A new beam theory using first-order warping functions
NASA Technical Reports Server (NTRS)
Ie, C. A.; Kosmatka, J. B.
1990-01-01
Due to a certain type of loading and geometrical boundary conditions, each beam will respond differently depending on its geometrical form of the cross section and its material definition. As an example, consider an isotropic rectangular beam under pure bending. Plane sections perpendicular to the longitudinal axis of the beam will remain plane and perpendicular to the deformed axis after deformation. However, due to the Poisson effect, particles in the planes will move relative to each other resulting in a form of anticlastic deformation. In other words, even in pure bending of an isotropic beam, each cross section will deform in the plane. If the material of the beam above is replaced by a generally anisotropic material, then the cross sections will not only deform in the plane, but also out of plane. Hence, in general, both in-plane deformation and out-of-plane warping will exist and depend on the geometrical form and material definition of the cross sections and also on the loadings. For the purpose of explanation, an analogy is made. The geometrical forms of the bodies of each individual are unique. Hence, different sizes of clothes are needed. Finding the sizes of clothes for individuals is like determining the warping functions in beams. A new beam theory using first-order warping functions is introduced. Numerical examples will be presented for an isotropic beam with rectangular cross section. The theory can be extended for composite beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brannon, R.M.
1996-12-31
A mathematical framework is developed for the study of materials containing axisymmetric inclusions or flaws such as ellipsoidal voids, penny-shaped cracks, or fibers of circular cross-section. The general case of nonuniform statistical distributions of such heterogeneities is attacked by first considering a spatially uniform distribution of flaws that are all oriented in the same direction. Assuming an isotropic substrate, the macroscopic material properties of this simpler microstructure naturally should be transversely isotropic. An orthogonal basis for the linear subspace consisting of all double-symmetric transversely-isotropic fourth-order tensors associated with a given material vector is applied to deduce the explicit functional dependencemore » of the material properties of these aligned materials on the shared symmetry axis. The aligned and uniform microstructure seems geometrically simple enough that the macroscopic transversely isotropic properties could be derived in closed form. Since the resulting properties are transversely isotropic, the analyst must therefore be able to identify the appropriate coefficients of the transverse basis. Once these functions are identified, a principle of superposition of strain rates ay be applied to define an expectation integral for the composite properties of a material containing arbitrary anisotropic distributions of axisymmetric inhomogeneities. A proposal for coupling plastic anisotropy to the elastic anisotropy is presented in which the composite yield surface is interpreted as a distortion of the isotropic substrate yield surface; the distortion directions are coupled to the elastic anisotropy directions. Finally, some commonly assumed properties (such as major symmetry) of the Cauchy tangent stiffness tensor are shown to be inappropriate for large distortions of anisotropic materials.« less
Sharifi, Zohreh; Atlasbaf, Zahra
2016-10-01
A new design procedure for near perfect triangular carpet cloaks, fabricated based on only isotropic homogeneous materials, is proposed. This procedure enables us to fabricate a cloak with simple metamaterials or even without employing metamaterials. The proposed procedure together with an invasive weed optimization algorithm is used to design carpet cloaks based on quasi-isotropic metamaterial structures, Teflon and AN-73. According to the simulation results, the proposed cloaks have good invisibility properties against radar, especially monostatic radar. The procedure is a new method to derive isotropic and homogeneous parameters from transformation optics formulas so we do not need to use complicated structures to fabricate the carpet cloaks.
Creep fatigue life prediction for engine hot section materials (ISOTROPIC)
NASA Technical Reports Server (NTRS)
Nelson, R. S.; Schoendorf, J. F.; Lin, L. S.
1986-01-01
The specific activities summarized include: verification experiments (base program); thermomechanical cycling model; multiaxial stress state model; cumulative loading model; screening of potential environmental and protective coating models; and environmental attack model.
Creep fatigue life prediction for engine hot section materials (isotropic)
NASA Technical Reports Server (NTRS)
Moreno, V.
1983-01-01
The Hot Section Technology (HOST) program, creep fatigue life prediction for engine hot section materials (isotropic), is reviewed. The program is aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components. Significant results include: (1) cast B1900 and wrought IN 718 selected as the base and alternative materials respectively; (2) fatigue test specimens indicated that measurable surface cracks appear early in the specimen lives, i.e., 15% of total life at 871 C and 50% of life at 538 c; (3) observed crack initiation sites are all surface initiated and are associated with either grain boundary carbides or local porosity, transgrannular cracking is observed at the initiation site for all conditions tested; and (4) an initial evaluation of two life prediction models, representative of macroscopic (Coffin-Mason) and more microscopic (damage rate) approaches, was conducted using limited data generated at 871 C and 538 C. It is found that the microscopic approach provides a more accurate regression of the data used to determine crack initiation model constants, but overpredicts the effect of strain rate on crack initiation life for the conditions tested.
Nonlinear Eulerian Thermoelasticity for Anisotropic Crystals
2013-08-01
the applied pressure. However, some crystalline materials such as ceramics and hard minerals may retain significant shear strength at finite strain...which elastic properties have been measured. Benefits of using Eulerian strain measures for nonlinear elasticity of isotropic materials were extolled by...highly symmetric anharmonic properties . Deviations may be expected for highly anisotropic materials , as shown in Section 4. This work is focused
Digital Refractometry of Piezoelectric Crystals.
Digital Refractometry , Included in the report is a description of the program, classical methods for measuring the refractive index, the foundations of...Digital Refractometry for isotropic and anisotropic materials and the laboratory configuration for Digital Refractometry . In the final section of the
Pin bearing evaluation of LTM25 composite materials
NASA Technical Reports Server (NTRS)
Shah, C. H.; Postyn, A. S.
1996-01-01
This report summarizes pin bearing evaluations of LTM25 composite materials. Northrop Grumman Corporation conducted pin bearing testing and fabricate two panels from composite materials that cure at low temperatures. These materials are being incorporated into Unmanned Aerial Vehicles (UAVS) to reduce manufacturing costs since they allow the use of low-cost tooling and facilities. Two composite prepreg product forms were evaluated; MR50/LTM25 unidirectional tape, batch 2881vd and CFS003/LTM25 woven cloth, batch 2216. Northrop Grumman fabricated, machined, and tested specimens to determine the bearing strength in accordance with MIL-HDBK-17D, Volume 1, Section 7.2.4. Quasi-isotropic laminates from the two product forms were fabricated for these tests. In addition, 2 quasi-isotropic panels of dimensions 12 in. x 28 in. were fabricated (one each from the two product forms), inspected, and shipped to NASA Langley for further evaluation.
Miller, Renee; Kolipaka, Arunark; Nash, Martyn P; Young, Alistair A
2018-03-12
Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either 3 or 5 material properties. The 3-parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal, and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry. Copyright © 2018 John Wiley & Sons, Ltd.
Better Finite-Element Analysis of Composite Shell Structures
NASA Technical Reports Server (NTRS)
Clarke, Gregory
2007-01-01
A computer program implements a finite-element-based method of predicting the deformations of thin aerospace structures made of isotropic materials or anisotropic fiber-reinforced composite materials. The technique and corresponding software are applicable to thin shell structures in general and are particularly useful for analysis of thin beamlike members having open cross-sections (e.g. I-beams and C-channels) in which significant warping can occur.
Cosmological models with homogeneous and isotropic spatial sections
NASA Astrophysics Data System (ADS)
Katanaev, M. O.
2017-05-01
The assumption that the universe is homogeneous and isotropic is the basis for the majority of modern cosmological models. We give an example of a metric all of whose spatial sections are spaces of constant curvature but the space-time is nevertheless not homogeneous and isotropic as a whole. We give an equivalent definition of a homogeneous and isotropic universe in terms of embedded manifolds.
Fatigue life prediction modeling for turbine hot section materials
NASA Technical Reports Server (NTRS)
Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.
1989-01-01
A major objective of the fatigue and fracture efforts under the NASA Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.
Fatigue life prediction modeling for turbine hot section materials
NASA Technical Reports Server (NTRS)
Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.
1988-01-01
A major objective of the fatigue and fracture efforts under the Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.
NASA Astrophysics Data System (ADS)
Gokulnath, C.; Saravanan, U.; Rajagopal, K. R.
2017-12-01
A methodology for obtaining implicit constitutive representations involving the Cauchy stress and the Hencky strain for isotropic materials undergoing a non-dissipative process is developed. Using this methodology, a general constitutive representation for a subclass of implicit models relating the Cauchy stress and the Hencky strain is obtained for an isotropic material with no internal constraints. It is shown that even for this subclass, unlike classical Green elasticity, one has to specify three potentials to relate the Cauchy stress and the Hencky strain. Then, a procedure to obtain implicit constitutive representations for isotropic materials with internal constraints is presented. As an illustration, it is shown that for incompressible materials the Cauchy stress and the Hencky strain could be related through a single potential. Finally, constitutive approximations are obtained when the displacement gradient is small.
Highly Accurate Beam Torsion Solutions Using the p-Version Finite Element Method
NASA Technical Reports Server (NTRS)
Smith, James P.
1996-01-01
A new treatment of the classical beam torsion boundary value problem is applied. Using the p-version finite element method with shape functions based on Legendre polynomials, torsion solutions for generic cross-sections comprised of isotropic materials are developed. Element shape functions for quadrilateral and triangular elements are discussed, and numerical examples are provided.
Evaluation of a Nonlinear Finite Element Program - ABAQUS.
1983-03-15
anisotropic properties. * MATEXP - Linearly elastic thermal expansions with isotropic, orthotropic and anisotropic properties. * MATELG - Linearly...elastic materials for general sections (options available for beam and shell elements). • MATEXG - Linearly elastic thermal expansions for general...decomposition of a matrix. * Q-R algorithm • Vector normalization, etc. Obviously, by consolidating all the utility subroutines in a library, ABAQUS has
Stress analysis in curved composites due to thermal loading
NASA Astrophysics Data System (ADS)
Polk, Jared Cornelius
Many structures in aircraft, cars, trucks, ships, machines, tools, bridges, and buildings, consist of curved sections. These sections vary from straight line segments that have curvature at either one or both ends, segments with compound curvatures, segments with two mutually perpendicular curvatures or Gaussian curvatures, and segments with a simple curvature. With the advancements made in multi-purpose composites over the past 60 years, composites slowly but steadily have been appearing in these various vehicles, compound structures, and buildings. These composite sections provide added benefits over isotropic, polymeric, and ceramic materials by generally having a higher specific strength, higher specific stiffnesses, longer fatigue life, lower density, possibilities in reduction of life cycle and/or acquisition cost, and greater adaptability to intended function of structure via material composition and geometry. To be able to design and manufacture a safe composite laminate or structure, it is imperative that the stress distributions, their causes, and effects are thoroughly understood in order to successfully accomplish mission objectives and manufacture a safe and reliable composite. The objective of the thesis work is to expand upon the knowledge of simply curved composite structures by exploring and ascertaining all pertinent parameters, phenomenon, and trends in stress variations in curved laminates due to thermal loading. The simply curved composites consist of composites with one radius of curvature throughout the span of the specimen about only one axis. Analytical beam theory, classical lamination theory, and finite element analysis were used to ascertain stress variations in a flat, isotropic beam. An analytical method was developed to ascertain the stress variations in an isotropic, simply curved beam under thermal loading that is under both free-free and fixed-fixed constraint conditions. This is the first such solution to Author's best knowledge of such a problem. It was ascertained and proven that the general, non-modified (original) version of classical lamination theory cannot be used for an analytical solution for a simply curved beam or any other structure that would require rotations of laminates out their planes in space. Finite element analysis was used to ascertain stress variations in a simply curved beam. It was verified that these solutions reduce to the flat beam solutions as the radius of curvature of the beams tends to infinity. MATLAB was used to conduct the classical lamination theory numerical analysis. A MATLAB program was written to conduct the finite element analysis for the flat and curved beams, isotropic and composite. It does not require incompatibility techniques used in mechanics of isotropic materials for indeterminate structures that are equivalent to fixed-beam problems. Finally, it has the ability to enable the user to define and create unique elements not accessible in commercial software, and modify finite element procedures to take advantage of new paradigms.
Constitutive modeling for isotropic materials
NASA Technical Reports Server (NTRS)
Chan, K. S.; Lindholm, U. S.; Bodner, S. R.
1988-01-01
The third and fourth years of a 4-year research program, part of the NASA HOST Program, are described. The program goals were: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analysis of hot section components of gas turbine engines. The unified models selected for development and evaluation were those of Bodner-Partom and of Walker. The unified approach for elastic-viscoplastic constitutive equations is a viable method for representing and predicting material response characteristics in the range where strain rate and temperature dependent inelastic deformations are experienced. This conclusion is reached by extensive comparison of model calculations against the experimental results of a test program of two high temperature Ni-base alloys, B1900+Hf and Mar-M247, over a wide temperature range for a variety of deformation and thermal histories including uniaxial, multiaxial, and thermomechanical loading paths. The applicability of the Bodner-Partom and the Walker models for structural applications has been demonstrated by implementing these models into the MARC finite element code and by performing a number of analyses including thermomechanical histories on components of hot sections of gas turbine engines and benchmark notch tensile specimens. The results of the 4-year program have been published in four annual reports. The results of the base program are summarized in this report. The tasks covered include: (1) development of material test procedures, (2) thermal history effects, and (3) verification of the constitutive model for an alternative material.
Scattering of a longitudinal Bessel beam by a sphere embedded in an isotropic elastic solid.
Leão-Neto, J P; Lopes, J H; Silva, G T
2017-11-01
The scattering of a longitudinal Bessel beam of arbitrary order by a sphere embedded in an isotropic solid matrix is theoretically analyzed. The spherical inclusion can be made of a viscoelastic, elastic, or fluid-filled isotropic material. In the analysis, the absorbing, scattering, and extinction efficiency factors are obtained, e.g., the corresponding power per characteristic beam intensity per sphere's cross-section area. Furthermore, the extended optical theorem, which expresses the extinction efficiency in terms of an integral of the longitudinal scattering function is derived. Several features of zeroth- and first-order Bessel beams scattering in solids are illustrated considering a polymer adhesive (cured) sphere embedded in a stainless steel matrix. For instance, omnidirectional scattering can be achieved by choosing specific values of the half-cone angle of the Bessel beam, which is the beam's geometrical parameter. Additionally, it is demonstrated that mode suppression leads to lower absorption inside the inclusion when compared to plane wave scattering results.
Silva, Chinthaka M.; Snead, Lance Lewis; Hunn, John D.; ...
2015-08-03
X-ray microcomputed tomography (µCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon-carbon fibre composites, nuclear-grade graphite and tristructural isotropic-coated fuel particles. Local cracks in carbon-carbon fibre composites associated with their synthesis process were observed with µCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high-resolution µCT can be used to probe internal layer defects of tristructural isotropic-coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 tomore » 5 µm and up could be isolated by to-mography. As an added advantage, µCT could also be used to identify regions with high densities of radioisotopes to deter-mine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. Lastly, in fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic-coated particles embedded in a silicon carbide matrix was accomplished usingµCT and related advanced image analysis techniques.« less
Dyakonov surface waves at the interface between hexagonal-boron-nitride and isotropic material
NASA Astrophysics Data System (ADS)
Zhu, B.; Ren, G.; Gao, Y.; Wang, Q.; Wan, C.; Wang, J.; Jian, S.
2016-12-01
In this paper we analyze the propagation of Dyakonov surface waves (DSWs) at the interface between hexagonal-boron-nitride (h-BN) and isotropic dielectric material. Various properties of DSWs supported at the dielectric-elliptic and dielectric-hyperbolic types of interfaces have been theoretically investigated, including the real effective index, propagation length, the angular existence domain (AED) and the composition ratio of evanescent field components in an h-BN crystal and isotropic dielectric material, respectively. The analysis in this paper reveals that h-BN could be a promising anisotropic material to observe the propagation of DSWs and may have potential diverse applications, such as high sensitivity stress sensing or optical sensing of analytes infiltrating dielectric materials.
Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane
NASA Technical Reports Server (NTRS)
Pant, Bharat B. (Inventor); Wan, Hong (Inventor)
2001-01-01
A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.
Material parameter computation for multi-layered vocal fold models.
Schmidt, Bastian; Stingl, Michael; Leugering, Günter; Berry, David A; Döllinger, Michael
2011-04-01
Today, the prevention and treatment of voice disorders is an ever-increasing health concern. Since many occupations rely on verbal communication, vocal health is necessary just to maintain one's livelihood. Commonly applied models to study vocal fold vibrations and air flow distributions are self sustained physical models of the larynx composed of artificial silicone vocal folds. Choosing appropriate mechanical parameters for these vocal fold models while considering simplifications due to manufacturing restrictions is difficult but crucial for achieving realistic behavior. In the present work, a combination of experimental and numerical approaches to compute material parameters for synthetic vocal fold models is presented. The material parameters are derived from deformation behaviors of excised human larynges. The resulting deformations are used as reference displacements for a tracking functional to be optimized. Material optimization was applied to three-dimensional vocal fold models based on isotropic and transverse-isotropic material laws, considering both a layered model with homogeneous material properties on each layer and an inhomogeneous model. The best results exhibited a transversal-isotropic inhomogeneous (i.e., not producible) model. For the homogeneous model (three layers), the transversal-isotropic material parameters were also computed for each layer yielding deformations similar to the measured human vocal fold deformations.
Zero group velocity longitudinal modes in an isotropic cylinder
NASA Astrophysics Data System (ADS)
Hussain, Takasar; Ahmad, Faiz; Ozair, Muhammad
2018-06-01
Zero group velocity (ZGV) modes are studied in an isotropic cylinder. The L(0, 2) mode behaves anomalously for the materials with a value of the bulk velocity ratio, κ , in the range √{2}<κ <2.64 and normally otherwise. All higher modes, except the first few, have no ZGV point for all isotropic materials. This is explained analytically by finding the slope of phase velocity dispersion curves of modes first when the phase velocity equals κ and then at their initial state.
Brown, Judith A.; Bishop, Joseph E.
2016-07-20
An a posteriori error-estimation framework is introduced to quantify and reduce modeling errors resulting from approximating complex mesoscale material behavior with a simpler macroscale model. Such errors may be prevalent when modeling welds and additively manufactured structures, where spatial variations and material textures may be present in the microstructure. We consider a case where a <100> fiber texture develops in the longitudinal scanning direction of a weld. Transversely isotropic elastic properties are obtained through homogenization of a microstructural model with this texture and are considered the reference weld properties within the error-estimation framework. Conversely, isotropic elastic properties are considered approximatemore » weld properties since they contain no representation of texture. Errors introduced by using isotropic material properties to represent a weld are assessed through a quantified error bound in the elastic regime. Lastly, an adaptive error reduction scheme is used to determine the optimal spatial variation of the isotropic weld properties to reduce the error bound.« less
Determination of replicate composite bone material properties using modal analysis.
Leuridan, Steven; Goossens, Quentin; Pastrav, Leonard; Roosen, Jorg; Mulier, Michiel; Denis, Kathleen; Desmet, Wim; Sloten, Jos Vander
2017-02-01
Replicate composite bones are used extensively for in vitro testing of new orthopedic devices. Contrary to tests with cadaveric bone material, which inherently exhibits large variability, they offer a standardized alternative with limited variability. Accurate knowledge of the composite's material properties is important when interpreting in vitro test results and when using them in FE models of biomechanical constructs. The cortical bone analogue material properties of three different fourth-generation composite bone models were determined by updating FE bone models using experimental and numerical modal analyses results. The influence of the cortical bone analogue material model (isotropic or transversely isotropic) and the inter- and intra-specimen variability were assessed. Isotropic cortical bone analogue material models failed to represent the experimental behavior in a satisfactory way even after updating the elastic material constants. When transversely isotropic material models were used, the updating procedure resulted in a reduction of the longitudinal Young's modulus from 16.00GPa before updating to an average of 13.96 GPa after updating. The shear modulus was increased from 3.30GPa to an average value of 3.92GPa. The transverse Young's modulus was lowered from an initial value of 10.00GPa to 9.89GPa. Low inter- and intra-specimen variability was found. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Feng, Q. L.; Li, C.; Liao, Y. F.
2017-12-01
Short fiber reinforced EPDM is a new kind of composite material used in solid rocket motor winding and coating. It has relatively large deformation under the small stress condition, and the physical non-linear characteristic is obvious. Due to the addition of fiber in the specific direction of the rubber, the macroscopic mechanical properties are expressed as transversely isotropic properties. In order to describe the mechanical behavior under the impact and vibration, the transversely isotropic hyperelastic constitutive model based on tensor function is proposed. The symmetry of the transversely isotropic incompressible material limits the stress tensor ‘ K ’ to be characterized as a function of 5 tensor invariants and 4 scalar invariants. The third power constitutive equations of the model give 12 independent elastic constants of the transversely isotropic nonlinear elastic material. The experimental results show that the non-zero elastic constants are different in the fiber direction and at the different strain rate. Number and value of adiabatic layer and related products R & D has a reference value.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Lindholm, U. S.; Chan, K. S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.
1985-01-01
This report presents the results of the second year of work on a problem which is part of the NASA HOST Program. Its goals are: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are that of Bodner-Partom and Walker. For model evaluation purposes, a large constitutive data base is generated for a B1900 + Hf alloy by performing uniaxial tensile, creep, cyclic, stress relation, and thermomechanical fatigue (TMF) tests as well as biaxial (tension/torsion) tests under proportional and nonproportional loading over a wide range of strain rates and temperatures. Systematic approaches for evaluating material constants from a small subset of the data base are developed. Correlations of the uniaxial and biaxial tests data with the theories of Bodner-Partom and Walker are performed to establish the accuracy, range of applicability, and integability of the models. Both models are implemented in the MARC finite element computer code and used for TMF analyses. Benchmark notch round experiments are conducted and the results compared with finite-element analyses using the MARC code and the Walker model.
Effects of aeroconvective environments on 2D reinforced ceramic matrix composites
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza; Hood, Thomas; Chang, William
1991-01-01
The effect of aeroconvective heating environment similar to that observed a spacecraft ascent or reentry from orbit, on the performance of a commercial carbon-reinforced ceramic matrix material specimens of two configurations (orthotropic and quasi-isotropic), fabricated by the Societe Europenne Propulsion (SEP) process was investigated using the NASA Ames Research Center 20 Megawatt Panel Test facility. The performance of the commercial material was compared with the SEP prepared materials. It was found that, whereas the quasi-isotropic SEP specimens exhibited a much higher mass loss rate and a significant dimensional change upon exposure to the thermal environment than did the orthotropic ones, the commercial SEP-like materials did not exhibit these characteristics. There was no greater mass loss rate for the quasi-isotropic specimens, and no dimension changes were observed. The Nicalon reinforced materials in both configurations, as fabricated by SEP or by the commercial source, showed no mass changes and no dimensional changes.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Chan, Kwai S.; Lindholm, Ulric S.; Bodner, S. R.; Hill, Jeff T.; Weber, R. M.; Meyer, T. G.
1986-01-01
The results of the third year of work on a program which is part of the NASA Hot Section Technology program (HOST) are presented. The goals of this program are: (1) the development of unified constitutive models for rate dependent isotropic materials; and (2) the demonstration of the use of unified models in structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are those of Bodner-Partom and of Walker. A test procedure was developed for assisting the generation of a data base for the Bodner-Partom model using a relatively small number of specimens. This test procedure involved performing a tensile test at a temperature of interest that involves a succession of strain-rate changes. The results for B1900+Hf indicate that material constants related to hardening and thermal recovery can be obtained on the basis of such a procedure. Strain aging, thermal recovery, and unexpected material variations, however, preluded an accurate determination of the strain-rate sensitivity parameter is this exercise. The effects of casting grain size on the constitutive behavior of B1900+Hf were studied and no particular grain size effect was observed. A systematic procedure was also developed for determining the material constants in the Bodner-Partom model. Both the new test procedure and the method for determining material constants were applied to the alternate material, Mar-M247 . Test data including tensile, creep, cyclic and nonproportional biaxial (tension/torsion) loading were collected. Good correlations were obtained between the Bodner-Partom model and experiments. A literature survey was conducted to assess the effects of thermal history on the constitutive behavior of metals. Thermal history effects are expected to be present at temperature regimes where strain aging and change of microstructure are important. Possible modifications to the Bodner-Partom model to account for these effects are outlined. The use of a unified constitutive model for hot section component analyses was demonstrated by applying the Walker model and the MARC finite-element code to a B1900+Hf airfoil problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Versino, Daniele; Brock, Jerry Steven
In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are r i = 10mm, r o = 20mm and p = 1000Kg/m 3 respectively.
Aggarwal, A. K.; Sharma, Richa; Sharma, Sanjeev
2014-01-01
The objective of this paper is to provide guidance for the design of the thick-walled cylinder made up of transversely isotropic material so that collapse of cylinder due to influence of internal and external pressure can be avoided. The concept of transition theory based on Lebesgue strain measure has been used to simplify the constitutive equations. Results have been analyzed theoretically and discussed numerically. From this analysis, it has been concluded that, under the influence of internal and external pressure, circular cylinder made up of transversely isotropic material (beryl) is on the safer side of the design as compared to the cylinders made up of isotropic material (steel). This is because of the reason that percentage increase in effective pressure required for initial yielding to become fully plastic is high for beryl as compared to steel which leads to the idea of “stress saving” that reduces the possibility of collapse of thick-walled cylinder due to internal and external pressure. PMID:24523632
Magnetically controlled multifrequency invisibility cloak with a single shell of ferrite material
NASA Astrophysics Data System (ADS)
Wang, Xiaohua; Liu, Youwen
2015-02-01
A magnetically controlled multifrequency invisibility cloak with a single shell of the isotropic and homogeneous ferrite material has been investigated based on the scattering cancellation method from the Mie scattering theory. The analytical and simulated results have demonstrated that such this shell can drastically reduce the total scattering cross-section of this cloaking system at multiple frequencies. These multiple cloaking frequencies of this shell can be externally controlled since the magnetic permeability of ferrites is well tuned by the applied magnetic field. This may provide a potential way to design a tunable multifrequency invisibility cloak with considerable flexibility.
Direct manipulation of wave amplitude and phase through inverse design of isotropic media
NASA Astrophysics Data System (ADS)
Liu, Y.; Vial, B.; Horsley, S. A. R.; Philbin, T. G.; Hao, Y.
2017-07-01
In this article we propose a new design methodology allowing us to control both amplitude and phase of electromagnetic waves from a cylindrical incident wave. This results in isotropic materials and does not resort to transformation optics or its quasi-conformal approximations. Our method leads to two-dimensional isotropic, inhomogeneous material profiles of permittivity and permeability, to which a general class of scattering-free wave solutions arise. Our design is based on the separation of the complex wave solution into amplitude and phase. We give two types of examples to validate our methodology.
Mandel, Karl; Granath, Tim; Wehner, Tobias; Rey, Marcel; Stracke, Werner; Vogel, Nicolas; Sextl, Gerhard; Müller-Buschbaum, Klaus
2017-01-24
A smart optical composite material with dynamic isotropic and anisotropic optical properties by combination of luminescence and high reflectivity was developed. This combination enables switching between luminescence and angle-dependent reflectivity by changing the applied wavelength of light. The composite is formed as anisotropic core/shell particles by coating superparamagnetic iron oxide-silica microrods with a layer of the luminescent metal-organic framework (MOF) 3 ∞ [Eu 2 (BDC) 3 ]·2DMF·2H 2 O (BDC 2- = 1,4-benzenedicarboxylate). The composite particles can be rotated by an external magnet. Their anisotropic shape causes changes in the reflectivity and diffraction of light depending on the orientation of the composite particle. These rotation-dependent optical properties are complemented by an isotropic luminescence resulting from the MOF shell. If illuminated by UV light, the particles exhibit isotropic luminescence while the same sample shows anisotropic optical properties when illuminated with visible light. In addition to direct switching, the optical properties can be tailored continuously between isotropic red emission and anisotropic reflection of light if the illuminating light is tuned through fractions of both UV and visible light. The integration and control of light emission modes within a homogeneous particle dispersion marks a smart optical material, addressing fundamental directions for research on switchable multifunctional materials. The material can function as an optic compass or could be used as an optic shutter that can be switched by a magnetic field, e.g., for an intensity control for waveguides in the visible range.
Laminated beams of isotropic or orthotropic materials subjected to temperature change
Shun Cheng; T. Gerhardt
1980-01-01
This paper considers laminated beams with layers of different isotropic or orthotropic materials fastened together by thin adhesives. The stresses that result from subjecting each component layer of the beam to different temperature or moisture stimuli which may also vary along the length of the beam, are calculated. Two-dimensional elasticity theory is used so that a...
Resonant dielectric metamaterials
Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B
2014-12-02
A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.
A differential CDM model for fatigue of unidirectional metal matrix composites
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Kruch, S.
1992-01-01
A multiaxial, isothermal, continuum damage mechanics (CDM) model for fatigue of a unidirectional metal matrix composite volume element is presented. The model is phenomenological, stress based, and assumes a single scalar internal damage variable, the evolution of which is anisotropic. The development of the fatigue damage model, (i.e., evolutionary law) is based on the definition of an initially transversely isotropic fatigue limit surface, a static fracture surface, and a normalized stress amplitude function. The anisotropy of these surfaces and function, and therefore the model, is defined through physically meaningful invariants reflecting the local stress and material orientation. This transversely isotropic model is shown, when taken to it's isotropic limit, to directly simplify to a previously developed and validated isotropic fatigue continuum damage model. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation in attempting to characterize a class of composite materials, and (2) the capability of the formulation in predicting anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Also, specific material parameters representing an initial characterization of the composite system SiC/Ti 15-3 and the matrix material (Ti 15-3) are reported.
Process for Design Optimization of Honeycomb Core Sandwich Panels for Blast Load Mitigation
2012-12-01
experiments. Numerical simulation using a single ‘Y’ cross-sectional unit cell model predicted the crush behavior quite well compared to experiments with...of foil glued together by an adhesive. LS-DYNA is used to carry out the virtual simulation . The foil is modeled by quadrilateral Belytschko-Tsay...aluminum alloy with bilinear isotropic-hardening elastoplastic material model is used for the foil. Since the yield and ultimate strength of the AL5052
Optimality of Thermal Expansion Bounds in Three Dimensions
Watts, Seth E.; Tortorelli, Daniel A.
2015-02-20
In this short note, we use topology optimization to design multi-phase isotropic three-dimensional composite materials with extremal combinations of isotropic thermal expansion and bulk modulus. In so doing, we provide evidence that the theoretical bounds for this combination of material properties are optimal. This has been shown in two dimensions, but not heretofore in three dimensions. Finally, we also show that restricting the design space by enforcing material symmetry by construction does not prevent one from obtaining extremal designs.
Investigating Dielectric and Metamaterial Effects in a Terahertz Traveling-Wave Tube Amplifier
NASA Technical Reports Server (NTRS)
Starinshak, David P.; Wilson, Jeffrey D.
2008-01-01
Adding material enhancements to a terahertz traveling-wave tube amplifier is investigated. Isotropic dielectrics, negative-index metamaterials, and anisotropic crystals are simulated, and plans to increase the efficiency of the device are discussed. Early results indicate that adding dielectric to the curved sections of the serpentine-shaped slow-wave circuit produce optimal changes in the cold-test characteristics of the device and a minimal drop in operating frequency. Additional results suggest that materials with simultaneously small relative permittivities and electrical conductivities are best suited for increasing the efficiency of the device. More research is required on the subject, and recommendations are given to determine the direction.
NASA Technical Reports Server (NTRS)
Nelson, Richard S.; Schoendorf, John F.
1986-01-01
As gas turbine technology continues to advance, the need for advanced life prediction methods for hot section components is becoming more and more evident. The complex local strain and temperature histories at critical locations must be accurately interpreted to account for the effects of various damage mechanisms (such as fatigue, creep, and oxidation) and their possible interactions. As part of the overall NASA HOST effort, this program is designed to investigate these fundamental damage processes, identify modeling strategies, and develop practical models which can be used to guide the early design and development of new engines and to increase the durability of existing engines.
Shear Modulus for Nonisotropic, Open-Celled Foams Using a General Elongated Kelvin Foam Model
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Ghosn, Louis J.
2008-01-01
An equation for the shear modulus for nonisotropic, open-celled foams in the plane transverse to the elongation (rise) direction is derived using an elongated Kelvin foam model with the most general geometric description. The shear modulus was found to be a function of the unit cell dimensions, the solid material properties, and the cell edge cross-section properties. The shear modulus equation reduces to the relation derived by others for isotropic foams when the unit cell is equiaxed.
On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity
NASA Astrophysics Data System (ADS)
Vallée, Claude; Fortuné, Danielle; Lerintiu, Camelia
2008-11-01
Elastic materials are governed by a constitutive law relating the second Piola-Kirchhoff stress tensor Σ and the right Cauchy-Green strain tensor C=FF. Isotropic elastic materials are the special cases for which the Cauchy stress tensor σ depends solely on the left Cauchy-Green strain tensor B=FF. In this Note we revisit the following property of isotropic hyperelastic materials: if the constitutive law relating Σ and C is derivable from a potential ϕ, then σ and lnB are related by a constitutive law derived from the compound potential ϕ○exp. We give a new and concise proof which is based on an explicit integral formula expressing the derivative of the exponential of a tensor. To cite this article: C. Vallée et al., C. R. Mecanique 336 (2008).
Explicit 2-D Hydrodynamic FEM Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jerry
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL highmore » explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less
Damage Processes in a Quasi-Isotropic Composite Short Beam Under Three- Point Loading
1992-01-01
American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103 12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE...three- point bend test Is investigated for a composite with a quasi-isotropic layup. Failue is found to Initiate iri a region near the point of...Composites Technology & Research, Winter 1991 Copyright American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103 REFERENCE
Creep-fatigue life prediction for engine hot section materials (isotropic)
NASA Technical Reports Server (NTRS)
Moreno, V.
1982-01-01
The objectives of this program are the investigation of fundamental approaches to high temperature crack initiation life prediction, identification of specific modeling strategies and the development of specific models for component relevant loading conditions. A survey of the hot section material/coating systems used throughout the gas turbine industry is included. Two material/coating systems will be identified for the program. The material/coating system designated as the base system shall be used throughout Tasks 1-12. The alternate material/coating system will be used only in Task 12 for further evaluation of the models developed on the base material. In Task II, candidate life prediction approaches will be screened based on a set of criteria that includes experience of the approaches within the literature, correlation with isothermal data generated on the base material, and judgements relative to the applicability of the approach for the complex cycles to be considered in the option program. The two most promising approaches will be identified. Task 3 further evaluates the best approach using additional base material fatigue testing including verification tests. Task 4 consists of technical, schedular, financial and all other reporting requirements in accordance with the Reports of Work clause.
A new ChainMail approach for real-time soft tissue simulation.
Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2016-07-03
This paper presents a new ChainMail method for real-time soft tissue simulation. This method enables the use of different material properties for chain elements to accommodate various materials. Based on the ChainMail bounding region, a new time-saving scheme is developed to improve computational efficiency for isotropic materials. The proposed method also conserves volume and strain energy. Experimental results demonstrate that the proposed ChainMail method can not only accommodate isotropic, anisotropic and heterogeneous materials but also model incompressibility and relaxation behaviors of soft tissues. Further, the proposed method can achieve real-time computational performance.
Hencky's model for elastomer forming process
NASA Astrophysics Data System (ADS)
Oleinikov, A. A.; Oleinikov, A. I.
2016-08-01
In the numerical simulation of elastomer forming process, Henckys isotropic hyperelastic material model can guarantee relatively accurate prediction of strain range in terms of large deformations. It is shown, that this material model prolongate Hooke's law from the area of infinitesimal strains to the area of moderate ones. New representation of the fourth-order elasticity tensor for Hencky's hyperelastic isotropic material is obtained, it possesses both minor symmetries, and the major symmetry. Constitutive relations of considered model is implemented into MSC.Marc code. By calculating and fitting curves, the polyurethane elastomer material constants are selected. Simulation of equipment for elastomer sheet forming are considered.
Collapse of composite tubes under end moments
NASA Technical Reports Server (NTRS)
Stockwell, Alan E.; Cooper, Paul A.
1992-01-01
Cylindrical tubes of moderate wall thickness such as those proposed for the original space station truss, may fail due to the gradual collapse of the tube cross section as it distorts under load. Sometimes referred to as the Brazier instability, it is a nonlinear phenomenon. This paper presents an extension of an approximate closed form solution of the collapse of isotropic tubes subject to end moments developed by Reissner in 1959 to include specially orthotropic material. The closed form solution was verified by an extensive nonlinear finite element analysis of the collapse of long tubes under applied end moments for radius to thickness ratios and composite layups in the range proposed for recent space station truss framework designs. The finite element analysis validated the assumption of inextensional deformation of the cylindrical cross section and the approximation of the material as specially orthotropic.
The use of cross-section warping functions in composite rotor blade analysis
NASA Technical Reports Server (NTRS)
Kosmatka, J. B.
1992-01-01
During the contracted period, our research was concentrated into three areas. The first was the development of an accurate and a computationally efficient method for predicting the cross-section warping functions in an arbitrary cross-section composed of isotropic and/or anisotropic materials. The second area of research was the development of a general higher-order one-dimensional theory for anisotropic beams. The third area of research was the development of an analytical model for assessing the extension-bend-twist coupling behavior of nonhomogeneous anisotropic beams with initial twist. In the remaining six chapters of this report, the three different research areas and associated sub-research areas are covered independently including separate introductions, theoretical developments, numerical results, and references.
Homogenization of periodic bi-isotropic composite materials
NASA Astrophysics Data System (ADS)
Ouchetto, Ouail; Essakhi, Brahim
2018-07-01
In this paper, we present a new method for homogenizing the bi-periodic materials with bi-isotropic components phases. The presented method is a numerical method based on the finite element method to compute the local electromagnetic properties. The homogenized constitutive parameters are expressed as a function of the macroscopic electromagnetic properties which are obtained from the local properties. The obtained results are compared to Unfolding Finite Element Method and Maxwell-Garnett formulas.
A Membrane Model from Implicit Elasticity Theory
Freed, A. D.; Liao, J.; Einstein, D. R.
2014-01-01
A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal-energy function. The theory utilizes Biot’s (1939) definitions for stress and strain that, in 1-dimension, are the stress/strain measures adopted by Fung (1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from a porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly non-linear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model. PMID:24282079
New criteria for isotropic and textured metals
NASA Astrophysics Data System (ADS)
Cazacu, Oana
2018-05-01
In this paper a isotropic criterion expressed in terms of both invariants of the stress deviator, J2 and J3 is proposed. This criterion involves a unique parameter, α, which depends only on the ratio between the yield stresses in uniaxial tension and pure shear. If this parameter is zero, the von Mises yield criterion is recovered; if a is positive the yield surface is interior to the von Mises yield surface whereas when a is negative, the new yield surface is exterior to it. Comparison with polycrystalline calculations using Taylor-Bishop-Hill model [1] for randomly oriented face-centered (FCC) polycrystalline metallic materials show that this new criterion captures well the numerical yield points. Furthermore, the criterion reproduces well yielding under combined tension-shear loadings for a variety of isotropic materials. An extension of this isotropic yield criterion such as to account for orthotropy in yielding is developed using the generalized invariants approach of Cazacu and Barlat [2]. This new orthotropic criterion is general and applicable to three-dimensional stress states. The procedure for the identification of the material parameters is outlined. Illustration of the predictive capabilities of the new orthotropic is demonstrated through comparison between the model predictions and data on aluminum sheet samples.
A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure.
Muhlestein, Michael B; Haberman, Michael R
2016-08-01
An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed.
A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure
Haberman, Michael R.
2016-01-01
An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed. PMID:27616932
A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure
NASA Astrophysics Data System (ADS)
Muhlestein, Michael B.; Haberman, Michael R.
2016-08-01
An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed.
Elías-Zúñiga, Alex; Baylón, Karen; Ferrer, Inés; Serenó, Lídia; Garcia-Romeu, Maria Luisa; Bagudanch, Isabel; Grabalosa, Jordi; Pérez-Recio, Tania; Martínez-Romero, Oscar; Ortega-Lara, Wendy; Elizalde, Luis Ernesto
2014-01-01
In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data. PMID:28788466
Elías-Zúñiga, Alex; Baylón, Karen; Ferrer, Inés; Serenó, Lídia; García-Romeu, Maria Luisa; Bagudanch, Isabel; Grabalosa, Jordi; Pérez-Recio, Tania; Martínez-Romero, Oscar; Ortega-Lara, Wendy; Elizalde, Luis Ernesto
2014-01-16
In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model's theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data.
NASA Technical Reports Server (NTRS)
Polanco, Michael A.; Kellas, Sotiris; Jackson, Karen
2009-01-01
The performance of material models to simulate a novel composite honeycomb Deployable Energy Absorber (DEA) was evaluated using the nonlinear explicit dynamic finite element code LS-DYNA(Registered TradeMark). Prototypes of the DEA concept were manufactured using a Kevlar/Epoxy composite material in which the fibers are oriented at +/-45 degrees with respect to the loading axis. The development of the DEA has included laboratory tests at subcomponent and component levels such as three-point bend testing of single hexagonal cells, dynamic crush testing of single multi-cell components, and impact testing of a full-scale fuselage section fitted with a system of DEA components onto multi-terrain environments. Due to the thin nature of the cell walls, the DEA was modeled using shell elements. In an attempt to simulate the dynamic response of the DEA, it was first represented using *MAT_LAMINATED_COMPOSITE_FABRIC, or *MAT_58, in LS-DYNA. Values for each parameter within the material model were generated such that an in-plane isotropic configuration for the DEA material was assumed. Analytical predictions showed that the load-deflection behavior of a single-cell during three-point bending was within the range of test data, but predicted the DEA crush response to be very stiff. In addition, a *MAT_PIECEWISE_LINEAR_PLASTICITY, or *MAT_24, material model in LS-DYNA was developed, which represented the Kevlar/Epoxy composite as an isotropic elastic-plastic material with input from +/-45 degrees tensile coupon data. The predicted crush response matched that of the test and localized folding patterns of the DEA were captured under compression, but the model failed to predict the single-cell three-point bending response.
Torsion of a Cosserat elastic bar with square cross section: theory and experiment
NASA Astrophysics Data System (ADS)
Drugan, W. J.; Lakes, R. S.
2018-04-01
An approximate analytical solution for the displacement and microrotation vector fields is derived for pure torsion of a prismatic bar with square cross section comprised of homogeneous, isotropic linear Cosserat elastic material. This is accomplished by analytical simplification coupled with use of the principle of minimum potential energy together with polynomial representations for the desired field components. Explicit approximate expressions are derived for cross section warp and for applied torque versus angle of twist of the bar. These show that torsional rigidity exceeds the classical elasticity value, the difference being larger for slender bars, and that cross section warp is less than the classical amount. Experimental measurements on two sets of 3D printed square cross section polymeric bars, each set having a different microstructure and four different cross section sizes, revealed size effects not captured by classical elasticity but consistent with the present analysis for physically sensible values of the Cosserat moduli. The warp can allow inference of Cosserat elastic constants independently of any sensitivity the material may have to dilatation gradients; warp also facilitates inference of Cosserat constants that are difficult to obtain via size effects.
Micromechanical combined stress analysis: MICSTRAN, a user manual
NASA Technical Reports Server (NTRS)
Naik, R. A.
1992-01-01
Composite materials are currently being used in aerospace and other applications. The ability to tailor the composite properties by the appropriate selection of its constituents, the fiber and matrix, is a major advantage of composite materials. The Micromechanical Combined Stress Analysis (MICSTRAN) code provides the materials engineer with a user-friendly personal computer (PC) based tool to calculate overall composite properties given the constituent fiber and matrix properties. To assess the ability of the composite to carry structural loads, the materials engineer also needs to calculate the internal stresses in the composite material. MICSTRAN is a simple tool to calculate such internal stresses with a composite ply under combined thermomechanical loading. It assumes that the fibers have a circular cross-section and are arranged either in a repeating square or diamond array pattern within a ply. It uses a classical elasticity solution technique that has been demonstrated to calculate accurate stress results. Input to the program consists of transversely isotropic fiber properties and isotropic matrix properties such as moduli, Poisson's ratios, coefficients of thermal expansion, and volume fraction. Output consists of overall thermoelastic constants and stresses. Stresses can be computed under the combined action of thermal, transverse, longitudinal, transverse shear, and longitudinal shear loadings. Stress output can be requested along the fiber-matrix interface, the model boundaries, circular arcs, or at user-specified points located anywhere in the model. The MICSTRAN program is Windows compatible and takes advantage of the Microsoft Windows graphical user interface which facilitates multitasking and extends memory access far beyond the limits imposed by the DOS operating system.
Homogenous isotropic invisible cloak based on geometrical optics.
Sun, Jingbo; Zhou, Ji; Kang, Lei
2008-10-27
Invisible cloak derived from the coordinate transformation requires its constitutive material to be anisotropic. In this work, we present a cloak of graded-index isotropic material based on the geometrical optics theory. The cloak is realized by concentric multilayered structure with designed refractive index to achieve the low-scattering and smooth power-flow. Full-wave simulations on such a design of a cylindrical cloak are performed to demonstrate the cloaking ability to incident wave of any polarization. Using normal nature material with isotropy and low absorption, the cloak shows light on a practical path to stealth technology, especially that in the optical range.
Biomechanical modeling of reconstructive intervention on the thoracolumbar transition
NASA Astrophysics Data System (ADS)
Donnik, A. M.; Kirillova, I. V.; Kossovich, L. Yu.; Zaretskov, V. V.; Lykhachev, S. V.; Norkin, I. A.
2018-05-01
A finite-element model is presented for a healthy person and for a person with an injury in this section of the spine. The mechanical parameters of the bone tissue of the vertebrae, intervertebral discs, arcuate joints, and ligaments, are modeled on the basis of data from literature sources. Elements of the transitional thoracolumbar spine are considered as isotropic, homogeneous and linearly elastic material. The obtained models allow for a comparative analysis of the spine of a healthy person and the presence of injure in the transitional thoracolumbar spine.
Deformation mechanisms in negative Poisson's ratio materials - Structural aspects
NASA Technical Reports Server (NTRS)
Lakes, R.
1991-01-01
Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.
Asymptotic behavior of curvature of surface elements in isotropic turbulence
NASA Technical Reports Server (NTRS)
Girimaji, S. S.
1991-01-01
The asymptotic behavior of the curvature of material elements in turbulence is investigated using Lagrangian velocity-gradient time series obtained from direct numerical simulations of isotropic turbulence. Several material-element ensembles of different initial curvatures and shapes are studied. It is found that, at long times, the (first five) moments of the logarithm of characteristic curvature and shape factor asymptote to values that are independent of the initial curvature or shape. This evidence strongly suggests that the asymptotic pdf's of the curvature and shape of material elements are stationary and independent of initial conditions. Irrespective of initial curvature or shape, the asymptotic shape of a material surface is cylindrical with a high probability.
NASA Astrophysics Data System (ADS)
Takada, Noriharu; Nagatsu, Masaaki; Shimada, Michiya
1995-07-01
The temperature dependence of power reflectivity in the synchrotron radiation range was measured for candidate first-wall materials of the fusion reactor, such as B4C-coated isotropic graphite, C/C composite material, silicon carbide (SiC), tungsten (W), molybdenum (Mo) and SUS-316. The measurements were carried out using a vacuum vessel with a pressure of about 3 mTorr to avoid oxidation. Distinct temperature dependence of reflectivity was observed only for B4C-coated isotropic graphite. For the other materials, power reflectivities were insensitive to temperature in the range from 300 K to ˜900 K. Theoretical analysis of the results is also presented.
Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.
2012-01-01
The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material. PMID:22757501
NASA Astrophysics Data System (ADS)
Espinosa, Luis; Prieto, Flavio; Brancheriau, Loïc.
2017-03-01
Trees play a major ecological and sanitary role in modern cities. Nondestructive imaging methods allow to analyze the inner structures of trees, without altering their condition. In this study, we are interested on evaluating the influence of anisotropy condition in wood on the tomography image reconstruction using ultrasonic waves, by time-of-flight (TOF) estimation using the raytracing approach, a technique used particularly in the field of exploration seismography to simulate wave fronts in elastic media. Mechanical parameters from six wood species and one isotropic material were defined and their wave fronts and corresponding TOF values were obtained, using the proposed raytracing method. If the material presented anisotropy, the ray paths between the emitter and the receivers were not straight; therefore, curved rays were obtained for wood and the TOF measurements were affected. To obtain the tomographic image from the TOF measurements, the filtered back-projection algorithm was applied, a widely used technique in applications of straight ray tomography, but also commonly used in wood acoustic tomography. First, discs without inner defects for isotropic and wood materials (Spruce sample) were tested. Isotropic material resulted in a flat color image; for wood material, a gradient of velocities was obtained. After, centric and eccentric defects were tested, both for isotropic and orthotropic cases. From the results obtained for wood, when using a reconstruction algorithm intended for straight ray tomography, the images presented velocity variations from the border to the center that made difficult the discrimination of possible defects inside the samples, especially for eccentric cases.
Gibson, Eli; Gaed, Mena; Gómez, José A.; Moussa, Madeleine; Pautler, Stephen; Chin, Joseph L.; Crukley, Cathie; Bauman, Glenn S.; Fenster, Aaron; Ward, Aaron D.
2013-01-01
Background: Guidelines for localizing prostate cancer on imaging are ideally informed by registered post-prostatectomy histology. 3D histology reconstruction methods can support this by reintroducing 3D spatial information lost during histology processing. The need to register small, high-grade foci drives a need for high accuracy. Accurate 3D reconstruction method design is impacted by the answers to the following central questions of this work. (1) How does prostate tissue deform during histology processing? (2) What spatial misalignment of the tissue sections is induced by microtome cutting? (3) How does the choice of reconstruction model affect histology reconstruction accuracy? Materials and Methods: Histology, paraffin block face and magnetic resonance images were acquired for 18 whole mid-gland tissue slices from six prostates. 7-15 homologous landmarks were identified on each image. Tissue deformation due to histology processing was characterized using the target registration error (TRE) after landmark-based registration under four deformation models (rigid, similarity, affine and thin-plate-spline [TPS]). The misalignment of histology sections from the front faces of tissue slices was quantified using manually identified landmarks. The impact of reconstruction models on the TRE after landmark-based reconstruction was measured under eight reconstruction models comprising one of four deformation models with and without constraining histology images to the tissue slice front faces. Results: Isotropic scaling improved the mean TRE by 0.8-1.0 mm (all results reported as 95% confidence intervals), while skew or TPS deformation improved the mean TRE by <0.1 mm. The mean misalignment was 1.1-1.9° (angle) and 0.9-1.3 mm (depth). Using isotropic scaling, the front face constraint raised the mean TRE by 0.6-0.8 mm. Conclusions: For sub-millimeter accuracy, 3D reconstruction models should not constrain histology images to the tissue slice front faces and should be flexible enough to model isotropic scaling. PMID:24392245
A Membrane Model from Implicit Elasticity Theory. Application to Visceral Pleura
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freed, Alan D.; Liao, Jun; Einstein, Daniel R.
2013-11-27
A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal energy function. The theory utilizes Biot’s (Lond Edinb Dublin Philos Mag J Sci 27:468–489, 1939) definitions for stress and strain that, in one-dimension, are the stress/strain measures adopted by Fung (Am J Physiol 28:1532–1544, 1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from amore » porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly nonlinear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model.« less
Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2
NASA Astrophysics Data System (ADS)
Qiao, Xiao-Fen; Wu, Jiang-Bin; Zhou, Linwei; Qiao, Jingsi; Shi, Wei; Chen, Tao; Zhang, Xin; Zhang, Jun; Ji, Wei; Tan, Ping-Heng
2016-04-01
Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders.Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01569g
Generalized thermoelastic interaction in an isotropic solid cylinder without energy dissipation
NASA Astrophysics Data System (ADS)
Alshaikh, Fatimah
2018-04-01
In this paper, we constructed the generalized thermoelastic equations of an isotropic solid cylinder. The formulation is applied in the context of Green and Naghdi theory of types II (without energy dissipation). The material of the cylinder is supposed to be homogeneous isotropic both mechanically and thermally. The governing equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by an eigenvalue approach. Numerical results for the temperature distribution, displacement and radial stress are represented graphically.
Low velocity instrumented impact testing of four new damage tolerant carbon/epoxy composite systems
NASA Technical Reports Server (NTRS)
Lance, D. G.; Nettles, A. T.
1990-01-01
Low velocity drop weight instrumented impact testing was utilized to examine the damage resistance of four recently developed carbon fiber/epoxy resin systems. A fifth material, T300/934, for which a large data base exists, was also tested for comparison purposes. A 16-ply quasi-isotropic lay-up configuration was used for all the specimens. Force/absorbed energy-time plots were generated for each impact test. The specimens were cross-sectionally analyzed to record the damage corresponding to each impact energy level. Maximum force of impact versus impact energy plots were constructed to compare the various systems for impact damage resistance. Results show that the four new damage tolerant fiber/resin systems far outclassed the T300/934 material. The most damage tolerant material tested was the IM7/1962 fiber/resin system.
Fermat's Principle of Least Time in the Presence of Uniformly Moving Boundaries and Media
ERIC Educational Resources Information Center
Gjurchinovski, Aleksandar; Skeparovski, Aleksandar
2007-01-01
The refraction of a light ray by a homogeneous, isotropic and non-dispersive transparent material half-space in uniform rectilinear motion is investigated theoretically. The approach is an amalgamation of the original Fermat's principle and the fact that an isotropic optical medium at rest becomes optically anisotropic in a frame where the medium…
NASA Astrophysics Data System (ADS)
Ravi, J. T.; Nidhan, S.; Muthu, N.; Maiti, S. K.
2018-02-01
An analytical method for determination of dimensions of longitudinal crack in monolithic beams, based on frequency measurements, has been extended to model L and inverted T cracks. Such cracks including longitudinal crack arise in beams made of layered isotropic or composite materials. A new formulation for modelling cracks in bi-material beams is presented. Longitudinal crack segment sizes, for L and inverted T cracks, varying from 2.7% to 13.6% of length of Euler-Bernoulli beams are considered. Both forward and inverse problems have been examined. In the forward problems, the analytical results are compared with finite element (FE) solutions. In the inverse problems, the accuracy of prediction of crack dimensions is verified using FE results as input for virtual testing. The analytical results show good agreement with the actual crack dimensions. Further, experimental studies have been done to verify the accuracy of the analytical method for prediction of dimensions of three types of crack in isotropic and bi-material beams. The results show that the proposed formulation is reliable and can be employed for crack detection in slender beam like structures in practice.
2017-01-01
The mechanical response of a homogeneous isotropic linearly elastic material can be fully characterized by two physical constants, the Young’s modulus and the Poisson’s ratio, which can be derived by simple tensile experiments. Any other linear elastic parameter can be obtained from these two constants. By contrast, the physical responses of nonlinear elastic materials are generally described by parameters which are scalar functions of the deformation, and their particular choice is not always clear. Here, we review in a unified theoretical framework several nonlinear constitutive parameters, including the stretch modulus, the shear modulus and the Poisson function, that are defined for homogeneous isotropic hyperelastic materials and are measurable under axial or shear experimental tests. These parameters represent changes in the material properties as the deformation progresses, and can be identified with their linear equivalent when the deformations are small. Universal relations between certain of these parameters are further established, and then used to quantify nonlinear elastic responses in several hyperelastic models for rubber, soft tissue and foams. The general parameters identified here can also be viewed as a flexible basis for coupling elastic responses in multi-scale processes, where an open challenge is the transfer of meaningful information between scales. PMID:29225507
Deep Drawing Simulations With Different Polycrystalline Models
NASA Astrophysics Data System (ADS)
Duchêne, Laurent; de Montleau, Pierre; Bouvier, Salima; Habraken, Anne Marie
2004-06-01
The goal of this research is to study the anisotropic material behavior during forming processes, represented by both complex yield loci and kinematic-isotropic hardening models. A first part of this paper describes the main concepts of the `Stress-strain interpolation' model that has been implemented in the non-linear finite element code Lagamine. This model consists of a local description of the yield locus based on the texture of the material through the full constraints Taylor's model. The texture evolution due to plastic deformations is computed throughout the FEM simulations. This `local yield locus' approach was initially linked to the classical isotropic Swift hardening law. Recently, a more complex hardening model was implemented: the physically-based microstructural model of Teodosiu. It takes into account intergranular heterogeneity due to the evolution of dislocation structures, that affects isotropic and kinematic hardening. The influence of the hardening model is compared to the influence of the texture evolution thanks to deep drawing simulations.
Topography-specific isotropic tunneling in nanoparticle monolayer with sub-nm scale crevices.
Wang, Guisheng; Jiao, Weihong; Yi, Lizhi; Zhang, Yuejiao; Wu, Ke; Zhang, Chao; Lv, Xianglong; Qian, Lihua; Li, Jianfeng; Yuan, Songliu; Chen, Liang
2016-10-07
Material used in flexible devices may experience anisotropic strain with identical magnitude, outputting coherent signals that tend to have a serious impact on device reliability. In this work, the surface topography of the nanoparticles (NPs) is proposed to be a parameter to control the performance of strain gauge based on tunneling behavior. In contrast to anisotropic tunneling in a monolayer of spherical NPs, electron tunneling in a monolayer of urchin-like NPs actually exhibits a nearly isotropic response to strain with different loading orientations. Isotropic tunneling of the urchin-like NPs is caused by the interlocked pikes of these urchin-like NPs in a random manner during external mechanical stimulus. Topography-dependent isotropic tunneling in two dimensions reported here opens a new opportunity to create highly reliable electronics with superior performance.
Transverse isotropic modeling of the ballistic response of glass reinforced plastic composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, P.A.
1997-12-31
The use of glass reinforced plastic (GRP) composites is gaining significant attention in the DoD community for use in armor applications. These materials typically possess a laminate structure consisting of up to 100 plies, each of which is constructed of a glass woven roving fabric that reinforces a plastic matrix material. Current DoD attention is focused on a high strength, S-2 glass cross-weave (0/90) fabric reinforcing a polyester matrix material that forms each ply of laminate structure consisting anywhere from 20 to 70 plies. The resulting structure displays a material anisotropy that is, to a reasonable approximation, transversely isotropic. Whenmore » subjected to impact and penetration from a metal fragment projectile, the GRP displays damage and failure in an anisotropic manner due to various mechanisms such as matrix cracking, fiber fracture and pull-out, and fiber-matrix debonding. In this presentation, the author will describe the modeling effort to simulate the ballistic response of the GRP material described above using the transversely isotropic (TI) constitutive model which has been implemented in the shock physics code, CTH. The results of this effort suggest that the model is able to describe the delamination behavior of the material but has some difficulty capturing the in-plane (i.e., transverse) response of the laminate due to its cross-weave fabric reinforcement pattern which causes a departure from transverse isotropy.« less
A study of fracture phenomena in fiber composite laminates. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Konish, H. J., Jr.
1973-01-01
The extension of linear elastic fracture mechanics from ostensibly homogeneous isotropic metallic alloys to heterogeneous anisotropic advanced fiber composites is considered. It is analytically demonstrated that the effects of material anisotropy do not alter the principal characteristics exhibited by a crack in an isotropic material. The heterogeneity of fiber composites is experimentally shown to have a negligible effect on the behavior of a sufficiently long crack. A method is proposed for predicting the fracture strengths of a large class of composite laminates; the values predicted by this method show good agreement with limited experimental data. The limits imposed by material heterogeneity are briefly discussed, and areas for further study are recommended.
The M-Integral for Computing Stress Intensity Factors in Generally Anisotropic Materials
NASA Technical Reports Server (NTRS)
Warzynek, P. A.; Carter, B. J.; Banks-Sills, L.
2005-01-01
The objective of this project is to develop and demonstrate a capability for computing stress intensity factors in generally anisotropic materials. These objectives have been met. The primary deliverable of this project is this report and the information it contains. In addition, we have delivered the source code for a subroutine that will compute stress intensity factors for anisotropic materials encoded in both the C and Python programming languages and made available a version of the FRANC3D program that incorporates this subroutine. Single crystal super alloys are commonly used for components in the hot sections of contemporary jet and rocket engines. Because these components have a uniform atomic lattice orientation throughout, they exhibit anisotropic material behavior. This means that stress intensity solutions developed for isotropic materials are not appropriate for the analysis of crack growth in these materials. Until now, a general numerical technique did not exist for computing stress intensity factors of cracks in anisotropic materials and cubic materials in particular. Such a capability was developed during the project and is described and demonstrated herein.
2006-08-01
carbon would be highly oriented pyrolytic graphite ( HOPG ), which is formed by depositing one atom at a time on a surface utilizing the pyrolysis of a... of the crystallites, and baking to 2800 K produces a polycrystalline graphite part that has high strength and conductivity. To make isotropic...pitch fibers) or flexible (Graphoil®), as well as anisotropic ( HOPG ) or isotropic ( polycrystalline graphite ). In addition, porosity, lubricity
Theoretical basis for design of thermal-stress-free fasteners
NASA Technical Reports Server (NTRS)
Blosser, M. L.; Mcwithey, R. R.
1983-01-01
A theoretical basis was developed for the design of fasteners which are free of thermal stress. A fastener can be shaped to eliminate the thermal stress which would otherwise result from differential thermal expansion between dissimilar fastener and sheet materials for many combinations of isotropic and orthotropic materials. The resulting joint remains snug, yet free of thermal stress at any temperature, if the joint is uniform in temperature, if it is frictionless, and if the coefficients of thermal expansion of the materials do not change with temperature. In general, such a fastener has curved sides; however, if both materials have isotropic coefficients of thermal expansion, a conical fastener is free of thermal stress. Equations are presented for thermal stress free shapes at both initial and final temperature, and typical fastener shapes are shown.
NASA Astrophysics Data System (ADS)
Li, Guo-Yang; Zheng, Yang; Liu, Yanlin; Destrade, Michel; Cao, Yanping
2016-11-01
A body force concentrated at a point and moving at a high speed can induce shear-wave Mach cones in dusty-plasma crystals or soft materials, as observed experimentally and named the elastic Cherenkov effect (ECE). The ECE in soft materials forms the basis of the supersonic shear imaging (SSI) technique, an ultrasound-based dynamic elastography method applied in clinics in recent years. Previous studies on the ECE in soft materials have focused on isotropic material models. In this paper, we investigate the existence and key features of the ECE in anisotropic soft media, by using both theoretical analysis and finite element (FE) simulations, and we apply the results to the non-invasive and non-destructive characterization of biological soft tissues. We also theoretically study the characteristics of the shear waves induced in a deformed hyperelastic anisotropic soft material by a source moving with high speed, considering that contact between the ultrasound probe and the soft tissue may lead to finite deformation. On the basis of our theoretical analysis and numerical simulations, we propose an inverse approach to infer both the anisotropic and hyperelastic parameters of incompressible transversely isotropic (TI) soft materials. Finally, we investigate the properties of the solutions to the inverse problem by deriving the condition numbers in analytical form and performing numerical experiments. In Part II of the paper, both ex vivo and in vivo experiments are conducted to demonstrate the applicability of the inverse method in practical use.
NASA Technical Reports Server (NTRS)
Prasad, C. B.; Prabhakaran, R.; Tompkins, S.
1987-01-01
The hole-drilling technique for the measurement of residual stresses using electrical resistance strain gages has been widely used for isotropic materials and has been adopted by the ASTM as a standard method. For thin isotropic plates, with a hole drilled through the thickness, the idealized hole-drilling calibration constants are obtained by making use of the well-known Kirsch's solution. In this paper, an analogous attempt is made to theoretically determine the three idealized hole-drilling calibration constants for thin orthotropic materials by employing Savin's (1961) complex stress function approach.
Creep fatigue life prediction for engine hot section materials (isotropic)
NASA Technical Reports Server (NTRS)
Moreno, Vito; Nissley, David; Lin, Li-Sen Jim
1985-01-01
The first two years of a two-phase program aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components are discussed. In Phase 1 (baseline) effort, low cycle fatigue (LCF) models, using a data base generated for a cast nickel base gas turbine hot section alloy (B1900+Hf), were evaluated for their ability to predict the crack initiation life for relevant creep-fatigue loading conditions and to define data required for determination of model constants. The variables included strain range and rate, mean strain, strain hold times and temperature. None of the models predicted all of the life trends within reasonable data requirements. A Cycle Damage Accumulation (CDA) was therefore developed which follows an exhaustion of material ductility approach. Material ductility is estimated based on observed similarities of deformation structure between fatigue, tensile and creep tests. The cycle damage function is based on total strain range, maximum stress and stress amplitude and includes both time independent and time dependent components. The CDA model accurately predicts all of the trends in creep-fatigue life with loading conditions. In addition, all of the CDA model constants are determinable from rapid cycle, fully reversed fatigue tests and monotonic tensile and/or creep data.
Banerjee, Sourav; Kundu, Tribikram
2008-03-01
Multilayered solid structures made of isotropic, transversely isotropic, or general anisotropic materials are frequently used in aerospace, mechanical, and civil structures. Ultrasonic fields developed in such structures by finite size transducers simulating actual experiments in laboratories or in the field have not been rigorously studied. Several attempts to compute the ultrasonic field inside solid media have been made based on approximate paraxial methods like the classical ray tracing and multi-Gaussian beam models. These approximate methods have several limitations. A new semianalytical method is adopted in this article to model elastic wave field in multilayered solid structures with planar or nonplanar interfaces generated by finite size transducers. A general formulation good for both isotropic and anisotropic solids is presented in this article. A variety of conditions have been incorporated in the formulation including irregularities at the interfaces. The method presented here requires frequency domain displacement and stress Green's functions. Due to the presence of different materials in the problem geometry various elastodynamic Green's functions for different materials are used in the formulation. Expressions of displacement and stress Green's functions for isotropic and anisotropic solids as well as for the fluid media are presented. Computed results are verified by checking the stress and displacement continuity conditions across the interface of two different solids of a bimetal plate and investigating if the results for a corrugated plate with very small corrugation match with the flat plate results.
ERIC Educational Resources Information Center
Xuan, Yue; Zhang, Zhaoyan
2014-01-01
Purpose: The purpose of this study was to explore the possible structural and material property features that may facilitate complete glottal closure in an otherwise isotropic physical vocal fold model. Method: Seven vocal fold models with different structural features were used in this study. An isotropic model was used as the baseline model, and…
Manipulating the transmission through valve structure composed of zero-index metamaterial
NASA Astrophysics Data System (ADS)
Wang, Yongxing; Sun, Zhouzhou; Xu, Ping
2017-11-01
We propose a valve structure composed of zero-index metamaterial to manipulate the electromagnetic wave conveniently and effectively through regulating the phase of reflected waves. Both the structure and characteristics of zero-index metamaterial need not to be changed when manipulating the transmission, which maintains the stability of zero-index metamaterial. Moreover, the good performance of tuning the electromagnetic wave is not limited by the shape and size of our proposed structure. By using our proposed valve structure, we demonstrate the realization of the tunable curved anisotropic ɛ-near-zero material waveguide with irregular shape, arbitrarily sized isotropic ɛ-near-zero material waveguide with high transmittance and the curved isotropic impedance matched ɛ-near-zero material waveguide without polarization limitations.
Soft network materials with isotropic negative Poisson's ratios over large strains.
Liu, Jianxing; Zhang, Yihui
2018-01-31
Auxetic materials with negative Poisson's ratios have important applications across a broad range of engineering areas, such as biomedical devices, aerospace engineering and automotive engineering. A variety of design strategies have been developed to achieve artificial auxetic materials with controllable responses in the Poisson's ratio. The development of designs that can offer isotropic negative Poisson's ratios over large strains can open up new opportunities in emerging biomedical applications, which, however, remains a challenge. Here, we introduce deterministic routes to soft architected materials that can be tailored precisely to yield the values of Poisson's ratio in the range from -1 to 1, in an isotropic manner, with a tunable strain range from 0% to ∼90%. The designs rely on a network construction in a periodic lattice topology, which incorporates zigzag microstructures as building blocks to connect lattice nodes. Combined experimental and theoretical studies on broad classes of network topologies illustrate the wide-ranging utility of these concepts. Quantitative mechanics modeling under both infinitesimal and finite deformations allows the development of a rigorous design algorithm that determines the necessary network geometries to yield target Poisson ratios over desired strain ranges. Demonstrative examples in artificial skin with both the negative Poisson's ratio and the nonlinear stress-strain curve precisely matching those of the cat's skin and in unusual cylindrical structures with engineered Poisson effect and shape memory effect suggest potential applications of these network materials.
Thermal-stress-free fasteners for joining orthotropic materials
NASA Technical Reports Server (NTRS)
Blosser, M. L.
1987-01-01
Hot structures fabricated from orthotropic materials are an attractive design option for future high speed vehicles. Joining subassemblies of these materials with standard cylindrical fasteners can lead to loose joints or highly stressed joints due to thermal stress. A method has been developed to eliminate thermal stresses and maintain a tight joint by shaping the fastener and mating hole. This method allows both materials (fastener and structure), with different coefficients of thermal expansion (CTEs) in each of the three material directions, to expand freely with temperature yet remain in contact. For the assumptions made in the analysis, the joint will remain snug, yet free of thermal stress at any temperature. Finite element analysis was used to verify several thermal-stress-free fasteners and to show that conical fasteners, which are thermal-stress-free for isotropic materials, can reduce thermal stresses for transversely isotropic materials compared to a cylindrical fastener. Equations for thermal-stress-free shapes are presented and typical fastener shapes are shown.
Comparison of Atomic Oxygen Erosion Yields of Materials at Various Energy and Impact Angles
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Waters, Deborah L.; Thorson, Stephen D.; deGroh, Kim, K.; Snyder, Aaron; Miller, Sharon
2006-01-01
The atomic oxygen erosion yields of various materials, measured in volume of material oxidized per incident atomic oxygen atom, are compared to the commonly accepted standard of Kapton H (DuPont) polyimide. The ratios of the erosion yield of Kapton H to the erosion yield of various materials are not consistent at different atomic oxygen energies. Although it is most convenient to use isotropic thermal energy RF plasma ashers to assess atomic oxygen durability, the results can be misleading because the relative erosion rates at thermal energies are not necessarily the same as low Earth orbital (LEO) energies of approx.4.5 eV. An experimental investigation of the relative atomic oxygen erosion yields of a wide variety of polymers and carbon was conducted using isotropic thermal energy (approx.0.1 eV) and hyperthermal energy (approx.70 eV) atomic oxygen using an RF plasma asher and an end Hall ion source. For hyperthermal energies, the atomic oxygen erosion yields relative to normal incident Kapton H were compared for sweeping atomic oxygen arrival with that of normal incidence arrival. The results of isotropic thermal energy, normal incident, and sweeping incident atomic oxygen are also compared with measured or projected LEO values.
Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness
NASA Astrophysics Data System (ADS)
Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.
2017-02-01
A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple design can be manufactured using origami-like sheet folding and bonding methods.
Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness.
Berger, J B; Wadley, H N G; McMeeking, R M
2017-03-23
A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple design can be manufactured using origami-like sheet folding and bonding methods.
Schlick, M Christian; Kapernaum, Nadia; Neidhardt, Manuel M; Wöhrle, Tobias; Stöckl, Yannick; Laschat, Sabine; Giesselmann, Frank
2018-06-06
The electro-optic Kerr effect in simple dipolar fluids such as nitrobenzene has been widely applied in electro-optical phase modulators and light shutters. In 2005, the discovery of the large Kerr effect in liquid-crystalline blue phases (Y. Hisakado et al., Adv. Mater. 2005, 17, 96-98.) gave new directions to the search for advanced Kerr effect materials. Even though the Kerr effect is present in all transparent and optically isotropic media, it is well known that the effect can be anomalously large in complex fluids, namely in the isotropic phase of liquid crystals or in polyelectrolyte solutions. Herein, it is shown that the Kerr effect in the isotropic phase of ionic liquid crystals combines the effective counterion polarization mechanism found in polyelectrolytes and the unique pretransitional growth of the Kerr constant found in the isotropic phase of nematic liquid crystals. Maximum Kerr constants in the order of several 10 -11 m V -2 (ten times higher than the Kerr constant of the toxic nitrobenzene and less temperature sensitive than Kerr constants of nematic liquid crystals) make ionic liquid crystals attractive as new class of functional materials in low-speed Kerr effect applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simulations of material mixing in laser-driven reshock experiments
NASA Astrophysics Data System (ADS)
Haines, Brian M.; Grinstein, Fernando F.; Welser-Sherrill, Leslie; Fincke, James R.
2013-02-01
We perform simulations of a laser-driven reshock experiment [Welser-Sherrill et al., High Energy Density Phys. (unpublished)] in the strong-shock high energy-density regime to better understand material mixing driven by the Richtmyer-Meshkov instability. Validation of the simulations is based on direct comparison of simulation and radiographic data. Simulations are also compared with published direct numerical simulation and the theory of homogeneous isotropic turbulence. Despite the fact that the flow is neither homogeneous, isotropic nor fully turbulent, there are local regions in which the flow demonstrates characteristics of homogeneous isotropic turbulence. We identify and isolate these regions by the presence of high levels of turbulent kinetic energy (TKE) and vorticity. After reshock, our analysis shows characteristics consistent with those of incompressible isotropic turbulence. Self-similarity and effective Reynolds number assessments suggest that the results are reasonably converged at the finest resolution. Our results show that in shock-driven transitional flows, turbulent features such as self-similarity and isotropy only fully develop once de-correlation, characteristic vorticity distributions, and integrated TKE, have decayed significantly. Finally, we use three-dimensional simulation results to test the performance of two-dimensional Reynolds-averaged Navier-Stokes simulations. In this context, we also test a presumed probability density function turbulent mixing model extensively used in combustion applications.
Determination of piezo-optic coefficients of crystals by means of four-point bending.
Krupych, Oleg; Savaryn, Viktoriya; Krupych, Andriy; Klymiv, Ivan; Vlokh, Rostyslav
2013-06-10
A technique developed recently for determining piezo-optic coefficients (POCs) of isotropic optical media, which represents a combination of digital imaging laser interferometry and a classical four-point bending method, is generalized and applied to a single-crystalline anisotropic material. The peculiarities of measuring procedures and data processing for the case of optically uniaxial crystals are described in detail. The capabilities of the technique are tested on the example of canonical nonlinear optical crystal LiNbO3. The high precision achieved in determination of the POCs for isotropic and anisotropic materials testifies that the technique should be both versatile and reliable.
A theory of viscoplasticity accounting for internal damage
NASA Technical Reports Server (NTRS)
Freed, A. D.; Robinson, D. N.
1988-01-01
A constitutive theory for use in structural and durability analyses of high temperature isotropic alloys is presented. Constitutive equations based upon a potential function are determined from conditions of stability and physical considerations. The theory is self-consistent; terms are not added in an ad hoc manner. It extends a proven viscoplastic model by introducing the Kachanov-Rabotnov concept of net stress. Material degradation and inelastic deformation are unified; they evolve simultaneously and interactively. Both isotropic hardening and material degradation evolve with dissipated work which is the sum of inelastic work and internal work. Internal work is a continuum measure of the stored free energy resulting from inelastic deformation.
NASA Astrophysics Data System (ADS)
Apu, Md. Jakaria; Islam, Md. Shahidul
2016-07-01
Bi-material joint is often used in many advanced materials and structures. Determination of the bonding strength at the interface is very difficult because of the presence of the stress singularity. In this paper, the displacement and stress fields of a transversely isotropic bi-material joint around an interface edge are determined. Autodesk Simulation Mechanical 2015 is used to carry out the numerical computations. Stress and displacement fields demonstrate that the values near the edge of joint where the stress singularity occurs are larger than that at the inner portion. From the numerical results, it is suggested that de-bonding of the interface may occur at the interface edge of the joint due to the higher stress concentration at the free edge.
An Elongated Tetrakaidecahedron Model for Open-Celled Foams
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.
2007-01-01
A micro-mechanics model for non-isotropic, open-celled foams is developed using an elongated tetrakaidecahedron (Kelvin model) as the repeating unit cell. The micro-mechanics model employs an elongated Kelvin model geometry which is more general than that employed by previous authors. Assuming the cell edges possess axial and bending rigidity, the mechanics of deformation of the elongated tetrakaidecahedron lead to a set of equations for the Young's modulus, Poisson's ratio and strength of the foam in the principal material directions. These equations are written as a function of the cell edge lengths and cross-section properties, the inclination angle and the strength and stiffness of the solid material. The model is applied to predict the strength and stiffness of several polymeric foams. Good agreement is observed between the model results and the experimental measurements.
NASA Astrophysics Data System (ADS)
Galdos, L.; Saenz de Argandoña, E.; Mendiguren, J.; Silvestre, E.
2017-09-01
The roll levelling is a flattening process used to remove the residual stresses and imperfections of metal strips by means of plastic deformations. During the process, the metal sheet is subjected to cyclic tension-compression deformations leading to a flat product. The process is especially important to avoid final geometrical errors when coils are cold formed or when thick plates are cut by laser. In the last years, and due to the appearance of high strength materials such as Ultra High Strength Steels, machine design engineers are demanding reliable tools for the dimensioning of the levelling facilities. Like in other metal forming fields, finite element analysis seems to be the most widely used solution to understand the occurring phenomena and to calculate the processing loads. In this paper, the roll levelling process of the third generation Fortiform 1050 steel is numerically analysed. The process has been studied using the MSC MARC software and two different material laws. A pure isotropic hardening law has been used and set as the baseline study. In the second part, tension-compression tests have been carried out to analyse the cyclic behaviour of the steel. With the obtained data, a new material model using a combined isotropic-kinematic hardening formulation has been fitted. Finally, the influence of the material model in the numerical results has been analysed by comparing a pure isotropic model and the later combined mixed hardening model.
Chang, C Y; Yuan, F G
2018-05-16
Guided wave dispersion curves in isotropic and anisotropic materials are extracted automatically from measured data by Matrix Pencil (MP) method investigating through k-t or x-ω domain with a broadband signal. A piezoelectric wafer emits a broadband excitation, linear chirp signal to generate guided waves in the plate. The propagating waves are measured at discrete locations along the lines for one-dimensional laser Doppler vibrometer (1-D LDV). Measurements are first Fourier transformed into either wavenumber-time k-t domain or space-frequency x-ω domain. MP method is then employed to extract the dispersion curves explicitly associated with different wave modes. In addition, the phase and group velocity are deduced by the relations between wavenumbers and frequencies. In this research, the inspections for dispersion relations on an aluminum plate by MP method from k-t or x-ω domain are demonstrated and compared with two-dimensional Fourier transform (2-D FFT). Other experiments on a thicker aluminum plate for higher modes and a composite plate are analyzed by MP method. Extracted relations of composite plate are confirmed by three-dimensional (3-D) theoretical curves computed numerically. The results explain that the MP method not only shows more accuracy for distinguishing the dispersion curves on isotropic material, but also obtains good agreements with theoretical curves on anisotropic and laminated materials. Copyright © 2018 Elsevier B.V. All rights reserved.
Negative Refraction in a Uniaxial Absorbent Dielectric Material
ERIC Educational Resources Information Center
Jen, Yi-Jun; Lakhtakia, Akhlesh; Yu, Ching-Wei; Lin, Chin-Te
2009-01-01
Refraction of light from an isotropic dielectric medium to an anisotropic dielectric material is a complicated phenomenon that can have several different characteristics not usually discussed in electromagnetics textbooks for undergraduate students. With a simple problem wherein the refracting material is uniaxial with its optic axis normal to the…
NASA Astrophysics Data System (ADS)
Jansen van Rensburg, Gerhardus J.; Kok, Schalk; Wilke, Daniel N.
2018-03-01
This paper presents the development and numerical implementation of a state variable based thermomechanical material model, intended for use within a fully implicit finite element formulation. Plastic hardening, thermal recovery and multiple cycles of recrystallisation can be tracked for single peak as well as multiple peak recrystallisation response. The numerical implementation of the state variable model extends on a J2 isotropic hypo-elastoplastic modelling framework. The complete numerical implementation is presented as an Abaqus UMAT and linked subroutines. Implementation is discussed with detailed explanation of the derivation and use of various sensitivities, internal state variable management and multiple recrystallisation cycle contributions. A flow chart explaining the proposed numerical implementation is provided as well as verification on the convergence of the material subroutine. The material model is characterised using two high temperature data sets for cobalt and copper. The results of finite element analyses using the material parameter values characterised on the copper data set are also presented.
NASA Astrophysics Data System (ADS)
Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh
2016-03-01
Multiple compound surface plasmon-polariton (SPP) waves can be guided by a structure consisting of a sufficiently thick layer of metal sandwiched between a homogeneous isotropic dielectric (HID) material and a dielectric structurally chiral material (SCM). The compound SPP waves are strongly bound to both metal/dielectric interfaces when the thickness of the metal layer is comparable to the skin depth but just to one of the two interfaces when the thickness is much larger. The compound SPP waves differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. Some compound SPP waves are not greatly affected by the choice of the direction of propagation in the transverse plane but others are, depending on metal thickness. For fixed metal thickness, the number of compound SPP waves depends on the relative permittivity of the HID material, which can be useful for sensing applications.
Gas permeability of ice-templated, unidirectional porous ceramics
NASA Astrophysics Data System (ADS)
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.
2016-01-01
We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 ?m and 19.1 ?m. The maximum permeability (?? m?) was measured in samples with the highest total pore volume (72%) and pore size (19.1 ?m). However, we demonstrate that it is possible to achieve a similar permeability (?? m?) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity (?) is mainly controlled by pore size, unlike in isotropic porous structures where ? is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.
Atomic Oxygen Textured Polymers
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Hunt, Jason D.; Drobotij, Erin; Cales, Michael R.; Cantrell, Gidget
1995-01-01
Atomic oxygen can be used to microscopically alter the surface morphology of polymeric materials in space or in ground laboratory facilities. For polymeric materials whose sole oxidation products are volatile species, directed atomic oxygen reactions produce surfaces of microscopic cones. However, isotropic atomic oxygen exposure results in polymer surfaces covered with lower aspect ratio sharp-edged craters. Isotropic atomic oxygen plasma exposure of polymers typically causes a significant decrease in water contact angle as well as altered coefficient of static friction. Such surface alterations may be of benefit for industrial and biomedical applications. The results of atomic oxygen plasma exposure of thirty-three (33) different polymers are presented, including typical morphology changes, effects on water contact angle, and coefficient of static friction.
Hypo-Elastic Model for Lung Parenchyma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freed, Alan D.; Einstein, Daniel R.
2012-03-01
A simple elastic isotropic constitutive model for the spongy tissue in lung is derived from the theory of hypoelasticity. The model is shown to exhibit a pressure dependent behavior that has been interpreted by some as indicating extensional anisotropy. In contrast, we show that this behavior arises natural from an analysis of isotropic hypoelastic invariants, and is a likely result of non-linearity, not anisotropy. The response of the model is determined analytically for several boundary value problems used for material characterization. These responses give insight into both the material behavior as well as admissible bounds on parameters. The model ismore » characterized against published experimental data for dog lung. Future work includes non-elastic model behavior.« less
Strength of orthotropic materials subjected to combined stresses
Charles B. Norris
1962-01-01
A theory of the strength of orthotropic materials subjected to combined stresses, based on the Henky-von Mises theory of energy due to change of shape, is presented. When this theory is applied to macroscopically isotropic materials, it yields the diagram currently used in design with metals. Equations relating the strength of orthotropic materials subjected to a...
Modeling spanwise nonuniformity in the cross-sectional analysis of composite beams
NASA Astrophysics Data System (ADS)
Ho, Jimmy Cheng-Chung
Spanwise nonuniformity effects are modeled in the cross-sectional analysis of beam theory. This modeling adheres to an established numerical framework on cross-sectional analysis of uniform beams with arbitrary cross-sections. This framework is based on two concepts: decomposition of the rotation tensor and the variational-asymptotic method. Allowance of arbitrary materials and geometries in the cross-section is from discretization of the warping field by finite elements. By this approach, dimensional reduction from three-dimensional elasticity is performed rigorously and the sectional strain energy is derived to be asymptotically-correct. Elastic stiffness matrices are derived for inputs into the global beam analysis. Recovery relations for the displacement, stress, and strain fields are also derived with care to be consistent with the energy. Spanwise nonuniformity effects appear in the form of pointwise and sectionwise derivatives, which are approximated by finite differences. The formulation also accounts for the effects of spanwise variations in initial twist and/or curvature. A linearly tapered isotropic strip is analyzed to demonstrate spanwise nonuniformity effects on the cross-sectional analysis. The analysis is performed analytically by the variational-asymptotic method. Results from beam theory are validated against solutions from plane stress elasticity. These results demonstrate that spanwise nonuniformity effects become significant as the rate at which the cross-sections vary increases. The modeling of transverse shear modes of deformation is accomplished by transforming the strain energy into generalized Timoshenko form. Approximations in this transformation procedure from previous works, when applied to uniform beams, are identified. The approximations are not used in the present work so as to retain more accuracy. Comparison of present results with those previously published shows that these approximations sometimes change the results measurably and thus are inappropriate. Static and dynamic results, from the global beam analysis, are calculated to show the differences between using stiffness constants from previous works and the present work. As a form of validation of the transformation procedure, calculations from the global beam analysis of initially twisted isotropic beams from using curvilinear coordinate axes featuring twist are shown to be equivalent to calculations using Cartesian coordinates.
Nespoli installs ALTEA-SHIELD Hardware in the US Laboratory
2011-04-23
ISS027-E-017245 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.
Nespoli installs ALTEA-SHIELD Hardware in the US Laboratory
2011-04-23
ISS027-E-017246 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.
Nespoli photographs ALTEA-SHIELD Hardware in the US Laboratory
2011-04-23
ISS027-E-017237 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.
Nespoli installs ALTEA-SHIELD Hardware in the US Laboratory
2011-04-23
ISS027-E-017249 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.
Nespoli photographs ALTEA-SHIELD Hardware in the US Laboratory
2011-04-23
ISS027-E-017236 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.
NASA Astrophysics Data System (ADS)
Sphicopoulos, T.; Teodoridis, V.; Gardiol, F. E.
1985-08-01
The dyadic Green functions of electric and magnetic type for multilayered isotropic media are discussed, and a tractable form is obtained by an operator method, which does not involve infinite sums of Hansen functions. The formulation considers a TE-TM decomposition and the use of propagation matrices. Special attention is given to the application of these functions to the analysis of problems in the field of nondestructive measurement of materials.
Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles
Wang, Jiajun; Karen Chen-Wiegart, Yu-chen; Eng, Christopher; ...
2016-08-12
Anisotropy, or alternatively, isotropy of phase transformations extensively exist in a number of solid-state materials, with performance depending on the three-dimensional transformation features. Fundamental insights into internal chemical phase evolution allow manipulating materials with desired functionalities, and can be developed via real-time multi-dimensional imaging methods. In this paper, we report a five-dimensional imaging method to track phase transformation as a function of charging time in individual lithium iron phosphate battery cathode particles during delithiation. The electrochemically driven phase transformation is initially anisotropic with a preferred boundary migration direction, but becomes isotropic as delithiation proceeds further. We also observe the expectedmore » two-phase coexistence throughout the entire charging process. Finally, we expect this five-dimensional imaging method to be broadly applicable to problems in energy, materials, environmental and life sciences.« less
Abyaneh, M H; Wildman, R D; Ashcroft, I A; Ruiz, P D
2013-11-01
An analysis of the material properties of porcine corneas has been performed. A simple stress relaxation test was performed to determine the viscoelastic properties and a rheological model was built based on the Generalized Maxwell (GM) approach. A validation experiment using nano-indentation showed that an isotropic GM model was insufficient for describing the corneal material behaviour when exposed to a complex stress state. A new technique was proposed for determining the properties, using a combination of nano-indentation experiment, an isotropic and orthotropic GM model and inverse finite element method. The good agreement using this method suggests that this is a promising technique for measuring material properties in vivo and further work should focus on the reliability of the approach in practice. © 2013 Elsevier Ltd. All rights reserved.
Adaptive reduction of constitutive model-form error using a posteriori error estimation techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, Joseph E.; Brown, Judith Alice
In engineering practice, models are typically kept as simple as possible for ease of setup and use, computational efficiency, maintenance, and overall reduced complexity to achieve robustness. In solid mechanics, a simple and efficient constitutive model may be favored over one that is more predictive, but is difficult to parameterize, is computationally expensive, or is simply not available within a simulation tool. In order to quantify the modeling error due to the choice of a relatively simple and less predictive constitutive model, we adopt the use of a posteriori model-form error-estimation techniques. Based on local error indicators in the energymore » norm, an algorithm is developed for reducing the modeling error by spatially adapting the material parameters in the simpler constitutive model. The resulting material parameters are not material properties per se, but depend on the given boundary-value problem. As a first step to the more general nonlinear case, we focus here on linear elasticity in which the “complex” constitutive model is general anisotropic elasticity and the chosen simpler model is isotropic elasticity. As a result, the algorithm for adaptive error reduction is demonstrated using two examples: (1) A transversely-isotropic plate with hole subjected to tension, and (2) a transversely-isotropic tube with two side holes subjected to torsion.« less
Adaptive reduction of constitutive model-form error using a posteriori error estimation techniques
Bishop, Joseph E.; Brown, Judith Alice
2018-06-15
In engineering practice, models are typically kept as simple as possible for ease of setup and use, computational efficiency, maintenance, and overall reduced complexity to achieve robustness. In solid mechanics, a simple and efficient constitutive model may be favored over one that is more predictive, but is difficult to parameterize, is computationally expensive, or is simply not available within a simulation tool. In order to quantify the modeling error due to the choice of a relatively simple and less predictive constitutive model, we adopt the use of a posteriori model-form error-estimation techniques. Based on local error indicators in the energymore » norm, an algorithm is developed for reducing the modeling error by spatially adapting the material parameters in the simpler constitutive model. The resulting material parameters are not material properties per se, but depend on the given boundary-value problem. As a first step to the more general nonlinear case, we focus here on linear elasticity in which the “complex” constitutive model is general anisotropic elasticity and the chosen simpler model is isotropic elasticity. As a result, the algorithm for adaptive error reduction is demonstrated using two examples: (1) A transversely-isotropic plate with hole subjected to tension, and (2) a transversely-isotropic tube with two side holes subjected to torsion.« less
NASA Technical Reports Server (NTRS)
Vandermey, Nancy E.; Morris, Don H.; Masters, John E.
1991-01-01
Damage initiation and growth under compression-compression fatigue loading were investigated for a stitched uniweave material system with an underlying AS4/3501-6 quasi-isotropic layup. Performance of unnotched specimens having stitch rows at either 0 degree or 90 degrees to the loading direction was compared. Special attention was given to the effects of stitching related manufacturing defects. Damage evaluation techniques included edge replication, stiffness monitoring, x-ray radiography, residual compressive strength, and laminate sectioning. It was found that the manufacturing defect of inclined stitches had the greatest adverse effect on material performance. Zero degree and 90 degree specimen performances were generally the same. While the stitches were the source of damage initiation, they also slowed damage propagation both along the length and across the width and affected through-the-thickness damage growth. A pinched layer zone formed by the stitches particularly affected damage initiation and growth. The compressive failure mode was transverse shear for all specimens, both in static compression and fatigue cycling effects.
Shear viscosity of an ultrarelativistic Boltzmann gas with isotropic inelastic scattering processes
NASA Astrophysics Data System (ADS)
El, A.; Lauciello, F.; Wesp, C.; Bouras, I.; Xu, Z.; Greiner, C.
2014-05-01
We derive an analytic expression for the shear viscosity of an ultra-relativistic gas in presence of both elastic 2→2 and inelastic 2↔3 processes with isotropic differential cross sections. The derivation is based on the entropy principle and Grad's approximation for the off-equilibrium distribution function. The obtained formula relates the shear viscosity coefficient η to the total cross sections σ22 and σ23 of the elastic resp. inelastic processes. The values of shear viscosity extracted using the Green-Kubo formula from kinetic transport calculations are shown to be in excellent agreement with the analytic results which demonstrates the validity of the derived formula.
High performance bonded neo magnets using high density compaction
NASA Astrophysics Data System (ADS)
Herchenroeder, J.; Miller, D.; Sheth, N. K.; Foo, M. C.; Nagarathnam, K.
2011-04-01
This paper presents a manufacturing method called Combustion Driven Compaction (CDC) for the manufacture of isotropic bonded NdFeB magnets (bonded Neo). Magnets produced by the CDC method have density up to 6.5 g/cm3 which is 7-10% higher compared to commercially available bonded Neo magnets of the same shape. The performance of an actual seat motor with a representative CDC ring magnet is presented and compared with the seat motor performance with both commercial isotropic bonded Neo and anisotropic NdFeB rings of the same geometry. The comparisons are made at both room and elevated temperatures. The airgap flux for the magnet produced by the proposed method is 6% more compared to the commercial isotropic bonded Neo magnet. After exposure to high temperature due to the superior thermal aging stability of isotropic NdFeB powders the motor performance with this material is comparable to the motor performance with an anisotropic NdFeB magnet.
Isotropic transmission of magnon spin information without a magnetic field.
Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola
2017-07-01
Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni 80 Fe 20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles.
Blood Flow Characterization According to Linear Wall Models of the Carotid Bifurcation
NASA Astrophysics Data System (ADS)
Williamson, Shobha; Rayz, Vitaliy; Berger, Stanley; Saloner, David
2004-11-01
Previous studies of the arterial wall include linearly isotropic, isotropic with residual stresses, and anisotropic models. This poses the question of how the results of each method differ when coupled with flow. Hence, the purpose of this study was to compare flow for these material models and subsequently determine if variations exist. Results show that displacement at the bifurcation and internal carotid bulb was noticeably larger in the orthotropic versus the isotropic model with subtle differences toward the inlet and outlets, which are fixed in space. In general, the orthotropic wall is further distended than the isotropic wall for the entire cycle. This apparent distention of the orthotropic wall clearly affects the flow. In diastole, the combination of slower flow and larger wall distention due to lumen pressure creates a sinuous velocity profile, particularly in the orthotropic model where the recirculation zone created displaces the core flow to a smaller area thereby increasing the velocity magnitudes nearly 60
Isotropic transmission of magnon spin information without a magnetic field
Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola
2017-01-01
Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni80Fe20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles. PMID:28776033
NASA Astrophysics Data System (ADS)
Karabutov, A. A.; Podymova, N. B.
2017-05-01
The influence of the volumetric porosity of isotropic metal-matrix composite materials, which are reinforced with ceramic microparticles, on the dispersion of the phase velocity of longitudinal acoustic waves is investigated. For this purpose, the method of broadband acoustic spectroscopy with a laser source of ultrasound and piezoelectric detection of nanosecond ultrasonic pulses is used. Composite samples based on a silumin matrix with added silicon carbide (SiC) microparticles in different mass concentrations (3.8-15.5%) were investigated. As the concentration of SiC particles in a sample increases, its porosity that is determined using the hydrostatic-weighing method also increases. The simultaneous increase in the filler concentration and porosity leads to the appearance of a dispersion of the phase velocity of longitudinal acoustic waves in the sample within the frequency range of 3-25 MHz. The obtained empirical relationship between the relative change in the phase velocity and the sample porosity can be used to obtain a proximate quantitative estimate of the bulk porosity of the isotropic metal-matrix composite materials.
Lu, Feng; Matsushita, Yasuyuki; Sato, Imari; Okabe, Takahiro; Sato, Yoichi
2015-10-01
We propose an uncalibrated photometric stereo method that works with general and unknown isotropic reflectances. Our method uses a pixel intensity profile, which is a sequence of radiance intensities recorded at a pixel under unknown varying directional illumination. We show that for general isotropic materials and uniformly distributed light directions, the geodesic distance between intensity profiles is linearly related to the angular difference of their corresponding surface normals, and that the intensity distribution of the intensity profile reveals reflectance properties. Based on these observations, we develop two methods for surface normal estimation; one for a general setting that uses only the recorded intensity profiles, the other for the case where a BRDF database is available while the exact BRDF of the target scene is still unknown. Quantitative and qualitative evaluations are conducted using both synthetic and real-world scenes, which show the state-of-the-art accuracy of smaller than 10 degree without using reference data and 5 degree with reference data for all 100 materials in MERL database.
On curve and surface stretching in turbulent flow
NASA Technical Reports Server (NTRS)
Etemadi, Nassrollah
1989-01-01
Cocke (1969) proved that in incompressible, isotropic turbulence the average material line (material surface) elements increase in comparison with their initial values. Good estimates of how much they increase in terms of the eigenvalues of the Green deformation tensor were rigorously obtained.
NASA Technical Reports Server (NTRS)
Stark, G.; Smith, P. L.; Ito, K.; Yoshino, K.
1992-01-01
Photodissociation following absorption of extreme-ultraviolet photons is an important factor in determining the abundance and isotropic fractionation of CO in diffuse and translucent interstellar clouds. The principal channel for destruction of CO-13 in such clouds begins with absorption in the (1,0) vibrational band of the E1Pi - X1Sigma(+) system; similarly, absorption in the (0,0) band begins a significant destruction channel for CO-12. Reliable modeling of the CO fractionation process depends critically upon the accuracy of the photoabsorption cross section for these bands. We have measured the cross sections for the relevant isotropic species and for the (1,0) band of CO-12. Our results, which are uncertain by about 10 percent, are for the most part larger than previous measurements.
Distributed parameter statics of magnetic catheters.
Tunay, Ilker
2011-01-01
We discuss how to use special Cosserat rod theory for deriving distributed-parameter static equilibrium equations of magnetic catheters. These medical devices are used for minimally-invasive diagnostic and therapeutic procedures and can be operated remotely or controlled by automated algorithms. The magnetic material can be lumped in rigid segments or distributed in flexible segments. The position vector of the cross-section centroid and quaternion representation of an orthonormal triad are selected as DOF. The strain energy for transversely isotropic, hyperelastic rods is augmented with the mechanical potential energy of the magnetic field and a penalty term to enforce the quaternion unity constraint. Numerical solution is found by 1D finite elements. Material properties of polymer tubes in extension, bending and twist are determined by mechanical and magnetic experiments. Software experiments with commercial FEM software indicate that the computational effort with the proposed method is at least one order of magnitude less than standard 3D FEM.
Nespoli works with ALTEA-SHIELD Hardware in the US Laboratory
2011-04-23
ISS027-E-017243 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.
Scherzinger, William M.
2016-05-01
The numerical integration of constitutive models in computational solid mechanics codes allows for the solution of boundary value problems involving complex material behavior. Metal plasticity models, in particular, have been instrumental in the development of these codes. Here, most plasticity models implemented in computational codes use an isotropic von Mises yield surface. The von Mises, of J 2, yield surface has a simple predictor-corrector algorithm - the radial return algorithm - to integrate the model.
NASA Technical Reports Server (NTRS)
Allen Phillip A.; Wilson, Christopher D.
2003-01-01
The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.
1984-01-01
Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion textured oxygen free high conductivity copper and untreated and ion textured high purity isotropic graphite surfaces are presented for a range of primary electron beam energies and beam impingement angles. This investigation was conducted to provide information that would improve the efficiency of multistage depressed collectors (MDC's) for microwave amplifier traveling wave tubes in space communications and aircraft applications. For high efficiency, MDC electrode surfaces must have low secondary electron emission characteristics. Although copper is a commonly used material for MDC electrodes, it exhibits relatively high levels of secondary electron emission if its surface is not treated for emission control. Recent studies demonstrated that high purity isotropic graphite is a promising material for MDC electrodes, particularly with ion textured surfaces. The materials were tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the ion textured surfaces were compared with each other and with those of untreated surfaces of the same materials. Both the untreated and ion textured graphite surfaces and the ion treated copper surface exhibited sharply reduced secondary electron emission characteristics relative to those of untreated copper. The ion treated graphite surface yielded the lowest emission levels.
Digital Material Assembly by Passive Means and Modular Isotropic Lattice Extruder System
NASA Technical Reports Server (NTRS)
Gershenfeld, Neil (Inventor); Carney, Matthew Eli (Inventor); Jenett, Benjamin (Inventor)
2017-01-01
A set of machines and related systems build structures by the additive assembly of discrete parts. These digital material assemblies constrain the constituent parts to a discrete set of possible positions and orientations. In doing so, the structures exhibit many of the properties inherent in digital communication such as error correction, fault tolerance and allow the assembly of precise structures with comparatively imprecise tools. Assembly of discrete cellular lattices by a Modular Isotropic Lattice Extruder System (MILES) is implemented by pulling strings of lattice elements through a forming die that enforces geometry constraints that lock the elements into a rigid structure that can then be pushed against and extruded out of the die as an assembled, loadbearing structure.
An exact stiffness theory for unidirectional xFRP composites
NASA Astrophysics Data System (ADS)
Klasztorny, M.; Konderla, P.; Piekarski, R.
2009-01-01
UD xFRP composites, i.e., isotropic plastics reinforced with long transversely isotropic fibres packed unidirectionally according to the hexagonal scheme are considered. The constituent materials are geometrically and physically linear. The previous formulations of the exact stiffness theory of such composites are revised, and the theory is developed further based on selected boundary-value problems of elasticity theory. The numerical examples presented are focussed on testing the theory with account of previous variants of this theory and experimental values of the effective elastic constants. The authors have pointed out that the exact stiffness theory of UD xFRP composites, with the modifications proposed in our study, will be useful in the engineering practice and in solving the current problems of the mechanics of composite materials.
Ti-doped isotropic graphite: A promising armour material for plasma-facing components
NASA Astrophysics Data System (ADS)
García-Rosales, C.; López-Galilea, I.; Ordás, N.; Adelhelm, C.; Balden, M.; Pintsuk, G.; Grattarola, M.; Gualco, C.
2009-04-01
Finely dispersed Ti-doped isotropic graphites with 4 at.% Ti have been manufactured using synthetic mesophase pitch 'AR' as raw material. These new materials show a thermal conductivity at room temperature of ˜200 W/mK and flexural strength close to 100 MPa. Measurement of the total erosion yield by deuterium bombardment at ion energies and sample temperatures for which pure carbon shows maximum values, resulted in a reduction of at least a factor of 4, mainly due to dopant enrichment at the surface caused by preferential erosion of carbon. In addition, ITER relevant thermal shock loads were applied with an energetic electron beam at the JUDITH facility. The results demonstrated a significantly improved performance of Ti-doped graphite compared to pure graphite. Finally, Ti-doped graphite was successfully brazed to a CuCrZr block using a Mo interlayer. These results let assume that Ti-doped graphite can be a promising armour material for divertor plasma-facing components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barada, Daisuke; Center for Optical Research and Education; Juman, Guzhaliayi
It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum andmore » a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.« less
NASA Technical Reports Server (NTRS)
Librescu, L.; Chandiramani, N. K.
1989-01-01
Some recent results obtained by the authors are summarized concerning the stability of transversely isotropic flat panels whose materials exhibit a viscoelastic behavior and whose edges are subjected to in-plane biaxial compressive loads. Two transversely isotropic type materials, largely used in advanced technology, are considered: (1) the pyrolytic-graphite type, used in the thermal protection of aerospace vehicles, and (2) the type corresponding to unidirectional fiber-reinforced composites. In the former case, the planes of isotropy are parallel at each point to the midplane of the plate. In the latter case, they are normal to the fiber directions. The micromechanical relations developed by Aboudi (1984, 1986, 1987) are considered in conjunction with the correspondence principle of linear viscoelastic theory in order to predict the macroscopic viscoelastic properties of a material composed of uniaxial elastic fibers embedded in a linear viscoelastic matrix.
Elastic properties of uniaxial-fiber reinforced composites - General features
NASA Astrophysics Data System (ADS)
Datta, Subhendu; Ledbetter, Hassel; Lei, Ming
The salient features of the elastic properties of uniaxial-fiber-reinforced composites are examined by considering the complete set of elastic constants of composites comprising isotropic uniaxial fibers in an isotropic matrix. Such materials exhibit transverse-isotropic symmetry and five independent elastic constants in Voigt notation: C(11), C(33), C(44), C(66), and C(13). These C(ij) constants are calculated over the entire fiber-volume-fraction range 0.0-1.0, using a scattered-plane-wave ensemple-average model. Some practical elastic constants such as the principal Young moduli and the principal Poisson ratios are considered, and the behavior of these constants is discussed. Also presented are the results for the four principal sound velocities used to study uniaxial-fiber-reinforced composites: v(11), v(33), v(12), and v(13).
Anisotropy tensor of the potential model of steady creep
NASA Astrophysics Data System (ADS)
Annin, B. D.; Ostrosablin, N. I.
2014-01-01
The Kelvin approach describing the structure of the generalized Hooke's law is used to analyze the potential model of anisotropic creep of materials. The creep equations of incompressible transversely isotropic, orthotropic materials and those with cubic symmetry are considered. The eigen coefficients of anisotropy and eigen tensors for the anisotropy tensors of these materials are determined.
Weiß, S; Thomson, S L; Lerch, R; Döllinger, M; Sutor, A
2013-01-01
The etiology and treatment of voice disorders are still not completely understood. Since the vibratory characteristics of vocal folds are strongly influenced by both anatomy and mechanical material properties, measurement methods to analyze the material behavior of vocal fold tissue are required. Due to the limited life time of real tissue in the laboratory, synthetic models are often used to study vocal fold vibrations. In this paper we focus on two topics related to synthetic and real vocal fold materials. First, because certain tissues within the human vocal folds are transversely isotropic, a fabrication process for introducing this characteristic in commonly used vocal fold modeling materials is presented. Second, the pipette aspiration technique is applied to the characterization of these materials. By measuring the displacement profiles of stretched specimens that exhibit varying degrees of transverse isotropy, it is shown that local anisotropy can be quantified using a parameter describing the deviation from an axisymmetric profile. The potential for this technique to characterize homogeneous, anisotropic materials, including soft biological tissues such as those found in the human vocal folds, is supplemented by a computational study. Copyright © 2012 Elsevier Ltd. All rights reserved.
Properties of five toughened matrix composite materials
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Dow, Marvin B.
1992-01-01
The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.
NASA Astrophysics Data System (ADS)
Glowacki, E.; Hunt, K.; Abud, D.; Marshall, K. L.
2010-08-01
Stimuli-responsive gas permeation membranes hold substantial potential for industrial processes as well as in analytical and screening applications. Such "smart" membrane systems, although prevalent in liquid mass-transfer manipulations, have yet to be realized for gas applications. We report our progress in developing gas permeation membranes in which liquid crystalline (LC) phases afford the active region of permeation. To achieve rapid and reversible switching between LC and isotropic permeation states, we harnessed the photomechanical action of mesogenic azobenzene dyes that can produce isothermal nematic-isotropic transitions. Both polymeric and low-molecular-weight LC materials were tested. Three different dye-doped LC mixtures with mesogenic azo dyes were infused into commercially available track-etched porous membranes with regular cylindrical pores (0.4 to 10.0 μm). Photoinduced isothermal phase changes in the imbibed material produced large and fully reversible changes in the permeability of the membrane to nitrogen with 5 s of irradiation at 2 mW/cm2. Using two measurement tools constructed in-house, the permeability of the photoswitched membranes was determined by both variable-pressure and variable-volume methods. Both the LC and photogenerated isotropic states demonstrate a linear permeability/pressure (ideal sorption) relationship, with up to a 16-fold difference in their permeability coefficients. Liquid crystal compositions can be chosen such that the LC phase is more permeable than the isotropic-or vice versa. This approach is the first system offering reversible tunable gas permeation membranes.
Long-time behavior of material-surface curvature in isotropic turbulence
NASA Technical Reports Server (NTRS)
Girimaji, S. S.
1992-01-01
The behavior at large times of the curvature of material elements in turbulence is investigated using Lagrangian velocity-gradient time series obtained from direct numerical simulations of isotropic turbulence. The main objectives are: to study the asymptotic behavior of the pdf curvature as a function of initial curvature and shape; and to establish whether the curvature of an initially plane material element goes to a stationary probability distribution. The evidence available in the literature about the asymptotic curvature-pdf of initially flat surfaces is ambiguous, and the conjecture is that it is quasi-stationary. In this work several material-element ensembles of different initial curvatures and shapes are studied. It is found that, at long times the moments of the logarithm of curvature are independent of the initial pdf of curvature. This, it is argued, supports the view that the curvature attains a stationary distribution at long times. It is also shown that, irrespective of initial shape or curvature, the shape of any material element at long times is cylindrical with a high probability.
A program to calculate pulse transmission responses through transversely isotropic media
NASA Astrophysics Data System (ADS)
Li, Wei; Schmitt, Douglas R.; Zou, Changchun; Chen, Xiwei
2018-05-01
We provide a program (AOTI2D) to model responses of ultrasonic pulse transmission measurements through arbitrarily oriented transversely isotropic rocks. The program is built with the distributed point source method that treats the transducers as a series of point sources. The response of each point source is calculated according to the ray-tracing theory of elastic plane waves. The program could offer basic wave parameters including phase and group velocities, polarization, anisotropic reflection coefficients and directivity patterns, and model the wave fields, static wave beam, and the observed signals for pulse transmission measurements considering the material's elastic stiffnesses and orientations, sample dimensions, and the size and positions of the transmitters and the receivers. The program could be applied to exhibit the ultrasonic beam behaviors in anisotropic media, such as the skew and diffraction of ultrasonic beams, and analyze its effect on pulse transmission measurements. The program would be a useful tool to help design the experimental configuration and interpret the results of ultrasonic pulse transmission measurements through either isotropic or transversely isotropic rock samples.
Irwin's conjecture: Crack shape adaptability in transversely isotropic solids
NASA Astrophysics Data System (ADS)
Laubie, Hadrien; Ulm, Franz-Josef
2014-08-01
The planar crack propagation problem of a flat elliptical crack embedded in a brittle elastic anisotropic solid is investigated. We introduce the concept of crack shape adaptability: the ability of three-dimensional planar cracks to shape with the mechanical properties of a cracked body. A criterion based on the principle of maximum dissipation is suggested in order to determine the most stable elliptical shape. This criterion is applied to the specific case of vertical cracks in transversely isotropic solids. It is shown that contrary to the isotropic case, the circular shape (i.e. penny-shaped cracks) is not the most stable one. Upon propagation, the crack first grows non-self-similarly before it reaches a stable shape. This stable shape can be approximated by an ellipse of an aspect ratio that varies with the degree of elastic anisotropy. By way of example, we apply the so-derived crack shape adaptability criterion to shale materials. For this class of materials it is shown that once the stable shape is reached, the crack propagates at a higher rate in the horizontal direction than in the vertical direction. We also comment on the possible implications of these findings for hydraulic fracturing operations.
Traction-free vibrations of finite trigonal elastic cylinders.
Heyliger, Paul R; Johnson, Ward L
2003-04-01
The unrestrained, traction-free vibrations of finite elastic cylinders with trigonal material symmetry are studied using two approaches, based on the Ritz method, which formulate the weak form of the equations of motion in cylindrical and rectangular coordinates. Elements of group theory are used to divide approximation functions into orthogonal subsets, thus reducing the size of the computational problem and classifying the general symmetries of the vibrational modes. Results for the special case of an isotropic cylinder are presented and compared with values published by other researchers. For the isotropic case, the relative accuracy of the formulations in cylindrical and rectangular coordinates can be evaluated, because exact analytical solutions are known for the torsional modes. The calculation in cylindrical coordinates is found to be more accurate for a given number of terms in the series approximation functions. For a representative trigonal material, langatate, calculations of the resonant frequencies and the sensitivity of the frequencies on each of the elastic constants are presented. The dependence on geometry (ratio of length to diameter) is briefly explored. The special case of a transversely isotropic cylinder (with the elastic stiffness C14 equal to zero) is also considered.
Generalized Fractional Derivative Anisotropic Viscoelastic Characterization.
Hilton, Harry H
2012-01-18
Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.
Materials constitutive models for nonlinear analysis of thermally cycled structures
NASA Technical Reports Server (NTRS)
Kaufman, A.; Hunt, L. E.
1982-01-01
Effects of inelastic materials models on computed stress-strain solutions for thermally loaded structures were studied by performing nonlinear (elastoplastic creep) and elastic structural analyses on a prismatic, double edge wedge specimen of IN 100 alloy that was subjected to thermal cycling in fluidized beds. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic kinematic, and combined plus transient creep) were exercised for the problem by using the MARC nonlinear, finite element computer program. Maximum total strain ranges computed from the elastic and nonlinear analyses agreed within 5 percent. Mean cyclic stresses, inelastic strain ranges, and inelastic work were significantly affected by the choice of inelastic constitutive model. The computing time per cycle for the nonlinear analyses was more than five times that required for the elastic analysis.
Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures
NASA Technical Reports Server (NTRS)
Vlahopoulos, Nickolas; Schiller, Noah H.
2011-01-01
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.
The Acousto-Optic Interaction in an Infinite Slab of Isotropic Material,
1980-04-01
AD-A097 202 HARRY DIAMOND LABS ADELPHI MD F/S 17/1 THE ACOUSTO - OPTIC INTERACTION IN AN INFINITE SLAB OF ISOTROPIC -- ETC(U) APR 80 S D SCHARF...611101.91A0011 .A1.A1 HOL Project: A10935 1S. KEY WONS (Cf ft "W reweee eld. It neceseeM md Io.t.Itl by block nm er) Acousto - optics Diffraction Mathieu... Acousto - Optic Interaction for Bragg Angles ...................... 13 FIGURES 1. Incident wave is split by acoustic wave into discrete diffracted orders
Stress reduction in an isotropic plate with a hole by applied induced strains
NASA Technical Reports Server (NTRS)
Sensharma, Pradeep K.; Palantera, Markku J.; Haftka, Raphael T.
1992-01-01
Recently there has been much interest in adaptive structures that can respond to a varying environment by changing their properties. Shape memory alloys and piezoelectric materials can be used as induced strain actuators to reduce stresses in the regions of stress concentration. The objective of the work was to find the maximum possible reduction in the stress concentration factor in an isotropic plate with a hole by applying induced strains in a small area near the hole. Induced strains were simulated by thermal expansion.
Silicone elastomers capable of large isotropic dimensional change
Lewicki, James; Worsley, Marcus A.
2017-07-18
Described herein is a highly effective route towards the controlled and isotropic reduction in size-scale, of complex 3D structures using silicone network polymer chemistry. In particular, a class of silicone structures were developed that once patterned and cured can `shrink` micron scale additive manufactured and lithographically patterned structures by as much as 1 order of magnitude while preserving the dimensions and integrity of these parts. This class of silicone materials is compatible with existing additive manufacture and soft lithographic fabrication processes and will allow access to a hitherto unobtainable dimensionality of fabrication.
NASA Astrophysics Data System (ADS)
Wei, Ding; Cong-cong, Yu; Chen-hui, Wu; Zheng-yi, Shu
2018-03-01
To analyse the strain localization behavior of geomaterials, the forward Euler schemes and the tangent modulus matrix are formulated based on the transversely isotropic yield criterion with non-coaxial flow rule developed by Lade, the program code is implemented based on the user subroutine (UMAT) of ABAQUS. The influence of the material principal direction on the strain localization and the bearing capacity of the structure are investigated and analyzed. Numerical results show the validity and performance of the proposed model in simulating the strain localization behavior of geostructures.
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Nemeth, Michael P.; Oremont, Leonard; Jegley, Dawn C.
2011-01-01
Buckling loads for long isotropic and laminated cylinders are calculated based on Euler, Fluegge and Donnell's equations. Results from these methods are presented using simple parameters useful for fundamental design work. Buckling loads for two types of simply supported boundary conditions are calculated using finite element methods for comparison to select cases of the closed form solution. Results indicate that relying on Donnell theory can result in an over-prediction of buckling loads by as much as 40% in isotropic materials.
NASA Astrophysics Data System (ADS)
Pokhmurska, H.; Maksymovych, O.; Dzyubyk, A.; Dzyubyk, L.
2018-06-01
The methods of calculating the trajectories and the rate of growth of curvilinear fatigue cracks in isotropic and composite plate structure elements during cyclic loading along straight or curvilinear trajectories are developed. For isotropic and anisotropic materials, the methodes are developed on the basis of the force criterion of destruction with the additional application of the fatigue fracture diagrams. To find the change in the shape of the cracks in the loading process, the step-by-step method was used. At each stage, the direction of the growth of all vertices of cracks and the lengths of their arcs was found on the basis of determining the intensity coefficients of stresses by the method of singular integral equations. The results of calculations of the cracks system growth process are presented.
McSKY: A hybrid Monte-Carlo lime-beam code for shielded gamma skyshine calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shultis, J.K.; Faw, R.E.; Stedry, M.H.
1994-07-01
McSKY evaluates skyshine dose from an isotropic, monoenergetic, point photon source collimated into either a vertical cone or a vertical structure with an N-sided polygon cross section. The code assumes an overhead shield of two materials, through the user can specify zero shield thickness for an unshielded calculation. The code uses a Monte-Carlo algorithm to evaluate transport through source shields and the integral line source to describe photon transport through the atmosphere. The source energy must be between 0.02 and 100 MeV. For heavily shielded sources with energies above 20 MeV, McSKY results must be used cautiously, especially at detectormore » locations near the source.« less
Watts, Seth; Tortorelli, Daniel A.
2017-04-13
Topology optimization is a methodology for assigning material or void to each point in a design domain in a way that extremizes some objective function, such as the compliance of a structure under given loads, subject to various imposed constraints, such as an upper bound on the mass of the structure. Geometry projection is a means to parameterize the topology optimization problem, by describing the design in a way that is independent of the mesh used for analysis of the design's performance; it results in many fewer design parameters, necessarily resolves the ill-posed nature of the topology optimization problem, andmore » provides sharp descriptions of the material interfaces. We extend previous geometric projection work to 3 dimensions and design unit cells for lattice materials using inverse homogenization. We perform a sensitivity analysis of the geometric projection and show it has smooth derivatives, making it suitable for use with gradient-based optimization algorithms. The technique is demonstrated by designing unit cells comprised of a single constituent material plus void space to obtain light, stiff materials with cubic and isotropic material symmetry. Here, we also design a single-constituent isotropic material with negative Poisson's ratio and a light, stiff material comprised of 2 constituent solids plus void space.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, Seth; Tortorelli, Daniel A.
Topology optimization is a methodology for assigning material or void to each point in a design domain in a way that extremizes some objective function, such as the compliance of a structure under given loads, subject to various imposed constraints, such as an upper bound on the mass of the structure. Geometry projection is a means to parameterize the topology optimization problem, by describing the design in a way that is independent of the mesh used for analysis of the design's performance; it results in many fewer design parameters, necessarily resolves the ill-posed nature of the topology optimization problem, andmore » provides sharp descriptions of the material interfaces. We extend previous geometric projection work to 3 dimensions and design unit cells for lattice materials using inverse homogenization. We perform a sensitivity analysis of the geometric projection and show it has smooth derivatives, making it suitable for use with gradient-based optimization algorithms. The technique is demonstrated by designing unit cells comprised of a single constituent material plus void space to obtain light, stiff materials with cubic and isotropic material symmetry. Here, we also design a single-constituent isotropic material with negative Poisson's ratio and a light, stiff material comprised of 2 constituent solids plus void space.« less
Extension-torsion coupling behavior of advanced composite tilt-rotor blades
NASA Technical Reports Server (NTRS)
Kosmatka, J. B.
1989-01-01
An analytic model was developed to study the extension-bend-twist coupling behavior of an advanced composite helicopter or tilt-rotor blade. The outer surface of the blade is defined by rotating an arbitrary cross section about an initial twist axis. The cross section can be nonhomogeneous and composed of generally anisotropic materials. The model is developed based upon a three dimensional elasticity approach that is recast as a coupled two-dimensional boundary value problem defined in a curvilinear coordinate system. Displacement solutions are written in terms of known functions that represent extension, bending, and twisting and unknown functions for local cross section deformations. The unknown local deformation functions are determined by applying the principle of minimum potential energy to the discretized two-dimensional cross section. This is an application of the Ritz method, where the trial function family is the displacement field associated with a finite element (8-node isoparametric quadrilaterals) representation of the section. A computer program was written where the cross section is discretized into 8-node quadrilateral subregions. Initially the program was verified using previously published results (both three-dimensional elasticity and technical beam theory) for pretwisted isotropic bars with an elliptical cross section. In addition, solid and thin-wall multi-cell NACA-0012 airfoil sections were analyzed to illustrate the pronounced effects that pretwist, initial twist axis location, and spar location has on coupled behavior. Currently, a series of advanced composite airfoils are being modeled in order to assess how the use of laminated composite materials interacts with pretwist to alter the coupling behavior of the blade. These studies will investigate the use of different ply angle orientations and the use of symmetric versus unsymmetric laminates.
Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys
2011-01-01
tool material (AISI H13 tool steel ) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process...threads/m; (b) tool 598 material = AISI H13 tool steel ; (c) workpiece material = 599 AA5059; (d) tool rotation speed = 500 rpm; (e) tool travel 600 speed...the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13
Application of the matrix exponential kernel
NASA Technical Reports Server (NTRS)
Rohach, A. F.
1972-01-01
A point matrix kernel for radiation transport, developed by the transmission matrix method, has been used to develop buildup factors and energy spectra through slab layers of different materials for a point isotropic source. Combinations of lead-water slabs were chosen for examples because of the extreme differences in shielding properties of these two materials.
Stochastic isotropic hyperelastic materials: constitutive calibration and model selection
NASA Astrophysics Data System (ADS)
Mihai, L. Angela; Woolley, Thomas E.; Goriely, Alain
2018-03-01
Biological and synthetic materials often exhibit intrinsic variability in their elastic responses under large strains, owing to microstructural inhomogeneity or when elastic data are extracted from viscoelastic mechanical tests. For these materials, although hyperelastic models calibrated to mean data are useful, stochastic representations accounting also for data dispersion carry extra information about the variability of material properties found in practical applications. We combine finite elasticity and information theories to construct homogeneous isotropic hyperelastic models with random field parameters calibrated to discrete mean values and standard deviations of either the stress-strain function or the nonlinear shear modulus, which is a function of the deformation, estimated from experimental tests. These quantities can take on different values, corresponding to possible outcomes of the experiments. As multiple models can be derived that adequately represent the observed phenomena, we apply Occam's razor by providing an explicit criterion for model selection based on Bayesian statistics. We then employ this criterion to select a model among competing models calibrated to experimental data for rubber and brain tissue under single or multiaxial loads.
Crash energy absorption of two-segment crash box with holes under frontal load
NASA Astrophysics Data System (ADS)
Choiron, Moch. Agus; Sudjito, Hidayati, Nafisah Arina
2016-03-01
Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.
Edward W. Kuenzi; Charles B. Norris; Paul M. Jenkinson
1964-01-01
âThis report presents curves of coefficients and formulas for use in calculating the buckling of flat panels of sandwich construction under edgewise compressive loads. The curves were derived for sandwich panels having one facing of either of two orthotropic materials, the other facing of an isotropic material; both facings of orthotropic material; both facings of...
Multi-Mode Analysis of Dual Ridged Waveguide Systems for Material Characterization
2015-09-17
characterization is the process of determining the dielectric, magnetic, and magnetoelectric properties of a material. For simple (i.e., linear ...field expressions in terms of elementary functions (sines, cosines, exponentials and Bessel functions) and corresponding propagation constants of the...with material parameters 0 and µ0. • The MUT is simple ( linear , isotropic, homogeneous), and the sample has a uniform thickness. • The waveguide
Effect of skew angle on second harmonic guided wave measurement in composite plates
NASA Astrophysics Data System (ADS)
Cho, Hwanjeong; Choi, Sungho; Lissenden, Cliff J.
2017-02-01
Waves propagating in anisotropic media are subject to skewing effects due to the media having directional wave speed dependence, which is characterized by slowness curves. Likewise, the generation of second harmonics is sensitive to micro-scale damage that is generally not detectable from linear features of ultrasonic waves. Here, the effect of skew angle on second harmonic guided wave measurement in a transversely isotropic lamina and a quasi-isotropic laminate are numerically studied. The strain energy density function for a nonlinear transversely isotropic material is formulated in terms of the Green-Lagrange strain invariants. The guided wave mode pairs for cumulative second harmonic generation in the plate are selected in accordance with the internal resonance criteria - i.e., phase matching and non-zero power flux. Moreover, the skew angle dispersion curves for the mode pairs are obtained from the semi-analytical finite element method using the derivative of the slowness curve. The skew angles of the primary and secondary wave modes are calculated and wave propagation simulations are carried out using COMSOL. Numerical simulations revealed that the effect of skew angle mismatch can be significant for second harmonic generation in anisotropic media. The importance of skew angle matching on cumulative second harmonic generation is emphasized and the accompanying issue of the selection of internally resonant mode pairs for both a unidirectional transversely isotropic lamina and a quasi-isotropic laminate is demonstrated.
Rigorous vector wave propagation for arbitrary flat media
NASA Astrophysics Data System (ADS)
Bos, Steven P.; Haffert, Sebastiaan Y.; Keller, Christoph U.
2017-08-01
Precise modelling of the (off-axis) point spread function (PSF) to identify geometrical and polarization aberrations is important for many optical systems. In order to characterise the PSF of the system in all Stokes parameters, an end-to-end simulation of the system has to be performed in which Maxwell's equations are rigorously solved. We present the first results of a python code that we are developing to perform multiscale end-to-end wave propagation simulations that include all relevant physics. Currently we can handle plane-parallel near- and far-field vector diffraction effects of propagating waves in homogeneous isotropic and anisotropic materials, refraction and reflection of flat parallel surfaces, interference effects in thin films and unpolarized light. We show that the code has a numerical precision on the order of 10-16 for non-absorbing isotropic and anisotropic materials. For absorbing materials the precision is on the order of 10-8. The capabilities of the code are demonstrated by simulating a converging beam reflecting from a flat aluminium mirror at normal incidence.
Combined investigation of Eddy current and ultrasonic techniques for composite materials NDE
NASA Technical Reports Server (NTRS)
Davis, C. W.; Nath, S.; Fulton, J. P.; Namkung, M.
1993-01-01
Advanced composites are not without trade-offs. Their increased designability brings an increase in the complexity of their internal geometry and, as a result, an increase in the number of failure modes associated with a defect. When two or more isotropic materials are combined in a composite, the isotropic material failure modes may also combine. In a laminate, matrix delamination, cracking and crazing, and voids and porosity, will often combine with fiber breakage, shattering, waviness, and separation to bring about ultimate structural failure. This combining of failure modes can result in defect boundaries of different sizes, corresponding to the failure of each structural component. This paper discusses a dual-technology NDE (Non Destructive Evaluation) (eddy current (EC) and ultrasonics (UT)) study of graphite/epoxy (gr/ep) laminate samples. Eddy current and ultrasonic raster (Cscan) imaging were used together to characterize the effects of mechanical impact damage, high temperature thermal damage and various types of inserts in gr/ep laminate samples of various stacking sequences.
Behavior of Three Metallic Alloys Under Combined Axial-Shear Stress at 650 C
NASA Technical Reports Server (NTRS)
Colaiuta, Jason F.; Lerch, Bradley (Technical Monitor)
2001-01-01
Three materials, Inconel 718, Haynes 188, and 316 stainless steel, were tested under an axial-torsional stress state at 650 C. The objective of this study was to quantify the evolution of the material while in the viscoplastic domain. Initial and subsequent yield surfaces were experimentally determined to quantify hardening. Subsequent yield surfaces (yield surfaces taken after a preload) had a well-defined front side, in the prestrain direction, but a poorly defined back side, opposite the prestrain direction. Subsequent yield surfaces exhibited isotropic hardening by expansion of the yield surface, kinematic hardening by translation of the yield surface, and distortional hardening by flattening of the yield surface in the direction opposite to the last prestrain. An existing yield function capable of representing isotropic, kinematic, and distortional hardening was used to fit each yield surface. Four variables are used to describe each surface. These variables evolve as the material state changes and have been regressed to the yield surface data.
Discriminating electromagnetic radiation based on angle of incidence
Hamam, Rafif E.; Bermel, Peter; Celanovic, Ivan; Soljacic, Marin; Yeng, Adrian Y. X.; Ghebrebrhan, Michael; Joannopoulos, John D.
2015-06-16
The present invention provides systems, articles, and methods for discriminating electromagnetic radiation based upon the angle of incidence of the electromagnetic radiation. In some cases, the materials and systems described herein can be capable of inhibiting reflection of electromagnetic radiation (e.g., the materials and systems can be capable of transmitting and/or absorbing electromagnetic radiation) within a given range of angles of incidence at a first incident surface, while substantially reflecting electromagnetic radiation outside the range of angles of incidence at a second incident surface (which can be the same as or different from the first incident surface). A photonic material comprising a plurality of periodically occurring separate domains can be used, in some cases, to selectively transmit and/or selectively absorb one portion of incoming electromagnetic radiation while reflecting another portion of incoming electromagnetic radiation, based upon the angle of incidence. In some embodiments, one domain of the photonic material can include an isotropic dielectric function, while another domain of the photonic material can include an anisotropic dielectric function. In some instances, one domain of the photonic material can include an isotropic magnetic permeability, while another domain of the photonic material can include an anisotropic magnetic permeability. In some embodiments, non-photonic materials (e.g., materials with relatively large scale features) can be used to selectively absorb incoming electromagnetic radiation based on angle of incidence.
Bergquist, Leah; Zhang, Cuiyu; Ribeiro de Almeida, Roberta R.; ...
2017-02-07
Here, we report on the synthesis and characterization of bent-core liquid crystal (LC) compounds and the preparation of mixtures that provide an optically isotropic antiferroelectric (OI-AFLC) liquid crystal display mode over a very wide temperature interval and well below room temperature. From the collection of compounds synthesized during this study, we recognized that several ternary mixtures displayed a modulated SmC aP A phase down to below -40 °C and up to about 100 °C on both heating and cooling, as well as optical tilt angles in the transformed state of approximately 45° (optically isotropic state). The materials were fully characterizedmore » and their liquid crystal as well as electro-optical properties analyzed by polarized optical microscopy, differential scanning calorimetry, synchrotron X-ray diffraction, dielectric spectroscopy, and electro-optical tests.« less
Photopyroelectric Calorimetry Investigations of 8CB Liquid Crystal-Microemulsion System
NASA Astrophysics Data System (ADS)
Paoloni, S.; Zammit, U.; Mercuri, F.
2018-02-01
In this work, the photopyroelectric technique has been used to investigate the phase transitions in a liquid crystal microemulsion by combining the simultaneous high temperature resolution thermal diffusivity measurements and optical polarization microscopy observations. It has been found that, during the conversion from the isotropic phase into the nematic one, the micelles are expelled from the nematic domains and remain confined in islands of isotropic material which survive down to the smectic temperature range. A hysteresis in the thermal diffusivity profiles between heating and cooling run over the isotropic-nematic transition temperature range has been observed which has been ascribed to the different micelles distribution into the sample volume during cooling and heating runs. Finally, the almost bulk-like behavior of the thermal diffusivity over the nematic-smectic phase transition confirms that a significant fraction of the micelles are expelled during the nucleation of the nematic phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergquist, Leah; Zhang, Cuiyu; Ribeiro de Almeida, Roberta R.
Here, we report on the synthesis and characterization of bent-core liquid crystal (LC) compounds and the preparation of mixtures that provide an optically isotropic antiferroelectric (OI-AFLC) liquid crystal display mode over a very wide temperature interval and well below room temperature. From the collection of compounds synthesized during this study, we recognized that several ternary mixtures displayed a modulated SmC aP A phase down to below -40 °C and up to about 100 °C on both heating and cooling, as well as optical tilt angles in the transformed state of approximately 45° (optically isotropic state). The materials were fully characterizedmore » and their liquid crystal as well as electro-optical properties analyzed by polarized optical microscopy, differential scanning calorimetry, synchrotron X-ray diffraction, dielectric spectroscopy, and electro-optical tests.« less
Gas permeability of ice-templated, unidirectional porous ceramics.
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J
2016-01-01
We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 [Formula: see text]m and 19.1 [Formula: see text]m. The maximum permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) was measured in samples with the highest total pore volume (72%) and pore size (19.1 [Formula: see text]m). However, we demonstrate that it is possible to achieve a similar permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity ([Formula: see text]) is mainly controlled by pore size, unlike in isotropic porous structures where [Formula: see text] is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.
A nonlinear theory for spinning anisotropic beams using restrained warping functions
NASA Technical Reports Server (NTRS)
Ie, C. A.; Kosmatka, J. B.
1993-01-01
A geometrically nonlinear theory is developed for spinning anisotropic beams having arbitrary cross sections. An assumed displacement field is developed using the standard 3D kinematics relations to describe the global beam behavior supplemented with an additional field that represents the local deformation within the cross section and warping out of the cross section plane. It is assumed that the magnitude of this additional field is directly proportional to the local stress resultants. In order to take into account the effects of boundary conditions, a restraining function is introduced. This function plays the role of reducing the amount of free warping deformation throughout the field due to the restraint of the cross section(s) at the end(s) of the beam, e.g., in the case of a cantilever beam. Using a developed ordering scheme, the nonlinear strains are calculated to the third order. The FEM is developed using the weak form variational formulation. Preliminary interesting numerical results have been obtained that indicate the role of the restraining function in the case of a cantilever beam with circular cross section. These results are for the cases of a tip displacement (static) and free vibration studies for both isotropic and anisotropic materials with varied fiber orientations.
A Transversely Isotropic Thermoelastic Theory
NASA Technical Reports Server (NTRS)
Arnold, S. M.
1989-01-01
A continuum theory is presented for representing the thermoelastic behavior of composites that can be idealized as transversely isotropic. This theory is consistent with anisotropic viscoplastic theories being developed presently at NASA Lewis Research Center. A multiaxial statement of the theory is presented, as well as plane stress and plane strain reductions. Experimental determination of the required material parameters and their theoretical constraints are discussed. Simple homogeneously stressed elements are examined to illustrate the effect of fiber orientation on the resulting strain distribution. Finally, the multiaxial stress-strain relations are expressed in matrix form to simplify and accelerate implementation of the theory into structural analysis codes.
A class of invisible inhomogeneous media and the control of electromagnetic waves
NASA Astrophysics Data System (ADS)
Vial, B.; Liu, Y.; Horsley, S. A. R.; Philbin, T. G.; Hao, Y.
2016-12-01
We propose a general method to arbitrarily manipulate an electromagnetic wave propagating in a two-dimensional medium, without introducing any scattering. This leads to a whole class of isotropic spatially varying permittivity and permeability profiles that are invisible while shaping the field magnitude and/or phase. In addition, we propose a metamaterial structure working in the infrared that demonstrates deep subwavelength control of the electric field amplitude and strong reduction of the scattering. This work offers an alternative strategy to achieve invisibility with isotropic materials and paves the way for tailoring the propagation of light at the nanoscale.
Diffraction of SH-waves by topographic features in a layered transversely isotropic half-space
NASA Astrophysics Data System (ADS)
Ba, Zhenning; Liang, Jianwen; Zhang, Yanju
2017-01-01
The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.
NASA Technical Reports Server (NTRS)
Crespodasilva, M. R. M.
1981-01-01
The differential equations of motion, and boundary conditions, describing the flap-lead/lag-torsional motion of a flexible rotor blade with a precone angle and a variable pitch angle, which incorporates a pretwist, are derived via Hamilton's principle. The meaning of inextensionality is discussed. The equations are reduced to a set of three integro partial differential equations by elimination of the extension variable. The generalized aerodynamic forces are modelled using Greenberg's extension of Theodorsen's strip theory. The equations of motion are systematically expanded into polynomial nonlinearities with the objective of retaining all terms up to third degree. The blade is modeled as a long, slender, of isotropic Hookean materials. Offsets from the blade's elastic axis through its shear center and the axes for the mass, area and aerodynamic centers, radial nonuniformaties of the blade's stiffnesses and cross section properties are considered and the effect of warp of the cross section is included in the formulation.
NASA Astrophysics Data System (ADS)
Shi, Ming F.; Zhang, Li; Zhu, Xinhai
2016-08-01
The Yoshida nonlinear isotropic/kinematic hardening material model is often selected in forming simulations where an accurate springback prediction is required. Many successful application cases in the industrial scale automotive components using advanced high strength steels (AHSS) have been reported to give better springback predictions. Several issues have been raised recently in the use of the model for higher strength AHSS including the use of two C vs. one C material parameters in the Armstrong and Frederick model (AF model), the original Yoshida model vs. Original Yoshida model with modified hardening law, and constant Young's Modulus vs. decayed Young's Modulus as a function of plastic strain. In this paper, an industrial scale automotive component using 980 MPa strength materials is selected to study the effect of two C and one C material parameters in the AF model on both forming and springback prediction using the Yoshida model with and without the modified hardening law. The effect of decayed Young's Modulus on the springback prediction for AHSS is also evaluated. In addition, the limitations of the material parameters determined from tension and compression tests without multiple cycle tests are also discussed for components undergoing several bending and unbending deformations.
A damage tolerance comparison of IM7/8551 and IM8G/8553 carbon/epoxy composites
NASA Technical Reports Server (NTRS)
Lance, D. G.; Nettles, A. T.
1991-01-01
A damage tolerance study of two new toughened carbon fiber/epoxy resin systems was undertaken as a continuation of ongoing work into screening new opposites for resistance to foreign object impact. This report is intended to be a supplement to NASA TP 3029 in which four new fiber/resin systems were tested for damage tolerance. Instrumented drop weight impact testing was used to inflict damage to 16-ply quasi-isotropic specimens. Instrumented output data and cross-sectional examinations of the damage zone were utilized to quantify the damage. It was found that the two fiber/resin systems tested in this study were much more impact resistant than an untoughened composite such as T300/934, but were not as impact resistant as other materials previously studied.
Qiu, Cheng-Wei; Hu, Li; Zhang, Baile; Wu, Bae-Ian; Johnson, Steven G; Joannopoulos, John D
2009-08-03
Two novel classes of spherical invisibility cloaks based on nonlinear transformation have been studied. The cloaking characteristics are presented by segmenting the nonlinear transformation based spherical cloak into concentric isotropic homogeneous coatings. Detailed investigations of the optimal discretization (e.g., thickness control of each layer, nonlinear factor, etc.) are presented for both linear and nonlinear spherical cloaks and their effects on invisibility performance are also discussed. The cloaking properties and our choice of optimal segmentation are verified by the numerical simulation of not only near-field electric-field distribution but also the far-field radar cross section (RCS).
Foundations of low-temperature plasma enhanced materials synthesis and etching
NASA Astrophysics Data System (ADS)
Oehrlein, Gottlieb S.; Hamaguchi, Satoshi
2018-02-01
Low temperature plasma (LTP)-based synthesis of advanced materials has played a transformational role in multiple industries, including the semiconductor industry, liquid crystal displays, coatings and renewable energy. Similarly, the plasma-based transfer of lithographically defined resist patterns into other materials, e.g. silicon, SiO2, Si3N4 and other electronic materials, has led to the production of nanometer scale devices that are the basis of the information technology, microsystems, and many other technologies based on patterned films or substrates. In this article we review the scientific foundations of both LTP-based materials synthesis at low substrate temperature and LTP-based isotropic and directional etching used to transfer lithographically produced resist patterns into underlying materials. We cover the fundamental principles that are the basis of successful application of the LTP techniques to technological uses and provide an understanding of technological factors that may control or limit material synthesis or surface processing with the use of LTP. We precede these sections with a general discussion of plasma surface interactions, the LTP-generated particle fluxes including electrons, ions, radicals, excited neutrals and photons that simultaneously contact and modify surfaces. The surfaces can be in the line of sight of the discharge or hidden from direct interaction for structured substrates. All parts of the article are extensively referenced, which is intended to help the reader study the topics discussed here in more detail.
A Study for Anisotropic Wavefield Analysis with Elastic Layered Models
NASA Astrophysics Data System (ADS)
Yoneki, R.; Mikada, H.; Takekawa, J.
2015-12-01
Subsurface materials are generally anisotropic due to complicated geological conditions, for example, sedimentary materials, fractures reflecting various stress conditions in the past and present in the subsurface. There are many studies on seismic wave propagation in TI (transversely isotropic) and orthorhombic media (e.g., Thomsen, 1986; Alkhalifah, 2000; Bansal and Sen, 2008). In most of those studies, the magnitude of anisotropy is assumed to be weak. Therefore, it may be not appropriate to apply their theories directly to strongly anisotropic subsurface media in seismic exploration. It is necessary to understand the effects of the anisotropy on the behavior of seismic wave propagation in strongly anisotropic media in the seismic exploration. In this study, we investigate the influence of strong anisotropy on received seismic waveforms using three-dimensional numerical models, and verified capability of detecting subsurface anisotropy. Our numerical models contain an isotropic and an anisotropic (VTI, transversely isotropic media with vertical symmetry axis) layer, respectively, in the isotropic background subsurface. Since the difference between the two models is only the anisotropy in the vertical propagation velocity, we could look at the influence of anisotropy in the residual wavefield that is the difference in the observed wavefields of two models. We analyzed the orbital motions of the residual wavefield to see what kind of wave motions the waveforms show. We found that the residual waveforms generated by the anisotropic layer include the orbital motions of shear waves right after the first arrival, i.e., mode conversion from the compressional waves due to the anisotropy. The residual waveforms could be exploited to estimate both the order of anisotropy and the thickness of anisotropic layer in subsurface.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Kalluri, Sreeramesh
1991-01-01
The temperature-dependent engineering elastic constants of a directionally solidified nickel-base superalloy were estimated from the single-crystal elastic constants of nickel and MAR-MOO2 superalloy by using Wells' method. In this method, the directionally solidified (columnar-grained) nickel-base superalloy was modeled as a transversely isotropic material, and the five independent elastic constants of the transversely isotropic material were determined from the three independent elastic constants of a cubic single crystal. Solidification for both the single crystals and the directionally solidified superalloy was assumed to be along the (001) direction. Temperature-dependent Young's moduli in longitudinal and transverse directions, shear moduli, and Poisson's ratios were tabulated for the directionally solidified nickel-base superalloy. These engineering elastic constants could be used as input for performing finite element structural analysis of directionally solidified turbine engine components.
Magnetic self-orientation of lyotropic hexagonal phases based on long chain alkanoic (fatty) acids.
Douliez, Jean-Paul
2010-07-06
It is presently shown that long chain (C14, C16, and C18) alkanoic (saturated fatty) acids can form magnetically oriented hexagonal phases in aqueous concentrated solutions in mixtures with tetrabutylammonium (TBAOH) as the counterion. The hexagonal phase occurred for a molar ratio, alkanoic acid/TBAOH, higher than 1, i.e., for an excess of fatty acid. The hexagonal phase melted to an isotropic phase (micelles) upon heating at a given temperature depending on the alkyl chain length. The self-orientation of the hexagonal phase occurred upon cooling from the "high-temperature" isotropic phase within the magnetic field. The long axis of the hexagonal phase was shown to self-orient parallel to the magnetic field as evidenced by deuterium solid-state NMR. This finding is expected to be of interest in the field of structural biology and materials chemistry for the synthesis of oriented materials.
Parametric study using modal analysis of a bi-material plate with defects
NASA Astrophysics Data System (ADS)
Esola, S.; Bartoli, I.; Horner, S. E.; Zheng, J. Q.; Kontsos, A.
2015-03-01
Global vibrational method feasibility as a non-destructive inspection tool for multi-layered composites is evaluated using a simulated parametric study approach. A finite element model of a composite consisting of two, isotropic layers of dissimilar materials and a third, thin isotropic layer of adhesive is constructed as the representative test subject. Next, artificial damage is inserted according to systematic variations of the defect morphology parameters. A free-vibrational modal analysis simulation is executed for pristine and damaged plate conditions. Finally, resultant mode shapes and natural frequencies are extracted, compared and analyzed for trends. Though other defect types may be explored, the focus of this research is on interfacial delamination and its effects on the global, free-vibrational behavior of a composite plate. This study is part of a multi-year research effort conducted for the U.S. Army Program Executive Office - Soldier.
NASA Astrophysics Data System (ADS)
Chun, Sehun
2017-07-01
Applying the method of moving frames to Maxwell's equations yields two important advancements for scientific computing. The first is the use of upwind flux for anisotropic materials in Maxwell's equations, especially in the context of discontinuous Galerkin (DG) methods. Upwind flux has been available only to isotropic material, because of the difficulty of satisfying the Rankine-Hugoniot conditions in anisotropic media. The second is to solve numerically Maxwell's equations on curved surfaces without the metric tensor and composite meshes. For numerical validation, spectral convergences are displayed for both two-dimensional anisotropic media and isotropic spheres. In the first application, invisible two-dimensional metamaterial cloaks are simulated with a relatively coarse mesh by both the lossless Drude model and the piecewisely-parametered layered model. In the second application, extremely low frequency propagation on various surfaces such as spheres, irregular surfaces, and non-convex surfaces is demonstrated.
X-ray coherent scattering tomography of textured material (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhu, Zheyuan; Pang, Shuo
2017-05-01
Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.
Modeling and validation of spectral BRDF on material surface of space target
NASA Astrophysics Data System (ADS)
Hou, Qingyu; Zhi, Xiyang; Zhang, Huili; Zhang, Wei
2014-11-01
The modeling and the validation methods of the spectral BRDF on the material surface of space target were presented. First, the microscopic characteristics of the space targets' material surface were analyzed based on fiber-optic spectrometer using to measure the direction reflectivity of the typical materials surface. To determine the material surface of space target is isotropic, atomic force microscopy was used to measure the material surface structure of space target and obtain Gaussian distribution model of microscopic surface element height. Then, the spectral BRDF model based on that the characteristics of the material surface were isotropic and the surface micro-facet with the Gaussian distribution which we obtained was constructed. The model characterizes smooth and rough surface well for describing the material surface of the space target appropriately. Finally, a spectral BRDF measurement platform in a laboratory was set up, which contains tungsten halogen lamp lighting system, fiber optic spectrometer detection system and measuring mechanical systems with controlling the entire experimental measurement and collecting measurement data by computers automatically. Yellow thermal control material and solar cell were measured with the spectral BRDF, which showed the relationship between the reflection angle and BRDF values at three wavelengths in 380nm, 550nm, 780nm, and the difference between theoretical model values and the measured data was evaluated by relative RMS error. Data analysis shows that the relative RMS error is less than 6%, which verified the correctness of the spectral BRDF model.
Anisotropic and Hierarchical Porosity in Multifunctional Ceramics
NASA Astrophysics Data System (ADS)
Lichtner, Aaron Zev
The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.
On the Effects of the Lateral Strains on the Fiber Bragg Grating Response
Lai, Marco; Karalekas, Dimitris; Botsis, John
2013-01-01
In this paper, a combined experimental-numerical based work was undertaken to investigate the Bragg wavelength shift response of an embedded FBG sensor when subjected to different conditions of multi-axial loading (deformation). The following cases are examined: (a) when an isotropic host material with no constrains on planes normal to the embedded sensor's axis is biaxially loaded, (b) when the same isotropic host material is subjected to hydrostatic pressure and (c) when the hydrostatically loaded host material is an anisotropic one, as in the case of a composite material, where the optical fiber is embedded along the reinforcing fibers. The comparison of the experimental results and the finite element simulations shows that, when the axial strain on the FBG sensor is the dominant component, the standard wavelength-shift strain relation can be used even if large lateral strains apply on the sensor. However when this is not the case, large errors may be introduced in the conversion of the wavelength to axial strains on the fiber. This situation arises when the FBG is placed parallel to high modulus reinforcing fibers of a polymer composite. PMID:23429580
NASA Astrophysics Data System (ADS)
Vatanabe, Sandro L.; Silva, Emílio C. N.
2011-04-01
One of the properties of composite materials is the possibility of having phononic band gaps, within which sound and vibrations at certain frequencies do not propagate. These materials are called Phononic Crystals (PCs). PCs with large band gaps are of great interest for many applications, such as transducers, elastic/ acoustic filters, noise control, and vibration shields. Most of previous works concentrates on PCs made of elastic isotropic materials; however, band gaps can be enlarged by using non-isotropic materials, such as piezoelectric materials. Since the main property of PCs is the presence of band gaps, one possible way to design structures which have a desired band gap is through Topology Optimization Method (TOM). TOM is a computational technique that determines the layout of a material such that a prescribed objective is maximized. Functionally Graded Materials (FGM) are composite materials whose properties vary gradually and continuously along a specific direction within the domain of the material. One of the advantages of applying the FGM concept to TOM is that it is not necessary a discrete 0-1 result, once the material gradation is part of the solution. Therefore, the interpretation step becomes easier and the dispersion diagram obtained from the optimization is not significantly modified. In this work, the main objective is to optimize the position and width of piezocomposite materials band gaps. Finite element analysis is implemented with Bloch-Floquet theory to solve the dynamic behavior of two-dimensional functionally graded unit cells. The results demonstrate that phononic band gaps can be designed by using this methodology.
Viscoplasticity: A thermodynamic formulation
NASA Technical Reports Server (NTRS)
Freed, A. D.; Chaboche, J. L.
1989-01-01
A thermodynamic foundation using the concept of internal state variables is given for a general theory of viscoplasticity, as it applies to initially isotropic materials. Three fundamental internal state variables are admitted. They are: a tensor valued back stress for kinematic effects, and the scalar valued drag and yield strengths for isotropic effects. All three are considered to phenomenologically evolve according to competitive processes between strain hardening, strain induced dynamic recovery, and time induced static recovery. Within this phenomenological framework, a thermodynamically admissible set of evolution equations is put forth. This theory allows each of the three fundamental internal variables to be composed as a sum of independently evolving constituents.
Evaluation of Inelastic Constitutive Models for Nonlinear Structural Analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1983-01-01
The influence of inelastic material models on computed stress-strain states, and therefore predicted lives, was studied for thermomechanically loaded structures. Nonlinear structural analyses were performed on a fatigue specimen which was subjected to thermal cycling in fluidized beds and on a mechanically load cycled benchmark notch specimen. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic-kinematic, combined plus transient creep) were exercised. Of the plasticity models, kinematic hardening gave results most consistent with experimental observations. Life predictions using the computed strain histories at the critical location with a Strainrange Partitioning approach considerably overpredicted the crack initiation life of the thermal fatigue specimen.
Magnetostrictive and magnetic effects in Fe-27%Co laminations
NASA Astrophysics Data System (ADS)
Savary, Maxime; Hubert, Olivier; Helbert, Anne-Laure; Baudin, Thierry; Waeckerlé, Thierry
2018-04-01
The present paper deals with the characterization of the magnetostriction of the Fe-27%Co alloy. When this alloy is annealed in the ferritic domain (between 700°C and 940°C) and submitted to a slow cooling, it exhibits a low and isotropic magnetostriction over a wide induction range (±1.5T). One reason that can explain this phenomenon is a high temperature selection of magnetic bi-domains preferentially oriented in the rolling plane. As soon as this material is annealed in the austenitic domain or quenched from the ferritic domain, the low and isotropic magnetostriction disappears giving way to a classical quadratic magnetostrictive behavior.
Electrically activated artificial muscles made with liquid crystal elastomers
NASA Astrophysics Data System (ADS)
Shahinpoor, Mohsen
2000-06-01
Composites of monodomain nematic liquid crystal elastomers and a conducting material distributed within their network are shown to exhibit large deformations, i.e. contraction, expansion, bending with strains of over 200% and appreciable force, by Joule heating through electrical activation. The electrical activation of the conducting material induces a rapid Joule heating in the sample leading to a nematic to isotropic phase transition where the elastomer of dimensions 32 mm x 7 mm x 0.4 mm contracted in less than a second. The cooling process, isotropic to nematic transition where the elastomer expands back to its original length, was slow and took 8 seconds. The material studied here is a highly novel liquid crystalline co-elastomer, invented and developed by Heino Finkelmann and co-workers at Albert-Ludwigs-Universitaet in Freiburg, Germany. The material is such that in which the mesogenic units are in both the side chains and the main chains of the elastomer. This co-elastomer was then mechanically loaded to induce a uniaxial network anisotropy before the cross-linking reaction was completed. These samples were then made into a composite with a conducting material such as dispersed silver particles or graphite fibers. The final samples was capable of undergoing more than 200% reversible strain in a few seconds.
Isotropic Huygens dipoles and multipoles with colloidal particles
NASA Astrophysics Data System (ADS)
Dezert, Romain; Richetti, Philippe; Baron, Alexandre
2017-11-01
Huygens sources are elements that scatter light in the forward direction as used in the Huygens-Fresnel principle. They have remained fictitious until recently when experimental systems have been fabricated. In this Rapid Communication, we propose isotropic meta-atoms that act as Huygens sources. Using clusters of plasmonic or dielectric colloidal particles, Huygens dipoles that resonate at visible frequencies can be achieved with scattering cross sections as high as five times the geometric cross section of the particle surpassing anything achievable with a hypothetical simple spherical particle. Examples are given that predict extremely broadband scattering in the forward direction over a 1000 nm wavelength range at optical frequencies. These systems are important to the fields of nanoantennas, metamaterials, and wave physics in general as well as any application that requires local control over the radiation properties of a system as in solar cells or biosensing.
Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model
Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent
2016-05-11
Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less
A Linear Viscoelastic Model Calibration of Sylgard 184.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Kevin Nicholas; Brown, Judith Alice
2017-04-01
We calibrate a linear thermoviscoelastic model for solid Sylgard 184 (90-10 formulation), a lightly cross-linked, highly flexible isotropic elastomer for use both in Sierra / Solid Mechanics via the Universal Polymer Model as well as in Sierra / Structural Dynamics (Salinas) for use as an isotropic viscoelastic material. Material inputs for the calibration in both codes are provided. The frequency domain master curve of oscillatory shear was obtained from a report from Los Alamos National Laboratory (LANL). However, because the form of that data is different from the constitutive models in Sierra, we also present the mapping of the LANLmore » data onto Sandia’s constitutive models. Finally, blind predictions of cyclic tension and compression out to moderate strains of 40 and 20% respectively are compared with Sandia’s legacy cure schedule material. Although the strain rate of the data is unknown, the linear thermoviscoelastic model accurately predicts the experiments out to moderate strains for the slower strain rates, which is consistent with the expectation that quasistatic test procedures were likely followed. This good agreement comes despite the different cure schedules between the Sandia and LANL data.« less
Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent
Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less
Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids
Man, Weining; Florescu, Marian; Williamson, Eric Paul; He, Yingquan; Hashemizad, Seyed Reza; Leung, Brian Y. C.; Liner, Devin Robert; Torquato, Salvatore; Chaikin, Paul M.; Steinhardt, Paul J.
2013-01-01
Recently, disordered photonic media and random textured surfaces have attracted increasing attention as strong light diffusers with broadband and wide-angle properties. We report the experimental realization of an isotropic complete photonic band gap (PBG) in a 2D disordered dielectric structure. This structure is designed by a constrained optimization method, which combines advantages of both isotropy due to disorder and controlled scattering properties due to low-density fluctuations (hyperuniformity) and uniform local topology. Our experiments use a modular design composed of Al2O3 walls and cylinders arranged in a hyperuniform disordered network. We observe a complete PBG in the microwave region, in good agreement with theoretical simulations, and show that the intrinsic isotropy of this unique class of PBG materials enables remarkable design freedom, including the realization of waveguides with arbitrary bending angles impossible in photonic crystals. This experimental verification of a complete PBG and realization of functional defects in this unique class of materials demonstrate their potential as building blocks for precise manipulation of photons in planar optical microcircuits and has implications for disordered acoustic and electronic band gap materials. PMID:24043795
Acoustics of two-component porous materials with anisotropic tortuosity
NASA Astrophysics Data System (ADS)
Albers, Bettina; Wilmanski, Krzysztof
2012-11-01
The paper is devoted to the analysis of monochromatic waves in two-component poroelastic materials described by a Biot-like model whose stress-strain relations are isotropic but the permeability is anisotropic. This anisotropy is induced by the anisotropy of the tortuosity which is given by a second order symmetric tensor. This is a new feature of the model while in earlier papers only isotropic permeabilities were considered. We show that this new model describes four modes of propagation. For our special choice of orientation of the direction of propagation these are two pseudo longitudinal modes P1 and P2, one pseudo transversal mode S2 and one transversal mode S1. The latter becomes also pseudo transversal in the general case of anisotropy. We analyze the speeds of propagation and the attenuation of these waves as well as the polarization properties in dependence on the orientation of the principal directions of the tortuosity. We indicate the practical importance of different shear (transversal) modes of propagation in a possible new nondestructive test of geophysical materials.
Sebastián, Nerea; López, David Orencio; Diez-Berart, Sergio; de la Fuente, María Rosario; Salud, Josep; Pérez-Jubindo, Miguel Angel; Ros, María Blanca
2011-01-01
In this work, a study of the nematic (N)–isotropic (I) phase transition has been made in a series of odd non-symmetric liquid crystal dimers, the α-(4-cyanobiphenyl-4’-yloxy)-ω-(1-pyrenimine-benzylidene-4’-oxy) alkanes, by means of accurate calorimetric and dielectric measurements. These materials are potential candidates to present the elusive biaxial nematic (NB) phase, as they exhibit both molecular biaxiality and flexibility. According to the theory, the uniaxial nematic (NU)–isotropic (I) phase transition is first-order in nature, whereas the NB–I phase transition is second-order. Thus, a fine analysis of the critical behavior of the N–I phase transition would allow us to determine the presence or not of the biaxial nematic phase and understand how the molecular biaxiality and flexibility of these compounds influences the critical behavior of the N–I phase transition. PMID:28824100
NASA Astrophysics Data System (ADS)
Bertin, N.; Upadhyay, M. V.; Pradalier, C.; Capolungo, L.
2015-09-01
In this paper, we propose a novel full-field approach based on the fast Fourier transform (FFT) technique to compute mechanical fields in periodic discrete dislocation dynamics (DDD) simulations for anisotropic materials: the DDD-FFT approach. By coupling the FFT-based approach to the discrete continuous model, the present approach benefits from the high computational efficiency of the FFT algorithm, while allowing for a discrete representation of dislocation lines. It is demonstrated that the computational time associated with the new DDD-FFT approach is significantly lower than that of current DDD approaches when large number of dislocation segments are involved for isotropic and anisotropic elasticity, respectively. Furthermore, for fine Fourier grids, the treatment of anisotropic elasticity comes at a similar computational cost to that of isotropic simulation. Thus, the proposed approach paves the way towards achieving scale transition from DDD to mesoscale plasticity, especially due to the method’s ability to incorporate inhomogeneous elasticity.
On the problem of stress singularities in bonded orthotropic materials
NASA Technical Reports Server (NTRS)
Erdogan, F.; Delale, F.
1976-01-01
The problem of stress singularities at the leading edge of a crack lying in the neighborhood of a bimaterial interface in bonded orthotropic materials is considered. The main objective is to study the effect of material orthotropy on the singular behavior of the stress state when the crack touches or intersects the interface. The results indicate that, due to the large number of material constants involved, in orthotropic materials, the power of stress singularity as well as the stress intensity factor can be considerably different than that found in the isotropic materials with the same stiffness ratio perpendicular to the crack.
NASA Astrophysics Data System (ADS)
Shodja, H. M.; Khorshidi, A.
2013-04-01
Eshelby's theories on the nature of the disturbance strains due to polynomial eigenstrains inside an isotropic ellipsoidal inclusion, and the form of homogenizing eigenstrains corresponding to remote polynomial loadings in the equivalent inclusion method (EIM) are not valid for spherically anisotropic inclusions and inhomogeneities. Materials with spherically anisotropic behavior are frequently encountered in nature, for example, some graphite particles or polyethylene spherulites. Moreover, multi-inclusions/inhomogeneities/inhomogeneous inclusions have abundant engineering and scientific applications and their exact theoretical treatment would be of great value. The present work is devoted to the development of a mathematical framework for the exact treatment of a spherical multi-inhomogeneous inclusion with spherically anisotropic constituents embedded in an unbounded isotropic matrix. The formulations herein are based on tensor spherical harmonics having orthogonality and completeness properties. For polynomial eigenstrain field and remote applied loading, several theorems on the exact closed-form expressions of the elastic fields associated with the matrix and all the phases of the inhomogeneous inclusion are stated and proved. Several classes of impotent eigenstrain fields associated to a generally anisotropic inclusion as well as isotropic and spherically anisotropic multi-inclusions are also introduced. The presented theories are useful for obtaining highly accurate solutions of desired accuracy when the constituent phases of the multi-inhomogeneous inclusion are made of functionally graded materials (FGMs).
Crash energy absorption of two-segment crash box with holes under frontal load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choiron, Moch Agus, E-mail: agus-choiron@ub.ac.id; Sudjito,; Hidayati, Nafisah Arina
Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base.more » Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.« less
2013-06-01
project focuses on the theoretical study of suspensions of nano- particles of different nature (ferroelectric, ferromagnetic , multiferroic) with size ...SUBJECT TERMS EOARD, ferroelectric, ferromagnetic and multiferroic, new photorefractive effects in liquid crystal cell, new materials and systems...magnetic, mechanical, luminescence etc absent in a pure material . The idea of doping the liquid crystals with elongated ferromagnetic particles to
Compression molded energy storage flywheels
NASA Astrophysics Data System (ADS)
Burdick, P. A.
Materials choices, manufacturing processes, and benefits of flywheels as an effective energy storage device are discussed. Tests at the LL Laboratories have indicated that compressing molding of plies of structural sheet molding compound (SMC) filled with randomly oriented fibers produces a laminated disk with transversely isotropic properties. Good performance has been realized with a carbon/epoxy system, which displays satisfactory stiffness and strength in flywheel applications. A core profile has been selected, consisting of a uniform 1 in cross sectional thickness and a 21 in diam. Test configurations using three different resin paste formulations were compared after being mounted elastomerically on aluminum hubs. Further development was found necessary on accurate balancing and hub bonding. It was concluded that the SMC flywheels display the low-cost, sufficient energy densities, suitable dynamic stability characteristics, and acceptably benign failure modes for automotive applications.
Petrology of forearc basalt-related isotropic gabbros from the Bonin Ridge, Izu-Bonin forearc
NASA Astrophysics Data System (ADS)
Garcia, S. E.; Loocke, M. P.; Snow, J. E.
2017-12-01
The early arc volcanic rocks exposed on the Bonin Ridge (BR), a large forearc massif in the Izu-Bonin arc, have provided us with a natural laboratory for the study of subduction initiation and early arc development. The BR has been the subject of focused sampling by way of dredging, diving, and drilling (IODP EXP352) expeditions which have revealed a composite stratigraphy consisting, from bottom to top, of intercalated peridotites and gabbros, isotropic gabbros, sheeted dykes, and a lava sequence which transitions from forearc basalt (FAB) to more arc-like volcanics up section. Although little has been published regarding the moho-transition zone rocks of the BR in comparison to the volcanic rocks, even less work has been published regarding the isotropic gabbros recovered in close association with FABs. Ishizuka et al. (2011) determined that the isotropic gabbros are compositionally and temporally related to the FABs. We provide the first petrologic characterization, including petrography and electron probe microanalysis, of a suite of FAB-related gabbros recovered by dredge D42 of the 2007 R/V Hakuho Maru KH07-02 dredging cruise. Preliminary petrographic observations of the fourteen thin sections reveal that all of the samples contain variable amounts of relict orthopyroxene and consist of five disseminated oxide gabbros, 5 oxide gabbros, and 2 gabbros. We note that all of the D42 gabbros exhibit strong textural variability akin to the varitextured gabbros described in the dyke-gabbro transition of ophiolites (e.g., MacLeod and Yaouancq, 2000). Geochemical data from this critically understudied horizon have the potential to inform regarding the nature of crustal accretion during subduction initiation and the formation, migration, and evolution of FABs. Further, with many authors comparing the volcanic record and crustal stratigraphy of the BR to ophiolites (e.g., Ishizuka et al., 2014), these data would provide another in situ analogue for comparison with the gabbroic sections of ophiolites. MacLeod, C.J., Yaouancq, G., 2000, Earth and Planetary Science Letters, 176:357-373. Ishizuka, O., et al., 2011, Earth and Planetary Science Letters, 306: 229-240. Ishizuka, O., Tani, K., Reagan, M.K., 2014, Elements, 10:115-120.
Guided wave methods and apparatus for nonlinear frequency generation
Durfee, III, Charles G.; Rundquist, Andrew; Kapteyn, Henry C.; Murnane, Margaret M.
2000-01-01
Methods and apparatus are disclosed for the nonlinear generation of sum and difference frequencies of electromagnetic radiation propagating in a nonlinear material. A waveguide having a waveguide cavity contains the nonlinear material. Phase matching of the nonlinear generation is obtained by adjusting a waveguide propagation constant, the refractive index of the nonlinear material, or the waveguide mode in which the radiation propagates. Phase matching can be achieved even in isotropic nonlinear materials. A short-wavelength radiation source uses phase-matched nonlinear generation in a waveguide to produce high harmonics of a pulsed laser.
Design and Fabrication of Submicron Magnetic Bubble Device Technology.
1986-10-31
interface LPE bubble film GGG substrate Figure 2: Cross section of a silicon on garnet magnetodiode. I : R R R/ B>O0 B 0 z V............. ... ..AV dummy...Carnegie Mellon University, Pittsburgh, Pa 15213. Section I Introduction The main thrust of our LPE garnet film growth program is to develop> films ...shown in Table I and the best choice for an isotropic magnetostrictive film is shown by an asterik. Section IM LPE Film Growth Technique All garnet
NASA Astrophysics Data System (ADS)
Milton, Graeme W.; Camar-Eddine, Mohamed
2018-05-01
For a composite containing one isotropic elastic material, with positive Lame moduli, and void, with the elastic material occupying a prescribed volume fraction f, and with the composite being subject to an average stress, σ0 , Gibiansky, Cherkaev, and Allaire provided a sharp lower bound Wf(σ0) on the minimum compliance energy σ0 :ɛ0 , in which ɛ0 is the average strain. Here we show these bounds also provide sharp bounds on the possible (σ0 ,ɛ0) -pairs that can coexist in such composites, and thus solve the weak G-closure problem for 3d-printed materials. The materials we use to achieve the extremal (σ0 ,ɛ0) -pairs are denoted as near optimal pentamodes. We also consider two-phase composites containing this isotropic elasticity material and a rigid phase with the elastic material occupying a prescribed volume fraction f, and with the composite being subject to an average strain, ɛ0. For such composites, Allaire and Kohn provided a sharp lower bound W˜f(ɛ0) on the minimum elastic energy σ0 :ɛ0 . We show that these bounds also provide sharp bounds on the possible (σ0 ,ɛ0) -pairs that can coexist in such composites of the elastic and rigid phases, and thus solve the weak G-closure problem in this case too. The materials we use to achieve these extremal (σ0 ,ɛ0) -pairs are denoted as near optimal unimodes.
Resistance fail strain gage technology as applied to composite materials
NASA Technical Reports Server (NTRS)
Tuttle, M. E.; Brinson, H. F.
1985-01-01
Existing strain gage technologies as applied to orthotropic composite materials are reviewed. The bonding procedures, transverse sensitivity effects, errors due to gage misalignment, and temperature compensation methods are addressed. Numerical examples are included where appropriate. It is shown that the orthotropic behavior of composites can result in experimental error which would not be expected based on practical experience with isotropic materials. In certain cases, the transverse sensitivity of strain gages and/or slight gage misalignment can result in strain measurement errors.
Material parameter determination from scattering measurements
NASA Technical Reports Server (NTRS)
Dominek, A.; Park, A.; Peters, L., Jr.
1988-01-01
The electrical, macroscopic performance of isotropic material can generally be described through their constitutive scalar parameters, permittivity and permeability which are symbolically represented by epsilon and mu, respectively. These parameters relate the electric and magnetic flux densities to the electric and magnetic fields through the following relationships: (1) D=epsilonE; and (2) B=muH. It is through these parameters that the interaction of electromagnetic waves with material can be quantized in terms of reflection and transmission coefficients, and propagation and attenuation factors.
Electro-Magnetic Actuated Valve for MEMS Fuel Metering System
2007-09-01
This model is utilized material properties of Silicon (Si), Copper (Cu), Nickel Iron ( NiFe ), and air. C11 Air NiSe Figure 5. Design of a simplified a... NiFe are defined and shown table 4. It is assumed that the properties of materials are independent of orientation (i.e. isotropic materials). Relative...dry filn resist. This process enables an integrated NiFe armature with a hole-in-the-wall within the main flow channel. UC Berkeley, Pisano - 2007
Cross-Linked Nanotube Materials with Variable Stiffness Tethers
NASA Technical Reports Server (NTRS)
Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.
2004-01-01
The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.
NASA Astrophysics Data System (ADS)
Karl, Robert; Knobloch, Joshua; Frazer, Travis; Tanksalvala, Michael; Porter, Christina; Bevis, Charles; Chao, Weilun; Abad Mayor, Begoña.; Adams, Daniel; Mancini, Giulia F.; Hernandez-Charpak, Jorge N.; Kapteyn, Henry; Murnane, Margaret
2018-03-01
Using a tabletop coherent extreme ultraviolet source, we extend current nanoscale metrology capabilities with applications spanning from new models of nanoscale transport and materials, to nanoscale device fabrication. We measure the ultrafast dynamics of acoustic waves in materials; by analyzing the material's response, we can extract elastic properties of films as thin as 11nm. We extend this capability to a spatially resolved imaging modality by using coherent diffractive imaging to image the acoustic waves in nanostructures as they propagate. This will allow for spatially resolved characterization of the elastic properties of non-isotropic materials.
NASA Astrophysics Data System (ADS)
Adriani, O.; Albergo, S.; Auditore, L.; Basti, A.; Berti, E.; Bigongiari, G.; Bonechi, L.; Bonechi, S.; Bongi, M.; Bonvicini, V.; Bottai, S.; Brogi, P.; Carotenuto, G.; Castellini, G.; Cattaneo, P. W.; Daddi, N.; D'Alessandro, R.; Detti, S.; Finetti, N.; Italiano, A.; Lenzi, P.; Maestro, P.; Marrocchesi, P. S.; Mori, N.; Orzan, G.; Olmi, M.; Pacini, L.; Papini, P.; Pellegriti, M. G.; Rappoldi, A.; Ricciarini, S.; Sciuto, A.; Spillantini, P.; Starodubtsev, O.; Stolzi, F.; Suh, J. E.; Sulaj, A.; Tiberio, A.; Tricomi, A.; Trifiro', A.; Trimarchi, M.; Vannuccini, E.; Zampa, G.; Zampa, N.
2017-11-01
The direct detection of high-energy cosmic rays up to the PeV region is one of the major challenges for the next generation of space-borne cosmic-ray detectors. The physics performance will be primarily determined by their geometrical acceptance and energy resolution. CaloCube is a homogeneous calorimeter whose geometry allows an almost isotropic response, so as to detect particles arriving from every direction in space, thus maximizing the acceptance. A comparative study of different scintillating materials and mechanical structures has been performed by means of Monte Carlo simulation. The scintillation-Cherenkov dual read-out technique has been also considered and its benefit evaluated.
Averaging of elastic constants for polycrystals
Blaschke, Daniel N.
2017-10-13
Many materials of interest are polycrystals, i.e., aggregates of single crystals. Randomly distributed orientations of single crystals lead to macroscopically isotropic properties. Here in this paper, we briefly review strategies of calculating effective isotropic second and third order elastic constants from the single crystal ones. Our main emphasis is on single crystals of cubic symmetry. Specifically, the averaging of third order elastic constants has not been particularly successful in the past, and discrepancies have often been attributed to texturing of polycrystals as well as to uncertainties in the measurement of elastic constants of both poly and single crystals. While thismore » may well be true, we also point out here shortcomings in the theoretical averaging framework.« less
Isotrope und homogene Materie - Kosmen; On Dynamics and Thermodynamics of Isotropic Matter-Universes
NASA Astrophysics Data System (ADS)
Treder, H.-J.
Die Dynamik und Thermodynamik großer kosmischer Systeme ist fast unabhängig von den besonderen Theorien über die Gravitation. Nur die Feinstruktur der Kosmologie und Kosmonogie reflektiert die speziellen Hypothesen. Diese Neutralität gegenüber den konkreten Gravodynamiken ist die Konsequenz der fundamentalen Eigenschaften der Gravitation: Der Prinzipien der Äquivalenz von Trägheit und Schwere. The dynamics and thermodynamics of great cosmical systems are nearly independent of the theory of gravitation and only the fine-structure of cosmogony and cosmology reflects the special hypotheses.The neutrality against the concret gravodynamics is a consequence of the fundamental properties of gravitation: the principlies of equivalence of gravity and inertia.
Dietschi, Dider; Ardu, Stefano; Rossier-Gerber, Anne; Krejci, Ivo
2006-12-01
Fatigue resistance of post and cores is critical to the long term behavior of restored nonvital teeth. The purpose of this in vitro trial was to evaluate the influence of the post material's physical properties on the adaptation of adhesive post and core restorations after cyclic mechanical loading. Composite post and cores were made on endodontically treated deciduous bovine teeth using 3 anisotropic posts (made of carbon, quartz, or quartz-and-carbon fibers) and 3 isotropic posts (zirconium, stainless steel, titanium). Specimens were submitted to 3 successive loading phases--250,000 cycles at 50 N, 250,000 at 75 N, and 500,000 at 100 N--at a rate of 1.5 Hz. Restoration adaptation was evaluated under SEM, before and during loading (margins) and after test completion (margins and internal interfaces). Six additional samples were fabricated for the characterization of interface micromorphology using confocal microscopy. Mechanical loading increased the proportion of marginal gaps in all groups; carbon fiber posts presented the lowest final gap proportion (7.11%) compared to other stiffer metal-ceramic or softer fiber posts (11.0% to 19.1%). For internal adaptation, proportions of debonding between dentin and core or cement varied from 21.69% (carbon post) to 47.37% (stainless steel post). Debonding at the post-cement interface occurred only with isotropic materials. Confocal microscopy observation revealed that gaps were generally associated with an incomplete hybrid layer and reduced resin tags. Regardless of their rigidity, metal and ceramic isotropic posts proved less effective than fiber posts at stabilizing the post and core structure in the absence of the ferrule effect, due to the development of more interfacial defects with either composite or dentin.
Two-dimensional arbitrarily shaped acoustic cloaks composed of homogeneous parts
NASA Astrophysics Data System (ADS)
Li, Qi; Vipperman, Jeffrey S.
2017-10-01
Acoustic cloaking is an important application of acoustic metamaterials. Although the topic has received much attention, there are a number of areas where contributions are needed. In this paper, a design method for producing acoustic cloaks with arbitrary shapes that are composed of homogeneous parts is presented. The cloak is divided into sections, each of which, in turn, is further divided into two parts, followed by the application of transformation acoustics to derive the required properties for cloaking. With the proposed mapping relations, the properties of each part of the cloak are anisotropic but homogeneous, which can be realized using two alternating layers of homogeneous and isotropic materials. A hexagonal and an irregular cloak are presented as design examples. The full wave simulations using COMSOL Multiphysics finite element software show that the cloaks function well at reducing reflections and shadows. The variation of the cloak properties is investigated as a function of three important geometric parameters used in the transformations. A balance can be found between cloaking performance and materials properties that are physically realizable.
NASA Astrophysics Data System (ADS)
Tokunaga, K.; Matsubara, T.; Miyamoto, Y.; Takao, Y.; Yoshida, N.; Noda, N.; Kubota, Y.; Sogabe, T.; Kato, T.; Plöchl, L.
2000-12-01
Tungsten coatings of 0.5 and 1 mm thickness were successfully deposited by the vacuum plasma spraying (VPS) technique on carbon/carbon fiber composite (CFC), CX-2002U and isotropic fine grained graphite, IG-430U. High heat flux experiments by irradiation of electron beam with uniform profile were performed on the coated samples in order to prove the suitability and load limit of such coating materials. The cross-sectional composition and structure of the interface of VPS-W and carbon material samples were investigated. Compositional analyses showed that the Re/W multi-layer acts as diffusion barrier for carbon and suppresses tungsten carbide formation in the VPS-W layer at high temperature about 1300°C. Microstructure of the joint interface of the sample changed in the case of a peak temperature of about 2800°C. The multi-layer structure completely disappeared and compositional distribution was almost uniform in the interface of the sample after melting and resolidification. The diffusion barrier for carbon is not expected to act in this stage.
Heat transfer in damaged material
NASA Astrophysics Data System (ADS)
Kruis, J.
2013-10-01
Fully coupled thermo-mechanical analysis of civil engineering problems is studied. The mechanical analysis is based on damage mechanics which is useful for modeling of behaviour of quasi-brittle materials, especially in tension. The damage is assumed to be isotropic. The heat transfer is assumed in the form of heat conduction governed by the Fourier law and heat radiation governed by the Stefan-Boltzmann law. Fully coupled thermo-mechanical problem is formulated.
Biaxial experimental and analytical characterization of a dielectric elastomer
NASA Astrophysics Data System (ADS)
Helal, Alexander; Doumit, Marc; Shaheen, Robert
2018-01-01
Electroactive polymers (EAPs) have emerged as a strong contender for use in low-cost efficient actuators in multiple applications especially related to biomimetic and mobile-assistive devices. Dielectric elastomers (DE), a subcategory of these smart materials, have been of particular interest due to their large achievable deformation and favourable mechanical and electro-mechanical properties. Previous work has been completed to understand the behaviour of these materials; however, their properties require further investigation to properly integrate them into real-world applications. In this study, a biaxial tensile experimental evaluation of 3M™ VHB 4905 and VHB 4910 is presented with the purpose of illustrating the elastomers' transversely isotropic mechanical behaviours. These tests were applied to both tapes for equibiaxial stretch rates ranging between 0.025 and 0.300 s-1. Subsequently, a dynamic planar biaxial visco-hyperelastic constitutive relationship was derived from a Kelvin-Voigt rheological model and the general Hooke's law for transversely isotropic materials. The model was then fitted to the experimental data to obtain three general material parameters for either tapes. The model's ability to predict tensile stress response and internal energy dissipation, with respect to experimental data, is evaluated with good agreement. The model's ability to predict variations in mechanical behaviour due to changes in kinematic variables is then illustrated for different conditions.
Physical modeling with orthotropic material based on harmonic fields.
Liao, Sheng-Hui; Zou, Bei-Ji; Geng, Jian-Ping; Wang, Jin-Xiao; Ding, Xi
2012-11-01
Although it is well known that human bone tissues have obvious orthotropic material properties, most works in the physical modeling field adopted oversimplified isotropic or approximated transversely isotropic elasticity due to the simplicity. This paper presents a convenient methodology based on harmonic fields, to construct volumetric finite element mesh integrated with complete orthotropic material. The basic idea is taking advantage of the fact that the longitudinal axis direction indicated by the shape configuration of most bone tissues is compatible with the trajectory of the maximum material stiffness. First, surface harmonic fields of the longitudinal axis direction for individual bone models were generated, whose scalar distribution pattern tends to conform very well to the object shape. The scalar iso-contours were extracted and sampled adaptively to construct volumetric meshes of high quality. Following, the surface harmonic fields were expanded over the whole volumetric domain to create longitudinal and radial volumetric harmonic fields, from which the gradient vector fields were calculated and employed as the orthotropic principal axes vector fields. Contrastive finite element analyses demonstrated that elastic orthotropy has significant effect on simulating stresses and strains, including the value as well as distribution pattern, which underlines the relevance of our orthotropic modeling scheme. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Hodgson, John A.; Chi, Sheng-Wei; Yang, Judy P.; Chen, Jiun-Shyan; Edgerton, V. Reggie; Sinha, Shantanu
2014-01-01
The pattern of deformation of the different structural components of a muscle-tendon complex when it is activated provides important information about the internal mechanics of the muscle. Recent experimental observations of deformations in contracting muscle have presented inconsistencies with current widely held assumption about muscle behavior. These include negative strain in aponeuroses, non-uniform strain changes in sarcomeres, even of individual muscle fibers and evidence that muscle fiber cross sectional deformations are asymmetrical suggesting a need to readjust current models of contracting muscle. We report here our use of finite element modeling techniques to simulate a simple muscle-tendon complex and investigate the influence of passive intramuscular material properties upon the deformation patterns under isometric and shortening conditions. While phenomenological force-displacement relationships described the muscle fiber properties, the material properties of the passive matrix were varied to simulate a hydrostatic model, compliant and stiff isotropically hyperelastic models and an anisotropic elastic model. The numerical results demonstrate that passive elastic material properties significantly influence the magnitude, heterogeneity and distribution pattern of many measures of deformation in a contracting muscle. Measures included aponeurosis strain, aponeurosis separation, muscle fiber strain and fiber cross-sectional deformation. The force output of our simulations was strongly influenced by passive material properties, changing by as much as ~80% under some conditions. Maximum output was accomplished by introducing anisotropy along axes which were not strained significantly during a muscle length change, suggesting that correct costamere orientation may be a critical factor in optimal muscle function. Such a model not only fits known physiological data, but also maintains the relatively constant aponeurosis separation observed during in vivo muscle contractions and is easily extrapolated from our plane-strain conditions into a 3-dimensional structure. Such modeling approaches have the potential of explaining the reduction of force output consequent to changes in material properties of intramuscular materials arising in the diseased state such as in genetic disorders. PMID:22498294
Hodgson, John A; Chi, Sheng-Wei; Yang, Judy P; Chen, Jiun-Shyan; Edgerton, Victor R; Sinha, Shantanu
2012-05-01
The pattern of deformation of different structural components of a muscle-tendon complex when it is activated provides important information about the internal mechanics of the muscle. Recent experimental observations of deformations in contracting muscle have presented inconsistencies with current widely held assumption about muscle behavior. These include negative strain in aponeuroses, non-uniform strain changes in sarcomeres, even of individual muscle fibers and evidence that muscle fiber cross sectional deformations are asymmetrical suggesting a need to readjust current models of contracting muscle. We report here our use of finite element modeling techniques to simulate a simple muscle-tendon complex and investigate the influence of passive intramuscular material properties upon the deformation patterns under isometric and shortening conditions. While phenomenological force-displacement relationships described the muscle fiber properties, the material properties of the passive matrix were varied to simulate a hydrostatic model, compliant and stiff isotropically hyperelastic models and an anisotropic elastic model. The numerical results demonstrate that passive elastic material properties significantly influence the magnitude, heterogeneity and distribution pattern of many measures of deformation in a contracting muscle. Measures included aponeurosis strain, aponeurosis separation, muscle fiber strain and fiber cross-sectional deformation. The force output of our simulations was strongly influenced by passive material properties, changing by as much as ~80% under some conditions. The maximum output was accomplished by introducing anisotropy along axes which were not strained significantly during a muscle length change, suggesting that correct costamere orientation may be a critical factor in the optimal muscle function. Such a model not only fits known physiological data, but also maintains the relatively constant aponeurosis separation observed during in vivo muscle contractions and is easily extrapolated from our plane-strain conditions into a three-dimensional structure. Such modeling approaches have the potential of explaining the reduction of force output consequent to changes in material properties of intramuscular materials arising in the diseased state such as in genetic disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.
Investigation of the Leak Response of a Carbon-Fiber Laminate Loaded in Biaxial Tension
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Ratcliffe, James G.
2013-01-01
Designers of pressurized structures have been reluctant to use composite materials because of concerns over leakage. Biaxial stress states are expected to be the worst-case loading condition for allowing leakage to occur through microcracks. To investigate the leakage behavior under in-plane biaxial loading, a cruciform composite specimen was designed that would have a relatively large test section with a uniform 1:1 biaxial loading ratio. A 7.6-cm-square test section was desired for future investigations of the leakage response as a result of impact damage. Many iterations of the cruciform specimen were evaluated using finite element analysis to reduce stress concentrations and maximize the size of the uniform biaxial strain field. The final design allowed the specimen to go to relatively high biaxial strain levels without incurring damage away from the test section. The specimen was designed and manufactured using carbon/epoxy fabric with a four-ply-thick, quasi-isotropic, central test section. Initial validation and testing were performed on a specimen without impact damage. The specimen was tested to maximum biaxial strains of approximately 4500micro epsilon without apparent damage. A leak measurement system containing a pressurized cavity was clamped to the test section and used to measure the flow rate through the specimen. The leakage behavior of the specimen was investigated for pressure differences up to 172 kPa
Generic buckling curves for specially orthotropic rectangular plates
NASA Technical Reports Server (NTRS)
Brunnelle, E. J.; Oyibo, G. A.
1983-01-01
Using a double affine transformation, the classical buckling equation for specially orthotropic plates and the corresponding virtual work theorem are presented in a particularly simple fashion. These dual representations are characterized by a single material constant, called the generalized rigidity ratio, whose range is predicted to be the closed interval from 0 to 1 (if this prediction is correct then the numerical results using a ratio greater than 1 in the specially orthotropic plate literature are incorrect); when natural boundary conditions are considered a generalized Poisson's ratio is introduced. Thus the buckling results are valid for any specially orthotropic material; hence the curves presented in the text are generic rather than specific. The solution trends are twofold; the buckling coefficients decrease with decreasing generalized rigidity ratio and, when applicable, they decrease with increasing generalized Poisson's ratio. Since the isotropic plate is one limiting case of the above analysis, it is also true that isotropic buckling coefficients decrease with increasing Poission's ratio.
NASA Astrophysics Data System (ADS)
Georgievskii, D. V.
2017-07-01
The mechanical meaning and the relationships among material constants in an n-dimensional isotropic elastic medium are discussed. The restrictions of the constitutive relations (Hooke's law) to subspaces of lower dimension caused by the conditions that an m-dimensional strain state or an m-dimensional stress state (1 ≤ m < n) is realized in the medium. Both the terminology and the general idea of the mathematical construction are chosen by analogy with the case n = 3 and m = 2, which is well known in the classical plane problem of elasticity theory. The quintuples of elastic constants of the same medium that enter both the n-dimensional relations and the relations written out for any m-dimensional restriction are expressed in terms of one another. These expressions in terms of the known constants, for example, of a three-dimensional medium, i.e., the classical elastic constants, enable us to judge the material properties of this medium immersed in a space of larger dimension.
Wheatley, Benjamin B.; Fischenich, Kristine M.; Button, Keith D.; Haut, Roger C.; Haut Donahue, Tammy L.
2015-01-01
Inverse finite element (FE) analysis is an effective method to predict material behavior, evaluate mechanical properties, and study differences in biological tissue function. The meniscus plays a key role in load distribution within the knee joint and meniscal degradation is commonly associated with the onset of osteoarthritis. In the current study, a novel transversely isotropic hyper-poro-viscoelastic constitutive formulation was incorporated in a FE model to evaluate changes in meniscal material properties following tibiofemoral joint impact. A non-linear optimization scheme was used to fit the model output to indentation relaxation experimental data. This study is the first to investigate rate of relaxation in healthy versus impacted menisci. Stiffness was found to be decreased (p=0.003), while the rate of tissue relaxation increased (p=0.010) at twelve weeks post impact. Total amount of relaxation, however, did not change in the impacted tissue (p=0.513). PMID:25776872
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, David H.
1993-01-01
The uniaxial response of a continuous fiber elastic-perfectly plastic composite is modeled herein as a two-element composite cylinder. An axisymmetric analytical micromechanics solution is obtained for the rate-independent elastic-plastic response of the two-element composite cylinder subjected to tensile loading in the fiber direction for the case wherein the core fiber is assumed to be a transversely isotropic elastic-plastic material obeying the Tsai-Hill yield criterion, with yielding simulating fiber failure. The matrix is assumed to be an isotropic elastic-plastic material obeying the Tresca yield criterion. It is found that there are three different circumstances that depend on the fiber and matrix properties: fiber yield, followed by matrix yielding; complete matrix yield, followed by fiber yielding; and partial matrix yield, followed by fiber yielding, followed by complete matrix yield. The order in which these phenomena occur is shown to have a pronounced effect on the predicted uniaxial effective composite response.
NASA Astrophysics Data System (ADS)
Ba, Zhenning; Kang, Zeqing; Liang, Jianwen
2018-04-01
The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green's functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic (TI) half-space. The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces, which are then applied to the total system with the opposite sign. By adding solutions restricted in the loaded layer to solutions from the reaction forces, the global solutions in the wavenumber domain are obtained, and the dynamic Green's functions in the space domain are recovered by the inverse Fourier transform. The presented formulations can be reduced to the isotropic case developed by Wolf (1985), and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI half-space subjected to horizontally distributed loads which are special cases of the more general problem addressed. The deduced Green's functions, in conjunction with boundary element methods, will lead to significant advances in the investigation of a variety of wave scattering, wave radiation and soil-structure interaction problems in a layered TI site. Selected numerical results are given to investigate the influence of material anisotropy, frequency of excitation, inclination angle and layered on the responses of displacement and stress, and some conclusions are drawn.
Characterization of inhomogeneous and anisotropic steel welds by ultrasonic array measurements
NASA Astrophysics Data System (ADS)
Fan, Z.; Lowe, M. J. S.
2013-01-01
Austenitic welds are difficult to inspect non-destructively by ultrasound due to the anisotropic and inhomogeneous material in the weld, which causes spatial deviation of ultrasonic beams. A common way to describe such material is to consider it as transversely isotropic, in which the plane perpendicular to the direction of the grain growth is considered to be isotropic. Therefore a weld performance map which indicates the orientation of the grain growth can be used to describe the material properties in the weld. In our work, we have chosen a weld map based on the parameters of the MINA model which uses the information of the welding procedure and rules for crystalline growth to predict the orientations, and thus has a good physical foundation. We have compared the measured grain orientations for a realistic weld with the predictions from the model. With this model, only a small number of parameters are used to describe the weld properties, therefore enabling the possibility of a well conditioned refining process to determine the weld map from ultrasonic measurements. We have demonstrated the feasibility of doing this, using a ray tracing model, and both simulated and experimental measurements.
NASA Astrophysics Data System (ADS)
Farrahi, G. H.; Ghodrati, M.; Azadi, M.; Rezvani Rad, M.
2014-08-01
This article presents the cyclic behavior of the A356.0 aluminum alloy under low-cycle fatigue (or isothermal) and thermo-mechanical fatigue loadings. Since the thermo-mechanical fatigue (TMF) test is time consuming and has high costs in comparison to low-cycle fatigue (LCF) tests, the purpose of this research is to use LCF test results to predict the TMF behavior of the material. A time-independent model, considering the combined nonlinear isotropic/kinematic hardening law, was used to predict the TMF behavior of the material. Material constants of this model were calibrated based on room-temperature and high-temperature low-cycle fatigue tests. The nonlinear isotropic/kinematic hardening law could accurately estimate the stress-strain hysteresis loop for the LCF condition; however, for the out-of-phase TMF, the condition could not predict properly the stress value due to the strain rate effect. Therefore, a two-layer visco-plastic model and also the Johnson-Cook law were applied to improve the estimation of the stress-strain hysteresis loop. Related finite element results based on the two-layer visco-plastic model demonstrated a good agreement with experimental TMF data of the A356.0 alloy.
Brittle failure of rock: A review and general linear criterion
NASA Astrophysics Data System (ADS)
Labuz, Joseph F.; Zeng, Feitao; Makhnenko, Roman; Li, Yuan
2018-07-01
A failure criterion typically is phenomenological since few models exist to theoretically derive the mathematical function. Indeed, a successful failure criterion is a generalization of experimental data obtained from strength tests on specimens subjected to known stress states. For isotropic rock that exhibits a pressure dependence on strength, a popular failure criterion is a linear equation in major and minor principal stresses, independent of the intermediate principal stress. A general linear failure criterion called Paul-Mohr-Coulomb (PMC) contains all three principal stresses with three material constants: friction angles for axisymmetric compression ϕc and extension ϕe and isotropic tensile strength V0. PMC provides a framework to describe a nonlinear failure surface by a set of planes "hugging" the curved surface. Brittle failure of rock is reviewed and multiaxial test methods are summarized. Equations are presented to implement PMC for fitting strength data and determining the three material parameters. A piecewise linear approximation to a nonlinear failure surface is illustrated by fitting two planes with six material parameters to form either a 6- to 12-sided pyramid or a 6- to 12- to 6-sided pyramid. The particular nature of the failure surface is dictated by the experimental data.
Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A
2016-02-06
This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.
Nims, Robert J.; Durney, Krista M.; Cigan, Alexander D.; Hung, Clark T.; Ateshian, Gerard A.
2016-01-01
This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process. PMID:26855751
NASA Astrophysics Data System (ADS)
Moon, Kyoung-Sik; Liong, Silvia; Li, Haiying; Wong, C. P.
2004-11-01
The contact resistance stability of isotropically conductive adhesives (ICAs) on non-noble metal surfaces under the 85°C/85% relative humidity (RH) aging test was investigated. Previously, we demonstrated that galvanic corrosion has been shown as the main mechanism of the unstable contact resistance of ICAs on non-noble metal surfaces. A sacrificial anode was introduced into the ICA joint for cathodic protection. Zinc, chromium, and magnesium were employed in the ICA formulations as sacrificial anode materials that have much lower electrode-potential values than the metal pad surface, such as tin or tin-based alloys. The effect of particle sizes and loading levels of sacrificial anode materials were studied. Chromium was not as effective in suppressing corrosion as magnesium or zinc because of its strong tendency to self-passivate. The corrosion potential of ICAs was reduced by half with the addition of zinc and magnesium into the ICA formulation. The addition of zinc and magnesium was very effective in controlling galvanic corrosion that takes place in the ICA joints, resulting in stabilized contact resistance of ICAs on Sn, SnPb, and SnAgCu surfaces during the 85°C/85% RH aging test.
Isotropic thin-walled pressure vessel experiment
NASA Technical Reports Server (NTRS)
Denton, Nancy L.; Hillsman, Vernon S.
1992-01-01
The objectives are: (1) to investigate the stress and strain distributions on the surface of a thin walled cylinder subject to internal pressure and/or axial load; and (2) to relate stress and strain distributions to material properties and cylinder geometry. The experiment, supplies, and procedure are presented.
NASA Astrophysics Data System (ADS)
Kaminskiy, V. V.; Stepanov, N. N.; Volodin, N. M.; Mishin, Yu. N.
2014-12-01
The paper describes the dependence of the piezoresistance of the hydrostatic compression of the SmS baroresistor on mechanical properties of the electrical part of the carrier. Isotropic and anisotropic materials are considered that can serve as a baroresistor carrier.
Indentation versus Rolling: Dependence of Adhesion on Contact Geometry for Biomimetic Structures.
Moyle, Nichole; He, Zhenping; Wu, Haibin; Hui, Chung-Yuen; Jagota, Anand
2018-04-03
Numerous biomimetic structures made from elastomeric materials have been developed to produce enhancement in properties such as adhesion, static friction, and sliding friction. As a property, one expects adhesion to be represented by an energy per unit area that is usually sensitive to the combination of shear and normal stresses at the crack front but is otherwise dependent only on the two elastic materials that meet at the interface. More specifically, one would expect that adhesion measured by indentation (a popular and convenient technique) could be used to predict adhesion hysteresis in the more practically important rolling geometry. Previously, a structure with a film-terminated fibrillar geometry exhibited dramatic enhancement of adhesion by a crack-trapping mechanism during indentation with a rigid sphere. Roughly isotropic structures such as the fibrillar geometry show a strong correlation between adhesion enhancement in indentation versus adhesion hysteresis in rolling. However, anisotropic structures, such as a film-terminated ridge-channel geometry, surprisingly show a dramatic divergence between adhesion measured by indentation versus rolling. We study this experimentally and theoretically, first comparing the adhesion of the anisotropic ridge-channel structure to the roughly isotropic fibrillar structure during indentation with a rigid sphere, where only the isotropic structure shows adhesion enhancement. Second, we examine in more detail the anomalous anisotropic film-terminated ridge-channel structure during indentation with a rigid sphere versus rolling to show why these structures show a dramatic adhesion enhancement for the rolling case and no adhesion enhancement for indentation.
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Kruch, S.
1991-01-01
Three multiaxial isothermal continuum damage mechanics models for creep, fatigue, and creep/fatigue interaction of a unidirectional metal matrix composite volume element are presented, only one of which will be discussed in depth. Each model is phenomenological and stress based, with varying degrees of complexity to accurately predict the initiation and propagation of intergranular and transgranular defects over a wide range of loading conditions. The development of these models is founded on the definition of an initially transversely isotropic fatigue limit surface, static fracture surface, normalized stress amplitude function and isochronous creep damage failure surface, from which both fatigue and creep damage evolutionary laws can be obtained. The anisotropy of each model is defined through physically meaningful invariants reflecting the local stress and material orientation. All three transversely isotropic models have been shown, when taken to their isotropic limit, to directly simplify to previously developed and validated creep and fatigue continuum damage theories. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation when attempting to characterize a large class of composite materials, and (2) its ability to predict anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Additionally, the potential for the inclusion of various micromechanical effects (e.g., fiber/matrix bond strength, fiber volume fraction, etc.), into the phenomenological anisotropic parameters is noted, as well as a detailed discussion regarding the necessary exploratory and characterization experiments needed to utilize the featured damage theories.
Feng, Yuan; Lee, Chung-Hao; Sun, Lining; Ji, Songbai; Zhao, Xuefeng
2017-01-01
Characterizing the mechanical properties of white matter is important to understand and model brain development and injury. With embedded aligned axonal fibers, white matter is typically modeled as a transversely isotropic material. However, most studies characterize the white matter tissue using models with a single anisotropic invariant or in a small-strain regime. In this study, we combined a single experimental procedure - asymmetric indentation - with inverse finite element (FE) modeling to estimate the nearly incompressible transversely isotropic material parameters of white matter. A minimal form comprising three parameters was employed to simulate indentation responses in the large-strain regime. The parameters were estimated using a global optimization procedure based on a genetic algorithm (GA). Experimental data from two indentation configurations of porcine white matter, parallel and perpendicular to the axonal fiber direction, were utilized to estimate model parameters. Results in this study confirmed a strong mechanical anisotropy of white matter in large strain. Further, our results suggested that both indentation configurations are needed to estimate the parameters with sufficient accuracy, and that the indenter-sample friction is important. Finally, we also showed that the estimated parameters were consistent with those previously obtained via a trial-and-error forward FE method in the small-strain regime. These findings are useful in modeling and parameterization of white matter, especially under large deformation, and demonstrate the potential of the proposed asymmetric indentation technique to characterize other soft biological tissues with transversely isotropic properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
A visco-hyperelastic constitutive model and its application in bovine tongue tissue.
Yousefi, Ali-Akbar Karkhaneh; Nazari, Mohammad Ali; Perrier, Pascal; Panahi, Masoud Shariat; Payan, Yohan
2018-04-11
Material properties of the human tongue tissue have a significant role in understanding its function in speech, respiration, suckling, and swallowing. Tongue as a combination of various muscles is surrounded by the mucous membrane and is a complicated architecture to study. As a first step before the quantitative mechanical characterization of human tongue tissues, the passive biomechanical properties in the superior longitudinal muscle (SLM) and the mucous tissues of a bovine tongue have been measured. Since the rate of loading has a sizeable contribution to the resultant stress of soft tissues, the rate dependent behavior of tongue tissues has been investigated via uniaxial tension tests (UTTs). A method to determine the mechanical properties of transversely isotropic tissues using UTTs and inverse finite element (FE) method has been proposed. Assuming the strain energy as a general nonlinear relationship with respect to the stretch and the rate of stretch, two visco-hyperelastic constitutive laws (CLs) have been proposed for isotropic and transversely isotropic soft tissues to model their stress-stretch behavior. Both of them have been implemented in ABAQUS explicit through coding a user-defined material subroutine called VUMAT and the experimental stress-stretch points have been well tracked by the results of FE analyses. It has been demonstrated that the proposed laws make a good description of the viscous nature of tongue tissues. Reliability of the proposed models has been compared with similar nonlinear visco-hyperelastic CLs. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiechtner, Gregory J; Singh, Anup K; Wiedenman, Boyd J
2008-03-18
The present embodiment describes a laminar-mixing embodiment that utilizes simple, three-dimensional injection. Also described is the use of the embodiment in combination with wide and shallow sections of channel to affect rapid mixing in microanalytical systems. The shallow channel sections are constructed using all planar micromachining techniques, including those based on isotropic etching. The planar construction enables design using minimum dispersion concepts that, in turn, enable simultaneous mixing and injection into subsequent chromatography channels.
Novel composites for wing and fuselage applications
NASA Technical Reports Server (NTRS)
Sobel, L. H.; Buttitta, C.; Suarez, J. A.
1995-01-01
Probabilistic predictions based on the IPACS code are presented for the material and structural response of unnotched and notched, IM6/3501-6 Gr/Ep laminates. Comparisons of predicted and measured modulus and strength distributions are given for unnotched unidirectional, cross-ply and quasi-isotropic laminates. The predicted modulus distributions were found to correlate well with the test results for all three unnotched laminates. Correlations of strength distributions for the unnotched laminates are judged good for the unidirectional laminate and fair for the cross-ply laminate, whereas the strength correlation for the quasi-isotropic laminate is judged poor because IPACS did not have a progressive failure capability at the time this work was performed. The report also presents probabilistic and structural reliability analysis predictions for the strain concentration factor (SCF) for an open-hole, quasi-isotropic laminate subjected to longitudinal tension. A special procedure was developed to adapt IPACS for the structural reliability analysis. The reliability results show the importance of identifying the most significant random variables upon which the SCF depends, and of having accurate scatter values for these variables.
NASA Technical Reports Server (NTRS)
Sobel, Larry; Buttitta, Claudio; Suarez, James
1993-01-01
Probabilistic predictions based on the Integrated Probabilistic Assessment of Composite Structures (IPACS) code are presented for the material and structural response of unnotched and notched, 1M6/3501-6 Gr/Ep laminates. Comparisons of predicted and measured modulus and strength distributions are given for unnotched unidirectional, cross-ply, and quasi-isotropic laminates. The predicted modulus distributions were found to correlate well with the test results for all three unnotched laminates. Correlations of strength distributions for the unnotched laminates are judged good for the unidirectional laminate and fair for the cross-ply laminate, whereas the strength correlation for the quasi-isotropic laminate is deficient because IPACS did not yet have a progressive failure capability. The paper also presents probabilistic and structural reliability analysis predictions for the strain concentration factor (SCF) for an open-hole, quasi-isotropic laminate subjected to longitudinal tension. A special procedure was developed to adapt IPACS for the structural reliability analysis. The reliability results show the importance of identifying the most significant random variables upon which the SCF depends, and of having accurate scatter values for these variables.
Isotropic and anisotropic strain-induced self-assembled oxide nanostructures
NASA Astrophysics Data System (ADS)
Gibert, Marta; Abellan, Patricia; Benedetti, Alessandro; Sandiumenge, Felip; Puig, Teresa; Obradors, Xavier
2009-03-01
The apparition of new functionalities based on size- and shape-dependent properties requires strategies for the formation of well-defined structures at nanometric scale. We present a bottom-up low-cost chemically-derived methodology based on the control of strain and surface energies anisotropies in CeO2/LAO system to tune the lateral aspect ratio, orientation and kinetics of interfacial oxide nanostructures. Self-organized uniform square-based nanopyramids form under isotropic strain [1]. In contrast, highly elongated nanostructures (long/short axis ˜20) grow induced by biaxial anisotropic strain and anisotropic surface energies. Island's distinct crystallographic orientation is the clue of their differentiated shape, and also influences their distinct evolution. The kinetically-limited coarsening of isotropic nanodots contrasts with the ultrafast kinetics of anisotropic islands. Experimental analyses are based on AFM, TEM, XRD and RHEED, and simulations based on a thermodynamic model enables us to confirm the equilibrium shape of each sort of island's shape in relation to its misfit strain and surface characteristics. [1] Gibert, M. et al., Adv.Materials 19 (22), 3937 (2007).
Nanocomposite capsules with directional, pulsed nanoparticle release.
Udoh, Christiana E; Cabral, João T; Garbin, Valeria
2017-12-01
The precise spatiotemporal delivery of nanoparticles from polymeric capsules is required for applications ranging from medicine to materials science. These capsules derive key performance aspects from their overall shape and dimensions, porosity, and internal microstructure. To this effect, microfluidics provide an exceptional platform for emulsification and subsequent capsule formation. However, facile and robust approaches for nanocomposite capsule fabrication, exhibiting triggered nanoparticle release, remain elusive because of the complex coupling of polymer-nanoparticle phase behavior, diffusion, phase inversion, and directional solidification. We investigate a model system of polyelectrolyte sodium poly(styrene sulfonate) and 22-nm colloidal silica and demonstrate a robust capsule morphology diagram, achieving a range of internal morphologies, including nucleated and bicontinuous microstructures, as well as isotropic and non-isotropic external shapes. Upon dissolution in water, we find that capsules formed with either neat polymers or neat nanoparticles dissolve rapidly and isotropically, whereas bicontinuous, hierarchical, composite capsules dissolve via directional pulses of nanoparticle clusters without disrupting the scaffold, with time scales tunable from seconds to hours. The versatility, facile assembly, and response of these nanocomposite capsules thus show great promise in precision delivery.
NASA Astrophysics Data System (ADS)
Hubert, Christian; Voss, Kay Obbe; Bender, Markus; Kupka, Katharina; Romanenko, Anton; Severin, Daniel; Trautmann, Christina; Tomut, Marilena
2015-12-01
Due to its excellent thermo-physical properties and radiation hardness, isotropic graphite is presently the most promising material candidate for new high-power ion accelerators which will provide highest beam intensities and energies. Under these extreme conditions, specific accelerator components including production targets and beam protection modules are facing the risk of degradation due to radiation damage. Ion-beam induced damage effects were tested by irradiating polycrystalline, isotropic graphite samples at the UNILAC (GSI, Darmstadt) with 4.8 MeV per nucleon 132Xe, 150Sm, 197Au, and 238U ions applying fluences between 1 × 1011 and 1 × 1014 ions/cm2. The overall damage accumulation and its dependence on energy loss of the ions were studied by in situ 4-point resistivity measurements. With increasing fluence, the electric resistivity increases due to disordering of the graphitic structure. Irradiated samples were also analyzed off-line by means of micro-indentation in order to characterize mesoscale effects such as beam-induced hardening and stress fields within the specimen. With increasing fluence and energy loss, hardening becomes more pronounced.
Gravity-induced stresses in stratified rock masses
Amadei, B.; Swolfs, H.S.; Savage, W.Z.
1988-01-01
This paper presents closed-form solutions for the stress field induced by gravity in anisotropic and stratified rock masses. These rocks are assumed to be laterally restrained. The rock mass consists of finite mechanical units, each unit being modeled as a homogeneous, transversely isotropic or isotropic linearly elastic material. The following results are found. The nature of the gravity induced stress field in a stratified rock mass depends on the elastic properties of each rock unit and how these properties vary with depth. It is thermodynamically admissible for the induced horizontal stress component in a given stratified rock mass to exceed the vertical stress component in certain units and to be smaller in other units; this is not possible for the classical unstratified isotropic solution. Examples are presented to explore the nature of the gravity induced stress field in stratified rock masses. It is found that a decrease in rock mass anisotropy and a stiffening of rock masses with depth can generate stress distributions comparable to empirical hyperbolic distributions previously proposed in the literature. ?? 1988 Springer-Verlag.
Study on the radial vibration and acoustic field of an isotropic circular ring radiator.
Lin, Shuyu; Xu, Long
2012-01-01
Based on the exact analytical theory, the radial vibration of an isotropic circular ring is studied and its electro-mechanical equivalent circuit is obtained. By means of the equivalent circuit model, the resonance frequency equation is derived; the relationship between the radial resonance frequency, the radial displacement amplitude magnification and the geometrical dimensions, the material property is analyzed. For comparison, numerical method is used to simulate the radial vibration of isotropic circular rings. The resonance frequency and the radial vibrational displacement distribution are obtained, and the radial radiation acoustic field of the circular ring in radial vibration is simulated. It is illustrated that the radial resonance frequencies from the analytical method and the numerical method are in good agreement when the height is much less than the radius. When the height becomes large relative to the radius, the frequency deviation from the two methods becomes large. The reason is that the exact analytical theory is limited to thin circular ring whose height must be much less than its radius. Copyright © 2011 Elsevier B.V. All rights reserved.
Yu, Chanki; Lee, Sang Wook
2016-05-20
We present a reliable and accurate global optimization framework for estimating parameters of isotropic analytical bidirectional reflectance distribution function (BRDF) models. This approach is based on a branch and bound strategy with linear programming and interval analysis. Conventional local optimization is often very inefficient for BRDF estimation since its fitting quality is highly dependent on initial guesses due to the nonlinearity of analytical BRDF models. The algorithm presented in this paper employs L1-norm error minimization to estimate BRDF parameters in a globally optimal way and interval arithmetic to derive our feasibility problem and lower bounding function. Our method is developed for the Cook-Torrance model but with several normal distribution functions such as the Beckmann, Berry, and GGX functions. Experiments have been carried out to validate the presented method using 100 isotropic materials from the MERL BRDF database, and our experimental results demonstrate that the L1-norm minimization provides a more accurate and reliable solution than the L2-norm minimization.
Development of a simulation tool to analyze the orientation of LCPs during extrusion process
NASA Astrophysics Data System (ADS)
Ahmadzadegan, Arash
In this thesis, different aspects of the rheology and directionality of the liquid crystalline polymers (LCPs) are investigated. The rheology of LCPs are modeled with different rheological models in different die geometries. The final goal in modeling the rheology and directionality of LCPs is to have a better understanding of their rheology during extrusion processing methods inside extrusion dies and eventually produce more isotropic films of LCPs. An attempt to design a die geometry that produces more isotropic films was made and it was shown that it is possible to use the inertia of the polymer to generate a more isotropic velocity profile at the lip of the die. This isotropic velocity profile can lead to alignment of directors along the streamlines and produce an isotropic film of LCP. It is shown that the rheological properties of the LCP should be altered to have a very low viscosity for this type of die to work. To be able to investigate the effect of processing on directionality of LCPs, it is essential to develop a method to simulate the directionality based on processing conditions. As a result, a user defined function (UDF) code was added to ANSYSRTM ~FLUENTRTM~ to simulate the directionality of LCPs. The rheology of the LCP is modeled using power-law fluid model and the consistency index (K) and power-law index (n) were estimated based on the experimental measurements done with capillary rheometry. Three main phenomena that affect the directionality namely effects of Franks elastic energy, the effect of shear and the effect of movement of crystals with the bulk of polymer are investigated. The results of this simulation are close to physical phenomena seen in real LCPs. To quantify the directionality of the LCPs, the order parameter of the domain were calculated and compared for different flow and fluid conditions. All polymers including LCPs are viscoelastic fluids in molten state. To understand the rheology of LCPs, a die-swell experiment was carried out using LCP material and Polypropylene (PP). For this experiment a capillary die with two different land-lengths was designed and built. The die-swell of the materials were measured optically according to ISO standards and the dependence of the die swell for materials on rheological properties is investigated. To simulate the viscoelasticity of LCPs numerically, ANSYSRTM ~POLYFLOWRTM~ was used. ANSYSRTM ~POLYFLOWRTM~ has several viscoelastic models and is designed to simulate extrusion processes. The geometry of the capillary die designed for the experiments was modeled in ANSYSRTM ~POLYFLOWRTM~ and the results were compared with the experimental results obtained for LCP and PP. It is shown that the morphology of the polymer should be considered into account to have a correct simulation of die swell.
A simple design of an artificial electromagnetic black hole
NASA Astrophysics Data System (ADS)
Lu, Wanli; Jin, JunFeng; Lin, Zhifang; Chen, Huanyang
2010-09-01
We conduct a rigorous study on the properties of an artificial electromagnetic black hole for transverse magnetic modes. A multilayered structure of such a black hole is then proposed as a reduced variety for easy experimental implementations. An actual design of composite materials based on the effective medium theory is given with only five kinds of real isotropic materials. The finite element method confirms the functionality of such a simple design.
Coupling of order parameters, chirality, and interfacial structures in multiferroic materials.
Conti, Sergio; Müller, Stefan; Poliakovsky, Arkady; Salje, Ekhard K H
2011-04-13
We study optimal interfacial structures in multiferroic materials with a biquadratic coupling between two order parameters. We discover a new duality relation between the strong coupling and the weak coupling regime for the case of isotropic gradient terms. We analyze the phase diagram depending on the coupling constant and anisotropy of the gradient term, and show that in a certain regime the secondary order parameter becomes activated only in the interfacial region.
Research@ARL: Materials Modeling at Multiple Scales. Volume 3, Issue 2
2014-07-01
possessing high ionic conductivity , low viscosity, and good thermal and electrochemical stability and, importantly, being compatible with electrodes. As... thermal and electrical properties. ARL conducts extensive research in graphene and other 2D materials such as BN, ZnO, and hybrid graphene-polyethylene...contribution at temperatures below 393 K. Thus, below 393 K, Li2EDC essentially acts as a single ion conductor . The isotropic ionic conductivity from MD
NMR signature of evolution of ductile-to-brittle transition in bulk metallic glasses.
Yuan, C C; Xiang, J F; Xi, X K; Wang, W H
2011-12-02
The mechanical properties of monolithic metallic glasses depend on the structures at atomic or subnanometer scales, while a clear correlation between mechanical behavior and structures has not been well established in such amorphous materials. In this work, we find a clear correlation of (27)Al NMR isotropic shifts with a microalloying induced ductile-to-brittle transition at ambient temperature in bulk metallic glasses, which indicates that the (27)Al NMR isotropic shift can be regarded as a structural signature to characterize plasticity for this metallic glass system. The study provides a compelling approach for investigating and understanding the mechanical properties of metallic glasses from the point of view of electronic structure. © 2011 American Physical Society
Sandia fracture challenge 2: Sandia California's modeling approach
Karlson, Kyle N.; James W. Foulk, III; Brown, Arthur A.; ...
2016-03-09
The second Sandia Fracture Challenge illustrates that predicting the ductile fracture of Ti-6Al-4V subjected to moderate and elevated rates of loading requires thermomechanical coupling, elasto-thermo-poro-viscoplastic constitutive models with the physics of anisotropy and regularized numerical methods for crack initiation and propagation. We detail our initial approach with an emphasis on iterative calibration and systematically increasing complexity to accommodate anisotropy in the context of an isotropic material model. Blind predictions illustrate strengths and weaknesses of our initial approach. We then revisit our findings to illustrate the importance of including anisotropy in the failure process. Furthermore, mesh-independent solutions of continuum damage modelsmore » having both isotropic and anisotropic yields surfaces are obtained through nonlocality and localization elements.« less
Implicit versus explicit momentum relaxation time solution for semiconductor nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marin, E. G., E-mail: egmarin@ugr.es; Ruiz, F. G., E-mail: franruiz@ugr.es; Godoy, A., E-mail: agodoy@ugr.es
2015-07-14
We discuss the necessity of the exact implicit Momentum Relaxation Time (MRT) solution of the Boltzmann transport equation in order to achieve reliable carrier mobility results in semiconductor nanowires. Firstly, the implicit solution for a 1D electron gas with a isotropic bandstructure is presented resulting in the formulation of a simple matrix system. Using this solution as a reference, the explicit approach is demonstrated to be inaccurate for the calculation of inelastic anisotropic mechanisms such as polar optical phonons, characteristic of III-V materials. Its validity for elastic and isotropic mechanisms is also evaluated. Finally, the implications of the MRT explicitmore » approach inaccuracies on the total mobility of Si and III-V NWs are studied.« less
Logarithm conformal mapping brings the cloaking effect
Xu, Lin; Chen, Huanyang
2014-01-01
Over the past years, invisibility cloaks have been extensively discussed since transformation optics emerges. Generally, the electromagnetic parameters of invisibility cloaks are complicated tensors, yet difficult to realize. As a special method of transformation optics, conformal mapping helps us design invisibility cloak with isotropic materials of a refractive index distribution. However, for all proposed isotropic cloaks, the refractive index range is at such a breadth that challenges current experimental fabrication. In this work, we propose two new kinds of logarithm conformal mappings for invisible device designs. For one of the mappings, the refractive index distribution of conformal cloak varies from 0 to 9.839, which is more feasible for future implementation. Numerical simulations by using finite element method are performed to confirm the theoretical analysis. PMID:25359138
The Galactic Isotropic γ-ray Background and Implications for Dark Matter
NASA Astrophysics Data System (ADS)
Campbell, Sheldon S.; Kwa, Anna; Kaplinghat, Manoj
2018-06-01
We present an analysis of the radial angular profile of the galacto-isotropic (GI) γ-ray flux-the statistically uniform flux in angular annuli centred on the Galactic centre. Two different approaches are used to measure the GI flux profile in 85 months of Fermi-LAT data: the BDS statistical method which identifies spatial correlations, and a new Poisson ordered-pixel method which identifies non-Poisson contributions. Both methods produce similar GI flux profiles. The GI flux profile is well-described by an existing model of bremsstrahlung, π0 production, inverse Compton scattering, and the isotropic background. Discrepancies with data in our full-sky model are not present in the GI component, and are therefore due to mis-modelling of the non-GI emission. Dark matter annihilation constraints based solely on the observed GI profile are close to the thermal WIMP cross section below 100 GeV, for fixed models of the dark matter density profile and astrophysical γ-ray foregrounds. Refined measurements of the GI profile are expected to improve these constraints by a factor of a few.
Optical Refraction in Silver: Counterposition, Negative Phase Velocity and Orthogonal Phase Velocity
ERIC Educational Resources Information Center
Naqvi, Qaisar A.; Mackay, Tom G.; Lakhtakia, Akhlesh
2011-01-01
Complex behaviour associated with metamaterials can arise even in commonplace isotropic dielectric materials. We demonstrate how silver, for example, can support negative phase velocity and counterposition, but not negative refraction, at optical frequencies. The transition from positive to negative phase velocity is not accompanied by remarkable…
The Influence of Surface Morphology and Diffraction Resolution of Canavalin Crystals
NASA Technical Reports Server (NTRS)
Plomp, M.; Thomas, B. R.; Day, J. S.; McPherson, A.; Chernov, A. A.; Malkin, A.
2003-01-01
Canavalin crystals grown from material purified and not purified by High Performance Liquid Chromatography were studied by atomic force microscopy and x-ray diffraction. After purification, resolution was improved from 2.55Angstroms to 2.22Angstroms and jagged isotropic spiral steps transformed into regular, well polygonized steps.
Static Strength of Adhesively-bonded Woven Fabric Kenaf Composite Plates
NASA Astrophysics Data System (ADS)
Hilton, Ahmad; Lee, Sim Yee; Supar, Khairi
2017-06-01
Natural fibers are potentially used as reinforcing materials and combined with epoxy resin as matrix system to form a superior specific strength (or stiffness) materials known as composite materials. The advantages of implementing natural fibers such as kenaf fibers are renewable, less hazardous during fabrication and handling process; and relatively cheap compared to synthetic fibers. The aim of current work is to conduct a parametric study on static strength of adhesively bonded woven fabric kenaf composite plates. Fabrication of composite panels were conducted using hand lay-up techniques, with variation of stacking sequence, over-lap length, joint types and lay-up types as identified in testing series. Quasi-static testing was carried out using mechanical testing following code of practice. Load-displacement profiles were analyzed to study its structural response prior to ultimate failures. It was found that cross-ply lay-up demonstrates better static strength compared to quasi-isotropic lay-up counterparts due to larger volume of 0° plies exhibited in cross-ply lay-up. Consequently, larger overlap length gives better joining strength, as expected, however this promotes to weight penalty in the joining structure. Most samples showed failures within adhesive region known as cohesive failure modes, however, few sample demonstrated interface failure. Good correlations of parametric study were found and discussed in the respective section.
[Stress distribution in press-fit orthodontic microimplant bone interface].
Wu, Jian-chao; Huang, Ji-na; Zhao, Shi-fang; Xu, Xue-jun
2006-12-01
The goal of this study is to analyse the stress distribution in the press-fit microimplant-bone interface and its indications for immediate loading of orthodontic microimplant. Three-dimensional finite element models were created of a 20 mm section of posterior mandible simplified in isosceles trapezoid shape, 30 mm in height, 10mm in upper side width, 14 mm in lower side width,with a single microimplant, 1.2 mm in diameter, 6 mm in length embedded in the bone. The cortical bone thickness was assumed as 1.6 mm. Cortical and cancellous bone were modeled as transversely isotropic and linearly elastic materials. Titanium was modeled as isotropic and linearly elastic material. Perfect bonding was assumed at microimplant- bone interfaces. ANSYS 9.0 finite element analysis software was used to generate the simplified finite element models of the local mandible-implant complex. 0 mm, 0.05 mm and 0.1 mm press-fit were arbitrarily set to the implant-bone interface to mimic the situation of immediate placement of microimplant. Stresses in the microimplant-bone interface were calculated under these "press-fit". Stresses distributed mainly in the cortical bone interface. At Omm press-fit, the stress was 0 MPa. For 0.05mm press-fit, the stress was 1648 MPa in mesio-distal direction, 1782MPa in occluso-gingival direction;and for 0.1 mm, it reached 2012MPa in mesio-distal direction, 2110MPa in occluso-gingival direction. As the "press-fit" increased, the stresses increased accordingly. Values of initial stress in the microimplant-bone interface due to press-fit generated by immediately placed microimplant were very high in these limited and simplified three dimensional finite element models. It reminded us that the initial stress be taken into consideration when immediate loading of the microimplant is planned. Supported by Research Fund of Health Bureau of Zhejiang Province (2005B104).
47 CFR 22.593 - Effective radiated power limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Effective radiated power limits. 22.593 Section... power limits. The effective radiated power of fixed stations operating on the channels listed in § 22.591 must not exceed 150 Watts. The equivalent isotropically radiated power of existing fixed microwave...
Optimization of Passive Coherent Receiver System Placement
2013-09-01
spheroid object with a constant radar cross section (RCS). Additionally, the receiver and transmitters are assumed to be notional isotropic antennae...software- defined radio for equatorial plasma instability studies,” Radio Science, vol. 48, pp. 1–11. Aug. 2013. [2] P. C. Zhang and B. Y. Li, “Passive
An adapted yield criterion for the evolution of subsequent yield surfaces
NASA Astrophysics Data System (ADS)
Küsters, N.; Brosius, A.
2017-09-01
In numerical analysis of sheet metal forming processes, the anisotropic material behaviour is often modelled with isotropic work hardening and an average Lankford coefficient. In contrast, experimental observations show an evolution of the Lankford coefficients, which can be associated with a yield surface change due to kinematic and distortional hardening. Commonly, extensive efforts are carried out to describe these phenomena. In this paper an isotropic material model based on the Yld2000-2d criterion is adapted with an evolving yield exponent in order to change the yield surface shape. The yield exponent is linked to the accumulative plastic strain. This change has the effect of a rotating yield surface normal. As the normal is directly related to the Lankford coefficient, the change can be used to model the evolution of the Lankford coefficient during yielding. The paper will focus on the numerical implementation of the adapted material model for the FE-code LS-Dyna, mpi-version R7.1.2-d. A recently introduced identification scheme [1] is used to obtain the parameters for the evolving yield surface and will be briefly described for the proposed model. The suitability for numerical analysis will be discussed for deep drawing processes in general. Efforts for material characterization and modelling will be compared to other common yield surface descriptions. Besides experimental efforts and achieved accuracy, the potential of flexibility in material models and the risk of ambiguity during identification are of major interest in this paper.
Modeling Spin Testing Using Location Specific Material Properties
2012-04-01
taken to be b. is the antiphase boundary energy (=0.20 J/m2). M is the Taylor factor of fcc (=3). 4. shearing/bowing of tertiary strong pair coupling...crystal orientation can be represented by an isotropic strength knockdown factor of 2/3 based on the reciprocal product of the polycrystal Taylor factor...Tensile and Creep Property Characterization of Potential Brayton Cycle Impeller and Duct Materials" (NASA/TM-2006-204110; Gabb, T; Gayda, J 5 Tresa
Uniform refraction in negative refractive index materials.
Gutiérrez, Cristian E; Stachura, Eric
2015-11-01
We study the problem of constructing an optical surface separating two homogeneous, isotropic media, one of which has a negative refractive index. In doing so, we develop a vector form of Snell's law, which is used to study surfaces possessing a certain uniform refraction property, in both the near- and far-field cases. In the near-field problem, unlike the case when both materials have positive refractive indices, we show that the resulting surfaces can be neither convex nor concave.
Modeling of forming of wing panels of the SSJ-100 aircraft
NASA Astrophysics Data System (ADS)
Annin, B. D.; Oleinikov, A. I.; Bormotin, K. S.
2010-07-01
Problems of inelastic straining of three-dimensional bodies with large displacements and turns are considered. In addition to the sought fields, surface forces and boundary displacements have also to be determined in these problems. Experimental justification is given to the proposed constitutive equations of steady creep for transversely isotropic materials with different characteristics under tension and compression. Algorithms and results of the finite-element solution of the problem are presented for these materials.
NASA Astrophysics Data System (ADS)
Lan, Hongzhi; Venkatesh, T. A.
2014-01-01
A comprehensive understanding of the relationship between the hardness and the elastic and plastic properties for a wide range of materials is obtained by analysing the hardness characteristics (that are predicted by experimentally verified indentation analyses) of over 9000 distinct combinations of material properties that represent isotropic, homogeneous, power-law hardening metallic materials. Finite element analysis has been used to develop the indentation algorithms that provide the relationships between the elastic and plastic properties of the indented material and its indentation hardness. Based on computational analysis and virtual testing, the following observations are made. The hardness (H) of a material tends to increase with an increase in the elastic modulus (E), yield strength (σy) and the strain-hardening exponent (n). Several materials with different combinations of elastic and plastic properties can exhibit identical true hardness (for a particular indenter geometry/apex angle). In general, combinations of materials that exhibit relatively low elastic modulus and high yield strength or strain-hardening exponents and those that exhibit relatively high elastic modulus and low yield strength or strain-hardening exponents exhibit similar hardness properties. Depending on the strain-hardening characteristics of the indented material, (i.e. n = 0 or ?), the ratio H/σy ranges, respectively, from 2.2 to 2.6 or 2 to 20 (for indentations with a cone angle of 70.3°). The materials that have lower σy/E and higher n exhibit higher H/σy ratios. The commonly invoked relationship between hardness and the yield strength, i.e. H ≈ 3σy, is not generally valid or applicable for all power-law hardening materials. The indentation hardness of a power law hardening material can be taken as following the relationship H ≈ (2.1-2.8)σr where σr is the representative stress based on Tabor's representative strain for a wide range of materials.
Micromechanics and constitutive modeling of connective soft tissues.
Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M
2016-07-01
In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical homogenization method with the help of ABAQUS software. The periodic boundary conditions and the proposed constitutive models are implemented into ABAQUS using the DISP and the UMAT subroutines, respectively. The existence of the solution and stable material behavior of proposed constitutive model for collagen fibers are investigated based on the poly-convexity condition. Results of the presented micromechanics model for connective tissues are compared and validated with available experimental data. Effects of geometrical and material parameters variation at microscale on macroscopic mechanical behavior of tissues are investigated. The results show that decrease in collagen content of the connective tissues like the tendon due to diseases leads 20% more stretch than healthy tissue under the same load which can results in connective tissue malfunction and hypermobility in joints. Copyright © 2016 Elsevier Ltd. All rights reserved.
CRADA/NFE-15-05761 Report: Additive Manufacturing of Isotropic NdFeB Bonded Permanent Magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranthaman, M. Parans
2016-07-18
The technical objective of this technical collaboration phase I proposal is to fabricate net shape isotropic NdFeB bonded magnets utilizing additive manufacturing technologies at the ORNL MDF. The goal is to form complex shapes of thermoplastic and/or thermoset bonded magnets without expensive tooling and with minimal wasted material. Two additive manufacturing methods; the binder jet process; and big area additive manufacturing (BAAM) were used. Binder jetting produced magnets with the measured density of the magnet of 3.47 g/cm 3, close to 46% relative to the NdFeB single crystal density of 7.6 g/cm 3 were demonstrated. Magnetic measurements indicate that theremore » is no degradation in the magnetic properties. In addition, BAAM was used to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm 3, and the room temperature magnetic properties are: Intrinsic coercivity Hci = 8.65 kOe, Remanence Br = 5.07 kG, and energy product (BH) max = 5.47 MGOe (43.50 kJ/m 3). This study provides a new pathway for preparing near-net shape bonded magnets for various magnetic applications.« less
NASA Astrophysics Data System (ADS)
Podymova, N. B.; Karabutov, A. A.; Kobeleva, L. I.; Chernyshova, T. A.
2013-09-01
An impulse acoustic method with a laser source of ultrasound is proposed and realized experimentally for a quantitative evaluation of the joint effect of porosity (the volume fraction of pores) and the concentration of dispersed filler on the local Young's modulus of isotropic metal-matrix composite materials. The determination of Young's modulus is based on the laser thermooptical excitation of ultrasound and measurements of the phase speed of longitudinal and shears acoustic waves in composite specimens. Silumin-matrix composite specimens reinforced with various volume fractions of silicon carbide (SiC) microparticles of the mean size of 14 μm were investigated. It was found that, to provide an effective growth in Young's modulus by increasing the concentration of SiC, the porosity of a ready specimen should not exceed 2%. The technique developed allows one to carry out a nondestructive local testing of the acoustical and mechanical properties of composites in the actual state, which is necessary for a technological development and improvement of the fabrication process of the materials.
Strength of anisotropy in a granular material: Linear versus nonlinear contact model
NASA Astrophysics Data System (ADS)
La Ragione, Luigi; Gammariello, Marica; Recchia, Giuseppina
2016-12-01
In this paper, we deal with anisotropy in an idealized granular material made of a collection of frictional, elastic, contacting particles. We present a theoretical analysis for an aggregate of particles isotropically compressed and then sheared, in which two possible contacts laws between particles are considered: a linear contact law, where the contact stiffness is constant; and a nonlinear contact law, where the contact stiffness depends on the overlapping between particles. In the former case the anisotropy observed in the aggregate is associated with particle arrangement. In fact, although the aggregate is initially characterized by an isotropic network of contacts, during the loading, an anisotropic texture develops, which is measured by a fabric tensor. With a nonlinear contact law it is possible to develop anisotropy because contacting stiffnesses are different, depending on the orientation of the contact vectors with respect to the axis of the applied deformation. We find that before the peak load is reached, an aggregate made of particles with a linear contact law develops a much smaller anisotropy compared with that of an aggregate with a nonlinear law.
Yavari, Arash; Goriely, Alain
2016-12-01
The elastic Ericksen problem consists of finding deformations in isotropic hyperelastic solids that can be maintained for arbitrary strain-energy density functions. In the compressible case, Ericksen showed that only homogeneous deformations are possible. Here, we solve the anelastic version of the same problem, that is, we determine both the deformations and the eigenstrains such that a solution to the anelastic problem exists for arbitrary strain-energy density functions. Anelasticity is described by finite eigenstrains. In a nonlinear solid, these eigenstrains can be modelled by a Riemannian material manifold whose metric depends on their distribution. In this framework, we show that the natural generalization of the concept of homogeneous deformations is the notion of covariantly homogeneous deformations -deformations with covariantly constant deformation gradients. We prove that these deformations are the only universal deformations and that they put severe restrictions on possible universal eigenstrains . We show that, in a simply-connected body, for any distribution of universal eigenstrains the material manifold is a symmetric Riemannian manifold and that in dimensions 2 and 3 the universal eigenstrains are zero-stress.
2016-01-01
The elastic Ericksen problem consists of finding deformations in isotropic hyperelastic solids that can be maintained for arbitrary strain-energy density functions. In the compressible case, Ericksen showed that only homogeneous deformations are possible. Here, we solve the anelastic version of the same problem, that is, we determine both the deformations and the eigenstrains such that a solution to the anelastic problem exists for arbitrary strain-energy density functions. Anelasticity is described by finite eigenstrains. In a nonlinear solid, these eigenstrains can be modelled by a Riemannian material manifold whose metric depends on their distribution. In this framework, we show that the natural generalization of the concept of homogeneous deformations is the notion of covariantly homogeneous deformations—deformations with covariantly constant deformation gradients. We prove that these deformations are the only universal deformations and that they put severe restrictions on possible universal eigenstrains. We show that, in a simply-connected body, for any distribution of universal eigenstrains the material manifold is a symmetric Riemannian manifold and that in dimensions 2 and 3 the universal eigenstrains are zero-stress. PMID:28119554
Veselago focusing of anisotropic massless Dirac fermions
NASA Astrophysics Data System (ADS)
Zhang, Shu-Hui; Yang, Wen; Peeters, F. M.
2018-05-01
Massless Dirac fermions (MDFs) emerge as quasiparticles in various novel materials such as graphene and topological insulators, and they exhibit several intriguing properties, of which Veselago focusing is an outstanding example with a lot of possible applications. However, up to now Veselago focusing merely occurred in p-n junction devices based on the isotropic MDF, which lacks the tunability needed for realistic applications. Here, motivated by the emergence of novel Dirac materials, we investigate the propagation behaviors of anisotropic MDFs in such a p-n junction structure. By projecting the Hamiltonian of the anisotropic MDF to that of the isotropic MDF and deriving an exact analytical expression for the propagator, precise Veselago focusing is demonstrated without the need for mirror symmetry of the electron source and its focusing image. We show a tunable focusing position that can be used in a device to probe masked atom-scale defects. This study provides an innovative concept to realize Veselago focusing relevant for potential applications, and it paves the way for the design of novel electron optics devices by exploiting the anisotropic MDF.
NASA Technical Reports Server (NTRS)
Nemeth, Noel
2013-01-01
Models that predict the failure probability of monolithic glass and ceramic components under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" failure models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This report develops a formulation to describe the probability density distribution of the orientation of critical strength-controlling flaws that results from an applied load. This distribution is a function of the multiaxial stress state, the shear sensitivity of the flaws, the Weibull modulus, and the strength anisotropy. Examples are provided showing the predicted response on the unit sphere for various stress states for isotropic and transversely isotropic (anisotropic) materials--including the most probable orientation of critical flaws for offset uniaxial loads with strength anisotropy. The author anticipates that this information could be used to determine anisotropic stiffness degradation or anisotropic damage evolution for individual brittle (or quasi-brittle) composite material constituents within finite element or micromechanics-based software
Etch Profile Simulation Using Level Set Methods
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1997-01-01
Etching and deposition of materials are critical steps in semiconductor processing for device manufacturing. Both etching and deposition may have isotropic and anisotropic components, due to directional sputtering and redeposition of materials, for example. Previous attempts at modeling profile evolution have used so-called "string theory" to simulate the moving solid-gas interface between the semiconductor and the plasma. One complication of this method is that extensive de-looping schemes are required at the profile corners. We will present a 2D profile evolution simulation using level set theory to model the surface. (1) By embedding the location of the interface in a field variable, the need for de-looping schemes is eliminated and profile corners are more accurately modeled. This level set profile evolution model will calculate both isotropic and anisotropic etch and deposition rates of a substrate in low pressure (10s mTorr) plasmas, considering the incident ion energy angular distribution functions and neutral fluxes. We will present etching profiles of Si substrates in Ar/Cl2 discharges for various incident ion energies and trench geometries.
SymPS: BRDF Symmetry Guided Photometric Stereo for Shape and Light Source Estimation.
Lu, Feng; Chen, Xiaowu; Sato, Imari; Sato, Yoichi
2018-01-01
We propose uncalibrated photometric stereo methods that address the problem due to unknown isotropic reflectance. At the core of our methods is the notion of "constrained half-vector symmetry" for general isotropic BRDFs. We show that such symmetry can be observed in various real-world materials, and it leads to new techniques for shape and light source estimation. Based on the 1D and 2D representations of the symmetry, we propose two methods for surface normal estimation; one focuses on accurate elevation angle recovery for surface normals when the light sources only cover the visible hemisphere, and the other for comprehensive surface normal optimization in the case that the light sources are also non-uniformly distributed. The proposed robust light source estimation method also plays an essential role to let our methods work in an uncalibrated manner with good accuracy. Quantitative evaluations are conducted with both synthetic and real-world scenes, which produce the state-of-the-art accuracy for all of the non-Lambertian materials in MERL database and the real-world datasets.
Stress and strain concentration at a circular hole in an infinite plate
NASA Technical Reports Server (NTRS)
Stowell, Elbridge Z
1950-01-01
The theory of elasticity shows that the maximum stress at a circular hole in an infinite plate in tension is three times the applied stress when the material remains elastic. The effect of plasticity of the material is to lower this ratio. This paper considers the theoretical problem of the stress distribution in an infinitely large sheet with a circular hole for the general case where the material may have any stress-strain curve. The plate is assumed to be under uniform tension at a large distance from the hole. The material is taken to be isotropic and incompressible. (author)
Nagura, Kazuhiko; Saito, Shohei; Yusa, Hitoshi; Yamawaki, Hiroshi; Fujihisa, Hiroshi; Sato, Hiroyasu; Shimoikeda, Yuichi; Yamaguchi, Shigehiro
2013-07-17
Luminescent mechanochromism has been intensively studied in the past few years. However, the difference in the anisotropic grinding and the isotropic compression is not clearly distinguished in many cases, in spite of the importance of this discrimination for the application of such mechanochromic materials. We now report the distinct luminescent responses of a new organic fluorophore, tetrathiazolylthiophene, to these stresses. The multichromism is achieved over the entire visible region using the single fluorophore. The different mechanisms of a blue shift by grinding crystals and of a red shift under hydrostatic pressure are fully investigated, which includes a high-pressure single-crystal X-ray diffraction analysis. The anisotropic and isotropic modes of mechanical loading suppress and enhance the excimer formation, respectively, in the 3D hydrogen-bond network.
Klein tunneling and electron optics in Dirac-Weyl fermion systems with tilted energy dispersion
NASA Astrophysics Data System (ADS)
Nguyen, V. Hung; Charlier, J.-C.
2018-06-01
The transport properties of relativisticlike fermions have been extensively studied in solid-state systems with isotropic energy dispersions. Recently, several two-dimensional and three-dimensional Dirac-Weyl (DW) materials exhibiting tilted energy dispersions around their DW cones have been explored. Here, we demonstrate that such a tilt character could induce drastically different transport phenomena, compared to the isotropic-dispersion cases. Indeed, the Klein tunneling of DW fermions of opposite chiralities is predicted to appear along two separated oblique directions. In addition, valley filtering and beam splitting effects are easily tailored by dopant engineering techniques whereas the refraction of electron waves at a (p -n )-doped interface is dramatically modified by the tilt, thus paving the way for emerging applications in electron optics and valleytronics.
Li, Zuoping; Alonso, Jorge E; Kim, Jong-Eun; Davidson, James S; Etheridge, Brandon S; Eberhardt, Alan W
2006-09-01
Three-dimensional finite element (FE) models of human pubic symphyses were constructed from computed tomography image data of one male and one female cadaver pelvis. The pubic bones, interpubic fibrocartilaginous disc and four pubic ligaments were segmented semi-automatically and meshed with hexahedral elements using automatic mesh generation schemes. A two-term viscoelastic Prony series, determined by curve fitting results of compressive creep experiments, was used to model the rate-dependent effects of the interpubic disc and the pubic ligaments. Three-parameter Mooney-Rivlin material coefficients were calculated for the discs using a heuristic FE approach based on average experimental joint compression data. Similarly, a transversely isotropic hyperelastic material model was applied to the ligaments to capture average tensile responses. Linear elastic isotropic properties were assigned to bone. The applicability of the resulting models was tested in bending simulations in four directions and in tensile tests of varying load rates. The model-predicted results correlated reasonably with the joint bending stiffnesses and rate-dependent tensile responses measured in experiments, supporting the validity of the estimated material coefficients and overall modeling approach. This study represents an important and necessary step in the eventual development of biofidelic pelvis models to investigate symphysis response under high-energy impact conditions, such as motor vehicle collisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Bethany E.; Holder, Aaron M.; Schelhas, Laura T.
We grow and kinetically stabilize the isotropic rocksalt phase of SnSe thin films by alloying SnSe with CaSe. Thin polycrystalline films of the metastable heterostructural alloy Sn 1–xCa xSe are synthesized by pulsed laser deposition on amorphous SiO 2 over the entire composition range 0 < x < 1. We observe the theoretically-predicted, composition-driven change from a layered, orthorhombic structure to an isotropic, cubic structure near x = 0.18, in reasonable agreement with the theoretical value of x = 0.13 calculated from first principles. The optical band gap is highly non-linear in x and the trend agrees with theory predictions.more » Compared to the layered end-member SnSe, the isotropic alloy near the orthorhombic-to-rocksalt transition has a p-type electrical resistivity three orders of magnitude lower, and a thermoelectric power factor at least ten times larger. Furthermore manipulation of the structure of a functional material like SnSe via alloying may provide a new path to enhanced functionality, in this case, improved thermoelectric performance.« less
Simulating faults and plate boundaries with a transversely isotropic plasticity model
NASA Astrophysics Data System (ADS)
Sharples, W.; Moresi, L. N.; Velic, M.; Jadamec, M. A.; May, D. A.
2016-03-01
In mantle convection simulations, dynamically evolving plate boundaries have, for the most part, been represented using an visco-plastic flow law. These systems develop fine-scale, localized, weak shear band structures which are reminiscent of faults but it is a significant challenge to resolve the large- and the emergent, small-scale-behavior. We address this issue of resolution by taking into account the observation that a rock element with embedded, planar, failure surfaces responds as a non-linear, transversely isotropic material with a weak orientation defined by the plane of the failure surface. This approach partly accounts for the large-scale behavior of fine-scale systems of shear bands which we are not in a position to resolve explicitly. We evaluate the capacity of this continuum approach to model plate boundaries, specifically in the context of subduction models where the plate boundary interface has often been represented as a planar discontinuity. We show that the inclusion of the transversely isotropic plasticity model for the plate boundary promotes asymmetric subduction from initiation. A realistic evolution of the plate boundary interface and associated stresses is crucial to understanding inter-plate coupling, convergent margin driven topography, and earthquakes.
Matthews, Bethany E.; Holder, Aaron M.; Schelhas, Laura T.; ...
2017-07-21
We grow and kinetically stabilize the isotropic rocksalt phase of SnSe thin films by alloying SnSe with CaSe. Thin polycrystalline films of the metastable heterostructural alloy Sn 1–xCa xSe are synthesized by pulsed laser deposition on amorphous SiO 2 over the entire composition range 0 < x < 1. We observe the theoretically-predicted, composition-driven change from a layered, orthorhombic structure to an isotropic, cubic structure near x = 0.18, in reasonable agreement with the theoretical value of x = 0.13 calculated from first principles. The optical band gap is highly non-linear in x and the trend agrees with theory predictions.more » Compared to the layered end-member SnSe, the isotropic alloy near the orthorhombic-to-rocksalt transition has a p-type electrical resistivity three orders of magnitude lower, and a thermoelectric power factor at least ten times larger. Furthermore manipulation of the structure of a functional material like SnSe via alloying may provide a new path to enhanced functionality, in this case, improved thermoelectric performance.« less
The Information Available to a Moving Observer on Shape with Unknown, Isotropic BRDFs.
Chandraker, Manmohan
2016-07-01
Psychophysical studies show motion cues inform about shape even with unknown reflectance. Recent works in computer vision have considered shape recovery for an object of unknown BRDF using light source or object motions. This paper proposes a theory that addresses the remaining problem of determining shape from the (small or differential) motion of the camera, for unknown isotropic BRDFs. Our theory derives a differential stereo relation that relates camera motion to surface depth, which generalizes traditional Lambertian assumptions. Under orthographic projection, we show differential stereo may not determine shape for general BRDFs, but suffices to yield an invariant for several restricted (still unknown) BRDFs exhibited by common materials. For the perspective case, we show that differential stereo yields the surface depth for unknown isotropic BRDF and unknown directional lighting, while additional constraints are obtained with restrictions on the BRDF or lighting. The limits imposed by our theory are intrinsic to the shape recovery problem and independent of choice of reconstruction method. We also illustrate trends shared by theories on shape from differential motion of light source, object or camera, to relate the hardness of surface reconstruction to the complexity of imaging setup.
Spherocylindrical microplane constitutive model for shale and other anisotropic rocks
NASA Astrophysics Data System (ADS)
Li, Cunbao; Caner, Ferhun C.; Chau, Viet T.; Bažant, Zdeněk P.
2017-06-01
Constitutive equations for inelastic behavior of anisotropic materials have been a challenge for decades. Presented is a new spherocylindrical microplane constitutive model that meets this challenge for the inelastic fracturing behavior of orthotropic materials, and particularly the shale, which is transversely isotropic and is important for hydraulic fracturing (aka fracking) as well as many geotechnical structures. The basic idea is to couple a cylindrical microplane system to the classical spherical microplane system. Each system is subjected to the same strain tensor while their stress tensors are superposed. The spherical phase is similar to the previous microplane models for concrete and isotropic rock. The integration of stresses over spherical microplanes of all spatial orientations relies on the previously developed optimal Gaussian integration over a spherical surface. The cylindrical phase, which is what creates the transverse isotropy, involves only microplanes that are normal to plane of isotropy, or the bedding layers, and enhance the stiffness and strength in that plane. Unlike all the microplane models except the spectral one, the present one can reproduce all the five independent elastic constants of transversely isotropic shales. Vice versa, from these constants, one can easily calculate all the microplane elastic moduli, which are all positive if the elastic in-to-out-of plane moduli ratio is not too big (usually less than 3.75, which applies to all shales). Oriented micro-crack openings, frictional micro-slips and bedding plane behavior can be modeled more intuitively than with the spectral approach. Data fitting shows that the microplane resistance depends on the angle with the bedding layers non-monotonically, and compressive resistance reaches a minimum at 60°. A robust algorithm for explicit step-by-step structural analysis is formulated. Like all microplane models, there are many material parameters, but they can be identified sequentially. Finally, comparisons with extensive test data for shale validate the model.
Description of plastic deformation of structural materials in triaxial loading
NASA Astrophysics Data System (ADS)
Lagzdins, A.; Zilaucs, A.
2008-03-01
A model of nonassociated plasticity is put forward for initially isotropic materials deforming with residual changes in volume under the action of triaxial normal stresses. The model is based on novel plastic loading and plastic potential functions, which define closed, convex, every where smooth surfaces in the 6D space of symmetric second-rank stress tensors. By way of example, the plastic deformation of a cylindrical concrete specimen wrapped with a CFRP tape and loaded in axial compression is described.
Bédard-Arcand, Jean-Philippe; Galstian, Tigran
2012-08-01
We report the creation and study of a polarization independent light scattering material system based on surface-polymer stabilized liquid crystals. Originally isotropic cell substrates with thin nonpolymerized reactive mesogen layers are used for the alignment of pure nonreactive nematic liquid crystals. The partial interdiffusion of the two materials followed by the application of orienting external electric and magnetic fields and the photo polymerization of the reactive mesogen allow us the control of electro-optic scattering properties of obtained cells.
A multidirectional cloak for visible light
NASA Astrophysics Data System (ADS)
Chen, Zhen Sheng; Lei Mei, Zhong; Jiang, Wei Xiang; Cui, Tie Jun
2018-04-01
A new macroscopic multidirectional cloak scheme for extraordinary rays is proposed by controlling the optical axes of uniaxial crystals. It eliminates the complicated material constraints and can also be utilized to design a cloaking device for ordinary rays or isotropic cloaks after simplification. Numerical ray tracing and full-wave simulation results validate our design. Moreover, if the uniaxial crystals are changed into other materials whose optical axes can be modulated, like liquid crystals, this scheme has the potential to fabricate direction-tunable cloaks.
Experimental characterization of composites. [load test methods
NASA Technical Reports Server (NTRS)
Bert, C. W.
1975-01-01
The experimental characterization for composite materials is generally more complicated than for ordinary homogeneous, isotropic materials because composites behave in a much more complex fashion, due to macroscopic anisotropic effects and lamination effects. Problems concerning the static uniaxial tension test for composite materials are considered along with approaches for conducting static uniaxial compression tests and static uniaxial bending tests. Studies of static shear properties are discussed, taking into account in-plane shear, twisting shear, and thickness shear. Attention is given to static multiaxial loading, systematized experimental programs for the complete characterization of static properties, and dynamic properties.
Stress decay in an orthotropic half-plane under self-equilibrating sinusoidal loading
NASA Technical Reports Server (NTRS)
Fichter, W. B.
1984-01-01
An elastic orthotropic half-plane subjected to sinusoidal normal loading along an entire straight edge is analyzed. Stresses are calculated for material property combinations which are representative of some unidirectional fiber reinforced composites and of (+ or - 45) (subs) laminates made from the same unidirectional materials. Plots of the stresses as functions of the distance from the loaded boundary show that they can differ greatly from their counterparts in the isotropic half-plane under the same loading. How the results impact the question of the applicability of St. Venant's principle to orthotropic materials is briefly discussed.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2004-08-24
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2007-01-02
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2006-03-21
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2002-01-01
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2000-01-01
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Pitch-based carbon foam heat sink with phase change material
Klett, James W.; Burchell, Timothy D.
2007-01-23
A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.
Computation of Temperature-Dependent Legendre Moments of a Double-Differential Elastic Cross Section
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arbanas, Goran; Dunn, Michael E; Larson, Nancy M
2011-01-01
A general expression for temperature-dependent Legendre moments of a double-differential elastic scattering cross section was derived by Ouisloumen and Sanchez [Nucl. Sci. Eng. 107, 189-200 (1991)]. Attempts to compute this expression are hindered by the three-fold nested integral, limiting their practical application to just the zeroth Legendre moment of an isotropic scattering. It is shown that the two innermost integrals could be evaluated analytically to all orders of Legendre moments, and for anisotropic scattering, by a recursive application of the integration by parts method. For this method to work, the anisotropic angular distribution in the center of mass is expressedmore » as an expansion in Legendre polynomials. The first several Legendre moments of elastic scattering of neutrons on U-238 are computed at T=1000 K at incoming energy 6.5 eV for isotropic scattering in the center of mass frame. Legendre moments of the anisotropic angular distribution given via Blatt-Biedenharn coefficients are computed at ~1 keV. The results are in agreement with those computed by the Monte Carlo method.« less
Controllable rotational inversion in nanostructures with dual chirality.
Dai, Lu; Zhu, Ka-Di; Shen, Wenzhong; Huang, Xiaojiang; Zhang, Li; Goriely, Alain
2018-04-05
Chiral structures play an important role in natural sciences due to their great variety and potential applications. A perversion connecting two helices with opposite chirality creates a dual-chirality helical structure. In this paper, we develop a novel model to explore quantitatively the mechanical behavior of normal, binormal and transversely isotropic helical structures with dual chirality and apply these ideas to known nanostructures. It is found that both direction and amplitude of rotation can be finely controlled by designing the cross-sectional shape. A peculiar rotational inversion of overwinding followed by unwinding, observed in some gourd and cucumber tendril perversions, not only exists in transversely isotropic dual-chirality helical nanobelts, but also in the binormal/normal ones when the cross-sectional aspect ratio is close to 1. Beyond this rotational inversion region, the binormal and normal dual-chirality helical nanobelts exhibit a fixed directional rotation of unwinding and overwinding, respectively. Moreover, in the binormal case, the rotation of these helical nanobelts is nearly linear, which is promising as a possible design for linear-to-rotary motion converters. The present work suggests new designs for nanoscale devices.
Local buckling and crippling of composite stiffener sections
NASA Technical Reports Server (NTRS)
Bonanni, David L.; Johnson, Eric R.; Starnes, James H., Jr.
1988-01-01
Local buckling, postbuckling, and crippling (failure) of channel, zee, and I- and J-section stiffeners made of AS4/3502 graphite-epoxy unidirectional tape are studied by experiment and analysis. Thirty-six stiffener specimens were tested statically to failure in axial compression as intermediate length columns. Web width is 1.25 inches for all specimens, and the flange width-to-thickness ratio ranges from 7 to 28 for the specimens tested. The radius of the stiffener corners is either 0.125 or 0.250 inches. A sixteen-ply orthotropic layup, an eight-ply quasi-isotropic layup, and a sixteen-ply quasi-isotropic layup are examined. Geometrically nonlinear analyses of five specimens were performed with the STAGS finite element code. Analytical results are compared to experimental data. Inplane stresses from STAGS are used to conduct a plane stress failure analysis of these specimens. Also, the development of interlaminar stress equations from equilibrium for classical laminated plate theory is presented. An algorithm to compute high order displacement derivatives required by these equations based on the Discrete Fourier Transform (DFT) is discussed.
Deformations of Quantum Field Theories on Curved Spacetimes
NASA Astrophysics Data System (ADS)
Maher, Christopher Andrew
With the ubiquity of electronic devices, finding ways to improve quality or fabrication methods of components is an important area of study. This dissertation looks at two sets of materials that may be used to address this need. The first is a series of disordered perovskites of the form Nd⅔--xLi3 xTiO3. These materials are notable for the way the lithium becomes spontaneously patterned during synthesis into square planar regions, the dimensions of which are only dependent upon the initial concentration of lithium. Through the use of point-charge calculations, the paramagnetic and first-order quadrupole interaction tensors for each of the 28 unique lithium sites of the x = 0.083 concentration were calculated and used to accurately simulate the experimental spectra. From this, it was observed that the 28 crystallographically distinct sites present in that particular concentration could be grouped into three sets based on the principal values of the paramagnetic interaction tensors. Qualitative analysis of spectra from the other concentrations suggests that this grouping holds for other concentrations, with only the relative number of sites in each group changing. Additionally, jump dynamics were incorporated into the simulations of one of the sites in order to explain the broadening that occurs at lower temperatures. The second study included in this dissertation is focused on lithium in a pair of high-dielectric microwave ceramics, Ca(Li1/3Nb 2/3)O3 and (Ca2/3La1/3)(Li1/3 Nb2/3)O3. Experimental results are reported for the temperature-dependence of both the spin-lattice relaxation rate and the isotropic chemical shift for each material. For both samples, the isotropic shift was linear with temperature, with the isotropic shift of Ca(Li 1/3Nb2/3)O3 having a stronger temperature dependence (3.53 Hz·K-1 compared to 2.65 Hz·K -1). The spin-lattice relaxation rates of both samples follow an Arrhenius relationship with temperature, with Ca(Li1/3Nb 2/3)O3 sample having an activation energy of 5.08 kJ · (mol · K)-1 and (Ca2/3La1/3)(Li 1/3Nb2/3)O3 having an activation energy of 2.21kJ · (mol · K)-1. In addition to the lithium study, there were also spectra acquired that observed the niobium nucleus in each material, which has a noticeably more complex spectrum. For the (Ca2/3 La1/3)(Li1/3Nb2/3)O3 sample, a double-quantum satellite-transition magic angle spinning pulse sequence was used to determine the isotropic chemical shift as well as the quadrupole product of each of the five resolved sites.
Tuning Fluorescence Direction with Plasmonic Metal–Dielectric– Metal Substrates
Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Nowaczyk, Kazimierz; Ray, Krishanu; Lakowicz, Joseph R.
2013-01-01
Controlling the emission properties of fluorophores is essential for improving the performance of fluorescence-based techniques in modern biochemical research, medical diagnosis, and sensing. Fluorescence emission is isotropic in nature, which makes it difficult to capture more than a small fraction of the total emission. Metal– dielectric–metal (MDM) substrates, discussed in this Letter, convert isotropic fluorescence into beaming emission normal to the substrate. This improves fluorescence collection efficiency and also opens up new avenues for a wide range of fluorescence-based applications. We suggest that MDM substrates can be readily adapted for multiple uses, such as in microarray formats, for directional fluorescence studies of multiple probes or for molecule-specific sensing with a high degree of spatial control over the fluorescence emission. SECTION: Physical Processes in Nanomaterials and Nanostructures PMID:24013521
Bounce universe and black holes from critical Einsteinian cubic gravity
NASA Astrophysics Data System (ADS)
Feng, Xing-Hui; Huang, Hyat; Mai, Zhan-Feng; Lü, Hong
2017-11-01
We show that there exists a critical point for the coupling constants in Einsteinian cubic gravity in which the linearized equations on the maximally symmetric vacuum vanish identically. We construct an exact isotropic bounce universe in the critical theory in four dimensions. The comoving time runs from minus infinity to plus infinity, yielding a smooth universe bouncing between two de Sitter vacua. In five dimensions, we adopt a numerical approach to construct a bounce solution, in which a singularity occurs before the bounce takes place. We then construct exact anisotropic bounces that connect two isotropic de Sitter spacetimes with flat spatial sections. We further construct exact anti-de Sitter black holes in the critical theory in four and five dimensions and obtain an exact anti-de Sitter worm brane in four dimensions.
NASA Astrophysics Data System (ADS)
Kim, Jeong-Woo
A joint experimental and analytical investigation of the sound transmission loss (STL) and two-dimensional free wave propagation in composite sandwich panels is presented here. An existing panel, a Nomex honeycomb sandwich panel, was studied in detail. For the purpose of understanding the typical behavior of sandwich panels, a composite structure comprising two aluminum sheets with a relatively soft, poro-elastic foam core was also constructed and studied. The cores of both panels were modeled using an anisotropic (transversely isotropic) poro-elastic material theory. Several estimation methods were used to obtain the material properties of the honeycomb core and the skin plates to be used in the numerical calculations. Appropriate values selected from among the estimates were used in the STL and free wave propagation models. The prediction model was then verified in two ways: first, the calculated wave speeds and STL of a single poro-elastic layer were numerically verified by comparison with the predictions of a previously developed isotropic model. Secondly, to physically validate the transversely isotropic model, the measured STL and the phase speeds of the sandwich panels were compared with their predicted values. To analyze the actual treatment of a fuselage structure, multi-layered configurations, including a honeycomb panel and several layers such as air gaps, acoustic blankets and membrane partitions, were formulated. Then, to find the optimal solution for improving the sound barrier performance of an actual fuselage system, air layer depth and glass fiber lining effects were investigated by using these multi-layer models. By using the free wave propagation model, the first anti-symmetric and symmetric modes of the sandwich panels were characterized to allow the identification of the coincidence frequencies of the sandwich panel. The behavior of the STL could then be clearly explained by comparison with the free wave propagation solutions. By performing a parameter study based both on the STL and free wave propagation speeds, the mass, stiffness and damping-controlled regions of the STL were identified. The structural factors that can be adjusted to improve STL performance were also identified.
Isotropic microscale mechanical properties of coral skeletons
Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe
2015-01-01
Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species: solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus EIT were determined from the analysis of several load–depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty, the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76–77 GPa range, and HIT in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in HIT is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure, observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections. PMID:25977958
Simulations of Turbulent Flows with Strong Shocks and Density Variations: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanjiva Lele
2012-10-01
The target of this SciDAC Science Application was to develop a new capability based on high-order and high-resolution schemes to simulate shock-turbulence interactions and multi-material mixing in planar and spherical geometries, and to study Rayleigh-Taylor and Richtmyer-Meshkov turbulent mixing. These fundamental problems have direct application in high-speed engineering flows, such as inertial confinement fusion (ICF) capsule implosions and scramjet combustion, and also in the natural occurrence of supernovae explosions. Another component of this project was the development of subgrid-scale (SGS) models for large-eddy simulations of flows involving shock-turbulence interaction and multi-material mixing, that were to be validated with the DNSmore » databases generated during the program. The numerical codes developed are designed for massively-parallel computer architectures, ensuring good scaling performance. Their algorithms were validated by means of a sequence of benchmark problems. The original multi-stage plan for this five-year project included the following milestones: 1) refinement of numerical algorithms for application to the shock-turbulence interaction problem and multi-material mixing (years 1-2); 2) direct numerical simulations (DNS) of canonical shock-turbulence interaction (years 2-3), targeted at improving our understanding of the physics behind the combined two phenomena and also at guiding the development of SGS models; 3) large-eddy simulations (LES) of shock-turbulence interaction (years 3-5), improving SGS models based on the DNS obtained in the previous phase; 4) DNS of planar/spherical RM multi-material mixing (years 3-5), also with the two-fold objective of gaining insight into the relevant physics of this instability and aiding in devising new modeling strategies for multi-material mixing; 5) LES of planar/spherical RM mixing (years 4-5), integrating the improved SGS and multi-material models developed in stages 3 and 5. This final report is outlined as follows. Section 2 shows an assessment of numerical algorithms that are best suited for the numerical simulation of compressible flows involving turbulence and shock phenomena. Sections 3 and 4 deal with the canonical shock-turbulence interaction problem, from the DNS and LES perspectives, respectively. Section 5 considers the shock-turbulence inter-action in spherical geometry, in particular, the interaction of a converging shock with isotropic turbulence as well as the problem of the blast wave. Section 6 describes the study of shock-accelerated mixing through planar and spherical Richtmyer-Meshkov mixing as well as the shock-curtain interaction problem In section 7 we acknowledge the different interactions between Stanford and other institutions participating in this SciDAC project, as well as several external collaborations made possible through it. Section 8 presents a list of publications and presentations that have been generated during the course of this SciDAC project. Finally, section 9 concludes this report with the list of personnel at Stanford University funded by this SciDAC project.« less
Ultrasonic nondestructive materials characterization
NASA Technical Reports Server (NTRS)
Green, R. E., Jr.
1986-01-01
A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.
Hertzian Dipole Radiation over Isotropic Magnetodielectric Substrates
2015-03-01
Analytical and numerical techniques in the Green’s function treatment of microstrip antennas and scatterers. IEE Proceedings. March 1983:130(2). 3...public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This report investigates dipole antennas printed on grounded...engineering of thin planar antennas . Since these materials often require complicated constitutive equations to describe their properties rigorously, the
Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J
2017-01-01
Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D , observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄ . When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model.
Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J.
2017-01-01
Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D, observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄. When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model. PMID:28989561
NASA Astrophysics Data System (ADS)
Wang, Minghai; Wang, Hujun; Liu, Zhonghai
2011-05-01
Isotropic pyrolyric graphite (IPG) is a new kind of brittle material, it can be used for sealing the aero-engine turbine shaft and the ethylene high-temperature equipment. It not only has the general advantages of ordinal carbonaceous materials such as high temperature resistance, lubrication and abrasion resistance, but also has the advantages of impermeability and machinability that carbon/carbon composite doesn't have. Therefore, it has broad prospects for development. Mechanism of brittle-ductile transition of IPG is the foundation of precision cutting while the plastic deformation of IPG is the essential and the most important mechanical behavior of precision cutting. Using the theory of strain gradient, the mechanism of this material removal during the precision cutting is analyzed. The critical cutting thickness of IPG is calculated for the first time. Furthermore, the cutting process parameters such as cutting depth, feed rate which corresponding to the scale of brittle-ductile transition deformation of IPG are calculated. In the end, based on the theory of micromechanics, the deformation behaviors of IPG such as brittle fracture, plastic deformation and mutual transformation process are all simulated under the Sih.G.C fracture criterion. The condition of the simulation is that the material under the pressure-shear loading conditions .The result shows that the best angle during the IPG precision cutting is -30°. The theoretical analysis and the simulation result are validated by precision cutting experiments.
NASA Astrophysics Data System (ADS)
Qiang, Bo; Brigham, John C.; Aristizabal, Sara; Greenleaf, James F.; Zhang, Xiaoming; Urban, Matthew W.
2015-02-01
In this paper, we propose a method to model the shear wave propagation in transversely isotropic, viscoelastic and incompressible media. The targeted application is ultrasound-based shear wave elastography for viscoelasticity measurements in anisotropic tissues such as the kidney and skeletal muscles. The proposed model predicts that if the viscoelastic parameters both across and along fiber directions can be characterized as a Voigt material, then the spatial phase velocity at any angle is also governed by a Voigt material model. Further, with the aid of Taylor expansions, it is shown that the spatial group velocity at any angle is close to a Voigt type for weakly attenuative materials within a certain bandwidth. The model is implemented in a finite element code by a time domain explicit integration scheme and shear wave simulations are conducted. The results of the simulations are analyzed to extract the shear wave elasticity and viscosity for both the spatial phase and group velocities. The estimated values match well with theoretical predictions. The proposed theory is further verified by an ex vivo tissue experiment measured in a porcine skeletal muscle by an ultrasound shear wave elastography method. The applicability of the Taylor expansion to analyze the spatial velocities is also discussed. We demonstrate that the approximations from the Taylor expansions are subject to errors when the viscosities across or along the fiber directions are large or the maximum frequency considered is beyond the bandwidth defined by radii of convergence of the Taylor expansions.
Phase diagram of two-dimensional hard ellipses.
Bautista-Carbajal, Gustavo; Odriozola, Gerardo
2014-05-28
We report the phase diagram of two-dimensional hard ellipses as obtained from replica exchange Monte Carlo simulations. The replica exchange is implemented by expanding the isobaric ensemble in pressure. The phase diagram shows four regions: isotropic, nematic, plastic, and solid (letting aside the hexatic phase at the isotropic-plastic two-step transition [E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704 (2011)]). At low anisotropies, the isotropic fluid turns into a plastic phase which in turn yields a solid for increasing pressure (area fraction). Intermediate anisotropies lead to a single first order transition (isotropic-solid). Finally, large anisotropies yield an isotropic-nematic transition at low pressures and a high-pressure nematic-solid transition. We obtain continuous isotropic-nematic transitions. For the transitions involving quasi-long-range positional ordering, i.e., isotropic-plastic, isotropic-solid, and nematic-solid, we observe bimodal probability density functions. This supports first order transition scenarios.
Measuring (19)F shift anisotropies and (1)H-(19)F dipolar interactions with ultrafast MAS NMR.
Martini, Francesca; Miah, Habeeba K; Iuga, Dinu; Geppi, Marco; Titman, Jeremy J
2015-10-01
A new (19)F anisotropic-isotropic shift correlation experiment is described that operates with ultrafast MAS, resulting in good resolution of isotropic (19)F shifts in the detection dimension. The new experiment makes use of a recoupling sequence designed using symmetry principles that reintroduces the (19)F chemical shift anisotropy in the indirect dimension. The situations in which the new experiment is appropriate are discussed, and the (19)F shift anisotropy parameters in poly(difluoroethylene) (PVDF) are measured. In addition, similar recoupling sequences are shown to be effective for measuring (1)H-(19)F distances via the heteronuclear dipolar interaction. This is demonstrated by application to a recently synthesized zirconium phosphonate material that contains one-dimensional chains linked by H-F hydrogen bonds. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Craco, L.
2017-10-01
Using density functional dynamical mean-field theory (DFDMFT) we address the problem of antiferromagnetic spin ordering in isotropically superstrained graphene. It is shown that the interplay between strain-induced one-particle band narrowing and sizable on-site electron-electron interactions naturally stabilizes a magnetic phase with orbital-selective spin-polarized p -band electronic states. While an antiferromagnetic phase with strong local moments arises in the pz orbitals, the px ,y bands reveal a metallic state with quenched sublattice magnetization. We next investigate the possibility of superconductivity to emerge in this selective magnetoelectronic state. Our theory is expected to be an important step to understanding the next generation of flexible electronics made of Mott localized carbon-based materials as well as the ability of superstrained graphene to host coexisting superconductivity and magnetism at low temperatures.
Segmented scintillation antineutrino detector
Reyna, David
2017-05-09
The various technologies presented herein relate to incorporating a wavelength-shifting material in a scintillator to facilitate absorption of a first electromagnetic particle (e.g., a first photon) having a first wavelength and subsequent generation and emission of a second electromagnetic particle (e.g., a second photon) having a second wavelength. The second electromagnetic particle can be emitted isotropically, with a high probability that the direction of emission of the second electromagnetic particle is disparate to the direction of travel of the first electromagnetic particle (and according angle of incidence). Isotropic emission of the second electromagnetic particle enables the second electromagnetic particle to be retained in the scintillator owing to internal reflection. Accordingly, longer length scintillators can be constructed, and accordingly, the scintillator array has a greater area (and volume) over which to detect electromagnetic particles (e.g., antineutrinos) being emitted from a nuclear reaction.
NASA Technical Reports Server (NTRS)
Arnold, S. M.
1989-01-01
A continuum theory is utilized to represent the thermoelastic behavior of a thick walled composite cylinder that can be idealized as transversely isotropic. A multiaxial statement of the constitutive theory employed is presented, as well as the out of the plane of isotropy, plane stress, and plane strain reductions. The derived analytical solution presented is valid for a cylindrical tube or thin disk with a concentric hole, subjected to internal and/or external pressure and a general radial temperature distribution. A specific problem examined is that of a thick walled cylinder subjected to an internal and external pressure loading and a linear radial temperature distribution. The results are expressed in nondimensional form and the effects on the response behavior are examined for various material properties, fiber orientation and types of loadings.
Gravitational stresses in anisotropic rock masses
Amadei, B.; Savage, W.Z.; Swolfs, H.S.
1987-01-01
This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.
Thermoviscoplastic model with application to copper
NASA Technical Reports Server (NTRS)
Freed, Alan D.
1988-01-01
A viscoplastic model is developed which is applicable to anisothermal, cyclic, and multiaxial loading conditions. Three internal state variables are used in the model; one to account for kinematic effects, and the other two to account for isotropic effects. One of the isotropic variables is a measure of yield strength, while the other is a measure of limit strength. Each internal state variable evolves through a process of competition between strain hardening and recovery. There is no explicit coupling between dynamic and thermal recovery in any evolutionary equation, which is a useful simplification in the development of the model. The thermodynamic condition of intrinsic dissipation constrains the thermal recovery function of the model. Application of the model is made to copper, and cyclic experiments under isothermal, thermomechanical, and nonproportional loading conditions are considered. Correlations and predictions of the model are representative of observed material behavior.
Tallavaara, Pekka; Jokisaari, Jukka
2008-03-28
An alternative NMR method for determining nuclear shielding anisotropies in molecules is proposed. The method is quite simple, linear and particularly applicable for heteronuclear spin systems. In the technique, molecules of interest are dissolved in a thermotropic liquid crystal (LC) which is confined in a mesoporous material, such as controlled pore glass (CPG) used in this study. CPG materials consist of roughly spherical particles with a randomly oriented and connected pore network inside. LC Merck Phase 4 was confined in the pores of average diameter from 81 to 375 A and LC Merck ZLI 1115 in the pores of average diameter 81 A. In order to demonstrate the functionality of the method, the (13)C shielding anisotropy of (13)C-enriched methyl iodide, (13)CH(3)I, was determined as a function of temperature using one dimensional (13)C NMR spectroscopy. Methane gas, (13)CH(4), was used as an internal chemical shift reference. It appeared that methyl iodide molecules experience on average an isotropic environment in LCs inside the smallest pores within the whole temperature range studied, ranging from bulk solid to isotropic phase. In contrast, in the spaces in between the particles, whose diameter is approximately 150 microm, LCs behave as in the bulk. Consequently, isotropic values of the shielding tensor can be determined from spectra arising from molecules inside the pores at exactly the same temperature as the anisotropic ones from molecules outside the pores. Thus, for the first time in the solution state, shielding anisotropies can easily be determined as a function of temperature. The effects of pore size as well as of different LC media on the shielding anisotropy are examined and discussed.
NASA Astrophysics Data System (ADS)
Sasaki, Tomoyuki; Izawa, Masahiro; Noda, Kohei; Nishioka, Emi; Kawatsuki, Nobuhiro; Ono, Hiroshi
2014-03-01
The formation of polarization holographic gratings with both optical anisotropy and surface relief (SR) deformation was studied for polymethylmethacrylate with azobenzene side groups. Temporal contributions of isotropic and anisotropic phase gratings were simultaneously determined by observing transitional intensity and polarization states of the diffraction beams and characterizing by means of Jones calculus. To clarify the mechanism of SR deformation, cross sections of SR were characterized based on the optical gradient force model; experimental observations were in good agreement with the theoretical expectation. We clarified that the anisotropic phase change originating in the reorientation of the azobenzene side groups was induced immediately at the beginning of the holographic recording, while the response time of the isotropic phase change originating in the molecular migration due to the optical gradient force was relatively slow.
NASA Astrophysics Data System (ADS)
Nyathi, Mhlwazi S.
2011-12-01
Graphite is utilized as a neutron moderator and structural component in some nuclear reactor designs. During the reactor operaction the structure of graphite is damaged by collision with fast neutrons. Graphite's resistance to this damage determines its lifetime in the reactor. On neutron irradiation, isotropic or near-isotropic graphite experiences less structural damage than anisotropic graphite. The degree of anisotropy in a graphite artifact is dependent on the structure of its precursor coke. Currently, there exist concerns over a short supply of traditional precursor coke, primarily due to a steadily increasing price of petroleum. The main goal of this study was to study the anisotropic and isotropic properties of graphitized co-cokes and anthracites as a way of investigating the possibility of synthesizing isotropic or near-isotropic graphite from co-cokes and anthracites. Demonstrating the ability to form isotropic or near-isotropic graphite would mean that co-cokes and anthracites have a potential use as filler material in the synthesis of nuclear graphite. The approach used to control the co-coke structure was to vary the reaction conditions. Co-cokes were produced by coking 4:1 blends of vacuum resid/coal and decant oil/coal at temperatures of 465 and 500 °C for reaction times of 12 and 18 hours under autogenous pressure. Co-cokes obtained were calcined at 1420 °C and graphitized at 3000 °C for 24 hours. Optical microscopy, X-ray diffraction, temperature-programmed oxidation and Raman spectroscopy were used to characterize the products. It was found that higher reaction temperature (500 °C) or shorter reaction time (12 hours) leads to an increase in co-coke structural disorder and an increase in the amount of mosaic carbon at the expense of textural components that are necessary for the formation of anisotropic structure, namely, domains and flow domains. Characterization of graphitized co-cokes showed that the quality, as expressed by the degree of graphitization and crystallite dimensions, of the final product is dependent on the nature of the precursor co-coke. The methodology for studying anthracites was to select two anthracites on basis of rank, PSOC1515 being semi-anthracite and DECS21 anthracite. The selected anthracites were graphitized, in both native and demineralized states, under the same conditions as co-cokes. Products obtained from DECS21 showed higher degrees of graphitization and larger crystallite dimensions than products obtained from PSOC1515. Demineralization of anthracites served to increase the degree of graphitization, indicating that the minerals contained in these anthracites have no graphitization-enhancing ability. A larger crystallite length for products obtained from native versions, compared to demineralized versions, was attributed to a formation and decomposition of a silicon carbide during graphitization of native versions. In order to examine the anisotropic and isotropic properties, nuclear-grade graphite samples obtained from Oak Ridge National Laboratory (ORNL) and commercial graphite purchased from Fluka were characterized under similar conditions as graphitized co-cokes and anthracites. These samples served as representatives of "two extremes", with ORNL samples being the isotropic end and commercial graphite being the anisotropic end. Through evaluating relationships between structural parameters, it was observed that graphitized co-cokes are situated, structurally, somewhere between the "two extremes", whereas graphitized anthracites are closer to the anisotropic end. Basically, co-cokes have a better potential than anthracites to transform to isotropic or near-isotropic graphite upon graphitization. By co-coking vacuum resid/coal instead of decant oil/coal or using 500 °C instead of 465 °C, a shift away from commercial graphite towards ORNL samples was attained. Graphitizing a semi-anthracite or demineralizing anthracites before graphitization also caused a shift towards ORNL samples.
A Computational Model for Biomechanical Effects of Arterial Compliance Mismatch
He, Fan; Hua, Lu; Gao, Li-jian
2015-01-01
Background. Compliance mismatch is a negative factor and it needs to be considered in arterial bypass grafting. Objective. A computational model was employed to investigate the effects of arterial compliance mismatch on blood flow, wall stress, and deformation. Methods. The unsteady blood flow was assumed to be laminar, Newtonian, viscous, and incompressible. The vessel wall was assumed to be linear elastic, isotropic, and incompressible. The fluid-wall interaction scheme was constructed using the finite element method. Results. The results show that there are identical wall shear stress waveforms, wall stress, and strain waveforms at different locations. The comparison of the results demonstrates that wall shear stresses and wall strains are higher while wall stresses are lower at the more compliant section. The differences promote the probability of intimal thickening at some locations. Conclusions. The model is effective and gives satisfactory results. It could be extended to all kinds of arteries with complicated geometrical and material factors. PMID:27019580
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Polanco, Michael A.
2012-01-01
This paper describes the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar (Registered Trademark) honeycomb to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed until needed for deployment. Experimental evaluation of the DEA included dynamic crush tests of multi-cell components and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto multi-terrain. Finite element models of the test articles were developed and simulations were performed using the transient dynamic code, LSDYNA (Registered Trademark). In each simulation, the DEA was represented using shell elements assigned two different material properties: Mat 24, an isotropic piecewise linear plasticity model, and Mat 58, a continuum damage mechanics model used to represent laminated composite fabrics. DEA model development and test-analysis comparisons are presented.
ecode - Electron Transport Algorithm Testing v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian C.; Olson, Aaron J.; Bruss, Donald Eugene
2016-10-05
ecode is a Monte Carlo code used for testing algorithms related to electron transport. The code can read basic physics parameters, such as energy-dependent stopping powers and screening parameters. The code permits simple planar geometries of slabs or cubes. Parallelization consists of domain replication, with work distributed at the start of the calculation and statistical results gathered at the end of the calculation. Some basic routines (such as input parsing, random number generation, and statistics processing) are shared with the Integrated Tiger Series codes. A variety of algorithms for uncertainty propagation are incorporated based on the stochastic collocation and stochasticmore » Galerkin methods. These permit uncertainty only in the total and angular scattering cross sections. The code contains algorithms for simulating stochastic mixtures of two materials. The physics is approximate, ranging from mono-energetic and isotropic scattering to screened Rutherford angular scattering and Rutherford energy-loss scattering (simple electron transport models). No production of secondary particles is implemented, and no photon physics is implemented.« less
Metal-organic framework nanosheets in polymer composite materials for gas separation
Seoane, Beatriz; Miro, Hozanna; Corma, Avelino; Kapteijn, Freek; Llabrés i Xamena, Francesc X.; Gascon, Jorge
2014-01-01
Composites incorporating two-dimensional nanostructures within polymeric matrices hold potential as functional components for several technologies, including gas separation. Prospectively, employing metal-organic-frameworks (MOFs) as versatile nanofillers would notably broaden the scope of functionalities. However, synthesizing MOFs in the form of free standing nanosheets has proven challenging. We present a bottom-up synthesis strategy for dispersible copper 1,4-benzenedicarboxylate MOF lamellae of micrometer lateral dimensions and nanometer thickness. Incorporating MOF nanosheets into polymer matrices endows the resultant composites with outstanding CO2 separation performance from CO2/CH4 gas mixtures, together with an unusual and highly desired increment in the separation selectivity with pressure. As revealed by tomographic focused-ion-beam scanning-electron-microscopy, the unique separation behaviour stems from a superior occupation of the membrane cross-section by the MOF nanosheets as compared to isotropic crystals, which improves the efficiency of molecular discrimination and eliminates unselective permeation pathways. This approach opens the door to ultrathin MOF-polymer composites for various applications. PMID:25362353
Beamed neutron emission driven by laser accelerated light ions
NASA Astrophysics Data System (ADS)
Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.
2016-05-01
Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ˜ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salajegheh, Nima; Abedrabbo, Nader; Pourboghrat, Farhang
An efficient integration algorithm for continuum damage based elastoplastic constitutive equations is implemented in LS-DYNA. The isotropic damage parameter is defined as the ratio of the damaged surface area over the total cross section area of the representative volume element. This parameter is incorporated into the integration algorithm as an internal variable. The developed damage model is then implemented in the FEM code LS-DYNA as user material subroutine (UMAT). Pure stretch experiments of a hemispherical punch are carried out for copper sheets and the results are compared against the predictions of the implemented damage model. Evaluation of damage parameters ismore » carried out and the optimized values that correctly predicted the failure in the sheet are reported. Prediction of failure in the numerical analysis is performed through element deletion using the critical damage value. The set of failure parameters which accurately predict the failure behavior in copper sheets compared to experimental data is reported as well.« less
Desborough, G.A.; Foord, E.E.
1992-01-01
A mineral with the approximate composition of Au94Hg6 - Au88Hg12 (atomic %) has been identified in Pleistocene Snake River alluvial deposits. The gold-mercury mineral occurs as very small grains or as polycrystalline masses composed of subhedral to nearly euhedral attached crystals. Vibratory cold-polishing techniques with 0.05-??m alumina abrasive for polished sections revealed a porous internal texture for most subhedral crystals after 48-72 hours of treatment. Thus, optical character (isotropic or anisotropic) could not be determined by reflected-light microscopy, and pore-free areas were too small for measurement of reflectance. X-ray-diffraction lines rather than individual reflections (spots), on powder camera X-ray films of unrotated spindles of single grains that morphologically appear to be single crystals, indicate that individual subhedral or euhedral crystals are composed of domains in random orientation. Thus, no material was found suitable for single-crystal X-ray diffraction studies. -from Authors
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1992-01-01
The effect of the index of refraction on the temperature distribution and radiative heat flux in semitransparent materials, such as some ceramics, is investigated analytically. In the case considered here, a plane layer of a ceramic material is subjected to external radiative heating incident on each of its surfaces; the material emits, absorbs, and isotropically scatters radiation. It is shown that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained in a simple manner from the results for an index of refraction of unity.
Theoretical and experimental investigations of a thermoplastic constitutive law
NASA Astrophysics Data System (ADS)
Zdebel, U.
1984-12-01
A thermoplastic constitutive law allowing combinations of isotropic and kinematic hardening as well as deviations from the normality rule was examined. Since the energy balance for thermomechanical processes is taken into account, the consistent connection to thermodynamic laws is guaranteed. The experimental verification of material parameters is described; it is performed by isothermal tension-torsion tests on thin-walled tubes at different temperatures. The materials functions allow the extension to nonisothermal (adiabatic) processes. The comparison between theoretical and exprimental results is not entirely satisfactory and demonstrates the remaining inconsistencies. Suggestions which could lead to a better description of the behavior of elastoplastic materials are made.
Method of making a scintillator waveguide
Bliss, Mary; Craig, Richard A.; Reeder, Paul L.
2000-01-01
The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.
Scintillator Waveguide For Sensing Radiation
Bliss, Mary; Craig, Richard A.; Reeder; Paul L.
2003-04-22
The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.
Causality, Nonlocality, and Negative Refraction.
Forcella, Davide; Prada, Claire; Carminati, Rémi
2017-03-31
The importance of spatial nonlocality in the description of negative refraction in electromagnetic materials has been put forward recently. We develop a theory of negative refraction in homogeneous and isotropic media, based on first principles, and that includes nonlocality in its full generality. The theory shows that both dissipation and spatial nonlocality are necessary conditions for the existence of negative refraction. It also provides a sufficient condition in materials with weak spatial nonlocality. These fundamental results should have broad implications in the theoretical and practical analyses of negative refraction of electromagnetic and other kinds of waves.
Analytical ultrasonics for structural materials
NASA Technical Reports Server (NTRS)
Kupperman, D. S.
1986-01-01
The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Velocity measurements in cast stainless steel are correlated with microstructural variations ranging from equiaxed (elastically isotropic) to columnar (elastically anisotropic) grain structure. The effect of the anisotropic grain structure on the deviation of ultrasonic waves in cast stainless steel is also reported. Field-implementable techniques for distinguishing equiaxed from columnar grain structures in cast strainless steel structural members are presented. The application of ultrasonic velocity measurements to characterize structural ceramics in the green state is also discussed.
Computing Reliabilities Of Ceramic Components Subject To Fracture
NASA Technical Reports Server (NTRS)
Nemeth, N. N.; Gyekenyesi, J. P.; Manderscheid, J. M.
1992-01-01
CARES calculates fast-fracture reliability or failure probability of macroscopically isotropic ceramic components. Program uses results from commercial structural-analysis program (MSC/NASTRAN or ANSYS) to evaluate reliability of component in presence of inherent surface- and/or volume-type flaws. Computes measure of reliability by use of finite-element mathematical model applicable to multiple materials in sense model made function of statistical characterizations of many ceramic materials. Reliability analysis uses element stress, temperature, area, and volume outputs, obtained from two-dimensional shell and three-dimensional solid isoparametric or axisymmetric finite elements. Written in FORTRAN 77.
NASA Technical Reports Server (NTRS)
Ehret, R. M.; Scanlan, P. R.; Rosen, C. D.
1982-01-01
A design allowables test program was conducted on Celion 6000/LARC-160 graphite polyimide composite to establish material performance over a 116 K (-250 F) to 589 K (600 F) temperature range. Tension, compression, in-plane shear and short beam shear properties were determined for uniaxial, quasi-isotropic and + or - 45 deg laminates. Effects of thermal aging and moisture saturation on mechanical properties were also evaluated. Celion 6000/LARC-160 graphite/polyimide can be considered an acceptable material system for structural applications to 589 K (600 F).
Analysis of the stress state in an Iosipescu sheartest specimen
NASA Technical Reports Server (NTRS)
Walrath, D. E.; Adams, D. F.
1983-01-01
The state of stress in an Iosipescu shear test specimen is analyzed, utilizing a finite element computer program. The influence of test fixture configuration on this stress state is included. Variations of the standard specimen configuration, including notch depth, notch angle, and notch root radius are modeled. The purpose is to establish guidelines for a specimen geometry which will accommodate highly orthotropic materials while minimizing stress distribution nonuniformities. Materials ranging from isotropic to highly orthotropic are considered. An optimum specimen configuration is suggested, along with changes in the test fixture.
Photo-induced optical activity in phase-change memory materials.
Borisenko, Konstantin B; Shanmugam, Janaki; Williams, Benjamin A O; Ewart, Paul; Gholipour, Behrad; Hewak, Daniel W; Hussain, Rohanah; Jávorfi, Tamás; Siligardi, Giuliano; Kirkland, Angus I
2015-03-05
We demonstrate that optical activity in amorphous isotropic thin films of pure Ge2Sb2Te5 and N-doped Ge2Sb2Te5N phase-change memory materials can be induced using rapid photo crystallisation with circularly polarised laser light. The new anisotropic phase transition has been confirmed by circular dichroism measurements. This opens up the possibility of controlled induction of optical activity at the nanosecond time scale for exploitation in a new generation of high-density optical memory, fast chiroptical switches and chiral metamaterials.
Optical limiting in Pluronic F-127 hydrogel with nanocarbon inclusions
NASA Astrophysics Data System (ADS)
Nikolaeva, A. L.; Povarov, S. A.; Bocharov, V. N.
2017-02-01
Characteristics of nonlinear optical limiting (limiting curves) of laser radiation in aqueous polymer systems with nanocarbon inclusions have been studied. Suspensions of nanotubes and soot stabilized by the amphiphilic polymer Pluronic F-127, the additives of which provide the system's transition to a solid-like hydrogel aggregate state at room temperature, have been considered. The limiting materials after their optical breakdown by high-intensity radiation in the gel state have been regenerated using the thermoreversible hydrogel-isotropic solution phase transition. These systems are shown to be promising for self-healing optical materials.
NASA Astrophysics Data System (ADS)
Parsons, L. C.; Andrews, G. T.
2012-09-01
Pseudo-reflection geometry Brillouin spectroscopy can be used to probe acoustic wave dispersion approximately along the surface normal of a material system while avoiding the difficulties associated with specularly reflected light encountered in an ideal reflection configuration. As an example of its application, we show analytically that it can be used to determine both the refractive index and bulk acoustic mode velocities of optically-isotropic non-metallic materials and confirm the utility of the approach via a series of experiments on fused quartz, gallium phosphide, water, and porous silicon films.
Light-scattering study of a polymer nematic liquid crystal
NASA Astrophysics Data System (ADS)
Taratuta, Victor G.; Hurd, Alan J.; Meyer, Robert B.
1985-07-01
We study the relaxation of thermally excited orientation fluctuations in a polymer nematic liquid crystal using photon correlation spectroscopy. The material studied is poly-γ-benzyl glutamate at a concentration just above the isotropic to nematic transition point. The relaxation rates of elastic deformation modes exhibit large anisotropies. Quantitative measurements of ratios of Frank elastic constants and Leslie viscosities are described.
Three-Dimensional Effects of Crack Closure in Laminated Composite Plates Subjected to Bending Loads
1994-06-01
Approved by: •UW. Kwon, Thesis Advisor wathe D.K~elleher, Chairman Department of Mechanical Engineering ii ABSTRACT Fracture is one of the dominant...5 A. OVERVIEW .......................................... 5 B. CONSTITUTIVE EQUATION .............................. 9 1. Isotropic...the elemental nodes. B. CONSTITUTIVE EQUATION The material property matrix [D] is a symmetric matrix which includes elasticity moduli and Poisson’s
Process for making carbon foam
Klett, James W.
2000-01-01
The process obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Bamdad Barari; Thomas K. Ellingham; Issam I. Ghamhia; Krishna M. Pillai; Rani El-Hajjar; Lih-Sheng Turng; Ronald Sabo
2016-01-01
Plant derived cellulose nano-fibers (CNF) are a material with remarkable mechanical properties compared to other natural fibers. However, efforts to produce nano-composites on a large scale using CNF have yet to be investigated. In this study, scalable CNF nano-composites were made from isotropically porous CNF preforms using a freeze drying process. An improvised...
Damage Detection in Composite Structures with Wavenumber Array Data Processing
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara; Yu, Lingyu
2013-01-01
Guided ultrasonic waves (GUW) have the potential to be an efficient and cost-effective method for rapid damage detection and quantification of large structures. Attractive features include sensitivity to a variety of damage types and the capability of traveling relatively long distances. They have proven to be an efficient approach for crack detection and localization in isotropic materials. However, techniques must be pushed beyond isotropic materials in order to be valid for composite aircraft components. This paper presents our study on GUW propagation and interaction with delamination damage in composite structures using wavenumber array data processing, together with advanced wave propagation simulations. Parallel elastodynamic finite integration technique (EFIT) is used for the example simulations. Multi-dimensional Fourier transform is used to convert time-space wavefield data into frequency-wavenumber domain. Wave propagation in the wavenumber-frequency domain shows clear distinction among the guided wave modes that are present. This allows for extracting a guided wave mode through filtering and reconstruction techniques. Presence of delamination causes spectral change accordingly. Results from 3D CFRP guided wave simulations with delamination damage in flat-plate specimens are used for wave interaction with structural defect study.
Tunable thermal expansion and magnetism in Zr-doped ScF 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tao; Xu, Jiale; Hu, Lei
The negative thermal expansion (NTE) behavior provides us an opportunity to design materials with controllable coefficient of thermal expansion (CTE). In this letter, we report a tunable isotropic thermal expansion in the cubic (Sc1-xZrx)F3+δ over a wide temperature and CTE range (αl = -4.0 to +16.8 x 10-6 K-1, 298–648 K). The thermal expansion can be well adjusted from strong negative to zero, and finally to large positive. Intriguingly, isotropic zero thermal expansion (αl = 2.6 x 10-7 K-1, 298–648 K) has been observed in the composition of (Sc0.8Zr0.2)F3+δ. The controllable thermal expansion in (Sc1-xZrx)F3+δ is correlated to the localmore » structural distortion. Interestingly, the ordered magnetic behavior has been found in the zero thermal expansion compound of (Sc0.8Zr0.2)F3+δ at room temperature, which presumably correlates with the unpaired electron of the lower chemical valence of Zr cation. The present study provides a useful reference to control the thermal expansion and explore the multi-functionalization for NTE materials.« less
A note on flow reversal in a wavy channel filled with anisotropic porous material
NASA Astrophysics Data System (ADS)
Karmakar, Timir; Raja Sekhar, G. P.
2017-07-01
Viscous flow through a symmetric wavy channel filled with anisotropic porous material is investigated analytically. Flow inside the porous bed is assumed to be governed by the anisotropic Brinkman equation. It is assumed that the ratio of the channel width to the wavelength is small (i.e. δ2≪1). The problem is solved up to O(δ2) assuming that δ2λ2≪1, where λ is the anisotropic ratio. The key purpose of this paper is to study the effect of anisotropic permeability on flow near the crests of the wavy channel which causes flow reversal. We present a detailed analysis of the flow reversal at the crests. The ratio of the permeabilities (anisotropic ratio) is responsible for the flow separation near the crests of the wall where viscous forces are effective. For a flow configuration (say, low amplitude parameter) in which there is no separation if the porous media is isotropic, introducing anisotropy causes flow separation. On the other hand, interestingly, flow separation occurs even in the case of isotropic porous medium if the amplitude parameter a is large.
Theoretical study in carrier mobility of two-dimensional materials
NASA Astrophysics Data System (ADS)
Huang, R.
2017-09-01
Recently, the theoretical prediction on carrier mobility of two-dimensional (2D) materials has aroused wild attention. At present, there is still a large gap between the theoretical prediction and the device performance of the semiconductor based on the 2D layer semiconductor materials such as graphene. It is particularly important to theoretically design and screen the high-performance 2D layered semiconductor materials with suitable band gap and high carrier mobility. This paper introduces some 2D materials with fine properties and deduces the formula for mobility of the isotropic materials on the basis of the deformation potential theory and Fermic golden rule under acoustic phonon scattering conditions, and then discusses the carrier mobility of anisotropic materials with Dirac cones. We point out the misconceptions in the existing literature and discuss the correct ones.
The structural response of unsymmetrically laminated composite cylinders
NASA Technical Reports Server (NTRS)
Butler, T. A.; Hyer, M. W.
1989-01-01
The responses of an unsymmetrically laminated fiber-reinforced composite cylinder to an axial compressive load, a torsional load, and the temperature change associated with cooling from the processing temperature to the service temperature are investigated. These problems are considered axisymmetric and the response is studied in the context of linear elastic material behavior and geometrically linear kinematics. Four different laminates are studied: a general unsymmetric laminate; two unsymmetric but more conventional laminates; and a conventional quasi-isotropic symmetric laminate. The responses based on closed-form solutions for different boundary conditions are computed and studied in detail. Particular emphasis is directed at understanding the influence of elastic couplings in the laminates. The influence of coupling decreased from a large effect in the general unsymmetric laminate, to practically no effect in the quasi-isotropic laminate. For example, the torsional loading of the general unsymmetric laminate resulted in a radial displacement. The temperature change also caused a significant radial displacement to occur near the ends of the cylinder. On the other hand, the more conventional unsymmetric laminate and the quasi-isotropic cylinder did not deform radially when subjected to a torsional load. From the results obtained, it is clear the degree of elastic coupling can be controlled and indeed designed into a cylinder, the degree and character of the coupling being dictated by the application.
NASA Technical Reports Server (NTRS)
Ebihara, Ben T.; Ramins, Peter
1987-01-01
Small multistage depressed collectors (MDC's) which used pyrolytic graphite, ion-beam-textured pyrolytic graphite, and isotropic graphite electrodes were designed, fabricated, and evaluated in conjuntion with 200-W, continuous wave (CW), 8- to 18-GHz traveling-wave tubes (TWT's). The design, construction, and performance of the MDC's are described. The bakeout performance of the collectors, in terms of gas evolution, was indistinguishable from that of typical production tubes with copper collectors. However, preliminary results indicate that some additional radiofrequency (RF) and dc beam processing time (and/or longer or higher temperature bakeouts) may be needed beyond that of typical copper electrode collectors. This is particularly true for pyrolytic graphite electrodes and for TWT's without appendage ion pumps. Extended testing indicated good long-term stability of the textured pyrolytic graphite and isotropic graphite electrode surfaces. The isotropic graphite in particular showed considerable promise as an MDC electrode material because of its high purity, low cost, simple construction, potential for very compact overall size, and relatively low secondary electron emission yield characteristics in the as-machined state. However, considerably more testing experience is required before definitive conclusions on its suitability for electronic countermeasure systems and space TWT's can be made.
Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths
NASA Astrophysics Data System (ADS)
Fried, Daniel; Glena, Richard E.; Featherstone, John D. B.; Seka, Wolf
1995-03-01
The light-scattering properties of dental enamel and dentin were measured at 543, 632, and 1053 nm. Angularly resolved scattering distributions for these materials were measured from 0 deg to 180 deg using a rotating goniometer. Surface scattering was minimized by immersing the samples in an index-matching bath. The scattering and absorption coefficients and the scattering phase function were deduced by comparing the measured scattering data with angularly resolved Monte Carlo light-scattering simulations. Enamel and dentin were best represented by a linear combination of a highly forward-peaked Henyey-Greenstein (HG) phase function and an isotropic phase function. Enamel weakly scatters light between 543 nm and 1.06 mu m, with the scattering coefficient ( mu s) ranging from mu s = 15 to 105 cm-1. The phase function is a combination of a HG function with g = 0.96 and a 30-60% isotropic phase function. For enamel, absorption is negligible. Dentin scatters strongly in the visible and near IR ( mu s approximately equals 260 cm-1) and absorbs weakly ( mu a approximately equals 4 cm-1). The scattering phase function for dentin is described by a HG function with g = 0.93 and a very weak isotropic scattering component ( approximately 2%).
A probabilisitic based failure model for components fabricated from anisotropic graphite
NASA Astrophysics Data System (ADS)
Xiao, Chengfeng
The nuclear moderator for high temperature nuclear reactors are fabricated from graphite. During reactor operations graphite components are subjected to complex stress states arising from structural loads, thermal gradients, neutron irradiation damage, and seismic events. Graphite is a quasi-brittle material. Two aspects of nuclear grade graphite, i.e., material anisotropy and different behavior in tension and compression, are explicitly accounted for in this effort. Fracture mechanic methods are useful for metal alloys, but they are problematic for anisotropic materials with a microstructure that makes it difficult to identify a "critical" flaw. In fact cracking in a graphite core component does not necessarily result in the loss of integrity of a nuclear graphite core assembly. A phenomenological failure criterion that does not rely on flaw detection has been derived that accounts for the material behaviors mentioned. The probability of failure of components fabricated from graphite is governed by the scatter in strength. The design protocols being proposed by international code agencies recognize that design and analysis of reactor core components must be based upon probabilistic principles. The reliability models proposed herein for isotropic graphite and graphite that can be characterized as being transversely isotropic are another set of design tools for the next generation very high temperature reactors (VHTR) as well as molten salt reactors. The work begins with a review of phenomenologically based deterministic failure criteria. A number of this genre of failure models are compared with recent multiaxial nuclear grade failure data. Aspects in each are shown to be lacking. The basic behavior of different failure strengths in tension and compression is exhibited by failure models derived for concrete, but attempts to extend these concrete models to anisotropy were unsuccessful. The phenomenological models are directly dependent on stress invariants. A set of invariants, known as an integrity basis, was developed for a non-linear elastic constitutive model. This integrity basis allowed the non-linear constitutive model to exhibit different behavior in tension and compression and moreover, the integrity basis was amenable to being augmented and extended to anisotropic behavior. This integrity basis served as the starting point in developing both an isotropic reliability model and a reliability model for transversely isotropic materials. At the heart of the reliability models is a failure function very similar in nature to the yield functions found in classic plasticity theory. The failure function is derived and presented in the context of a multiaxial stress space. States of stress inside the failure envelope denote safe operating states. States of stress on or outside the failure envelope denote failure. The phenomenological strength parameters associated with the failure function are treated as random variables. There is a wealth of failure data in the literature that supports this notion. The mathematical integration of a joint probability density function that is dependent on the random strength variables over the safe operating domain defined by the failure function provides a way to compute the reliability of a state of stress in a graphite core component fabricated from graphite. The evaluation of the integral providing the reliability associated with an operational stress state can only be carried out using a numerical method. Monte Carlo simulation with importance sampling was selected to make these calculations. The derivation of the isotropic reliability model and the extension of the reliability model to anisotropy are provided in full detail. Model parameters are cast in terms of strength parameters that can (and have been) characterized by multiaxial failure tests. Comparisons of model predictions with failure data is made and a brief comparison is made to reliability predictions called for in the ASME Boiler and Pressure Vessel Code. Future work is identified that would provide further verification and augmentation of the numerical methods used to evaluate model predictions.
A Transversely Isotropic Thermo-mechanical Framework for Oil Shale
NASA Astrophysics Data System (ADS)
Semnani, S. J.; White, J. A.; Borja, R. I.
2014-12-01
The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers, 2002.
Code of Federal Regulations, 2014 CFR
2014-10-01
... designated wildlife preserve. (3) Facilities that: (i) May affect listed threatened or endangered species or... isotropically radiated power (EIRP), or peak envelope power (PEP), as defined in § 2.1 of this chapter. For the... (d) of this section. (3) In general, when the guidelines specified in § 1.1310 are exceeded in an...
Code of Federal Regulations, 2013 CFR
2013-10-01
... designated wildlife preserve. (3) Facilities that: (i) May affect listed threatened or endangered species or... isotropically radiated power (EIRP), or peak envelope power (PEP), as defined in § 2.1 of this chapter. For the... (d) of this section. (3) In general, when the guidelines specified in § 1.1310 are exceeded in an...
Code of Federal Regulations, 2012 CFR
2012-10-01
... designated wildlife preserve. (3) Facilities that: (i) May affect listed threatened or endangered species or... isotropically radiated power (EIRP), or peak envelope power (PEP), as defined in § 2.1 of this chapter. For the... paragraphs (c) and (d) of this section. (3) In general, when the guidelines specified in § 1.1310 are...
47 CFR 25.205 - Minimum angle of antenna elevation.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) of this section must still meet the effective isotropically radiated power (e.i.r.p.) and e.i.r.p. density towards the horizon limits contained in § 25.204(h) and (i). (c) VMESs making a special showing... limits contained in § 25.204(j). [70 FR 4784, Jan. 31, 2005, as amended at 74 FR 57099, Nov. 4, 2009] ...
Liang, Shuhua; Bishop, Christopher B.; Moreo, Adriana; ...
2015-09-21
The phase diagram of electron-doped pnictides is studied varying the temperature, electronic density, and isotropic in-plane quenched disorder strength and dilution by means of computational techniques applied to a three-orbital (xz,yz,xy) spin-fermion model with lattice degrees of freedom. In experiments, chemical doping introduces disorder but in theoretical studies the relationship between electronic doping and the randomly located dopants, with their associated quenched disorder, is difficult to address. Moreover, in this publication, the use of computational techniques allows us to study independently the effects of electronic doping, regulated by a global chemical potential, and impurity disorder at randomly selected sites. Surprisingly,more » our Monte Carlo simulations reveal that the fast reduction with doping of the N eel T N and the structural T S transition temperatures, and the concomitant stabilization of a robust nematic state, is primarily controlled in our model by the magnetic dilution associated with the in-plane isotropic disorder introduced by Fe substitution. In the doping range studied, changes in the Fermi surface produced by electron doping affect only slightly both critical temperatures. Our results also suggest that the specific material-dependent phase diagrams experimentally observed could be explained as a consequence of the variation in disorder profiles introduced by the different dopants. Finally, our findings are also compatible with neutron scattering and scanning tunneling microscopy, unveiling a patchy network of locally magnetically ordered clusters with anisotropic shapes, even though the quenched disorder is locally isotropic. Our study reveals a remarkable and unexpected degree of complexity in pnictides: the fragile tendency to nematicity intrinsic of translational invariant electronic systems needs to be supplemented by quenched disorder and dilution to stabilize the robust nematic phase experimentally found in electron-doped 122 compounds.« less
NASA Astrophysics Data System (ADS)
Liang, Shuhua; Bishop, Christopher B.; Moreo, Adriana; Dagotto, Elbio
2015-09-01
The phase diagram of electron-doped pnictides is studied varying the temperature, electronic density, and isotropic in-plane quenched disorder strength and dilution by means of computational techniques applied to a three-orbital (x z ,y z ,x y ) spin-fermion model with lattice degrees of freedom. In experiments, chemical doping introduces disorder but in theoretical studies the relationship between electronic doping and the randomly located dopants, with their associated quenched disorder, is difficult to address. In this publication, the use of computational techniques allows us to study independently the effects of electronic doping, regulated by a global chemical potential, and impurity disorder at randomly selected sites. Surprisingly, our Monte Carlo simulations reveal that the fast reduction with doping of the Néel TN and the structural TS transition temperatures, and the concomitant stabilization of a robust nematic state, is primarily controlled in our model by the magnetic dilution associated with the in-plane isotropic disorder introduced by Fe substitution. In the doping range studied, changes in the Fermi surface produced by electron doping affect only slightly both critical temperatures. Our results also suggest that the specific material-dependent phase diagrams experimentally observed could be explained as a consequence of the variation in disorder profiles introduced by the different dopants. Our findings are also compatible with neutron scattering and scanning tunneling microscopy, unveiling a patchy network of locally magnetically ordered clusters with anisotropic shapes, even though the quenched disorder is locally isotropic. This study reveals a remarkable and unexpected degree of complexity in pnictides: the fragile tendency to nematicity intrinsic of translational invariant electronic systems needs to be supplemented by quenched disorder and dilution to stabilize the robust nematic phase experimentally found in electron-doped 122 compounds.
Grzebieluch, Wojciech; Będziński, Romuald; Czapliński, Tomasz; Kaczmarek, Urszula
2017-07-01
The FEM is often used in investigations of dentin loading conditions; however, its anisotropy is mostly neglected. The purpose of the study was to evaluate the anisotropy and the elastic properties of an equivalent homogenous material model of human dentin as well as to compare isotropic and anisotropic dentin FE-models. Analytical and numerical dentin homogenization according to Luciano and Barbero was performed and E-modulus (E), Poisson's ratios (v) G-modulus (G) were calculated. The E-modulus of the dentin matrix was 28.0 GPa, Poisson's ratio (v) was 0.3; finite element models of orthotropic and isotropic dentin were created, loaded and compared using Ansys® 14.5 and CodeAster® 11.2 software. Anisotropy of the dentin ranged from 6.9 to 35.2%. E-modulus and G-modulus were as follows: E1 = 22.0-26.0 GPa, E2/E3 = 15.7-23.0 GPa; G12/G13 = 6.96-9.35 GPa and G23 = 6.08-8.09 GPa (highest values in the superficial layer). In FEM analysis of the displacement values were higher in the isotropic than in the orthotropic model, reaching up to 16% by shear load, 37% by compression and 23% in the case of shear with bending. Strain values were higher in the isotropic model, up to 35% for the shear load, 31% for compression and 35% in the case of shear with bending. The decrease in the volumetric fraction and diameter of tubules increased the G and E values. Anisotropy of the dentin applied during FEM analysis decreased the displacements and strain values. The numerical and analytical homogenization of dentin showed similar results.
Wood, Sarah A; Strait, David S; Dumont, Elizabeth R; Ross, Callum F; Grosse, Ian R
2011-07-07
Several finite element models of a primate cranium were used to investigate the biomechanical effects of the tooth sockets and the material behavior of the periodontal ligament (PDL) on stress and strain patterns associated with feeding. For examining the effect of tooth sockets, the unloaded sockets were modeled as devoid of teeth and PDL, filled with teeth and PDLs, or simply filled with cortical bone. The third premolar on the left side of the cranium was loaded and the PDL was treated as an isotropic, linear elastic material using published values for Young's modulus and Poisson's ratio. The remaining models, along with one of the socket models, were used to determine the effect of the PDL's material behavior on stress and strain distributions under static premolar biting and dynamic tooth loading conditions. Two models (one static and the other dynamic) treated the PDL as cortical bone. The other two models treated it as a ligament with isotropic, linear elastic material properties. Two models treated the PDL as a ligament with hyperelastic properties, and the other two as a ligament with viscoelastic properties. Both behaviors were defined using published stress-strain data obtained from in vitro experiments on porcine ligament specimens. Von Mises stress and strain contour plots indicate that the effects of the sockets and PDL material behavior are local. Results from this study suggest that modeling the sockets and the PDL in finite element analyses of skulls is project dependent and can be ignored if values of stress and strain within the alveolar region are not required. Copyright © 2011 Elsevier Ltd. All rights reserved.
Asymmetric transmission in prisms using structures and materials with isotropic-type dispersion.
Gundogdu, Funda Tamara; Serebryannikov, Andriy E; Cakmak, A Ozgur; Ozbay, Ekmel
2015-09-21
It is demonstrated that strong asymmetry in transmission can be obtained at the Gaussian beam illumination for a single prism based on a photonic crystal (PhC) with isotropic-type dispersion, as well as for its analog made of a homogeneous material. Asymmetric transmission can be realized with the aid of refraction at a proper orientation of the interfaces and wedges of the prism, whereas neither contribution of higher diffraction orders nor anisotropic-type dispersion is required. Furthermore, incidence toward a prism wedge can be used for one of two opposite directions in order to obtain asymmetry. Thus, asymmetric transmission is a general property of the prism configurations, which can be obtained by using simple geometries and quite conventional materials. The obtained results show that strong asymmetry can be achieved in PhC prisms with (nearly) circular shape of equifrequency dispersion contours, in both cases associated with the index of refraction 0
An anisotropic elastoplastic constitutive formulation generalised for orthotropic materials
NASA Astrophysics Data System (ADS)
Mohd Nor, M. K.; Ma'at, N.; Ho, C. S.
2018-03-01
This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour that involves very high pressures and shockwaves in orthotropic materials using an anisotropic Hill's yield criterion by means of the evolving structural tensors. The yield surface of this hyperelastic-plastic constitutive model is aligned uniquely within the principal stress space due to the combination of Mandel stress tensor and a new generalised orthotropic pressure. The formulation is developed in the isoclinic configuration and allows for a unique treatment for elastic and plastic orthotropy. An isotropic hardening is adopted to define the evolution of plastic orthotropy. The important feature of the proposed hyperelastic-plastic constitutive model is the introduction of anisotropic effect in the Mie-Gruneisen equation of state (EOS). The formulation is further combined with Grady spall failure model to predict spall failure in the materials. The proposed constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM's version, named Material Type 92 (Mat92). The combination of the proposed stress tensor decomposition and the Mie-Gruneisen EOS requires some modifications in the code to reflect the formulation of the generalised orthotropic pressure. The validation approach is also presented in this paper for guidance purpose. The \\varvec{ψ} tensor used to define the alignment of the adopted yield surface is first validated. This is continued with an internal validation related to elastic isotropic, elastic orthotropic and elastic-plastic orthotropic of the proposed formulation before a comparison against range of plate impact test data at 234, 450 and {895 ms}^{-1} impact velocities is performed. A good agreement is obtained in each test.
Ceramography of Irradiated tristructural isotropic (TRISO) Fuel from the AGR-2 Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, Francine Joyce; Stempien, John Dennis
2016-09-01
Ceramography was performed on cross sections from four tristructural isotropic (TRISO) coated particle fuel compacts taken from the AGR-2 experiment, which was irradiated between June 2010 and October 2013 in the Advanced Test Reactor (ATR). The fuel compacts examined in this study contained TRISO-coated particles with either uranium oxide (UO2) kernels or uranium oxide/uranium carbide (UCO) kernels that were irradiated to final burnup values between 9.0 and 11.1% FIMA. These examinations are intended to explore kernel and coating morphology evolution during irradiation. This includes kernel porosity, swelling, and migration, and irradiation-induced coating fracture and separation. Variations in behavior within amore » specific cross section, which could be related to temperature or burnup gradients within the fuel compact, are also explored. The criteria for categorizing post-irradiation particle morphologies developed for AGR-1 ceramographic exams, was applied to the particles in the AGR-2 compacts particles examined. Results are compared with similar investigations performed as part of the earlier AGR-1 irradiation experiment. This paper presents the results of the AGR-2 examinations and discusses the key implications for fuel irradiation performance.« less
Characteristics of thermally-induced transverse cracks in graphite epoxy composite laminates
NASA Technical Reports Server (NTRS)
Adams, D. S.; Bowles, D. E.; Herakovich, C. T.
1983-01-01
The characteristics of thermally induced transverse cracks in T300/5208 graphite-epoxy cross-ply and quasi-isotropic laminates were investigated both experimentally and analytically. The formation of transverse cracks and the subsequent crack spacing present during cool down to -250 F (116K) and thermal cycling between 250 and -250 F (116 and 394K) was investigated. The state of stress in the vicinity of a transverse crack and the influence of transverse cracking on the laminate coefficient of thermal expansion (CTE) was predicted using a generalized plane strain finite element analysis and a modified shear lag analysis. A majority of the cross-ply laminates experienced transverse cracking during the initial cool down to -250 F whereas the quasi-isotropic laminates remained uncracked. The in situ transverse strength of the 90 degree layers was more than 1.9 times greater than the transverse strength of the unidirectional 90 degree material for all laminates investigated.
NASA Astrophysics Data System (ADS)
Mackay, Tom G.; Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh
2017-08-01
Three numerical studies were undertaken involving the interactions of plane waves with topological insulators. In each study, the topologically insulating surface states of the topological insulator were represented through a surface admittance. Canonical boundary-value problems were solved for the following cases: (i) Dyakonov surface-wave propagation guided by the planar interface of a columnar thin film and an isotropic dielectric topological insulator; (ii) Dyakonov-Tamm surface-wave propagation guided by the planar interface of a structurally chiral material and an isotropic dielectric topological insulator; and (iii) reflection and transmission due to the planar interface of a topologically insulating columnar thin film and vacuum. The nonzero surface admittance resulted in asymmetries in the wave speeds and decay constants of the surface waves in studies (i) and (ii). The nonzero surface admittance resulted in asymmetries in the reflectances and transmittances in study (iii).
Transient experimental demonstration of an elliptical thermal camouflage device.
He, Xiao; Yang, Tianzhi; Zhang, Xingwei; Wu, Linzhi; He, Xiao Qiao
2017-11-30
The camouflage phenomenon (invisibility or illusion) of thermodynamics has attracted great attentions and many experimental demonstrations have been achieved by virtue of simplified approaches or the scattering cancellation. However, all of the experiments conducted are limited in the invisibility of spheres or two-dimensional (2D) cylinders. An ellipsoid camouflage device with a homogenous and isotropic shell is firstly reported based on the idea of the neutral inclusion and a 2D elliptical thermal camouflage device is realized by a thin-layer cloak of homogeneous isotropic material firstly. The robustness of this scheme is validated in both 2D and 3D configurations. The current work may provide a new avenue to the control of the thermal signatures and we believe this work will broaden the current research and pave a new path to the control of the path of the heat transfer.
Cryodeformation of metals under isotropic compression (Review)
NASA Astrophysics Data System (ADS)
Khaimovich, P. A.
2018-05-01
When low-temperature quasihydroextrusion of metals was originated in the 1970s, it was not initially recognized that this is not simply an addition to the list of processes for deformation of metals at cryogenic temperatures (rolling, drawing, extrusion). The resulting structures and properties, as well as the distinctive implementation of this type of deformation, indicated that this was a new domain of plastic deformation which differed from the existing method in requiring two simultaneous conditions: cryogenic temperatures and isotropic compression. Each of these conditions makes its own "contribution" to forming the structure under this deformation and, therefore, to resulting properties. Until recently, the barocryodeformation process (as it is now called) was carried out only where it was invented, at the Kharkov Institute of Physics and Technology, but these products have been studied in many laboratories in Ukraine and abroad. This review of those studies is intended to draw attention to a new and promising area of materials science.
Self-assembly of nanocomposite materials
Brinker, C. Jeffrey; Sellinger, Alan; Lu, Yunfeng
2001-01-01
A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.
Guo, Z; Kumar, S
2000-08-20
An isotropic scaling formulation is evaluated for transient radiative transfer in a one-dimensional planar slab subject to collimated and/or diffuse irradiation. The Monte Carlo method is used to implement the equivalent scattering and exact simulations of the transient short-pulse radiation transport through forward and backward anisotropic scattering planar media. The scaled equivalent isotropic scattering results are compared with predictions of anisotropic scattering in various problems. It is found that the equivalent isotropic scaling law is not appropriate for backward-scattering media in transient radiative transfer. Even for an optically diffuse medium, the differences in temporal transmittance and reflectance profiles between predictions of backward anisotropic scattering and equivalent isotropic scattering are large. Additionally, for both forward and backward anisotropic scattering media, the transient equivalent isotropic results are strongly affected by the change of photon flight time, owing to the change of flight direction associated with the isotropic scaling technique.
Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry
Remillieux, Marcel C.; Ulrich, T. J.; Payan, Cédric; ...
2015-07-23
This paper describes resonant ultrasound spectroscopy (RUS) as a powerful and established technique for measuring elastic constants of a material with general anisotropy. The first step of this technique consists of extracting resonance frequencies and damping from the vibrational frequency spectrum measured on a sample with free boundary conditions. An inversion technique is then used to retrieve the elastic tensor from the measured resonance frequencies. As originally developed, RUS has been mostly applicable to (i) materials with small damping such that the resonances of the sample are well separated and (ii) samples with simple geometries for which analytical solutions exist.more » In this paper, these limitations are addressed with a new RUS approach adapted to materials with high damping and samples of arbitrary geometry. Resonances are extracted by fitting a sum of exponentially damped sinusoids to the measured frequency spectrum. The inversion of the elastic tensor is achieved with a genetic algorithm, which allows searching for a global minimum within a discrete and relatively wide solution space. First, the accuracy of the proposed approach is evaluated against numerical data simulated for samples with isotropic symmetry and transversely isotropic symmetry. Subsequently, the applicability of the approach is demonstrated using experimental data collected on a composite structure consisting of a cylindrical sample of Berea sandstone glued to a large piezoelectric disk. In the proposed experiments, RUS is further enhanced by the use of a 3-D laser vibrometer allowing the visualization of most of the modes in the frequency band studied.« less
Properties of HIPed stainless steel powder
NASA Astrophysics Data System (ADS)
Dellis, Ch.; Le Marois, G.; Gentzbittel, J. M.; Robert, G.; Moret, F.
1996-10-01
In the current design of ITER primary wall, 316LN stainless steel is the reference structural material. Austenitic stainless steel is used for water-cooling channels and structures. As material data on hot isostatic pressed (HIP) 316LN were not available in open literature and from powder producers, the main properties of unirradiated samples have been measured in CEA/CEREM. Fully dense material without any porosity is obtained when appropriate HIP parameters are applied. Microstructural examination and mechanical properties are confirmed that the HIPed 316LN material is equivalent to a very good fine-grain, isotropic and uniformly forged 316LN. Moreover, ultrasonic inspection showed that this fine and uniform microstructure produced a remarkably low noise, which allow the use of transverse waves at very high frequencies (4 MHz). Defects undetectable in forged material will be easily detected in HIPed material.
Toward a virtual platform for materials processing
NASA Astrophysics Data System (ADS)
Schmitz, G. J.; Prahl, U.
2009-05-01
Any production is based on materials eventually becoming components of a final product. Material properties being determined by the microstructure of the material thus are of utmost importance both for productivity and reliability of processing during production and for application and reliability of the product components. A sound prediction of materials properties therefore is highly important. Such a prediction requires tracking of microstructure and properties evolution along the entire component life cycle starting from a homogeneous, isotropic and stress-free melt and eventually ending in failure under operational load. This article will outline ongoing activities at the RWTH Aachen University aiming at establishing a virtual platform for materials processing comprising a virtual, integrative numerical description of processes and of the microstructure evolution along the entire production chain and even extending further toward microstructure and properties evolution under operational conditions.
Isotropic 3-D T2-weighted spin-echo for abdominal and pelvic MRI in children.
Dias, Sílvia Costa; Ølsen, Oystein E
2012-11-01
MRI has a fundamental role in paediatric imaging. The T2-weighted fast/turbo spin-echo sequence is important because it has high signal-to-noise ratio compared to gradient-echo sequences. It is usually acquired as 2-D sections in one or more planes. Volumetric spin-echo has until recently only been possible with very long echo times due to blurring of the soft-tissue contrast with long echo trains. A new 3-D spin-echo sequence uses variable flip angles to overcome this problem. It may reproduce useful soft-tissue contrast, with improved spatial resolution. Its isotropic capability allows subsequent reconstruction in standard, curved or arbitrary planes. It may be particularly useful for visualisation of small lesions, or if large lesions distort the usual anatomical relations. We present clinical examples, describe the technical parameters and discuss some potential artefacts and optimisation of image quality.
Fracture of an isotropic medium strengthened with a regular system of stringers
NASA Astrophysics Data System (ADS)
Mir-Salim-zadeh, M. V.
2007-01-01
An isotropic medium containing a system of foreign transverse rectilinear inclusions is considered. Such a medium can be interpreted as an infinite plate strengthened with a regular system of ribs (stringers) whose cross section is a very narrow rectangle. The medium is weakened by a periodic system of rectilinear cracks. The action of the stringers is re placed by unknown equivalent concentrated forces at the points of their connection with the medium. The boundary-value problem on equilibrium of the periodic system of cracks under the action of external tensile forces is reduced to a singular integral equation, from the solution of which the stress in tensity factors are found. The condition of limiting state of equilibrium of the cracks is formulated based on a criterion of brittle fracture. The stress state in the case where crack faces come into a partial contact is also considered.
NASA Technical Reports Server (NTRS)
Nagar, Arvind (Editor)
1992-01-01
The latest developments in the area of fracture and damage at high temperatures are discussed, in particular: modeling; analysis and experimental techniques for interface damage in composites including the effects of residual stresses and temperatures; and crack growth, inelastic deformation and fracture parameters for isotropic materials. Also included are damage modeling and experiments at elevated temperatures.
Problems with heterogeneous and non-isotropic media or distorted grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, J.; Shashkov, M.; Steinberg, S.
1996-08-01
This paper defines discretizations of the divergence and flux operators that produce symmetric, positive-definite, and accurate approximations to steady-state diffusion problems. Because discontinuous material properties and highly distorted grids are allowed, the flux operator, rather than the gradient, is used as a fundamental operator to be discretized. Resulting finite-difference scheme is similar to those obtained from the mixed finite-element method.
Calculation of flexoelectric deformations of finite-size bodies
NASA Astrophysics Data System (ADS)
Yurkov, A. S.
2015-03-01
The previously developed approximate theory of flexoelectric deformations of finite-size bodies has been considered as applied to three special cases: a uniformly polarized ball, a uniformly polarized circular rod, and a uniformly polarized thin circular plate of an isotropic material. For these cases simple algebraic formulas have been derived. In the case of the ball, the solution is compared with the previously obtained exact solution.
3D modelling of squeeze flow of unidirectional and fabric composite inserts
NASA Astrophysics Data System (ADS)
Ghnatios, Chady; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco; Keunings, Roland
2016-10-01
The enhanced design flexibility provided to the thermo-forming of thermoplastic materials arises from the use of both continuous and discontinuous thermoplastic prepregs. Discontinuous prepregs are patches used to locally strengthen the part. In this paper, we propose a new modelling approach for suspensions involving composite patches that uses theoretical concepts related to discontinuous fibres suspensions, transversally isotropic fluids and extended dumbbell models.
Predoi, Mihai Valentin
2014-09-01
The dispersion curves for hollow multilayered cylinders are prerequisites in any practical guided waves application on such structures. The equations for homogeneous isotropic materials have been established more than 120 years ago. The difficulties in finding numerical solutions to analytic expressions remain considerable, especially if the materials are orthotropic visco-elastic as in the composites used for pipes in the last decades. Among other numerical techniques, the semi-analytical finite elements method has proven its capability of solving this problem. Two possibilities exist to model a finite elements eigenvalue problem: a two-dimensional cross-section model of the pipe or a radial segment model, intersecting the layers between the inner and the outer radius of the pipe. The last possibility is here adopted and distinct differential problems are deduced for longitudinal L(0,n), torsional T(0,n) and flexural F(m,n) modes. Eigenvalue problems are deduced for the three modes classes, offering explicit forms of each coefficient for the matrices used in an available general purpose finite elements code. Comparisons with existing solutions for pipes filled with non-linear viscoelastic fluid or visco-elastic coatings as well as for a fully orthotropic hollow cylinder are all proving the reliability and ease of use of this method. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Czubacki, Radosław
2018-01-01
The paper deals with the minimum compliance problem of 2D structures made of a non-homogeneous elastic material. In the first part of the paper a comparison between solutions of Free Material Design (FMD), Cubic Material Design (CMD) and Isotropic Material Design (IMD) is shown for a simply supported plate in a shape of a deep beam, subjected to a concentrated in-plane force at its upper face. The isoperimetric condition fixes the value of the cost of the design expressed as the integral of the trace of the Hooke tensor. In the second part of the paper the material design approaches are extended to rhombic system in 2D. For the rhombic system the material properties of the structures are set, the design variables being the trajectories of anisotropy directions which in 2D are described by one parameter. In the Orthotropic Orientation Design (OOD) no isoperimetric condition is used.
Comparison of the fractional power motor with cores made of various magnetic materials
NASA Astrophysics Data System (ADS)
Gmyrek, Zbigniew; Lefik, Marcin; Cavagnino, Andrea; Ferraris, Luca
2017-12-01
The optimization of the motor cores, coupled with new core shapes as well as powering the motor at high frequency are the primary reasons for the use of new materials. The utilization of new materials, like SMC (soft magnetic composite), reduce the core loss and/or provide quasi-isotropic core's properties in any magnetization direction. Moreover, the use of SMC materials allows for avoiding degradation of the material portions, resulting from punching process, thereby preventing the deterioration of operating parameters of the motor. The authors examine the impact of technological parameters on the properties of a new type of SMC material and analyze the possibility of its use as the core of the fractional power motor. The result of the work is an indication of the shape of the rotor core made of a new SMC material to achieve operational parameters similar to those that have a motor with a core made of laminations.
NASA Technical Reports Server (NTRS)
Talham, Daniel R.; Adair, James H.
2005-01-01
Materials with directional properties are opening new horizons in a variety of applications including chemistry, electronics, and optics. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. The new applications and the need for model particles in scientific investigations are rapidly out-distancing the ability to synthesize anisotropic particles with specific chemistries and narrowly distributed physical characteristics (e.g. size distribution, shape, and aspect ratio).
Babu, Jeetu S; Mondal, Chandana; Sengupta, Surajit; Karmakar, Smarajit
2016-01-28
The conditions which determine whether a material behaves in a brittle or ductile fashion on mechanical loading are still elusive and comprise a topic of active research among materials physicists and engineers. In this study, we present the results of in silico mechanical deformation experiments from two very different model solids in two and three dimensions. The first consists of particles interacting with isotropic potentials and the other has strongly direction dependent interactions. We show that in both cases, the excess vibrational density of states is one of the fundamental quantities which characterizes the ductility of the material. Our results can be checked using careful experiments on colloidal solids.
Scale Properties of Anisotropic and Isotropic Turbulence in the Urban Surface Layer
NASA Astrophysics Data System (ADS)
Liu, Hao; Yuan, Renmin; Mei, Jie; Sun, Jianning; Liu, Qi; Wang, Yu
2017-11-01
The scale properties of anisotropic and isotropic turbulence in the urban surface layer are investigated. A dimensionless anisotropic tensor is introduced and the turbulent tensor anisotropic coefficient, defined as C, where C = 3d3 + 1 (d3 is the minimum eigenvalue of the tensor) is used to characterize the turbulence anisotropy or isotropy. Turbulence is isotropic when C ≈ 1, and anisotropic when C ≪ 1. Three-dimensional velocity data collected using a sonic anemometer are analyzed to obtain the anisotropic characteristics of atmospheric turbulence in the urban surface layer, and the tensor anisotropic coefficient of turbulent eddies at different spatial scales calculated. The analysis shows that C is strongly dependent on atmospheric stability ξ = (z-zd)/L_{{it{MO}}}, where z is the measurement height, zd is the displacement height, and L_{{it{MO}}} is the Obukhov length. The turbulence at a specific scale in unstable conditions (i.e., ξ < 0) is closer to isotropic than that at the same scale under stable conditions. The maximum isotropic scale of turbulence is determined based on the characteristics of the power spectrum in three directions. Turbulence does not behave isotropically when the eddy scale is greater than the maximum isotropic scale, whereas it is horizontally isotropic at relatively large scales. The maximum isotropic scale of turbulence is compared to the outer scale of temperature, which is obtained by fitting the temperature fluctuation spectrum using the von Karman turbulent model. The results show that the outer scale of temperature is greater than the maximum isotropic scale of turbulence.
NASA Astrophysics Data System (ADS)
Ganushkina, N. Y.; Dubyagin, S.; Liemohn, M. W.
2017-12-01
The isotropic boundaries of the energetic protons, which can be routinely observed by low-altitude satellites, have been used as a tool to probe remotely the nightside magnetic configuration in the near-Earth region. The validity of this method is based on the assumption that the isotropic boundary is formed by the particle scattering on the curved field lines in the magnetotail current sheet. However recent results revealed that the wave-particle interaction process often can be responsible for the isotropic boundary formation especially during active times. Using numerous observations of the 30 keV proton isotropic boundaries and conjugated measurements of the magnetic field in the equatorial magnetosphere we demonstrate that isotropic boundary location can be used as a proxy of the magnetotail stretching even during magnetic storms. The results imply that the scattering on the curved field lines still plays major role as a mechanism of the isotropic boundary formation during storm-time. We found that the wave-particle interaction could lead to isotropic boundary formation in 15% of events. In addition, we discuss the morphology of the storm-time energetic proton precipitations.
Some Recent Developments in the Endochronic Theory with Application to Cyclic Histories
NASA Technical Reports Server (NTRS)
Valanis, K. C.; Lee, C. F.
1983-01-01
Constitutive equations with only two easily determined material constants predict the stress (strain) response of normalized mild steel to a variety of general strain (stress) histories, without a need for special unloading-reloading rules. The equations are derived from the endochronic theory of plasticity of isotropic materials with an intrinsic time scale defined in the plastic strain space. Agreement between theoretical predictions and experiments are are excellent quantitatively in cases of various uniaxial constant amplitude histories, variable uniaxial strain amplitude histories and cyclic relaxation. The cyclic ratcheting phenomenon is predicted by the present theory.
NASA Astrophysics Data System (ADS)
Pillai, Rajesh S.; Brakenhoff, G. J.; Müller, M.
2006-09-01
The third harmonic generation (THG) axial response in the vicinity of an interface formed by two isotropic materials of normal dispersion is typically single peaked, with the maximum intensity at the interface position. Here it is shown experimentally that this THG z response may show anomalous behavior—being double peaked with a dip coinciding with the interface position—when the THG contributions from both materials are of similar magnitude. The observed anomalous behavior is explained, using paraxial Gaussian theory, by considering dispersion induced shape changes in the THG z response.
Choi, Joseph S; Howell, John C
2014-12-01
Despite much interest and progress in optical spatial cloaking, a three-dimensional (3D), transmitting, continuously multidirectional cloak in the visible regime has not yet been demonstrated. Here we experimentally demonstrate such a cloak using ray optics, albeit with some edge effects. Our device requires no new materials, uses isotropic off-the-shelf optics, scales easily to cloak arbitrarily large objects, and is as broadband as the choice of optical material, all of which have been challenges for current cloaking schemes. In addition, we provide a concise formalism that quantifies and produces perfect optical cloaks in the small-angle ('paraxial') limit.
Analysis of interface crack branching
NASA Technical Reports Server (NTRS)
Ballarini, R.; Mukai, D. J.; Miller, G. R.
1989-01-01
A solution is presented for the problem of a finite length crack branching off the interface between two bonded dissimilar isotropic materials. Results are presented in terms of the ratio of the energy release rate of a branched interface crack to the energy release rate of a straight interface crack with the same total length. It is found that this ratio reaches a maximum when the interface crack branches into the softer material. Longer branches tend to have smaller maximum energy release rate ratio angles indicating that all else being equal, a branch crack will tend to turn back parallel to the interface as it grows.
Flat-band superconductivity in strained Dirac materials
NASA Astrophysics Data System (ADS)
Kauppila, V. J.; Aikebaier, F.; Heikkilä, T. T.
2016-06-01
We consider superconducting properties of a two-dimensional Dirac material such as graphene under strain that produces a flat-band spectrum in the normal state. We show that in the superconducting state, such a model results in a highly increased critical temperature compared to the case without the strain, inhomogeneous order parameter with two-peak shaped local density of states and yet a large and almost uniform and isotropic supercurrent. This model could be realized in strained graphene or ultracold atom systems and could be responsible for unusually strong superconductivity observed in some graphite interfaces and certain IV-VI semiconductor heterostructures.
Body weight of hypersonic aircraft, part 1
NASA Technical Reports Server (NTRS)
Ardema, Mark D.
1988-01-01
The load bearing body weight of wing-body and all-body hypersonic aircraft is estimated for a wide variety of structural materials and geometries. Variations of weight with key design and configuration parameters are presented and discussed. Both hot and cool structure approaches are considered in isotropic, organic composite, and metal matrix composite materials; structural shells are sandwich or skin-stringer. Conformal and pillow-tank designs are investigated for the all-body shape. The results identify the most promising hypersonic aircraft body structure design approaches and their weight trends. Geometric definition of vehicle shapes and structural analysis methods are presented in appendices.
Instability of fiber-reinforced viscoelastic composite plates to in-plane compressive loads
NASA Technical Reports Server (NTRS)
Chandiramani, N. K.; Librescu, L.
1990-01-01
This study analyzes the stability behavior of unidirectional fiber-reinforced composite plates with viscoelastic material behavior subject to in-plane biaxial compressive edge loads. To predict the effective time-dependent material properties, elastic fibers embedded in a linearly viscoelastic matrix are examined. The micromechanical relations developed for a transversely isotropic medium are discussed along with the correspondence principle of linear viscoelasticity. It is concluded that the stability boundary obtained for a viscoelastic plate is lower (more critical) than its elastic counterpart, and the transverse shear deformation effects are more pronounced in viscoelastic plates than in their elastic counterparts.
Properties of Vector Preisach Models
NASA Technical Reports Server (NTRS)
Kahler, Gary R.; Patel, Umesh D.; Torre, Edward Della
2004-01-01
This paper discusses rotational anisotropy and rotational accommodation of magnetic particle tape. These effects have a performance impact during the reading and writing of the recording process. We introduce the reduced vector model as the basis for the computations. Rotational magnetization models must accurately compute the anisotropic characteristics of ellipsoidally magnetizable media. An ellipticity factor is derived for these media that computes the two-dimensional magnetization trajectory for all applied fields. An orientation correction must be applied to the computed rotational magnetization. For isotropic materials, an orientation correction has been developed and presented. For anisotropic materials, an orientation correction is introduced.
High Technology Engineering Services, Inc. fiscal year 1993 and 1994 research and development report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document has been prepared by the Professional Staff of High Technology Engineering Services, Inc. (HTES) for fiscal year (FY) 1993. Work was performed for various aspects of mechanical design and analysis, materials development and properties quantification, nuclear environment performance, and engineering program prioritization. The tasks enumerated in the subcontract, attachment B are: 1. Assist in preparation of final R&D report for SDC detector development. 2. Subcontractor shall make contributions to the development of innovative processes for the manufacture of quasi- isotropic, enhanced thermal conductivity compression molded advanced composite materials. 3. Perform finite element analysis as it relates to themore » Superconducting Super Collider Silicon Tracking System, both mechanical and thermal, of very thin section advanced composite materials. 4. Subcontractor shall perform technical studies, reviews, and assessments of the current program for advanced composites materials processing and testing. 5. Subcontractor shall attend meetings and discussions as directed by MEE-12 technical representative. Unfortunately during the course of FY93, technical and financial challenges prevailed against the aggressive goals set for the program. In point of fact, less than 25% of the contract value was able to be expended due to technical delays and programmatic funding cuts. Also, contracting difficulties with the SSC Lab and financial burdens at Los Alamos totally stopped progress on the subject subcontract during the whole of FY94. This was a great blow to me and the HTES, Inc. technical staff. Despite the negative influences over the years, significant progress was made in materials properties quantification and development of essential research and development documentation. The following brief report and attendant appendices will address these achievements.« less
Hyperuniform disordered photonic bandgap materials, from microwave to infrared wavelength regime
NASA Astrophysics Data System (ADS)
Man, Weining
Recently, we have introduced a new class of hyperuniform disordered (HUD) photonic bandgap (PBG) materials enabled by a novel constrained optimization method for engineering the material's Fourier transform to be continuous, isotropic and stealthy. Their structure factor S (k) is equal to zero for small kand exhibits a broad ring of maximum values around a characteristic wave-length range. Experimentally, an isotropic complete PBG (at all angles and for all polarizations) in an alumina-based HUD structure and single-polarized PBGs for plastic-based HUD structure have been demonstrated. Using measured and simulated transmission and phase delay information through these HUD structures, we also unfolded their band structures and reconstructed the effective dispersion relations of propagating electromagnetic modes in them. The intrinsic isotropy in these disordered structures is an inherent advantage associated with the lack of crystalline order, offering unprecedented freedom for functional defect design impossible to achieve in photonic crystals. In the microwave regime, we have shown the creation of freeform waveguides, which can channel photons robustly along arbitrarily curved paths and around sharp bends, and be decorated with defects to produce sharply resonant structures useful for filtering and frequency splitting. Recent simulation and experimental results for waveguides and modulators based on submicron-scale planar hyperuniform disordered PBG structures further highlight their ability to serve as highly compact, flexible and energy-efficient platforms for photonic integrated circuits. NSF DMR-1308084, EPSRC (UK) DTG Grant KD5050, EPSRC (UK) Strategic Equipment Grant EP/M008576/1, NSF SBIR-1345168, NSF MRI-1040444.
An In-Depth Tutorial on Constitutive Equations for Elastic Anisotropic Materials
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
2011-01-01
An in-depth tutorial on the constitutive equations for elastic, anisotropic materials is presented. Basic concepts are introduced that are used to characterize materials, and notions about how anisotropic material deform are presented. Hooke s law and the Duhamel-Neuman law for isotropic materials are presented and discussed. Then, the most general form of Hooke s law for elastic anisotropic materials is presented and symmetry requirements are given. A similar presentation is also given for the generalized Duhamel-Neuman law for elastic, anisotropic materials that includes thermal effects. Transformation equations for stress and strains are presented and the most general form of the transformation equations for the constitutive matrices are given. Then, specialized transformation equations are presented for dextral rotations about the coordinate axes. Next, concepts of material symmetry are introduced and criteria for material symmetries are presented. Additionally, engineering constants of fully anisotropic, elastic materials are derived from first principles and the specialized to several cases of practical importance.
NASA Astrophysics Data System (ADS)
Bennett, Barbara Ellen
The effects of calcination heating rate and ultimate calcination temperature upon calcined coke and subsequent graphitic material microstructures were studied for materials prepared from three different precursors. The pitch precursors used were Mitsubishi AR pitch (a synthetic, 100% mesophase pitch), the NMP-extracted portion of a raw coal, and the NMP-extracted fraction of a coal liquefaction residue obtained from an HTI pilot plant. These materials were all green-coked under identical conditions. Optical microscopy confirmed that the Mitsubishi coke was very anisotropic and the HTI coke was nearly as anisotropic. The coke produced from the direct coal extract was very isotropic. Crystalline development during calcination heating was verified by high-temperature x-ray diffraction. Experiments were performed to ascertain the effects of varying calcination heating rate and ultimate temperature. It was determined that calcined coke crystallite size increased with increasing temperature for all three materials but was found to be independent of heating rate. The graphene interplanar spacing decreased with increasing temperature for the isotropic NMP-extract material but increased with increasing temperature for the anisotropic materials---Mitsubishi and HTI cokes. Graphene interplanar spacing was also found to be independent of heating rate. Calcined coke real densities were, likewise, found to be independent of heating rate. The anisotropic cokes (Mitsubishi and HTI) exhibited increasing real density with increasing calcination temperature. The NMP-extract coke increased in density up to 1050°C and then suffered a dramatic reduction in real density when heated to 1250°C. This is indicative of puffing. Since there was no corresponding disruption in the crystalline structure, the puffing phenomena was determined to be intercrystalline rather than intracrystalline. After the calcined cokes were graphitized (under identical conditions), the microstructures were re-evaluated. The crystalline properties of the graphitic materials appeared to be independent of calcination conditions---both heating rate and final temperature---for all samples prepared from any given precursor. The calcination step did not influence the microstructure or graphitizability of any of the three materials. The crystallinity of a graphitic material appears to be dictated by the properties of the green coke and cannot be altered by manipulating calcination conditions.
Direction of unsaturated flow in a homogeneous and isotropic hillslope
Lu, Ning; Kaya, Basak Sener; Godt, Jonathan W.
2011-01-01
The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs.
Direction of unsaturated flow in a homogeneous and isotropic hillslope
Lu, N.; Kaya, B.S.; Godt, J.W.
2011-01-01
The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs. Copyright 2011 by the American Geophysical Union.
Choi, Sora; Kim, Taeho; Ji, Hoyeon; Lee, Hee Jung; Oh, Moonhyun
2016-11-02
The growth of one metal-organic framework (MOF) on another MOF for constructing a heterocompositional hybrid MOF is an interesting research topic because of the curiosity regarding the occurrence of this phenomenon and the value of hybrid MOFs as multifunctional materials or routes for fine-tuning MOF properties. In particular, the anisotropic growth of MOF on MOF is fascinating for the development of MOFs possessing atypical shapes and heterostructures or abnormal properties. Herein, we clarify the understanding of growth behavior of a secondary MOF on an initial MOF template, such as isotropic or anisotropic ways associated with their cell parameters. The isotropic growth of MIL-68-Br on the MIL-68 template results in the formation of core-shell-type MIL-68@MIL-68-Br. However, the unique anisotropic growth of a secondary MOF (MOF-NDC) on the MIL-68 template results in semitubular particles, and structural features of this unknown secondary MOF are successfully speculated for the first time on the basis of its unique growth behavior and morphological characteristics. Finally, the validation of this structural speculation is verified by the powder X-ray diffraction and the selected area electron diffraction studies. The results suggests that the growth behavior and morphological features of MOFs should be considered to be important factors for understanding the MOFs' structures.
Shear wave propagation in anisotropic soft tissues and gels
Namani, Ravi; Bayly, Philip V.
2013-01-01
The propagation of shear waves in soft tissue can be visualized by magnetic resonance elastography (MRE) [1] to characterize tissue mechanical properties. Dynamic deformation of brain tissue arising from shear wave propagation may underlie the pathology of blast-induced traumatic brain injury. White matter in the brain, like other biological materials, exhibits a transversely isotropic structure, due to the arrangement of parallel fibers. Appropriate mathematical models and well-characterized experimental systems are needed to understand wave propagation in these structures. In this paper we review the theory behind waves in anisotropic, soft materials, including small-amplitude waves superimposed on finite deformation of a nonlinear hyperelastic material. Some predictions of this theory are confirmed in experimental studies of a soft material with controlled anisotropy: magnetically-aligned fibrin gel. PMID:19963987
NASA Astrophysics Data System (ADS)
Yang, Y. T.; Zhang, S. Y.; Liu, X. J.
2012-11-01
Recently, photoacoustic (PA) spectroscopy has emerged as a valuable tool for the study of various kinds of materials. Herein, we present the results of PA spectral studies of chemical materials. First, the PA study on luminescent materials in condensed states is reported. Combining with the luminescence technique, the energy transfer efficiency and the intrinsic luminescence quantum yield are determined for a europium (III) complex in the glassy state, smectic A phase, and the isotropic liquid. Second, neodymium (III) compounds with l-glycine, l-phenylalanine, and l-tryptophan are synthesized and their PA spectra are reported. The nephelauxetic ratio and Sinha parameter are calculated based on the PA spectra. The environmental effect on the f-f transitions of the neodymium(III) ion is also studied.
Mechanisms of SN2 reactions: insights from a nearside/farside analysis.
Hennig, Carsten; Schmatz, Stefan
2015-10-28
A nearside/farside analysis of differential cross sections has been performed for the complex-forming SN2 reaction Cl(-) + CH3Br → ClCH3 + Br(-). It is shown that for low rotational quantum numbers a direct "nearside" reaction mechanism plays an important role and leads to anisotropic differential cross sections. For high rotational quantum numbers, indirect mechanisms via a long-lived intermediate complex are prevalent (independent of a nearside/farside configuration), leading to isotropic cross sections. Quantum mechanical interference can be significant at specific energies or angles. Averaging over energies and angles reveals that the nearside/farside decomposition in a semiclassical interpretation can reasonably account for the analysis of the reaction mechanism.
Inorganic Composite Materials in Japan: Status and Trends
1989-11-01
is planned with have already done some preliminary work) more sayby engineers and scientists and less on titanium and aluminide matrix compos- by...structural reliability of continued research in elevated tempera- the components. ture fiber and ceramic matrix composites. F=aMoving Blade (FRP...Forming Kawasaki 11eavy Ind with regard to these program target goals ONRFE M7 6 for carbon (CF), SiC, and boron filaments in isotropic titanium
Steering and collimating ballistic electrons with amphoteric refraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radu, A.; Dragoman, D.; Iftimie, S.
2012-07-15
We show that amphoteric refraction of ballistic electrons, i.e., positive or negative refraction depending on the incidence angle, occurs at an interface between an isotropic and an anisotropic medium and can be employed to steer and collimate electron beams. The steering angle is determined by the materials' parameters, but the degree of collimation can be tuned in a significant range by changing the energy of ballistic electrons.
Electric-dipole-induced universality for Dirac fermions in graphene.
De Martino, Alessandro; Klöpfer, Denis; Matrasulov, Davron; Egger, Reinhold
2014-05-09
We study electric dipole effects for massive Dirac fermions in graphene and related materials. The dipole potential accommodates towers of infinitely many bound states exhibiting a universal Efimov-like scaling hierarchy. The dipole moment determines the number of towers, but there is always at least one tower. The corresponding eigenstates show a characteristic angular asymmetry, observable in tunnel spectroscopy. However, charge transport properties inferred from scattering states are highly isotropic.
Time Reversal Methods for Structural Health Monitoring of Metallic Structures Using Guided Waves
2011-09-01
measure elastic properties of thin isotropic materials and laminated composite plates. Two types of waves propagate a symmetric wave and antisymmetric...compare it to the original signal. In this time reversal procedure wave propagation from point-A to point-B and can be modeled as a convolution ...where * is the convolution operator and transducer transmit and receive transfer function are neglected for simplification. In the frequency
Determination of the technical constants of laminates in oblique directions
NASA Technical Reports Server (NTRS)
Vidouse, F.
1979-01-01
An off-axis tensile test theory based on Hooke's Law is applied to glass fiber reinforced laminates. A corrective parameter dependent on the characteristics of the strain gauge used is introduced by testing machines set up for isotropic materials. Theoretical results for a variety of strain gauges are compared with those obtained by a finite element method and with experimental results obtained on laminates reinforced with glass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nieh, T. G.; Waltz, Z. R.
The purpose of this Cooperative Research and Development Agreement (CRADA) between LLNL and P&W is to develop advanced composites and their processing technologies, resulting in major improviements in the ductility and toughnes of high-strength, high-stiffness TiAl-base composite materials for commercial jet engines and U.S. Department of Energy (DOE) Defense Program applications.
An irregular lattice method for elastic wave propagation
NASA Astrophysics Data System (ADS)
O'Brien, Gareth S.; Bean, Christopher J.
2011-12-01
Lattice methods are a class of numerical scheme which represent a medium as a connection of interacting nodes or particles. In the case of modelling seismic wave propagation, the interaction term is determined from Hooke's Law including a bond-bending term. This approach has been shown to model isotropic seismic wave propagation in an elastic or viscoelastic medium by selecting the appropriate underlying lattice structure. To predetermine the material constants, this methodology has been restricted to regular grids, hexagonal or square in 2-D or cubic in 3-D. Here, we present a method for isotropic elastic wave propagation where we can remove this lattice restriction. The methodology is outlined and a relationship between the elastic material properties and an irregular lattice geometry are derived. The numerical method is compared with an analytical solution for wave propagation in an infinite homogeneous body along with comparing the method with a numerical solution for a layered elastic medium. The dispersion properties of this method are derived from a plane wave analysis showing the scheme is more dispersive than a regular lattice method. Therefore, the computational costs of using an irregular lattice are higher. However, by removing the regular lattice structure the anisotropic nature of fracture propagation in such methods can be removed.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Lindholm, Ulric S.; Chan, Kwai S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.
1984-01-01
The results of the first year of work on a program to validate unified constitutive models for isotropic materials utilized in high temperature regions of gas turbine engines and to demonstrate their usefulness in computing stress-strain-time-temperature histories in complex three-dimensional structural components. The unified theories combine all inelastic strain-rate components in a single term avoiding, for example, treating plasticity and creep as separate response phenomena. An extensive review of existing unified theories is given and numerical methods for integrating these stiff time-temperature-dependent constitutive equations are discussed. Two particular models, those developed by Bodner and Partom and by Walker, were selected for more detailed development and evaluation against experimental tensile, creep and cyclic strain tests on specimens of a cast nickel base alloy, B19000+Hf. Initial results comparing computed and test results for tensile and cyclic straining for temperature from ambient to 982 C and strain rates from 10(exp-7) 10(exp-3) s(exp-1) are given. Some preliminary date correlations are presented also for highly non-proportional biaxial loading which demonstrate an increase in biaxial cyclic hardening rate over uniaxial or proportional loading conditions. Initial work has begun on the implementation of both constitutive models in the MARC finite element computer code.
Isotropic matrix elements of the collision integral for the Boltzmann equation
NASA Astrophysics Data System (ADS)
Ender, I. A.; Bakaleinikov, L. A.; Flegontova, E. Yu.; Gerasimenko, A. B.
2017-09-01
We have proposed an algorithm for constructing matrix elements of the collision integral for the nonlinear Boltzmann equation isotropic in velocities. These matrix elements have been used to start the recurrent procedure for calculating matrix elements of the velocity-nonisotropic collision integral described in our previous publication. In addition, isotropic matrix elements are of independent interest for calculating isotropic relaxation in a number of physical kinetics problems. It has been shown that the coefficients of expansion of isotropic matrix elements in Ω integrals are connected by the recurrent relations that make it possible to construct the procedure of their sequential determination.
Developments in Acoustic Metamaterials for Acoustic Ground Cloaks
NASA Astrophysics Data System (ADS)
Kerrian, Peter Adam
The objective of acoustic cloaking is to eliminate both the back scattered and forward scattered acoustic fields by redirecting the incident wave around an object. Acoustic ground cloaks, which conceal an object on a rigid reflecting surface, utilize a linear coordinate transformation to map the flat surface to a void by compressing space into two cloaking regions consisting of a homogeneous anisotropic acoustic metafluid. Transformation acoustics allows for the realization of a coordinate transformation through a reinterpretation of the scale factors as a new material in the original coordinate system. Previous work has demonstrated at least three types of unit cells exhibit homogeneous anisotropic mass density and homogeneous isotropic bulk modulus: alternating layers of homogeneous isotropic fluids, perforated plates and solid inclusions. The primary focus of this dissertation is to demonstrate underwater anisotropic mass density with a solid inclusion unit cell and realize an underwater perforated plate acoustic ground cloak. An in depth analysis into the methods used to characterize the effective material parameters of solid inclusion unit cells with water as the background fluid was performed for both single inclusion unit cells as well as multi-inclusion unit cells. The degree of density anisotropy obtainable for a rigid single inclusion unit cell is limited by the size of the inclusion. However, a greater degree of anisotropy can be achieved by introducing additional inclusions into the unit cell design. For example, including a foam material that is less dense than the background fluid, results in an anisotropic density tensor with one component greater than and one component less than the value of the background fluid. The results of a parametric study determined that for a multi-inclusion unit cell, the effective material parameters can be controlled by the dimensions of the rigid inclusion as well as the material parameters and dimensions of the foam inclusions. Non-destructive acoustic excitation techniques were used to extract the material parameters of different grades of foam to identify the ideal grade for use in a multi-inclusion unit cell. Single inclusion and multi-inclusion bulk metamaterial samples were constructed and tested to characterize the effective material properties to determine if they exhibited the desired homogeneous anisotropic behavior. The single steel inclusion metamaterial behaved as expected, demonstrating anisotropic mass density and isotropic bulk modulus. Almost no sound energy was transmitted through the multi-inclusion metamaterial, contrary to expectation, because of the presence of air bubbles, both on the surface of the foam as well as potentially in between the inclusions. Finally, an underwater acoustic ground cloak was constructed from perforated steel plates and experimentally tested to conceal an object on a pressure release surface. The perforated plate acoustic ground cloak successfully cloaked the scattered object over a broad frequency range of 7 [kHz] to 12 [kHz]. There was excellent agreement between the phase of the surface reflection and the cloak reflection with a small amplitude difference attributed to the difference between a water - air and a water - mylar - air boundary. Above 15 [kHz], the cloaking performance decreased as the effective material parameters of the perforated plate metamaterial deviated from the required material parameters.
Air slab-correction for Γ-ray attenuation measurements
NASA Astrophysics Data System (ADS)
Mann, Kulwinder Singh
2017-12-01
Gamma (γ)-ray shielding behaviour (GSB) of a material can be ascertained from its linear attenuation coefficient (μ, cm-1). Narrow-beam transmission geometry is required for μ-measurement. In such measurements, a thin slab of the material has to insert between point-isotropic γ-ray source and detector assembly. The accuracy in measurements requires that sample's optical thickness (OT) remain below 0.5 mean free path (mfp). Sometimes it is very difficult to produce thin slab of sample (absorber), on the other hand for thick absorber, i.e. OT >0.5 mfp, the influence of the air displaced by it cannot be ignored during μ-measurements. Thus, for a thick sample, correction factor has been suggested which compensates the air present in the transmission geometry. The correction factor has been named as an air slab-correction (ASC). Six samples of low-Z engineering materials (cement-black, clay, red-mud, lime-stone, cement-white and plaster-of-paris) have been selected for investigating the effect of ASC on μ-measurements at three γ-ray energies (661.66, 1173.24, 1332.50 keV). The measurements have been made using point-isotropic γ-ray sources (Cs-137 and Co-60), NaI(Tl) detector and multi-channel-analyser coupled with a personal computer. Theoretical values of μ have been computed using a GRIC2-toolkit (standardized computer programme). Elemental compositions of the samples were measured with Wavelength Dispersive X-ray Fluorescence (WDXRF) analyser. Inter-comparison of measured and computed μ-values, suggested that the application of ASC helps in precise μ-measurement for thick samples of low-Z materials. Thus, this hitherto widely ignored ASC factor is recommended to use in similar γ-ray measurements.
Future Hard Disk Storage: Limits & Potential Solutions
NASA Astrophysics Data System (ADS)
Lambeth, David N.
2000-03-01
For several years the hard disk drive technology pace has raced along at 60-100products this year and laboratory demonstrations approaching what has been estimated as a physical thermal stability limit of around 40 Gbit/in2. For sometime now the data storage industry has recogniz d that doing business as usually will not be viable for long and so both incremental evolutionary and revolutionary technologies are being explored. While new recording head materials or thermal recording techniques may allow higher coercivity materials to be recorded upon, and while high sensitivity spin transport transducer technology may provide sufficient signals to extend beyond the 100 Gigabit/in2 regime, conventional isotropic longitudinal media will show large data retention problems at less than 1/2 of this value. We have recently developed a simple model which indicates that while thermal instability issues may appear at different areal densities, they are non-discriminatory as to the magnetic recording modality: longitudinal, perpendicular, magnetooptic, near field, etc. The model indicates that a strong orientation of the media tends to abate the onset of the thermal limit. Hence, for the past few years we have taken an approach of controlled growth of the microstructure of thin film media. This knowledge has lead us to believe that epitaxial growth of multiple thin film layers on single crystalline Si may provide a pathway to nearly perfect crystallites of various, highly oriented, thin film textures. Here we provide an overview of the recording system media challenges, which are useful for the development of a future media design philosophy and then discuss materials issues and processing techniques for multi-layered thin film material structures which may be used to achieve media structures which can easy exceed the limits predicted for isotropic media.
NASA Astrophysics Data System (ADS)
Wang, Xiaohua
The coupling resulting from the mutual influence of material thermal and mechanical parameters is examined in the thermal stress analysis of a multilayered isotropic composite cylinder subjected to sudden axisymmetric external and internal temperature. The method of complex frequency response functions together with the Fourier transform technique is utilized. Because the coupling parameters for some composite materials, such as carbon-carbon, are very small, the effect of coupling is neglected in the orthotropic thermal stress analysis. The stress distributions in multilayered orthotropic cylinders subjected to sudden axisymmetric temperature loading combined with dynamic pressure as well as asymmetric temperature loading are also obtained. The method of Fourier series together with the Laplace transform is utilized in solving the heat conduction equation and thermal stress analysis. For brittle materials, like carbon-carbon composites, the strength variability is represented by two or three parameter Weibull distributions. The 'weakest link' principle which takes into account both the carbon-carbon composite cylinders. The complex frequency response analysis is performed on a multilayered orthotropic cylinder under asymmetrical thermal load. Both deterministic and random thermal stress and reliability analyses can be based on the results of this frequency response analysis. The stress and displacement distributions and reliability of rocket motors under static or dynamic line loads are analyzed by an elasticity approach. Rocket motors are modeled as long hollow multilayered cylinders with an air core, a thick isotropic propellant inner layer and a thin orthotropic kevlar-epoxy case. The case is treated as a single orthotropic layer or a ten layered orthotropic structure. Five material properties and the load are treated as random variable with normal distributions when the reliability of the rocket motor is analyzed by the first-order, second-moment method (FOSM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folsom, Charles; Xing, Changhu; Jensen, Colby
2015-03-01
Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC ofmore » the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50 and 30 W m -1 K -1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.« less
Nonlinear ultrasonic stimulated thermography for damage assessment in isotropic fatigued structures
NASA Astrophysics Data System (ADS)
Fierro, Gian Piero Malfense; Calla', Danielle; Ginzburg, Dmitri; Ciampa, Francesco; Meo, Michele
2017-09-01
Traditional non-destructive evaluation (NDE) and structural health monitoring (SHM) systems are used to analyse that a structure is free of any harmful damage. However, these techniques still lack sensitivity to detect the presence of material micro-flaws in the form of fatigue damage and often require time-consuming procedures and expensive equipment. This research work presents a novel "nonlinear ultrasonic stimulated thermography" (NUST) method able to overcome some of the limitations of traditional linear ultrasonic/thermography NDE-SHM systems and to provide a reliable, rapid and cost effective estimation of fatigue damage in isotropic materials. Such a hybrid imaging approach combines the high sensitivity of nonlinear acoustic/ultrasonic techniques to detect micro-damage, with local defect frequency selection and infrared imaging. When exciting structures with an optimised frequency, nonlinear elastic waves are observed and higher frictional work at the fatigue damaged area is generated due to clapping and rubbing of the crack faces. This results in heat at cracked location that can be measured using an infrared camera. A Laser Vibrometer (LV) was used to evaluate the extent that individual frequency components contribute to the heating of the damage region by quantifying the out-of-plane velocity associated with the fundamental and second order harmonic responses. It was experimentally demonstrated the relationship between a nonlinear ultrasound parameter (βratio) of the material nonlinear response to the actual temperature rises near the crack. These results demonstrated that heat generation at damaged regions could be amplified by exciting at frequencies that provide nonlinear responses, thus improving the imaging of material damage and the reliability of NUST in a quick and reproducible manner.
Code of Federal Regulations, 2010 CFR
2010-10-01
... communication services, the equivalent isotropically radiated power transmitted in any direction towards the... coequally with terrestrial radiocommunication services, the equivalent isotropically radiated power... restriction as to the equivalent isotropically radiated power transmitted by an earth station towards the...
Code of Federal Regulations, 2012 CFR
2012-10-01
... communication services, the equivalent isotropically radiated power transmitted in any direction towards the... coequally with terrestrial radiocommunication services, the equivalent isotropically radiated power... restriction as to the equivalent isotropically radiated power transmitted by an earth station towards the...
Code of Federal Regulations, 2011 CFR
2011-10-01
... communication services, the equivalent isotropically radiated power transmitted in any direction towards the... coequally with terrestrial radiocommunication services, the equivalent isotropically radiated power... restriction as to the equivalent isotropically radiated power transmitted by an earth station towards the...
NASA Technical Reports Server (NTRS)
Collier, G.; Gibson, G.
1968-01-01
FORTRAN 4 program /P1-GAS/ calculates the P-O and P-1 transfer matrices for neutron moderation in a monatomic gas. The equations used are based on the conditions that there is isotropic scattering in the center-of-mass coordinate system, the scattering cross section is constant, and the target nuclear velocities satisfy a Maxwellian distribution.
An Anisotropic Hardening Model for Springback Prediction
NASA Astrophysics Data System (ADS)
Zeng, Danielle; Xia, Z. Cedric
2005-08-01
As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.
One-way invisibility in isotropic dielectric optical media
NASA Astrophysics Data System (ADS)
Horsley, S. A. R.; Longhi, S.
2017-06-01
Optical materials with a distribution of loss and gain can be used to manipulate waves in fascinating ways, seemingly impossible with ordinary lossless materials. Some recent results have shown that (for planar media) if the spatial distributions of the real and imaginary parts of the permittivity are related to one another by the Kramers-Kronig relations, then reflection can be eliminated. Moreover, if an additional "cancellation condition" is satisfied, then a material can be made invisible for incidence from one side. Here, we give a simple demonstration of these results that should be accessible to undergraduates. In addition, we show how this simple method can be used to prove results about the reflection from permittivity profiles, without ever requiring an exact solution of the Helmholtz equation.
Hebaz, Salah-Eddine; Benmeddour, Farouk; Moulin, Emmanuel; Assaad, Jamal
2018-01-01
The development of reliable guided waves inspection systems is conditioned by an accurate knowledge of their dispersive properties. The semi-analytical finite element method has been proven to be very practical for modeling wave propagation in arbitrary cross-section waveguides. However, when it comes to computations on complex geometries to a given accuracy, it still has a major drawback: the high consumption of resources. Recently, discontinuous Galerkin finite element method (DG-FEM) has been found advantageous over the standard finite element method when applied as well in the frequency domain. In this work, a high-order method for the computation of Lamb mode characteristics in plates is proposed. The problem is discretised using a class of DG-FEM, namely, the interior penalty methods family. The analytical validation is performed through the homogeneous isotropic case with traction-free boundary conditions. Afterwards, functionally graded material plates are analysed and a numerical example is presented. It was found that the obtained results are in good agreement with those found in the literature.
Evidence for a Field-Induced Quantum Spin Liquid in α -RuCl3
NASA Astrophysics Data System (ADS)
Baek, S.-H.; Do, S.-H.; Choi, K.-Y.; Kwon, Y. S.; Wolter, A. U. B.; Nishimoto, S.; van den Brink, Jeroen; Büchner, B.
2017-07-01
We report a 35Cl nuclear magnetic resonance study in the honeycomb lattice α -RuCl3 , a material that has been suggested to potentially realize a Kitaev quantum spin liquid (QSL) ground state. Our results provide direct evidence that α -RuCl3 exhibits a magnetic-field-induced QSL. For fields larger than ˜10 T , a spin gap opens up while resonance lines remain sharp, evidencing that spins are quantum disordered and locally fluctuating. The spin gap increases linearly with an increasing magnetic field, reaching ˜50 K at 15 T, and is nearly isotropic with respect to the field direction. The unusual rapid increase of the spin gap with increasing field and its isotropic nature are incompatible with conventional magnetic ordering and, in particular, exclude that the ground state is a fully polarized ferromagnet. The presence of such a field-induced gapped QSL phase has indeed been predicted in the Kitaev model.
Electromagnetic Wave Transmittance Control using Anisotropic Plasma Lattice
NASA Astrophysics Data System (ADS)
Matlis, Eric; Corke, Thomas; Hoffman, Anthony
2017-11-01
Experiments of transmission through a lattice array of plasma columns have shown an absorption band close to the plasma frequency at 14 GHz. The beam was oriented at a 35° incident angle to the planar plasma cell. These experiments were designed to determine if the observed absorption was the result of the isotropic plasma medium or that of an anisotropic metamaterial. Transmission of the microwave energy was not consistent with an isotropic material in which absorption would monotonically increase below the plasma frequency. The experimental results are supported by an anisotropic model which was developed for the plasma permittivity using an effective medium approximation. The plasma columns were modeled as uniform rods with permittivity described by a Drude model while the components of the permittivity tensor was calculated using the Maxwell-Garnett effective medium theory. Electron densities of n = 4 x1012 cm-3 were assumed which is consistent with prior experimental measurements. This model confirms the existence of non-zero imaginary wave vector k in a narrow region centered about 14 GHz.
Size estimates for fat inclusions in an isotropic Reissner-Mindlin plate
NASA Astrophysics Data System (ADS)
Morassi, Antonino; Rosset, Edi; Vessella, Sergio
2018-02-01
In this paper we consider the inverse problem of determining, within an elastic isotropic thick plate modelled by the Reissner-Mindlin theory, the possible presence of an inclusion made of a different elastic material. Under some a priori assumptions on the inclusion, we deduce constructive upper and lower estimates of the area of the inclusion in terms of a scalar quantity related to the work developed in deforming the plate by applying simultaneously a couple field and a transverse force field at the boundary of the plate. The approach allows us to consider plates with a boundary of Lipschitz class. The first author is supported by PRIN 2015TTJN95 ‘Identification and monitoring of complex structural systems’. The second author is supported by FRA 2016 ‘Problemi Inversi, dalla stabilità alla ricostruzione’, Università degli Studi di Trieste. The second and the third authors are supported by Progetto GNAMPA 2017 ‘Analisi di problemi inversi: stabilità e ricostruzione’, Istituto Nazionale di Alta Matematica (INdAM).
Nonlinear elastic inclusions in isotropic solids.
Yavari, Arash; Goriely, Alain
2013-12-08
We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder.
Nonlinear elastic inclusions in isotropic solids
Yavari, Arash; Goriely, Alain
2013-01-01
We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder. PMID:24353470
Dielectric spectroscopy of the SmQ* phase
NASA Astrophysics Data System (ADS)
Perkowski, P.; Bubnov, A.; Piecek, W.; Ogrodnik, K.; Hamplová, V.; Kašpar, M.
2011-11-01
Liquid crystal possessing two biphenyl moieties in the molecular core and lateral chlorine substitution far from the chiral chain has been studied by dielectric spectroscopy. On cooling from the isotropic phase, the material possesses the frustrated smectic Q* (SmQ*) and SmCA* phases. It has been confirmed by dielectric spectroscopy that the SmQ* phase can be related to the SmCA* anti-ferroelectric phase. However, only one relaxation process has been observed in the SmQ* phase, while in the SmCA*, two relaxations are clearly detectable. It seems that the mode found in the SmQ* can be connected with high-frequency anti-phase mode observed in the SmCA* phase. Its relaxation frequency is similar to PH relaxation frequency, but is weaker. The same relaxation has been observed even a few degrees above the SmQ*-Iso phase transition. Another explanation for the mode detected in SmQ* and isotropic phases can be molecular motions around short molecular axis.
NASA Astrophysics Data System (ADS)
Nazarenko, Lidiya; Khoroshun, Leonid; Müller, Wolfgang H.; Wille, Ralf
2009-02-01
In the present paper, we will illustrate the application of the method of conditional moments by constructing the algorithm for determination of the effective elastic properties of composites from the given elastic constants of the components and geometrical parameters of inclusions. A special case of two-component matrix composite with randomly distributed unidirectional spheroidal inclusions is considered. To this end it is assumed that the components of the composite show transversally isotropic symmetry of thermoelastic properties and that the axes of symmetry of the thermoelastic properties of the matrix and inclusions coincide with the coordinate axis x 3. As a numerical example a composite based on carbon inclusions and epoxide matrix is investigated. The dependencies of Young’s moduli, Poisson’s ratios and shear modulus from the concentration of inclusions and for certain values which characterize the shape of inclusions are analyzed. The results are compared and discussed in context with other theoretical predictions and experimental data.
Evolutionary optimization of compact dielectric lens for farfield sub-wavelength imaging
Zhang, Jingjing
2015-01-01
The resolution of conventional optical lenses is limited by diffraction. For decades researchers have made various attempts to beat the diffraction limit and realize subwavelength imaging. Here we present the approach to design modified solid immersion lenses that deliver the subwavelength information of objects into the far field, yielding magnified images. The lens is composed of an isotropic dielectric core and anisotropic or isotropic dielectric matching layers. It is designed by combining a transformation optics forward design with an inverse design scheme, where an evolutionary optimization procedure is applied to find the material parameters for the matching layers. Notably, the total radius of the lens is only 2.5 wavelengths and the resolution can reach λ/6. Compared to previous approaches based on the simple discretized approximation of a coordinate transformation design, our method allows for much more precise recovery of the information of objects, especially for those with asymmetric shapes. It allows for the far-field subwavelength imaging at optical frequencies with compact dielectric devices. PMID:26017657
Microstructure Characterization of Weakly Textured and Fine Grained AZ61 Sheet
NASA Astrophysics Data System (ADS)
Berman, T. D.; Donlon, W.; Hung, C. K.; Milligan, P.; Decker, R.; Pollock, T. M.; Jones, J. W.
Formability in magnesium alloy sheet is strongly limited by a strong basal texture in the as-rolled material, which is difficulty to remove by thermal processing. We introduce a new process to the control of texture by combining Thixomolding and Thermomechanical Processing (TTMP). Plates of AZ61L with a divorced β-Mg17Al12 eutectic are produced by Thixomolding, resulting in a non-textured, fine grained (2.8 µm) precursor. Sheet produced from the plate by single pass warm-rolling exhibits a weaker texture, and more isotropic tensile deformation than generally observed in AZ-series alloy sheet. Recrystallization annealing produces a further reduction in texture and average grain size (2.3 µm) and results in nearly isotropic room temperature deformation, a yield strength of 220 MPa, and an elongation of 23%. Particle stimulated nucleation of new grains by the β-phase during both dynamic and static recrystallization, is critical for achieving the low levels of texture. The influence of β-phase distribution in microstructure development is discussed.
Pattern Driven Stress Localization
NASA Astrophysics Data System (ADS)
Croll, Andrew; Crosby, Alfred
2010-03-01
The self-assembly of patterns from isotropic initial states is a major driver of modern soft-matter research. This avenue of study is directed by the desire to understand the complex physics of the varied structures found in Nature, and by technological interest in functional materials that may be derived through biomimicry. In this work we show how a simple striped phase can respond with significant complexity to an appropriately chosen perturbation. In particular, we show how a buckled elastic plate transitions into a state of stress localization using a simple, self-assembled variation in surface topography. The collection of topographic boundaries act in concert to change the state from isotropic sinusoidal wrinkles, to sharp folds or creases separated by relatively flat regions. By varying the size of the imposed topographic pattern or the wavelength of the wrinkles, we construct a state diagram of the system. The localized state has implications for both biological systems, and for the control of non-linear pattern formation.
Producing graphite with desired properties
NASA Technical Reports Server (NTRS)
Dickinson, J. M.; Imprescia, R. J.; Reiswig, R. D.; Smith, M. C.
1971-01-01
Isotropic or anisotropic graphite is synthesized with precise control of particle size, distribution, and shape. The isotropic graphites are nearly perfectly isotropic, with thermal expansion coefficients two or three times those of ordinary graphites. The anisotropic graphites approach the anisotropy of pyrolytic graphite.
Models of Anisotropic Creep in Integral Wing Panel Forming Processes
NASA Astrophysics Data System (ADS)
Oleinikov, A. I.; Oleinikov, A. A.
2016-08-01
For a sufficiently wide range of stresses the titanic and aluminummagnesium alloys, as a rule, strained differently in the process of creep under tension and compression along a fixed direction. There are suggested constitutive relations for the description of the steady-state creep of transversely isotropic materials with different tension and compression characteristics. Experimental justification is given to the proposed constitutive equations. Modeling of forming of wing panels of the aircraft are considered.
Pitch-based carbon foam and composites
Klett, James W.
2001-01-01
A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Pitch-based carbon foam and composites
Klett, James W.
2003-12-16
A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Pitch-based carbon foam and composites
Klett, James W.
2003-12-02
A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Pitch-based carbon foam and composites
Klett, James W.
2002-01-01
A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Imaging performance of an isotropic negative dielectric constant slab.
Shivanand; Liu, Huikan; Webb, Kevin J
2008-11-01
The influence of material and thickness on the subwavelength imaging performance of a negative dielectric constant slab is studied. Resonance in the plane-wave transfer function produces a high spatial frequency ripple that could be useful in fabricating periodic structures. A cost function based on the plane-wave transfer function provides a useful metric to evaluate the planar slab lens performance, and using this, the optimal slab dielectric constant can be determined.
An unusual type of polymorphism in a liquid crystal
Li, Lin; Salamonczyk, Miroslaw; Shadpour, Sasan; ...
2018-02-19
Polymorphism is a remarkable concept in chemistry, materials science, computer science, and biology. Whether it is the ability of a material to exist in two or more crystal structures, a single interface connecting to two different entities, or alternative phenotypes of an organism, polymorphism determines function and properties. In materials science, polymorphism can be found in an impressively wide range of materials, including crystalline materials, minerals, metals, alloys, and polymers. Here in this paper we report on polymorphism in a liquid crystal. A bent-core liquid crystal with a single chiral side chain forms two structurally and morphologically significantly different liquidmore » crystal phases solely depending on the cooling rate from the isotropic liquid state. On slow cooling, the thermodynamically more stable oblique columnar phase forms, and on rapid cooling, a not heretofore reported helical microfilament phase. Since structure determines function and properties, the structural color for these phases also differs.« less
Buffer layer between a planar optical concentrator and a solar cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solano, Manuel E.; Barber, Greg D.; Department of Chemistry, Pennsylvania State University, University Park, PA 16802
2015-09-15
The effect of inserting a buffer layer between a periodically multilayered isotropic dielectric (PMLID) material acting as a planar optical concentrator and a photovoltaic solar cell was theoretically investigated. The substitution of the photovoltaic material by a cheaper dielectric material in a large area of the structure could reduce the fabrication costs without significantly reducing the efficiency of the solar cell. Both crystalline silicon (c-Si) and gallium arsenide (GaAs) were considered as the photovoltaic material. We found that the buffer layer can act as an antireflection coating at the interface of the PMLID and the photovoltaic materials, and the structuremore » increases the spectrally averaged electron-hole pair density by 36% for c-Si and 38% for GaAs compared to the structure without buffer layer. Numerical evidence indicates that the optimal structure is robust with respect to small changes in the grating profile.« less
An unusual type of polymorphism in a liquid crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lin; Salamonczyk, Miroslaw; Shadpour, Sasan
Polymorphism is a remarkable concept in chemistry, materials science, computer science, and biology. Whether it is the ability of a material to exist in two or more crystal structures, a single interface connecting to two different entities, or alternative phenotypes of an organism, polymorphism determines function and properties. In materials science, polymorphism can be found in an impressively wide range of materials, including crystalline materials, minerals, metals, alloys, and polymers. Here in this paper we report on polymorphism in a liquid crystal. A bent-core liquid crystal with a single chiral side chain forms two structurally and morphologically significantly different liquidmore » crystal phases solely depending on the cooling rate from the isotropic liquid state. On slow cooling, the thermodynamically more stable oblique columnar phase forms, and on rapid cooling, a not heretofore reported helical microfilament phase. Since structure determines function and properties, the structural color for these phases also differs.« less
Borovikov, V. A.; Kalinin, S. V.; Khavin, Yu.; ...
2015-08-19
We derive the Green's functions for a three-dimensional semi-infinite fully anisotropic piezoelectric material using the plane wave theory method. The solution gives the complete set of electromechanical fields due to an arbitrarily oriented point force and a point electric charge applied to the boundary of the half-space. Moreover, the solution constitutes generalization of Boussinesq's and Cerruti's problems of elastic isotropy for the anisotropic piezoelectric materials. On the example of piezoceramics PZT-6B, the present results are compared with the previously obtained solution for the special case of transversely isotropic piezoelectric solid subjected to the same boundary condition.
Stress intensity factors of composite orthotropic plates containing periodic buffer strips
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1978-01-01
The fracture problem of laminated plates which consist of bonded orthotropic layers is studied. The fields equations for an elastic orthotropic body are transformed to give the displacement and stress expressions for each layer or strip. The unknown functions in these expressions are found by satisfying the remaining boundary and continuity conditions. A system of singular integral equations is obtained from the mixed boundary conditions. The singular behavior around the crack tip and at the bimaterial interface is studied. The stress intensity factors are computed for various material combinations and various crack geometries. The results are discussed and are compared with those for isotropic materials.
Strain Modulation of Electronic and Heat Transport Properties of Bilayer Boronitrene
NASA Astrophysics Data System (ADS)
Yang, Ming; Sun, Fang-Yuan; Wang, Rui-Ning; Zhang, Hang; Tang, Da-Wei
2017-10-01
Strain engineering has been proven as an effective approach to modify electronic and thermal properties of materials. Recently, strain effects on two-dimensional materials have become important relevant topics in this field. We performed density functional theory studies on the electronic and heat transport properties of bilayer boronitrene samples under an isotropic strain. We demonstrate that the strain will reduce the band gap width but keep the band gap type robust and direct. The strain will enhance the thermal conductivity of the system because of the increase in specific heat. The thermal conductivity was studied as a function of the phonon mean-free path.
Impact and damage of an armor composite
NASA Astrophysics Data System (ADS)
Resnyansky, A. D.; Parry, S.; Bourne, N. K.; Townsend, D.; James, B. J.
2015-06-01
The use of carbon fiber composites under shock and impact loading in aerospace, defense and automotive applications is increasingly important. Therefore prediction of the composite behavior and damage in these conditions is critical. Influence of anisotropy, fiber orientation and the rate of loading during the impact is considered in the present study and validated by comparison with experiments. The experiments deal with the plane, ballistic and Taylor impacts accompanied by high-speed photography observations and tomography of recovered samples. The CTH hydrocode is employed as the modeling platform with an advanced rate sensitive material model used for description of the deformation and damage of the transversely isotropic composite material.
A pilot study on the use of geometrically accurate face models to replicate ex vivo N95 mask fit.
Golshahi, Laleh; Telidetzki, Karla; King, Ben; Shaw, Diana; Finlay, Warren H
2013-01-01
To test the feasibility of replicating a face mask seal in vitro, we created 5 geometrically accurate reconstructions of the head and neck of an adult human subject using different materials. Three breathing patterns were simulated with each replica and an attached N95 mask. Quantitative fit testing on the subject and the replicas showed that none of the 5 isotropic materials used allowed duplication of the ex vivo mask seal for the specific mask-face combination studied. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Photo-switchable membrane and method
Marshall, Kenneth L; Glowacki, Eric
2013-05-07
Switchable gas permeation membranes in which a photo-switchable low-molecular-weight liquid crystalline (LC) material acts as the active element, and a method of making such membranes. Different LC eutectic mixtures were doped with mesogenic azo dyes and infused into track-etched porous membranes with regular cylindrical pores. Photo-induced isothermal phase changes in the imbibed mesogenic material afforded large, reversible changes in the permeability of the photo-switchable membrane to nitrogen. For example, membranes imbibed with a photo-switchable cyanobiphenyl LC material demonstrated low permeability in the nematic state, while the photo-generated isotropic state demonstrated a 16.times.-greater sorption coefficient. Both states obey a high linear sorption behavior in accordance with Henry's Law. In contrast, membranes imbibed with a photo-switchable phenyl benzoate LC material showed the opposite permeability behavior to the biphenyl-imbibed membrane, along with nonlinear sorption behavior.
NASA Technical Reports Server (NTRS)
Koh, Severino L. (Editor); Speziale, Charles G. (Editor)
1989-01-01
Various papers on recent advances in engineering science are presented. Some individual topics addressed include: advances in adaptive methods in computational fluid mechanics, mixtures of two medicomorphic materials, computer tests of rubber elasticity, shear bands in isotropic micropolar elastic materials, nonlinear surface wave and resonator effects in magnetostrictive crystals, simulation of electrically enhanced fibrous filtration, plasticity theory of granular materials, dynamics of viscoelastic media with internal oscillators, postcritical behavior of a cantilever bar, boundary value problems in nonlocal elasticity, stability of flexible structures with random parameters, electromagnetic tornadoes in earth's ionosphere and magnetosphere, helicity fluctuations and the energy cascade in turbulence, mechanics of interfacial zones in bonded materials, propagation of a normal shock in a varying area duct, analytical mechanics of fracture and fatigue.
NASA Astrophysics Data System (ADS)
Lam, Wai Sze Tiffany
Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for anisotropic ray tracing. x. Chapter 4 presents the data reduction of the P matrix of a crystal waveplate. The diattenuation is embedded in the singular values of P. The retardance is divided into two parts: (A) The physical retardance induced by OPLs and surface interactions, and (B) the geometrical transformation induced by geometry of a ray path, which is calculated by the geometrical transform Q matrix. The Q matrix of an anisotropic intercept is derived from the generalization of s- and p-bases at the anisotropic intercept; the p basis is not confined to the plane of incidence due to the anisotropic refraction or reflection. Chapter 5 shows how the multiple P matrices associated with the eigenmodes resulting from propagation through multiple anisotropic surfaces can be combined into one P matrix when the multiple modes interfere in their overlapping regions. The resultant P matrix contains diattenuation induced at each surface interaction as well as the retardance due to ray propagation and total internal reflections. The polarization aberrations of crystal waveplates and crystal polarizers are studied in Chapter 6 and Chapter 7. A wavefront simulated by a grid of rays is traced through the anisotropic system and the resultant grid of rays is analyzed. The analysis is complicated by the ray doubling effects and the partially overlapping eigen-wavefronts propagating in various directions. The wavefront and polarization aberrations of each eigenmode can be evaluated from the electric field distributions. The overall polarization at the plane of interest or the image quality at the image plane are affected by each of these eigen-wavefronts. Isotropic materials become anisotropic due to stress, strain, or applied electric or magnetic fields. In Chapter 8, the P matrix for anisotropic materials is extended to ray tracing in stress birefringent materials which are treated as spatially varying anisotropic materials. Such simulations can predict the spatial retardance variation throughout the stressed optical component and its effects on the point spread function and modulation transfer function for different incident polarizations. The anisotropic extension of the P matrix also applies to other anisotropic optical components, such as anisotropic diffractive optical elements and anisotropic thin films. It systematically keeps track of polarization transformation in 3D global Cartesian coordinates of a ray propagating through series of anisotropic and isotropic optical components with arbitrary orientations. The polarization ray tracing calculus with this generalized P matrix provides a powerful tool for optical ray trace and allows comprehensive analysis of complex optical system. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
O'Rourke, Conn; Morgan, Benjamin J.
2018-04-01
The (Li,Al)-codoped magnesium spinel (LixMg1 -2 xAl2 +xO4 ) is a solid lithium-ion electrolyte with potential use in all-solid-state lithium-ion batteries. The spinel structure means that interfaces with spinel electrodes, such as LiyMn2O4 and Li4 +3 zTi5O12 , may be lattice matched, with potentially low interfacial resistances. Small lattice parameter differences across a lattice-matched interface are unavoidable, causing residual epitaxial strain. This strain potentially modifies lithium diffusion near the electrolyte-electrode interface, contributing to interfacial resistance. Here, we report a density functional theory study of strain effects on lithium diffusion pathways for (Li,Al)-codoped magnesium spinel, for xLi=0.25 and xLi=0.5 . We have calculated diffusion profiles for the unstrained materials, and for isotropic and biaxial tensile strains of up to 6 % , corresponding to {100 } epitaxial interfaces with LiyMn2O4 and Li4 +3 zTi5O12 . We find that isotropic tensile strain reduces lithium diffusion barriers by as much as 0.32 eV , with typical barriers reduced by ˜0.1 eV. This effect is associated with increased volumes of transitional octahedral sites, and broadly follows qualitative changes in local electrostatic potentials. For biaxial (epitaxial) strain, which more closely approximates strain at a lattice-matched electrolyte-electrode interface, changes in octahedral site volumes and in lithium diffusion barriers are much smaller than under isotropic strain. Typical barriers are reduced by only ˜0.05 eV. Individual effects, however, depend on the pathway considered and the relative strain orientation. These results predict that isotropic strain strongly affects ionic conductivities in (Li,Al)-codoped magnesium spinel electrolytes, and that tensile strain is a potential route to enhanced lithium transport. For a lattice-matched interface with candidate spinel-structured electrodes, however, epitaxial strain has a small, but complex, effect on lithium diffusion barriers.
Optimized growth and reorientation of anisotropic material based on evolution equations
NASA Astrophysics Data System (ADS)
Jantos, Dustin R.; Junker, Philipp; Hackl, Klaus
2018-07-01
Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton's principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.
Normalized stiffness ratios for mechanical characterization of isotropic acoustic foams.
Sahraoui, Sohbi; Brouard, Bruno; Benyahia, Lazhar; Parmentier, Damien; Geslain, Alan
2013-12-01
This paper presents a method for the mechanical characterization of isotropic foams at low frequency. The objective of this study is to determine the Young's modulus, the Poisson's ratio, and the loss factor of commercially available foam plates. The method is applied on porous samples having square and circular sections. The main idea of this work is to perform quasi-static compression tests of a single foam sample followed by two juxtaposed samples having the same dimensions. The load and displacement measurements lead to a direct extraction of the elastic constants by means of normalized stiffness and normalized stiffness ratio which depend on Poisson's ratio and shape factor. The normalized stiffness is calculated by the finite element method for different Poisson ratios. The no-slip boundary conditions imposed by the loading rigid plates create interfaces with a complex strain distribution. Beforehand, compression tests were performed by means of a standard tensile machine in order to determine the appropriate pre-compression rate for quasi-static tests.
Rezaei, Farshid; Hassani, Kamran; Solhjoei, Nosratollah; Karimi, Alireza
2015-12-01
Total hip replacement (THR) has been ranked within the most typical surgical processes in the world. The durability of the prosthesis and loosening of prosthesis are the main concerns that mostly reported after THR surgeries. In THR, the femoral prosthesis can be fixed by either cement or cementless methods in the patient's bones. In both procedures, the stability of the prosthesis in the hosted bone has a key asset in its long-term durability and performance. This study aimed to execute a comparative finite element simulation to assess the load transfer between the prosthesis, which is made of carbon/PEEK composite and stainless steel/titanium, and the femur bone. The mechanical behavior of the cortical bone was assumed as a linear transverse isotropic while the spongy bone was modeled like a linear isotropic material. The implants were made of stainless steel (316L) and titanium alloy as they are common materials for implants. The results showed that the carbon/PEEK composites provide a flatter load transfer from the upper body to the leg compared to the stainless steel/titanium prosthesis. Furthermore, the results showed that the von Mises stress, principal stress, and the strain in the carbon/PEEK composites prosthesis were significantly lower than that made of the stainless steel/titanium. The results also imply that the carbon/PEEK composites can be applied to introduce a new optimum design for femoral prosthesis with adjustable stiffness, which can decrease the stress shielding and interface stress. These findings will help clinicians and biomedical experts to increase their knowledge about the hip replacement.
NASA Astrophysics Data System (ADS)
Ross, Z. E.; Ben-Zion, Y.; Zhu, L.
2015-02-01
We analyse source tensor properties of seven Mw > 4.2 earthquakes in the complex trifurcation area of the San Jacinto Fault Zone, CA, with a focus on isotropic radiation that may be produced by rock damage in the source volumes. The earthquake mechanisms are derived with generalized `Cut and Paste' (gCAP) inversions of three-component waveforms typically recorded by >70 stations at regional distances. The gCAP method includes parameters ζ and χ representing, respectively, the relative strength of the isotropic and CLVD source terms. The possible errors in the isotropic and CLVD components due to station variability is quantified with bootstrap resampling for each event. The results indicate statistically significant explosive isotropic components for at least six of the events, corresponding to ˜0.4-8 per cent of the total potency/moment of the sources. In contrast, the CLVD components for most events are not found to be statistically significant. Trade-off and correlation between the isotropic and CLVD components are studied using synthetic tests with realistic station configurations. The associated uncertainties are found to be generally smaller than the observed isotropic components. Two different tests with velocity model perturbation are conducted to quantify the uncertainty due to inaccuracies in the Green's functions. Applications of the Mann-Whitney U test indicate statistically significant explosive isotropic terms for most events consistent with brittle damage production at the source.
Liquid crystalline phase behavior of protein fibers in water: experiments versus theory.
Jung, Jin-Mi; Mezzenga, Raffaele
2010-01-05
We have developed a new method allowing the study of the thermodynamic phase behavior of mesoscopic colloidal systems consisting of amyloid protein fibers in water, obtained by heat denaturation and aggregation of beta-lactoglobulin, a dairy protein. The fibers have a cross section of about 5.2 nm and two groups of polydisperse contour lengths: (i) long fibers of 1-20 microm, showing semiflexible behavior, and (ii) short rods of 100-200 nm long, obtained by cutting the long fibers via high-pressure homogenization. At pH 2 without salt, these fibers are highly charged and stable in water. We have studied the isotropic-nematic phase transition for both systems and compared our results with the theoretical values predicted by Onsager's theory. The experimentally measured isotropic-nematic phase transition was found to occur at 0.4% and at 3% for the long and short fibers, respectively. For both systems, this phase transition occurs at concentrations more than 1 order of magnitude lower than what is expected based on Onsager's theory. Moreover, at low enough pH, no intermediate biphasic region was observed between the isotropic phase and the nematic phase. The phase diagrams of both systems (pH vs concentration) showed similar, yet complex and rich, phase behavior. We discuss the possible physical fundamentals ruling the phase diagram as well as the discrepancy we observe for the isotropic-nematic phase transition between our experimental results and the predicted theoretical results. Our work highlights that systems formed by water-amyloid protein fibers are way too complex to be understood based solely on Onsager's theories. Experimental results are revisited in terms of the Flory's theory (1956) for suspensions of rods, which allows accounting for rod-solvent hydrophobic interactions. This theoretical approach allows explaining, on a semiquantitative basis, most of the discrepancies observed between the experimental results and Onsager's predictions. The sources of protein fibers complex colloidal behavior are analyzed and discussed at length.
How does tissue preparation affect skeletal muscle transverse isotropy?
Wheatley, Benjamin B.; Odegard, Gregory M.; Kaufman, Kenton R.; Haut Donahue, Tammy L.
2016-01-01
The passive tensile properties of skeletal muscle play a key role in its physiological function. Previous research has identified conflicting reports of muscle transverse isotropy, with some data suggesting the longitudinal direction is stiffest, while others show the transverse direction is stiffest. Accurate constitutive models of skeletal muscle must be employed to provide correct recommendations for and observations of clinical methods. The goal of this work was to identify transversely isotropic tensile muscle properties as a function of post mortem handling. Six pairs of tibialis anterior muscles were harvested from Giant Flemish rabbits and split into two groups: fresh testing (within four hours post mortem), and non-fresh testing (subject to delayed testing and a freeze/thaw cycle). Longitudinal and transverse samples were removed from each muscle and tested to identify tensile modulus and relaxation behavior. Longitudinal non-fresh samples exhibited a higher initial modulus value and faster relaxation than longitudinal fresh, transverse fresh, and transverse rigor samples (p<0.05), while longitudinal fresh samples were less stiff at lower strain levels than longitudinal non-fresh, transverse fresh, and transverse non-fresh samples (p<0.05), but exhibited more nonlinear behavior. While fresh skeletal muscle exhibits a higher transverse modulus than longitudinal modulus, discrepancies in previously published data may be the result of a number of differences in experimental protocol. Constitutive modeling of fresh muscle should reflect these data by identifying the material as truly transversely isotropic and not as an isotropic matrix reinforced with fibers. PMID:27425557
Investigation of the mechanical behaviour of the foot skin.
Fontanella, C G; Carniel, E L; Forestiero, A; Natali, A N
2014-11-01
The aim of this work was to provide computational tools for the characterization of the actual mechanical behaviour of foot skin, accounting for results from experimental testing and histological investigation. Such results show the typical features of skin mechanics, such as anisotropic configuration, almost incompressible behaviour, material and geometrical non linearity. The anisotropic behaviour is mainly determined by the distribution of collagen fibres along specific directions, usually identified as cleavage lines. To evaluate the biomechanical response of foot skin, a refined numerical model of the foot is developed. The overall mechanical behaviour of the skin is interpreted by a fibre-reinforced hyperelastic constitutive model and the orientation of the cleavage lines is implemented by a specific procedure. Numerical analyses that interpret typical loading conditions of the foot are performed. The influence of fibres orientation and distribution on skin mechanics is outlined also by a comparison with results using an isotropic scheme. A specific constitutive formulation is provided to characterize the mechanical behaviour of foot skin. The formulation is applied within a numerical model of the foot to investigate the skin functionality during typical foot movements. Numerical analyses developed accounting for the actual anisotropic configuration of the skin show lower maximum principal stress fields than results from isotropic analyses. The developed computational models provide reliable tools for the investigation of foot tissues functionality. Furthermore, the comparison between numerical results from anisotropic and isotropic models shows the optimal configuration of foot skin. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Further Developments in Modeling Creep Effects Within Structural SiC/SiC Components
NASA Technical Reports Server (NTRS)
Lang, Jerry; DiCarlo, James A.
2008-01-01
Anticipating the implementation of advanced SiC/SiC composites into turbine section components of future aero-propulsion engines, the primary objective of this on-going study is to develop physics-based analytical and finite-element modeling tools to predict the effects of constituent creep on SiC/SiC component service life. A second objective is to understand how to possibly manipulate constituent materials and processes in order to minimize these effects. Focusing on SiC/SiC components experiencing through-thickness stress gradients (e.g., airfoil leading edge), prior NASA creep modeling studies showed that detrimental residual stress effects can develop globally within the component walls which can increase the risk of matrix cracking. These studies assumed that the SiC/SiC composites behaved as isotropic viscoelastic continuum materials with creep behavior that was linear and symmetric with stress and that the creep parameters could be obtained from creep data as experimentally measured in-plane in the fiber direction of advanced thin-walled 2D SiC/SiC panels. The present study expands on those prior efforts by including constituent behavior with non-linear stress dependencies in order to predict such key creep-related SiC/SiC properties as time-dependent matrix stress, constituent creep and content effects on composite creep rates and rupture times, and stresses on fiber and matrix during and after creep.
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Roberts, Gary D.; Kohlman, Lee W.; Miller, Sandi G.
2016-01-01
An experimental study was conducted to measure the effects of long term hygrothermal aging on the impact penetration resistance of triaxially braided polymer composites. Flat panels of three different materials were subjected to repeated cycles of high and low temperature and high and low humidity for two years. Samples of the panels were periodically tested under impact loading during the two year time period. The purpose of the study was to identify and quantify any degradation in impact penetration resistance of these composites under cyclic temperature and humidity conditions experienced by materials in the fan section of commercial gas turbine engines for a representative aircraft flight cycle. The materials tested consisted of Toray ® T700S carbon fibers in a 2D triaxial braid with three different resins, Cycom® PR520, a toughened resin, Hercules® 3502, an untoughened resin and EPON 862, intermediate between the two. The fiber preforms consisted of a quasi-isotropic 0/+60/-60 braid with 24K tows in the axial direction and 12K tows in the bias directions. The composite panels were manufactured using a resin transfer molding process producing panels with a thickness of 0.125 inches. The materials were tested in their as-processed condition and again after one year and two years of aging (1.6 years in the case of E862). The aging process involved subjecting the test panels to two cycles per day of high and low temperature and high and low humidity. A temperature range of -60degF to 250degF and a humidity range of 0 to 85% rh was used to simulate extreme conditions for composite components in the fan section of a commercial gas turbine engine. Additional testing was conducted on the as-processed PR520 composite under cryogenic conditions. After aging there was some change in the failure pattern, but there was no reduction in impact penetration threshold for any of the three systems, and in the case of the 3502 system, a significant increase in penetration threshold. There was also an increase in the penetration resistance of the PR520 system impacted under cryogenic conditions.
Unified nonlinear analysis for nonhomogeneous anisotropic beams with closed cross sections
NASA Technical Reports Server (NTRS)
Atilgan, Ali R.; Hodges, Dewey H.
1991-01-01
A unified methodology for geometrically nonlinear analysis of nonhomogeneous, anisotropic beams is presented. A 2D cross-sectional analysis and a nonlinear 1D global deformation analysis are derived from the common framework of a 3D, geometrically nonlinear theory of elasticity. The only restrictions are that the strain and local rotation are small compared to unity and that warping displacements are small relative to the cross-sectional dimensions. It is concluded that the warping solutions can be affected by large deformation and that this could alter the incremental stiffnes of the section. It is shown that sectional constants derived from the published, linear analysis can be used in the present nonlinear, 1D analysis governing the global deformation of the beam, which is based on intrinsic equations for nonlinear beam behavior. Excellent correlation is obtained with published experimental results for both isotropic and anisotropic beams undergoing large deflections.
Approximate isotropic cloak for the Maxwell equations
NASA Astrophysics Data System (ADS)
Ghosh, Tuhin; Tarikere, Ashwin
2018-05-01
We construct a regular isotropic approximate cloak for the Maxwell system of equations. The method of transformation optics has enabled the design of electromagnetic parameters that cloak a region from external observation. However, these constructions are singular and anisotropic, making practical implementation difficult. Thus, regular approximations to these cloaks have been constructed that cloak a given region to any desired degree of accuracy. In this paper, we show how to construct isotropic approximations to these regularized cloaks using homogenization techniques so that one obtains cloaking of arbitrary accuracy with regular and isotropic parameters.
Sudden Relaminarization and Lifetimes in Forced Isotropic Turbulence.
Linkmann, Moritz F; Morozov, Alexander
2015-09-25
We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from a chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase superexponentially with the Reynolds number. Our results suggest that both isotropic turbulence and wall-bounded shear flows qualitatively share the same phase-space dynamics.
NASA Astrophysics Data System (ADS)
Rinzema, Kees; ten Bosch, Jaap J.; Ferwerda, Hedzer A.; Hoenders, Bernhard J.
1995-01-01
The diffusion approximation, which is often used to describe the propagation of light in biological tissues, is only good at a sufficient distance from sources and boundaries. Light- tissue interaction is however most intense in the region close to the source. It would therefore be interesting to study this region more closely. Although scattering in biological tissues is predominantly forward peaked, explicit solutions to the transport equation have only been obtained in the case of isotropic scattering. Particularly, for the case of an isotropic point source in an unbounded, isotropically scattering medium the solution is well known. We show that this problem can also be solved analytically if the scattering is no longer isotropic, while everything else remains the same.
1981-06-30
Range both consist of Paleozoic limestone and dolomite overlain by Tertiary ash-flow tuffs and undiffer- entiated volcanic rocks. The central portion...andesite, detrital material, volcanic tuff, pumice). FAULT - A plane or zone of fracture along which there has been * I displacement. FAULT BLOCK...D2850-70). To conduct the test, a cylindrical specimen of soil is surrounded by a fluid in a pressure chamber and subjected to an isotropic pressure . An
Rimmed and edge thickened Stodola shaped flywheel
Kulkarni, S.V.; Stone, R.G.
1983-10-11
A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability. 6 figs.
Rimmed and edge thickened stodola shaped flywheel. [Patent application
Kulkarni, S.V.; Stone, R.G.
1980-09-24
A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.
Electromagnetic density of modes for a finite-size three-dimensional structure.
D'Aguanno, Giuseppe; Mattiucci, Nadia; Centini, Marco; Scalora, Michael; Bloemer, Mark J
2004-05-01
The concept of the density of modes has been lacking a precise mathematical definition for a finite-size structure. With the explosive growth in the fabrication of photonic crystals and nanostructures, which are inherently finite in size, a workable definition is imperative. We give a simple and physically intuitive definition of the electromagnetic density of modes based on the Green's function for a generic three-dimensional open cavity filled with a linear, isotropic, dielectric material.
Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets
NASA Astrophysics Data System (ADS)
Li, Ling; Tirado, Angelica; Nlebedim, I. C.; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R. R.; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A.; Paranthaman, M. Parans
2016-10-01
Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.
Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets
Li, Ling; Tirado, Angelica; Nlebedim, I. C.; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R. R.; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A.; Paranthaman, M. Parans
2016-01-01
Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials. PMID:27796339
Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets.
Li, Ling; Tirado, Angelica; Nlebedim, I C; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R R; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A; Paranthaman, M Parans
2016-10-31
Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm 3 , and the room temperature magnetic properties are: intrinsic coercivity H ci = 688.4 kA/m, remanence B r = 0.51 T, and energy product (BH) max = 43.49 kJ/m 3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.
Magnetic hysteresis measurements of thin films under isotropic stress.
NASA Astrophysics Data System (ADS)
Holland, Patrick; Dubey, Archana; Geerts, Wilhelmus
2000-10-01
Nowadays, ferromagnetic thin films are widely applied in devices for information technology (credit cards, video recorder tapes, floppies, hard disks) and sensors (air bags, anti-breaking systems, navigation systems). Thus, with the increase in the use of magnetic media continued investigation of magnetic properties of materials is necessary to help in determining the useful properties of materials for new or improved applications. We are currently interested in studying the effect of applied external stress on Kerr hysteresis curves of thin magnetic films. The Ni and NiFe films were grown using DC magnetron sputtering with Ar as the sputter gas (pAr=4 mTorr; Tsub=55-190 C). Seed and cap layers of Ti were used on all films for adhesion and oxidation protection, respectively. A brass membrane pressure cell was designed to apply in-plane isotropic stress to thin films. In this pressure cell, gas pressure is used to deform a flexible substrate onto which a thin magnetic film has been sputtered. The curvature of the samples could be controlled by changing the gas pressure to the cell. Magneto-Optical in-plane hysteresis curves at different values of strain were measured. The results obtained show that the stress sensitivity is dependent on the film thickness. For the 500nm NiFe films, the coercivity strongly decreased as a function of the applied stress.
Big area additive manufacturing of high performance bonded NdFeB magnets
Li, Ling; Tirado, Angelica; Nlebedim, I. C.; ...
2016-10-31
Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic propertiesmore » are: intrinsic coercivity Hci = 688.4 kA/m, remanence B r = 0.51 T, and energy product (BH) max = 43.49 kJ/m 3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. As a result, the present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.« less
Big area additive manufacturing of high performance bonded NdFeB magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ling; Tirado, Angelica; Nlebedim, I. C.
Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic propertiesmore » are: intrinsic coercivity Hci = 688.4 kA/m, remanence B r = 0.51 T, and energy product (BH) max = 43.49 kJ/m 3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. As a result, the present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.« less
NASA Astrophysics Data System (ADS)
Yang, Fuqian
2008-04-01
A general solution of the axisymmetric indentation is obtained in the closed form for a semi-infinite, transverse isotropic piezoelectric material by a rigid-conducting indenter of arbitrary-axisymmetric profile. Explicit relationships are derived for dependences of the indentation depth and the indentation-induced charge on indentation force and applied electrical potential. Simple formulas are obtained for contact stiffness and effective piezoelectric constant, which can be used in indentation test and piezoresponse force microscopy to analyze the elastic and piezoelectric responses of piezoelectric materials. Depending on the direction of electric field (the potential difference), the electric field can either increase or suppress indentation deformation. The corresponding results are given for cylindrical, conical, and paraboloidal indenters.
Guided waves and defect scattering in metal matrix composite plates
NASA Technical Reports Server (NTRS)
Datta, Subhendu K.; Bratton, Robert L.; Shah, Arvind H.
1989-01-01
Guided Rayleigh-Lamb waves in a continuous graphite fiber reinforced magnesium plate has been studied. The interest in this material arises from its high thermal stability and because it provides high strength-to-weight ratio. Previous studies have shown that for wavelengths much larger than the fiber diameters and spacing, the material can be characterized as transversely isotropic with the symmetry axis aligned with the fiber direction. Because of the high longitudinal stiffness of the graphite fibers, the material shows strong anisotropy, with very high modulus in the fiber direction. For this reason, dispersion of guided waves is strongly influenced by the deviation of the direction of propagation from the symmetry axis. Results are given for propagation in different directions and for scattering of antiplane shear waves by surface-breaking cracks and delaminations.
Optical behaviors of flexible photonic films via the developed multiple UV-exposed fabrications.
Chien, Chih-Chieh; Liu, Jui-Hsiang
2014-07-01
Recently, extensive investigations are carried out on design of highly controlled architecture and morphology by polymerizing the monomers doped in well-defined liquid crystalline materials, followed by removal of the template liquid crystal molecules. In this communication, a photonic structure used as a new photonic bandgap (PBG) material is developed by imprinting helical structures on polymer matrices through multiple photocrosslinking processes in an induced chiral nematic mesophase using flexible polyethylene terephthalate (PET) films as substrates. The tuning properties of the reflection band of the imprinted cell are achieved using an uniaxial thermo-stretching equipment. Furthermore, refilling of isotropic materials into the imprinted cells tune the reflection light wavelength leads to the change of color. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling Creep Effects within SiC/SiC Turbine Components
NASA Technical Reports Server (NTRS)
DiCarlo, J. A.; Lang, J.
2008-01-01
Anticipating the implementation of advanced SiC/SiC ceramic composites into the hot section components of future gas turbine engines, the primary objective of this on-going study is to develop physics-based analytical and finite-element modeling tools to predict the effects of constituent creep on SiC/SiC component service life. A second objective is to understand how to possibly select and manipulate constituent materials, processes, and geometries in order to minimize these effects. In initial studies aimed at SiC/SiC components experiencing through-thickness stress gradients, creep models were developed that allowed an understanding of detrimental residual stress effects that can develop globally within the component walls. It was assumed that the SiC/SiC composites behaved as isotropic visco-elastic materials with temperature-dependent creep behavior as experimentally measured in-plane in the fiber direction of advanced thin-walled 2D SiC/SiC panels. The creep models and their key results are discussed assuming state-of-the-art SiC/SiC materials within a simple cylindrical thin-walled tubular structure, which is currently being employed to model creep-related effects for turbine airfoil leading edges subjected to through-thickness thermal stress gradients. Improvements in the creep models are also presented which focus on constituent behavior with more realistic non-linear stress dependencies in order to predict such key creep-related SiC/SiC properties as time-dependent matrix stress, constituent creep and content effects on composite creep rates and rupture times, and stresses on fiber and matrix during and after creep.
Lekesiz, Huseyin; Katsube, Noriko; Rokhlin, Stanislav I.; Seghi, Robert R.
2013-01-01
An effective spring stiffness approximation is proposed for a hexagonal array of coplanar penny shaped cracks located at the interface between two dissimilar solids. The approximation is based on the factorization of the solution on the material dissimilarity factor, the crack interaction factor and the effective spring stiffness solution for non-interacting cracks in a homogeneous material. Such factorization is exact and was validated for 2D collinear cracks between two dissimilar solids. The crack interaction factor is obtained using a recently developed model for stress intensity factors for an array of coplanar penny shaped cracks in a homogeneous material; also the material dissimilarity function recently obtained for non-interacting penny shaped crack at the interface between two dissimilar materials is employed. The obtained solution is useful for an assessment by ultrasonic measurements of the interface stiffness in bonded structures for monitoring the interfacial microdamage growth due to mechanical loading and environmental factors. PMID:27175036
Impact response of composite materials
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Srinivasan, K.
1991-01-01
Composite materials composed of carbon fibers and resin matrices offer great promise in reducing the weight of aerospace structures. However they remain extremely vulnerable to out of plane impact loads, which lead to severe losses in strength and stiffness. The results of an experimental program, undertaken to investigate the low velocity impact damage tolerance of composite materials is presented. The objectives were to identify key neat resin/composite properties that lead to enhancement of composite impact damage tolerance and to find a small scale test that predicts compression after impact properties of panels. Five materials were selected for evaluation. These systems represented different classes of material behavior such as brittle epoxy, modified epoxies, and amorphous and semicrystalling thermoplastics. The influence of fiber properties on the impact performance was also studied in one material, i.e., in polyether ether ketone (PEEK). Several 24 and 48 ply quasi-isotropic and 24 ply orthotropic laminates were examined using an instrumented drop weight impactor. Correlations with post impact compression behavior were made.
Lekesiz, Huseyin; Katsube, Noriko; Rokhlin, Stanislav I; Seghi, Robert R
2013-08-15
An effective spring stiffness approximation is proposed for a hexagonal array of coplanar penny shaped cracks located at the interface between two dissimilar solids. The approximation is based on the factorization of the solution on the material dissimilarity factor, the crack interaction factor and the effective spring stiffness solution for non-interacting cracks in a homogeneous material. Such factorization is exact and was validated for 2D collinear cracks between two dissimilar solids. The crack interaction factor is obtained using a recently developed model for stress intensity factors for an array of coplanar penny shaped cracks in a homogeneous material; also the material dissimilarity function recently obtained for non-interacting penny shaped crack at the interface between two dissimilar materials is employed. The obtained solution is useful for an assessment by ultrasonic measurements of the interface stiffness in bonded structures for monitoring the interfacial microdamage growth due to mechanical loading and environmental factors.