BiP severely decreased the recombinant protein secretion in BEVS, indicating the possible central role of Bip in silkworm secretion pathway.
NASA Astrophysics Data System (ADS)
Ng, H. B.; Shearwood, C.
2007-12-01
The successful development of micro-needles can help transport drugs and vaccines both effectively and painlessly across the skin. However, not all micro-needles are strong enough to withstand the insertion forces and viscoelasticity of the skin. The work here focuses on the micro-fabrication of high aspect ratio needles with careful control of needle-profile using dry etching technologies. Silicon micro-needles, 150μm in length with base-diameters ranging from 90 to 240μm have been investigated in this study. A novel, multiple-sacrificial approach has been demonstrated as suited to the fabrication of long micro-needle bodies with positive profiles. The parameters that control the isotropic etching are adjusted to control the ratio of the needle-base diameter to needle length. By careful control of geometry, the needle profile can be engineered to give a suitable tip size for penetration, as well as a broad needle base to facilitate the creation of either single or multiple-through holes. This approach allows the mechanical properties of the otherwise brittle needles to be optimized. Finite element analysis indicates that the micro-needles will fracture prematurely due to buckling, with forces ranging from 10 to 30mN.
The ABC of ACM: asteroids, Buffon and comets
NASA Astrophysics Data System (ADS)
Steel, D. I.
1997-12-01
Most of the participants in the ACM 96 conference would have made use of facilities in a building named for Georges-Louis Leclerc, the Compte de Buffon (1707-1788). Buffon made many major contributions to the natural sciences, and may be considered to be one of the founders of planetary science. He proposed a theory for the origin of the planets which involved a massive comet having an oblique impact upon the Sun, the ejected material condensing so as to form a regular system of planets. Amongst his mathematical contributions is what is known as Buffon's Needle, whereby experimental evaluations of π may be made by randomly dropping a needle onto a set of parallel lines of separation greater than the needle length, and accumulating the fraction of times that the needle cuts one of the lines. Near-Earth asteroid (NEA) trails imaged onto a CCD chip provide a two-dimensional analogue of this, and where the pixel size is very large (this having some advantages for NEA searching) an analysis based on Buffon's Needle provides probabilities of the NEA trail lying within one, two or three pixels, such probabilities affecting the chances of detection. It is therefore appropriate that Buffon and his contributions to studies of comets and asteroids be remembered in these conference proceedings.
CT Guided Bone Biopsy Using a Battery Powered Intraosseous Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnapauff, Dirk, E-mail: dirk.schnapauff@charite.de; Marnitz, Tim, E-mail: tim.marnitz@charite.de; Freyhardt, Patrick, E-mail: Patrick.freyhardt@charite.de
2013-10-15
Purpose: To evaluate the feasibility of a battery powered intraosseous device to perform CT-fluoroscopy guided bone biopsy. Methods: Retrospective analysis of 12 patients in whom bone specimen were acquired from different locations under CT-fluoroscopy guidance using the OnControl bone marrow biopsy system (OBM, Vidacare, Shavano Park, TX, USA). Data of the 12 were compared to a historic cohort in whom the specimen were acquired using the classic Jamshidi Needle, as reference needle using manual force for biopsy. Results: Technical success was reached in 11 of 12 cases, indicated by central localisation of the needle within the target lesion. All specimenmore » sampled were sufficient for histopathological workup. Compared to the historical cohort the time needed for biopsy decreased significantly from 13 {+-} 6 to 6 {+-} 4 min (P = 0.0001). Due to the shortened intervention time the radiation dose (CTDI) during CT-fluoroscopy was lowered significantly from 169 {+-} 87 to 111 {+-} 54 mGy Multiplication-Sign cm (P = 0.0001). Interventional radiologists were confident with the performance of the needle especially when using in sclerotic or osteoblastic lesions. Conclusion: The OBM is an attractive support for CT-fluoroscopy guided bone biopsy which is safe tool and compared to the classical approach using the Jamshidi needle leading to significantly reduced intervention time and radiation exposure.« less
ur Rahman, Sadeeq
2013-01-01
The two-partner secretion (TPS) systems of Gram-negative bacteria consist of a large secreted exoprotein (TpsA) and a transporter protein (TpsB) located in the outer membrane. TpsA targets TpsB for transport across the membrane via its ∼30-kDa TPS domain located at its N terminus, and this domain is also the minimal secretory unit. Neisseria meningitidis genomes encode up to five TpsAs and two TpsBs. Sequence alignments of TPS domains suggested that these are organized into three systems, while there are two TpsBs, which raised questions on their system specificity. We show here that the TpsB2 transporter of Neisseria meningitidis is able to secrete all types of TPS domains encoded in N. meningitidis and the related species Neisseria lactamica but not domains of Haemophilus influenzae and Pseudomonas aeruginosa. In contrast, the TpsB1 transporter seemed to be specific for its cognate N. meningitidis system and did not secrete the TPS domains of other meningococcal systems. However, TpsB1 did secrete the TPS2b domain of N. lactamica, which is related to the meningococcal TPS2 domains. Apparently, the secretion depends on specific sequences within the TPS domain rather than the overall TPS domain structure. PMID:23222722
Uppal, Vishal; Sondekoppam, Rakesh V; Ganapathy, Sugantha
2014-10-01
During peripheral nerve block procedures, needle visibility decreases as the angle of needle insertion relative to skin increases due to loss of reflective signals. The primary aim of our study was to compare the effect of beam steering on the visibility of echogenic and non-echogenic block needles. PAJUNK non-echogenic and echogenic needles were inserted into pork meat at 20°, 40°, 60°, and 70° angles, and electronic beam steering was applied at three different angles (shallow, medium, and steep) to obtain the best possible needle images. Eleven anesthesiologists blinded to the type of needle or use of beam steering scored the images obtained (0 = needle not visible; 10 = excellent needle shaft and tip visibility). Mean scores were used to classify the needles as poor visibility (mean score 0-3.3), intermediate visibility (mean score 3.4-6.6), or good visibility (mean score 6.7-10). At 20°, the visibility scores were intermediate to good in all groups. At 40°, the mean (SD) visibility score for the non-echogenic needle improved significantly from 3.1 (1.4) to 7.9 (1.8) with application of beam steering (difference = 4.8; 95% confidence interval [CI]: 3.1 to 6.6; P < 0.001). At 60°, the mean (SD) visibility score for the non-echogenic needle was poor 0.6 (0.7) and remained poor 2.4 (1.1) with beam steering. One the other hand, the echogenic needle without beam steering 6.5 (1.8) scored significantly better than the non-echogenic needle with beam steering 2.4 (1.1) (difference = 4.2; 95% CI: 2.7 to 5.6; P < 0.001). At 70°, the mean needle visibility score was poor for the non-echogenic needle with or without beam steering. In contrast, the echogenic needle attained an intermediate visibility score with or without beam steering. Beam steering did not significantly change the visibility scores of either the echogenic or the non-echogenic needle (P = 0.088 and 0.056, respectively) at a 70° angle. The PAJUNK echogenic needle, with or without beam steering, was more visible when compared with the non-echogenic needle at 60° and 70° angles of insertion. In contrast, at a 40° angle of needle insertion, the non-echogenic needle with beam steering was more visible compared with the echogenic needle.
Pressures of Wilderness Improvised Wound Irrigation Techniques: How Do They Compare?
Luck, John B; Campagne, Danielle; Falcón Banchs, Roberto; Montoya, Jason; Spano, Susanne J
2016-12-01
Compare the pressures measured by improvised irrigation techniques to a commercial device and to prior reports. Devices tested included a commercial 500-mL compressible plastic bottle with splash guard, a 10-mL syringe, a 10-mL syringe with a 14-ga angiocatheter (with needle removed), a 50-mL Sawyer syringe, a plastic bag punctured with a 14-ga needle, a plastic bottle with cap punctured by a 14-ga needle, a plastic bottle with sports top, and a bladder-style hydration system. Each device was leveled on a support, manually compressed, and aimed toward a piece of glass. A high-speed camera placed behind the glass recorded the height of the stream upon impact at its highest and lowest point. Measurements were recorded 5 times for each device. Pressures in pounds per square inch (psi) were calculated. The syringe and angiocatheter pressures measured the highest pressures (16-49 psi). The 50-mL syringe (7-11 psi), 14-ga punctured water bottle (7-25 psi), and water bottle with sports top (3-7 psi) all measured at or above the commercial device (4-5 psi). Only the bladder-style hydration system (1-2 psi) and plastic bag with 14-ga needle puncture (2-3 psi) did not reach pressures generated by the commercial device. Pressures are consistent with those previously reported. All systems using compressible water bottles and all syringe-based systems provided pressures at or exceeding a commercial wound irrigation device. A 14-ga punctured plastic bag and bladder-style hydration pack failed to generate similar irrigation pressures. Copyright © 2016 Wilderness Medical Society. All rights reserved.
Needle bar for warp knitting machines
Hagel, Adolf; Thumling, Manfred
1979-01-01
Needle bar for warp knitting machines with a number of needles individually set into slits of the bar and having shafts cranked to such an extent that the head section of each needle is in alignment with the shaft section accommodated by the slit. Slackening of the needles will thus not influence the needle spacing.
Needle placement for piriformis injection using 3-D imaging.
Clendenen, Steven R; Candler, Shawn A; Osborne, Michael D; Palmer, Scott C; Duench, Stephanie; Glynn, Laura; Ghazi, Salim M
2013-01-01
Piriformis syndrome is a pain syndrome originating in the buttock and is attributed to 6% - 8% of patients referred for the treatment of back and leg pain. The treatment for piriformis syndrome using fluoroscopy, computed tomography (CT), electromyography (EMG), and ultrasound (US) has become standard practice. The treatment of Piriformis Syndrome has evolved to include fluoroscopy and EMG with CT guidance. We present a case study of 5 successful piriformis injections using 3-D computer-assisted electromagnet needle tracking coupled with ultrasound. A 6-degree of freedom electromagnetic position tracker was attached to the ultrasound probe that allowed the system to detect the position and orientation of the probe in the magnetic field. The tracked ultrasound probe was used to find the posterior superior iliac spine. Subsequently, 3 points were captured to register the ultrasound image with the CT or magnetic resonance image scan. Moreover, after the registration was obtained, the navigation system visualized the tracked needle relative to the CT scan in real-time using 2 orthogonal multi-planar reconstructions centered at the tracked needle tip. Conversely, a recent study revealed that fluoroscopically guided injections had 30% accuracy compared to ultrasound guided injections, which tripled the accuracy percentage. This novel technique exhibited an accurate needle guidance injection precision of 98% while advancing to the piriformis muscle and avoiding the sciatic nerve. The mean (± SD) procedure time was 19.08 (± 4.9) minutes. This technique allows for electromagnetic instrument tip tracking with real-time 3-D guidance to the selected target. As with any new technique, a learning curve is expected; however, this technique could offer an alternative, minimizing radiation exposure.
Objective assessment of operator performance during ultrasound-guided procedures.
Tabriz, David M; Street, Mandie; Pilgram, Thomas K; Duncan, James R
2011-09-01
Simulation permits objective assessment of operator performance in a controlled and safe environment. Image-guided procedures often require accurate needle placement, and we designed a system to monitor how ultrasound guidance is used to monitor needle advancement toward a target. The results were correlated with other estimates of operator skill. The simulator consisted of a tissue phantom, ultrasound unit, and electromagnetic tracking system. Operators were asked to guide a needle toward a visible point target. Performance was video-recorded and synchronized with the electromagnetic tracking data. A series of algorithms based on motor control theory and human information processing were used to convert raw tracking data into different performance indices. Scoring algorithms converted the tracking data into efficiency, quality, task difficulty, and targeting scores that were aggregated to create performance indices. After initial feasibility testing, a standardized assessment was developed. Operators (N = 12) with a broad spectrum of skill and experience were enrolled and tested. Overall scores were based on performance during ten simulated procedures. Prior clinical experience was used to independently estimate operator skill. When summed, the performance indices correlated well with estimated skill. Operators with minimal or no prior experience scored markedly lower than experienced operators. The overall score tended to increase according to operator's clinical experience. Operator experience was linked to decreased variation in multiple aspects of performance. The aggregated results of multiple trials provided the best correlation between estimated skill and performance. A metric for the operator's ability to maintain the needle aimed at the target discriminated between operators with different levels of experience. This study used a highly focused task model, standardized assessment, and objective data analysis to assess performance during simulated ultrasound-guided needle placement. The performance indices were closely related to operator experience.
SU-D-213AB-06: Surface Texture and Insertion Speed Effect on Needle Friction.
Abdullah, A; Golecki, C; Barnett, A; Moore, J
2012-06-01
High frictional forces between the needle surface and tissue cause tissue deflection which hinders accurate needle placement for procedures such as brachytherapy and needle biopsy. Accurate needle placement isimportant to maximize procedure efficacy. This work investigates how needle surface roughness and insertion speed affect the frictional forcebetween a needle and tissue. A friction experiment was conducted to measure the force of friction between bovine liver and three 11 gauge needles having Ra surface roughness of 3.43, 1.33, and 0.2 μm. Each of the three needles were mounted on a linear slide and were advanced and retracted through bovine liver at speeds of 50, 100, 150, and 200 mm/s for a total of 12 trials. In each trial the needle was advanced and retracted in 10 cycles producing a steady state insertion force and a steady state retraction force for each cycle. A force sensor connecting the needle to the linear slide recorded the resistance force of the needle sliding through the liver. The liver was mounted in a box with a pneumatic cylinder which compressed the liver sample by 11.65 kPa. The roughest needle (Ra = 3.43 μm) on average produced 68, 73, 74, and 73% lower friction force than the smoothest needle (Ra = 0.2 μm) for the speeds of 50, 100, 150, and 200mm/s, respectively. The second roughest needle (Ra = 1.33 μm) on average produced 25, 45, 60 and 64% lower friction force than the smoothest needle (Ra = 0.2 μm) for the speeds of 50, 100, 150, and 200 mm/s, respectively. Rougher needle surface texture and higher insertion speed reduced frictional forces between the tissue and the needle. Future studies will examine how frictional forces can be modeled and predicted given surface texture and insertion speed. © 2012 American Association of Physicists in Medicine.
Brattebø, G; Wisborg, T; Rodt, S A; Røste, I
1995-05-01
Reports have indicated that there are less postoperative complaints after the use of pencil pointed spinal needles. We compared a 24G Sprotte needle with a 27G Quincke needle in a randomised study of 200 healthy patients (49% females), aged 15-46 years. Four patients (2%) reported postdural puncture headache, three with the 24G Sprotte needle and one with the 27G Quincke needle. Thirteen patients (7%) suffered with nonspecific headache, with no significant difference between the two groups. Of the 57 (29%) who reported backpain, a significantly higher proportion had received spinal anaesthesia with the Sprotte needle (OR = 2.06). There was a significantly higher incidence of insufficient blocks after dural puncture with the Sprotte needle. Ease of needle insertion and number of puncture attempts was the same for both needle types.
[Design and application of silver needle-knife].
Sun, Guodong; Shi, Bin; Zhang, Benwu; Xu, Haidong
2015-04-01
A silver needle-knife which has the dual function of silver needle and needle-knife is designed. The main components of this silver needle-knife are approximately 50% silver and approximately 50% nichrome. The silver needle-knife is composed of five parts, including needle-knife tail, spiral handle; steering handle, needle-knife body and needle-knife edge. It converges the advantages of needle-knife and silver needle, which can cut loose of diseased tissue and peel adhesion of lesions, but also be heated with moxa cone and thermal therapeutic instrument, and connect with electroacupuncture apparatus. It has the function of warming channel and removing coldness, dispelling wind and eliminating dampness, resolving spasm and relieving pain, dredging the channel and so on. Due to the spiral handle and the steering handle, the operation is easier, which reduces the blindness of cutting and increase the safety. It is mainly used for soft tissue injury, rheumatism and rheumatoid arthritis, as well as degenerative diseases of spine and joint, and it has obvious efficacy on some internal medical diseases.
[Academic origin of round magnetic needle and standardization operation].
Cheng, Yan-Ting; Zhang, Tian-Sheng; Meng, Li-Qiang; Shi, Rui-Qi; Ji, Lai-Xi
2014-07-01
The origin and development of round magnetic needle was explored, and the structure of round magnetic needle was introduced in detail, including the handle, the body and the tip of the needle. The clinical opera tion of round magnetic needle were standardized from the aspects of the methods of holding needle, manipulation skill, tapping position, strength of manipulation, application scope and matters needing attention, which laid foundation for the popularization and application of round magnetic needle.
DBSecSys 2.0: a database of Burkholderia mallei and Burkholderia pseudomallei secretion systems.
Memišević, Vesna; Kumar, Kamal; Zavaljevski, Nela; DeShazer, David; Wallqvist, Anders; Reifman, Jaques
2016-09-20
Burkholderia mallei and B. pseudomallei are the causative agents of glanders and melioidosis, respectively, diseases with high morbidity and mortality rates. B. mallei and B. pseudomallei are closely related genetically; B. mallei evolved from an ancestral strain of B. pseudomallei by genome reduction and adaptation to an obligate intracellular lifestyle. Although these two bacteria cause different diseases, they share multiple virulence factors, including bacterial secretion systems, which represent key components of bacterial pathogenicity. Despite recent progress, the secretion system proteins for B. mallei and B. pseudomallei, their pathogenic mechanisms of action, and host factors are not well characterized. We previously developed a manually curated database, DBSecSys, of bacterial secretion system proteins for B. mallei. Here, we report an expansion of the database with corresponding information about B. pseudomallei. DBSecSys 2.0 contains comprehensive literature-based and computationally derived information about B. mallei ATCC 23344 and literature-based and computationally derived information about B. pseudomallei K96243. The database contains updated information for 163 B. mallei proteins from the previous database and 61 additional B. mallei proteins, and new information for 281 B. pseudomallei proteins associated with 5 secretion systems, their 1,633 human- and murine-interacting targets, and 2,400 host-B. mallei interactions and 2,286 host-B. pseudomallei interactions. The database also includes information about 13 pathogenic mechanisms of action for B. mallei and B. pseudomallei secretion system proteins inferred from the available literature or computationally. Additionally, DBSecSys 2.0 provides details about 82 virulence attenuation experiments for 52 B. mallei secretion system proteins and 98 virulence attenuation experiments for 61 B. pseudomallei secretion system proteins. We updated the Web interface and data access layer to speed-up users' search of detailed information for orthologous proteins related to secretion systems of the two pathogens. The updates of DBSecSys 2.0 provide unique capabilities to access comprehensive information about secretion systems of B. mallei and B. pseudomallei. They enable studies and comparisons of corresponding proteins of these two closely related pathogens and their host-interacting partners. The database is available at http://dbsecsys.bhsai.org .
Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Dinakaran, Vasudevan; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash
2016-01-01
Brucella spp. are facultative intracellular pathogens that cause brucellosis in various mammals including humans. Brucella survive inside the host cells by forming vacuoles and subverting host defence systems. This study was aimed to predict the secretion systems and the secretomes of Brucella spp. from 39 complete genome sequences available in the databases. Furthermore, an attempt was made to identify the type IV secretion effectors and their interactions with host proteins. We predicted the secretion systems of Brucella by the KEGG pathway and SecReT4. Brucella secretomes and type IV effectors (T4SEs) were predicted through genome-wide screening using JVirGel and S4TE, respectively. Protein-protein interactions of Brucella T4SEs with their hosts were analyzed by HPIDB 2.0. Genes coding for Sec and Tat pathways of secretion and type I (T1SS), type IV (T4SS) and type V (T5SS) secretion systems were identified and they are conserved in all the species of Brucella. In addition to the well-known VirB operon coding for the type IV secretion system (T4SS), we have identified the presence of additional genes showing homology with T4SS of other organisms. On the whole, 10.26 to 14.94% of total proteomes were found to be either secreted (secretome) or membrane associated (membrane proteome). Approximately, 1.7 to 3.0% of total proteomes were identified as type IV secretion effectors (T4SEs). Prediction of protein-protein interactions showed 29 and 36 host-pathogen specific interactions between Bos taurus (cattle)-B. abortus and Ovis aries (sheep)-B. melitensis, respectively. Functional characterization of the predicted T4SEs and their interactions with their respective hosts may reveal the secrets of host specificity of Brucella.
Histological observation for needle-tissue interactions.
Nakagawa, Yoshiyuki; Koseki, Yoshihiko
2013-01-01
We histologically investigated tissue fractures and deformations caused by ex vivo needle insertions. The tissue was formalin-fixed while the needle remained in the tissue. Following removal of the needle, the tissue was microtomed, stained, and observed microscopically. This method enabled observations of cellular and tissular conditions where deformations caused by needle insertions were approximately preserved. For this study, our novel method presents preliminary findings related with tissue fractures and the orientation of needle blade relative to muscle fibers. When the needle blade was perpendicular to the muscle fiber, transfiber fractures and relatively large longitudinal deformations occurred. When the needle blade was parallel to the muscle fiber, interfiber fractures and relatively small longitudinal deformations occurred. This made a significant difference in the resistance force of the needle insertions.
Naveed, Mariam; Siddiqui, Ali A.; Kowalski, Thomas E.; Loren, David E.; Khalid, Ammara; Soomro, Ayesha; Mazhar, Syed M.; Yoo, Joseph; Hasan, Raza; Yalamanchili, Silpa; Tarangelo, Nicholas; Taylor, Linda J.; Adler, Douglas G.
2018-01-01
Background and Objectives: The ability to obtain adequate tissue of solid pancreatic lesions by EUS-guided remains a challenge. The aim of this study was to compare the performance characteristics and safety of EUS-FNA for evaluating solid pancreatic lesions using the standard 22-gauge needle versus a novel EUS biopsy needle. Methods: This was a multicenter retrospective study of EUS-guided sampling of solid pancreatic lesions between 2009 and 2015. Patients underwent EUS-guided sampling with a 22-gauge SharkCore (SC) needle or a standard 22-gauge FNA needle. Technical success, performance characteristics of EUS-FNA, the number of needle passes required to obtain a diagnosis, diagnostic accuracy, and complications were compared. Results: A total of 1088 patients (mean age = 66 years; 49% female) with pancreatic masses underwent EUS-guided sampling with a 22-gauge SC needle (n = 115) or a standard 22-gauge FNA needle (n = 973). Technical success was 100%. The frequency of obtaining an adequate cytology by EUS-FNA was similar when using the SC and the standard needle (94.1% vs. 92.7%, respectively). The sensitivity, specificity, and diagnostic accuracy of EUS-FNA for tissue diagnosis were not significantly different between two needles. Adequate sample collection leading to a definite diagnosis was achieved by the 1st, 2nd, and 3rd pass in 73%, 92%, and 98% of procedures using the SC needle and 20%, 37%, and 94% procedures using the standard needle (P < 0.001), respectively. The median number of passes to obtain a tissue diagnosis using the SC needle was significantly less as compared to the standard needle (1 and 3, respectively; P < 0.001). Conclusions: The EUS SC biopsy needle is safe and technically feasible for EUS-FNA of solid pancreatic mass lesions. Preliminary results suggest that the SC needle has a diagnostic yield similar to the standard EUS needle and significantly reduces the number of needle passes required to obtain a tissue diagnosis. PMID:29451167
NASA Astrophysics Data System (ADS)
Nagel, Markus; Hoheisel, Martin; Petzold, Ralf; Kalender, Willi A.; Krause, Ulrich H. W.
2007-03-01
Integrated solutions for navigation systems with CT, MR or US systems become more and more popular for medical products. Such solutions improve the medical workflow, reduce hardware, space and costs requirements. The purpose of our project was to develop a new electromagnetic navigation system for interventional radiology which is integrated into C-arm CT systems. The application is focused on minimally invasive percutaneous interventions performed under local anaesthesia. Together with a vacuum-based patient immobilization device and newly developed navigation tools (needles, panels) we developed a safe and fully automatic navigation system. The radiologist can directly start with navigated interventions after loading images without any prior user interaction. The complete system is adapted to the requirements of the radiologist and to the clinical workflow. For evaluation of the navigation system we performed different phantom studies and achieved an average accuracy of better than 2.0 mm.
1982-04-01
the secret . In each, we shall consider * the plausible interpretations of the utterance "Do you know the secret ?" Setting 1: If S knows the secret and...believes that H doesn’t know the secret , then "Do you know the secret ?" is probably an offer to tell H the secret . Setting 2: If S doesn’t know the ... secret and believes that H does know the secret then "Do you know the
Modeling and Control of Needles with Torsional Friction
Reed, Kyle B.; Okamura, Allison M.; Cowan, Noah J.
2010-01-01
A flexible needle can be accurately steered by robotically controlling the bevel tip orientation as the needle is inserted into tissue. Friction between the long, flexible needle shaft and the tissue can cause a significant discrepancy between the orientation of the needle tip and the orientation of the base where the needle angle is controlled. Our experiments show that several common phantom tissues used in needle steering experiments impart substantial friction forces to the needle shaft, resulting in a lag of over 45° for a 10 cm insertion depth in some phantoms; clinical studies report torques large enough to cause similar errors during needle insertions. Such angle discrepancies will result in poor performance or failure of path planners and image-guided controllers, since the needles used in percutaneous procedures are too small for state-of-the-art imaging to accurately measure the tip angle. To compensate for the angle discrepancy, we develop an estimator using a mechanics-based model of the rotational dynamics of a needle being inserted into tissue. Compared to controllers that assume a rigid needle in a frictionless environment, our estimator-based controller improves the tip angle convergence time by nearly 50% and reduces the path deviation of the needle by 70%. PMID:19695979
NASA Technical Reports Server (NTRS)
Xu, Jian-Jun
1989-01-01
The complicated dendritic structure of a growing needle crystal is studied on the basis of global interfacial wave theory. The local dispersion relation for normal modes is derived in a paraboloidal coordinate system using the multiple-variable-expansion method. It is shown that the global solution in a dendrite growth process incorporates the morphological instability factor and the traveling wave factor.
Invasive Electrical Impedance Tomography for Blood Vessel Detection
Martinsen, Ørjan G.; Kalvøy, Håvard; Grimnes, Sverre; Nordbotten, Bernt; Hol, Per Kristian; Fosse, Erik; Myklebust, Helge; Becker, Lance B
2010-01-01
We present a novel method for localization of large blood vessels using a bioimpedance based needle positioning system on an array of ten monopolar needle electrodes. The purpose of the study is to develop a portable, low cost tool for rapid vascular access for cooling and controlled reperfusion of cardiac arrest patients. Preliminary results show that localization of blood vessels is feasible with this method, but larger studies are necessary to improve the technology. PMID:21611140
The Kinect as an interventional tracking system
NASA Astrophysics Data System (ADS)
Wang, Xiang L.; Stolka, Philipp J.; Boctor, Emad; Hager, Gregory; Choti, Michael
2012-02-01
This work explores the suitability of low-cost sensors for "serious" medical applications, such as tracking of interventional tools in the OR, for simulation, and for education. Although such tracking - i.e. the acquisition of pose data e.g. for ultrasound probes, tissue manipulation tools, needles, but also tissue, bone etc. - is well established, it relies mostly on external devices such as optical or electromagnetic trackers, both of which mandate the use of special markers or sensors attached to each single entity whose pose is to be recorded, and also require their calibration to the tracked entity, i.e. the determination of the geometric relationship between the marker's and the object's intrinsic coordinate frames. The Microsoft Kinect sensor is a recently introduced device for full-body tracking in the gaming market, but it was quickly hacked - due to its wide range of tightly integrated sensors (RGB camera, IR depth and greyscale camera, microphones, accelerometers, and basic actuation) - and used beyond this area. As its field of view and its accuracy are within reasonable usability limits, we describe a medical needle-tracking system for interventional applications based on the Kinect sensor, standard biopsy needles, and no necessary attachments, thus saving both cost and time. Its twin cameras are used as a stereo pair to detect needle-shaped objects, reconstruct their pose in four degrees of freedom, and provide information about the most likely candidate.
NASA Astrophysics Data System (ADS)
Yang, Jiamiao; Gong, Lei; Xu, Xiao; Hai, Pengfei; Suzuki, Yuta; Wang, Lihong V.
2017-03-01
Photoacoustic microscopy (PAM) has been extensively applied in biomedical study because of its ability to visualize tissue morphology and physiology in vivo in three dimensions (3D). However, conventional PAM suffers from a rapidly decreasing resolution away from the focal plane because of the limited depth of focus of an objective lens, which deteriorates the volumetric imaging quality inevitably. Here, we propose a novel method to synthesize an ultra-long light needle to extend a microscope's depth of focus beyond its physical limitations with wavefront engineering method. Furthermore, it enables an improved lateral resolution that exceeds the diffraction limit of the objective lens. The virtual light needle can be flexibly synthesized anywhere throughout the imaging volume without mechanical scanning. Benefiting from these advantages, we developed a synthetic light needle photoacoustic microscopy (SLN-PAM) to achieve an extended depth of field (DOF), sub-diffraction and motionless volumetric imaging. The DOF of our SLN-PAM system is up to 1800 µm, more than 30-fold improvement over that gained by conventional PAM. Our system also achieves the lateral resolution of 1.8 µm (characterized at 532 nm and 0.1 NA objective), about 50% higher than the Rayleigh diffraction limit. Its superior imaging performance was demonstrated by 3D imaging of both non-biological and biological samples. This extended DOF, sub-diffraction and motionless 3D PAM will open up new opportunities for potential biomedical applications.
Evaluation of a Veress needle for the fluid egress system of stifle arthroscopy in toy dog breeds.
Cha, Jae-Gwan; Lee, Hae Beom; Cheong, Hye-Yeon; Heo, Su-Young; Ragetly, Guillaume R
2016-01-01
The aim of this study was to evaluate the use of a Veress needle as a fluid egress system for stifle arthroscopy in toy dog breeds. Cadaveric canine stifle joints (n = 32) were prepared to induce an artificial intra-articular haemorrhagic effect, followed by stifle arthroscopy. The stifles were randomly assigned to one of three groups, and a fluid egress portal was established using a Veress needle (VN), a standard egress cannula (SE), or an intravenous catheter stylet (CS). Time to establish the egress portal, arthroscopic visibility, and egress portal performance were evaluated during the arthroscopy. After the arthroscopic examinations, iatrogenic cartilage lesions were identified and analysed using the percentage area of cartilage damage (%ACD). The overall arthroscopic visibility and egress portal performance were not significantly different among the groups. The egress portal establishment was faster for the VN (33 sec) and the CS (34 sec) groups than for the SE (43 sec) group (p = 0.001). On gross joint examination, no iatrogenic laceration was found in the VN group, whereas four out of 10 of the SE and two out of 10 of the CS specimens had linear cartilage excoriation on the stifle joints. The %ACD score of the VN group was lower than those of the SE group (p = 0.009) and the CS group (p = 0.001). The Veress needle method used in this study was useful to establish a fluid egress system and limit iatrogenic cartilage excoriations. This technique could become the method of choice for stifle arthroscopy, especially in smaller dogs.
The New Kid on the Block: A Specialized Secretion System during Bacterial Sporulation.
Morlot, Cécile; Rodrigues, Christopher D A
2018-02-02
The transport of proteins across the bacterial cell envelope is mediated by protein complexes called specialized secretion systems. These nanomachines exist in both Gram-positive and Gram-negative bacteria and have been categorized into different types based on their structural components and function. Interestingly, multiple studies suggest the existence of a protein complex in endospore-forming bacteria that appears to be a new type of specialized secretion system. This protein complex is called the SpoIIIA-SpoIIQ complex and is an exception to the categorical norm since it appears to be a hybrid composed of different parts from well-defined specialized secretion systems. Here we summarize and discuss the current understanding of this complex and its potential role as a specialized secretion system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Takazawa, Shinya; Ishimaru, Tetsuya; Fujii, Masahiro; Harada, Kanako; Sugita, Naohiko; Mitsuishi, Mamoru; Iwanaka, Tadashi
2013-11-01
We have developed a thin needle driver with multiple degrees-of-freedom (DOFs) for neonatal laparoscopic surgery. The tip of this needle driver has three DOFs for grasp, deflection and rotation. Our aim was to evaluate the performance of the multi-DOF needle driver in vertical plane suturing. Six pediatric surgeons performed four directional suturing tasks in the vertical plane using the multi-DOF needle driver and a conventional one. Assessed parameters were the accuracy of insertion and exit, the depth of suture, the inclination angle of the needle and the force applied on the model. In left and right direction sutures, the inclination angle of the needle with the multi-DOF needle driver was significantly smaller than that with the conventional one (p = 0.014, 0.042, respectively). In left and right direction sutures, the force for pulling the model with the multi-DOF needle driver was smaller than that with the conventional one (p = 0.036, 0.010, respectively). This study showed that multi-directional suturing on a vertical plane using the multi-DOF needle driver had better needle trajectories and was less invasive as compared to a conventional needle driver.
Park, Jihye; Zhang, Ying; Chen, Chun; Dudley, Edward G; Harvill, Eric T
2015-12-01
Secretion systems are key virulence factors, modulating interactions between pathogens and the host's immune response. Six potential secretion systems (types 1-6; T1SS-T6SS) have been discussed in classical bordetellae, respiratory commensals/pathogens of mammals. The prototypical Bordetella bronchiseptica strain RB50 genome seems to contain all six systems, whilst two human-restricted subspecies, Bordetella parapertussis and Bordetella pertussis, have lost different subsets of these. This implicates secretion systems in the divergent evolutionary histories that have led to their success in different niches. Based on our previous work demonstrating that changes in secretion systems are associated with virulence characteristics, we hypothesized there would be substantial divergence of the loci encoding each amongst sequenced strains. Here, we describe extensive differences in secretion system loci; 10 of the 11 sequenced strains had lost subsets of genes or one entire secretion system locus. These loci contained genes homologous to those present in the respective loci in distantly related organisms, as well as genes unique to bordetellae, suggesting novel and/or auxiliary functions. The high degree of conservation of the T3SS locus, a complex machine with interdependent parts that must be conserved, stands in dramatic contrast to repeated loss of T5aSS 'autotransporters', which function as an autonomous unit. This comparative analysis provided insights into critical aspects of each pathogen's adaptation to its different niche, and the relative contributions of recombination, mutation and horizontal gene transfer. In addition, the relative conservation of various secretion systems is an important consideration in the ongoing search for more highly conserved protective antigens for the next generation of pertussis vaccines.
Salmonella-secreted Virulence Factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heffron, Fred; Niemann, George; Yoon, Hyunjin
In this short review we discuss secreted virulence factors of Salmonella, which directly affect Salmonella interaction with its host. Salmonella secretes protein to subvert host defenses but also, as discussed, to reduce virulence thereby permitting the bacteria to persist longer and more successfully disperse. The type III secretion system (TTSS) is the best known and well studied of the mechanisms that enable secretion from the bacterial cytoplasm to the host cell cytoplasm. Other secretion systems include outer membrane vesicles, which are present in all Gram-negative bacteria examined to date, two-partner secretion, and type VI secretion will also be addressed. Excellentmore » reviews of Salmonella secreted effectors have focused on themes such as actin rearrangements, vesicular trafficking, ubiquitination, and the activities of the virulence factors themselves. This short review is based on S. Typhimurium infection of mice because it is a model of typhoid like disease in humans. We have organized effectors in terms of events that happen during the infection cycle and how secreted effectors may be involved.« less
NASA Astrophysics Data System (ADS)
McAllister, Devin V.; Wang, Ping M.; Davis, Shawn P.; Park, Jung-Hwan; Canatella, Paul J.; Allen, Mark G.; Prausnitz, Mark R.
2003-11-01
Arrays of micrometer-scale needles could be used to deliver drugs, proteins, and particles across skin in a minimally invasive manner. We therefore developed microfabrication techniques for silicon, metal, and biodegradable polymer microneedle arrays having solid and hollow bores with tapered and beveled tips and feature sizes from 1 to 1,000 μm. When solid microneedles were used, skin permeability was increased in vitro by orders of magnitude for macromolecules and particles up to 50 nm in radius. Intracellular delivery of molecules into viable cells was also achieved with high efficiency. Hollow microneedles permitted flow of microliter quantities into skin in vivo, including microinjection of insulin to reduce blood glucose levels in diabetic rats. transdermal drug delivery | skin | microelectromechanical systems | solid microneedle | hollow needle injection
Ramage, R.W.
1962-05-01
A gas regulator operating on the piston and feedback principle is described. The device is particularly suitable for the delicate regulation of high pressure, i.e., 10,000 psi and above, gas sources, as well as being perfectly adaptable for use on gas supplies as low as 50 psi. The piston is adjustably connected to a needle valve and the movement of the piston regulates the flow of gas from the needle valve. The gas output is obtained from the needle valve. Output pressure is sampled by a piston feedback means which, in turn, regulates the movement of the main piston. When the output is other than the desired value, the feedback system initiates movement of the main piston to allow the output pressure to be corrected or to remain constant. (AEC)
Chagnot, Caroline; Zorgani, Mohamed A.; Astruc, Thierry; Desvaux, Mickaël
2013-01-01
Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field. PMID:24133488
Fiuzy, Mohammad; Haddadnia, Javad; Mollania, Nasrin; Hashemian, Maryam; Hassanpour, Kazem
2012-01-01
Background Accurate Diagnosis of Breast Cancer is of prime importance. Fine Needle Aspiration test or "FNA”, which has been used for several years in Europe, is a simple, inexpensive, noninvasive and accurate technique for detecting breast cancer. Expending the suitable features of the Fine Needle Aspiration results is the most important diagnostic problem in early stages of breast cancer. In this study, we introduced a new algorithm that can detect breast cancer based on combining artificial intelligent system and Fine Needle Aspiration (FNA). Methods We studied the Features of Wisconsin Data Base Cancer which contained about 569 FNA test samples (212 patient samples (malignant) and 357 healthy samples (benign)). In this research, we combined Artificial Intelligence Approaches, such as Evolutionary Algorithm (EA) with Genetic Algorithm (GA), and also used Exact Classifier Systems (here by Fuzzy C-Means (FCM)) to separate malignant from benign samples. Furthermore, we examined artificial Neural Networks (NN) to identify the model and structure. This research proposed a new algorithm for an accurate diagnosis of breast cancer. Results According to Wisconsin Data Base Cancer (WDBC) data base, 62.75% of samples were benign, and 37.25% were malignant. After applying the proposed algorithm, we achieved high detection accuracy of about "96.579%” on 205 patients who were diagnosed as having breast cancer. It was found that the method had 93% sensitivity, 73% specialty, 65% positive predictive value, and 95% negative predictive value, respectively. If done by experts, Fine Needle Aspiration (FNA) can be a reliable replacement for open biopsy in palpable breast masses. Evaluation of FNA samples during aspiration can decrease insufficient samples. FNA can be the first line of diagnosis in women with breast masses, at least in deprived regions, and may increase health standards and clinical supervision of patients. Conclusion Such a smart, economical, non-invasive, rapid and accurate system can be introduced as a useful diagnostic system for comprehensive treatment of breast cancer. Another advantage of this method is the possibility of diagnosing breast abnormalities. If done by experts, FNA can be a reliable replacement for open biopsy in palpable breast masses. Evaluation of FNA samples during aspiration can decrease insufficient samples. PMID:25352966
A novel 3D guidance system using augmented reality for percutaneous vertebroplasty: technical note.
Abe, Yuichiro; Sato, Shigenobu; Kato, Koji; Hyakumachi, Takahiko; Yanagibashi, Yasushi; Ito, Manabu; Abumi, Kuniyoshi
2013-10-01
Augmented reality (AR) is an imaging technology by which virtual objects are overlaid onto images of real objects captured in real time by a tracking camera. This study aimed to introduce a novel AR guidance system called virtual protractor with augmented reality (VIPAR) to visualize a needle trajectory in 3D space during percutaneous vertebroplasty (PVP). The AR system used for this study comprised a head-mount display (HMD) with a tracking camera and a marker sheet. An augmented scene was created by overlaying the preoperatively generated needle trajectory path onto a marker detected on the patient using AR software, thereby providing the surgeon with augmented views in real time through the HMD. The accuracy of the system was evaluated by using a computer-generated simulation model in a spine phantom and also evaluated clinically in 5 patients. In the 40 spine phantom trials, the error of the insertion angle (EIA), defined as the difference between the attempted angle and the insertion angle, was evaluated using 3D CT scanning. Computed tomography analysis of the 40 spine phantom trials showed that the EIA in the axial plane significantly improved when VIPAR was used compared with when it was not used (0.96° ± 0.61° vs 4.34° ± 2.36°, respectively). The same held true for EIA in the sagittal plane (0.61° ± 0.70° vs 2.55° ± 1.93°, respectively). In the clinical evaluation of the AR system, 5 patients with osteoporotic vertebral fractures underwent VIPAR-guided PVP from October 2011 to May 2012. The postoperative EIA was evaluated using CT. The clinical results of the 5 patients showed that the EIA in all 10 needle insertions was 2.09° ± 1.3° in the axial plane and 1.98° ± 1.8° in the sagittal plane. There was no pedicle breach or leakage of polymethylmethacrylate. VIPAR was successfully used to assist in needle insertion during PVP by providing the surgeon with an ideal insertion point and needle trajectory through the HMD. The findings indicate that AR guidance technology can become a useful assistive device during spine surgeries requiring percutaneous procedures.
Does a paresthesia during spinal needle insertion indicate intrathecal needle placement?
Pong, Ryan P; Gmelch, Benjamin S; Bernards, Christopher M
2009-01-01
Paresthesias are relatively common during spinal needle insertion, however, the clinical significance of the paresthesia is unknown. A paresthesia may result from needle-to-nerve contact with a spinal nerve in the epidural space, or, with far lateral needle placement, may result from contact with a spinal nerve within the intervertebral foramen. However, it is also possible and perhaps more likely, that paresthesias occur when the spinal needle contacts a spinal nerve root within the subarachnoid space. This study was designed to test this latter hypothesis. Patients (n = 104) scheduled for surgery under spinal anesthesia were observed during spinal needle insertion. If a paresthesia occurred, the needle was fixed in place and the stylet removed to observe whether cerebrospinal fluid (CSF) flowed from the hub. The presence of CSF was considered proof that the needle had entered the subarachnoid space. Paresthesias occurred in 14/103 (13.6%) of patients; 1 patient experienced a paresthesia twice. All paresthesias were transient. Following a paresthesia, CSF was observed in the needle hub 86.7% (13/15) of the time. Our data suggest that the majority of transient paresthesias occur when the spinal needle enters the subarachnoid space and contacts a spinal nerve root. Therefore, when transient paresthesias occur during spinal needle placement it is appropriate to stop and assess for the presence of CSF in the needle hub, rather than withdraw and redirect the spinal needle away from the side of the paresthesia as some authors have suggested.
Zhu, Yongtao
2013-01-01
The phylum Bacteroidetes is large and diverse, with rapid gliding motility and the ability to digest macromolecules associated with many genera and species. Recently, a novel protein secretion system, the Por secretion system (PorSS), was identified in two members of the phylum, the gliding bacterium Flavobacterium johnsoniae and the nonmotile oral pathogen Porphyromonas gingivalis. The components of the PorSS are not similar in sequence to those of other well-studied bacterial secretion systems. The F. johnsoniae PorSS genes are a subset of the gliding motility genes, suggesting a role for the secretion system in motility. The F. johnsoniae PorSS is needed for assembly of the gliding motility apparatus and for secretion of a chitinase, and the P. gingivalis PorSS is involved in secretion of gingipain protease virulence factors. Comparative analysis of 37 genomes of members of the phylum Bacteroidetes revealed the widespread occurrence of gliding motility genes and PorSS genes. Genes associated with other bacterial protein secretion systems were less common. The results suggest that gliding motility is more common than previously reported. Microscopic observations confirmed that organisms previously described as nonmotile, including Croceibacter atlanticus, “Gramella forsetii,” Paludibacter propionicigenes, Riemerella anatipestifer, and Robiginitalea biformata, exhibit gliding motility. Three genes (gldA, gldF, and gldG) that encode an apparent ATP-binding cassette transporter required for F. johnsoniae gliding were absent from two related gliding bacteria, suggesting that the transporter may not be central to gliding motility. PMID:23123910
Engineering Escherichia coli into a protein delivery system for mammalian cells.
Reeves, Analise Z; Spears, William E; Du, Juan; Tan, Kah Yong; Wagers, Amy J; Lesser, Cammie F
2015-05-15
Many Gram-negative pathogens encode type 3 secretion systems, sophisticated nanomachines that deliver proteins directly into the cytoplasm of mammalian cells. These systems present attractive opportunities for therapeutic protein delivery applications; however, their utility has been limited by their inherent pathogenicity. Here, we report the reengineering of a laboratory strain of Escherichia coli with a tunable type 3 secretion system that can efficiently deliver heterologous proteins into mammalian cells, thereby circumventing the need for virulence attenuation. We first introduced a 31 kB region of Shigella flexneri DNA that encodes all of the information needed to form the secretion nanomachine onto a plasmid that can be directly propagated within E. coli or integrated into the E. coli chromosome. To provide flexible control over type 3 secretion and protein delivery, we generated plasmids expressing master regulators of the type 3 system from either constitutive or inducible promoters. We then constructed a Gateway-compatible plasmid library of type 3 secretion sequences to enable rapid screening and identification of sequences that do not perturb function when fused to heterologous protein substrates and optimized their delivery into mammalian cells. Combining these elements, we found that coordinated expression of the type 3 secretion system and modified target protein substrates produces a nonpathogenic strain that expresses, secretes, and delivers heterologous proteins into mammalian cells. This reengineered system thus provides a highly flexible protein delivery platform with potential for future therapeutic applications.
Method to Reduce Target Motion Through Needle-Tissue Interactions.
Oldfield, Matthew J; Leibinger, Alexander; Seah, Tian En Timothy; Rodriguez Y Baena, Ferdinando
2015-11-01
During minimally invasive surgical procedures, it is often important to deliver needles to particular tissue volumes. Needles, when interacting with a substrate, cause deformation and target motion. To reduce reliance on compensatory intra-operative imaging, a needle design and novel delivery mechanism is proposed. Three-dimensional finite element simulations of a multi-segment needle inserted into a pre-existing crack are presented. The motion profiles of the needle segments are varied to identify methods that reduce target motion. Experiments are then performed by inserting a needle into a gelatine tissue phantom and measuring the internal target motion using digital image correlation. Simulations indicate that target motion is reduced when needle segments are stroked cyclically and utilise a small amount of retraction instead of being held stationary. Results are confirmed experimentally by statistically significant target motion reductions of more than 8% during cyclic strokes and 29% when also incorporating retraction, with the same net insertion speed. By using a multi-segment needle and taking advantage of frictional interactions on the needle surface, it is demonstrated that target motion ahead of an advancing needle can be substantially reduced.
Bigeleisen, Paul E
2017-05-15
Needle guides may allow the practitioner to align the needle with the probe when ultrasound-guided nerve block is performed. The author's goal was to design and fabricate an inexpensive ($1.90), disposable, needle guide that could articulate over a range from 85 degrees to 0 degrees with a three-dimension printer. Three-dimensional representations of an L50, L25, and C 60 ultrasound probe (Sono Site, Bothell, WA) were created using a laser scanner. Computer-aided design software (Solid Works, Waltham, MA) was used to design a needle bracket and needle guide to attach to these probes. A three-dimensional printer was used to fabricate the needle bracket and guide with acrylonitrile polybutadiene polystyrene. An echogenic needle was held in plane with the needle guide. The author performed a supraclavicular block in a morbidly obese patient. The needle was easily visualized. Similar guides that are commercially available cost as much as $400. A knowledge of computer-aided design is necessary for this work.
Laser Generated Leaky Acoustic Waves for Needle Visualization.
Wu, Kai-Wen; Wang, Yi-An; Li, Pai-Chi
2018-04-01
Ultrasound (US)-guided needle operation is usually used to visualize both tissue and needle position such as tissue biopsy and localized drug delivery. However, the transducer-needle orientation is limited due to reflection of the acoustic waves. We proposed a leaky acoustic wave method to visualize the needle position and orientation. Laser pulses are emitted on top of the needle to generate acoustic waves; then, these acoustic waves propagate along the needle surface. Leaky wave signals are detected by the US array transducer. The needle position can be calculated by phase velocities of two different wave modes and their corresponding emission angles. In our experiments, a series of needles was inserted into a tissue mimicking phantom and porcine tissue to evaluate the accuracy of the proposed method. The results show that the detection depth is up to 51 mm and the insertion angle is up to 40° with needles of different diameters. It is demonstrated that the proposed approach outperforms the conventional B-mode US-guided needle operation in terms of the detection range while achieving similar accuracy. The proposed method reveals the potentials for further clinical applications.
Phoenix Conductivity Probe with Shadow and Toothmark
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008). The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 after the probe was lifted away from the soil. The imprint left by the insertion is visible below the probe, and a shadow showing the probe's four needles is cast on a rock to the left. The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water. The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Production of needle-type liquid-metal ion sources and their application in a scanning ion muscope
NASA Astrophysics Data System (ADS)
Knapp, Helmut; Rübesame, Detlef; Niedrig, Heinz
1991-07-01
A tungsten wire is electrochemically etched in NaOH to produce tip radii of 4-10 μm for use in liquid-metal ion sources (LMIS). To ensure complete wetting of the needle with the liquid metal (Sn, Ga), the needle has to be annealed at 800-1000°C by electron bombardment in a vacuum. It is then immediately dipped into the liquid metal in the same vacuum chamber. An anode prepared in this way is part of a triode system, followed by an octupole stigmator, an electrostatic einzel lens and the scanning unit. Upon application of a high voltage the liquid metal will form a Taylor cone at the needle tip. In the resulting high electrical field ions are extracted through field evaporation. Typical beam current and spot size values during scanning ion muscope (SIM) operation are 2.5 μA and 10 μm respectively. An Everhart-Thornley detector and a quadrupole mass spectrometer are available to allow analysis of secondary particles emitted from the target.
Percutaneous CT-guided biopsy of the spine: results of 430 biopsies
Rimondi, Eugenio; Errani, Costantino; Bianchi, Giuseppe; Casadei, Roberto; Alberghini, Marco; Malaguti, Maria Cristina; Rossi, Giuseppe; Durante, Stefano; Mercuri, Mario
2008-01-01
Biopsies of lesions in the spine are often challenging procedures with significant risk of complications. CT-guided needle biopsies could lower these risks but uncertainties still exist about the diagnostic accuracy. Aim of this retrospective study was to evaluate the diagnostic accuracy of CT-guided needle biopsies for bone lesions of the spine. We retrieved the results of 430 core needle biopsies carried out over the past fifteen years at the authors’ institute and examined the results obtained. Of the 430 biopsies performed, in 401 cases the right diagnosis was made with the first CT-guided needle biopsy (93.3% accuracy rate). Highest accuracy rates were obtained in primary and secondary malignant lesions. Most false negative results were found in cervical lesions and in benign, pseudotumoral, inflammatory, and systemic pathologies. There were only 9 complications (5 transient paresis, 4 haematomas that resolved spontaneously) that had no influence on the treatment strategy, nor on the patient’s outcome. In conclusion we can assert that this technique is reliable and safe and should be considered the gold standard in biopsies of the spine. PMID:18463900
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koren, S; Bragilovski, D; Tafo, A Guemnie
Purpose: To evaluate the clinical feasibility of IntraBeam intra operative kV irradiation beam device for ocular conjunctiva treatments. The Intra-Beam system offers a 4.4 mm diameter needle applicator, that is not suitable for treatment of a large surface with limits access. We propose an adaptor that will answer to this clinical need and provide initial dosimetry. Methods: The dose distribution of the needle applicator is non uniform and hence not suitable for treatment of relatively large surfaces. We designed an adapter to the needle applicator that will filter the X-rays and produce a conformal dose distribution over the treatment areamore » while shielding surfaces to be spared. Dose distributions were simulated using FLUKA is a fully integrated particle physics Monte Carlo simulation package. Results: We designed a wedge applicator made of Polythermide window and stainless steel for collimating. We compare the dose distribution to that of the known needle and surface applicators. Conclusion: Initial dosimetry shows feasibility of this approach. While further refinements to the design may be warranted, the results support construction of a prototype and confirmation of the Monte Carlo dosimetry with measured data.« less
Yin, Tao; Ni, Jinxia; Zhu, Wenzeng
2015-10-01
To compare the effective differences between deep needling and shallow needling at three acupoints around ear for subjective tinnitus. Fifty patients with subjective tinnitus were randomized divided into a deep needling group and a shallow needling group, 25 cases in each group. Twenty-two patients in the deep needling group and 20 patients in the shallow needling group were brought into statistic in the end. In the two groups, the three acupoints around ear and distal acupoints were both selected. The acupoints of the affected side such as Yifeng (TE 17), Tinghui (GB 2), Ermen (TE 21), Zhigou (TE 6), Zhongzhu (TE 3) and Hegu (LI 4) were adopted. Yifeng (TE 17), Tinghui (GB 2) and Ermen (TE 21) were acupunctured 30-38 mm in the deep needling group and 15-20 mm in the shallow needling group. The other acupoints were conventionally acupunctured in the two groups. The needles were retained for 30 min,once a day and five times a week for all patients. The treatment was continuously for 4 weeks in the two groups. Tinnitus handicap inventory (THI) scores, tinnitus grades and visual analogue scale (VAS) for tinnitus sound levels were observed before and after treatment, and the effects of the two groups were compared. The total effective rate in the deep needling group was 59.1% (13/22), and it was better than 20.0% (4/20) in the shallow needling group (P < 0.05). In the deep needling, group, the THI score, tinnitus grade and the VAS score were improved than those before treatment (all P < 0.05). In the shallow needling group, the three above indices before and after treatment were not different in statistical significance (all P > 0.05). After treatment, all the three indices in the deep needling group were superior to those in the shallow needling group (all P < 0.05). Acupuncture at the three acupoints around ear deeply could apparently improve tinnitus, and reduce tinnitus sound levels for subjective tinnitus. The effect is better than that by shallow needling at the three acupoints.
Effects of insertion speed and trocar stiffness on the accuracy of needle position for brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGill, Carl S.; Schwartz, Jonathon A.; Moore, Jason Z.
2012-04-15
Purpose: In prostate brachytherapy, accurate positioning of the needle tip to place radioactive seeds at its target site is critical for successful radiation treatment. During the procedure, needle deflection leads to seed misplacement and suboptimal radiation dose to cancerous cells. In practice, radiation oncologists commonly use high-speed hand needle insertion to minimize displacement of the prostate as well as the needle deflection. Effects of speed during needle insertion and stiffness of trocar (a solid rod inside the hollow cannula) on needle deflection are studied. Methods: Needle insertion experiments into phantom were performed using a 2{sup 2} factorial design (2 parametersmore » at 2 levels), with each condition having replicates. Analysis of the deflection data included calculating the average, standard deviation, and analysis of variance (ANOVA) to find significant single and two-way interaction factors. Results: The stiffer tungsten carbide trocar is effective in reducing the average and standard deviation of needle deflection. The fast insertion speed together with the stiffer trocar generated the smallest average and standard deviation for needle deflection for almost all cases. Conclusions: The combination of stiff tungsten carbide trocar and fast needle insertion speed are important to decreasing needle deflection. The knowledge gained from this study can be used to improve the accuracy of needle insertion during brachytherapy procedures.« less
Incidence of tissue coring with the 25-gauge Quincke and Whitacre spinal needles.
Campbell, D C; Douglas, M J; Taylor, G
1996-01-01
Tissue cores, implanted into the subarachnoid space during subarachnoid injections, can develop into intraspinal lumbar epidermoid tumors. The availability of smaller needles has made spinal anesthesia more popular. Therefore, this prospective, randomized, blinded study was undertaken to determine whether tissue coring occurs with two of the currently used 25-gauge spinal needles. Fifteen 25-gauge Quincke and seventeen 25-gauge Whitacre spinal needles, in which cerebrospinal fluid (CSF) was not identified and the local anesthetic solution not injected, were obtained from adult male patients undergoing spinal anesthesia. The needles were then evaluated by a pathologist following randomization with similar sterile, unused spinal needles. Twenty additional needles, ten of each type, in which CSF was identified and through which local anesthetic was injected, were also randomized with similar sterile, unused spinal needles and examined. Tissue cores were identified in 12 of the 15 Quincke and 7 of the 17 Whitacre spinal needles in which CSF was not identified (P < .05). Of the 20 needles in which CSF was identified and local anesthetic injected, no tissue cores were identified in the 10 Whitacre needles and only one small tissue core was identified in the 10 Quincke needles. All the tissue cores were identified as fat tissue. The 25-gauge Quincke and 25-gauge Whitacre spinal needles currently used in anesthesia can produce tissue coring.
Options for reducing HIV transmission related to the dead space in needles and syringes.
Zule, William A; Pande, Poonam G; Otiashvili, David; Bobashev, Georgiy V; Friedman, Samuel R; Gyarmathy, V Anna; Des Jarlais, Don C
2018-01-15
When shared by people who inject drugs, needles and syringes with different dead space may affect the probability of HIV and hepatitis C virus (HCV) transmission differently. We measured dead space in 56 needle and syringe combinations obtained from needle and syringe programs across 17 countries in Europe and Asia. We also calculated the amounts of blood and HIV that would remain in different combinations following injection and rinsing. Syringe barrel capacities ranged from 0.5 to 20 mL. Needles ranged in length from 8 to 38 mm. The average dead space was 3 μL in low dead space syringes with permanently attached needles, 13 μL in high dead space syringes with low dead space needles, 45 μL in low dead space syringes with high dead space needles, and 99 μL in high dead space syringes with high dead space needles. Among low dead space designs, calculated volumes of blood and HIV viral burden were lowest for low dead space syringes with permanently attached needles and highest for low dead space syringes with high dead space needles. The dead space in different low dead space needle and syringe combinations varied substantially. To reduce HIV transmission related to syringe sharing, needle and syringe programs need to combine this knowledge with the needs of their clients.
Chae, In Hye; Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Park, Vivian Y; Kwak, Jin Young
2017-07-01
To compare post-biopsy hematoma rates between ultrasound guided-fine needle aspiration and ultrasound guided-core needle biopsy, and to investigate risk factors for post-biopsy hematoma. A total of 5304 thyroid nodules which underwent ultrasound guided biopsy were included in this retrospective study. We compared clinical and US features between patients with and without post-biopsy hematoma. Associations between these features and post-biopsy hematoma were analyzed. Post-biopsy hematoma rate was 0.8% (43/5121) for ultrasound guided-fine needle aspiration and 4.9% (9/183) for ultrasound guided-core needle biopsy (P < 0.001). For ultrasound guided-fine needle aspiration, gender, age, size, presence of vascularity, and suspicious US features were not associated with post-biopsy hematoma according to experience level. Post-biopsy hematoma occurred significantly more with ultrasound guided-core needle biopsy (9/179, 5.0%) than with ultrasound guided-fine needle aspiration (9/1138, 0.8%) (P < 0.001) in experienced performers and ultrasound guided-core needle biopsy was the only significant risk factor for post-biopsy hematoma (adjusted Odds Ratio, 6.458, P < 0.001). Post-biopsy hematoma occurred significantly more in ultrasound guided-core needle biopsy than in ultrasound guided-fine needle aspiration and ultrasound guided-core needle biopsy was the only independent factor of post-biopsy hematoma in thyroid nodules.
Development and validation of a new guidance device for lateral approach stereotactic breast biopsy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, K.; Kornecki, A.; Bax, J.
2009-06-15
Stereotactic breast biopsy (SBB) is the gold standard for minimally invasive breast cancer diagnosis. Current systems rely on one of two methods for needle insertion: A vertical approach (perpendicular to the breast compression plate) or a lateral approach (parallel to the compression plate). While the vertical approach is more frequently used, it is not feasible in patients with thin breasts (<3 cm thick after compression) or with superficial lesions. Further, existing SBB guidance hardware provides at most one degree of rotational freedom in the needle trajectory, and as such requires a separate skin incision for each biopsy target. The authorsmore » present a new design of lateral guidance device for SBB, which addresses the limitations of the vertical approach and provides improvements over the existing lateral guidance hardware. Specifically, the new device provides (1) an adjustable rigid needle support to minimize needle deflection within the breast and (2) an additional degree of rotational freedom in the needle trajectory, allowing the radiologist to sample multiple targets through a single skin incision. This device was compared to a commercial lateral guidance device in a series of phantom experiments. Needle placement error using each device was measured in agar phantoms for needle insertions at lateral depths of 2 and 5 cm. The biopsy success rate for each device was then estimated by performing biopsy procedures in commercial SBB phantoms. SBB performed with the new lateral guidance device provided reduced needle placement error relative to the commercial lateral guidance device (0.89{+-}0.22 vs 1.75{+-}0.35 mm for targets at 2 cm depth; 1.94{+-}0.20 vs 3.21{+-}0.31 mm for targets at 5 cm depth). The new lateral guidance device also provided improved biopsy accuracy in SBB procedures compared to the commercial lateral guidance device (100% vs 58% success rate). Finally, experiments were performed to demonstrate that the new device can accurately sample lesions within thin breast phantoms and multiple lesions through a single incision point. This device can be incorporated directly into the clinical SBB procedural workflow, with no additional electrical hardware, software, postprocessing, or image analysis.« less
Akulian, Jason; Lechtzin, Noah; Yasin, Faiza; Kamdar, Biren; Ernst, Armin; Ost, David E.; Ray, Cynthia; Greenhill, Sarah R.; Jimenez, Carlos A.; Filner, Joshua; Feller-Kopman, David
2013-01-01
Background: Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a minimally invasive procedure originally performed using a 22-gauge (22G) needle. A recently introduced 21-gauge (21G) needle may improve the diagnostic yield and sample adequacy of EBUS-TBNA, but prior smaller studies have shown conflicting results. To our knowledge, this is the largest study undertaken to date to determine whether the 21G needle adds diagnostic benefit. Methods: We retrospectively evaluated the results of 1,299 patients from the American College of Chest Physicians Quality Improvement Registry, Education, and Evaluation (AQuIRE) Diagnostic Registry who underwent EBUS-TBNA between February 2009 and September 2010 at six centers throughout the United States. Data collection included patient demographics, sample adequacy, and diagnostic yield. Analysis consisted of univariate and multivariate hierarchical logistic regression comparing diagnostic yield and sample adequacy of EBUS-TBNA specimens by needle gauge. Results: A total of 1,235 patients met inclusion criteria. Sample adequacy was obtained in 94.9% of the 22G needle group and in 94.6% of the 21G needle group (P = .81). A diagnosis was made in 51.4% of the 22G and 51.3% of the 21G groups (P = .98). Multivariate hierarchical logistic regression showed no statistical difference in sample adequacy or diagnostic yield between the two groups. The presence of rapid onsite cytologic evaluation was associated with significantly fewer needle passes per procedure when using the 21G needle (P < .001). Conclusions: There is no difference in specimen adequacy or diagnostic yield between the 21G and 22G needle groups. EBUS-TBNA in conjunction with rapid onsite cytologic evaluation and a 21G needle is associated with fewer needle passes compared with a 22G needle. PMID:23632441
Bremicker, K; Gosch, D; Kahn, T; Borte, G
2015-11-01
Chest radiography is the most common diagnostic modality in intensive care units with new mobile flat-panels gaining more attention and availability in addition to the already used storage phosphor plates. Comparison of the image quality of mobile flat-panels and needle-image plate storage phosphor system in terms of bedside chest radiography. Retrospective analysis of 84 bedside chest radiographs of 42 intensive care patients (20 women, 22 men, average age: 65 years). All images were acquired during daily routine. For each patient, two images were analyzed, one from each system mentioned above. Two blinded radiologists evaluated the image quality based on ten criteria (e.g., diaphragm, heart contour, tracheal bifurcation, thoracic spine, lung structure, consolidations, foreign material, and overall impression) using a 5-point visibility scale (1 = excellent, 5 = not usable). There was no significant difference between the image quality of the two systems (p < 0.05). Overall some anatomical structures such as the diaphragm, heart, pulmonary consolidations and foreign material were considered of higher diagnostic quality compared to others, e.g., tracheal bifurcation and thoracic spine. Mobile flat-panels achieve an image quality which is as good as those of needle-image plate storage phosphor systems. In addition, they allow immediate evaluation of the image quality but in return are much more expensive in terms of purchase and maintenance.
[Try to discuss manipulation of the "Feijing Zouqi" needling technique].
Zhou, Dan; Gao, Ying; Wang, Fu-chun
2008-03-01
Based on description of "Feijing Zouqi" needling methods in Jin Zhen Fu (Rhyme Prose of Golden Needle) written by Xu Feng, and explain and analyze the descriptions of "Feijing Zouqi" needling method in Zhenjiu Juying (A Collection of Gems in Acu-Moxibustion) written by Gao Wu, Zhenjiu Wendui written by Wang Ji, Zhenjiu Dacheng (Great Compendium on Acu-Moxibustion) written by Yang Ji-zhou, Yixue Rumen (Elementary Medicine) written by LI Chan and many other works, summarize the technique characteristics of all the "Feijing Zouqi" needling methods. The characteristic of "Qinglong Baiwei" needling method is " first toward the left, then toward the right, slowly move or adjust with the hand"; and "Baihu Yaotou" needling method emphasizes "Tuifang Jinyuan" and "Yaozhen "; key point of "Canggui Tanxue" needling method is "Zuanti Sifang"; Chifeng Yingyuan" needling method emphasizes "Siwei Feixuan".
Cutting performance orthogonal test of single plane puncture biopsy needle based on puncture force
NASA Astrophysics Data System (ADS)
Xu, Yingqiang; Zhang, Qinhe; Liu, Guowei
2017-04-01
Needle biopsy is a method to extract the cells from the patient's body with a needle for tissue pathological examination. Many factors affect the cutting process of soft tissue, including the geometry of the biopsy needle, the mechanical properties of the soft tissue, the parameters of the puncture process and the interaction between them. This paper conducted orthogonal experiment of main cutting parameters based on single plane puncture biopsy needle, and obtained the cutting force curve of single plane puncture biopsy needle by studying the influence of the inclination angle, diameter and velocity of the single plane puncture biopsy needle on the puncture force of the biopsy needle. Stage analysis of the cutting process of biopsy needle puncture was made to determine the main influencing factors of puncture force during the cutting process, which provides a certain theoretical support for the design of new type of puncture biopsy needle and the operation of puncture biopsy.
NASA Astrophysics Data System (ADS)
Zhang, X.; Liu, J.; Wang, J.
2016-05-01
The diesel spray characteristics are strongly influenced by the flow dynamics inside the injector nozzle. Moreover, the off-axis oscillation of needle could lead to variation of orifice flow in the nozzle. In this paper, the needle oscillation was investigated using high-speed X-ray phase contrast imaging and quantitative image processing. The effects of fuel, injection pressure and nozzle geometry on the needle oscillation were analyzed. The results showed that the vertical and horizontal oscillation of needle was independent on the injection pressure. The maximum oscillation range of 14μ m was found. Biodiesel application slightly decreased the needle oscillation due to high viscosity. The needle oscillation range increased generally with increasing hole number. The larger needle oscillation in multi-hole injectors was dominated by the geometry problem or production issue at lower needle lift. In addition, the influence of needle oscillation on the spray morphology was also discussed.
Is Skin-Touch Sham Needle Not Placebo? A Double-Blind Crossover Study on Pain Alleviation
Homma, Ikuo; Izumizaki, Masahiko
2015-01-01
It remains an open question whether placebo/sham acupuncture, in which the needle tip presses the skin, can be used as a placebo device for research on pain. We compare the analgesic effect of the skin-touch placebo needle with that of the no-touch placebo needle, in which the needle tip does not touch the skin, in a double-blind crossover manner including no-treatment control in 23 healthy volunteers. The subjects received painful electrical stimulation in the forearm before and during needle retention to the LI 4 acupoint and after the removal of the needle and rated pain intensity using a visual analogue scale. We found no significant difference in analgesic effects among the skin-touch placebo needle, no-touch placebo needle, and no-treatment control at every point before, during, and after the treatments (p > 0.05). The results indicate that the skin-touch placebo needle can be used as a placebo device in clinical studies on pain. PMID:26064153
Tarkkila, P; Huhtala, J; Salminen, U
1994-08-01
The effect of different size (25-, 27- and 29-gauge) Quincke-type spinal needles on the incidence of insertion difficulties and failure rates was investigated in a randomised, prospective study with 300 patients. The needle size was randomised but the insertion procedure was standardised. The time to achieve dural puncture was significantly longer with the 29-gauge spinal needle compared with the larger bore needles and was due to the greater flexibility of the thin needle. However, the difference was less than 1 min and cannot be considered clinically significant. There were no significant differences between groups in the number of insertion attempts or failures and the same sensory level of analgesia was reached with all the needle sizes studied. Postoperatively, no postdural puncture headaches occurred in the 29-gauge spinal needle group, whilst in the 25- and 27-gauge needle groups, the postdural puncture headache rates were 7.4% and 2.1% respectively. The incidence of backache was similar in all study groups. We conclude that dural puncture with a 29-gauge spinal needle is clinically as easy as with larger bore needles and its use is indicated in patients who have a high risk of postdural puncture headache.
Development of Repulsive Barrier Discharge from Twin Needles
NASA Astrophysics Data System (ADS)
Ueno, Hideki; Hata, Koji; Nakayama, Hiroshi
2007-03-01
Barrier discharge characteristics have been investigated for a twin needles-to-plane electrode configuration in dry air. The characteristics of barrier discharge under ac voltage application have been investigated for various distances between two needle tips (d=1.0--4.0 mm). We have found that corona discharge behavior strongly depends on needle-tip distance. In the case of a twin-needles configuration with a long needle-tip distance (d=4.0 mm), discharges from the two needle tips develop into a dielectric barrier with almost a straight path. On the contrary, the development of repulsive discharges from two needle tips in the gap between needles and a barrier was obtained for the shortest needle-tip distance investigated here (d=1.0 mm) and it was enhanced by increasing the peak voltage. From detailed time-resolved observations, development of repulsive discharge was observed only during positive polarity upon ac voltage application. Moreover, the degree of repulsion increased with increasing applied voltage of positive polarity. The observed unique discharge behavior can be interpreted as the effect of field relaxation induced not only by charge accumulation on the barrier surface, which is markedly enhanced at a short needle-tip distance, but also by space charge by coronas between two needles.
Escherichia coli type III secretion system 2: a new kind of T3SS?
Zhou, Mingxu; Guo, Zhiyan; Duan, Qiangde; Hardwidge, Philip R; Zhu, Guoqiang
2014-03-19
Type III secretion systems (T3SSs) are employed by Gram-negative bacteria to deliver effector proteins into the cytoplasm of infected host cells. Enteropathogenic Escherichia coli use a T3SS to deliver effector proteins that result in the creation of the attaching and effacing lesions. The genome sequence of the Escherichia coli pathotype O157:H7 revealed the existence of a gene cluster encoding components of a second type III secretion system, the E. coli type III secretion system 2 (ETT2). Researchers have revealed that, although ETT2 may not be a functional secretion system in most (or all) strains, it still plays an important role in bacterial virulence. This article summarizes current knowledge regarding the E. coli ETT2, including its genetic characteristics, prevalence, function, association with virulence, and prospects for future work.
The effects of needle deformation during lumbar puncture.
Özdemir, Hasan Hüseyin; Demir, Caner F; Varol, Sefer; Arslan, Demet; Yıldız, Mustafa; Akil, Eşref
2015-01-01
The aim of this study is to assess deformation of the tip and deflection from the axis of 22-gauge Quincke needles when they are used for diagnostic lumbar puncture (LP). Thus, it can be determined whether constructional alterations of needles are important for predicting clinical problems after diagnostic LP. The 22-gauge Quincke needles used for diagnostic LP were evaluated. A specially designed protractor was used for measurement and evaluation. Waist circumference was measured in each patient. Patients were questioned about headaches occurring after LP. A total of 115 Quincke-type spinal needles used in 113 patients were evaluated. No deflection was detected in 38 (33.1%) of the needles. Deflection between 0.1° and 5° occurred in 43 (37.3%) of the needles and deflection ≥ 5.1° occurred in 34 patients (29.6%). Forty-seven (41.5%) patients experienced post lumbar puncture headache (PLPH) and 13 (11.5%) patients experienced intracranial hypotension (IH). No statistically significant correlation between the degree of deflection and headache was found (P > 0.05). Epidural blood patch was performed for three patients. Deformity in the form of bending like a hook occurred in seven needles and IH occurred in six patients using these needles. Two of the needles used in three patients requiring blood patch were found to be bent. Deformation of needles may increase complications after LP. Needle deformation may lead to IH. In case of deterioration in the structure of the needle, termination of the puncture procedure and the use of a new needle could reduce undesirable clinical consequences, especially IH.
Comparison of Sample Adequacy and Diagnostic Yield of 19- and 22-G EBUS-TBNA Needles.
Chaddha, Udit; Ronaghi, Reza; Elatre, Waafa; Chang, Ching-Fei; Mahdavi, Ramyar
2018-05-16
The 2016 CHEST consensus guidelines recommend use of either 21- or 22-G needles for endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). We decided to prospectively compare sample adequacy and diagnostic yield of the 19-G with the 22-G EBUS needle, hypothesizing that a larger gauge difference might magnify the differences between 2 needle sizes. Twenty-seven patients undergoing EBUS-TBNA at our institution were evaluated. All cases were performed by a single operator formally trained in interventional pulmonology. Both Olympus 19- and 22-G needles were used at each lymph node station in an alternating manner. Rapid on-site cytology evaluation was used and a separate cell block was prepared for each needle at each station. Fifty-six lymph nodes were analyzed. Diagnoses included cancer (36%, including 1 lymphoma), reactive lymphoid tissue (53%), and sarcoidosis (11%). One hundred sixty-two and 163 passes were made with the 22- and 19-G needle, respectively. Sample adequacy was 73% and 46% with the 22 and 19-G needle, respectively (P<0.001). Significantly fewer passes were bloody with the 22-G compared with the 19-G needle (19% vs. 59%; P<0.001). Diagnostic yield was not different between the 22- and 19-G needles (95% vs. 93%; P=0.62). In addition to no difference in diagnostic yield, the 19-G needle yielded samples that were frequently less adequate and more often bloody compared with the 22-G needle. Despite the larger caliber lumen, we conclude that the 19-G needle does not confer a diagnostic advantage.
Pseudoepidemic of Nocardia asteroides associated with a mycobacterial culture system.
Patterson, J E; Chapin-Robertson, K; Waycott, S; Farrel, P; McGeer, A; McNeil, M M; Edberg, S C
1992-01-01
Nocardia isolations increased from 0.7 to 11.7/1,000 acid-fast bacillus and mycological cultures (P less than 0.000001). Only three isolations from one patient represented infection. Pseudoepidemic strain identity was confirmed by DNA fingerprinting; the isolate causing infection was distinct. The end of the pseudoepidemic was associated with changing the needle sterilizer and prolonging needle sterilization time on the BACTEC 460 machine. To our knowledge, this is the first reported Nocardia asteroides pseudoepidemic. Images PMID:1583150
Does a child's fear of needles decrease through a learning event with needles?
Kajikawa, Natsuki; Maeno, Takami; Maeno, Tetsuhiro
2014-09-01
Most children have a fear of needles. Suitable preparation can decrease the pain and fear of needles in hospitals; however, few have examined how such preparation affects healthy children. This study examined whether learning with needles decreases fear of needles and changes motivation to get vaccinations in school-age children and the possible association between fear of needles and motivation toward vaccinations. This study included children participating in the "Let's Be Doctors" event, which was held in 4 child centers in Tsukuba city, Ibaraki, Japan. In this event, children learned about injections and how a vaccine works, and injected a vaccine (water) into skin (sponge) using a real syringe and imitation needle. Data were collected just before and after the event by anonymous self-assessment questionnaires that used a 4-point Likert scale to assess fear of needles, motivation to get vaccinations, recommendation of vaccinations, and fear toward doctors among the children. Answers were divided into two categories for statistical analysis. In total, 194 children participated in the event and 191 children answered the questionnaire (response rate 98.5%). We analyzed 180 subjects, comprising 79 boys (43.9%) and 94 girls (52.2%), mean age of 8.1 ± 1.0 years. The number of children reporting a fear of needles decreased from 69 (38.3%) before the event to 51 (28.3%) after the event, and those unwilling to get vaccinations decreased from 48 (26.7%) to 27 (15.0%). Children who reported fear of needles before the event were more unwilling to get vaccinations than those with no fear of needles (36 [52.2%] vs. 12 [10.8%]), while after the event the number of needle-fearing children unwilling to get vaccinations decreased to 19 (27.5%). Children's fear of needles and unwillingness to get vaccinations were decreased after experiencing a learning event with needles. The fear of needles is associated with a negative motivation to get vaccinations in children.
Coiled Coil Rich Proteins (Ccrp) Influence Molecular Pathogenicity of Helicobacter pylori
Schätzle, Sarah; Specht, Mara; Waidner, Barbara
2015-01-01
Pathogenicity of the human pathogen Helicobacter pylori relies on its capacity to adapt to a hostile environment and to escape the host response. Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its contribution to virulence. In this study we have explored the influence of coiled coil rich proteins (Ccrp) cytoskeletal elements on pathogenicity factors of H. pylori. Deletion of any of the ccrp resulted in a strongly decreased activity of the main pathogenicity factor urease. We further investigated their role using in vitro co-culture experiments with the human gastric adenocarcinoma cell line AGS modeling H. pylori - host cell interactions. Intriguingly, host cell showed only a weak “scattering/hummingbird” phenotype, in which host cells are transformed from a uniform polygonal shape into a severely elongated state characterized by the formation of needle-like projections, after co-incubation with any ccrp deletion mutant. Furthermore, co-incubation with the ccrp59 mutant resulted in reduced type IV secretion system associated activities, e.g. IL-8 production and CagA translocation/phosphorylation. Thus, in addition to their role in maintaining the helical cell shape of H. pylori Ccrp proteins influence many cellular processes and are thereby crucial for the virulence of this human pathogen. PMID:25822999
Zhang, Lei; Davies, Laura J; Elling, Axel A
2015-01-01
Root-knot nematodes are sedentary biotrophic endoparasites that maintain a complex interaction with their host plants. Nematode effector proteins are synthesized in the oesophageal glands of nematodes and secreted into plant tissue through a needle-like stylet. Effectors characterized to date have been shown to mediate processes essential for nematode pathogenesis. To gain an insight into their site of action and putative function, the subcellular localization of 13 previously isolated Meloidogyne incognita effectors was determined. Translational fusions were created between effectors and EGFP-GUS (enhanced green fluorescent protein-β-glucuronidase) reporter genes, which were transiently expressed in tobacco leaf cells. The majority of effectors localized to the cytoplasm, with one effector, 7H08, imported into the nuclei of plant cells. Deletion analysis revealed that the nuclear localization of 7H08 was mediated by two novel independent nuclear localization domains. As a result of the nuclear localization of the effector, 7H08 was tested for the ability to activate gene transcription. 7H08 was found to activate the expression of reporter genes in both yeast and plant systems. This is the first report of a plant-parasitic nematode effector with transcriptional activation activity. © 2014 BSPP AND JOHN WILEY & SONS LTD.
Megli, Christina J.
2013-01-01
Type IV pili are important for microcolony formation, biofilm formation, twitching motility, and attachment. We and others have shown that type IV pili are important for protein secretion across the outer membrane, similar to type II secretion systems. This study explored the relationship between protein secretion and pilus formation in Vibrio cholerae. The toxin-coregulated pilus (TCP), a type IV pilus required for V. cholerae pathogenesis, is necessary for the secretion of the colonization factor TcpF (T. J. Kirn, N. Bose, and R. K. Taylor, Mol. Microbiol. 49:81–92, 2003). This phenomenon is not unique to V. cholerae; secreted virulence factors that are dependent on the presence of components of the type IV pilus biogenesis apparatus for secretion have been reported with Dichelobacter nodosus (R. M. Kennan, O. P. Dhungyel, R. J. Whittington, J. R. Egerton, and J. I. Rood, J. Bacteriol. 183:4451–4458, 2001) and Francisella tularensis (A. J. Hager et al., Mol. Microbiol. 62:227–237, 2006). Using site-directed mutagenesis, we demonstrated that the secretion of TcpF is dependent on the presence of selected amino acid R groups at position five. We were unable to find other secretion determinants, suggesting that Y5 is the major secretion determinant within TcpF. We also report that proteins secreted in a type IV pilus biogenesis apparatus-dependent manner have a YXS motif within the first 15 amino acids following the Sec cleavage site. The YXS motif is not present in proteins secreted by type II secretion systems, indicating that this is unique to type IV pilus-mediated secretion. Moreover, we show that TcpF interacts with the pilin TcpA, suggesting that these proteins are secreted by the type IV pilus biogenesis system. These data provide a starting point for understanding how type IV pili can mediate secretion of virulence factors important for bacterial pathogenesis. PMID:23564177
Vyas, Shilpa; Le, Yi; Zhang, Zhe; Armour, Woody
2015-01-01
Purpose Several robotic delivery systems for prostate brachytherapy are under development or in pre-clinical testing. One of the features of robotic brachytherapy is the ability to vary spacing of needles at non-fixed intervals. This feature may play an important role in prostate brachytherapy, which is traditionally template-based with fixed needle spacing of 0.5 cm. We sought to quantify potential reductions in the dose to urethra and rectum by utilizing variable needle spacing, as compared to fixed needle spacing. Material and methods Transrectal ultrasound images from 10 patients were used by 3 experienced planners to create 120 treatment plans. Each planner created 4 plan variations per patient with respect to needle positions: 125I fixed spacing, 125I variable spacing, 103Pd fixed spacing, and 103Pd variable spacing. The primary planning objective was to achieve a prostate V100 of 100% while minimizing dose to urethra and rectum. Results All plans met the objective of achieving prostate V100 of 100%. Combined results for all plans show statistically significant improvements in all assessed dosimetric variables for urethra (Umax, Umean, D30, D5) and rectum (Rmax, Rmean, RV100) when using variable spacing. The dose reductions for mean and maximum urethra dose using variable spacing had p values of 0.011 and 0.024 with 103Pd, and 0.007 and 0.029 with 125I plans. Similarly dose reductions for mean and maximum rectal dose using variable spacing had p values of 0.007 and 0.052 with 103Pd, and 0.012 and 0.037 with 125I plans. Conclusions The variable needle spacing achievable by the use of robotics in prostate brachytherapy allows for reductions in both urethral and rectal planned doses while maintaining prostate dose coverage. Such dosimetric advantages have the potential in translating to significant clinical benefits with the use of robotic brachytherapy. PMID:26622227
DOE Office of Scientific and Technical Information (OSTI.GOV)
Racine, E; Hautvast, G; Binnekamp, D
Purpose: To report on preliminary results validating the performance of a specially designed LDR brachytherapy needle prototype possessing both electromagnetic (EM) tracking and seed drop detection abilities. Methods: An EM hollow needle prototype has been designed and constructed in collaboration with research partner Philips Healthcare. The needle possesses conventional 3D tracking capabilities, along with a novel seed drop detection mechanism exploiting local changes of electromagnetic properties generated by the passage of seeds in the needle's embedded sensor coils. These two capabilities are exploited by proprietary engineering and signal processing techniques to generate seed drop position estimates in real-time treatment delivery.more » The electromagnetic tracking system (EMTS) used for the experiment is the NDI Aurora Planar Field Generator. The experiment consisted of dropping a total of 35 seeds in a prismatic agarose phantom, and comparing the 3D seed drop positions of the EMTS to those obtained by an image analysis of subsequent micro-CT scans. Drop position error computations and statistical analysis were performed after a 3D registration of the two seed distributions. Results: Of the 35 seeds dropped in the phantom, 32 were properly detected by the needle prototype. Absolute drop position errors among the detected seeds ranged from 0.5 to 4.8 mm with mean and standard deviation values of 1.6 and 0.9 mm, respectively. Error measurements also include undesirable and uncontrollable effects such as seed motion upon deposition. The true accuracy performance of the needle prototype is therefore underestimated. Conclusion: This preliminary study demonstrates the potential benefits of EM technologies in detecting the passage of seeds in a hollow needle as a means of generating drop position estimates in real-time treatment delivery. Such tools could therefore represent a potentially interesting addition to existing brachytherapy protocols for rapid dosimetry validation. Equipments and fundings for this project were provided by Philips Medical.« less
Vyas, Shilpa; Le, Yi; Zhang, Zhe; Armour, Woody; Song, Daniel Y
2015-08-01
Several robotic delivery systems for prostate brachytherapy are under development or in pre-clinical testing. One of the features of robotic brachytherapy is the ability to vary spacing of needles at non-fixed intervals. This feature may play an important role in prostate brachytherapy, which is traditionally template-based with fixed needle spacing of 0.5 cm. We sought to quantify potential reductions in the dose to urethra and rectum by utilizing variable needle spacing, as compared to fixed needle spacing. Transrectal ultrasound images from 10 patients were used by 3 experienced planners to create 120 treatment plans. Each planner created 4 plan variations per patient with respect to needle positions: (125)I fixed spacing, (125)I variable spacing, (103)Pd fixed spacing, and (103)Pd variable spacing. The primary planning objective was to achieve a prostate V100 of 100% while minimizing dose to urethra and rectum. All plans met the objective of achieving prostate V100 of 100%. Combined results for all plans show statistically significant improvements in all assessed dosimetric variables for urethra (Umax, Umean, D30, D5) and rectum (Rmax, Rmean, RV100) when using variable spacing. The dose reductions for mean and maximum urethra dose using variable spacing had p values of 0.011 and 0.024 with (103)Pd, and 0.007 and 0.029 with (125)I plans. Similarly dose reductions for mean and maximum rectal dose using variable spacing had p values of 0.007 and 0.052 with (103)Pd, and 0.012 and 0.037 with (125)I plans. The variable needle spacing achievable by the use of robotics in prostate brachytherapy allows for reductions in both urethral and rectal planned doses while maintaining prostate dose coverage. Such dosimetric advantages have the potential in translating to significant clinical benefits with the use of robotic brachytherapy.
Needle twins and right-angled twins in minerals: comparison between experiment and theory
Salje, E.K.H.; Buckley, A.; Van Tendeloo, G.; Ishibashi, Y.; Nord, G.L.
1998-01-01
Transformation twinning in minerals forms isolated twin walls, intesecting walls with corner junctions, and wedge-shaped twins as elements of hierarchical patterns. When cut perpendicular to the twin walls, the twins have characteristic shapes, right-angled and needle-shaped wall traces, which can be observed by transmission electron microscopy or by optical microscopy. Theoretical geometries of wall shapes recently derived for strain-related systems should hold for most displacive and order-disorder type phase transitions: 1) right-angled twins show curved junctions; 2) needle-shaped twins contain flat wall segments near the needle tip if the elastic behaviour of the mineral is dominated by its anisotroyp; 3) additional bending forces and pinning effects lead to curved walls near the junction that make the needle tip appear more blunt. Bent right-angled twins were analyzed in Gd2(MoO4)3. Linear needle tips were found in WO3, [N(CH3)4]2.ZnBr4 CrAl, BiVO4, GdBa2Cu3O7, and PbZrO. Parabolic tips occur in K2Ba(NO2)4, and GeTe whereas exponential curvatures appear in BaTiO3, KSCN, Pb3(PO4)2, CaTiO3, alkali feldspars, YBa2Cu3O7, and MnAl. The size and shape of the twin microstructure relates to its formation during the phase transition and the subsequent annealing history. The mobility of the twin walls after formation depends not only on the thermal activation but also on the structure of the wall, which may be pinned to impurities on a favorable structural site. Depinnign energies are often large compared with thermal energies for diffusion. This leads to kinetic time scales for twin coarsening that are comparable to geological time scales. Therefore, transformation twins that exhibit needle domains not only indicate that the mineral underwent a structural phase transition but also contain information about its subsequent geological history.
Beigi, Parmida; Malenfant, Paul; Rasoulian, Abtin; Rohling, Robert; Dube, Alison; Gunka, Vit
2017-01-01
Current 2-D ultrasound technology is unable to perform a midline neuraxial needle insertion under real-time ultrasound guidance using a standard needle and without an assistant. The aim of the work described here was to determine the feasibility of a new technology providing such capability, starting with a study evaluating the selected puncture site. A novel 3-D ultrasound imaging technique was designed using thick-slice rendering in conjunction with a custom needle guide (3DUS + Epiguide). A clinical feasibility study evaluated the ability of 3DUS + Epiguide to identify the epidural needle puncture site for a midline insertion in the lumbar spine. We hypothesized that (i) the puncture site identified by 3DUS + Epiguide was within a 5-mm radius from the site chosen by standard palpation, and (ii) the difference between the two puncture sites was not correlated to the patient characteristics age, weight, height, body mass index and gestational age. The mean (±standard deviation) distances between puncture sites determined by 3DUS + Epiguide and palpation were 3.1 (±1.7) mm and 2.8 (±1.3) mm, for the L2-3 and L3-4 interspaces of 20 patients, respectively. Distances were comparable to intra-observer variability, indicating the potential for a thick-slice rendering of 3-D ultrasound along the Epiguide trajectory to select the puncture site of a midline neuraxial needle insertion. The long-term potential benefits of this system include increased efficiency and use of anesthesia, and a reduction in the frequency and severity of the complications from incorrect needle insertions. Epidural success in the most difficult cases (e.g., the obese) will be the focus of future work. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Elfa, Rizan Rizon; Ahmad, Mohd Khairul; Soon, Chin Fhong; Sahdan, Mohd Zainizan; Lias, Jais; Mamat, Mohamad Hafiz; Rusop, Mohamad; Nayan, Nafarizal
2017-09-01
The atmospheric pressure plasma needle jet driven by double sinusoidal waveform of neon transformer is reported in this paper. The commercial neon transformer produces about 5 kV of peak sinusoidal voltages and 35 kHz of frequency. Argon gas has been used as discharge gas for this system since the discharge was easily developed rather than using helium gas. In addition, argon gas is three times cheaper than helium gas. The electrical property of the argon discharge has been analyzed in details by measuring its voltage, current and power during the discharge process. Interestingly, it has been found that the total power on the inner needle electrode was slightly lower than that of outer electrode. This may be due to the polarization charges that occurred at inner needle electrode. Then, further investigation to understand the discharge properties was carried out using optical emission spectroscopy (OES) analysis. During OES measurements, two positions of plasma discharge are measured by aligning the quartz optical lens and spectrometer fiber. The OH emission intensity was found higher than that of N2 at the plasma orifice. However, OH emission intensity was lower at 1.5 cm distance from orifice which may be due to penning ionization effect. These results and understanding are essential for surface modification and biomedical applications of atmospheric pressure plasma needle jet.
Segmentation of prostate biopsy needles in transrectal ultrasound images
NASA Astrophysics Data System (ADS)
Krefting, Dagmar; Haupt, Barbara; Tolxdorff, Thomas; Kempkensteffen, Carsten; Miller, Kurt
2007-03-01
Prostate cancer is the most common cancer in men. Tissue extraction at different locations (biopsy) is the gold-standard for diagnosis of prostate cancer. These biopsies are commonly guided by transrectal ultrasound imaging (TRUS). Exact location of the extracted tissue within the gland is desired for more specific diagnosis and provides better therapy planning. While the orientation and the position of the needle within clinical TRUS image are limited, the appearing length and visibility of the needle varies strongly. Marker lines are present and tissue inhomogeneities and deflection artefacts may appear. Simple intensity, gradient oder edge-detecting based segmentation methods fail. Therefore a multivariate statistical classificator is implemented. The independent feature model is built by supervised learning using a set of manually segmented needles. The feature space is spanned by common binary object features as size and eccentricity as well as imaging-system dependent features like distance and orientation relative to the marker line. The object extraction is done by multi-step binarization of the region of interest. The ROI is automatically determined at the beginning of the segmentation and marker lines are removed from the images. The segmentation itself is realized by scale-invariant classification using maximum likelihood estimation and Mahalanobis distance as discriminator. The technique presented here could be successfully applied in 94% of 1835 TRUS images from 30 tissue extractions. It provides a robust method for biopsy needle localization in clinical prostate biopsy TRUS images.
Pine needle abortion biomarker detected in bovine fetal fluids
USDA-ARS?s Scientific Manuscript database
Pine needle abortion is a naturally occurring condition in free-range cattle caused by the consumption of pine needles from select species of cypress, juniper, pine, and spruce trees. Confirmatory diagnosis of pine needle abortion has previously relied on a combined case history of pine needle cons...
21 CFR 880.5580 - Acupuncture needle.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Acupuncture needle. 880.5580 Section 880.5580 Food... § 880.5580 Acupuncture needle. (a) Identification. An acupuncture needle is a device intended to pierce the skin in the practice of acupuncture. The device consists of a solid, stainless steel needle. The...
Complications after LP related to needle type: pencil-point versus Quincke.
Aamodt, A; Vedeler, C
2001-06-01
We studied the incidence of complications after diagnostic lumbar puncture (LP) related to needle type. A 5 months' observational study of routine diagnostic LP in 83 patients was conducted. Significantly more headache was observed after LP using thicker cutting needles (20G Quincke) compared with thinner cutting or non-cutting needles (22G Quincke or pencil-point). No significant difference in complications after LP was found between the 22G Quincke and pencil-point needles. The size of the needle and not the needle shape seems to be the main determinant for post-dural puncture headache (PDPH).
Mixed mode fuel injector with individually moveable needle valve members
Stewart, Chris; Chockley, Scott A.; Ibrahim, Daniel R.; Lawrence, Keith; Tomaseki, Jay; Azam, Junru H.; Tian, Steven Ye; Shafer, Scott F.
2004-08-03
A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by first and second needle valve members. One of the needle valve members moves to an open position while the other needle valve member remains stationary for a homogeneous charge injection event. The former needle valve member stays stationary while the other needle valve member moves to an open position for a conventional injection event. One of the needle valve members is at least partially positioned in the other needle valve member. Thus, the injector can perform homogeneous charge injection events, conventional injection events, or even a mixed mode having both types of injection events in a single engine cycle.
The incidence of coring with blunt versus sharp needles.
Wani, Tariq; Wadhwa, Anupama; Tobias, Joseph D
2014-03-01
With the advent of safety needles to prevent inadvertent needle sticks in the operating room (OR), a potentially new issue has arisen. These needles may result in coring, or the shaving off of fragments of the rubber stopper, when the needle is pierced through the rubber stopper of the medication vial. These fragments may be left in the vial and then drawn up with the medication and possibly injected into patients. The current study prospectively evaluated the incidence of coring when blunt and sharp needles were used to pierce rubber topped vials. We also evaluated the incidence of coring in empty medication vials with rubber tops. The rubber caps were then pierced with either an18-gauge sharp hypodermic needle or a blunt plastic (safety) needle. Coring occurred in 102 of 250 (40.8%) vials when a blunt needle was used versus 9 of 215 (4.2%) vials with a sharp needle (P < 0.0001). A significant incidence of coring was demonstrated when a blunt plastic safety needle was used. This situation is potentially a patient safety hazard and methods to eliminate this problem are needed. Copyright © 2014 Elsevier Inc. All rights reserved.
Effect of spinal needle characteristics on measurement of spinal canal opening pressure.
Bellamkonda, Venkatesh R; Wright, Thomas C; Lohse, Christine M; Keaveny, Virginia R; Funk, Eric C; Olson, Michael D; Laack, Torrey A
2017-05-01
A wide variety of spinal needles are used in clinical practice. Little is currently known regarding the impact of needle length, gauge, and tip type on the needle's ability to measure spinal canal opening pressure. This study aimed to investigate the relationship between these factors and the opening-pressure measurement or time to obtain an opening pressure. Thirteen distinct spinal needles, chosen to isolate the effects of length, gauge, and needle-point type, were prospectively tested on a lumbar puncture simulator. The key outcomes were the opening-pressure measurement and the time required to obtain that measure. Pressures were recorded at 10-s intervals until 3 consecutive, identical readings were observed. Time to measure opening pressure increased with increasing spinal needle length, increasing gauge, and the Quincke-type (cutting) point (P<0.001 for all). The time to measurement ranged from 30s to 530s, yet all needle types were able to obtain a consistent opening pressure measure. Although opening pressure estimates are unlikely to vary markedly by needle type, the time required to obtain the measurement increased with increasing needle length and gauge and with Quincke-type needles. Copyright © 2017 Elsevier Inc. All rights reserved.
Robust path planning for flexible needle insertion using Markov decision processes.
Tan, Xiaoyu; Yu, Pengqian; Lim, Kah-Bin; Chui, Chee-Kong
2018-05-11
Flexible needle has the potential to accurately navigate to a treatment region in the least invasive manner. We propose a new planning method using Markov decision processes (MDPs) for flexible needle navigation that can perform robust path planning and steering under the circumstance of complex tissue-needle interactions. This method enhances the robustness of flexible needle steering from three different perspectives. First, the method considers the problem caused by soft tissue deformation. The method then resolves the common needle penetration failure caused by patterns of targets, while the last solution addresses the uncertainty issues in flexible needle motion due to complex and unpredictable tissue-needle interaction. Computer simulation and phantom experimental results show that the proposed method can perform robust planning and generate a secure control policy for flexible needle steering. Compared with a traditional method using MDPs, the proposed method achieves higher accuracy and probability of success in avoiding obstacles under complicated and uncertain tissue-needle interactions. Future work will involve experiment with biological tissue in vivo. The proposed robust path planning method can securely steer flexible needle within soft phantom tissues and achieve high adaptability in computer simulation.
Ohata, Erika; Matsuo, Kiyoshi; Ban, Ryokuya; Shiba, Masato; Yasunaga, Yoshichika
2013-01-01
Background: For surgical suturing, a Webster needle holder uses wrist supinating with supinator and extrinsic muscles, whereas a pen needle holder uses finger twisting with intrinsic and extrinsic muscles. Because the latter is better suited to microsurgery, which requires fine suturing with less forearm muscle movement, we have recently adopted an enlarged pen needle holder scaled from a micro needle holder for fine skin suturing. In this study, we assessed whether the enlarged pen needle holder reduced forearm muscle movement during fine skin suturing as compared with the Webster needle holder. Methods: A fine skin-suturing task was performed using pen holding with the enlarged micro needle holder or scissor holding with the Webster needle holder by 9 experienced and 6 inexperienced microsurgeons. The task lasted for 60 seconds and was randomly performed 3 times for each method. Forearm flexor and extensor muscular activities were evaluated by surface electromyography. Results: The enlarged pen needle holder method required significantly less forearm muscle movement for experienced microsurgeons despite it being their first time using the instrument. There was no significant difference between 2 methods for inexperienced microsurgeons. Conclusions: Experienced microsurgeons conserved forearm muscle movement by finger twisting in fine skin suturing with the enlarged pen needle holder. Inexperienced microsurgeons may benefit from the enlarged pen needle holder, even for fine skin suturing, to develop their internal acquisition model of the dynamics of finger twisting. PMID:23691259
Ohata, Erika; Matsuo, Kiyoshi; Ban, Ryokuya; Shiba, Masato; Yasunaga, Yoshichika
2013-01-01
For surgical suturing, a Webster needle holder uses wrist supinating with supinator and extrinsic muscles, whereas a pen needle holder uses finger twisting with intrinsic and extrinsic muscles. Because the latter is better suited to microsurgery, which requires fine suturing with less forearm muscle movement, we have recently adopted an enlarged pen needle holder scaled from a micro needle holder for fine skin suturing. In this study, we assessed whether the enlarged pen needle holder reduced forearm muscle movement during fine skin suturing as compared with the Webster needle holder. A fine skin-suturing task was performed using pen holding with the enlarged micro needle holder or scissor holding with the Webster needle holder by 9 experienced and 6 inexperienced microsurgeons. The task lasted for 60 seconds and was randomly performed 3 times for each method. Forearm flexor and extensor muscular activities were evaluated by surface electromyography. The enlarged pen needle holder method required significantly less forearm muscle movement for experienced microsurgeons despite it being their first time using the instrument. There was no significant difference between 2 methods for inexperienced microsurgeons. Experienced microsurgeons conserved forearm muscle movement by finger twisting in fine skin suturing with the enlarged pen needle holder. Inexperienced microsurgeons may benefit from the enlarged pen needle holder, even for fine skin suturing, to develop their internal acquisition model of the dynamics of finger twisting.
Dau, M; Buttchereit, I; Ganz, C; Frerich, B; Anisimova, E N; Daubländer, M; Kämmerer, P W
2017-11-01
The aims of this in vivo study were to evaluate the impact of needle bevel design on patients' pain perception and the mechanical deformation of the needle tip after the injection. In a prospective single-blinded trial, 150 patients received conventional infiltration anaesthesia for dental treatment by one examiner. Patients were randomized for one out of three different needle bevel types (scalpel-designed bevel needle (SB), n=50; triple bevel needle (TB), n=50; regular bevel needle (RB), n=50). Subjects' self-reported injection pain perception was evaluated using a numeric rating scale (NRS). For each needle tip, deformations after single use were measured using SEM. A significant lower injection pain level was found in SB (mean 2.1±1.2) than in TB (mean 3.5±1.6;) and RB (mean 3.4±1.0; all P<0.001). A needle deformation was detected in about 97.3% of all needles (SB 50/50, TB 50/50, and RB: 46/50). A higher number of barbs were found in SB (29/50) versus TB (17/50) and RB (19/50). For dental local infiltration anaesthesia, injection needles with a scalpel-designed bevel demonstrated significantly less injection pain. Needle tip deflections after anaesthetic agent infiltration, especially barbed hooks on the non-cutting edge may result in greater soft tissue trauma. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Porras, Miguel A.
2018-06-01
We investigate the properties of the recently introduced time-diffracting (TD) beams in free space. They are shown to be paraxial and quasimonochromatic realizations of spatiotemporal localized waves traveling undistorted at arbitrary speeds. The paraxial and quasimonochromatic regime is shown to be necessary to observe what can properly be named diffraction in time. In this regime, the spatiotemporal frequency correlations for diffraction-free propagation are approximated by parabolic correlations. Time-diffracting beams of finite energy traveling at quasiluminal velocities are seen to form substantially longer foci or needles of light than the so-called abruptly focusing and defocusing needle of light or limiting TD beam of infinite speed. Exploring the properties of TD beams under Lorentz transformations and their transformation by paraxial optical systems, we realize that the nonlinear polarization of material media induced by a strongly localized fundamental pump wave generates a TD beam at its second harmonic, whose diffraction-free behavior as a needle of light in free space can be optimized with a standard 4 f -imager system.
NASA Astrophysics Data System (ADS)
Requena, Michelle B.; Stringasci, Mirian D.; Pratavieira, Sebastião.; Vollet-Filho, José Dirceu; de Nardi, Andrigo B.; Escobar, Andre; da Rocha, Rozana W.; Bagnato, Vanderlei S.; de Menezes, Priscila F. C.
2018-02-01
The photodynamic therapy (PDT) is a therapeutic modality that depends mostly on photosensitizer (PS), light and molecular oxygen species. However, there are still technical limitations in clinical PDT that are under constant development, particularly concerning PS and light delivery. Intense Pulsed Light (IPL) sources are systems able to generate pulses of high energy with polychromatic light. IPL is a technique mainly used in the cosmetic area to perform various skin treatments for therapeutic and aesthetic applications. The goals of this study were to determine temperature variance during the application of IPL in porcine skin model, and the PDT effects using this light source with PS delivery by a commercial high pressure, needle-free injection system. The PSs tested were Indocyanine Green (ICG) and Photodithazine (PDZ), and the results showed an increase bellow 10 °C in the skin surface using a thermographic camera to measure. In conclusion, our preliminary study demonstrated that IPL associated with needle-free injection PS delivery could be a promising alternative to PDT.
Polderman, M C; Pavel, S; le Cessie, S; Grevelink, J M; van Leeuwen, R L
2000-03-01
Unwanted hair growth is a common, usually physiologic phenomenon. In this study the efficacy and tolerability of a long-pulsed ruby laser system was compared with needle electrolysis and hot wax on three parts of the body. Thirty volunteers were treated three times on the forearm (n = 10), on the face (n = 10), or in the pubic area (n = 10) with 25 J/cm2 laser, 40 J/cm2 laser, needle electrolysis, and hot wax therapy. The 25 J/cm2 and 40 J/cm2 laser treated sites showed a statistically significant decrease (38% and 49%, respectively) in the number of hairs at the first visit after the last treatment compared to the pretreatment hair counts. No significant decrease was observed in the needle electrolysis and hot wax treated sites. Laser therapy yielded better results on the forearm than on the face or pubic area and was scored as the least painful. The long-pulsed ruby laser is a promising, well-tolerated method of epilation.
Terpitz, Ulrich; Zimmermann, Dirk
2010-01-01
The Eppendorf Piezo-Power Microdissection (PPMD) system uses a tungsten needle (MicroChisel) oscillating in a forward-backward (vertical) mode to cut cells from surrounding tissue. This technology competes with laser-based dissection systems, which offer high accuracy and precision, but are more expensive and require fixed tissue. In contrast, PPMD systems can dissect freshly prepared tissue, but their accuracy and precision is lower due to unwanted lateral vibrations of the MicroChisel. Especially in tissues where elasticity is high, these vibrations can limit the cutting resolution or hamper the dissection. Here we describe a cost-efficient and simple glass capillary-encapsulation modification of MicroChisels for effective attenuation of lateral vibrations. The use of modified MicroChisels enables accurate and precise tissue dissection from highly elastic material.
Authentication Without Secrets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierson, Lyndon G.; Robertson, Perry J.
This work examines a new approach to authentication, which is the most fundamental security primitive that underpins all cyber security protections. Current Internet authentication techniques require the protection of one or more secret keys along with the integrity protection of the algorithms/computations designed to prove possession of the secret without actually revealing it. Protecting a secret requires physical barriers or encryption with yet another secret key. The reason to strive for "Authentication without Secret Keys" is that protecting secrets (even small ones only kept in a small corner of a component or device) is much harder than protecting the integritymore » of information that is not secret. Promising methods are examined for authentication of components, data, programs, network transactions, and/or individuals. The successful development of authentication without secret keys will enable far more tractable system security engineering for high exposure, high consequence systems by eliminating the need for brittle protection mechanisms to protect secret keys (such as are now protected in smart cards, etc.). This paper is a re-release of SAND2009-7032 with new figures numerous edits.« less
Tsai, L H; Lee, Y J
2001-12-31
The mechanism of N-methyl-D-aspartate (NMDA) inhibits oxotremorine-induced acid secretion was examined in rat stomach, in relation to the cyclic GMP system. NMDA (10(-7) M) did not affect the spontaneous acid secretion from the everted preparations of isolated rat stomach, but inhibited the acid secretion stimulated by oxotremorine, and this effect of NMDA was antagonized by 2-amino-5-phosphonovaleric acid (AP-5), (+/-)3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) or N(G)-nitro-L-arginine (L-NNA). NMDA also elevated the cyclic GMP content of mucosal slices from rat stomach, and this effect of NMDA was antagonized by L-NNA. These results indicate that NMDA receptors are present in the rat stomach and regulate the gastric acid secretion. The mechanism underlying the effect of NMDA inhibits oxotremorine-induced acid secretion may be mediated by the NO-dependent cyclic GMP system.
NleC, a type III secretion protease, compromises NF-κB activation by targeting p65/RelA.
Yen, Hilo; Ooka, Tadasuke; Iguchi, Atsushi; Hayashi, Tetsuya; Sugimoto, Nakaba; Tobe, Toru
2010-12-16
The NF-κB signaling pathway is central to the innate and adaptive immune responses. Upon their detection of pathogen-associated molecular patterns, Toll-like receptors on the cell surface initiate signal transduction and activate the NF-κB pathway, leading to the production of a wide array of inflammatory cytokines, in attempt to eradicate the invaders. As a countermeasure, pathogens have evolved ways to subvert and manipulate this system to their advantage. Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are closely related bacteria responsible for major food-borne diseases worldwide. Via a needle-like protein complex called the type three secretion system (T3SS), these pathogens deliver virulence factors directly to host cells and modify cellular functions, including by suppressing the inflammatory response. Using gain- and loss-of-function screenings, we identified two bacterial effectors, NleC and NleE, that down-regulate the NF-κB signal upon being injected into a host cell via the T3SS. A recent report showed that NleE inhibits NF-κB activation, although an NleE-deficient pathogen was still immune-suppressive, indicating that other anti-inflammatory effectors are involved. In agreement, our present results showed that NleC was also required to inhibit inflammation. We found that NleC is a zinc protease that disrupts NF-κB activation by the direct cleavage of NF-κB's p65 subunit in the cytoplasm, thereby decreasing the available p65 and reducing the total nuclear entry of active p65. More importantly, we showed that a mutant EPEC/EHEC lacking both NleC and NleE (ΔnleC ΔnleE) caused greater inflammatory response than bacteria carrying ΔnleC or ΔnleE alone. This effect was similar to that of a T3SS-defective mutant. In conclusion, we found that NleC is an anti-inflammatory bacterial zinc protease, and that the cooperative function of NleE and NleC disrupts the NF-κB pathway and accounts for most of the immune suppression caused by EHEC/EPEC.
Li, Ren-Shan; Yang, Qing-Peng; Zhang, Wei-Dong; Zheng, Wen-Hui; Chi, Yong-Gang; Xu, Ming; Fang, Yun-Ting; Gessler, Arthur; Li, Mai-He; Wang, Si-Long
2017-02-15
Canopies in evergreen coniferous plantations often consist of various-aged needles. However, the effect of needle age on the photosynthetic responses to thinning remains ambiguous. Photosynthetic responses of different-aged needles to thinning were investigated in a Chinese fir (Cunninghamia lanceolata) plantation. A dual isotope approach [simultaneous measurements of stable carbon (δ 13 C) and oxygen (δ 18 O) isotopes] was employed to distinguish between biochemical and stomatal limitations to photosynthesis. Our results showed that increases in net photosynthesis rates upon thinning only occurred in the current-year and one-year-old needles, and not in the two- to four-year-old needles. The increased δ 13 C and declined δ 18 O in current year needles of trees from thinned stands indicated that both the photosynthetic capacity and stomatal conductance resulted in increasing photosynthesis. In one-year-old needles of trees from thinned stands, an increased needle δ 13 C and a constant needle δ 18 O were observed, indicating the photosynthetic capacity rather than stomatal conductance contributed to the increasing photosynthesis. The higher water-soluble nitrogen content in current-year and one-year-old needles in thinned trees also supported that the photosynthetic capacity plays an important role in the enhancement of photosynthesis. In contrast, the δ 13 C, δ 18 O and water-soluble nitrogen in the two- to four-year-old needles were not significantly different between the control and thinned trees. Thus, the thinning effect on photosynthesis depends on needle age in a Chinese fir plantation. Our results highlight that the different responses of different-aged needles to thinning have to be taken into account for understanding and modelling ecosystem responses to management, especially under the expected environmental changes in future. Copyright © 2016 Elsevier B.V. All rights reserved.
Reina, M A; López, A; Villanueva, M C; De Andrés, J A; Martín, S
2005-05-01
To assess the possibility of puncturing nerve roots in the cauda equina with spinal needles with different point designs and to quantify the number of axons affected. We performed in vitro punctures of human nerve roots taken from 3 fresh cadavers. Twenty punctures were performed with 25-gauge Whitacre needles and 40 with 25-gauge Quincke needles; half the Quincke needle punctures were carried out with the point perpendicular to the root and the other half with the point parallel to it. The samples were studied by optical and scanning electron microscopy. The possibility of finding the needle orifece inserted inside the nerve was assessed. On a photographic montage, we counted the number of axons during a hypothetical nerve puncture. Nerve roots used in this study were between 1 and 2.3 mm thick, allowing the needle to penetrate the root in the 52 samples studied. The needle orifice was never fully located inside the nerve in any of the samples. The numbers of myelinized axons affected during nerve punctures 0.2 mm deep were 95, 154, and 81 for Whitacre needles, Quincke needles with the point held perpendicular, or the same needle type held parallel, respectively. During punctures 0.5 mm deep, 472, 602, and 279 were affected for each puncture group, respectively. The differences in all cases were statistically significant. It is possible to achieve intraneural puncture with 25-gauge needles. However, full intraneural placement of the orifice of the needle is unlikely. In case of nerve trauma, the damage could be greater if puncture is carried out with a Quincke needle with the point inserted perpendicular to the nerve root.
The effects of needle deformation during lumbar puncture
Özdemir, Hasan Hüseyin; Demir, Caner F.; Varol, Sefer; Arslan, Demet; Yıldız, Mustafa; Akil, Eşref
2015-01-01
Objective: The aim of this study is to assess deformation of the tip and deflection from the axis of 22-gauge Quincke needles when they are used for diagnostic lumbar puncture (LP). Thus, it can be determined whether constructional alterations of needles are important for predicting clinical problems after diagnostic LP. Materials and Methods: The 22-gauge Quincke needles used for diagnostic LP were evaluated. A specially designed protractor was used for measurement and evaluation. Waist circumference was measured in each patient. Patients were questioned about headaches occurring after LP. Results: A total of 115 Quincke-type spinal needles used in 113 patients were evaluated. No deflection was detected in 38 (33.1%) of the needles. Deflection between 0.1° and 5° occurred in 43 (37.3%) of the needles and deflection ≥ 5.1° occurred in 34 patients (29.6%). Forty-seven (41.5%) patients experienced post lumbar puncture headache (PLPH) and 13 (11.5%) patients experienced intracranial hypotension (IH). No statistically significant correlation between the degree of deflection and headache was found (P > 0.05). Epidural blood patch was performed for three patients. Deformity in the form of bending like a hook occurred in seven needles and IH occurred in six patients using these needles. Two of the needles used in three patients requiring blood patch were found to be bent. Conclusion: Deformation of needles may increase complications after LP. Needle deformation may lead to IH. In case of deterioration in the structure of the needle, termination of the puncture procedure and the use of a new needle could reduce undesirable clinical consequences, especially IH. PMID:25883480
Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor.
Kim, P H; Hauer, B D; Clark, T J; Fani Sani, F; Freeman, M R; Davis, J P
2017-11-07
Cavity optomechanics has demonstrated remarkable capabilities, such as measurement and control of mechanical motion at the quantum level. Yet many compelling applications of optomechanics-such as microwave-to-telecom wavelength conversion, quantum memories, materials studies, and sensing applications-require hybrid devices, where the optomechanical system is coupled to a separate, typically condensed matter, system. Here, we demonstrate such a hybrid optomechanical system, in which a mesoscopic ferromagnetic needle is integrated with an optomechanical torsional resonator. Using this system we quantitatively extract the magnetization of the needle, not known a priori, demonstrating the potential of this system for studies of nanomagnetism. Furthermore, we show that we can magnetically dampen its torsional mode from room-temperature to 11.6 K-improving its mechanical response time without sacrificing torque sensitivity. Future extensions will enable studies of high-frequency spin dynamics and broadband wavelength conversion via torque mixing.
Liu, Ruihua; Zuo, Zhenqiang; Xu, Yingming; Song, Cunjiang; Jiang, Hong; Qiao, Chuanling; Xu, Ping; Zhou, Qixing; Yang, Chao
2014-04-02
The twin-arginine translocation (Tat) pathway exports folded proteins across the cytoplasmic membranes of bacteria and archaea. Two parallel Tat pathways (TatAdCd and TatAyCy systems) with distinct substrate specificities have previously been discovered in Bacillus subtilis. In this study, to secrete methyl parathion hydrolase (MPH) into the growth medium, the twin-arginine signal peptide of B. subtilis YwbN was used to target MPH to the Tat pathway of B. subtilis. Western blot analysis and MPH assays demonstrated that active MPH was secreted into the culture supernatant of wild-type cells. No MPH secretion occurred in a total-tat2 mutant, indicating that the observed export in wild-type cells was mediated exclusively by the Tat pathway. Export was fully blocked in a tatAyCy mutant. In contrast, the tatAdCd mutant was still capable of secreting MPH. These results indicated that the MPH secretion directed by the YwbN signal peptide was specifically mediated by the TatAyCy system. The N-terminal sequence of secreted MPH was determined as AAPQVR, demonstrating that the YwbN signal peptide had been processed correctly. This is the first report of functional secretion of a heterologous protein via the B. subtilis TatAyCy system. This study highlights the potential of the TatAyCy system to be used for secretion of other heterologous proteins in B. subtilis.
Physical Properties Of Acupuncture Needles: Do Disposable Acupuncture Needles Break With Normal Use
2016-06-01
Lamb shank, which has complexity of tendon, fascia, and bone, was used to mimic human tissue. The needles (n=10) were stressed in the tissue substitute...needles were re-imaged after stressing and visually assessed. RESULTS: Only one manufacturing scuff mark was noted out of 90 needles before stress ...testing. Needles buckled but did not break when they were stressed beyond normal clinical use. No cracks or fractures were noted after stress
COMPARISON OF DRY NEEDLING VS. SHAM ON THE PERFORMANCE OF VERTICAL JUMP.
Bandy, William D; Nelson, Russell; Beamer, Lisa
2017-10-01
Dry needling has been reported to decrease pain in subjects having myofascial trigger points, as well as pain in muscle and connective tissue. The purpose of the study was to compare the effects on the ability to perform a two-legged vertical jump between a group who received one bout of dry needling and a group who received one bout of a sham treatment. Thirty-five healthy students (19 males, 16 females) were recruited to participate in this study (mean age 22.7+/- 2.4 years). The subjects were randomly divided into two groups- dry needling (n=18) vs sham (n=17). The dry needling group received needling to four sites on bilateral gastrocnemius muscles; two at the medial head and two at the lateral head. The sham group had the four areas of the gastrocnemius muscle pressed with the tube housing the needle, but the needle was never inserted into the skin. Two-legged vertical jump was measured with chalk marks on the wall before and after the dry needling and sham treatments. Analysis with a t-test indicated that the dry needling group significantly increased vertical jump height 1.2 inches over the sham group. One bout of dry needling showed an immediate effect at significantly increasing vertical jump height in healthy, young adults. Future research is needed to determine if dry needling has any long-term effects. 2b.
The effect of SO2 pollution on pine needle structure
E. A. Zhitkova; L. L. Novitskaya
2000-01-01
Fall and winter needles from pines growing near the Kostomuksha oredressing mill (KODM) were collected and studied by light microscopy. Fall needles showed symptoms of SO2 influence and no specific seasonal changes in mesophyll. The injury rates of needle surface and mesophyll showed that pollutants penetrate into the needles through stomata and...
Helbich, T H; Rudas, M; Böhm, G; Huber, S; Wagner, T; Taucher, S; Wolf, G; Mostbeck, G H
1999-01-01
In an experimental study (in vitro and in vivo) we evaluated the efficacy of various biopsy needles/devices for breast biopsy. In vitro, biopsies of five human cadaveric breast specimens were performed using 33 different needles/devices ranging from 14 to 20-gauge. Of these 33 needles/devices, 22 optimally performing needles were selected for the in vivo study. In the clinical part of the study, 44 breast lesions were randomly biopsied with each of the 22 needles/devices under stereotactic guidance. Tissue specimens were analysed quantitatively and qualitatively. Several automatic long-throw guns (Acecut, Asap, Biopty, Magnum) obtained greater tissue areas and had a better histopathologic score than the conventional type of a side-notch needle like Trucut, an aspiration needle like Surecut, or an end-cut needle like Autovac. The automatic long-throw guns performed better than the short-throw Monopty gun. Regardless of needle size (14-20-gauge), breast biopsies should be routinely performed with automated long-throw side-notch guns (Acecut, Asap, Biopty, Magnum).
A new posterior iliac puncture/aspiration needle.
Islam, Anwarul
2016-03-25
The needles that are currently used for obtaining bone marrow aspirate samples from the posterior ilium are typically those of 1930s vintage (eg, Klima, Salah or similar needles), which were specifically designed for sternal aspiration. These needles are not designed to obtain bone marrow aspirate samples from the posterior ilium and as a result they are unsatisfactory particularly if the patient is large or obese. A new posterior iliac puncture/aspiration needle has therefore been designed, which is particularly suited for bone marrow aspiration from the posterior ilium. The needle was tested on five cadavers and on five patients. The design and construction of the needle was found to be satisfactory and a marked improvement over the conventional sternal puncture needles particularly when large or obese patients were concerned. The new posterior iliac bone marrow aspiration needle has advantages that overcome the limitations of using a conventional sternal puncture needle to obtain marrow aspirates from the posterior ilium. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
The type IX secretion system is required for virulence of the fish pathogen Flavobacterium columnare
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare, a member of the phylum Bacteroidetes, causes columnaris disease in wild and aquaculture-reared freshwater fish. The mechanisms responsible for columnaris disease are not known. Many members of the phylum Bacteroidetes use type IX secretion systems (T9SSs) to secrete enzymes...
X-Ray Studies of Delphi Diesel Injection Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Christopher
2017-01-01
This CRADA explored the performance of two different models of Delphi diesel injectors. For each injector, the valve needle motion was imaged from two lines of sight at three different injection pressures to characterize its 3D motion. The needle lift was quite repeatable, and followed the expected trend of faster lift with higher injection pressure. In addition, it was observed that the maximum lift increased with injection pressure, even after the valve reached its mechanical limit, indicating that the increased fuel pressure was causing compression or bending of the needle. The off-axis motion of the needle was found to bemore » significant in both measurement planes, though it was very repeatable from one injection event to the next. The effect of ambient pressure on the needle motion was explored at an injection pressure of 400 bar, with ambient pressure up to 15 bar. No effect of the elevated ambient pressure on the needle lift was observed. High-speed x-ray imaging of the spray as it first emerges from the injector nozzle was performed in order to characterize the near-nozzle morphology and breakup of the spray. While imaging was successful at low ambient pressure, the contrast of the images was reduced at high ambient pressures, and quantitative measurements of the morphology were precluded. The near-nozzle fuel distributions were measured using time-resolved x-ray radiography for three injection pressures at an ambient pressure of 33 bar. Increasing injection pressure caused the fuel distribution to narrow, as measured by the Full Width at Half Maximum of the mass distributions. The fuel distributions were quantified for the two injectors at each measurement condition, quantifying the impact that each experimental parameter has on the near-nozzle fuel and air mixture preparation.« less
[Needling technique of Professor Li Yan-Fang].
Li, Li-Jun
2014-01-01
Experiences of needling techniques of Professor LI Ya- fang is introduced in this article. Gentle and superficial insertion is adopted by Professor LI in clinic. Emphases are put on the qi regulation function, needling sensation to the affected region and insertion with both hands, especially the function of the left hand as pressing hand. The gentle and superficial insertion should be done as the follows: hold the needle with the right hand, press gently along the running course of meridians with the left hand to promote qi circulation, hard pressing should be applied at acupoints to disperse the local qi and blood, insert the needle gently and quickly into the subcutaneous region with the right hand, and stop the insertion when patient has the needling sensation. While the fast needling is characterized with shallow insertion and swift manipulation: the left hand of the manipulator should press first along the running course of the meridian, and fix the local skin, hold the needle with the right hand and insert the needle quickly into the acupoint. Withdrawal of the needle should be done immediately after the reinforcing and reducing manipulations. Professor LI is accomplished in qi regulation. It is held by him that regulating qi circulation is essence of acupuncture, letting the patient get the needling sensation is the most important task of needling. Lifting, thrusting and rotation manipulations should be applied to do reinforcing or reducing. The tissue around the tip of the needle should not be too contracted or too relaxed, and the resistance should not be too strong or too weak. The feeling of the insertion hand of the practitioner should not be too smooth or too hesitant. Needle should be inserted into the skin quickly at the moment of hard pressing by the left hand. And then, slow rotation and gentle lifting and thrusting can be applied to promote the needling sensation like electric current pass through and to reach the affected region along the running course of meridians.
Yarmus, Lonny B; Akulian, Jason; Lechtzin, Noah; Yasin, Faiza; Kamdar, Biren; Ernst, Armin; Ost, David E; Ray, Cynthia; Greenhill, Sarah R; Jimenez, Carlos A; Filner, Joshua; Feller-Kopman, David
2013-04-01
Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a minimally invasive procedure originally performed using a 22-gauge (22G) needle. A recently introduced 21-gauge (21G) needle may improve the diagnostic yield and sample adequacy of EBUS-TBNA, but prior smaller studies have shown conflicting results. To our knowledge, this is the largest study undertaken to date to determine whether the 21G needle adds diagnostic benefit. We retrospectively evaluated the results of 1,299 patients from the American College of Chest Physicians Quality Improvement Registry, Education, and Evaluation (AQuIRE) Diagnostic Registry who underwent EBUS-TBNA between February 2009 and September 2010 at six centers throughout the United States. Data collection included patient demographics, sample adequacy, and diagnostic yield. Analysis consisted of univariate and multivariate hierarchical logistic regression comparing diagnostic yield and sample adequacy of EBUS-TBNA specimens by needle gauge. A total of 1,235 patients met inclusion criteria. Sample adequacy was obtained in 94.9% of the 22G needle group and in 94.6% of the 21G needle group (P = .81). A diagnosis was made in 51.4% of the 22G and 51.3% of the 21G groups (P = .98). Multivariate hierarchical logistic regression showed no statistical difference in sample adequacy or diagnostic yield between the two groups. The presence of rapid onsite cytologic evaluation was associated with significantly fewer needle passes per procedure when using the 21G needle (P < .001). There is no difference in specimen adequacy or diagnostic yield between the 21G and 22G needle groups. EBUS-TBNA in conjunction with rapid onsite cytologic evaluation and a 21G needle is associated with fewer needle passes compared with a 22G needle.
Electromagnetic-Tracked Biopsy under Ultrasound Guidance: Preliminary Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakime, Antoine, E-mail: thakime@yahoo.com; Deschamps, Frederic; Marques De Carvalho, Enio Garcia
2012-08-15
Purpose: This study was designed to evaluate the accuracy and safety of electromagnetic needle tracking for sonographically guided percutaneous liver biopsies. Methods: We performed 23 consecutive ultrasound-guided liver biopsies for liver nodules with an electromagnetic tracking of the needle. A sensor placed at the tip of a sterile stylet (18G) inserted in a coaxial guiding trocar (16G) used for biopsy was localized in real time relative to the ultrasound imaging plane, thanks to an electromagnetic transmitter and two sensors on the ultrasound probe. This allows for electronic display of the needle tip location and the future needle path overlaid onmore » the real-time ultrasound image. Distance between needle tip position and its electronic display, number of needle punctures, number of needle pull backs for redirection, technical success (needle positioned in the target), diagnostic success (correct histopathology result), procedure time, and complication were evaluated according to lesion sizes, depth and location, operator experience, and 'in-plane' or 'out-of-plane' needle approach. Results: Electronic display was always within 2 mm from the real position of the needle tip. The technical success rate was 100%. A single needle puncture without repuncture was used in all patients. Pull backs were necessary in six patients (26%) to obtain correct needle placement. The overall diagnostic success rate was 91%. The overall true-positive, true-negative, false-negative, and failure rates of the biopsy were 100% (19/19) 100% (2/2), 0% (0/23), and 9% (2/23). The median total procedure time from the skin puncture to the needle in the target was 30 sec (from 5-60 s). Lesion depth and localizations, operator experience, in-plane or out-of-plane approach did not affect significantly the technical, diagnostic success, or procedure time. Even when the tumor size decreased, the procedure time did not increase. Conclusions: Electromagnetic-tracked biopsy is accurate to determine needle tip position and allows fast and accurate needle placement in targeted liver nodules.« less
A clinical guide to needle desensitization for the paediatric patient.
Taylor, Greig D; Campbell, Caroline
2015-05-01
Needle phobia is a common problem encountered by dental practitioners and it can pose a challenge, especially in the paediatric patient. Needle desensitization can be used for patients who have needle fear or phobia and help them overcome this by repeated, non-threatening and controlled contacts. This paper will describe an accepted technique of needle desensitization and work through the steps required to achieve a successful outcome of local anaesthesia being delivered in a calm, safe and controlled manner. Clinical Relevance: Needle desensitization is an effective technique which can be used to enable a needle phobic patient to receive a dental injection.
Image-based tracking of the suturing needle during laparoscopic interventions
NASA Astrophysics Data System (ADS)
Speidel, S.; Kroehnert, A.; Bodenstedt, S.; Kenngott, H.; Müller-Stich, B.; Dillmann, R.
2015-03-01
One of the most complex and difficult tasks for surgeons during minimally invasive interventions is suturing. A prerequisite to assist the suturing process is the tracking of the needle. The endoscopic images provide a rich source of information which can be used for needle tracking. In this paper, we present an image-based method for markerless needle tracking. The method uses a color-based and geometry-based segmentation to detect the needle. Once an initial needle detection is obtained, a region of interest enclosing the extracted needle contour is passed on to a reduced segmentation. It is evaluated with in vivo images from da Vinci interventions.
21 CFR 886.4670 - Phacofragmentation system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Phacofragmentation system. 886.4670 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4670 Phacofragmentation system. (a) Identification. A phacofragmentation system is an AC-powered device with a fragmenting needle intended for use in...
21 CFR 886.4670 - Phacofragmentation system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Phacofragmentation system. 886.4670 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4670 Phacofragmentation system. (a) Identification. A phacofragmentation system is an AC-powered device with a fragmenting needle intended for use in...
21 CFR 886.4670 - Phacofragmentation system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Phacofragmentation system. 886.4670 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4670 Phacofragmentation system. (a) Identification. A phacofragmentation system is an AC-powered device with a fragmenting needle intended for use in...
Hsu, Bertrand D.; Leonard, Gary L.
1988-01-01
A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.
Quantum secret sharing with qudit graph states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keet, Adrian; Fortescue, Ben; Sanders, Barry C.
We present a unified formalism for threshold quantum secret sharing using graph states of systems with prime dimension. We construct protocols for three varieties of secret sharing: with classical and quantum secrets shared between parties over both classical and quantum channels.
NASA Technical Reports Server (NTRS)
1994-01-01
Charge Coupled Devices (CCDs) are high technology silicon chips that connect light directly into electronic or digital images, which can be manipulated or enhanced by computers. When Goddard Space Flight Center (GSFC) scientists realized that existing CCD technology could not meet scientific requirements for the Hubble Space Telescope Imagining Spectrograph, GSFC contracted with Scientific Imaging Technologies, Inc. (SITe) to develop an advanced CCD. SITe then applied many of the NASA-driven enhancements to the manufacture of CCDs for digital mammography. The resulting device images breast tissue more clearly and efficiently. The LORAD Stereo Guide Breast Biopsy system incorporates SITe's CCD as part of a digital camera system that is replacing surgical biopsy in many cases. Known as stereotactic needle biopsy, it is performed under local anesthesia with a needle and saves women time, pain, scarring, radiation exposure and money.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Sanfeliz, Gerant, E-mail: gerantrivera@ucsd.edu; Kinney, Thomas B.; Rose, Steven C.
2005-06-15
Purpose: To describe our experience with ultrasound (US)-guided percutaneous liver biopsies using the INRAD 18G Express core needle biopsy system.Methods: One hundred and fifty-four consecutive percutaneous core liver biopsy procedures were performed in 153 men in a single institution over 37 months. The medical charts, pathology reports, and radiology files were retrospectively reviewed. The number of needle passes, type of guidance, change in hematocrit level, and adequacy of specimens for histologic analysis were evaluated.Results: All biopsies were performed for histologic staging of chronic liver diseases. The majority of patients had hepatitis C (134/153, 90.2%). All patients were discharged to homemore » after 4 hr of postprocedural observation. In 145 of 154 (94%) biopsies, a single needle pass was sufficient for diagnosis. US guidance was utilized in all but one of the procedures (153/154, 99.4%). The mean hematocrit decrease was 1.2% (44.1-42.9%). Pain requiring narcotic analgesia, the most frequent complication, occurred in 28 of 154 procedures (18.2%). No major complications occurred. The specimens were diagnostic in 152 of 154 procedures (98.7%).Conclusions: Single-pass percutaneous US-guided liver biopsy with the INRAD 18G Express core needle biopsy system is safe and provides definitive pathologic diagnosis of chronic liver disease. It can be performed on an outpatient basis. Routine post-biopsy monitoring of hematocrit level in stable, asymptomatic patients is probably not warranted.« less
Automatic needle segmentation in 3D ultrasound images using 3D improved Hough transform
NASA Astrophysics Data System (ADS)
Zhou, Hua; Qiu, Wu; Ding, Mingyue; Zhang, Songgen
2008-03-01
3D ultrasound (US) is a new technology that can be used for a variety of diagnostic applications, such as obstetrical, vascular, and urological imaging, and has been explored greatly potential in the applications of image-guided surgery and therapy. Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese woman, and a minimally invasive ablation system using a needle-like RF button electrode is widely used to destroy tumor cells or stop bleeding. To avoid accidents or death of the patient by inaccurate localizations of the electrode and the tumor position during treatment, 3D US guidance system was developed. In this paper, a new automated technique, the 3D Improved Hough Transform (3DIHT) algorithm, which is potentially fast, accurate, and robust to provide needle segmentation in 3D US image for use of 3D US imaging guidance, was presented. Based on the coarse-fine search strategy and a four parameter representation of lines in 3D space, 3DIHT algorithm can segment needles quickly, accurately and robustly. The technique was evaluated using the 3D US images acquired by scanning a water phantom. The segmentation position deviation of the line was less than 2mm and angular deviation was much less than 2°. The average computational time measured on a Pentium IV 2.80GHz PC computer with a 381×381×250 image was less than 2s.
Kokes, Rebecca; Lister, Kevin; Gullapalli, Rao; Zhang, Bao; MacMillan, Alan; Richard, Howard; Desai, Jaydev P.
2009-01-01
Objective The purpose of this paper is to explore the feasibility of developing a MRI-compatible needle driver system for radiofrequency ablation (RFA) of breast tumors under continuous MRI imaging while being teleoperated by a haptic feedback device from outside the scanning room. The developed needle driver prototype was designed and tested for both tumor targeting capability as well as RFA. Methods The single degree-of-freedom (DOF) prototype was interfaced with a PHANToM haptic device controlled from outside the scanning room. Experiments were performed to demonstrate MRI-compatibility and position control accuracy with hydraulic actuation, along with an experiment to determine the PHANToM’s ability to guide the RFA tool to a tumor nodule within a phantom breast tissue model while continuously imaging within the MRI and receiving force feedback from the RFA tool. Results Hydraulic actuation is shown to be a feasible actuation technique for operation in an MRI environment. The design is MRI-compatible in all aspects except for force sensing in the directions perpendicular to the direction of motion. Experiments confirm that the user is able to detect healthy vs. cancerous tissue in a phantom model when provided with both visual (imaging) feedback and haptic feedback. Conclusion The teleoperated 1-DOF needle driver system presented in this paper demonstrates the feasibility of implementing a MRI-compatible robot for RFA of breast tumors with haptic feedback capability. PMID:19303805
NASA Astrophysics Data System (ADS)
Rodrigues, Pedro L.; Rodrigues, Nuno F.; Fonseca, Jaime C.; von Krüger, M. A.; Pereira, W. C. A.; Vilaça, João. L.
2015-03-01
Background: Kidney stone is a major universal health problem, affecting 10% of the population worldwide. Percutaneous nephrolithotomy is a first-line and established procedure for disintegration and removal of renal stones. Its surgical success depends on the precise needle puncture of renal calyces, which remains the most challenging task for surgeons. This work describes and tests a new ultrasound based system to alert the surgeon when undesirable anatomical structures are in between the puncture path defined through a tracked needle. Methods: Two circular ultrasound transducers were built with a single 3.3-MHz piezoelectric ceramic PZT SN8, 25.4 mm of radius and resin-epoxy matching and backing layers. One matching layer was designed with a concave curvature to work as an acoustic lens with long focusing. The A-scan signals were filtered and processed to automatically detect reflected echoes. Results: The transducers were mapped in water tank and tested in a study involving 45 phantoms. Each phantom mimics different needle insertion trajectories with a percutaneous path length between 80 and 150 mm. Results showed that the beam cross-sectional area oscillates around the ceramics radius and it was possible to automatically detect echo signals in phantoms with length higher than 80 mm. Conclusions: This new solution may alert the surgeon about anatomical tissues changes during needle insertion, which may decrease the need of X-Ray radiation exposure and ultrasound image evaluation during percutaneous puncture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekiert, Damian C.; Cox, Jeffery S.
Nearly 10% of the coding capacity of the Mycobacterium tuberculosis genome is devoted to two highly expanded and enigmatic protein families called PE and PPE, some of which are important virulence/immunogenicity factors and are secreted during infection via a unique alternative secretory system termed "type VII." How PE-PPE proteins function during infection and how they are translocated to the bacterial surface through the five distinct type VII secretion systems [ESAT-6 secretion system (ESX)] of M. tuberculosis is poorly understood. Here in this paper, we report the crystal structure of a PE-PPE heterodimer bound to ESX secretion-associated protein G (EspG), whichmore » adopts a novel fold. This PE-PPE-EspG complex, along with structures of two additional EspGs, suggests that EspG acts as an adaptor that recognizes specific PE-PPE protein complexes via extensive interactions with PPE domains, and delivers them to ESX machinery for secretion. Surprisingly, secretion of most PE-PPE proteins in M. tuberculosis is likely mediated by EspG from the ESX-5 system, underscoring the importance of ESX-5 in mycobacterial pathogenesis. Furthermore, our results indicate that PE-PPE domains function as cis-acting targeting sequences that are read out by EspGs, revealing the molecular specificity for secretion through distinct ESX pathways.« less