NASA Technical Reports Server (NTRS)
Harris, C. D.
1974-01-01
Refinements in a 10 percent thick supercritical airfoil produced improvements in the overall drag characteristics at normal force coefficients from about 0.30 to 0.65 compared with earlier supercritical airfoils which were developed for a normal force coefficient of 0.7. The drag divergence Mach number of the improved supercritical airfoil (airfoil 26a) varied from approximately 0.82 at a normal force coefficient to of 0.30, to 0.78 at a normal force coefficient of 0.80 with no drag creep evident. Integrated section force and moment data, surface pressure distributions, and typical wake survey profiles are presented.
NASA Technical Reports Server (NTRS)
Kelley, Henry L.; Crowell, Cynthia A.; Wilson, John C.
1992-01-01
A wind-tunnel investigation was conducted to determine 2-D aerodynamic characteristics of nine polygon-shaped models applicable to helicopter fuselages. The models varied from 1/2 to 1/5 scale and were nominally triangular, diamond, and rectangular in shape. Side force and normal force were obtained at increments of angle of flow incidence from -45 to 90 degrees. The data were compared with results from a baseline UH-60 tail-boom cross-section model. The results indicate that the overall shapes of the plots of normal force and side force were similar to the characteristic shape of the baseline data; however, there were important differences in magnitude. At a flow incidence of 0 degrees, larger values of normal force for the polygon models indicate an increase in fuselage down load of 1 to 2.5 percent of main-rotor thrust compared with the baseline value. Also, potential was indicated among some of the configurations to produce high fuselage side forces and yawing moments compared with the baseline model.
Estimating Blade Section Airloads from Blade Leading-Edge Pressure Measurements
NASA Technical Reports Server (NTRS)
vanAken, Johannes M.
2003-01-01
The Tilt-Rotor Aeroacoustic Model (TRAM) test in the Duitse-Nederlandse Wind (DNW) Tunnel acquired blade pressure data for forward flight test conditions of a tiltrotor in helicopter mode. Chordwise pressure data at seven radial locations were integrated to obtain the blade section normal force. The present investigation evaluates the use of linear regression analysis and of neural networks in estimating the blade section normal force coefficient from a limited number of blade leading-edge pressure measurements and representative operating conditions. These network models are subsequently used to estimate the airloads at intermediate radial locations where only blade pressure measurements at the 3.5% chordwise stations are available.
16 CFR 1211.13 - Inherent force activated secondary door sensors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... sensors. 1211.13 Section 1211.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force activated door sensor of a door system installed according to the installation instructions shall actuate...
16 CFR 1211.13 - Inherent force activated secondary door sensors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... sensors. 1211.13 Section 1211.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force activated door sensor of a door system installed according to the installation instructions shall actuate...
16 CFR 1211.13 - Inherent force activated secondary door sensors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... sensors. 1211.13 Section 1211.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force activated door sensor of a door system installed according to the installation instructions shall actuate...
16 CFR § 1211.13 - Inherent force activated secondary door sensors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... sensors. § 1211.13 Section § 1211.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER... Standard § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force activated door sensor of a door system installed according to the installation instructions shall actuate...
NASA Astrophysics Data System (ADS)
Bermúdez-Montaña, M.; Lemus, R.; Castaños, O.
2017-12-01
In a system of two interacting harmonic oscillators a local-to-normal mode transition is manifested as a polyad breaking phenomenon. This phenomenon is associated with the suitability to estimate zeroth-order force constants in the framework of a local mode description. This transition is also exhibited in two interacting Morse oscillators. To study this case, an appropriate parameterisation going from a molecule with local mode behaviour (H2O) to a molecule presenting a normal mode behaviour (CO2) is introduced. Concepts from quantum mechanics like fidelity, entropy and probability density, as well from nonlinear classical mechanics like Poincaré sections are used to detect the transition region. It is found that fidelity and entropy are sensitive complementary properties to detect the local-to-normal transition. Poincaré sections allow the local-to-normal transition to be detected through the appearance of chaos as a consequence of the polyad breaking phenomenon. In addition, two kinds of avoided energy crossings are identified in accordance with the different regions of the spectrum.
Aerodynamic Applications of Boundary Layer Control Using Embedded Streamwise Vortices
2003-07-01
section, 0.02% free-stream turbulence level, free-stream velocity up to 18 m/s; the strain gauge can be used for aerodynamic force measurements. (2...section, free-stream velocity up to 28 m/s; equipped with the 3-component strain gauge (values of streamwise and normal forces measured up to 3N and 6...dimensional model: test section of 4m x 2.5m x 5.5m, free-stream velocities up to 42 m/s, multi-base 6-component strain gauge. Project Manager: Nina F
Assessment of dual-point drag reduction for an executive-jet modified airfoil section
NASA Technical Reports Server (NTRS)
Allison, Dennis O.; Mineck, Raymond E.
1996-01-01
This paper presents aerodynamic characteristics and pressure distributions for an executive-jet modified airfoil and discusses drag reduction relative to a baseline airfoil for two cruise design points. A modified airfoil was tested in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) for Mach numbers ranging from 0.250 to 0.780 and chord Reynolds numbers ranging from 3.0 x 10(exp 6) to 18.0 x 10(exp 6). The angle of attack was varied from minus 2 degrees to almost 10 degrees. Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The two design Mach numbers were 0.654 and 0.735, chord Reynolds numbers were 4.5 x 10(exp 6) and 8.9 x 10(exp 6), and normal-force coefficients were 0.98 and 0.51. Test data are presented graphically as integrated force and moment coefficients and chordwise pressure distributions. The maximum normal-force coefficient decreases with increasing Mach number. At a constant normal-force coefficient in the linear region, as Mach number increases an increase occurs in the slope of normal-force coefficient versus angle of attack, negative pitching-moment coefficient, and drag coefficient. With increasing Reynolds number at a constant normal-force coefficient, the pitching-moment coefficient becomes more negative and the drag coefficient decreases. The pressure distributions reveal that when present, separation begins at the trailing edge as angle of attack is increased. The modified airfoil, which is designed with pitching moment and geometric constraints relative to the baseline airfoil, achieved drag reductions for both design points (12 and 22 counts). The drag reductions are associated with stronger suction pressures in the first 10 percent of the upper surface and weakened shock waves.
32 CFR 989.26 - Classified actions (40 CFR 1507.3(c)).
Code of Federal Regulations, 2010 CFR
2010-07-01
... relieve the requirement of complying with NEPA. In classified matters, the Air Force must prepare and make available normal NEPA environmental analysis documents to aid in the decision-making process; however, Air... Section 989.26 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE...
Derrick, Timothy R; Edwards, W Brent; Fellin, Rebecca E; Seay, Joseph F
2016-02-08
The purpose of this research was to utilize a series of models to estimate the stress in a cross section of the tibia, located 62% from the proximal end, during walking. Twenty-eight male, active duty soldiers walked on an instrumented treadmill while external force data and kinematics were recorded. A rigid body model was used to estimate joint moments and reaction forces. A musculoskeletal model was used to gather muscle length, muscle velocity, moment arm and orientation information. Optimization procedures were used to estimate muscle forces and finally internal bone forces and moments were applied to an inhomogeneous, subject specific bone model obtained from CT scans to estimate stress in the bone cross section. Validity was assessed by comparison to stresses calculated from strain gage data in the literature and sensitivity was investigated using two simplified versions of the bone model-a homogeneous model and an ellipse approximation. Peak compressive stress occurred on the posterior aspect of the cross section (-47.5 ± 14.9 MPa). Peak tensile stress occurred on the anterior aspect (27.0 ± 11.7 MPa) while the location of peak shear was variable between subjects (7.2 ± 2.4 MPa). Peak compressive, tensile and shear stresses were within 0.52 MPa, 0.36 MPa and 3.02 MPa respectively of those calculated from the converted strain gage data. Peak values from a inhomogeneous model of the bone correlated well with homogeneous model (normal: 0.99; shear: 0.94) as did the normal ellipse model (r=0.89-0.96). However, the relationship between shear stress in the inhomogeneous model and ellipse model was less accurate (r=0.64). The procedures detailed in this paper provide a non-invasive and relatively quick method of estimating cross sectional stress that holds promise for assessing injury and osteogenic stimulus in bone during normal physical activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Some New Problems on Shells and Thin Structures
NASA Technical Reports Server (NTRS)
Vlasov, V. S.
1949-01-01
Cylindrical shells of arbitrary section, reinforced by longitudinal and transverse members (stringers and ribs) are considered by us, for a sufficiently close spacing of the ribs, as in our previously published papers (references 1 end 2), as thin-walled orthotropic spatial systems at the cross-sections of which only axial (normal and shearing) forces can arise. The longitudinal bending and twisting moments, due to their weak effect on the stress state of the shell, are taken equal to zero. Along the longitudinal sections of the shell there may arise transverse forces in addition to the normal d shearing forces. Under the so-called static assumptions there is taken for the computation model of the shell a thin-walled spatial system consisting along its length (along a generator) of an infinite number of elementary strips capable of bending. Each of these strips is likened to a curved rod operating in each of its sections not only in tension (compression)but also in transverse bending and shear. The interaction between two adjoining transverse strips in the shell expresses itself in the transmission from one strip to the other of only the normal and shearing stresses. The static structure of the computation model here described is shown in figure 1, where the connections through which the normal and shearing stresses transmitted from one transverse strip to smother are indicated schematically by the rods located in the middle surface of the shell. In addition to the static hypothesis we introduce also geometric hypotheses. According to the latter the elongational deformations of the shell along lines parallel to the generator of its middle surface and the shear deformations in the middle surface, as ma+gitudes having . little effect on the state of the fundamental internal forces of the shell, are taken equal to zero. The deformations of the shell in our computational model are such that in the first place the lines of this surface perpendicular to the generator are inextensible at each point end in the second place the angles between the lines of principal curvature (the coordinate lines) which are straight before the deformation remain straight after the deformation.
Muscle anatomy and dynamic muscle function in osteogenesis imperfecta type I.
Veilleux, Louis-Nicolas; Lemay, Martin; Pouliot-Laforte, Annie; Cheung, Moira S; Glorieux, Francis H; Rauch, Frank
2014-02-01
Results of previous studies suggested that children and adolescents with osteogenesis imperfecta (OI) type I have a muscle force deficit. However, muscle function has only been assessed by static isometric force tests and not in more natural conditions such as dynamic force and power tests. The purpose of this study was to assess lower extremity dynamic muscle function and muscle anatomy in OI type I. The study was performed in the outpatient department of a pediatric orthopedic hospital. A total of 54 individuals with OI type I (6-21 years; 20 male) and 54 age- and sex-matched controls took part in this study. Calf muscle cross-sectional area and density were measured by peripheral quantitative computed tomography. Lower extremity muscle function (peak force per body weight and peak power per body mass) was measured by jumping mechanography through 5 tests: multiple two-legged hopping, multiple one-legged hopping, single two-legged jump, chair-rise test, and heel-rise test. Compared with age- and sex-matched controls, patients with OI type I had smaller muscle size (P = .04) but normal muscle density (P = .21). They also had lower average peak force and lower specific force (peak force/muscle cross-sectional area; all P < .008). Average peak power was lower in patients with OI type I but not significantly so (all P > .054). Children and adolescents with OI type I have, on average, a significant force deficit in the lower limb as measured by dynamic force tests. Nonetheless, these data also show that OI type I is compatible with normal muscle performance in some individuals.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m. Rocket...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m. Rocket...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m. Rocket...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m. Rocket...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m. Rocket...
Mouse forepaw lumbrical muscles are resistant to age-related declines in force production.
Russell, Katelyn A; Ng, Rainer; Faulkner, John A; Claflin, Dennis R; Mendias, Christopher L
2015-05-01
A progressive loss of skeletal muscle mass and force generating capacity occurs with aging. Mice are commonly used in the study of aging-associated changes in muscle size and strength, with most models of aging demonstrating 15-35% reductions in muscle mass, cross-sectional area (CSA), maximum isometric force production (Po) and specific force (sPo), which is Po/CSA. The lumbrical muscle of the mouse forepaw is exceptionally small, with corresponding short diffusion distances that make it ideal for in vitro pharmacological studies and measurements of contractile properties. However, the aging-associated changes in lumbrical function have not previously been reported. To address this, we tested the hypothesis that compared to adult (12month old) mice, the forepaw lumbrical muscles of old (30month old) mice exhibit aging-related declines in size and force production similar to those observed in larger limb muscles. We found that the forepaw lumbricals were composed exclusively of fibers with type II myosin heavy chain isoforms, and that the muscles accumulated connective tissue with aging. There were no differences in the number of fibers per whole-muscle cross-section or in muscle fiber CSA. The whole muscle CSA in old mice was increased by 17%, but the total CSA of all muscle fibers in a whole-muscle cross-section was not different. No difference in Po was observed, and while sPo normalized to total muscle CSA was decreased in old mice by 22%, normalizing Po by the total muscle fiber CSA resulted in no difference in sPo. Combined, these results indicate that forepaw lumbrical muscles from 30month old mice are largely protected from the aging-associated declines in size and force production that are typically observed in larger limb muscles. Copyright © 2015 Elsevier Inc. All rights reserved.
Hanes, Michael C; Weinzweig, Jeffrey; Kuzon, William M; Panter, Kip E; Buchman, Steven R; Faulkner, John A; Yu, Deborah; Cederna, Paul S; Larkin, Lisa M
2007-05-01
Analysis of the composition of muscle fibers constituent to a cleft palate could provide significant insight into the cause of velopharyngeal inadequacy. The authors hypothesized that levator veli palatini muscle dysfunction inherent to cleft palates could affect the timing and outcome of cleft palate repair. Single, permeabilized muscle fibers from levator veli palatini muscles of three normal (n = 19 fibers) and three chemically induced congenital cleft palates (n = 21 fibers) of 14-month-old goats were isolated, and contractile properties were evaluated. The maximum isometric force and rate constants of tension redevelopment (ktr) were measured, and the specific force and normalized power were calculated for each fiber. The ktr measures indicate that cleft fibers are predominantly fast-fatigable; normal fibers are slow fatigue-resistant: after a 10-minute isometric contraction, fibers from cleft palates had a loss of force 16 percent greater than that from normal palates (p = 0.0001). The cross-sectional areas of the fibers from cleft palates (2750 +/- 209 microm2) were greater (p = 0.05) than those from normal palates (2226 +/- 143 microm2). Specific forces did not differ between the two groups. Maximum normalized power of fibers from cleft palates (11.05 +/- 1.82 W/l) was greater (p = 0.0001) than fibers from normal palates (1.60 +/- 0.12 W/l). There are clear physiologic differences in single muscle fibers from cleft palates and normal palates: cleft palate fibers are physiologically fast, have greater fatigability, and have greater power production. Detection of functional and/or fiber type differences in muscles of cleft palates may provide preoperative identification of a patient's susceptibility to velopharyngeal inadequacy and permit early surgical intervention to correct this clinical condition.
Effects of exercise on biomechanical properties of the superficial digital flexor tendon in foals.
Cherdchutham, W; Meershoek, L S; van Weeren, P R; Barneveld, A
2001-12-01
To determine the effects of exercise on biomechanical properties of the superficial digital flexor tendon (SDFT) in foals. 43 Dutch Warmblood foals. From 1 week until 5 months of age, 14 foals were housed in stalls and not exercised, 14 foals were housed in stalls and exercised daily, and 15 foals were maintained at pasture. Eight foals in each group were euthanatized at 5 months, and remaining foals were housed together in a stall and paddock until euthanatized at 11 months. After euthanasia, SDFT were isolated and fit in a material testing system. Mean cross-sectional area (CSA) was measured and traction forces recorded. Normalized force at rupture (force(rup)), normalized force at 4% strain, strain at rupture, stress at 4% strain (stress(4%stain)), and stress at rupture were compared among and within groups. At 5 months, mean CSA and normalized force(rup) were significantly greater and stress(4%strain) significantly less in the pastured group, compared with the other groups. At 11 months, CSA and normalized force(rup) were not significantly different among groups, because force(rup) increased significantly from 5 to 11 months in the nonexercised group and decreased significantly in the pastured group. Exercise significantly affected the biomechanical properties of the SDFT in foals. Evenly distributed moderate- and low-intensity exercise at a young age may be more effective for development of strong, flexible tendons in horses than single episodes of high-intensity exercise superimposed on stall rest. This effect may impact later susceptibility to SDFT injury.
NASA Astrophysics Data System (ADS)
Nguyen, Son N.; Sontag, Ryan L.; Carson, James P.; Corley, Richard A.; Ansong, Charles; Laskin, Julia
2018-02-01
Constant mode ambient mass spectrometry imaging (MSI) of tissue sections with high lateral resolution of better than 10 μm was performed by combining shear force microscopy with nanospray desorption electrospray ionization (nano-DESI). Shear force microscopy enabled precise control of the distance between the sample and nano-DESI probe during MSI experiments and provided information on sample topography. Proof-of-concept experiments were performed using lung and brain tissue sections representing spongy and dense tissues, respectively. Topography images obtained using shear force microscopy were comparable to the results obtained using contact profilometry over the same region of the tissue section. Variations in tissue height were found to be dependent on the tissue type and were in the range of 0-5 μm for lung tissue and 0-3 μm for brain tissue sections. Ion images of phospholipids obtained in this study are in good agreement with literature data. Normalization of nano-DESI MSI images to the signal of the internal standard added to the extraction solvent allowed us to construct high-resolution ion images free of matrix effects.
NASA Astrophysics Data System (ADS)
Pirozzi, K. L.; Long, C. J.; McAleer, C. W.; Smith, A. S. T.; Hickman, J. J.
2013-08-01
Rigorous analysis of muscle function in in vitro systems is needed for both acute and chronic biomedical applications. Forces generated by skeletal myotubes on bio-microelectromechanical cantilevers were calculated using a modified version of Stoney's thin-film equation and finite element analysis (FEA), then analyzed for regression to physical parameters. The Stoney's equation results closely matched the more intensive FEA and the force correlated to cross-sectional area (CSA). Normalizing force to measured CSA significantly improved the statistical sensitivity and now allows for close comparison of in vitro data to in vivo measurements for applications in exercise physiology, robotics, and modeling neuromuscular diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Son N.; Sontag, Ryan L.; Carson, James P.
Constant mode ambient mass spectrometry imaging (MSI) of tissue sections with high lateral resolution of better than 10 µm was performed by combining shear force microscopy with nanospray desorption electrospray ionization (nano-DESI). Shear force microscopy enabled precise control of the distance between the sample and nano-DESI probe during MSI experiments and provided information on sample topography. Proof-of-concept experiments were performed using lung and brain tissue sections representing spongy and dense tissues, respectively. Topography images obtained using shear force microscopy were comparable to the results obtained using contact profilometry over the same region of the tissue section. Variations in tissue heightmore » were found to be dependent on the tissue type and were in the range of 0-5 µm for lung tissue and 0-3 µm for brain tissue sections. Ion images of phospholipids obtained in this study are in good agreement with literature data. Normalization of nano-DESI MSI images to the signal of the internal standard added to the extraction solvent allowed us to construct high-resolution ion images free of matrix effects.« less
Geologic Interpretation of Gravity Anomalies
1990-04-19
acts on the mass equal to one. The 3trength of the gravitational force is designated by letter g. For brevity it is usually called gravitational force...between centers of spherical bodies, and m and m, - their total masses. Let us designate total mass of Earth through M and its radius through R. The...those normal sections, which have at the particular point maximum and minimum curvature (by precisely this fact it is explained designation of
Assessment of the Contractile Properties of Permeabilized Skeletal Muscle Fibers.
Claflin, Dennis R; Roche, Stuart M; Gumucio, Jonathan P; Mendias, Christopher L; Brooks, Susan V
2016-01-01
Permeabilized individual skeletal muscle fibers offer the opportunity to evaluate contractile behavior in a system that is greatly simplified, yet physiologically relevant. Here we describe the steps required to prepare, permeabilize and preserve small samples of skeletal muscle. We then detail the procedures used to isolate individual fiber segments and attach them to an experimental apparatus for the purpose of controlling activation and measuring force generation. We also describe our technique for estimating the cross-sectional area of fiber segments. The area measurement is necessary for normalizing the absolute force to obtain specific force, a measure of the intrinsic force-generating capability of the contractile system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false General. 25.321 Section 25.321 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... represent the ratio of the aerodynamic force component (acting normal to the assumed longitudinal axis of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false General. 25.321 Section 25.321 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... represent the ratio of the aerodynamic force component (acting normal to the assumed longitudinal axis of...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false General. 23.321 Section 23.321 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... General. (a) Flight load factors represent the ratio of the aerodynamic force component (acting normal to...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false General. 25.321 Section 25.321 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... represent the ratio of the aerodynamic force component (acting normal to the assumed longitudinal axis of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false General. 25.321 Section 25.321 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... represent the ratio of the aerodynamic force component (acting normal to the assumed longitudinal axis of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false General. 23.321 Section 23.321 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... General. (a) Flight load factors represent the ratio of the aerodynamic force component (acting normal to...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false General. 23.321 Section 23.321 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... General. (a) Flight load factors represent the ratio of the aerodynamic force component (acting normal to...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false General. 25.321 Section 25.321 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... represent the ratio of the aerodynamic force component (acting normal to the assumed longitudinal axis of...
14 CFR 27.151 - Flight controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flight controls. 27.151 Section 27.151... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Flight Characteristics § 27.151 Flight controls. (a) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...
Factors that influence muscle shear modulus during passive stretch.
Koo, Terry K; Hug, François
2015-09-18
Although elastography has been increasingly used for evaluating muscle shear modulus associated with age, sex, musculoskeletal, and neurological conditions, its physiological meaning is largely unknown. This knowledge gap may hinder data interpretation, limiting the potential of using elastography to gain insights into muscle biomechanics in health and disease. We derived a mathematical model from a widely-accepted Hill-type passive force-length relationship to gain insight about the physiological meaning of resting shear modulus of skeletal muscles under passive stretching, and validated the model by comparing against the ex-vivo animal data reported in our recent work (Koo et al. 2013). The model suggested that resting shear modulus of a slack muscle is a function of specific tension and parameters that govern the normalized passive muscle force-length relationship as well as the degree of muscle anisotropy. The model also suggested that although the slope of the linear shear modulus-passive force relationship is primarily related to muscle anatomical cross-sectional area (i.e. the smaller the muscle cross-sectional area, the more the increase in shear modulus to result in the same passive muscle force), it is also governed by the normalized passive muscle force-length relationship and the degree of muscle anisotropy. Taken together, although muscle shear modulus under passive stretching has a strong linear relationship with passive muscle force, its actual value appears to be affected by muscle's mechanical, material, and architectural properties. This should be taken into consideration when interpreting the muscle shear modulus values. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aradya, Anupama; Kumar, U Krishna; Chowdhary, Ramesh
2016-01-01
The study was designed to evaluate and compare stress distribution in transcortical section of bone with normal abutment and platform switched abutment under vertical and oblique forces in posterior mandible region. A three-dimensional finite element model was designed using ANSYS 13.0 software. The type of bone selection for the model was made of type II mandibular bone, having cortical bone thickness ranging from 0.595 mm to 1.515 mm with the crestal region measuring 1.5 mm surrounding dense trabecular bone. The implant will be modulated at 5 mm restorative platform and tapering down to 4.5 mm wide at the threads, 13 mm long with an abutment 3 mm in height. The models will be designed for two situations: (1) An implant with a 5 mm diameter abutment representing a standard platform in the posterior mandible region. (2) An implant with a 4.5 mm diameter abutment representing platform switching in the posterior mandible region. Force application was performed in both oblique and vertical conditions using 100 N as a representative masticatory force. For oblique loading, a force of 100 N was applied at 15° from the vertical axis. von Mises stress analysis was evaluated. The results of the study showed cortical stress in the conventional and platform switching model under oblique forces were 59.329 MPa and 39.952 MPa, respectively. Cortical stress in the conventional and platform switching model under vertical forces was 13.914 MPa and 12.793 MPa, respectively. Results from this study showed the platform switched abutment led to relative decrease in von Mises stress in transcortical section of bone compared to normal abutment under vertical and oblique forces in posterior mandible region.
Coupled vibrations of rectangular buildings subjected to normally-incident random wind loads
Safak, E.; Foutch, D.A.
1987-01-01
A method for analyzing the three-directional coupled dynamic response of wind-excited buildings is presented. The method is based on a random vibration concept and is parallel to those currently used for analyzing alongwind response. Only the buildings with rectangular cross-section and normally-incident wind are considered. The alongwind pressures and their correlations are represented by the well-known expressions that are available in the literature. The acrosswind forces are assumed to be mainly due to vortex shedding. The torque acting on the building is taken as the sum of the torque due to random alongwind forces plus the torque due to asymmetric acrosswind forces. The study shows the following: (1) amplitude of acrosswind vibrations can be several times greater than that of alongwind vibrations; (2) torsional vibrations are significant if the building has large frontal width, and/or it is asymmetric, and/or its torsional natural frequency is low; (3) even a perfectly symmetric structure with normally incident wind can experience significant torsional vibrations due to the randomness of wind pressures. ?? 1987.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Trim control. 27.161 Section 27.161... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Flight Characteristics § 27.161 Trim control. The trim control— (a) Must trim any steady longitudinal, lateral, and collective control forces to zero in level flight...
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.
1977-01-01
An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. The angles of attack extend from 0 deg to 180 deg for M = 2.9 from 0 deg to 60 deg for M = 0.6 to 2.0. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 deg to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. Vapor-screen and oil-flow pictures are shown for many body, body-wing and body-wing-tail configurations. When spearation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).
Cutting work in thick section cryomicrotomy.
Saubermann, A J; Riley, W D; Beeuwkes, R
1977-09-01
The forces during cryosectioning were measured using miniature strain gauges attached to a load cell fitted to the drive arm of the Porter-Blum MT-2 cryomicrotome. Work was calculated and the data normalized to a standard (1 mm X 1 mm X 0.5 micrometer) section. Thermal energy generated was also calculated. Five parameters were studied: cutting angle, thickness, temperature, hardness, and block shape. Force patterns could be divided into three major groups thought to represent cutting (Type I), large fracture planes greater than 10 micrometer in length (Type II), and small fracture planes less than 10 micrometer in length (Type III). Type I and Type II produced satisfactory sections. Work in cutting ranged from an average of 78.4 muJ to 568.8 muJ. Cutting angle and temperature had the greatest effect on sectioning. Heat generated would be sufficient to cause through-section melting for 0.5 micrometer thick sections assuming the worst possible case, namely that all heat went into the section without loss. Presence of a Type II pattern (large fracture pattern) is thought to be presumptive evidence against thawing.
Calibration Variable Selection and Natural Zero Determination for Semispan and Canard Balances
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert M.
2013-01-01
Independent calibration variables for the characterization of semispan and canard wind tunnel balances are discussed. It is shown that the variable selection for a semispan balance is determined by the location of the resultant normal and axial forces that act on the balance. These two forces are the first and second calibration variable. The pitching moment becomes the third calibration variable after the normal and axial forces are shifted to the pitch axis of the balance. Two geometric distances, i.e., the rolling and yawing moment arms, are the fourth and fifth calibration variable. They are traditionally substituted by corresponding moments to simplify the use of calibration data during a wind tunnel test. A canard balance is related to a semispan balance. It also only measures loads on one half of a lifting surface. However, the axial force and yawing moment are of no interest to users of a canard balance. Therefore, its calibration variable set is reduced to the normal force, pitching moment, and rolling moment. The combined load diagrams of the rolling and yawing moment for a semispan balance are discussed. They may be used to illustrate connections between the wind tunnel model geometry, the test section size, and the calibration load schedule. Then, methods are reviewed that may be used to obtain the natural zeros of a semispan or canard balance. In addition, characteristics of three semispan balance calibration rigs are discussed. Finally, basic requirements for a full characterization of a semispan balance are reviewed.
NASA Technical Reports Server (NTRS)
Noonan, K. W.; Bingham, G. J.
1980-01-01
An investigation was conducted in the Langely 6 by 28 inch transonic tunnel to determine the two dimensional aerodynamic characteristics of three helicopter rotor airfoils at Reynolds numbers from typical model scale to full scale at Mach numbers from about 0.35 to 0.90. The model scale Reynolds numbers ranged from about 700,00 to 1,500,000 and the full scale Reynolds numbers ranged from about 3,000,000 to 6,600,000. The airfoils tested were the NACA 0012 (0 deg Tab), the SC 1095 R8, and the SC 1095. Both the SC 1095 and the SC 1095 R8 airfoils had trailing edge tabs. The results of this investigation indicate that Reynolds number effects can be significant on the maximum normal force coefficient and all drag related parameters; namely, drag at zero normal force, maximum normal force drag ratio, and drag divergence Mach number. The increments in these parameters at a given Mach number owing to the model scale to full scale Reynolds number change are different for each of the airfoils.
Effect of Full-Chord Porosity on Aerodynamic Characteristics of the NACA 0012 Airfoil
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Hartwich, Peter M.
1996-01-01
A test was conducted on a model of the NACA 0012 airfoil section with a solid upper surface or a porous upper surface with a cavity beneath for passive venting. The purposes of the test were to investigate the aerodynamic characteristics of an airfoil with full-chord porosity and to assess the ability of porosity to provide a multipoint or self-adaptive design. The tests were conducted in the Langley 8-Foot Transonic Pressure Tunnel over a Mach number range from 0.50 to 0.82 at chord Reynolds numbers of 2 x 10(exp 6), 4 x 10(exp 6), and 6 x 10(exp 6). The angle of attack was varied from -1 deg to 6 deg. At the lower Mach numbers, porosity leads to a dependence of the drag on the normal force. At subcritical conditions, porosity tends to flatten the pressure distribution, which reduces the suction peak near the leading edge and increases the suction over the middle of the chord. At supercritical conditions, the compression region on the porous upper surface is spread over a longer portion of the chord. In all cases, the pressure coefficient in the cavity beneath the porous surface is fairly constant with a very small increase over the rear portion. For the porous upper surface, the trailing edge pressure coefficients exhibit a creep at the lower section normal force coefficients, which suggests that the boundary layer on the rear portion of the airfoil is significantly thickening with increasing normal force coefficient.
The Comfortable Roller Coaster--on the Shape of Tracks with a Constant Normal Force
ERIC Educational Resources Information Center
Nordmark, Arne B.; Essen, Hanno
2010-01-01
A particle that moves along a smooth track in a vertical plane is influenced by two forces: gravity and normal force. The force experienced by roller coaster riders is the normal force, so a natural question to ask is, what shape of the track gives a normal force of constant magnitude? Here we solve this problem. It turns out that the solution is…
NASA Technical Reports Server (NTRS)
Sawyer, Richard H.; Trant, James P., Jr.
1947-01-01
An investigation was made by the NACA wing-flow method to determine the longitudinal stability and control characteristics at transonic speeds of a semispan model of the XF7U-1 tailless airplane. The 25-percent chord line of the wing of the model was swept back 35 deg. The airfoil sections of the wing perpendicular to the 25-percent chord line were 12 percent thick. Measurements were made of the normal force and pitching moment through an angle-of-attack range from about -3 deg to 14 deg for several ailavator deflections at Mach numbers from 0.65 to about 1.08. The results of the tests indicated no adverse effects of compressibility up to a Mach number of at least 0.85 at low normal-force coefficients and small ailavator deflections. Up to a Mach number of 0.85, the neutral point at low normal-force coefficients was at about 25 percent of the mean aerodynamic chord and moved rearward irregularly to 41 or 42 percent with a further increase in Mach number to about 1.05. For deflections up to -8.0 percent, the ailavator was effective in changing the pitching moment except at Mach numbers from 0.93 to about 1.0 where ineffectiveness or reversal was indicated for deflections and normal-force coefficients. With -13.2 deg deflection at normal-force coefficients above about 0.3, reversal of ailavator effectiveness occurred at Mach numbers as low as 0.81. A nose-down trim change, which began at a Mach number of about 0.85, together with the loss in effectiveness of the ailavator, indicated that with increase in the Mach number from about 0.95 to 1.05 an abrupt ailavator movement of 5 deg or 6 deg first up and then down would be required to maintain level flight.
Wind-tunnel test results of airfoil modifications for the EA-6B
NASA Technical Reports Server (NTRS)
Sewall, W. G.; Mcghee, R. J.; Ferris, J. C.
1987-01-01
Wind-tunnel tests have been conducted (to determine the effects on airfoil performance for several airfoil modifications) for the EA-6B Wing Improvement Program. The modifications consist of contour changes to the leading-edge slat and trailing-edge flap to provide a higher low-speed maximum lift with no high-speed cruise-drag penalty. Airfoil sections from the 28- and 76-percent span stations were selected as baseline shapes with the major testing devoted to the inboard airfoil section (28-percent span station). The airfoil modifications increased the low-speed maximum lift coefficient between 20 and 35 percent over test conditions of 3 to 14 million chord Reynolds number and 0.14 to 0.34 Mach number. At the high-speed test conditions of 0.4 to 0.80 Mach number and 10 million chord Reynolds number, the modified airfoils had either matched or had lower drag coefficients for all normal-force coefficients above 0.2 as compared to the baseline airfoil. At normal-force coefficients less than 0.2, the baseline (original) airfoil had lower drag coefficients than any of the modified airfoils.
Transonic aerodynamic characteristics of the 10-percent-thick NASA supercritical airfoil 31
NASA Technical Reports Server (NTRS)
Harris, C. D.
1975-01-01
Refinements in a 10 percent thick supercritical airfoil (airfoil 31) have produced significant improvements in the drag characteristics compared with those for an earlier supercritical airfoil (airfoil 12) designed for the same normal force coefficient of 0.7. Drag creep was practically eliminated at normal force coefficients between about 0.4 and 0.7 and was greatly reduced at other normal force coefficients. Substantial reductions in the drag levels preceding drag divergence were also achieved at all normal force coefficients. The Mach numbers at which drag diverges were delayed for airfoil 31 at normal force coefficients up to about 0.6 (by approximately 0.01 and 0.02 at normal force coefficients of 0.4 and 0.6, respectively) but drag divergence occurred at slightly lower Mach numbers at higher normal force coefficients.
Force of resistance to pipeline pulling in plane and volumetrically curved wells
NASA Astrophysics Data System (ADS)
Toropov, V. S.; Toropov, S. Yu; Toropov, E. S.
2018-05-01
A method has been developed for calculating the component of the pulling force of a pipeline, arising from the well curvature in one or several planes, with the assumption that the pipeline is ballasted by filling with water or otherwise until zero buoyancy in the drilling mud is reached. This paper shows that when calculating this force, one can neglect the effect of sections with zero curvature. In the other case, if buoyancy of the pipeline is other than zero, the resistance force in the curvilinear sections should be calculated taking into account the difference between the normal components of the buoyancy force and weight. In the paper, it is proved that without taking into account resistance forces from the viscosity of the drilling mud, if buoyancy of the pipeline is zero, the total resistance force is independent of the length of the pipe and is determined by the angle equal to the sum of the entry angle and the exit angle of the pipeline to the day surface. For the case of the well curvature in several planes, it is proposed to perform the calculation of such volumetrically curved well by the central angle of the well profile. Analytical dependences are obtained that allow calculating the pulling force for well profiles with a variable curvature radius, i.e. at different angles of deviation between the drill pipes along the well profile.
Normal force and drag force in magnetorheological finishing
NASA Astrophysics Data System (ADS)
Miao, Chunlin; Shafrir, Shai N.; Lambropoulos, John C.; Jacobs, Stephen D.
2009-08-01
The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, λ, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials including optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low "coefficient of friction". The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.
Normal Force and Drag Force in Magnetorheological Finishing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.
2010-01-13
The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, tau, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials includingmore » optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low “coefficient of friction”. The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.« less
NASA Technical Reports Server (NTRS)
Keener, E. R.; Chapman, G. T.; Taleghani, J.; Cohen, L.
1977-01-01
An experimental investigation was conducted in the Ames 12-Foot Wind Tunnel to determine the subsonic aerodynamic characteristics of four forebodies at high angles of attack. The forebodies tested were a tangent ogive with fineness ratio of 5, a paraboloid with fineness ratio of 3.5, a 20 deg cone, and a tangent ogive with an elliptic cross section. The investigation included the effects of nose bluntness and boundary-layer trips. The tangent-ogive forebody was also tested in the presence of a short afterbody and with the afterbody attached. Static longitudinal and lateral/directional stability data were obtained. The investigation was conducted to investigate the existence of large side forces and yawing moments at high angles of attack and zero sideslip. It was found that all of the forebodies experience steady side forces that start at angles of attack of from 20 deg to 35 deg and exist to as high as 80 deg, depending on forebody shape. The side is as large as 1.6 times the normal force and is generally repeatable with increasing and decreasing angle of attack and, also, from test to test. The side force is very sensitive to the nature of the boundary layer, as indicated by large changes with boundary trips. The maximum side force caries considerably with Reynolds number and tends to decrease with increasing Mach number. The direction of the side force is sensitive to the body geometry near the nose. The angle of attack of onset of side force is not strongly influenced by Reynolds number or Mach number but varies with forebody shape. Maximum normal force often occurs at angles of attack near 60 deg. The effect of the elliptic cross section is to reduce the angle of onset by about 10 deg compared to that of an equivalent circular forebody with the same fineness ratio. The short afterbody reduces the angle of onset by about 5 deg.
Measurement of Maximum Isometric Force Generated by Permeabilized Skeletal Muscle Fibers.
Roche, Stuart M; Gumucio, Jonathan P; Brooks, Susan V; Mendias, Christopher L; Claflin, Dennis R
2015-06-16
Analysis of the contractile properties of chemically skinned, or permeabilized, skeletal muscle fibers offers a powerful means by which to assess muscle function at the level of the single muscle cell. Single muscle fiber studies are useful in both basic science and clinical studies. For basic studies, single muscle fiber contractility measurements allow investigation of fundamental mechanisms of force production, and analysis of muscle function in the context of genetic manipulations. Clinically, single muscle fiber studies provide useful insight into the impact of injury and disease on muscle function, and may be used to guide the understanding of muscular pathologies. In this video article we outline the steps required to prepare and isolate an individual skeletal muscle fiber segment, attach it to force-measuring apparatus, activate it to produce maximum isometric force, and estimate its cross-sectional area for the purpose of normalizing the force produced.
Comparisons Between Experimental and Semi-theoretical Cutting Forces of CCS Disc Cutters
NASA Astrophysics Data System (ADS)
Xia, Yimin; Guo, Ben; Tan, Qing; Zhang, Xuhui; Lan, Hao; Ji, Zhiyong
2018-05-01
This paper focuses on comparisons between the experimental and semi-theoretical forces of CCS disc cutters acting on different rocks. The experimental forces obtained from LCM tests were used to evaluate the prediction accuracy of a semi-theoretical CSM model. The results show that the CSM model reliably predicts the normal forces acting on red sandstone and granite, but underestimates the normal forces acting on marble. Some additional LCM test data from the literature were collected to further explore the ability of the CSM model to predict the normal forces acting on rocks of different strengths. The CSM model underestimates the normal forces acting on soft rocks, semi-hard rocks and hard rocks by approximately 38, 38 and 10%, respectively, but very accurately predicts those acting on very hard and extremely hard rocks. A calibration factor is introduced to modify the normal forces estimated by the CSM model. The overall trend of the calibration factor is characterized by an exponential decrease with increasing rock uniaxial compressive strength. The mean fitting ratios between the normal forces estimated by the modified CSM model and the experimental normal forces acting on soft rocks, semi-hard rocks and hard rocks are 1.076, 0.879 and 1.013, respectively. The results indicate that the prediction accuracy and the reliability of the CSM model have been improved.
Specific force of the vastus lateralis in adults with achondroplasia.
Sims, David T; Onambélé-Pearson, Gladys L; Burden, Adrian; Payton, Carl; Morse, Christopher I
2018-03-01
Achondroplasia is a clinical condition defined by shorter stature and disproportionate limb length. Force production in able-bodied individuals (controls) is proportional to muscle size, but given the disproportionate nature of achondroplasia, normalizing to anatomical cross-sectional area (ACSA) is inappropriate. The aim of this study was to assess specific force of the vastus lateralis (VL) in 10 adults with achondroplasia (22 ± 3 yr) and 18 sex-matched controls (22 ± 2 yr). Isometric torque (iMVCτ) of the dominant knee extensors (KE) and in vivo measures of VL muscle architecture, volume, activation, and patella tendon moment arm were used to calculate VL physiological CSA (PCSA), fascicle force, and specific force in both groups. Achondroplasic muscle volume was 53% smaller than controls (284 ± 36 vs. 604 ± 102 cm 3 , P < 0.001). KE iMVCτ was 63% lower in achondroplasia compared with controls (95 ± 24 vs. 256 ± 47 N⋅m, P < 0.001). Activation and moment arm length were similar between groups ( P > 0.05), but coactivation of bicep femoris of achondroplasic subjects was 70% more than controls (43 ± 20 vs. 13 ± 5%, P < 0.001). Achondroplasic subjects had 58% less PCSA (43 ± 10 vs. 74.7 ± 14 cm 2 , P < 0.001), 29% lower fascicle force (702 ± 235 vs. 1704 ± 303 N, P < 0.001), and 29% lower specific force than control subjects (17 ± 6 vs. 24 ± 6 N⋅cm -2 , P = 0.012). The smaller VL specific force in achondroplasia may be attributed to infiltration of fat and connective tissue, rather than to any difference in myofilament function. NEW & NOTEWORTHY The novel observation of this study was the measurement of normalized force production in a group of individuals with disproportionate limb length-to-torso ratios.
Marcott, Curtis; Lo, Michael; Kjoller, Kevin; Domanov, Yegor; Balooch, Guive; Luengo, Gustavo S
2013-06-01
An atomic force microscope (AFM) and a tunable infrared (IR) laser source have been combined in a single instrument (AFM-IR) capable of producing ~200-nm spatial resolution IR spectra and absorption images. This new capability enables IR spectroscopic characterization of human stratum corneum at unprecendented levels. Samples of normal and delipidized stratum corneum were embedded, cross-sectioned and mounted on ZnSe prisms. A pulsed tunable IR laser source produces thermomechanical expansion upon absorption, which is detected through excitation of contact resonance modes in the AFM cantilever. In addition to reducing the total lipid content, the delipidization process damages the stratum corneum morphological structure. The delipidized stratum corneum shows substantially less long-chain CH2 -stretching IR absorption band intensity than normal skin. AFM-IR images that compare absorbances at 2930/cm (lipid) and 3290/cm (keratin) suggest that regions of higher lipid concentration are located at the perimeter of corneocytes in the normal stratum corneum. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Pre-Test Assessment of the Use Envelope of the Normal Force of a Wind Tunnel Strain-Gage Balance
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2016-01-01
The relationship between the aerodynamic lift force generated by a wind tunnel model, the model weight, and the measured normal force of a strain-gage balance is investigated to better understand the expected use envelope of the normal force during a wind tunnel test. First, the fundamental relationship between normal force, model weight, lift curve slope, model reference area, dynamic pressure, and angle of attack is derived. Then, based on this fundamental relationship, the use envelope of a balance is examined for four typical wind tunnel test cases. The first case looks at the use envelope of the normal force during the test of a light wind tunnel model at high subsonic Mach numbers. The second case examines the use envelope of the normal force during the test of a heavy wind tunnel model in an atmospheric low-speed facility. The third case reviews the use envelope of the normal force during the test of a floor-mounted semi-span model. The fourth case discusses the normal force characteristics during the test of a rotated full-span model. The wind tunnel model's lift-to-weight ratio is introduced as a new parameter that may be used for a quick pre-test assessment of the use envelope of the normal force of a balance. The parameter is derived as a function of the lift coefficient, the dimensionless dynamic pressure, and the dimensionless model weight. Lower and upper bounds of the use envelope of a balance are defined using the model's lift-to-weight ratio. Finally, data from a pressurized wind tunnel is used to illustrate both application and interpretation of the model's lift-to-weight ratio.
Chiu, Haw-Yen; Hsu, Hsiu-Yun; Su, Fong-Chin; Jou, I-Ming; Lin, Cheng-Feng; Kuo, Li-Chieh
2013-02-01
Biofeedback training is widely used for rehabilitative intervention in patients with central or peripheral nervous impairment to train correct movement patterns; however, no biofeedback apparatus is currently available to correct pinch force ratios for patients with sensory deficiencies. A cross-sectional and longitudinal design was used in an observational measurement study for establishing a prototype and to determine the effects of biofeedback intervention, respectively. This study aimed to develop a computerized evaluation and re-education biofeedback (CERB) prototype for application in clinical settings. A CERB prototype was developed integrating pinch apparatus hardware, a biofeedback user-controlled interface, and a data processing/analysis interface to detect momentary pinch performances in 79 people with normal hand sensation. Nine patients with hand sensory impairments were recruited to investigate the effects of training hand function with the CERB prototype. Hand dominance, pinch pattern, and age significantly affected the peak pinch force and force ratio for lifting a 480-g object with a steel surface. In the case of the 79 volunteers with normal hand sensation, hand dominance affected the time lag between peak pinch force and maximum load; however, it was unaffected by pinch pattern or age. Training with the CERB prototype produced significant improvements in force ratio and better performance in the pin insertion subtests, although the results for both 2-point discriminative and Semmes-Weinstein monofilament tests did not change significantly. The intervention findings are preliminary. This study developed a conjunct system suited for evaluating and restoring sensorimotor function for patients with impaired hand sensibility. The results from the participants with normal hand sensation could serve as a reference database for comparison with patients with nerve injuries.
Zahed, Nargesosadat; Chehrazi, Saghar; Falaknasi, Kianosh
2014-09-01
Muscle force of lower limb is a major factor for sustaining physical activity. Decreased muscle force can limit physical activity, which can increase mortality and morbidity in end-stage renal disease (ESRD) patients. Muscle force depends on several factors. One of the most important factors is 25-hydroxy vitamin D (25-OHD) that affects muscle function in both uremic and non-uremic patients. The aim of this study was to investigate the association between serum level of 25-OHD and muscle force of lower extremities in hemodialysis patients estimated by a Micro Manual Muscle Tester, a digital instrument that measures muscle force in kilograms This cross-sectional study was performed on 135 adult patients, 69 male (51%) and 66 female (69%) (mean: 1.4, standard deviation: 0.5), undergoing hemodialysis. Standard biochemistry parameters were measured before hemodialysis, including 25-OHD, calcium, albumin, para-hyroid hormone and C-reactive protein (CRP). Based on the result of serum level of 25-OHD, patients were classified into the following three groups: 85 patients (63%) were 25-OHD deficient (25-OHD <30), 43 patients (32%) had a normal level of 25-OHD (30-70) and seven patients (5%) had a toxic level of 25-OHD (>70) (mean: 1.42, standard deviation: 0.59). Also, based on the result of muscle force, patients were classified into the following three groups: 84/133 patients (62%) had weak muscle force (<5 kg), 46/133 patients (34%) had normal muscle force (5-10 kg) and three patients (21%) had strong muscle force (>10 kg) (mean: 1.39, standard deviation: 0.53). There was a significant relation between 25-OHD level and muscle force (P = 0.02), between age and muscle force (P = 0.002) and between gender and muscle force (P <0.001). In our opinion, 25-OHD can be a useful drug in ESRD patients to improve muscle force and physical activity.
NASA Astrophysics Data System (ADS)
Zhao, Weidong; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda
2013-03-01
The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells.The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c3nr00553d
Method of sections in analytical calculations of pneumatic tires
NASA Astrophysics Data System (ADS)
Tarasov, V. N.; Boyarkina, I. V.
2018-01-01
Analytical calculations in the pneumatic tire theory are more preferable in comparison with experimental methods. The method of section of a pneumatic tire shell allows to obtain equations of intensities of internal forces in carcass elements and bead rings. Analytical dependencies of intensity of distributed forces have been obtained in tire equator points, on side walls (poles) and pneumatic tire bead rings. Along with planes in the capacity of secant surfaces cylindrical surfaces are used for the first time together with secant planes. The tire capacity equation has been obtained using the method of section, by means of which a contact body is cut off from the tire carcass along the contact perimeter by the surface which is normal to the bearing surface. It has been established that the Laplace equation for the solution of tasks of this class of pneumatic tires contains two unknown values that requires the generation of additional equations. The developed computational schemes of pneumatic tire sections and new equations allow to accelerate the pneumatic tire structure improvement process during engineering.
Contribution of three nucleon force investigated in deuteron-proton breakup reaction
NASA Astrophysics Data System (ADS)
Parol, W.; Kozela, A.; Ciepał, I.; Bodek, K.; Jamroz, B.; Kalantar-Nayestanaki, N.; Khatri, G.; Kistryn, St.; Kłos, B.; Kuboś, J.; Kulessa, P.; Magiera, A.; Mazumdar, I.; Messchendorp, J. G.; Rozpędzik, D.; Rusnok, A.; Skwira-Chalot, I.; Stephan, E.; Wilczek, A.; Włoch, B.; Wrońska, A.; Zejma, J.
2016-11-01
The elastic scattering and deuteron breakup data were collected in the experiment performed at KVI (Groningen) with use of unpolarized deuteron beam with energy of 80 MeV per nucleon, impinging on hydrogen target. The procedure applied to determine total integrated luminosity is presented. The result will be used for normalization of the differential cross section for the deuteron-proton breakup reaction.
Full-Scale Wind Tunnel Test of the UH-60A Airloads Rotor
2011-05-01
moment M 2 cn section normal force Mtip hover tip Mach number r radial coordinate, ft R blade radius, ft !c corrected shaft angle, positive aft, deg...s geometric shaft angle, positive aft, deg µ advance ratio Presented at the American...nine radial stations. These data, in combination with other measured parameters (structural loads, control positions, and rotor shaft moments), have
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Nelson, E. R.
1975-01-01
An experimental investigation was conducted to measure the static aerodynamic characteristics for two bodies of elliptic cross section and for their equivalent body of revolution. The equivalent body of revolution had the same length and axial distribution of cross-sectional area as the elliptic bodies. It consisted of a tangent ogive nose of fineness ratio 3 followed by a cylinder with a fineness ratio of 7. All bodies were tested at Mach numbers of 0.6, 0.9, 1.2, 1.5, and 2.0 at angles of attack from 0 deg to 58 deg. The data demonstrate that the aerodynamic characteristics can be significantly altered by changing the body cross section from circular to elliptic and by rolling the body from 0 deg to 90 deg. For example, the first elliptic body (with a constant cross-sectional axis ratio of 2) developed at zero roll about twice the normal force developed by the equivalent body of revolution. At some angles of attack greater than about 25 deg, side forces and yawing moments were measured in spite of the fact that the bodies were tested at zero angle of sideslip. The side-force and yawing-moment coefficients decreased with an increase in Mach number and essentially disappeared for all the bodies at Mach numbers greater than 1.2. From the standpoint of reducing undesirable side forces at high angles of attack, it is best to have the flattest side of the nose of the elliptic bodies pitching against the stream crossflow. The effect of Reynolds number was also the least significant for both elliptic bodies when the flattest side of the nose was pitched against the stream crossflow.
Forced Normalization: Antagonism Between Epilepsy and Psychosis.
Kawakami, Yasuhiko; Itoh, Yasuhiko
2017-05-01
The antagonism between epilepsy and psychosis has been discussed for a long time. Landolt coined the term "forced normalization" in the 1950s to describe psychotic episodes associated with the remission of seizures and disappearance of epileptiform activity on electroencephalograms in individuals with epilepsy. Since then, neurologists and psychiatrists have been intrigued by this phenomenon. However, although collaborative clinical studies and basic experimental researches have been performed, the mechanism of forced normalization remains unknown. In this review article, we present a historical overview of the concept of forced normalization, and discuss potential pathogenic mechanisms and clinical diagnosis. We also discuss the role of dopamine, which appears to be a key factor in the mechanism of forced normalization. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Harris, C. D.
1975-01-01
A 10-percent-thick supercritical airfoil based on an off-design sonic-pressure plateau criterion was developed and experimental aerodynamic characteristics measured. The airfoil had a design normal-force coefficient of 0.7 and was identified as supercritical airfoil 33. Results show the airfoil to have good drag rise characteristics over a wide range of normal-force coefficients with no measurable shock losses up to the Mach numbers at which drag divergence occurred for normal-force coefficients up to 0.7. Comparisons of experimental and theoretical characteristics were made and composite drag rise characteristics were derived for normal-force coefficients of 0.5 and 0.7 and a Reynolds number of 40 million.
Sartori, Pablo; Geyer, Veikko F; Scholich, Andre; Jülicher, Frank; Howard, Jonathon
2016-01-01
Cilia and flagella are model systems for studying how mechanical forces control morphology. The periodic bending motion of cilia and flagella is thought to arise from mechanical feedback: dynein motors generate sliding forces that bend the flagellum, and bending leads to deformations and stresses, which feed back and regulate the motors. Three alternative feedback mechanisms have been proposed: regulation by the sliding forces, regulation by the curvature of the flagellum, and regulation by the normal forces that deform the cross-section of the flagellum. In this work, we combined theoretical and experimental approaches to show that the curvature control mechanism is the one that accords best with the bending waveforms of Chlamydomonas flagella. We make the surprising prediction that the motors respond to the time derivative of curvature, rather than curvature itself, hinting at an adaptation mechanism controlling the flagellar beat. DOI: http://dx.doi.org/10.7554/eLife.13258.001 PMID:27166516
Measuring Rock-Fluid Adhesion Directly
NASA Astrophysics Data System (ADS)
Tadmor, R.
2017-12-01
We show how to measure directly solid-liquid adhesion. We consider the normal adhesion, the work adhesion, and the lateral adhesion. The technique at the center of the method is Centrifugal Adhesion Balance (CAB) which allows coordinated manipulation of normal and lateral forces. For example: 1. It allows to induce an increase in the normal force which pulls on a liquid drop while keeping zero lateral force. This method mimics a drop that is subjected to a gravitational force that is gradually increasing. 2. It allows to increase the lateral force at zero normal force, mimicking zero gravity. From this one can obtain additional solid-liquid interaction parameters. When performing work of adhesion measurements, the values obtained are independent of drop size and are in agreement with theoretical predictions.
NASA Technical Reports Server (NTRS)
Abbott, Ira H
1942-01-01
Wing pressure distribution diagrams for several angles of attack and flap deflections of 0 degrees, 20 degrees, and 40 degrees are presented. The normal force coefficients agree with lift coefficients obtained in previous test of the same model, except for the maximum lifts with flap deflection. Pressure distribution measurements were made at Reynolds Number of about 6,000,000.
1980-11-01
act in the sense displayed in Figure 17 of Volume II. All moments are about the store moment center COMMON /ONE/ DELTP(250),FN(250), PNLC (250),SWPPLE...linear loading pressure coefficient of Jth u-velocity panel FN(J) normal force divided by q for Jth u-velocity panel PNLC (J) panel chord through control
NASA Technical Reports Server (NTRS)
Ferris, J. C.
1973-01-01
The Langley 8-foot transonic pressure tunnel to determine the wing chordwise pressure distribution for a 0.09-scale model of a research airplane incorporating a 17-percent-thick supercritical wing. Airfoil profile drag was determined from wake pressure measurements at the 42-percent-semispan wing station. The investigation was conducted at Mach numbers from 0.30 to 0.80 over an angle-of-attack range sufficient to include buffet onset. The Reynolds number based on the mean geometric chord varied from 2 x 10 to the 6th power at Mach number 0.30 to 3.33 x 10 to the 6th power at Mach number 0.65 and was maintained at a constant value of 3.86 x 10 to the 6th power at Mach numbers from 0.70 to 0.80. Pressure coefficients for four wing semispan stations and wing-section normal-force and pitching-moment coefficients for two semispan stations are presented in tabular form over the Mach number range from 0.30 to 0.80. Plotted chordwise pressure distributions and wake profiles are given for a selected range of section normal-force coefficients over the same Mach number range.
Assessment of Comprehensive Analysis Calculation of Airloads on Helicopter Rotors
NASA Technical Reports Server (NTRS)
Yeo, Hyeonsoo; Johnson, Wayne
2004-01-01
Blade section normal force and pitching moment were investigated for six rotors operating at transition and high speeds: H-34 in flight and wind tunnel, SA 330 (research Puma), SA 349/2, UH-60A full-scale and BO-105 model (HART-I). The measured data from flight and wind tunnel tests were compared with calculations obtained using the comprehensive analysis CAMRAD II. The calculations were made using two free wake models: rolled-up and multiple-trailer with consolidation models. At transition speed, there is fair to good agreement for the blade section normal force between the test data and analysis for the H-34, research Puma, and SA 349/2 with the rolled-up wake. The calculated airloads differ significantly from the measurements for the UH-60A and BO-105. Better correlation is obtained for the UH-60A and BO-105 by using the multiple-trailer with consolidation wake model. In the high speed condition, the analysis shows generally good agreement with the research Puma flight data in both magnitude and phase. However, poor agreement is obtained for the other rotors examined. The analysis shows that the aerodynamic tip design (chord length and quarter chord location) of the Puma has an important influence on the phase correlation.
Roach, Grahm C.; Edke, Mangesh
2012-01-01
Biomechanical data provide fundamental information about changes in musculoskeletal function during development, adaptation, and disease. To facilitate the study of mouse locomotor biomechanics, we modified a standard mouse running wheel to include a force-sensitive rung capable of measuring the normal and tangential forces applied by individual paws. Force data were collected throughout the night using an automated threshold trigger algorithm that synchronized force data with wheel-angle data and a high-speed infrared video file. During the first night of wheel running, mice reached consistent running speeds within the first 40 force events, indicating a rapid habituation to wheel running, given that mice generated >2,000 force-event files/night. Average running speeds and peak normal and tangential forces were consistent throughout the first four nights of running, indicating that one night of running is sufficient to characterize the locomotor biomechanics of healthy mice. Twelve weeks of wheel running significantly increased spontaneous wheel-running speeds (16 vs. 37 m/min), lowered duty factors (ratio of foot-ground contact time to stride time; 0.71 vs. 0.58), and raised hindlimb peak normal forces (93 vs. 115% body wt) compared with inexperienced mice. Peak normal hindlimb-force magnitudes were the primary force component, which were nearly tenfold greater than peak tangential forces. Peak normal hindlimb forces exceed the vertical forces generated during overground running (50-60% body wt), suggesting that wheel running shifts weight support toward the hindlimbs. This force-instrumented running-wheel system provides a comprehensive, noninvasive screening method for monitoring gait biomechanics in mice during spontaneous locomotion. PMID:22723628
Iwata, Akira; Fuchioka, Satoshi; Hiraoka, Koichi; Masuhara, Mitsuhiko; Kami, Katsuya
2010-05-01
Although numerous studies have aimed to elucidate the mechanisms used to repair the structure and function of injured skeletal muscles, it remains unclear how and when movement recovers following damage. We performed a temporal analysis to characterize the changes in movement, muscle function, and muscle structure after muscle injury induced by the drop-mass technique. At each time-point, movement recovery was determined by ankle kinematic analysis of locomotion, and functional recovery was represented by isometric force. As a histological analysis, the cross-sectional area of myotubes was measured to examine structural regeneration. The dorsiflexion angle of the ankle, as assessed by kinematic analysis of locomotion, increased after injury and then returned to control levels by day 14 post-injury. The isometric force returned to normal levels by day 21 post-injury. However, the size of the myotubes did not reach normal levels, even at day 21 post-injury. These results indicate that recovery of locomotion occurs prior to recovery of isometric force and that functional recovery occurs earlier than structural regeneration. Thus, it is suggested that recovery of the movement and function of injured skeletal muscles might be insufficient as markers for estimating the degree of neuromuscular system reconstitution.
Apparent Mass Nonlinearity for Paired Oscillating Plates
NASA Astrophysics Data System (ADS)
Granlund, Kenneth; Ol, Michael
2014-11-01
The classical potential-flow problem of a plate oscillating sinusoidally at small amplitude, in a direction normal to its plane, has a well-known analytical solution of a fluid ``mass,'' multiplied by plate acceleration, being equal to the force on the plate. This so-called apparent-mass is analytically equal to that of a cylinder of fluid, with diameter equal to plate chord. The force is directly proportional to frequency squared. Here we consider experimentally a generalization, where two coplanar plates of equal chord are placed at some lateral distance apart. For spacing of ~0.5 chord and larger between the two plates, the analytical solution for a single plate can simply be doubled. Zero spacing means a plate of twice the chord and therefore a heuristic cylinder of fluid of twice the cross-sectional area. This limit is approached for plate spacing <0.5c. For a spacing of 0.1-0.2c, the force due to apparent mass was found to increase with frequency, when normalized by frequency squared; this is a nonlinearity and a departure from the classical theory. Flow visualization in a water-tank suggests that such departure can be imputed to vortex shedding from the plates' edges inside the inter-plate gap.
NASA Astrophysics Data System (ADS)
Yoshida, Takashi
Combined-levitation-and-propulsion single-sided linear induction motor (SLIM) vehicle can be levitated without any additional levitation system. When the vehicle runs, the attractive-normal force varies depending on the phase of primary current because of the short primary end effect. The ripple of the attractive-normal force causes the vertical vibration of the vehicle. In this paper, instantaneous attractive-normal force is analyzed by using space harmonic analysis method. And based on the analysis, vertical vibration control is proposed. The validity of the proposed control method is verified by numerical simulation.
NASA Technical Reports Server (NTRS)
Noonan, K. W.
1981-01-01
An investigation was conducted in the Langley 6- by 28-Inch Transonic Tunnel to determine the two dimensional aerodynamic characteristics of a 10-percent-thick helicopter rotor airfoil at Mach numbers from 0.33 to 0.87 and respective Reynolds numbers from 4.9 x 10 to the 6th to 9.8 x 10 to the 6th. This airfoil, designated the RC-10(N)-1, was also investigated at Reynolds numbers from 3.0 x 10 to the 6th to 7.3 x 10 to the 6th at respective Mach numbers of 0.33 to 0.83 for comparison wit the SC 1095 (with tab) airfoil. The RC-10(N)-1 airfoil was designed by the use of a viscous transonic analysis code. The results of the investigation indicate that the RC-10(N)-1 airfoil met all the design goals. At a Reynolds number of about 9.4 x 10 to the 6th the drag divergence Mach number at zero normal-force coefficient was 0.815 with a corresponding pitching-moment coefficient of zero. The drag divergence Mach number at a normal-force coefficient of 0.9 and a Reynolds number of about 8.0 x 10 to the 6th was 0.61. The drag divergence Mach number of this new airfoil was higher than that of the SC 1095 airfoil at normal-force coefficients above 0.3. Measurements in the same wind tunnel at comparable Reynolds numbers indicated that the maximum normal-force coefficient of the RC-10(N)-1 airfoil was higher than that of the NACA 0012 airfoil for Mach numbers above about 0.35 and was about the same as that of the SC 1095 airfoil for Mach numbers up to 0.5.
Kikuchi, Takahiro; Kato, Mitsuhiro; Takahashi, Nobuya; Nakamura, Kazuyuki; Hayasaka, Kiyoshi
2013-09-01
Here we report a case of a 10-year-old female with unclassified epileptic encephalopathy who showed forced normalization after administration of levetiracetam (LEV). She initially presented with intractable tonic and myoclonic seizures that were observed about 10 times a day along with frequent multifocal sharp and slow wave complexes on electroencephalography (EEG). We were forced to decrease the topiramate dose because of the appearance of nystagmus, and her myoclonic seizures became worse. We added LEV (250 mg/day) and her tonic and myoclonic seizures disappeared one day after initiation of LEV administration. However, she showed hyporesponsiveness and akinesia. The disappearance of paroxysmal discharges on EEG confirmed the diagnosis of forced normalization. Despite continuous administration of LEV, tonic and myoclonic seizures relapsed within a month but her psychotic symptoms resolved simultaneously. To the best of our knowledge, this is the first reported case of forced normalization after LEV administration. It should be noted that LEV may cause forced normalization although it can be started at an adequate dosage.
Hanes, Michael C; Weinzweig, Jeffrey; Panter, Kip E; McClellan, W Thomas; Caterson, Stefanie A; Buchman, Steven R; Faulkner, John A; Yu, Deborah; Cederna, Paul S; Larkin, Lisa M
2008-02-01
Inherent differences in the levator veli palatini (LVP) muscle of cleft palates before palatoplasty may play a role in persistent postrepair velopharyngeal insufficiency (VPI). Contractile properties of LVP muscle fibers were analyzed from young (2-month) normal (YNP), young congenitally cleft (YCP) and again on the same YCP subjects 6 months after palatoplasty, mature repaired palate (MRP). The cross-sectional area and rate of force development (ktr) were measured. Specific force (sF(0)) and normalized power (nP(max)) were calculated. Using k(tr) to determine fiber type composition, YNP was 44% type 1 and 56% type 2, while YCP was 100% type 2. Two MRP subjects shifted to 100% type 1; 1 demonstrated increased resistance to fatigue. No differences in sF(0) were observed. nP(max) increased with presence of type 2 fibers. The persistent state of type 2 fibers following palatoplasty leads to increased fatigue in the LVP of MRP subjects and may cause VPI symptoms.
NASA Astrophysics Data System (ADS)
Lundstrom, Troy; Clark, William; Jalili, Nader
2017-05-01
In the design and development of end effector pads for silicon wafer handling robots, it is imperative that the static friction/adhesion force properties of the pads with respect to a variety of planar surfaces be characterized. In this work, the overall design, calibration, and data acquisition procedure of an instrument developed for performing these measurements on small (<10 mm × 10 mm) planar samples is presented. This device was used to perform adhesion/maximum shear force measurements on polydimethylsiloxane, a silicon wafer, and custom carbon nanotubes forest surfaces. The device was successfully able to measure an effective, mean profile adhesion force of 715 μN between a silicon wafer and a polydimethylsiloxane (2.768 × 10-6 m2) sample. In addition, a nonlinear maximum shear over normal force relationship was also measured between custom carbon nanotubes forest and the silicon wafer surfaces. The maximum shear over a normal force coefficient was found to decrease with increasing initial normal force. Currently, there are numerous devices for measuring normal/shear forces at the nano/micro- and macroscales; however, this device allows for the consistent measurement of these same types of forces on components with surface dimensions ranging from 0.1 mm to 10 mm.
The force synergy of human digits in static and dynamic cylindrical grasps.
Kuo, Li-Chieh; Chen, Shih-Wei; Lin, Chien-Ju; Lin, Wei-Jr; Lin, Sheng-Che; Su, Fong-Chin
2013-01-01
This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA) are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions.
The Force Synergy of Human Digits in Static and Dynamic Cylindrical Grasps
Kuo, Li-Chieh; Chen, Shih-Wei; Lin, Chien-Ju; Lin, Wei-Jr; Lin, Sheng-Che; Su, Fong-Chin
2013-01-01
This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA) are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions. PMID:23544151
Molloy, Catherine B; Al-Omar, Ahmed O; Edge, Kathryn T; Cooper, Robert G
2006-01-01
This cross-sectional, observational study was undertaken to examine whether voluntary activation failure could contribute to the persisting weakness observed in some patients with treated idiopathic inflammatory myositis. In 20 patients with myositis of more than six months' duration (5 males, 15 females; mean [± 1 SD] age 53 [11] years) and 102 normal subjects (44 males, 58 females; mean age 32 [8] years), isometric maximum voluntary contractions (MVCs) of the dominant quadriceps femoris (QF) were quantified. Absolute MVC results of normal subjects and patients were then normalised with respect to lean body mass (force per units of lean body mass), giving a result in Newtons per kilogram. Based on mass-normalised force data of normal subjects, patients were arbitrarily stratified into "weak" and "not weak" subgroups. During further MVC attempts, the "twitch interpolation" technique was used to assess whether the QF voluntary activation of patients was complete. This technique relies on the fact that, because muscle activation is incomplete during submaximal voluntary contractions, electrical stimulation of the muscle can induce force increments superimposed on the submaximal voluntary force being generated. No between-gender differences were seen in the mass-normalised MVC results of healthy subjects, so the gender-combined results of 6.6 (1.5) N/kg were used for patient stratification. No between-gender difference was found for mass-normalised MVCs in patients: males 5.4 (3.2) and females 3.0 (1.7) N/kg (p > 0.05). Mass-normalised MVCs of male patients were as great as those of normal subjects (p > 0.05), but mass-normalised MVCs of female patients were significantly smaller than those of the normal subjects (p < 0.001). Only one of the six "not weak" patients exhibited interpolated twitches during electrical stimulation, but six of the 14 "weak" patients did, the biggest twitches being seen in the weakest patient. That interpolated twitches can be induced in some myositis patients with ongoing QF weakness during supposed MVCs clearly suggests that voluntary activation failure does contribute to QF weakness in those patients. PMID:16606441
A Girl with Idiopathic Epilepsy Showing Forced Normalization after Levetiracetam Administration.
Kawakami, Yasuhiko; Okazaki, Tetsuya; Takase, Masato; Fujino, Osamu; Itoh, Yasuhiko
2015-01-01
Forced normalization has been reported in association with almost all anti-epileptic drugs. We report on a 9-year-old girl with idiopathic epilepsy who showed forced normalization after administration of levetiracetam (LEV). She initially presented with generalized tonic-clonic seizures when she was 4 years old. Diffuse sharp and slow wave complexes (SWCs) were observed on electroencephalography (EEG). We prescribed sodium valproate (VPA) and benzodiazepines, but the seizures and EEG findings worsened gradually. Although subsequent administration of LEV stopped the seizures, the patient became subject to episodes of rage and violent behavior. Forced normalization was confirmed by the disappearance of SWCs on EEG. We reduced the dose of LEV and tried in various ways to resolve the situation, but finally we had to abandon LEV. To the best of our knowledge, this is the first report of a patient with idiopathic epilepsy but without disabilities in everyday life showing forced normalization associated with LEV administration.
Blood Vessel Normalization in the Hamster Oral Cancer Model for Experimental Cancer Therapy Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ana J. Molinari; Romina F. Aromando; Maria E. Itoiz
Normalization of tumor blood vessels improves drug and oxygen delivery to cancer cells. The aim of this study was to develop a technique to normalize blood vessels in the hamster cheek pouch model of oral cancer. Materials and Methods: Tumor-bearing hamsters were treated with thalidomide and were compared with controls. Results: Twenty eight hours after treatment with thalidomide, the blood vessels of premalignant tissue observable in vivo became narrower and less tortuous than those of controls; Evans Blue Dye extravasation in tumor was significantly reduced (indicating a reduction in aberrant tumor vascular hyperpermeability that compromises blood flow), and tumor bloodmore » vessel morphology in histological sections, labeled for Factor VIII, revealed a significant reduction in compressive forces. These findings indicated blood vessel normalization with a window of 48 h. Conclusion: The technique developed herein has rendered the hamster oral cancer model amenable to research, with the potential benefit of vascular normalization in head and neck cancer therapy.« less
Reschechtko, Sasha; Zatsiorsky, Vladimir M.; Latash, Mark L.
2016-01-01
Manipulating objects with the hands requires the accurate production of resultant forces including shear forces; effective control of these shear forces also requires the production of internal forces normal to the surface of the object(s) being manipulated. In the present study, we investigated multi-finger synergies stabilizing shear and normal components of force, as well as drifts in both components of force, during isometric pressing tasks requiring a specific magnitude of shear force production. We hypothesized that shear and normal forces would evolve similarly in time, and also show similar stability properties as assessed by the decomposition of inter-trial variance within the uncontrolled manifold hypothesis. Healthy subjects were required to accurately produce total shear and total normal forces with four fingers of the hand during a steady-state force task (with and without visual feedback) and a self-paced force pulse task. The two force components showed similar time profiles during both shear force pulse production and unintentional drift induced by turning the visual feedback off. Only the explicitly instructed components of force, however, were stabilized with multi-finger synergies. No force-stabilizing synergies and no anticipatory synergy adjustments were seen for the normal force in shear force production trials. These unexpected qualitative differences in the control of the two force components – which are produced by some of the same muscles and show high degree of temporal coupling – are interpreted within the theory of control with referent coordinates for salient variables. These observations suggest the existence of two classes of neural variables: one that translates into shifts of referent coordinates and defines changes in magnitude of salient variables, and the other controlling gains in back-coupling loops that define stability of the salient variables. Only the former are shared between the explicit and implicit task components. PMID:27601252
Abeles, F. B.; Ruth, J. M.; Forrence, L. E.; Leather, G. R.
1972-01-01
We observed no exchange between deuterated ethylene (C2D4) and the hydrogen of pea seedlings (Pisum sativum L. cv. Alaska). This suggests that bonding forces in which exchange could readily occur are not important in the physiological action of ethylene. Deuterated ethylene was just as effective as normal ethylene in inhibiting the growth of pea root sections. These results indicate that splitting carbon to hydrogen bonds did not occur during ethylene action. PMID:16658026
Rapid Pipeline Repair Technology for War Damage Recovery
1993-06-01
Design Manual 22, NAVFAC DM-22, Department of the Navy, Naval Facilities Engineering Command, Alexandria VA, August 1982. 2. U.S. Air Force Weapons...Inflatable Seal Over Replacement section ’"MOM Figure 10. Inflating the Seal With Manual Pump 19 Figure 11. Completed Inflatable Seal Coupler Repair 20...cumbersome repair manuals and stacks of blueprints normally used to make repairs. Since the probability of an expert being on hand imme- diately after an
NASA Technical Reports Server (NTRS)
Panda, Jayatana; Martin, Fred W.; Sutliff, Daniel L.
2008-01-01
At the wake of the Columbia (STS-107) accident it was decided to remove the Protuberance Aerodynamic Load (PAL) Ramp that was originally intended to protect various protuberances outside of the Space Shuttle External Tank from high buffet load induced by cross-flows at transonic speed. In order to establish the buffet load without the PAL ramp, a wind tunnel test was conducted where segments of the protuberances were instrumented with dynamic pressure transducers; and power-spectra of sectional lift and drag forces at various span-wise locations between two adjacent support brackets were measured under different cross flow angles, Mach number and other conditions. Additionally, frequency-dependent spatial correlations between the sectional forces were also established. The sectional forces were then adjusted by the correlation length to establish span-averaged spectra of normal and lateral forces that can be suitably "added" to various other unsteady forces encountered by the protuberance. This paper describes the methodology used for calculating the correlation-adjusted power spectrum of the buffet load. A second part of the paper describes wind-tunnel results on the difference in the buffet load on the protuberances with and without the PAL ramp. In general when the ramp height is the same as that of the protuberance height, such as that found on the liquid Oxygen part of the tank, the ramp is found to cause significant reduction of the unsteady aerodynamic load. However, on the liquid Hydrogen part of the tank, where the Oxygen feed-line is far larger in diameter than the height of the PAL ramp, little protection is found to be available to all but the Cable Tray.
FORCED NORMALIZATION: Epilepsy and Psychosis Interaction
Loganathan, Muruga A.; Enja, Manasa
2015-01-01
Forced normalization is the emergence of psychoses following the establishment of seizure control in an uncontrolled epilepsy patient. Two illustrative clinical vignettes are provided about people with epilepsy that was newly controlled and followed by emergence of a psychosis; symptoms appeared only after attaining ictal control. For recognition and differential diagnosis purposes, understanding forced normalization is important in clinical practice. PMID:26155377
Yusof, Mohd Imran; Shaharudin, Shazlin; Sivalingarajah, Prema
2018-04-01
Comparative cross-sectional study. We measured the vertical ground reaction force (vGRF) of the hip, knee, and ankle joints during normal gait in normal patients, adolescent idiopathic scoliosis (AIS) patients with a Cobb angle <40° and in AIS patients with spinal fusion. We aimed to investigate whether vGRF in the aforementioned joints is altered in these three groups of patients. vGRF of the lower limb joints may be altered in these groups of patients. Although it is known that excessive force in the joints may induce early arthritis, there is limited relevant information in the literatures. We measured vGRF of the hip, knee, and ankle joints during heel strike, early stance, mid stance, and toe-off phases in normal subjects (group 1, n=14), AIS patients with Cobb angle <40° (group 2, n=14), and AIS patients with spinal fusion (group 3, n=13) using a gait analysis platform. Fifteen auto-reflective tracking markers were attached to standard anatomical landmarks in both the lower limbs. The captured motion images were used to define the orientations of the body segments and force exerted on the force plate using computer software. Statistical analysis was performed using independent t-test and analysis of variance to examine differences between the right and left sides as well as those among the different subject groups. The measurements during the four gait phases in all the groups did not show any significant difference ( p >0.05). In addition, no significant difference was found in the vGRF measurements of all the joints among the three groups ( p >0.05). A Cobb angle <40° and spinal fusion did not significantly create imbalance or alter vGRF of the lower limb joints in AIS patients.
Ice Action on Pairs of Cylindrical and Conical Structures,
1983-09-01
correlation because the forces generated ficult to pick a distinct peak in the autospectra for between the structure and the ice sheet are af- the...against two conical structures ...... 20 24. Normalized maximum ice force versus ice velocity ................. 20 25. Normalized initial peak force...versus ice velocity .................. 21 26. Ratio of initial peak ice force to theoretical ice force versus ratio of center-to-center distance
2003-01-01
183 3.34 5/rev fixed system hub normal force with 4/rev open loop trailing-edge flap input...184 3.35 5/rev fixed system hub normal force with 5/rev open loop trailing-edge flap input...185 3.36 5/rev fixed system hub normal force with 6/rev open loop trailing-edge flap
Changes in force and calcium sensitivity in the developing avian heart.
Godt, R E; Fogaça, R T; Nosek, T M
1991-11-01
The aim of this study was to characterize the development of the contractile properties of intact and chemically skinned muscle from chicken heart and to compare these characteristics with those of developing mammalian heart reported by others. Small trabeculae were dissected from left ventricles of Arbor Acre chickens between embryonic day 7 and young adulthood (7 weeks post-hatching). At all ages, increasing extracellular calcium (0.45-3.6 mM) progressively increased twitch force of electrically stimulated trabeculae. Twitch force at 1.8 mM extracellular calcium, normalized to cross-sectional area, increased to a maximum at 1 day post-hatching, remained constant through 3 weeks post-hatching, but then decreased at 7 weeks post-hatching. The maximal calcium-activated force of trabeculae chemically skinned with Triton X-100 detergent increased to a maximum 2 days before the time of hatching and was not significantly changed up to 7 weeks post-hatching. Over the ages studied, average twitch force in 1.8 mM calcium was between 26 and 66% of maximal calcium-activated force after skinning, suggesting that the contractile apparatus is not fully activated during the twitch in normal Ringer. In skinned trabeculae, the calcium sensitivity of the contractile apparatus was higher in the embryo than in the young adult. These age-dependent changes in calcium sensitivity are correlated with isoform switching in troponin T. A decrease in pH from 7.0 to 6.5 decreased the calcium sensitivity of the contractile apparatus to a greater degree in skinned trabeculae from young adult hearts than in those from embryonic hearts. This change in susceptibility to acidosis is temporally associated with isoform switching in troponin I.(ABSTRACT TRUNCATED AT 250 WORDS)
Normalized-Difference Snow Index (NDSI)
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Riggs, George A.
2010-01-01
The Normalized-Difference Snow Index (NDSI) has a long history. 'The use of ratioing visible (VIS) and near-infrared (NIR) or short-wave infrared (SWIR) channels to separate snow and clouds was documented in the literature beginning in the mid-1970s. A considerable amount of work on this subject was conducted at, and published by, the Air Force Geophysics Laboratory (AFGL). The objective of the AFGL work was to discriminate snow cover from cloud cover using an automated algorithm to improve global cloud analyses. Later, automated methods that relied on the VIS/NIR ratio were refined substantially using satellite data In this section we provide a brief history of the use of the NDSI for mapping snow cover.
Neuronal activity in somatosensory cortex related to tactile exploration
Fortier-Poisson, Pascal
2015-01-01
The very light contact forces (∼0.60 N) applied by the fingertips during tactile exploration reveal a clearly optimized sensorimotor strategy. To investigate the cortical mechanisms involved with this behavior, we recorded 230 neurons in the somatosensory cortex (S1), as two monkeys scanned different surfaces with the fingertips in search of a tactile target without visual feedback. During the exploration, the monkeys, like humans, carefully controlled the finger forces. High-friction surfaces offering greater tangential shear force resistance to the skin were associated with decreased normal contact forces. The activity of one group of neurons was modulated with either the normal or tangential force, with little or no influence from the orthogonal force component. A second group responded to kinetic friction or the ratio of tangential to normal forces rather than responding to a specific parameter, such as force magnitude or direction. A third group of S1 neurons appeared to respond to particular vectors of normal and tangential force on the skin. Although 45 neurons correlated with scanning speed, 32 were also modulated by finger forces, suggesting that forces on the finger should be considered as the primary parameter encoding the skin compliance and that finger speed is a secondary parameter that co-varies with finger forces. Neurons (102) were also tested with different textures, and the activity of 62 of these increased or decreased in relation to the surface friction. PMID:26467519
NASA Technical Reports Server (NTRS)
Jaquet, Byron M.
1961-01-01
A wind-tunnel investigation was made at a Mach number of 3.10 (Reynolds number per foot of 16.3 x 10(exp 6) to 16.9 x 10(exp 6)) to determine the aerodynamic characteristics of various modifications of the payload section of the fourth stage of the Scout research vehicle. It was found that, for the combination of stages 3 and 4, increasing the size of the nose of the basic Scout to provide a cylindrical section of the same diameter as the third stage increased the normal-force slope by about 30 percent, the axial force by about 39 percent, and moved the center of pressure forward by about one fourth-stage base diameter. By reducing the diameter of the cylinder, at about one nose length behind the base of the enlarged nose frustum, to that of the basic Scout and thereafter retaining the shape of the basic Scout, the center of pressure was moved rearward by about one-half fourth-stage base diameter at the expense of an additional 19-percent increase in axial force. A spike-hemisphere configuration had the largest forces and moments and the most forward center-of-pressure location of the configurations considered. Except for the axial force and pitching-moment slope, the experimental trends or magnitudes could not be estimated with the desired accuracy by Newtonian or-slender body theory.
Hamstrings Stiffness and Landing Biomechanics Linked to Anterior Cruciate Ligament Loading
Blackburn, J. Troy; Norcross, Marc F.; Cannon, Lindsey N.; Zinder, Steven M.
2013-01-01
Context: Greater hamstrings stiffness is associated with less anterior tibial translation during controlled perturbations. However, it is unclear how hamstrings stiffness influences anterior cruciate ligament (ACL) loading mechanisms during dynamic tasks. Objective: To evaluate the influence of hamstrings stiffness on landing biomechanics related to ACL injury. Design: Cross-sectional study. Setting: Research laboratory. Patients or Other Participants: A total of 36 healthy, physically active volunteers (18 men, 18 women; age = 23 ± 3 years, height = 1.8 ± 0.1 m, mass = 73.1 ± 16.6 kg). Intervention(s): Hamstrings stiffness was quantified via the damped oscillatory technique. Three-dimensional lower extremity kinematics and kinetics were captured during a double-legged jump-landing task via a 3-dimensional motion-capture system interfaced with a force plate. Landing biomechanics were compared between groups displaying high and low hamstrings stiffness via independent-samples t tests. Main Outcome Measure(s): Hamstrings stiffness was normalized to body mass (N/m·kg−1). Peak knee-flexion and -valgus angles, vertical and posterior ground reaction forces, anterior tibial shear force, internal knee-extension and -varus moments, and knee-flexion angles at the instants of each peak kinetic variable were identified during the landing task. Forces were normalized to body weight, whereas moments were normalized to the product of weight and height. Results: Internal knee-varus moment was 3.6 times smaller in the high-stiffness group (t22 = 2.221, P = .02). A trend in the data also indicated that peak anterior tibial shear force was 1.1 times smaller in the high-stiffness group (t22 = 1.537, P = .07). The high-stiffness group also demonstrated greater knee flexion at the instants of peak anterior tibial shear force and internal knee-extension and -varus moments (t22 range = 1.729–2.224, P < .05). Conclusions: Greater hamstrings stiffness was associated with landing biomechanics consistent with less ACL loading and injury risk. Musculotendinous stiffness is a modifiable characteristic; thus exercises that enhance hamstrings stiffness may be important additions to ACL injury-prevention programs. PMID:24303987
Li, Junyan; Redmond, Anthony C; Jin, Zhongmin; Fisher, John; Stone, Martin H; Stewart, Todd D
2014-08-01
Preclinical durability testing of hip replacement implants is standardised by ISO-14242-1 (2002) which is based on historical inverse dynamics analysis using data obtained from a small sample of normal healthy individuals. It has not been established whether loading cycles derived from normal healthy individuals are representative of loading cycles occurring in patients following total hip replacement. Hip joint kinematics and hip contact forces derived from multibody modelling of forces during normal walking were obtained for 15 asymptomatic total hip replacement patients and compared to 38 normal healthy individuals and to the ISO standard for pre-clinical testing. Hip kinematics in the total hip replacement patients were comparable to the ISO data and the hip contact force in the normal healthy group was also comparable to the ISO cycles. Hip contact forces derived from the asymptomatic total hip replacement patients were comparable for the first part of the stance period but exhibited 30% lower peak loads at toe-off. Although the ISO standard provides a representative kinematic cycle, the findings call into question whether the hip joint contact forces in the ISO standard are representative of those occurring in the joint following total hip replacement. Copyright © 2014. Published by Elsevier Ltd.
Effects of Aging and Environmental Conditions on Ammunition/Explosives Storage Magazines - Paper 1
2010-07-01
dropped below 9.5. Corrosion of the Reinforcing Steel: Steel reinforcement is normally placed within a 2 inches of a concrete surface. Under most...alkalinity of the concrete . The steel is also protected by the relatively high electrical resistance of the concrete . Still, corrosion of the...pressures to force the concrete /reinforcement steel bond to break. Corrosion of the steel will cause spalling, section loss of the steel, and eventually
Force Plate Gait Analysis in Doberman Pinschers with and without Cervical Spondylomyelopathy
Foss, K.; da Costa, R.C.; Rajala-Shultz, P.J.; Allen, M.J.
2014-01-01
Background The most accepted means of evaluating the response of a patient with cervical spondylomyelopathy (CSM) to treatment is subjective and based on the owner and clinician's perception of the gait. Objective To establish and compare kinetic parameters based on force plate gait analysis between normal and CSM-affected Dobermans. Animals Nineteen Doberman Pinschers: 10 clinically normal and 9 with CSM. Methods Force plate analysis was prospectively performed in all dogs. At least 4 runs of ipsilateral limbs were collected from each dog. Eight force platform parameters were evaluated, including peak vertical force (PVF) and peak vertical impulse (PVI), peak mediolateral force (PMLF) and peak mediolateral impulse, peak braking force and peak braking impulse, and peak propulsive force (PPF) and peak propulsive impulse. In addition, the coefficient of variation (CV) for each limb was calculated for each parameter. Data analysis was performed by a repeated measures approach. Results PMLF (P = .0062), PVI (P = .0225), and PPF (P = .0408) were found to be lower in CSM-affected dogs compared with normal dogs. Analysis by CV as the outcome indicated more variability in PVF in CSM-affected dogs (P = 0.0045). The largest difference in the CV of PVF was seen in the thoracic limbs of affected dogs when compared with the thoracic limbs of normal dogs (P = 0.0019). Conclusions and Clinical Importance The CV of PVF in all 4 limbs, especially the thoracic limbs, distinguished clinically normal Dobermans from those with CSM. Other kinetic parameters less reliably distinguished CSM-affected from clinically normal Dobermans. PMID:23278957
Grip Forces During Object Manipulation: Experiment, Mathematical Model & Validation
Slota, Gregory P.; Latash, Mark L.; Zatsiorsky, Vladimir M.
2011-01-01
When people transport handheld objects, they change the grip force with the object movement. Circular movement patterns were tested within three planes at two different rates (1.0, 1.5 Hz), and two diameters (20, 40 cm). Subjects performed the task reasonably well, matching frequencies and dynamic ranges of accelerations within expectations. A mathematical model was designed to predict the applied normal forces from kinematic data. The model is based on two hypotheses: (a) the grip force changes during movements along complex trajectories can be represented as the sum of effects of two basic commands associated with the parallel and orthogonal manipulation, respectively; (b) different central commands are sent to the thumb and virtual finger (Vf- four fingers combined). The model predicted the actual normal forces with a total variance accounted for of better than 98%. The effects of the two components of acceleration—along the normal axis and the resultant acceleration within the shear plane—on the digit normal forces are additive. PMID:21735245
Weight, the Normal Force and Newton's Third Law: Dislodging a Deeply Embedded Misconception
ERIC Educational Resources Information Center
Low, David; Wilson, Kate
2017-01-01
On entry to university, high-achieving physics students from all across Australia struggle to identify Newton's third law force pairs. In particular, less than one in ten can correctly identify the Newton's third law reaction pair to the weight of (gravitational force acting on) an object. Most students incorrectly identify the normal force on the…
Ferreira, Mariana S; Mendes, Roberto T; Marson, Fernando A L; Zambon, Mariana P; Antonio, Maria A R G M; Paschoal, Ilma A; Toro, Adyléia A D C; Severino, Silvana D; Ribeiro, Maria A G O; Ribeiro, José D
To analyze and compare lung function of obese and healthy, normal-weight children and adolescents, without asthma, through spirometry and volumetric capnography. Cross-sectional study including 77 subjects (38 obese) aged 5-17 years. All subjects underwent spirometry and volumetric capnography. The evaluations were repeated in obese subjects after the use of a bronchodilator. At the spirometry assessment, obese individuals, when compared with the control group, showed lower values of forced expiratory volume in the first second by forced vital capacity (FEV 1 /FVC) and expiratory flows at 75% and between 25 and 75% of the FVC (p<0.05). Volumetric capnography showed that obese individuals had a higher volume of produced carbon dioxide and alveolar tidal volume (p<0.05). Additionally, the associations between dead space volume and tidal volume, as well as phase-3 slope normalized by tidal volume, were lower in healthy subjects (p<0.05). These data suggest that obesity does not alter ventilation homogeneity, but flow homogeneity. After subdividing the groups by age, a greater difference in lung function was observed in obese and healthy individuals aged >11 years (p<0.05). Even without the diagnosis of asthma by clinical criteria and without response to bronchodilator use, obese individuals showed lower FEV 1 /FVC values and forced expiratory flow, indicating the presence of an obstructive process. Volumetric capnography showed that obese individuals had higher alveolar tidal volume, with no alterations in ventilation homogeneity, suggesting flow alterations, without affecting lung volumes. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Vibration Control in Turbomachinery Using Active Magnetic Journal Bearings
NASA Technical Reports Server (NTRS)
Knight, Josiah D.
1996-01-01
The effective use of active magnetic bearings for vibration control in turbomachinery depends on an understanding of the forces available from a magnetic bearing actuator. The purpose of this project was to characterize the forces as functions shaft position. Both numerical and experimental studies were done to determine the characteristics of the forces exerted on a stationary shaft by a magnetic bearing actuator. The numerical studies were based on finite element computations and included both linear and nonlinear magnetization functions. Measurements of the force versus position of a nonrotating shaft were made using two separate measurement rigs, one based on strain gage measurement of forces, the other based on deflections of a calibrated beam. The general trends of the measured principal forces agree with the predictions of the theory while the magnitudes of forces are somewhat smaller than those predicted. Other aspects of theory are not confirmed by the measurements. The measured forces in the normal direction are larger than those predicted by theory when the rotor has a normal eccentricity. Over the ranges of position examined, the data indicate an approximately linear relationship between the normal eccentricity of the shaft and the ratio of normal to principal force. The constant of proportionality seems to be larger at lower currents, but for all cases examined its value is between 0.14 and 0.17. The nonlinear theory predicts the existence of normal forces, but has not predicted such a large constant of proportionality for the ratio. The type of coupling illustrated by these measurements would not tend to cause whirl, because the coupling coefficients have the same sign, unlike the case of a fluid film bearing, where the normal stiffness coefficients often have opposite signs. They might, however, tend to cause other self-excited behavior. This possibility must be considered when designing magnetic bearings for flexible rotor applications, such as gas turbines and other turbomachinery.
Influence of meniscus shape in the cross sectional plane on the knee contact mechanics.
Łuczkiewicz, Piotr; Daszkiewicz, Karol; Witkowski, Wojciech; Chróścielewski, Jacek; Zarzycki, Witold
2015-06-01
We present a three dimensional finite element analysis of stress distribution and menisci deformation in the human knee joint. The study is based on the Open Knee model with the geometry of the lateral meniscus which shows some degenerative disorders. The nonlinear analysis of the knee joint under compressive axial load is performed. We present results for intact knee, knee with complete radial posterior meniscus root tear and knee with total meniscectomy of medial or lateral meniscus. We investigate how the meniscus shape in the cross sectional plane influences knee-joint mechanics by comparing the results for flat (degenerated) lateral and normal medial meniscus. Specifically, the deformation of the menisci in the coronal plane and the corresponding stress values in cartilages are studied. By analysing contact resultant force acting on the menisci in axial plane we have shown that restricted extrusion of the torn lateral meniscus can be attributed to small slope of its cross section in the coronal plane. Additionally, the change of the contact area and the resultant force acting on the menisci as the function of compressive load are investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lee, Ji-Hyun; Yang, Seungman; Park, Jonghyun; Kim, Hee Chan; Kim, Eun-Hee; Jang, Young-Eun; Kim, Jin-Tae; Kim, Hee-Soo
2018-06-19
Respiratory variations in photoplethysmography amplitude enable volume status assessment. However, the contact force between the measurement site and sensor can affect photoplethysmography waveforms. We aimed to evaluate contact force effects on respiratory variations in photoplethysmography waveforms in children under general anesthesia. Children aged 3-5 years were enrolled. After anesthetic induction, mechanical ventilation commenced at a tidal volume of 10 mL/kg. Photoplethysmographic signals were obtained in the supine position from the index finger using a force sensor-integrated clip-type photoplethysmography sensor that increased the contact force from 0-1.4 N for 20 respiratory cycles at each force. The AC amplitude (pulsatile component), DC amplitude (nonpulsatile component), AC/DC ratio, and respiratory variations in photoplethysmography amplitude were calculated. Data from 34 children were analyzed. Seven contact forces at 0.2-N increments were evaluated for each patient. The normalized AC amplitude increased maximally at a contact force of 0.4-0.6 N and decreased with increasing contact force. However, the normalized DC amplitude increased with a contact force exceeding 0.4 N. ΔPOP decreased slightly and increased from the point when the AC amplitude started to decrease as contact force increased. In a 0.2-1.2 N contact force range, significant changes in the normalized AC amplitude, normalized DC amplitude, AC/DC ratio, and respiratory variations in photoplethysmography amplitude were observed. Respiratory variations in photoplethysmography amplitude changed according to variable contact forces; therefore, these measurements may not reflect respiration-induced stroke volume variations. Clinicians should consider contact force bias when interpreting morphological data from photoplethysmography signals. © 2018 John Wiley & Sons Ltd.
Modeling the finger joint moments in a hand at the maximal isometric grip: the effects of friction.
Wu, John Z; Dong, Ren G; McDowell, Thomas W; Welcome, Daniel E
2009-12-01
The interaction between the handle and operator's hand affects the comfort and safety of tool and machine operations. In most of the previous studies, the investigators considered only the normal contact forces. The effect of friction on the joint moments in fingers has not been analyzed. Furthermore, the observed contact forces have not been linked to the internal musculoskeletal loading in the previous experimental studies. In the current study, we proposed a universal model of a hand to evaluate the joint moments in the fingers during grasping tasks. The hand model was developed on the platform of the commercial software package AnyBody. Only four fingers (index, long, ring, and little finger) were included in the model. The anatomical structure of each finger is comprised of four phalanges (distal, middle, proximal, and metacarpal phalange). The simulations were performed using an inverse dynamics technique. The joint angles and the normal contact forces on each finger section reported by previous researchers were used as inputs, while the joint moments of each finger were predicted. The predicted trends of the dependence of the distal interphalangeal (DIP) and proximal interphalangeal (PIP) joint moments on the cylinder diameter agree with those of the contact forces on the fingers observed in the previous experimental study. Our results show that the DIP and PIP joint moments reach their maximums at a cylinder diameter of about 31mm, which is consistent with the trend of the finger contact forces measured in the experiments. The proposed approach will be useful for simulating musculoskeletal loading in the hand for occupational activities, thereby optimizing tool-handle design.
Forces and moments on a slender, cavitating body
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hailey, C.E.; Clark, E.L.; Buffington, R.J.
1988-01-01
Recently a numerical code has been developed at Sandia National Laboratories to predict the pitching moment, normal force, and axial force of a slender, supercavitating shape. The potential flow about the body and cavity is calculated using an axial distribution of source/sink elements. The cavity surface is assumed to be a constant pressure streamline, extending beyond the base of the model. Slender body approximation is used to model the crossflow for small angles of attack. A significant extension of previous work in cavitation flow is the inclusion of laminar and turbulent boundary layer solutions on the body. Predictions with thismore » code, for axial force at zero angle of attack, show good agreement with experiments. There are virtually no published data availble with which to benchmark the pitching moment and normal force predictions. An experiment was designed to measure forces and moments on a supercavitation shape. The primary reason for the test was to obtain much needed data to benchmark the hydrodynamic force and moment predictions. Since the numerical prediction is for super cavitating shapes at very small cavitation numbers, the experiment was designed to be a ventilated cavity test. This paper describes the experimental procedure used to measure the pitching moment, axial and normal forces, and base pressure on a slender body with a ventilated cavity. Limited results are presented for pitching moment and normal force. 5 refs., 7 figs.« less
NASA Astrophysics Data System (ADS)
Pan, Yucong; Liu, Quansheng; Liu, Jianping; Peng, Xingxin; Kong, Xiaoxuan
2018-06-01
In order to study the influence of confining stress on rock cutting forces by tunnel boring machine (TBM) disc cutter, full-scale linear cutting tests are conducted in Chongqing Sandstone (uniaxial compressive strength 60.76 MPa) using five equal biaxial confining stressed conditions, i.e. 0-0, 5-5, 10-10, 15-15 and 20-20 MPa; disc cutter normal force, rolling force, cutting coefficient and normalized resultant force are analysed. It is found that confining stress can greatly affect disc cutter resultant force, its proportion in normal and rolling directions and its acting point for the hard Chongqing Sandstone and the confining stress range used in this study. For every confining stressed condition, as cutter penetration depth increases, disc cutter normal force increases with decreasing speed, rolling force and cutting coefficient both increase linearly, and acting point of the disc cutter resultant force moves downward at some extent firstly and then upward back to its initial position. For same cutter penetration depth, as confining stress increases, disc cutter normal force, rolling force, cutting coefficient and normalized resultant force all increase at some extent firstly and then decrease rapidly to very small values (quite smaller than those obtained under the non-stressed condition) after some certain confining stress thresholds. The influence of confining stress on rock cutting by TBM disc cutter can be generally divided into three stages as confining stress increases, i.e. strengthening effect stage, damaging effect stage and rupturing effect stage. In the former two stages (under low confining stress), rock remains intact and rock cutting forces are higher than those obtained under the non-stressed condition, and thus rock cutting by TBM disc cutter is restrained; in the last stage (under high confining stress), rock becomes non-intact and rock slabbing failure is induced by confining stress before disc cutting, and thus rock cutting by TBM disc cutter is facilitated. Meanwhile, some critical values of confining stress and cutter penetration depth are identified to represent the changes of rock cutting state. This study provides better understanding of the influence of confining stress on disc cutter performance and can guide to optimize the TBM operation under stressed condition.
NASA Technical Reports Server (NTRS)
St.hilaire, A. O.; Carta, F. O.
1979-01-01
The effect of sweep on the dynamic response of the NACA 0012 airfoil was investigated. Unsteady chordwise distributed pressure data were obtained from a tunnel spanning wing equipped with 21 single surface transducers (13 on the suction side and 8 on the pressure side of the airfoil). The pressure data were obtained at pitching amplitudes of 8 and 10 degrees over a tunnel Mach number range of 0.10 to 0.46 and a pitching frequency range of 2.5 to 10.6 cycles per second. The wing was oscillated in the unswept and swept positions about the quarter-chord pivot axis relative to mean incidence angle settings of 0, 9, 12, and 15 degrees. A compilation of all the response data obtained during the test program is presented. These data are in the form of normal force, chord force, lift force, pressure drag, and moment hysteresis loops derived from chordwise integrations of the unsteady pressure distributions. The hysteresis loops are organized in two main sections. In the first section, the loop data are arranged to show the effect of sweep (lambda = 0 and 30 deg) for all available combinations of mean incidence angle, pitching amplitude, reduced frequency, and chordwise Mach number. The second section shows the effect of chordwise Mach number (MC = 0.30 and MC = 0.40) on the swept wing response for all available combinations of mean incidence angle, pitching amplitude, and reduced frequency.
Strauss, Eric J; Ishak, Charbel; Inzerillo, Christopher; Walsh, Michael; Yildirim, Gokce; Walker, Peter; Jazrawi, Laith; Rosen, Jeffrey
2007-08-01
To determine whether positioning of the tibia affects the degree of tibial external rotation seen during a dial test in the posterior cruciate ligament (PCL)-posterolateral corner (PLC)-deficient knee. Laboratory investigation. Biomechanics laboratory. An anterior force applied to the tibia in the combined PCL-PLC-deficient knee will yield increased tibial external rotation during a dial test. The degree of tibial external rotation was measured with 5 Nm of external rotation torque applied to the tibia at both 30 degrees and 90 degrees of knee flexion. Before the torque was applied, an anterior force, a posterior force, or neutral (normal, reduced control) force was applied to the tibia. External rotation measurements were repeated after sequential sectioning of the PCL, the posterolateral structures and the fibular collateral ligament (FCL). Baseline testing of the intact specimens demonstrated a mean external rotation of 18.6 degrees with the knee flexed to 30 degrees (range 16.1-21.0 degrees ), and a mean external rotation of 17.3 degrees with the knee flexed to 90 degrees (range 13.8-20.0 degrees ). Sequential sectioning of the PCL, popliteus and popliteofibular ligament, and the FCL led to a significant increase in tibial external rotation compared with the intact knee for all testing scenarios. After sectioning of the popliteus and popliteofibular ligament, the application of an anterior force during testing led to a mean tibial external rotation that was 5 degrees greater than during testing in the neutral position and 7.5 degrees greater than during testing with a posterior force. In the PCL, popliteus/popliteofibular ligament and FCL-deficient knee, external rotation was 9 degrees and 12 degrees greater with the application of an anterior force during testing compared with neutral positioning and the application of a posterior force, respectively. An anterior force applied to the tibia during the dial test in a combined PCL-PLC-injured knee increased the overall amount of observed tibial external rotation during the dial test. The anterior force reduced the posterior tibial subluxation associated with PCL injury, which is analogous to what is observed when the dial test is performed with the patient in the prone position. Reducing the tibia with either an anterior force when the patient is supine or performing the dial test with the patient in the prone position increases the ability of an examiner to detect a concomitant PLC injury in the setting of a PCL-deficient knee.
Development of a multicomponent force and moment balance for water tunnel applications, volume 1
NASA Technical Reports Server (NTRS)
Suarez, Carlos J.; Malcolm, Gerald N.; Kramer, Brian R.; Smith, Brooke C.; Ayers, Bert F.
1994-01-01
The principal objective of this research effort was to develop a multicomponent strain gauge balance to measure forces and moments on models tested in flow visualization water tunnels. An internal balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The five-components to applied loads, low interactions between the sections and no hysteresis. Static experiments (which are discussed in this Volume) were conducted in the Eidetics water tunnel with delta wings and a model of the F/A-18. Experiments with the F/A-18 model included a thorough baseline study and investigations of the effect of control surface deflections and of several Forebody Vortex Control (FVC) techniques. Results were compared to wind tunnel data and, in general, the agreement is very satisfactory. The results of the static tests provide confidence that loads can be measured accurately in the water tunnel with a relatively simple multicomponent internal balance. Dynamic experiments were also performed using the balance, and the results are discussed in detail in Volume 2 of this report.
A multifunctional force microscope for soft matter with in situ imaging
NASA Astrophysics Data System (ADS)
Roberts, Paul; Pilkington, Georgia A.; Wang, Yumo; Frechette, Joelle
2018-04-01
We present the multifunctional force microscope (MFM), a normal and lateral force-measuring instrument with in situ imaging. In the MFM, forces are calculated from the normal and lateral deflection of a cantilever as measured via fiber optic sensors. The motion of the cantilever is controlled normally by a linear micro-translation stage and a piezoelectric actuator, while the lateral motion of the sample is controlled by another linear micro-translation stage. The micro-translation stages allow for travel distances that span 25 mm with a minimum step size of 50 nm, while the piezo has a minimum step size of 0.2 nm, but a 100 μm maximum range. Custom-designed cantilevers allow for the forces to be measured over 4 orders of magnitude (from 50 μN to 1 N). We perform probe tack, friction, and hydrodynamic drainage experiments to demonstrate the sensitivity, versatility, and measurable force range of the instrument.
The origin and development of malocclusions. When, where and how dental malocclusions develop.
Loudon, Merle E
2013-01-01
This article describes the forces of the muscles from the stomatonathic system and how they interact in many children to change the normal forces of growth. Because of this change in muscle forces there is a change from normal teeth and bone growth positions to abnormal positions. These normal and/or abnormal changes in muscle forces are the basis for development into class one, class two and class three occlusions. This is very valuable information for the orthodontic clinician because these muscle forces are the fundamental basis for all orthodontic treatment. By knowing this an orthodontic clinician will be more able to diagnose and treat a malocclusion. This is exceptionally important for the dentist who is just starting to learn diagnosis, treatment planning, functional and fixed orthodontic treatment.
Feasibility of novel four degrees of freedom capacitive force sensor for skin interface force
2012-01-01
Background The objective of our study was to develop a novel capacitive force sensor that enables simultaneous measurements of yaw torque around the pressure axis and normal force and shear forces at a single point for the purpose of elucidating pressure ulcer pathogenesis and establishing criteria for selection of cushions and mattresses. Methods Two newly developed sensors (approximately 10 mm×10 mm×5 mm (10) and 20 mm×20 mm×5 mm (20)) were constructed from silicone gel and four upper and lower electrodes. The upper and lower electrodes had sixteen combinations that had the function as capacitors of parallel plate type. The full scale (FS) ranges of force/torque were defined as 0–1.5 N, –0.5-0.5 N and −1.5-1.5 N mm (10) and 0–8.7 N, –2.9-2.9 N and −16.8-16.8 N mm (20) in normal force, shear forces and yaw torque, respectively. The capacitances of sixteen capacitors were measured by an LCR meter (AC1V, 100 kHz) when displacements corresponding to four degrees of freedom (DOF) forces within FS ranges were applied to the sensor. The measurement was repeated three times in each displacement condition (10 only). Force/torque were calculated by corrected capacitance and were evaluated by comparison to theoretical values and standard normal force measured by an universal tester. Results In measurements of capacitance, the coefficient of variation was 3.23% (10). The Maximum FS errors of estimated force/torque were less than or equal to 10.1 (10) and 16.4% (20), respectively. The standard normal forces were approximately 1.5 (10) and 9.4 N (20) when pressure displacements were 3 (10) and 2 mm (20), respectively. The estimated normal forces were approximately 1.5 (10) and 8.6 N (10) in the same condition. Conclusions In this study, we developed a new four DOF force sensor for measurement of force/torque that occur between the skin and a mattress. In measurement of capacitance, the repeatability was good and it was confirmed that the sensor had characteristics that enabled the correction by linear approximation for adjustment of gain and offset. In estimation of forces/torque, we considered accuracy to be within an acceptable range. PMID:23186069
NASA Technical Reports Server (NTRS)
Mcsmith, D. D.; Richardson, J. I. (Inventor)
1984-01-01
A hand held hydraulic cutting tool was developed which is particularly useful in deactivating ejection seats in military aircraft rescue operations. The tool consists primarily of a hydraulic system composed of a fluid reservoir, a pumping piston, and an actuator piston. Mechanical cutting jaws are attached to the actuator piston rod. The hydraulic system is controlled by a pump handle. As the pump handle is operated the actuator piston rod is forced outward and thus the cutting jaws are forced together. The frame of the device is a flexible metal tubing which permits easy positioning of the tool cutting jaws in remote and normally inaccessible locations. Bifurcated cutting edges ensure removal of a section of the tubing or cable to thereby reduce the possibility of accidental reactivation of the tubing or cable being severed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sibaev, M.; Crittenden, D. L., E-mail: deborah.crittenden@canterbury.ac.nz
In this paper, we outline a general, scalable, and black-box approach for calculating high-order strongly coupled force fields in rectilinear normal mode coordinates, based upon constructing low order expansions in curvilinear coordinates with naturally limited mode-mode coupling, and then transforming between coordinate sets analytically. The optimal balance between accuracy and efficiency is achieved by transforming from 3 mode representation quartic force fields in curvilinear normal mode coordinates to 4 mode representation sextic force fields in rectilinear normal modes. Using this reduced mode-representation strategy introduces an error of only 1 cm{sup −1} in fundamental frequencies, on average, across a sizable testmore » set of molecules. We demonstrate that if it is feasible to generate an initial semi-quartic force field in curvilinear normal mode coordinates from ab initio data, then the subsequent coordinate transformation procedure will be relatively fast with modest memory demands. This procedure facilitates solving the nuclear vibrational problem, as all required integrals can be evaluated analytically. Our coordinate transformation code is implemented within the extensible PyPES library program package, at http://sourceforge.net/projects/pypes-lib-ext/.« less
Huang, Jen-Ching; Weng, Yung-Jin
2014-01-01
This study focused on the nanomachining property and cutting model of single-crystal sapphire during nanomachining. The coated diamond probe is used to as a tool, and the atomic force microscopy (AFM) is as an experimental platform for nanomachining. To understand the effect of normal force on single-crystal sapphire machining, this study tested nano-line machining and nano-rectangular pattern machining at different normal force. In nano-line machining test, the experimental results showed that the normal force increased, the groove depth from nano-line machining also increased. And the trend is logarithmic type. In nano-rectangular pattern machining test, it is found when the normal force increases, the groove depth also increased, but rather the accumulation of small chips. This paper combined the blew by air blower, the cleaning by ultrasonic cleaning machine and using contact mode probe to scan the surface topology after nanomaching, and proposed the "criterion of nanomachining cutting model," in order to determine the cutting model of single-crystal sapphire in the nanomachining is ductile regime cutting model or brittle regime cutting model. After analysis, the single-crystal sapphire substrate is processed in small normal force during nano-linear machining; its cutting modes are ductile regime cutting model. In the nano-rectangular pattern machining, due to the impact of machined zones overlap, the cutting mode is converted into a brittle regime cutting model. © 2014 Wiley Periodicals, Inc.
Traction force during vacuum extraction: a prospective observational study.
Pettersson, K; Ajne, J; Yousaf, K; Sturm, D; Westgren, M; Ajne, G
2015-12-01
To investigate the traction force employed during vacuum extractions. Observational cross-sectional study. Obstetric Department, Karolinska University Hospital, Sweden, and the Swedish National Congress of Obstetrics and Gynaecology, 2013. Two hundred women with vacuum extraction at term and 130 obstetricians participating in a simulated setting. In a normal clinical setting, we used a specially adapted device to measure and record the force used to undertake vacuum extraction. In a subsequent part of the study, the force employed for vacuum extraction by a group of obstetricians in a fictive setting was estimated and objectively measured. Applied force during vacuum extraction in relation to the estimated level of difficulty in the delivery; perinatal diagnoses of asphyxia or head trauma; estimated force compared with objectively measured force employed in the fictive setting. The median (minimum-maximum) peak forces for minimum, average and excessive vacuum extraction in the clinical setting were 176 N (5-360 N), 225 N (115-436 N), and 241 N (164-452 N), respectively. In 34% of cases a force in excess of 216 N was employed. There was no correlation between the umbilical arterial pH at delivery and the traction force employed during extraction. Four cases of mild hypoxic ischaemic encephalopathy were observed, three of which were associated with a delivery whereby excessive traction force was employed during the vacuum extraction. In the fictive setting, the actual exerted force was twice the quantitative estimation. The measured forces in the clinical setting were four times higher than that estimated in the fictive setting. Higher than expected levels of traction force were used for vacuum extraction delivery. As obstetricians tend to underestimate the force applied during vacuum extraction, objective measurement with instantaneous feedback may be valuable in raising awareness. © 2015 Royal College of Obstetricians and Gynaecologists.
Bota, Simona; Sporea, Ioan; Peck-Radosavljevic, Markus; Sirli, Roxana; Tanaka, Hironori; Iijima, Hiroko; Saito, Hidetsugu; Ebinuma, Hirotoshi; Lupsor, Monica; Badea, Radu; Fierbinteanu-Braticevici, Carmen; Petrisor, Ana; Friedrich-Rust, Mireen; Sarrazin, Christoph; Takahashi, Hirokazu; Ono, Naofumi; Piscaglia, Fabio; Marinelli, Sara; D'Onofrio, Mirko; Gallotti, Anna; Salzl, Petra; Popescu, Alina; Danila, Mirela
2013-09-01
Acoustic Radiation Force Impulse Elastography is a new method for non-invasive evaluation of liver fibrosis. To evaluate the impact of elevated alanine aminotransferase levels on liver stiffness assessment by Acoustic Radiation Force Impulse Elastography. A multicentre retrospective study including 1242 patients with chronic liver disease, who underwent liver biopsy and Acoustic Radiation Force Impulse. Transient Elastography was also performed in 512 patients. The best Acoustic Radiation Force Impulse cut-off for predicting significant fibrosis was 1.29 m/s in cases with normal alanine aminotransferase levels and 1.44 m/s in patients with alanine aminotransferase levels>5 × the upper limit of normal. The best cut-off for predicting liver cirrhosis were 1.59 and 1.75 m/s, respectively. Acoustic Radiation Force Impulse cut-off for predicting significant fibrosis and cirrhosis were relatively similar in patients with normal alanine aminotransferase and in those with alanine aminotransferase levels between 1.1 and 5 × the upper limit of normal: 1.29 m/s vs. 1.36 m/s and 1.59 m/s vs. 1.57 m/s, respectively. For predicting cirrhosis, the Transient Elastography cut-offs were significantly higher in patients with alanine aminotransferase levels between 1.1 and 5 × the upper limit of normal compared to those with normal alanine aminotransferase: 12.3 kPa vs. 9.1 kPa. Liver stiffness values assessed by Acoustic Radiation Force Impulse and Transient Elastography are influenced by high aminotransferase levels. Transient Elastography was also influenced by moderately elevated aminotransferase levels. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Hall, S M; Soueid, A; Smith, T; Brown, R A; Haworth, S G; Mudera, V
2007-01-01
Tissue engineering of functional arteries is challenging. Within the pulmonary artery wall, smooth muscle cells (PASMCs) have site-specific developmental and functional phenotypes, reflecting differing contractile roles. The force generated by PASMCs isolated from the inner 25% and outer 50% of the media of intrapulmonary elastic arteries from five normal and eight chronically hypoxic (hypertensive) 14 day-old piglets was quantified in a three-dimensional (3D) collagen construct, using a culture force monitor. Outer medial PASMCs from normal piglets exerted more force (528 +/- 50 dynes) than those of hypoxic piglets (177 +/- 42 dynes; p < 0.01). Force generation by inner medial PASMCs from normal and hypoxic piglets was similar (349 +/- 35 and 239 +/- 60 dynes). In response to agonist (thromboxane) stimulation, all PASMCs from normal and hypoxic piglets contracted, but the increase in force generated by outer and inner hypoxic PASMCs (ranges 13-72 and 14-56 dynes) was less than by normal PASMCs (ranges 27-154 and 34-159 dynes, respectively; p < 0.05 for both). All hypoxic PASMCs were unresponsive to antagonist (sodium nitroprusside) stimulation, all normal PASMCs relaxed (range - 87 to - 494 dynes). Myosin heavy chain expression by both hypoxic PASMC phenotypes was less than normal (p < 0.05 for both), as was the activity of focal adhesion kinase, regulating contraction, in hypoxic inner PASMCs (p < 0.01). Chronic hypoxia resulted in the development of abnormal PASMC phenotypes, which in collagen constructs exhibited a reduction in contractile force and reactivity to agonists. Characterization of the mechanical response of spatially distinct cells and modification of their behaviour by hypoxia is critical for successful tissue engineering of major blood vessels.
Fertility of male adult rats submitted to forced swimming stress.
Mingoti, G Z; Pereira, R N; Monteiro, C M R
2003-05-01
We investigated whether stress interferes with fertility during adulthood. Male Wistar rats (weighing 220 g in the beginning of the experiment) were forced to swim for 3 min in water at 32 degrees C daily for 15 days. Stress was assessed by the hot-plate test after the last stressing session. To assess fertility, control and stressed males (N = 15 per group) were mated with sexually mature normal females. Males were sacrificed after copulation. Stress caused by forced swimming was demonstrated by a significant increase in the latency of the pain response in the hot-plate test (14.6 +/- 1.25 s for control males vs 26.0 +/- 1.53 s for stressed males, P = 0.0004). No changes were observed in body weight, testicular weight, seminal vesicle weight, ventral prostate weight or gross histological features of the testes of stressed males. Similarly, no changes were observed in fertility rate, measured by counting live fetuses in the uterus of normal females mated with control and stressed males; no dead or incompletely developed fetuses were observed in the uterus of either group. In contrast, there was a statistically significant decrease in spermatid production demonstrated by histometric evaluation (154.96 +/- 5.41 vs 127.02 +/- 3.95 spermatids per tubular section for control and stressed rats, respectively, P = 0.001). These data demonstrate that 15 days of forced swimming stress applied to adult male rats did not impair fertility, but significantly decreased spermatid production. This suggests that the effect of stress on fertility should not be assessed before at least the time required for one cycle of spermatogenesis.
Muscle function in Turner syndrome: normal force but decreased power.
Soucek, Ondrej; Lebl, Jan; Matyskova, Jana; Snajderova, Marta; Kolouskova, Stanislava; Pruhova, Stepanka; Hlavka, Zdenek; Sumnik, Zdenek
2015-02-01
Although hypogonadism and SHOX gene haploinsufficiency likely cause the decreased bone mineral density and increased fracture rate associated with Turner syndrome (TS), the exact mechanism remains unclear. We tested the hypothesis that muscle dysfunction in patients with TS contributes to increased fracture risk. The secondary aim was to determine whether menarche, hormone therapy duration, positive fracture history and genotype influence muscle function parameters in patients with TS. A cross-sectional study was conducted in a single university hospital referral centre between March 2012 and October 2013. Sixty patients with TS (mean age of 13·7 ± 4·5 years) were compared to the control group of 432 healthy girls. A Leonardo Mechanograph(®) Ground Reaction Force Platform was used to assess muscle force (Fmax ) by the multiple one-legged hopping test and muscle power (Pmax ) by the single two-legged jump test. While the Fmax was normal (mean weight-specific Z-score of 0·11 ± 0·77, P = 0·27), the Pmax was decreased in patients with TS (Z-score of -0·93 ± 1·5, P < 0·001) compared with healthy controls. The muscle function parameters were not significantly influenced by menarcheal stage, hormone therapy duration, fracture history or genotype (linear regression adjusted for age, weight and height; P > 0·05 for all). Fmax , a principal determinant of bone strength, is normal in patients with TS. Previously described changes in bone quality and structure in TS are thus not likely related to inadequate mechanical loading but rather represent a primary bone deficit. A decreased Pmax indicates impaired muscle coordination in patients with TS. © 2014 John Wiley & Sons Ltd.
Control of a three-dimensional turbulent shear layer by means of oblique vortices
NASA Astrophysics Data System (ADS)
Jürgens, Werner; Kaltenbach, Hans-Jakob
2018-04-01
The effect of local forcing on the separated, three-dimensional shear layer downstream of a backward-facing step is investigated by means of large-eddy simulation for a Reynolds number based on the step height of 10,700. The step edge is either oriented normal to the approaching turbulent boundary layer or swept at an angle of 40°. Oblique vortices with different orientation and spacing are generated by wavelike suction and blowing of fluid through an edge parallel slot. The vortices exhibit a complex three-dimensional structure, but they can be characterized by a wavevector in a horizontal section plane. In order to determine the step-normal component of the wavevector, a method is developed based on phase averages. The dependence of the wavevector on the forcing parameters can be described in terms of a dispersion relation, the structure of which indicates that the disturbances are mainly convected through the fluid. The introduced vortices reduce the size of the recirculation region by up to 38%. In both the planar and the swept case, the most efficient of the studied forcings consists of vortices which propagate in a direction that deviates by more than 50° from the step normal. These vortices exhibit a spacing in the order of 2.5 step heights. The upstream shift of the reattachment line can be explained by increased mixing and momentum transport inside the shear layer which is reflected in high levels of the Reynolds shear stress -ρ \\overline{u'v'}. The position of the maximum of the coherent shear stress is found to depend linearly on the wavelength, similar to two-dimensional free shear layers.
NASA Astrophysics Data System (ADS)
Alastruey, Jordi; Siggers, Jennifer H.; Peiffer, Véronique; Doorly, Denis J.; Sherwin, Spencer J.
2012-03-01
Three-dimensional simulations of blood flow usually produce such large quantities of data that they are unlikely to be of clinical use unless methods are available to simplify our understanding of the flow dynamics. We present a new method to investigate the mechanisms by which vascular curvature and torsion affect blood flow, and we apply it to the steady-state flow in single bends, helices, double bends, and a rabbit thoracic aorta based on image data. By calculating forces and accelerations in an orthogonal coordinate system following the centreline of each vessel, we obtain the inertial forces (centrifugal, Coriolis, and torsional) explicitly, which directly depend on vascular curvature and torsion. We then analyse the individual roles of the inertial, pressure gradient, and viscous forces on the patterns of primary and secondary velocities, vortical structures, and wall stresses in each cross section. We also consider cross-sectional averages of the in-plane components of these forces, which can be thought of as reducing the dynamics of secondary flows onto the vessel centreline. At Reynolds numbers between 50 and 500, secondary motions in the directions of the local normals and binormals behave as two underdamped oscillators. These oscillate around the fully developed state and are coupled by torsional forces that break the symmetry of the flow. Secondary flows are driven by the centrifugal and torsional forces, and these are counterbalanced by the in-plane pressure gradients generated by the wall reaction. The viscous force primarily opposes the pressure gradient, rather than the inertial forces. In the axial direction, and depending on the secondary motion, the curvature-dependent Coriolis force can either enhance or oppose the bulk of the axial flow, and this shapes the velocity profile. For bends with little or no torsion, the Coriolis force tends to restore flow axisymmetry. The maximum circumferential and axial wall shear stresses along the centreline correlate well with the averaged in-plane pressure gradient and the radial displacement of the peak axial velocity, respectively. We conclude with a discussion of the physiological implications of these results.
Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei
2014-01-01
In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength. PMID:28788279
Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei
2014-12-08
In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.
Donnelly, Lindsy; Donovan, Luke; Hart, Joseph M; Hertel, Jay
2017-07-01
Individuals with chronic ankle instability (CAI) have demonstrated strength deficits compared to healthy controls; however, the influence of ankle position on force measures and surface electromyography (sEMG) activation of the peroneus longus and brevis has not been investigated. The purpose of this study was to compare sEMG amplitudes of the peroneus longus and brevis and eversion force measures in 2 testing positions, neutral and plantarflexion, in groups with and without CAI. Twenty-eight adults (19 females, 9 males) with CAI and 28 healthy controls (19 females, 9 males) participated. Hand-held dynamometer force measures were assessed during isometric eversion contractions in 2 testing positions (neutral, plantarflexion) while surface sEMG amplitudes of the peroneal muscles were recorded. Force measures were normalized to body mass, and sEMG amplitudes were normalized to a resting period. The group with CAI demonstrated less force when compared to the control group ( P < .001) in both the neutral and plantarflexion positions: neutral position, CAI: 1.64 Nm/kg and control: 2.10 Nm/kg) and plantarflexion position, CAI: 1.40 Nm/kg and control: 1.73 Nm/kg). There were no differences in sEMG amplitudes between the groups or muscles ( P > .05). Force measures correlated with both muscles' sEMG amplitudes in the healthy group (neutral peroneus longus: r = 0.42, P = .03; plantarflexion peroneus longus: r = 0.56, P = .002; neutral peroneus brevis: r = 0.38, P = .05; plantarflexion peroneus longus: r = 0.40, P = .04), but not in the group with CAI ( P > .05). The group with CAI generated less force when compared to the control group during both testing positions. There was no selective activation of the peroneal muscles with testing in both positions, and force output and sEMG activity was only related in the healthy group. Clinicians should assess eversion strength and implement strength training exercises in different sagittal plane positions and evaluate for other pathologies that may contribute to reduced eversion strength in patients with CAI. Level III, cross-sectional.
Quantifying force application to a newborn manikin during simulated cardiopulmonary resuscitation.
Solevåg, Anne Lee; Cheung, Po-Yin; Li, Elliott; Aziz, Khalid; O'Reilly, Megan; Fu, Bo; Zheng, Bin; Schmölzer, Georg
2016-01-01
To assess utility of the FingerTPS™ system in measuring chest compression (CC) rate and force. Five minutes of CC was performed in a neonatal manikin without (n = 29) and with (n = 30) a metronome. The FingerTPS™ force (lbs.) was compared to pressure (mmHg) in a 50-mL normal-saline bag inside the manikin. FingerTPS™ CC rate and the time until a 20% decline from baseline force and pressure were calculated. The normal-saline pressure declined earlier than the FingerTPS™ force. Metronome use did not influence CC rate, force or pressure. The FingerTPS™ can be used to measure CC rate and force.
Plasma membrane NADH oxidase of maize roots responds to gravity and imposed centrifugal forces
NASA Technical Reports Server (NTRS)
Bacon, E.; Morre, D. J.
2001-01-01
NADH oxidase activities measured with excised roots of dark-grown maize (Zea mays) seedlings and with isolated plasma membrane vesicles from roots of dark-grown maize oscillated with a regular period length of 24 min and were inhibited by the synthetic auxin 2,4-dichlorophenoxyacetic [correction of dichorophenoxyacetic] acid. The activities also responded to orientation with respect to gravity and to imposed centrifugal forces. Turning the roots upside down resulted in stimulation of the activity with a lag of about 10 min. Returning the sections to the normal upright position resulted in a return to initial rates. The activity was stimulated reversibly to a maximum of about 2-fold with isolated plasma membrane vesicles, when subjected to centrifugal forces of 25 to 250 x g for 1 to 4 min duration. These findings are the first report of a gravity-responsive enzymatic activity of plant roots inhibited by auxin and potentially related to the gravity-induced growth response. c2001 Editions scientifiques et medicales Elsevier SAS.
Stress analysis of rotating propellers subject to forced excitations
NASA Astrophysics Data System (ADS)
Akgun, Ulas
Turbine blades experience vibrations due to the flow disturbances. These vibrations are the leading cause for fatigue failure in turbine blades. This thesis presents the finite element analysis methods to estimate the maximum vibrational stresses of rotating structures under forced excitation. The presentation included starts with the derived equations of motion for vibration of rotating beams using energy methods under the Euler Bernoulli beam assumptions. The nonlinear large displacement formulation captures the centrifugal stiffening and gyroscopic effects. The weak form of the equations and their finite element discretization are shown. The methods implemented were used for normal modes analyses and forced vibration analyses of rotating beam structures. The prediction of peak stresses under simultaneous multi-mode excitation show that the maximum vibrational stresses estimated using the linear superposition of the stresses can greatly overestimate the stresses if the phase information due to damping (physical and gyroscopic effects) are neglected. The last section of this thesis also presents the results of a practical study that involves finite element analysis and redesign of a composite propeller.
Variation of plantar pressure in Chinese diabetes mellitus.
Yang, Chuan; Xiao, Huisheng; Wang, Chuan; Mai, LiFang; Liu, Dan; Qi, Yiqing; Ren, Meng; Yan, Li
2015-01-01
To investigate dynamic changes in plantar pressure in Chinese diabetes mellitus patients and to provide a basis for further preventing diabetic foot. This is a cross-sectional investigation including 649 Chinese diabetes mellitus patients (diabetes group) and 808 "normal" Chinese persons (nondiabetes group) with normal blood glucose levels. All the subjects provided a complete medical history and underwent a physical examination and a 75-g oral glucose tolerance test. All subjects walked barefoot with their usual gait, and their dynamic plantar forces were measured using the one-step method with a plantar pressure measurement instrument; 5 measurements were performed for each foot. No significant differences were found in age, height, body weight, or body mass index between the two groups. The fasting blood glucose levels, plantar contact time, maximum force, pressure-time integrals and force-time integrals in the diabetes group were significantly higher than those in the nondiabetes group (p < 0.05). However, the maximum pressure was significantly higher in the nondiabetes group than in the diabetes group (p < 0.05). No difference was found in the contact areas between the two groups (p > 0.05). The maximum plantar force distributions were essentially the same, with the highest force found for the medial heel, followed by the medial forefoot and the first toe. The peak plantar pressure was located at the medial forefoot for the nondiabetes group and at the hallucis for the diabetes group. In the diabetes group, the momentum in each plantar region was higher than that in the nondiabetes group; this difference was especially apparent in the heel, the lateral forefoot and the hallucis. The dynamic plantar pressures in diabetic patients differ from those in nondiabetic people with increased maximum force and pressure, a different distribution pattern and significantly increased momentum, which may lead to the formation of foot ulcers. © 2015 by the Wound Healing Society.
Hydrodynamic impeller stiffness, damping, and inertia in the rotordynamics of centrifugal flow pumps
NASA Technical Reports Server (NTRS)
Jery, S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.
1984-01-01
The lateral hydrodynamic forces experienced by a centrifugal pump impeller performing circular whirl motions within several volute geometries were measured. The lateral forces were decomposed into: (1) time averaged lateral forces and (2) hydrodynamic force matrices representing the variation of the lateral forces with position of the impeller center. It is found that these force matrices essentially consist of equal diagonal terms and skew symmetric off diagonal terms. One consequence of this is that during its whirl motion the impeller experiences forces acting normal and tangential to the locus of whirl. Data on these normal and tangential forces are presented; it is shown that there exists a region of positive reduced whirl frequencies, within which the hydrodynamic forces can be destablizing with respect to whirl.
Normalized patellofemoral joint reaction force is greater in individuals with patellofemoral pain.
Thomeer, Lucas T; Sheehan, Frances T; Jackson, Jennifer N
2017-07-26
Patellofemoral pain is a disabling, highly prevalent pathology. Altered patellofemoral contact forces are theorized to contribute to this pain. Musculoskeletal modeling has been employed to better understand the etiology of patellofemoral pain. Currently, there are no data on the effective quadriceps moment arm for individuals with patellofemoral pain, forcing researchers to apply normative values when modeling such individuals. In addition, the ratio of patellofemoral reaction force to quadriceps force is often used as a surrogate for patellofemoral joint contact force, ignoring the fact that the quadriceps efficiency can vary with pathology and intervention. Thus, the purposes of this study were to: (1) quantify the effective quadriceps moment arm in individuals with patellofemoral pain and compare this value to a control cohort and (2) develop a novel methodology for quantifying the normalized patellofemoral joint reaction force in vivo during dynamic activities. Dynamic MR data were captured as subjects with patellofemoral pain (30F/3M) cyclically flexed their knee from 10° to 40°. Data for control subjects (29F/9M) were taken from a previous study. The moment arm data acquired across a large cohort of individuals with patellofemoral pain should help advance musculoskeletal modeling. The primary finding of this study was an increased mean normalized patellofemoral reaction force of 14.9% (maximum values at a knee angle of 10°) in individuals with patellofemoral pain. Understanding changes in the normalized patellofemoral reaction force with pathology may lead to improvements in clinical decision making, and consequently treatments, by providing a more direct measure of altered patellofemoral joint forces. Copyright © 2017. Published by Elsevier Ltd.
Liu, Rui; Mao, Ziliang; Matthews, Dennis L; Li, Chin-Shang; Chan, James W; Satake, Noriko
2013-07-01
Laser tweezers Raman spectroscopy was used to characterize the oxygenation response of single normal adult, sickle, and cord blood red blood cells (RBCs) to an applied mechanical force. Individual cells were subjected to different forces by varying the laser power of a single-beam optical trap, and the intensities of several oxygenation-specific Raman spectral peaks were monitored to determine the oxygenation state of the cells. For all three cell types, an increase in laser power (or mechanical force) induced a greater deoxygenation of the cell. However, sickle RBCs deoxygenated more readily than normal RBCs when subjected to the same optical forces. Conversely, cord blood RBCs were able to maintain their oxygenation better than normal RBCs. These results suggest that differences in the chemical or mechanical properties of fetal, normal, and sickle cells affect the degree to which applied mechanical forces can deoxygenate the cell. Populations of normal, sickle, and cord RBCs were identified and discriminated based on this mechanochemical phenomenon. This study demonstrates the potential application of laser tweezers Raman spectroscopy as a single-cell, label-free analytical tool to characterize the functional (e.g., mechanical deformability, oxygen binding) properties of normal and diseased RBCs. Copyright © 2013 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Lane, J.A.; Engberg, R.E.; Welch, J.M.
1959-05-12
A quick-releasing mechanism is described which may be used to rapidiy drop a device supported from beneath during normal use, such as a safety rod in a nuclear reactor. In accordance with this invention an electrical control signal, such as may be provided by radiation detection or other alarm condition sensing devices, is delivered to an electromagnetic solenoid, the armature of which is coupled to an actuating mechanism. The solenoid is energized when the mechanism is in its upper or cocked position. In such position, the mechanism engages a plurality of retaining balls, forcing them outward into engagement with a shoulder or recess in a corresponding section of a tubular extension on the upheld device. When the control signal to the solenoid suddenly ceases, the armature drops out, allowing the actuating mechanism to move slightly but rapidly under the force of a compressed spring. The weight of the device will urge the balls inward against a beveled portion of the actuating mechanism and away from the engaging section on the tubular extension, thus allowing the upheld device to fall freely under the influence of gravity.
Correlating CFD Simulation with Wind Tunnel Test for the Full-Scale UH-60A Airloads Rotor
NASA Technical Reports Server (NTRS)
Romandr, Ethan; Norman, Thomas R.; Chang, I-Chung
2011-01-01
Data from the recent UH-60A Airloads Test in the National Full-Scale Aerodynamics Complex 40- by 80- Foot Wind Tunnel at NASA Ames Research Center are presented and compared to predictions computed by a loosely coupled Computational Fluid Dynamics (CFD)/Comprehensive analysis. Primary calculations model the rotor in free-air, but initial calculations are presented including a model of the tunnel test section. The conditions studied include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed into deep stall. Predictions show reasonable agreement with measurement for integrated performance indicators such as power and propulsive but occasionally deviate significantly. Detailed analysis of sectional airloads reveals good correlation in overall trends for normal force and pitching moment but pitching moment mean often differs. Chord force is frequently plagued by mean shifts and an overprediction of drag on the advancing side. Locations of significant aerodynamic phenomena are predicted accurately although the magnitude of individual events is often missed.
Giszter, Simon F; Davies, Michelle R; Graziani, Virginia
2010-01-01
Some rats spinally transected as neonates (ST rats) achieve weight-supporting independent locomotion. The mechanisms of coordinated hindlimb weight support in such rats are not well understood. To examine these in such ST rats and normal rats, rats with better than 60% of weight supported steps on a treadmill as adults were trained to cross an instrumented runway. Ground reaction forces, coordination of hindlimb and forelimb forces and the motions of the center of pressure were assessed. Normal rats crossed the runway with a diagonal trot. On average hindlimbs bore about 80% of the vertical load carried by forelimbs, although this varied. Forelimbs and hindlimb acted synergistically to generate decelerative and propulsive rostrocaudal forces, which averaged 15% of body weight with maximums of 50% . Lateral forces were very small (<8% of body weight). Center of pressure progressed in jumps along a straight line with mean lateral deviations <1 cm. ST rats hindlimbs bore about 60% of the vertical load of forelimbs, significantly less compared to intact (p<0.05). ST rats showed similar mean rostrocaudal forces, but with significantly larger maximum fluctuations of up to 80% of body weight (p<0.05). Joint force-plate recordings showed forelimbs and hindlimb rostrocaudal forces in ST rats were opposing and significantly different from intact rats (p<0.05). Lateral forces were ~20% of body weight and significantly larger than in normal rats (p<0.05). Center of pressure zig-zagged, with mean lateral deviations of ~ 2cm and a significantly larger range (p<0.05). The haunches were also observed to roll more than normal rats. The locomotor strategy of injured rats using limbs in opposition was presumably less efficient but their complex gait was statically stable. Because forelimbs and hindlimbs acted in opposition, the trunk was held compressed. Force coordination was likely managed largely by the voluntary control in forelimbs and trunk. PMID:18612631
Hewson, D J; McNair, P J; Marshall, R N
2001-07-01
Pilots may have difficulty controlling aircraft at both high and low force levels due to larger variability in force production at these force levels. The aim of this study was to measure the force variability and landing performance of pilots during an instrument landing in a flight simulator. There were 12 pilots who were tested while performing 5 instrument landings in a flight simulator, each of which required different control force inputs. Pilots can produce the least force when pushing the control column to the right, therefore the force levels for the landings were set relative to each pilot's maximum aileron-right force. The force levels for the landings were 90%, 60%, and 30% of maximal aileron-right force, normal force, and 25% of normal force. Variables recorded included electromyographic activity (EMG), aircraft control forces, aircraft attitude, perceived exertion and deviation from glide slope and heading. Multivariate analysis of variance was used to test for differences between landings. Pilots were least accurate in landing performance during the landing at 90% of maximal force (p < 0.05). There was also a trend toward decreased landing performance during the landing at 25% of normal force. Pilots were more variable in force production during the landings at 60% and 90% of maximal force (p < 0.05). Pilots are less accurate at performing instrument landings when control forces are high due to the increased variability of force production. The increase in variability at high force levels is most likely associated with motor unit recruitment, rather than rate coding. Aircraft designers need to consider the reduction in pilot performance at high force levels, as well as pilot strength limits when specifying new standards.
On the Normal Force Mechanotransduction of Human Umbilical Vein Endothelial Cells
NASA Astrophysics Data System (ADS)
Vahabikashi, Amir; Wang, Qiuyun; Wilson, James; Wu, Qianhong; Vucbmss Team
2016-11-01
In this paper, we report a cellular biomechanics study to examine the normal force mechanotransduction of Human Umbilical Vein Endothelial Cells (HUVECs) with their implications on hypertension. Endothelial cells sense mechanical forces and adjust their structure and function accordingly. The mechanotransduction of normal forces plays a vital role in hypertension due to the higher pressure buildup inside blood vessels. Herein, HUVECs were cultured to full confluency and then exposed to different mechanical loadings using a novel microfluidic flow chamber. One various pressure levels while keeps the shear stress constant inside the flow chamber. Three groups of cells were examined, the control group (neither shear nor normal stresses), the normal pressure group (10 dyne/cm2 of shear stress and 95 mmHg of pressure), and the hypertensive group (10 dyne/cm2 of shear stress and 142 mmHg of pressure). Cellular response characterized by RT-PCR method indicates that, COX-2 expressed under normal pressure but not high pressure; Mn-SOD expressed under both normal and high pressure while this response was stronger for normal pressure; FOS and e-NOS did not respond under any condition. The differential behavior of COX-2 and Mn-SOD in response to changes in pressure, is instrumental for better understanding the pathogenesis of hypertensive cardiovascular diseases. This research was supported by the National Science Foundation under Award #1511096.
1984-01-01
majority (93 percent) of cases are traffic cases . Of all traffic cases only a small portion (2.6 percent of the total) deal...Further, because the vast majority of cases are only normal traffic violations, only a small percentage of cases , about ten percent, feature a defendant...The remaining 35.3 percent of cases are nontraffic in nature. A majority of dispositions are by forfei- ture, guilty plea, and failure to
Performance of an inverted pendulum model directly applied to normal human gait.
Buczek, Frank L; Cooney, Kevin M; Walker, Matthew R; Rainbow, Michael J; Concha, M Cecilia; Sanders, James O
2006-03-01
In clinical gait analysis, we strive to understand contributions to body support and propulsion as this forms a basis for treatment selection, yet the relative importance of gravitational forces and joint powers can be controversial even for normal gait. We hypothesized that an inverted pendulum model, propelled only by gravity, would be inadequate to predict velocities and ground reaction forces during gait. Unlike previous ballistic and passive dynamic walking studies, we directly compared model predictions to gait data for 24 normal children. We defined an inverted pendulum from the average center-of-pressure to the instantaneous center-of-mass, and derived equations of motion during single support that allowed a telescoping action. Forward and inverse dynamics predicted pendulum velocities and ground reaction forces, and these were statistically and graphically compared to actual gait data for identical strides. Results of forward dynamics replicated those in the literature, with reasonable predictions for velocities and anterior ground reaction forces, but poor predictions for vertical ground reaction forces. Deviations from actual values were explained by joint powers calculated for these subjects. With a telescoping action during inverse dynamics, predicted vertical forces improved dramatically and gained a dual-peak pattern previously missing in the literature, yet expected for normal gait. These improvements vanished when telescoping terms were set to zero. Because this telescoping action is difficult to explain without muscle activity, we believe these results support the need for both gravitational forces and joint powers in normal gait. Our approach also begins to quantify the relative contributions of each.
To Believe the Past or to Trust the Future
ERIC Educational Resources Information Center
Jin, Fengtao; Zhou, Zhaoyan
2012-01-01
A small ball rolls down from a quarter-circle to a frictionless plane. What will be the magnitude of the normal force when the ball arrives at the tangent point of the circle and the plane? According to the centripetal force formula, the normal force will be 3 "mg" when the curvature radius of the circle is considered, but will be "mg" instead…
Forced normalization at the interface between epilepsy and psychiatry.
Krishnamoorthy, E S.; Trimble, M R.; Sander, J W.A.S.; Kanner, Andres M.
2002-08-01
In 1953, Landolt described a group of patients with poorly controlled epilepsy who had psychotic episodes associated with remission of their seizures and disappearance of epileptiform activity on their EEGs. He called this phenomenon "forced normalization." Since then, neurologists and psychiatrists have been intrigued by this phenomenon, and although it has been also reported by others, its existence continues to be the source of much debate. In this article, we review the clinical characteristics and potential pathogenic mechanisms of forced normalization and illustrate the complexities inherent in reaching this diagnosis, as well as its differential diagnosis in two representative cases.
[A five-year-old girl with epilepsy showing forced normalization due to zonisamide].
Hirose, Mieko; Yokoyama, Hiroyuki; Haginoya, Kazuhiro; Iinuma, Kazuie
2003-05-01
A case of forced normalization in childhood is presented. When zonisamide was administered to a five-year-old girl with intractable epilepsy, disappearance of seizures was accompanied by severe psychotic episodes such as communication disturbance, personal relationship failure, and stereotyped behavior, which continued after the withdrawal of zonisamide. These symptoms gradually improved by administration of fluvoxamine, however epileptic attacks reappeared. Although most patients with forced normalization are adult and teenager, attention should be paid to this phenomenon as adverse psychotic effects of zonisamide even in young children. Fluvoxamine may be effective for the symptoms.
Mendias, Christopher L; Kayupov, Erdan; Bradley, Joshua R; Brooks, Susan V; Claflin, Dennis R
2011-07-01
Myostatin (MSTN) is a member of the transforming growth factor-β superfamily of cytokines and is a negative regulator of skeletal muscle mass. Compared with MSTN(+/+) mice, the extensor digitorum longus muscles of MSTN(-/-) mice exhibit hypertrophy, hyperplasia, and greater maximum isometric force production (F(o)), but decreased specific maximum isometric force (sF(o); F(o) normalized by muscle cross-sectional area). The reason for the reduction in sF(o) was not known. Studies in myotubes indicate that inhibiting myostatin may increase muscle mass by decreasing the expression of the E3 ubiquitin ligase atrogin-1, which could impact the force-generating capacity and size of muscle fibers. To gain a greater understanding of the influence of myostatin on muscle contractility, we determined the impact of myostatin deficiency on the contractility of permeabilized muscle fibers and on the levels of atrogin-1 and ubiquitinated myosin heavy chain in whole muscle. We hypothesized that single fibers from MSTN(-/-) mice have a greater F(o), but no difference in sF(o), and a decrease in atrogin-1 and ubiquitin-tagged myosin heavy chain levels. The results indicated that fibers from MSTN(-/-) mice have a greater cross-sectional area, but do not have a greater F(o) and have a sF(o) that is significantly lower than fibers from MSTN(+/+) mice. The extensor digitorum longus muscles from MSTN(-/-) mice also have reduced levels of atrogin-1 and ubiquitinated myosin heavy chain. These findings suggest that myostatin inhibition in otherwise healthy muscle increases the size of muscle fibers and decreases atrogin-1 levels, but does not increase the force production of individual muscle fibers.
Fox, Aaron S; Carty, Christopher P; Modenese, Luca; Barber, Lee A; Lichtwark, Glen A
2018-03-01
Altered neural control of movement and musculoskeletal deficiencies are common in children with spastic cerebral palsy (SCP), with muscle weakness and contracture commonly experienced. Both neural and musculoskeletal deficiencies are likely to contribute to abnormal gait, such as equinus gait (toe-walking), in children with SCP. However, it is not known whether the musculoskeletal deficiencies prevent normal gait or if neural control could be altered to achieve normal gait. This study examined the effect of simulated muscle weakness and contracture of the major plantarflexor/dorsiflexor muscles on the neuromuscular requirements for achieving normal walking gait in children. Initial muscle-driven simulations of walking with normal musculoskeletal properties by typically developing children were undertaken. Additional simulations with altered musculoskeletal properties were then undertaken; with muscle weakness and contracture simulated by reducing the maximum isometric force and tendon slack length, respectively, of selected muscles. Muscle activations and forces required across all simulations were then compared via waveform analysis. Maintenance of normal gait appeared robust to muscle weakness in isolation, with increased activation of weakened muscles the major compensatory strategy. With muscle contracture, reduced activation of the plantarflexors was required across the mid-portion of stance suggesting a greater contribution from passive forces. Increased activation and force during swing was also required from the tibialis anterior to counteract the increased passive forces from the simulated dorsiflexor muscle contracture. Improvements in plantarflexor and dorsiflexor motor function and muscle strength, concomitant with reductions in plantarflexor muscle stiffness may target the deficits associated with SCP that limit normal gait. Copyright © 2018 Elsevier B.V. All rights reserved.
Purevsuren, Tserenchimed; Dorj, Ariunzaya; Kim, Kyungsoo; Kim, Yoon Hyuk
2016-04-01
The computational modeling approach has commonly been used to predict knee joint contact forces, muscle forces, and ligament loads during activities of daily living. Knowledge of these forces has several potential applications, for example, within design of equipment to protect the knee joint from injury and to plan adequate rehabilitation protocols, although clinical applications of computational models are still evolving and one of the limiting factors is model validation. The objective of this study was to extend previous modeling technique and to improve the validity of the model prediction using publicly available data set of the fifth "Grand Challenge Competition to Predict In Vivo Knee Loads." A two-stage modeling approach, which combines conventional inverse dynamic analysis (the first stage) with a multi-body subject-specific lower limb model (the second stage), was used to calculate medial and lateral compartment contact forces. The validation was performed by direct comparison of model predictions and experimental measurement of medial and lateral compartment contact forces during normal and turning gait. The model predictions of both medial and lateral contact forces showed strong correlations with experimental measurements in normal gait (r = 0.75 and 0.71) and in turning gait trials (r = 0.86 and 0.72), even though the current technique over-estimated medial compartment contact forces in swing phase. The correlation coefficient, Sprague and Geers metrics, and root mean squared error indicated that the lateral contact forces were predicted better than medial contact forces in comparison with the experimental measurements during both normal and turning gait trials. © IMechE 2016.
Axial force measurement for esophageal function testing
Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr
2009-01-01
The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the “golden standard” for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method. PMID:19132762
van Dijk, Wouter; Tan, Wan; Li, Pei; Guo, Best; Li, Summer; Benedetti, Andrea; Bourbeau, Jean
2015-01-01
The way in which spirometry is interpreted can lead to misdiagnosis of chronic obstructive pulmonary disease (COPD) resulting in inappropriate treatment. We compared the clinical relevance of 2 criteria for defining a low ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC): the fixed ratio and the lower limit of normal. We analyzed data from the cross-sectional phase of the population-based Canadian Cohort of Obstructive Lung Disease (CanCOLD) study. We determined associations of the spirometric criteria for airflow limitation with patient-reported adverse outcomes, including respiratory symptoms, disability, health status, exacerbations, and cardiovascular disease. Sensitivity analyses were used to explore the impact of age and severity of airflow limitation on these associations. We analyzed data from 4,882 patients aged 40 years and older. The prevalence of airflow limitation was 17% by fixed ratio and 11% by lower limit of normal. Patients classified as having airflow limitation by fixed ratio only had generally small, nonsignificant increases in the odds of adverse outcomes. Patients having airflow limitation based on both fixed ratio and lower limit of normal had larger, significant increases in odds. But strongest associations were seen for patients who had airflow limitation by both fixed ratio and lower limit of normal and also had a low FEV1, defined as one less than 80% of the predicted value. Our results suggest that use of the fixed ratio alone may lead to misdiagnosis of COPD. A diagnosis established by both a low FEV1/FVC (according to fixed ratio and/or lower limit of normal) and a low FEV1 is strongly associated with clinical outcomes. Guidelines should be reconsidered to require both spirometry abnormalities so as to reduce overdiagnosis of COPD. © 2015 Annals of Family Medicine, Inc.
Kamiya, Tomoaki; Kura, Hideji; Suzuki, Daisuke; Uchiyama, Eiichi; Fujimiya, Mineko; Yamashita, Toshihiko
2009-12-01
The roles of each ligament supporting the subtalar joint have not been clarified despite several biomechanical studies. The effects of ankle braces on subtalar instability have not been shown. The ankle brace has a partial effect on restricting excessive motion of the subtalar joint. Controlled laboratory study. Ten normal fresh-frozen cadaveric specimens were used. The angular motions of the talus were measured via a magnetic tracking system. The specimens were tested while inversion and eversion forces, as well as internal and external rotation torques, were applied. The calcaneofibular ligament, cervical ligament, and interosseous talocalcaneal ligament were sectioned sequentially, and the roles of each ligament, as well as the stabilizing effects of the ankle brace, were examined. Complete sectioning of the ligaments increased the angle between the talus and calcaneus in the frontal plane to 51.7 degrees + or - 11.8 degrees compared with 35.7 degrees + or - 6.0 degrees in the intact state when inversion force was applied. There was a statistically significant difference in the angles between complete sectioning of the ligaments and after application of the brace (34.1 degrees + or - 7.3 degrees ) when inversion force was applied. On the other hand, significant differences in subtalar rotation were not found between complete sectioning of the ligaments and application of the brace when internal and external rotational torques were applied. The ankle brace limited inversion of the subtalar joint, but it did not restrict motion after application of internal or external rotational torques. In cases of severe ankle sprains involving the calcaneofibular ligament, cervical ligament, and interosseous talocalcaneal ligament injuries, application of an ankle brace might be less effective in limiting internal-external rotational instabilities than in cases of inversion instabilities in the subtalar joint. An improvement in the design of the brace is needed to restore better rotational stability in the subtalar joint.
The Erosion of Public Trust: Normalization of Deviance In The Air Force
2016-02-13
to forge, and building a reputation of professionalism and trustworthiness requires significant effort and investment. And, public trust grows ...clearly a special trust between society and the military profession . Normalization of Deviance Now that military professionalism and the special...their armed forces will operate in a competent, professional , and ethical manner. In the case of the United States Air Force, there has been an
Nonequilibrium Tuning of the Thermal Casimir Effect.
Dean, David S; Lu, Bing-Sui; Maggs, A C; Podgornik, Rudolf
2016-06-17
In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Casimir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Cruz, Josue; Lung, Shun-Fat; Kota, Sridhar; Ervin, Gregory; Lu, Kerr-Jia; Flick, Pete
2016-01-01
A seamless adaptive compliant trailing edge (ACTE) flap was demonstrated in flight on a Gulfstream III aircraft at the NASA Armstrong Flight Research Center. The trailing edge flap was deflected between minus 2 deg up and plus 30 deg down in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The interface hardware instrumentation layout and load calibration are discussed. Twenty-one applied calibration test load cases were developed for each individual fitting. The 2-sigma residual errors for the hinge moment was calculated to be 2.4 percent, and for normal force was calculated to be 7.3 percent. The hinge moment and normal force generated by the ACTE flap with a hinge point located at 26-percent wing chord were measured during steady state and symmetric pitch maneuvers. The loads predicted from analysis were compared to the loads observed in flight. The hinge moment loads showed good agreement with the flight loads while the normal force loads calculated from analysis were over-predicted by approximately 20 percent. Normal force and hinge moment loads calculated from the pressure sensors located on the ACTE showed good agreement with the loads calculated from the installed strain gages.
Simulation of the oscillation regimes of bowed bars: a non-linear modal approach
NASA Astrophysics Data System (ADS)
Inácio, Octávio; Henrique, Luís.; Antunes, José
2003-06-01
It is still a challenge to properly simulate the complex stick-slip behavior of multi-degree-of-freedom systems. In the present paper we investigate the self-excited non-linear responses of bowed bars, using a time-domain modal approach, coupled with an explicit model for the frictional forces, which is able to emulate stick-slip behavior. This computational approach can provide very detailed simulations and is well suited to deal with systems presenting a dispersive behavior. The effects of the bar supporting fixture are included in the model, as well as a velocity-dependent friction coefficient. We present the results of numerical simulations, for representative ranges of the bowing velocity and normal force. Computations have been performed for constant-section aluminum bars, as well as for real vibraphone bars, which display a central undercutting, intended to help tuning the first modes. Our results show limiting values for the normal force FN and bowing velocity ẏbow for which the "musical" self-sustained solutions exist. Beyond this "playability space", double period and even chaotic regimes were found for specific ranges of the input parameters FN and ẏbow. As also displayed by bowed strings, the vibration amplitudes of bowed bars also increase with the bow velocity. However, in contrast to string instruments, bowed bars "slip" during most of the motion cycle. Another important difference is that, in bowed bars, the self-excited motions are dominated by the system's first mode. Our numerical results are qualitatively supported by preliminary experimental results.
Code of Federal Regulations, 2010 CFR
2010-01-01
... additional withholding; (3) Health insurance premiums; (4) Normal retirement contributions as explained in 5 CFR 581.105(e); (5) Normal life insurance premiums, excluding optional life insurance premiums; and (6... employee of an agency, including a current member of the Armed Forces or Reserve of the Armed Forces of the...
Topography-coupled resonance between Mars normal-modes and the tidal force of the Phobos
NASA Astrophysics Data System (ADS)
Tian, Y.; Zheng, Y.
2016-12-01
Phobos is the largest moon of Mars. The gravity attraction of Phobos to Mars is a periodic force, which may excite seismic waves inside Mars. Since Phobos is below the synchronous orbit, its orbit is continuously decreasing due to the tidal effect. This will result in a monotonic increase in its orbital frequency, which may eventually intrude into the seismic normal-mode frequency range to cause resonance. The objective of this research is to investigate whether such a resonance phenomenon can occur and what the consequence is. As we know, resonance happens when the periodic tidal force has a similar frequency as that of martian normal modes. It can be shown that such a resonance will not occur if Mars is perfectly spherical because the tidal force can only excite modes of the same angular order. For the same angular order, the tidal force frequencies are always smaller than those of the normal modes. However, when we consider the effect of topography of Mars, the resonance can occur because of coupling of normal modes. We use numerical method to calculate when the resonance will occur. We firstly solve for the normal modes of Mars by idealizing it as a solid elastic sphere. At the second step, we calculate the excitation effect of gravitational force from Phobos on each individual normal mode. For example, the gravity tidal force F at L=5, m=5 F55 can excite a normal mode 0S5 which can be coupled to 0T2. The third step is to calculate the frequency that the resonance will happen. For example, when the rotation frequency of Phobos increase to 0.8 mRad/s, the tidal force at L=5, m=5 can reach 4mRad/s which is the eigen-frequency of 0T2. Since we have calculated the coupling factors between each individual mode, the amplitude coefficients can be solved by a linear equation. We can observe a 100 times of amplitude increase of mode 0T2, which convince us the resonance will happen. The resonance may cause large amplitude of ground vibration of Mars. From our calculation, when the resonance happen, the energy dissipation rate will be greatly increased, which will make Phobos falling much faster. Eventually, Phobos will hit Mars in a very short time. Our research may give us a new prospective on early formation of planets.
Real-time feedback enhances forward propulsion during walking in old adults.
Franz, Jason R; Maletis, Michela; Kram, Rodger
2014-01-01
Reduced propulsive function during the push-off phase of walking plays a central role in the deterioration of walking ability with age. We used real-time propulsive feedback to test the hypothesis that old adults have an underutilized propulsive reserve available during walking. 8 old adults (mean [SD], age: 72.1 [3.9] years) and 11 young adults (age: 21.0 [1.5] years) participated. For our primary aim, old subjects walked: 1) normally, 2) with visual feedback of their peak propulsive ground reaction forces, and 3) with visual feedback of their medial gastrocnemius electromyographic activity during push-off. We asked those subjects to match a target set to 20% and 40% greater propulsive force or push-off muscle activity than normal walking. We tested young subjects walking normally only to provide reference ground reaction force values. Walking normally, old adults exerted 12.5% smaller peak propulsive forces than young adults (P<0.01). However, old adults significantly increased their propulsive forces and push-off muscle activities when we provided propulsive feedback. Most notably, force feedback elicited propulsive forces that were equal to or 10.5% greater than those of young adults (+20% target, P=0.87; +40% target, P=0.02). With electromyographic feedback, old adults significantly increased their push-off muscle activities but without increasing their propulsive forces. Old adults with propulsive deficits have a considerable and underutilized propulsive reserve available during level walking. Further, real-time propulsive feedback represents a promising therapeutic strategy to improve the forward propulsion of old adults and thus maintain their walking ability and independence. © 2013.
Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Fan, Liang-Shih
2015-07-01
Direct numerical simulations with an immersed boundary-lattice Boltzmann method are used to investigate the effects of particle rotation on flows past random arrays of mono-disperse spheres at moderate particle Reynolds numbers. This study is an extension of a previous study of the authors [Q. Zhou and L.-S. Fan, "Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres," J. Fluid Mech. 765, 396-423 (2015)] that explored the effects of particle rotation at low particle Reynolds numbers. The results of this study indicate that as the particle Reynolds number increases, the normalized Magnus lift force decreases rapidly when the particle Reynolds number is in the range lower than 50. For the particle Reynolds number greater than 50, the normalized Magnus lift force approaches a constant value that is invariant with solid volume fractions. The proportional dependence of the Magnus lift force on the rotational Reynolds number (based on the angular velocity and the diameter of the spheres) observed at low particle Reynolds numbers does not change in the present study, making the Magnus lift force another possible factor that can significantly affect the overall dynamics of fluid-particle flows other than the drag force. Moreover, it is found that both the normalized drag force and the normalized torque increase with the increase of the particle Reynolds number and the solid volume fraction. Finally, correlations for the drag force, the Magnus lift force, and the torque in random arrays of rotating spheres at arbitrary solids volume fractions, rotational Reynolds numbers, and particle Reynolds numbers are formulated.
NASA Technical Reports Server (NTRS)
Widrick, Jeffrey J.; Bangart, Jill J.; Karhanek, Miloslav; Fitts, Robert H.
1996-01-01
This study examined the effectiveness of intermittent weight bearing (IWB) as a countermeasure to non-weight-bearing (NWB)-induced alterations in soleus type 1 fiber force (in mN), tension (P(sub o); force per fiber cross-sectional area in kN/sq m), and maximal unloaded shortening velocity (V(sub o), in fiber lengths/s). Adult rats were assigned to one of the following groups: normal weight bearing (WB), 14 days of hindlimb NWB (NWB group), and 14 days of hindlimb NWB with IWB treatments (IWB group). The IWB treatment consisted of four 10-min periods of standing WB each day. Single, chemically permeabilized soleus fiber segments were mounted between a force transducer and position motor and were studied at maximal Ca(2+) activation, after which type 1 fiber myosin heavy-chain composition was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. NWB resulted in a loss in relative soleus mass (-45%), with type 1 fibers displaying reductions in diameter (-28%) and peak isometric force (-55%) and an increase in V(sub o) (+33%). In addition, NWB induced a 16% reduction in type 1 fiber P., a 41% reduction in type 1 fiber peak elastic modulus [E(sub o), defined as ((delta)force/(delta)length x (fiber length/fiber cross-sectional area] and a significant increase in the P(sub o)/E(sub o) ratio. In contrast to NWB, IWB reduced the loss of relative soleus mass (by 22%) and attenuated alterations in type 1 fiber diameter (by 36%), peak force (by 29%), and V(sub o)(by 48%) but had no significant effect on P(sub o), E(sub o) or P(sub o)/E(sub o). These results indicate that a modest restoration of WB activity during 14 days of NWB is sufficient to attenuate type 1 fiber atrophy and to partially restore type 1 peak isometric force and V(sub o) to WB levels. However, the NWB-induced reductions in P(sub o) and E(sub o) which we hypothesize to be due to a decline in the number and stiffness of cross bridges, respectively, are considerably less responsive to this countermeasure treatment.
Passive microrheology of normal and cancer cells after ML7 treatment by atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyapunova, Elena, E-mail: lyapunova@icmm.ru; Ural Federal University, Kuibyishev Str. 48, Ekaterinburg, 620000; Nikituk, Alexander, E-mail: nas@icmm.ru
Mechanical properties of living cancer and normal thyroidal cells were investigated by atomic force microscopy (AFM). Cell mechanics was compared before and after treatment with ML7, which is known to reduce myosin activity and induce softening of cell structures. We recorded force curves with extended dwell time of 6 seconds in contact at maximum forces from 500 pN to 1 nN. Data were analyzed within different frameworks: Hertz fit was applied in order to evaluate differences in Young’s moduli among cell types and conditions, while the fluctuations of the cantilever in contact with cells were analyzed with both conventional algorithmsmore » (probability density function and power spectral density) and multifractal detrended fluctuation analysis (MF-DFA). We found that cancer cells were softer than normal cells and ML7 had a substantial softening effect on normal cells, but only a marginal one on cancer cells. Moreover, we observed that all recorded signals for normal and cancer cells were monofractal with small differences between their scaling parameters. Finally, the applicability of wavelet-based methods of data analysis for the discrimination of different cell types is discussed.« less
Almonte, Lisa; Colchero, Jaime
2017-02-23
The present work analyses how the tip-sample interaction signals critically determine the operation of an Atomic Force Microscope (AFM) set-up immersed in liquid. On heterogeneous samples, the conservative tip-sample interaction may vary significantly from point to point - in particular from attractive to repulsive - rendering correct feedback very challenging. Lipid membranes prepared on a mica substrate are analyzed as reference samples which are locally heterogeneous (material contrast). The AFM set-up is operated dynamically at low oscillation amplitude and all available experimental data signals - the normal force, as well as the amplitude and frequency - are recorded simultaneously. From the analysis of how the dissipation (oscillation amplitude) and the conservative interaction (normal force and resonance frequency) vary with the tip-sample distance we conclude that dissipation is the only appropriate feedback source for stable and correct topographic imaging. The normal force and phase then carry information about the sample composition ("chemical contrast"). Dynamic AFM allows imaging in a non-contact regime where essentially no forces are applied, rendering dynamic AFM a truly non-invasive technique.
Saxby, David John; Bryant, Adam L; Wang, Xinyang; Modenese, Luca; Gerus, Pauline; Konrath, Jason M; Bennell, Kim L; Fortin, Karine; Wrigley, Tim; Cicuttini, Flavia M; Vertullo, Christopher J; Feller, Julian A; Whitehead, Tim; Gallie, Price; Lloyd, David G
2017-08-01
Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. Cross-sectional study; Level of evidence, 3. Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both greater tibial cartilage volumes (medial: R 2 = 0.43, β = 0.62, P = .000; lateral: R 2 = 0.19, β = 0.46, P = .03) and medial thicknesses ( R 2 = 0.24, β = 0.48, P = .01). In the overall group of ACL-reconstructed knees, greater contact forces were related to greater lateral cartilage volumes ( R 2 = 0.08, β = 0.28, P = .01). In ACL-reconstructed knees with lateral meniscal injury, greater lateral contact forces were related to greater lateral cartilage volumes ( R 2 = 0.41, β = 0.64, P = .001) and thicknesses ( R 2 = 0.20, β = 0.46, P = .04). At 2 to 3 years postsurgery, ACL-reconstructed knees had thinner cartilage compared with healthy knees, and there were no positive relationships between medial contact forces and cartilage morphology. In lateral meniscal-injured reconstructed knees, greater contact forces were related to greater lateral cartilage volumes and thicknesses, although it was unclear whether this was an adaptive response or associated with degeneration. Future clinical studies may seek to establish whether cartilage morphology can be modified through rehabilitation programs targeting contact forces directly in addition to the current rehabilitation foci of restoring passive and dynamic knee range of motion, knee strength, and functional performance.
Saxby, David John; Bryant, Adam L.; Wang, Xinyang; Modenese, Luca; Gerus, Pauline; Konrath, Jason M.; Bennell, Kim L.; Fortin, Karine; Wrigley, Tim; Cicuttini, Flavia M.; Vertullo, Christopher J.; Feller, Julian A.; Whitehead, Tim; Gallie, Price; Lloyd, David G.
2017-01-01
Background: Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. Hypotheses: Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. Results: In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both greater tibial cartilage volumes (medial: R 2 = 0.43, β = 0.62, P = .000; lateral: R 2 = 0.19, β = 0.46, P = .03) and medial thicknesses (R 2 = 0.24, β = 0.48, P = .01). In the overall group of ACL-reconstructed knees, greater contact forces were related to greater lateral cartilage volumes (R 2 = 0.08, β = 0.28, P = .01). In ACL-reconstructed knees with lateral meniscal injury, greater lateral contact forces were related to greater lateral cartilage volumes (R 2 = 0.41, β = 0.64, P = .001) and thicknesses (R 2 = 0.20, β = 0.46, P = .04). Conclusion: At 2 to 3 years postsurgery, ACL-reconstructed knees had thinner cartilage compared with healthy knees, and there were no positive relationships between medial contact forces and cartilage morphology. In lateral meniscal-injured reconstructed knees, greater contact forces were related to greater lateral cartilage volumes and thicknesses, although it was unclear whether this was an adaptive response or associated with degeneration. Future clinical studies may seek to establish whether cartilage morphology can be modified through rehabilitation programs targeting contact forces directly in addition to the current rehabilitation foci of restoring passive and dynamic knee range of motion, knee strength, and functional performance. PMID:28894756
Preliminary Results of Stability and Control Investigation of the Bell X-5 Research Airplane
NASA Technical Reports Server (NTRS)
Finch, Thomas W; Briggs, Donald W
1953-01-01
During the acceptance tests of the Bell X-5 airplane, measurements of the static stability and control characteristics and horizontal-tail loads were obtained by the NACA High-Speed Flight Research Station. The results of the stability and control measurements are presented in this paper. A change in sweep angle between 20 deg and 59 deg had a minor effect on the longitudinal trim, with a maximum change of about 2.5 deg in elevator deflection being required at a Mach number near 0.85; however, sweeping the wings produced a total stick-force change of about 40 pounds. At low Mach numbers there was a rapid increase in stability at high normal-force coefficients for both 20 0 and 1100 sweepback, whereas a condition of neutral stability existed for 58 0 sweepback at high normal-force coefficients. At Mach numbers near 0.8 there was an instability at normal-force coefficients above 0.5 for all sweep angles tested. In the low normal-force-coefficient range a high degree of stability resulted in high stick forces which limited the maximum load factors attainable in the demonstration flights to values under 5g for all sweep angles at a Mach number near 0.8 and an altitude of 12,000 feet. The aileron effectiveness at 200 sweepback was found to be low over the Mach number range tested.
Numerical Simulation of Dry Granular Flow Impacting a Rigid Wall Using the Discrete Element Method
Wu, Fengyuan; Fan, Yunyun; Liang, Li; Wang, Chao
2016-01-01
This paper presents a clump model based on Discrete Element Method. The clump model was more close to the real particle than a spherical particle. Numerical simulations of several tests of dry granular flow impacting a rigid wall flowing in an inclined chute have been achieved. Five clump models with different sphericity have been used in the simulations. By comparing the simulation results with the experimental results of normal force on the rigid wall, a clump model with better sphericity was selected to complete the following numerical simulation analysis and discussion. The calculation results of normal force showed good agreement with the experimental results, which verify the effectiveness of the clump model. Then, total normal force and bending moment of the rigid wall and motion process of the granular flow were further analyzed. Finally, comparison analysis of the numerical simulations using the clump model with different grain composition was obtained. By observing normal force on the rigid wall and distribution of particle size at the front of the rigid wall at the final state, the effect of grain composition on the force of the rigid wall has been revealed. It mainly showed that, with the increase of the particle size, the peak force at the retaining wall also increase. The result can provide a basis for the research of relevant disaster and the design of protective structures. PMID:27513661
Williamson, Matthew M.; Pratt, Gill A.
1999-06-08
The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.
Forced oscillometry track sites of airway obstruction in bronchial asthma.
Hafez, Manal Refaat; Abu-Bakr, Samiha Mohamed; Mohamed, Alyaa Abdelnaser
2015-07-01
Spirometry is the most commonly used method for assessment of airway function in bronchial asthma but has several limitations. Forced oscillometry was developed as a patient-friendly test that requires passive cooperation of the patient breathing normally through the mouth. To compare spirometry with forced oscillometry to assess the role of forced oscillometry in the detection of the site of airway obstruction. This case-and-control study included 50 patients with known stable asthma and 50 age- and sex-matched healthy subjects. All participants underwent spirometry (ratio of force expiration volume in 1 second to forced vital capacity, percentage predicted for forced expiration volume in 1 second, percentage predicted for forced vital capacity, percentage predicted for vital capacity, and forced expiratory flow at 25-75%) and forced oscillometry (resistance at 5, 20, and 5-20 Hz). By spirometry, all patients with asthma had airway obstruction, 8% had isolated small airway obstruction, 10% had isolated large airway obstruction, and 82% had large and small airway obstruction. By forced oscillometry, 12% had normal airway resistance, 50% had isolated small airway obstruction with frequency-dependent resistance, and 38% had large and small airway obstruction with frequency-independent resistance. There was significant difference between techniques for the detection of the site of airway obstruction (P = .012). Forced oscillometry indices were negatively correlated with spirometric indices (P < .01). Forced oscillometry as an effortless test, conducted during quiet tidal breathing, and does not alter airway caliber; thus, it can detect normal airway function better than spirometry in patients with asthma. Forced oscillometry detects isolated small airway obstruction better than spirometry in bronchial asthma. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Elastic actuator for precise force control
Pratt, G.A.; Williamson, M.M.
1997-07-22
The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.
Elastic actuator for precise force control
Pratt, Gill A.; Williamson, Matthew M.
1997-07-22
The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.
1977-11-01
0 . 0786 .144 .118 .118 .182 .298 .391 .449 .486 .508 30o 0 .0907 .193 .195 .233 .316 .443 .542 . 624 .663 .687 -200 0 .1008 .220 .275 .335 .443 .580...coefficient as measured on 52 splitter plate at Mm = 3.0. 13 Constructed normal-force curves for wings T36, T31, 53 and T32. 14 Lateral position of center of...00. [ 11 * LIST OF ILLUSTRATIONS (Concluded) Figures Page 52 Canard vortex location and afterbody vortex clouds 142 at start of tail section for
Wind and tidal forcing of a buoyant plume, Mobile Bay, Alabama
Stumpf, R.P.; Gelfenbaum, G.; Pennock, J.R.
1993-01-01
AVHRR satellite imagery and in situ observations were combined to study the motion of a buoyant plume at the mouth of Mobile Bay, Alabama. The plume extended up to 30 km from shore, with a thickness of about 1 m. The inner plume, which was 3-8 m thick, moved between the Bay and inner shelf in response to tidal forcing. The tidal prism could be identified through the movement of plume waters between satellite images. The plume responded rapidly to alongshore wind, with sections of the plume moving at speeds of more than 70 cm s-1, about 11% of the wind speed. The plume moved predominantly in the direction of the wind with a weak Ekman drift. The enhanced speed of the plume relative to normal surface drift is probably due to the strong stratification in the plume, which limits the transfer of momentum into the underlying ambient waters. ?? 1993.
Normal Forces at Solid-Liquid Interface
NASA Astrophysics Data System (ADS)
Das, Ratul
Adhesion can be defined as the tendency of dissimilar particles or surfaces to cling on to one another. Fields that require knowledge about adhesion interactions at the solid-liquid interface span over a wide spectrum from biotechnological issues such as liquid adhesion to skin tissues, insect feet adhesion to solids, or contact lenses to tear fluid adhesion; filtration issues such as membrane fouling and membrane affinity to different liquids; oil and gas extraction where one needs knowledge of the adhesion of the oil and brine to the rock; fuel cells in which droplets are formed on the electrodes and need to be considered in the system's design; classic chemical engineering industry such as drop adhesion to the mist eliminators in flash drums, or to heat exchangers; and classic surface science such as nano-structured surfaces, self cleaning surfaces, and general wetting phenomena. We execute the Young-Dupre (Y-P) gedanken experiment to establish unique values of work of adhesion rather than a work of adhesion range that the contact angle hysteresis results in. We use the Centrifugal Adhesion Balance (CAB) which allows independent manipulation of normal and lateral forces to induce an increase in the normal force which pulls on a liquid drop while keeping zero lateral force. This method mimics a drop that is subjected to a gravitational force that is gradually increasing. The values obtained for the work of adhesion are independent of drop size and are in agreement with the Y-P estimate. Cyclically varying the normal force, just to prevent the drop flying away from the surface will also enable us to study the Contact Angle Hysteresis for a pendant drop. With this set up, the work of adhesion is not only calculated from experimental normal force measurements, but the found results are also used to provide a venue for calculating the Young equilibrium contact angle, theta0. According to Shanahan and de Gennes, a liquid drop with a non-zero contact angle is associated with a deformation of the solid surface at the three phase contact line, causing the triple line to protrude up and form a rim, this is due to the unsatisfied normal component of the surface tension. Such rims were demonstrated by Care et al, and by Extrand, and the stresses associated with the rims facilitate reorientation of solid molecules at the interface, and therefore result in stronger solid liquid interaction at the rim. This stronger interaction gives rise to retention forces (due to adhesion). Recently, Xu et al, wrote a force equation based on this understanding, we test the validity of this approach and the Furmidge - Dussan model and other, more empirical, retention force approaches. A liquid drop that partially wets a solid surface will slide along the plane when a force beyond a critical value is applied to it. We study the sliding pattern of such a drop. Experiments for identifying the pattern of motion of liquid drops under influence of different normal forces are performed. We use a centrifugal adhesion balance (CAB) to study the pattern of drop motion under different effective gravities. A drop on a solid surface only slides after a certain critical force is applied to it, which is dependent on the drop volume, surface heterogeneities and other factors, even after the application of force the drop doesn't continue to move uniformly, which is the subject matter of this discussion.
In-Shoe Plantar Pressures and Ground Reaction Forces during Overweight Adults' Overground Walking
ERIC Educational Resources Information Center
de Castro, Marcelo P.; Abreu, Sofia C.; Sousa, Helena; Machado, Leandro; Santos, Rubim; Vilas-Boas, João Paulo
2014-01-01
Purpose: Because walking is highly recommended for prevention and treatment of obesity and some of its biomechanical aspects are not clearly understood for overweight people, we compared the absolute and normalized ground reaction forces (GRF), plantar pressures, and temporal parameters of normal-weight and overweight participants during…
Gaikwad, Ravi M.; Dokukin, Maxim E.; Iyer, K. Swaminathan; Woodworth, Craig D.; Volkov, Dmytro O.; Sokolov, Igor
2012-01-01
Here we describe a non-traditional method to identify cancerous human cervical epithelial cells in a culture dish based on physical interaction between silica beads and cells. It is a simple optical fluorescence-based technique which detects the relative difference in the amount of fluorescent silica beads physically adherent to surfaces of cancerous and normal cervical cells. The method utilizes the centripetal force gradient that occurs in a rotating culture dish. Due to the variation in the balance between adhesion and centripetal forces, cancerous and normal cells demonstrate clearly distinctive distributions of the fluorescent particles adherent to the cell surface over the culture dish. The method demonstrates higher adhesion of silica particles to normal cells compared to cancerous cells. The difference in adhesion was initially observed by atomic force microscopy (AFM). The AFM data were used to design the parameters of the rotational dish experiment. The optical method that we describe is much faster and technically simpler than AFM. This work provides proof of the concept that physical interactions can be used to accurately discriminate normal and cancer cells. PMID:21305062
Interpersonal synergies: static prehension tasks performed by two actors.
Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M; Latash, Mark L
2016-08-01
We investigated multidigit synergies stabilizing components of the resultant force vector during joint performance of a static prehension task by two persons as compared to similar tasks performed by a single person using both hands. Subjects transferred the instrumented handle from the right hand to the left hand (one-person condition) or passed that handle to another person (two-person condition) while keeping the handle's position and orientation stationary. Only three digits were involved per hand, the thumb, the index finger, and the middle finger; the forces and moments produced by the digits were measured by six-component sensors. We estimated the performance-stabilizing synergies within the uncontrolled manifold framework by quantifying the intertrial variance structure of digit forces and moments. The analysis was performed at three levels: between hands, between virtual finger and virtual thumb (imagined digits producing the same mechanical variables as the corresponding actual digits combined) produced by the two hands (in both interpersonal and intrapersonal conditions), and between the thumb and virtual finger for one hand only. Additionally, we performed correlation and phase synchronization analyses of resultant tangential forces and internal normal forces. Overall, the one-person conditions were characterized by higher amount of intertrial variance that did not affect resultant normal force components, higher internal components of normal forces, and stronger synchronization of the normal forces generated by the hands. Our observations suggest that in two-person tasks, when participants try to achieve a common mechanical outcome, the performance-stabilizing synergies depend on non-visual information exchange, possibly via the haptic and proprioceptive systems. Therefore, synergies quantified in tasks using visual feedback only may not be generalizable to more natural tasks.
Influence of the Reynolds number on normal forces of slender bodies of revolution
NASA Technical Reports Server (NTRS)
Hartmann, K.
1982-01-01
Comprehensive force, moment, and pressure distribution measurements as well as flow visualization experiments were carried out to determine the influence of the Reynolds number on nonlinear normal forces of slender bodies of revolution. Experiments were performed in transonic wind tunnels at angles of attack up to 90 deg in the Mach number range 0.5 to 2.2 at variable Reynolds numbers. The results were analysed theoretically and an empirical theory was developed which describes the test results satisfactory.
Inhibitors of SOD1 Interaction as an Approach to Slow the Progressive Spread of ALS Symptoms
2016-07-01
luciferase enzyme can be split into 2 halves. These 2 halves can be forced to reconstitute an active enzyme if they are brought together by some...force. In our assay, this force is the normal interaction that occurs when 2 individual SOD1 proteins come together to form a normal active enzyme ...Using recombinant DNA, we create fusion proteins of SOD1 and each half of the luciferase enzyme . In the past year, we have characterized and optimized
Active Flap Control of the SMART Rotor for Vibration Reduction
NASA Technical Reports Server (NTRS)
Hall, Steven R.; Anand, R. Vaidyanathan; Straub, Friedrich K.; Lau, Benton H.
2009-01-01
Active control methodologies were applied to a full-scale active flap rotor obtained during a joint Boeing/ DARPA/NASA/Army test in the Air Force National Full-Scale Aerodynamic Complex 40- by 80-foot anechoic wind tunnel. The active flap rotor is a full-scale MD 900 helicopter main rotor with each of its five blades modified to include an on-blade piezoelectric actuator-driven flap with a span of 18% of radius, 25% of chord, and located at 83% radius. Vibration control demonstrated the potential of active flaps for effective control of vibratory loads, especially normal force loads. Active control of normal force vibratory loads using active flaps and a continuous-time higher harmonic control algorithm was very effective, reducing harmonic (1-5P) normal force vibratory loads by 95% in both cruise and approach conditions. Control of vibratory roll and pitch moments was also demonstrated, although moment control was less effective than normal force control. Finally, active control was used to precisely control blade flap position for correlation with pretest predictions of rotor aeroacoustics. Flap displacements were commanded to follow specific harmonic profiles of 2 deg or more in amplitude, and the flap deflection errors obtained were less than 0.2 deg r.m.s.
Development of a 5-Component Balance for Water Tunnel Applications
NASA Technical Reports Server (NTRS)
Suarez, Carlos J.; Kramer, Brian R.; Smith, Brooke C.
1999-01-01
The principal objective of this research/development effort was to develop a multi-component strain gage balance to measure both static and dynamic forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 90 grams or 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models. The five-component balance was calibrated and demonstrated linearity in the responses of the primary components to applied loads, very low interactions between the sections and no hysteresis. Static experiments were conducted in the Eidetics water tunnel with delta wings and F/A-18 models. The data were compared to forces and moments from wind tunnel tests of the same or similar configurations. The comparison showed very good agreement, providing confidence that loads can be measured accurately in the water tunnel with a relatively simple multi-component internal balance. The success of the static experiments encouraged the use of the balance for dynamic experiments. Among the advantages of conducting dynamic tests in a water tunnel are less demanding motion and data acquisition rates than in a wind tunnel test (because of the low-speed flow) and the capability of performing flow visualization and force/moment (F/M) measurements simultaneously with relative simplicity. This capability of simultaneous flow visualization and for F/M measurements proved extremely useful to explain the results obtained during these dynamic tests. In general, the development of this balance should encourage the use of water tunnels for a wider range of quantitative and qualitative experiments, especially during the preliminary phase of aircraft design.
Williamson, M.M.; Pratt, G.A.
1999-06-08
The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.
Velocity associated characteristics of force production in college weight lifters.
Kanehisa, H; Fukunaga, T
1999-04-01
To determine velocity specific isokinetic forces and cross sectional areas of reciprocal muscle groups in Olympic weight lifters. The cross sectional area of the flexor or extensor muscles of the elbow or knee joint was determined by a B-mode ultrasonic apparatus in 34 college weight lifters and 31 untrained male subjects matched for age. Maximum voluntary force produced in the flexion and extension of the elbow and knee joints was measured on an isokinetic dynamometer at 60, 180, and 300 degrees/s. The average cross sectional area was 31-65% higher, and the force was 19-62% higher in weight lifters than in the untrained subjects. The ratio of force to cross sectional area was the same in both groups. The weight lifters showed a lower velocity associated decline in force than untrained subjects in the elbow and knee flexors but not in the extensors. These results indicate that for muscle contractions with velocities between 60 degrees/s and 300 degrees/s the difference in isokinetic force between weight lifters and untrained subjects can be primarily attributed to the difference in the muscle cross sectional area. However, the lower velocity associated decline in force implies that weight lifters may have a higher force per cross sectional area than untrained subjects at velocities above 300 degrees/s.
Static Prehension of a Horizontally Oriented Object in Three Dimensions
Wu, Yen-Hsun; Zatsiorsky, Vladimir M.; Latash, Mark L.
2011-01-01
We studied static prehension of a horizontally oriented object. Specific hypotheses were explored addressing such issues as the sharing patterns of the total moment of force across the digits, presence of mechanically unnecessary digit forces, and trade-off between multi-digit synergies at the two levels of the assumed control hierarchy. Within the assumed hierarchy, at the upper level, the task is shared between the thumb and virtual finger (an imagined finger producing a wrench equal to the sum of the wrenches of individual fingers). At the lower level, action of the virtual finger is shared among the four actual fingers. The subjects held statically a horizontally oriented handle instrumented with six-component force/torque sensors with different loads and torques acting about the long axis of the handle. The thumb acted from above while the four fingers supported the weight of the object. When the external torque was zero, the thumb produced mechanically unnecessary force of about 2.8 N, which did not depend on the external load magnitude. When the external torque was not zero, tangential forces produced over 80% of the total moment of force. The normal forces by the middle and ring fingers produced consistent moments against the external torque, while the normal forces of the index and little fingers did not. Force and moment variables at both hierarchical levels were stabilized by co-varied across trials adjustments of forces/moments produced by individual digits with the exception of the normal force analyzed at the lower level of the hierarchy. There was a trade-off between synergy indices computed at the two levels of the hierarchy for the three components of the total force vector, but not for the moment of force components. Overall, the results have shown that task mechanics are only one factor that defines forces produced by individual digits. Other factors, such as loading sensory receptors may lead to mechanically unnecessary forces. There seems to be no single rule (for example, ensuring similar safety margin values) that would describe sharing of the normal and tangential forces and be valid across tasks. Fingers that are traditionally viewed as less accurate (e.g., the ring finger) may perform more consistently in certain tasks. The observations of the trade-off between the synergy indices computed at two levels for the force variables but not for the moment of force variables suggest that the degree of redundancy (the number of excessive elemental variables) at the higher level is an important factor. PMID:22071684
Grebíková, Lucie; Whittington, Stuart G; Vancso, Julius G
2018-05-23
The adsorption-desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption-desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption-desorption transitions.
2018-01-01
The adsorption–desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption–desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption–desorption transitions. PMID:29712430
Architectural analysis and predicted functional capability of the human latissimus dorsi muscle.
Gerling, Michael E; Brown, Stephen H M
2013-08-01
The latissimus dorsi is primarily considered a muscle with actions at the shoulder, despite its widespread attachments at the spine. There is some dispute regarding the potential contribution of this muscle to lumbar spine function. The architectural design of a muscle is one of the most accurate predictors of muscle function; however, detailed architectural data on the latissimus dorsi muscle are limited. Therefore, the aim of this study was to quantify the architectural properties of the latissimus dorsi muscle and model mechanical function in light of these new data. One latissimus dorsi muscle was removed from each of 12 human cadavers, separated into regions, and micro-dissected for quantification of fascicle length, sarcomere length, and physiological cross-sectional area. From these data, sarcomere length operating ranges were modelled to determine the force-length characteristics of latissimus dorsi across the spine and shoulder ranges of motion. The physiological cross-sectional area of latissimus dorsi was 5.6±0.5 cm2 and normalized fascicle length was 26.4±1.0 cm, indicating that this muscle is designed to produce a moderate amount of force over a large range of lengths. Measured sarcomere length in the post-mortem neutral spine posture was nearly optimal at 2.69±0.06 μm. Across spine range of motion, biomechanical modelling predicted latissimus dorsi acts across both the ascending and descending limbs of the force-length curve during lateral bend, and primarily at or near the plateau region (where maximum force generation is possible) during flexion/extension and axial twist. Across shoulder range of motion, latissimus dorsi acts primarily on the plateau region and descending limbs of the force length curve during both flexion/extension and abduction/adduction. These data provide novel insights into the ability of the latissimus dorsi muscle to generate force and change length throughout the spine and shoulder ranges of motion. In addition, these findings provide an improved understanding of the spine and shoulder positions at which the force-generating capacity of this muscle can become jeopardized, and consequently how this may affect its spine-stabilizing ability. © 2013 Anatomical Society.
Niu, Xun; Latash, Mark L.; Zatsiorsky, Vladimir M.
2010-01-01
We studied adjustments of digit forces to changes in the friction. The subjects held a handle statically in a three-digit grasp. The friction under each digit was either high or low, resulting in eight three-element friction sets (such grasps were coined the grasps with complex friction pattern). The total load was also manipulated. It was found that digit forces were adjusted not only to the supported load and local friction, but also to friction at other digits (synergic effects). When friction under a digit was low, its tangential force decreased and the normal force increased (local effects). The synergic effects were directed to maintain the equilibrium of the handle. The relation between the individual digit forces and loads agreed with the triple-product model: fin=ki(2)ki(1)L, where fin is normal force of digit i, L is the load (newtons), ki(1) is a dimensionless coefficient representing sharing the total tangential force among the digits (Σki(1)=1.0), and ki(2) is a coefficient representing the relation between the tangential and normal forces of digit i (the overall friction equivalent, OFE). At each friction set, the central controller selected the grasping template—a three-element array of ki(2)ki(1) products—and then scaled the template with the load magnitude. PMID:17493928
NASA Astrophysics Data System (ADS)
Moreno-Herrero, F.; Colchero, J.; Gómez-Herrero, J.; Baró, A. M.
2004-03-01
The capabilities of the atomic force microscope for imaging biomolecules under physiological conditions has been systematically investigated. Contact, dynamic, and jumping modes have been applied to four different biological systems: DNA, purple membrane, Alzheimer paired helical filaments, and the bacteriophage φ29. These samples have been selected to cover a wide variety of biological systems in terms of sizes and substrate contact area, which make them very appropriate for the type of comparative studies carried out in the present work. Although dynamic mode atomic force microscopy is clearly the best choice for imaging soft samples in air, in liquids there is not a leading technique. In liquids, the most appropriate imaging mode depends on the sample characteristics and preparation methods. Contact or dynamic modes are the best choices for imaging molecular assemblies arranged as crystals such as the purple membrane. In this case, the advantage of image acquisition speed predominates over the disadvantage of high lateral or normal force. For imaging individual macromolecules, which are weakly bonded to the substrate, lateral and normal forces are the relevant factors, and hence the jumping mode, an imaging mode which minimizes lateral and normal forces, is preferable to other imaging modes.
Muscle dysfunction in a zebrafish model of Duchenne muscular dystrophy.
Widrick, Jeffrey J; Alexander, Matthew S; Sanchez, Benjamin; Gibbs, Devin E; Kawahara, Genri; Beggs, Alan H; Kunkel, Louis M
2016-11-01
Sapje zebrafish lack the protein dystrophin and are the smallest vertebrate model of Duchenne muscular dystrophy (DMD). Their small size makes them ideal for large-scale drug discovery screens. However, the extent that sapje mimic the muscle dysfunction of higher vertebrate models of DMD is unclear. We used an optical birefringence assay to differentiate affected dystrophic sapje larvae from their unaffected siblings and then studied trunk muscle contractility at 4-7 days postfertilization. Preparation cross-sectional area (CSA) was similar for affected and unaffected larvae, yet tetanic forces of affected preparations were only 30-60% of normal. ANCOVA indicated that the linear relationship observed between tetanic force and CSA for unaffected preparations was absent in the affected population. Consequently, the average force/CSA of affected larvae was depressed 30-70%. Disproportionate reductions in twitch vs. tetanic force, and a slowing of twitch tension development and relaxation, indicated that the myofibrillar disorganization evident in the birefringence assay could not explain the entire force loss. Single eccentric contractions, in which activated preparations were lengthened 5-10%, resulted in tetanic force deficits in both groups of larvae. However, deficits of affected preparations were three- to fivefold greater at all strains and ages, even after accounting for any recovery. Based on these functional assessments, we conclude that the sapje mutant zebrafish is a phenotypically severe model of DMD. The severe contractile deficits of sapje larvae represent novel physiological endpoints for therapeutic drug screening. Copyright © 2016 the American Physiological Society.
Influence of fluids on the abrasion of silicon by diamond
NASA Technical Reports Server (NTRS)
Danyluk, S.
1982-01-01
Silicon wafers ((100)-p-type) were abraded at room temperature in acetone, absolute ethanol and water by a pyramid diamond and the resulting groove depth was measured as a function of normal force on the diamond and the absorbed fluids, while all other experimental conditions were held constant. The groove depth rates are in the ratio of 1:2:3 for water, absolute ethanol, and acetone, respectively, for a constant normal force. The groove depth rate is lower when the normal force is decreased. The silicon abraded in the presence of water was chipped as expected for a classical brittle material while the surfaces abraded in the other two fluids showed ductile ploughing as the main mechanism for silicon removal.
Doctor, Tahera H.; Trivedi, Sangeeta S.; Chudasama, Rajesh K.
2010-01-01
Objective: To obtain reference values for FEV1, FVC, FEV1% and PEFR among children aged 8-14 years in south Gujarat region of India. Materials and Methods: This cross-sectional study was conducted among 655 normal healthy school children (408 boys and 247 girls) of Surat city aged 8 to 14 years studying in V to VII standard during November 2007 to April 2008. Height, weight, body surface area were measured. All included children were tested in a sitting position with the head straight after taking written consent from parents. Spirometry was done using the spirometer “Spirolab II” MIR 010. Spirometer used in the study facilitates the total valuation of lung function including forced vital capacity (FVC), forced expiratory volume in one second (FEV1), forced expiratory volume ratio in one second (FEV1%) and peak expiratory flow rate (PEFR). Results: FVC, FEV1 and PEFR were found to be statistically significant in the study groups. For FVC and FEV1, highest correlation was found with age in girls and height in boys. For FEV1%, significant negative correlation was found with age and height in both sexes, but positive correlation was found with surface area. Similarly, PEFR showed highest correlation with surface area in boys and girls. Conclusion: Variables such as FVC, FEV1 and PEFR show good positive correlation with height, age and body surface area in both sexes. There is a need to have regional values for the prediction of normal spirometric parameters in a country like India with considerable diversity. PMID:20931033
Reduced G tolerance associated with supplement use.
Barker, Patrick D
2011-02-01
High G forces encountered in tactical military aviation and aerobatic flight produce a host of physiologic responses aimed at preserving cerebral perfusion. The military has instituted measures to augment the physiologic response in order to avoid G-induced loss of consciousness (G-LOC) because of its potential to cause a catastrophic mishap. The case presented here details a Naval Aviator who experienced reduced G tolerance over two successive flights with a temporal relationship of starting a new supplement. Two components of the supplement, coenzyme Q10 and niacin, are highlighted here for their hemodynamic effects. After stopping the supplement the aviator regained his normal G tolerance and had no further issues in flight. There are several factors that can reduce G tolerance and supplement use has to be considered here because of the potential for altering the normal physiological response to increased G force. Our discussion reviews the physiological effects of increased G force, the spectrum of signs of decompensation under the stress of G force, and the potential effects this supplement had on the normal physiological response to increased G force, thus reducing the aviator's G tolerance.
ALTERED PHALANX FORCE DIRECTION DURING POWER GRIP FOLLOWING STROKE
Enders, Leah R.
2015-01-01
Many stroke survivors with severe impairment can grasp only with a power grip. Yet, little knowledge is available on altered power grip after stroke, other than reduced power grip strength. This study characterized stroke survivors’ static power grip during 100% and 50% maximum grip. Each phalanx force’s angular deviation from the normal direction and its contribution to total normal force was compared for 11 stroke survivors and 11 age-matched controls. Muscle activities and skin coefficient of friction (COF) were additionally compared for another 20 stroke and 13 age-matched control subjects. The main finding was that stroke survivors gripped with a 34% greater phalanx force angular deviation of 19±2° compared to controls of 14±1° (p<.05). Stroke survivors’ phalanx force angular deviation was closer to the 23° threshold of slippage between the phalanx and grip surface, which may explain increased likelihood of object dropping in stroke survivors. In addition, this altered phalanx force direction decreases normal grip force by tilting the force vector, indicating a partial role of phalanx force angular deviation in reduced grip strength post stroke. Greater phalanx force angular deviation may biomechanically result from more severe underactivation of stroke survivors’ first dorsal interosseous (FDI) and extensor digitorum communis (EDC) muscles compared to their flexor digitorum superficialis (FDS) or somatosensory deficit. While stroke survivors’ maximum power grip strength was approximately half of the controls’, the distribution of their remaining strength over the fingers and phalanges did not differ, indicating evenly distributed grip force reduction over the entire hand. PMID:25795079
Non-contact lateral force microscopy.
Weymouth, A J
2017-08-16
The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.
Allen, Charles R; Fu, Yang-Chieh; Cazas-Moreno, Vanessa; Valliant, Melinda W; Gdovin, Jacob R; Williams, Charles C; Garner, John C
2018-01-01
Allen, CR, Fu, Y-C, Cazas-Moreno, V, Valliant, MW, Gdovin, JR, Williams, CC, and Garner, JC. Effects of jaw clenching and jaw alignment mouthpiece use on force production during vertical jump and isometric clean pull. J Strength Cond Res 32(1): 237-243, 2018-This study examined the effects of jaw clenching, a self-adapted, jaw-repositioning mouthpiece on force production during maximum countermovement vertical jump and maximum isometric midthigh clean pull assessments in an attempt to determine any ergogenic effect attributable to clenching, jaw-repositioning mouthpiece use, or the combination of both. Thirty-six male subjects performed vertical jump and isometric clean pull assessments from a force platform under various mouthpiece and clench conditions. A 3 × 2 (mouthpiece × clench) repeated-measures analysis of variance was conducted to analyze each of the following force production variables for both assessments: peak force, normalized peak force, and rate of force development. In addition, jump height was analyzed for the vertical jump. Results revealed improvements in peak force (F1,35 = 15.84, p ≤ 0.001, (Equation is included in full-text article.)= 0.31), normalized peak force (F1,35 = 16.28, p ≤ 0.001, (Equation is included in full-text article.)= 0.32), and rate of force development (F1,35 = 12.89, p = 0.001, (Equation is included in full-text article.)= 0.27) during the isometric clean pull assessment when participants maximally clenched their jaw, regardless of mouthpiece condition. There were no statistically significant differences in jump height, peak force, normalized peak force, or rate of force development during the vertical jump for any treatment condition. This study supports previous research demonstrating that the implementation of remote voluntary contractions such as jaw clenching can lead to concurrent activation potentiation and a resulting ergogenic effect during activities involving and requiring high-force production.
NASA Technical Reports Server (NTRS)
Marcum, J. W.; Rachow, P.; Ferkul, P. V.; Olson, S. L.
2017-01-01
Low-pressure blowoff experiments were conducted with a stagnation flame stabilized on the forward tip of cast PMMA rods in a vertical wind tunnel. Pressure, forced flow velocity, gravity, and ambient oxygen concentration were varied. Stagnation flame blowoff is determined from a time-stamped video recording of the test. The blowoff pressure is determined from test section pressure transducer data that is synchronized with the time stamp. The forced flow velocity is also determined from the choked flow orifice pressure. Most of the tests were performed in normal gravity, but a handful of microgravity tests were also conducted to determine the influence of buoyant flow velocity on the blowoff limits. The blowoff limits are found to have a linear dependence between the partial pressure of oxygen and the total pressure, regardless of forced flow velocity and gravity level. The flow velocity (forced and/or buoyant) affects the blowoff pressure through the critical Damkohler number residence time, which dictates the partial pressure of oxygen at blowoff. This is because the critical stretch rate increases linearly with increasing pressure at low pressure (sub-atmospheric pressures) since a second-order overall reaction rate with two-body reactions dominates in this pressure range.
Korte, F Steven; McDonald, Kerry S
2007-01-01
The effects of sarcomere length (SL) on sarcomeric loaded shortening velocity, power output and rates of force development were examined in rat skinned cardiac myocytes that contained either α-myosin heavy chain (α-MyHC) or β-MyHC at 12 ± 1°C. When SL was decreased from 2.3 μm to 2.0 μm submaximal isometric force decreased ∼40% in both α-MyHC and β-MyHC myocytes while peak absolute power output decreased 55% in α-MyHC myocytes and 70% in β-MyHC myocytes. After normalization for the fall in force, peak power output decreased about twice as much in β-MyHC as in α-MyHC myocytes (41%versus 20%). To determine whether the fall in normalized power was due to the lower force levels, [Ca2+] was increased at short SL to match force at long SL. Surprisingly, this led to a 32% greater peak normalized power output at short SL compared to long SL in α-MyHC myocytes, whereas in β-MyHC myocytes peak normalized power output remained depressed at short SL. The role that interfilament spacing plays in determining SL dependence of power was tested by myocyte compression at short SL. Addition of 2% dextran at short SL decreased myocyte width and increased force to levels obtained at long SL, and increased peak normalized power output to values greater than at long SL in both α-MyHC and β-MyHC myocytes. The rate constant of force development (ktr) was also measured and was not different between long and short SL at the same [Ca2+] in α-MyHC myocytes but was greater at short SL in β-MyHC myocytes. At short SL with matched force by either dextran or [Ca2+], ktr was greater than at long SL in both α-MyHC and β-MyHC myocytes. Overall, these results are consistent with the idea that an intrinsic length component increases loaded crossbridge cycling rates at short SL and β-MyHC myocytes exhibit a greater sarcomere length dependence of power output. PMID:17347271
Local vibrational modes of the water dimer - Comparison of theory and experiment
NASA Astrophysics Data System (ADS)
Kalescky, R.; Zou, W.; Kraka, E.; Cremer, D.
2012-12-01
Local and normal vibrational modes of the water dimer are calculated at the CCSD(T)/CBS level of theory. The local H-bond stretching frequency is 528 cm-1 compared to a normal mode stretching frequency of just 143 cm-1. The adiabatic connection scheme between local and normal vibrational modes reveals that the lowering is due to mass coupling, a change in the anharmonicity, and coupling with the local HOH bending modes. The local mode stretching force constant is related to the strength of the H-bond whereas the normal mode stretching force constant and frequency lead to an erroneous underestimation of the H-bond strength.
Velocity associated characteristics of force production in college weight lifters
Kanehisa, H.; Fukunaga, T.
1999-01-01
OBJECTIVE: To determine velocity specific isokinetic forces and cross sectional areas of reciprocal muscle groups in Olympic weight lifters. METHODS: The cross sectional area of the flexor or extensor muscles of the elbow or knee joint was determined by a B-mode ultrasonic apparatus in 34 college weight lifters and 31 untrained male subjects matched for age. Maximum voluntary force produced in the flexion and extension of the elbow and knee joints was measured on an isokinetic dynamometer at 60, 180, and 300 degrees/s. RESULTS: The average cross sectional area was 31-65% higher, and the force was 19-62% higher in weight lifters than in the untrained subjects. The ratio of force to cross sectional area was the same in both groups. The weight lifters showed a lower velocity associated decline in force than untrained subjects in the elbow and knee flexors but not in the extensors. CONCLUSIONS: These results indicate that for muscle contractions with velocities between 60 degrees/s and 300 degrees/s the difference in isokinetic force between weight lifters and untrained subjects can be primarily attributed to the difference in the muscle cross sectional area. However, the lower velocity associated decline in force implies that weight lifters may have a higher force per cross sectional area than untrained subjects at velocities above 300 degrees/s. PMID:10205693
Prachgosin, Tulaya; Leelasamran, Wipawan; Smithmaitrie, Pruittikorn; Chatpun, Surapong
2017-12-01
Total-contact orthosis (TCO) is one kind of foot orthosis (FO) that is used to adjust biomechanics in flexible flatfoot. To determine the effects of a TCO on the MLA moment, MLA deformation angle and lower limb biomechanics. Cross-sectional study. Seven-flatfoot and thirteen-normal foot subjects were recruited by footprint and radiographs. The biomechanics of subjects with normal foot (NF), flatfoot with shoe only (FWOT) and flatfoot with TCO (FWT) were collected in a 3D motion analysis laboratory and force plates. The MLA and lower limb biomechanics in each condition during specific sub-phases of stance were analyzed. The NF had larger MLA eversion moment after shod walking ( p = 0.001). The FWT condition compared with the FWOT condition had a significantly larger peak MLA upward moment ( p = 0.035) during pre-swing, larger peak knee external rotation angle ( p = 0.040) during mid stance, smaller peak knee extension moment during terminal stance ( p = 0.035) and a larger ground reaction force in the anterior-posterior direction during early stance ( p < 0.05). Our study found positive effects from the customized TCOs which included an increased TCO angle that led to a decreased peak MLA moment in the frontal plane in flexible flatfoot subjects during walking. Clinical relevance Lower limb biomechanics is different from normal in subjects with flexible flatfoot. The design of a TCO affects MLA, ankle and knee biomechanics and may be used to clinically correct biomechanical changes in flexible flatfoot.
NASA Astrophysics Data System (ADS)
Bergamini, A.; Christen, R.; Motavalli, M.
2007-04-01
The adaptive modification of the mechanical properties of structures has been described as a key to a number of new or enhanced technologies, ranging from prosthetics to aerospace applications. Previous work reported the electrostatic tuning of the bending stiffness of simple sandwich structures by modifying the shear stress transfer parameters at the interface between faces and the compliant core of the sandwich. For this purpose, the choice of a sandwich structure presented considerable experimental advantages, such as the ability to obtain a large increase in stiffness by activating just two interfaces between the faces and the core of the beam. The hypothesis the development of structures with tunable bending stiffness is based on, is that by applying a normal stress at the interface between two layers of a multi-layer structure it is possible to transfer shear stresses from one layer to the other by means of adhesion or friction forces. The normal stresses needed to generate adhesion or friction can be generated by an electrostatic field across a dielectric layer interposed between the layers of a structure. The shear stress in the cross section of the structure (e.g. a beam) subjected to bending forces is transferred in full, if sufficiently large normal stresses and an adequate friction coefficient at the interface are given. Considering beams with a homogeneous cross-section, in which all layers are made of the same material and have the same width, eliminates the need to consider parameters such as the shear modulus of the material and the shear stiffness of the core, thus making the modelling work easier and the results more readily understood. The goal of the present work is to describe a numerical model of a homogeneous multi-layer beam. The model is validated against analytical solutions for the extreme cases of interaction at the interface (no friction and a high level of friction allowing for full shear stress transfer). The obtained model is used to better understand the processes taking place at the interfaces between layers, demonstrate the existence of discrete stiffness states and to find guidance for the selection of suitable dielectric layers for the generation of the electrostatic normal stresses needed for the shear stress transfer at the interface.
Mitri, F G; Fellah, Z E A
2011-08-01
The present investigation examines the instantaneous force resulting from the interaction of an acoustical high-order Bessel vortex beam (HOBVB) with a rigid sphere. The rigid sphere case is important in fluid dynamics applications because it perfectly simulates the interaction of instantaneous sound waves in a reduced gravity environment with a levitated spherical liquid soft drop in air. Here, a closed-form solution for the instantaneous force involving the total pressure field as well as the Bessel beam parameters is obtained for the case of progressive, stationary and quasi-stationary waves. Instantaneous force examples for progressive waves are computed for both a fixed and a movable rigid sphere. The results show how the instantaneous force per unit cross-sectional surface and unit pressure varies versus the dimensionless frequency ka (k is the wave number in the fluid medium and a is the sphere's radius), the half-cone angle β and the order m of the HOBVB. It is demonstrated here that the instantaneous force is determined only for (m,n) = (0,1) (where n is the partial-wave number), and vanishes for m>0 because of symmetry. In addition, the instantaneous force and normalized amplitude velocity results are computed and compared with those of a rigid immovable (fixed) sphere. It is shown that they differ significantly for ka values below 5. The proposed analysis may be of interest in the analysis of instantaneous forces on spherical particles for particle manipulation, filtering, trapping and drug delivery. The presented solutions may also serve as a method for comparison to other solutions obtained by strictly numerical or asymptotic approaches. Copyright © 2011 Elsevier B.V. All rights reserved.
Birznieks, Ingvars; Redmond, Stephen J.
2015-01-01
Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile afferents innervating the monkey fingerpad. A multiple-regression model, requiring no a priori knowledge of stimulus-onset times or stimulus combination, was developed to obtain continuous estimates of instantaneous force and torque. The stimuli consisted of a normal-force ramp (to a plateau of 1.8, 2.2, or 2.5 N), on top of which −3.5, −2.0, 0, +2.0, or +3.5 mNm torque was applied about the normal to the skin surface. The model inputs were sliding windows of binned spike counts recorded from each afferent. Models were trained and tested by 15-fold cross-validation to estimate instantaneous normal force and torque over the entire stimulation period. With the use of the spike trains from 58 slow-adapting type I and 25 fast-adapting type I afferents, the instantaneous normal force and torque could be estimated with small error. This study demonstrated that instantaneous force and torque parameters could be reliably extracted from a small number of tactile afferent responses in a real-time fashion with stimulus combinations that the model had not been exposed to during training. Analysis of the model weights may reveal how interactions between stimulus parameters could be disentangled for complex population responses and could be used to test neurophysiologically relevant hypotheses about encoding mechanisms. PMID:25948866
16 CFR 1211.13 - Inherent force activated secondary door sensors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Inherent force activated secondary door... § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force... when the door applies a 15 pound (66.7 N) or less force in the down or closing direction and when the...
ERIC Educational Resources Information Center
Going, Scott B.; And Others
1987-01-01
A study of maximal voluntary isometric muscle contraction force-time curves among 32 normal, healthy 8- to 11-year-olds performing tasks involving separate muscle groups found that force and maximal rate of force increase were quite reproducible, but time to selected force levels reflected considerable variations. (Author/CB)
Code of Federal Regulations, 2011 CFR
2011-07-01
... adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base, Fla. 334.710 Section... Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base, Fla. (a) The restricted area... regulations in this section shall be enforced by the Commander, Air Force Proving Ground Command, Eglin Air...
Gaikwad, Ravi M; Dokukin, Maxim E; Iyer, K Swaminathan; Woodworth, Craig D; Volkov, Dmytro O; Sokolov, Igor
2011-04-07
Here we describe a non-traditional method to identify cancerous human cervical epithelial cells in a culture dish based on physical adhesion between silica beads and cells. It is a simple optical fluorescence-based technique which detects the relative difference in the amount of fluorescent silica beads physically adherent to surfaces of cancerous and normal cervical cells. The method utilizes the centripetal force gradient that occurs in a rotating culture dish. Due to the variation in the balance between adhesion and centripetal forces, cancerous and normal cells demonstrate clearly distinctive distributions of the fluorescent particles adherent to the cell surface over the culture dish. The method demonstrates higher adhesion of silica particles to normal cells compared to cancerous cells. The difference in adhesion was initially observed by atomic force microscopy (AFM). The AFM data were used to design the parameters of the rotational dish experiment. The optical method that we describe is much faster and technically simpler than AFM. This work provides proof of the concept that physical interactions can be used to accurately discriminate normal and cancer cells. © The Royal Society of Chemistry 2011
Baweja, Harsimran S.; Patel, Bhavini K.; Neto, Osmar P.; Christou, Evangelos A.
2011-01-01
The purpose of this study was to compare force variability and the neural activation of the agonist muscle during constant isometric contractions at different force levels when the amplitude of respiration and visual feedback were varied. Twenty young adults (20–32 years, 10 men and 10 women) were instructed to accurately match a target force at 15 and 50% of their maximal voluntary contraction (MVC) with abduction of the index finger while controlling their respiration at different amplitudes (85, 100 and 125% normal) in the presence and absence of visual feedback. Each trial lasted 22 s and visual feedback was removed from 8–12 to 16–20 s. Each subject performed 3 trials with each respiratory condition at each force level. Force variability was quantified as the standard deviation of the detrended force data. The neural activation of the first dorsal interosseus (FDI) was measured with bipolar surface electrodes placed distal to the innervation zone. Relative to normal respiration, force variability increased significantly only during high-amplitude respiration (~63%). The increase in force variability from normal- to high-amplitude respiration was strongly associated with amplified force oscillations from 0–3 Hz (R2 ranged from .68 – .84; p < .001). Furthermore, the increase in force variability was exacerbated in the presence of visual feedback at 50% MVC (vision vs. no-vision: .97 vs. .87 N) and was strongly associated with amplified force oscillations from 0–1 Hz (R2 = .82) and weakly associated with greater power from 12–30 Hz (R2 = .24) in the EMG of the agonist muscle. Our findings demonstrate that high-amplitude respiration and visual feedback of force interact and amplify force variability in young adults during moderate levels of effort. PMID:21546109
Ferre, Manuel; Galiana, Ignacio; Aracil, Rafael
2011-01-01
This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i) force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii) the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation.
Ferre, Manuel; Galiana, Ignacio; Aracil, Rafael
2011-01-01
This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i) force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii) the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation. PMID:22247677
Regulation of reaction forces during the golf swing.
McNitt-Gray, J L; Munaretto, J; Zaferiou, A; Requejo, P S; Flashner, H
2013-06-01
During the golf swing, the reaction forces applied at the feet control translation and rotation of the body-club system. In this study, we hypothesized that skilled players using a 6-iron would regulate shot distance by scaling the magnitude of the resultant horizontal reaction force applied to the each foot with minimal modifications in force direction. Skilled players (n = 12) hit golf balls using a 6-iron. Shot distance was varied by hitting the ball as they would normally and when reducing shot distance using the same club. During each swing, reaction forces were measured using dual force plates (1200 Hz) and three-dimensional kinematics were simultaneously captured (110 Hz). The results indicate that, on average, the peak resultant horizontal reaction forces of the target leg were significantly less than normal (5%, p < 0.05) when reducing shot distance. No significant differences in the orientation of the peak resultant horizontal reaction forces were observed. Resultant horizontal reaction force-angle relationships within leg and temporal relationships between target and rear legs during the swing were consistent within player across shot conditions. Regulation of force magnitude with minimal modification in force direction is expected to provide advantages from muscle activation, coordination, and performance points of view.
Load estimation from photoelastic fringe patterns under combined normal and shear forces
NASA Astrophysics Data System (ADS)
Dubey, V. N.; Grewal, G. S.
2009-08-01
Recently there has been some spurt of interests to use photoelastic materials for sensing applications. This has been successfully applied for designing a number of signal-based sensors, however, there have been limited efforts to design image-based sensors on photoelasticity which can have wider applications in term of actual loading and visualisation. The main difficulty in achieving this is the infinite loading conditions that may generate same image on the material surface. This, however, can be useful for known loading situations as this can provide dynamic and actual conditions of loading in real time. This is particularly useful for separating components of forces in and out of the loading plane. One such application is the separation of normal and shear forces acting on the plantar surface of foot of diabetic patients for predicting ulceration. In our earlier work we have used neural networks to extract normal force information from the fringe patterns using image intensity. This paper considers geometric and various other statistical parameters in addition to the image intensity to extract normal as well as shear force information from the fringe pattern in a controlled experimental environment. The results of neural network output with the above parameters and their combinations are compared and discussed. The aim is to generalise the technique for a range of loading conditions that can be exploited for whole-field load visualisation and sensing applications in biomedical field.
Guan, Y H; van den Heuvel, Remco
2011-08-05
Unlike the existing 2-D pseudo-ring model for helical columns undergoing synchronous type-J planetary motion of counter-current chromatograph (CCC), the 3-D "helix" model developed in this work shows that there is a second normal force (i.e. the binormal force) applied virtually in the axial direction of the helical column. This force alternates in the two opposite directions and intensifies phase mixing with increasing the helix angle. On the contrary, the 2-D spiral column operated on the same CCC device lacks this third-dimensional mixing force. The (principal) normal force quantified by this "helix" model has been the same as that by the pseudo-ring model. With β>0.25, this normal centrifugal force has been one-directional and fluctuates cyclically. Different to the spiral column, this "helix" model shows that the centrifugal force (i.e. the hydrostatic force) does not contribute to stationary phase retention in the helical column. Between the popular helical columns and the emerging spiral columns for type-J synchronous CCC, this work has thus illustrated that the former is associated with better phase mixing yet poor retention for the stationary phase whereas the latter has potential for better retention for the stationary phase yet poor phase mixing. The methodology developed in this work may be regarded as a new platform for designing optimised CCC columns for analytical and engineering applications. Copyright © 2011 Elsevier B.V. All rights reserved.
Effect of changes of femoral offset on abductor and joint reaction forces in total hip arthroplasty.
Rüdiger, Hannes A; Guillemin, Maïka; Latypova, Adeliya; Terrier, Alexandre
2017-11-01
Anatomical reconstruction in total hip arthroplasty (THA) allows for physiological muscle function, good functional outcome and implant longevity. Quantitative data on the effect of a loss or gain of femoral offset (FO) are scarce. The aim of this study was to quantitatively describe the effect of FO changes on abductor moment arms, muscle and joint reactions forces. THA was virtually performed on 3D models built from preoperative CT scans of 15 patients undergoing THA. Virtual THA was performed with a perfectly anatomical reconstruction, a loss of 20% of FO (-FO), and a gain of 20% of FO (+FO). These models were combined with a generic musculoskeletal model (OpenSim) to predict moment arms, muscle and joint reaction forces during normal gait cycles. In average, with -FO reconstructions, muscle moment arms decreased, while muscle and hip forces increased significantly (p < 0.001). We observed the opposite with +FO reconstructions. Gluteus medius was more affected than gluteus minimus. -FO had more effect than +FO. A change of 20% of FO induced an average change 8% of abductor moment arms, 16% of their forces, and 6% of the joint reaction force. To our knowledge, this is the first report providing quantitative data on the effect of FO changes on muscle and joint forces during normal gait. A decrease of FO necessitates an increase of abductor muscle force to maintain normal gait, which in turn increases the joint reaction force. This effect underscores the importance of an accurate reconstruction of the femoral offset.
In vivo epicardial force and strain characterisation in normal and MLP-knockout murine hearts.
Michaelides, M; Georgiadou, S; Constantinides, C
2015-07-01
The study's objective is to quantify in vivo epicardial force and strain in the normal and transgenic myocardium using microsensors.Male mice (n = 39), including C57BL/6 (n = 26), 129/Sv (n = 5), wild-type (WT) C57 × 129Sv (n = 5), and muscle LIM protein (MLP) knock-out (n = 3), were studied under 1.5% isoflurane anaesthesia. Microsurgery allowed the placement of two piezoelectric crystals at longitudinal epicardial loci at the basal, middle, and apical LV regions, and the independent (and/or concurrent) placement of a cantilever force sensor. The findings demonstrate longitudinal contractile and relaxation strains that ranged between 4.8-9.3% in the basal, middle, and apical regions of C57BL/6 mice, and in the mid-ventricular regions of 129/Sv, WT, and MLP mice. Measured forces ranged between 3.1-8.9 mN. The technique's feasibility is also demonstrated in normal mice following afterload, occlusion-reperfusion challenges.Furthermore, the total mid-ventricular forces developed in MLP mice were significantly reduced compared to the WT controls (5.9 ± 0.4 versus 8.9 ± 0.2 mN, p < 0.0001), possibly owing to the fibrotic and stiffer myocardium. No significant strain differences were noted between WT and MLP mice.The possibility of quantifying in vivo force and strain from the normal murine heart is demonstrated with a potential usefulness in the characterisation of transgenic and diseased mice, where regional myocardial function may be significantly altered.
Silva, Douglas R G; Torres Filho, Robledo A; Cazedey, Henrique P; Fontes, Paulo R; Ramos, Alcinéia L S; Ramos, Eduardo M
2015-05-01
This study was conducted to investigate the effect of core sampling on Warner-Bratzler shear force evaluations of beef and pork loins (Longissimus thoracis et lumborum muscles) and to determine the relationship between them. Steaks of 2.54 cm from beef and pork loins were cooked and five round cross-section cores and five square cross-section cores of each steak were taken for shear force evaluation. Core sampling influenced both beef and pork shear force values with higher (P<0.05) average values and standard deviations for square cross-section cores. There was a strong and linear relationship (P<0.01) between round and square cross-section cores for beef (R(2)=0.78), pork (R(2)=0.70) and for beef+pork (R(2)=0.82) samples. These results indicate that it is feasible to use square cross-section cores in Warner-Bratzler shear force protocol as an alternative and potential method to standardize sampling for shear force measurements. Copyright © 2014 Elsevier Ltd. All rights reserved.
An Experimental Optical Three-axis Tactile Sensor Featured with Hemispherical Surface
NASA Astrophysics Data System (ADS)
Ohka, Masahiro; Kobayashi, Hiroaki; Takata, Jumpei; Mitsuya, Yasunaga
We are developing an optical three-axis tactile sensor capable of acquiring normal and shearing force to mount on a robotic finger. The tactile sensor is based on the principle of an optical waveguide-type tactile sensor, which is composed of an acrylic hemispherical dome, a light source, an array of rubber sensing elements, and a CCD camera. The sensing element of the silicone rubber comprises one columnar feeler and eight conical feelers. The contact areas of the conical feelers, which maintain contact with the acrylic dome, detect the three-axis force applied to the tip of the sensing element. Normal and shearing forces are then calculated from integration and centroid displacement of the grayscale value derived from the conical feeler's contacts. To evaluate the present tactile sensor, we conducted a series of experiments using an x-z stage, a rotational stage, and a force gauge. Although we discovered that the relationship between the integrated grayscale value and normal force depends on the sensor's latitude on the hemispherical surface, it is easy to modify the sensitivity based on the latitude to make the centroid displacement of the grayscale value proportional to the shearing force. When we examined the repeatability of the present tactile sensor with 1,000 load/unload cycles, the error was 2%.
Zhang, Lixian; Zheng, Yaqi; Rong, Qiong; Wu, Guofeng
2017-11-01
Muscles converge or intertweave around the perioral area, and this can be treated with sequential therapy in infants with cleft lip and palate (CLP). The force of perioral muscles has a great influence on maxillary development and morphology. Perioral force in infants with CLP has not been well studied, and accurate and reliable measurement of perioral force in infants remains a challenge. This study aimed to investigate a new way to accurately and reliably measure perioral force in infants with unilateral CLP (UCLP) and explore the change before and after cheiloplasty. A perioral force measurement system was developed and applied to measure perioral force at labial frenum area and the commissures on both the normal and the cleft sides of four infants with UCLP before and after cheiloplasty. The results were analyzed using the SPSS 19.0 software. The perioral force measurement system appears to produce valid results in infants with UCLP. Before cheiloplasty, the perioral force of labial frenum area was 1.79 ± 0.94 g/cm 2 and that of commissure on the normal and cleft sides was 5.41 ± 1.01 g/cm 2 and 3.12 ± 1.55 g/cm 2 , respectively (P < 0.05). After cheiloplasty, perioral force of labial frenum area was 12.73 ± 3.51 g/cm 2 and that of commissure on the normal and cleft sides was 7.64 ± 1.64 g/cm 2 and 7.27 ± 1.89 g/cm 2 , respectively (P > 0.05). Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Analysis of sitting forces on stationary chairs for daily activities.
Hu, Lingling; Tackett, Bob; Tor, Onder; Zhang, Jilei
2016-04-01
No literature related to the study of sitting forces on chairs sat on by people who weighed over 136 kg was found. The Business Institutional Furniture Manufactures Association needs force data for development of performance test standards to test chairs for users who weigh up to 181 kg. 20 participants who weighed from 136 to 186 kg completed 6 tasks on an instrumented chair in the sequence of sitting down, remaining seated and rising. Effects of sitting motion, armrest use and seat cushion thickness on vertical sitting forces and centre-of-force were investigated. Results indicated hard sitting down yielded the highest sitting force of 213% in terms of participants' body weights. Armrest use affected sitting forces of normal sitting down, but not of rising and hard sitting down. Cushion thickness affected sitting forces of normal and hard sitting down and shifting, but not of rising, static seating or stretching backward situations. Practitioner Summary: Results of the sitting force and centre-of-force data obtained for this research can help furniture manufacturers develop new product performance test standards for creating reliable engineering design and manufacturing quality and durable products to meet a niche market need.
19 CFR 122.35 - Emergency or forced landing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false Emergency or forced landing. 122.35 Section 122.35... TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.35 Emergency or forced landing. (a) Application. This section applies to emergency or forced landings made by aircraft when necessary for safety...
19 CFR 122.35 - Emergency or forced landing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Emergency or forced landing. 122.35 Section 122.35... TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.35 Emergency or forced landing. (a) Application. This section applies to emergency or forced landings made by aircraft when necessary for safety...
5 CFR 930.210 - Reduction in force.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Reduction in force. 930.210 Section 930... § 930.210 Reduction in force. (a) Retention preference regulations. Except as modified by this section, the reduction in force regulations in part 351 of this chapter apply to administrative law judges. (b...
Bilateral neuromuscular and force differences during a plyometric task.
Ball, Nick B; Scurr, Joanna C
2009-08-01
The purpose of this article is to compare the bilateral neuromuscular and force contribution during a plyometric bounce drop jump task and to assess the affects of nonsimultaneous foot placement. Sixteen male participants performed bounce drop jumps from a height of 0.4 m. Mean peak electromyography activity of the soleus, medial, and lateral gastrocnemius of both legs was recorded from each phase of the drop jump and normalized to a reference dynamic muscle action. Resultant ground reaction force, ground contact time, and duration of the drop jumps were recorded from each leg. Multivariate analysis of variance was used to compare bilateral electromyographic activity, resultant peak ground reaction force, and contact duration. Pearson's correlations (r) ascertained relationships between normalized electromyographic activity and contact time. Significant differences were shown between left and right triceps surae normalized electromyography during precontact and contact40ms (p < 0.01). No significant differences were present in the contactpost40ms phase (p > 0.01). Significant differences were found between normalized soleus electromyography and both gastrocnemii for both legs during precontact (p < 0.01). No significant differences were found for within-leg normalized electromyography for the contact40ms phases and contactpost40ms phase (p > 0.01). Weak relationships were found between normalized electromyographic activity and nonsimultaneous foot contact (r < 0.2). This study showed differences between left and right triceps surae in neuromuscular strategies engaged in the early stages of a drop jump task. Differences in contact time initiation were present; however, they are not significant enough to cause neuromuscular differences in the plantar flexor muscles.
Krotscheck, Ursula; Nelson, Samantha A; Todhunter, Rory J; Stone, Marisa; Zhang, Zhiwu
2016-02-01
To determine a long term function of tibial tuberosity advancement (TTA) for treatment of ruptured cranial cruciate ligament (CCL) in dogs, and to compare this to the long term function of previously reported tibial plateau leveling osteotomy (TPLO), extracapsular reconstruction (ECR), and a population of normal dogs. Prospective clinical trial. Dogs with unilateral ruptured CCL treated with TTA (n = 14), TPLO (n = 15), and ECR (n = 23), and normal adult dogs (control, n = 80). Force plate gait analysis was performed at 1 time point for the normal control group and preoperatively, and at 2 and 8 weeks and 6 and 12 months postoperatively for the treatment groups. Using serial force plates, symmetry indices (SI) were calculated between the operated and unoperated pelvic limbs for peak vertical force (PVF), contact time (CT), and vertical impulse (VI). Ground reaction forces (GRF) of the treatment and control group were compared using a general linear model. Walk SI for dogs with TTA were not significantly different from the control group at 12 months postoperatively. At the trot, neither TTA nor ECR achieved normal GRF. SI of the TPLO group were not different from the normal control group by 6-12 months postoperatively. At the walk, TTA achieves normal function by 12 months; however, at the trot TTA is indistinguishable from ECR. TPLO resulted in operated limb function that was similar to the control population by 6-12 months postoperatively at the walk and the trot. © Copyright 2016 by The American College of Veterinary Surgeons.
Creating Joint Leaders Today for a Successful Air Force Tomorrow (1REV)
2016-04-01
armed force in the same grade and competitive category who are serving on, or have served on, the HQ staff of their armed force; and 2. Officers in the...period from the release of the promotion results and the pin-on date. 5 Department of the Air Force, HQ Air Force Personnel Center, Demographics and...2009), Section 619a. 9 ibid, Section 619a. 10 Department of the Air Force, HQ Air Force Personnel Center, A-1 Manpower Division. 11 Phone
Chiu, Haw-Yen; Hsu, Hsiu-Yun; Kuo, Li-Chieh; Chang, Jer-Hao; Su, Fong-Chin
2009-08-01
A precise magnitude and timing control of pinch performance is based on accurate feed-forward and feedback control mechanisms. Ratio of peak pinch force and maximum load force during a functional performance is a sensitive parameter to reflect the ability to scale pinch force output according to actual loads. A pinch apparatus was constructed to detect momentary pinch force modulation of 20 subjects with normal hand sensation. The results indicated high intra-class correlation coefficient and small coefficient of variation of the detected force ratio among three repeated tests, which represented that the stability test of the measured response confirmed the feasibility of this apparatus. The force ratio for a 480 g object with a steel surface ranged between 1.77 and 1.98. Normal subjects were able to scale and contribute pinch force precisely to a pinch-holding-up test. This study may provide clinicians a reliable apparatus and method to analyze the recovery of functional sensibility in patients with nerve injuries. Copyright 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Doherty, Orla; Conway, Thomas; Conway, Richard; Murray, Gerard; Casey, Vincent
2017-01-01
Noseband tightness is difficult to assess in horses participating in equestrian sports such as dressage, show jumping and three-day-eventing. There is growing concern that nosebands are commonly tightened to such an extent as to restrict normal equine behaviour and possibly cause injury. In the absence of a clear agreed definition of noseband tightness, a simple model of the equine nose-noseband interface environment was developed in order to guide further studies in this area. The normal force component of the noseband tensile force was identified as the key contributor to sub-noseband tissue compression. The model was used to inform the design of a digital tightness gauge which could reliably measure the normal force component of the noseband tensile force. A digital tightness gauge was developed to measure this parameter under nosebands fitted to bridled horses. Results are presented for field tests using two prototype designs. Prototype version three was used in field trial 1 (n = 15, frontal nasal plane sub-noseband site). Results of this trial were used to develop an ergonomically designed prototype, version 4, which was tested in a second field trial (n = 12, frontal nasal plane and lateral sub-noseband site). Nosebands were set to three tightness settings in each trial as judged by a single rater using an International Society for Equitation Science (ISES) taper gauge. Normal forces in the range 7-95 N were recorded at the frontal nasal plane while a lower range 1-28 N was found at the lateral site for the taper gauge range used in the trials. The digital tightness gauge was found to be simple to use, reliable, and safe and its use did not agitate the animals in any discernable way. A simple six point tightness scale is suggested to aid regulation implementation and the control of noseband tightness using normal force measurement as the objective tightness discriminant.
Friction on a granular-continuum interface: Effects of granular media
NASA Astrophysics Data System (ADS)
Ecke, Robert; Geller, Drew
We consider the frictional interactions of two soft plates with interposed granular material subject to normal and shear forces. The plates are soft photo-elastic material, have length 50 cm, and are separated by a gap of variable width from 0 to 20 granular particle diameters. The granular materials are two-dimensional rods that are bi-dispersed in size to prevent crystallization. Different rod materials with frictional coefficients between 0 . 04 < μ < 0 . 5 are used to explore the effects of inter-granular friction on the effective friction of a granular medium. The gap is varied to test the dependence of the friction coefficient on the thickness of the granular layer. Because the soft plates absorb most of the displacement associated with the compressional normal force, the granular packing fractions are close to a jamming threshold, probably a shear jamming criterion. The overall shear and normal forces are measured using force sensors and the local strain tensor over a central portion of the gap is obtained using relative displacements of fiducial markers on the soft elastic material. These measurements provide a good characterization of the global and local forces giving rise to an effective friction coefficient. Funded by US DOE LDRD Program.
RANKL, Osteopontin, and Osteoclast Homeostasis in a Hyper-Occlusion Mouse Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit
2010-11-15
The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression ofmore » receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.« less
RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit
2009-10-21
The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression ofmore » receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.« less
Kajisa, E; Tohara, H; Nakane, A; Wakasugi, Y; Hara, K; Yamaguchi, K; Yoshimi, K; Minakuchi, S
2018-03-01
We conducted a clinical cross-sectional study to examine the relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles and whole skeletal muscle mass. Subjects were healthy 39 males and 51 females without dysphagia and sarcopenia, aged 65 years and older. Jaw-opening force was measured three times using a jaw-opening sthenometer; the maximum of these three was taken as the measurement value. The cross-sectional area of the geniohyoid and anterior belly of the digastric muscles were evaluated using ultrasonography. The skeletal muscle mass index, gait speed and grip strength were evaluated according to the diagnostic criteria of the Asian Working Group for Sarcopenia. For each sex, a multiple regression analysis determined the factors that affect jaw-opening force. Jaw-opening force was associated with the cross-sectional area of the geniohyoid muscle in males (regression coefficient [β] = 0.441, 95% confidence interval [CI] = 14.28-56.09) and females (β = 0.28, 95% CI = 3.10-54.57). Furthermore, in females only, jaw-opening force was associated with the skeletal muscle mass index (β = 0.40, 95% CI = 3.67-17.81). In contrast, jaw-opening force was not associated with the cross-sectional area of the anterior belly of the digastric muscle in either sex. In healthy elderly males and females, jaw-opening force was positively associated with the cross-sectional area of the geniohyoid muscle. However, the jaw-opening force was positively associated with the skeletal muscle mass index only in females. © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burge, S.W.
This report describes the theory and structure of the FORCE2 flow program. The manual describes the governing model equations, solution procedure and their implementation in the computer program. FORCE2 is an extension of an existing B&V multidimensional, two-phase flow program. FORCE2 was developed for application to fluid beds by flow implementing a gas-solids modeling technology derived, in part, during a joint government -- industry research program, ``Erosion of FBC Heat Transfer Tubes,`` coordinated by Argonne National Laboratory. The development of FORCE2 was sponsored by ASEA-Babcock, an industry participant in this program. This manual is the principal documentation for the programmore » theory and organization. Program usage and post-processing of code predictions with the FORCE2 post-processor are described in a companion report, FORCE2 -- A Multidimensional Flow Program for Fluid Beds, User`s Guide. This manual is segmented into sections to facilitate its usage. In section 2.0, the mass and momentum conservation principles, the basis for the code, are presented. In section 3.0, the constitutive relations used in modeling gas-solids hydrodynamics are given. The finite-difference model equations are derived in section 4.0 and the solution procedures described in sections 5.0 and 6.0. Finally, the implementation of the model equations and solution procedure in FORCE2 is described in section 7.0.« less
Cancer cachexia decreases specific force and accelerates fatigue in limb muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, B.M.; Frye, G.S.; Ahn, B.
Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia havemore » recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative soleus is also important for normal locomotion, we further performed a fatigue trial in the soleus and found that the decrease in relative force was greater and more rapid in solei from C-26 mice compared to controls. These data demonstrate that severe cancer cachexia causes profound muscle weakness that is not entirely explained by the muscle atrophy. In addition, cancer cachexia decreases the fatigue resistance of the soleus muscle, a postural muscle typically resistant to fatigue. Thus, specifically targeting contractile dysfunction represents an additional means to counter muscle weakness in cancer cachexia, in addition to targeting the prevention of muscle atrophy.« less
Dance floor mechanical properties and dancer injuries in a touring professional ballet company.
Hopper, Luke S; Allen, Nick; Wyon, Matthew; Alderson, Jacqueline A; Elliott, Bruce C; Ackland, Timothy R
2014-01-01
The mechanical properties of the floors used by dancers have often been suggested to be associated with injury, yet limited etiological evidence is available to support this hypothesis. The dance floors at three theatres regularly used by a touring professional ballet company were mechanically quantified with the aim of comparing floor properties with injury incidence in dancers. Cross sectional. Test points on the floors were quantified in accordance with European Sports Surface Standard protocols for force reduction. Injuries and associated variables occurring within the ballet company dancers during activity on the three floors were recorded by the company's medical staff. An injury was recorded if a dancer experienced an incident that restricted the dancer from performing all normal training or performance activities for a 24 h period. Injuries were delimited to those occurring in the lower limbs or lumbar region during non-lifting tasks. Floor construction varied between venues and a range of floor mechanical properties were observed. None of the floors complied with the range of force reduction values required by the European Sport Surface Standards. The highest injury rate was observed on the floor with the greatest variability of force reduction magnitudes. No difference in injury frequency was observed between the venues with the highest and lowest mean force reduction magnitudes. Professional dancers can be required to perform on floors that may be inadequate for safe dance practice. Intra-floor force reduction variability may have a stronger association with injury risk than mean floor force reduction magnitude. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Microtunneling systems and methods of use
Richardson, John G.; Kostelnik, Kevin M.; Nickelson, Reva A.; Sloan, Paul A.
2006-07-04
A tunneling system including a tunneling apparatus including a cutting structure for forming a borehole and at least one linkage section for transmitting a force generally toward the cutting structure is disclosed. A method of disposing a casing string within a subterranean formation by applying a force generally to the trailing end of the tunneling apparatus, generally toward the leading end thereof, but without transmitting the entire force through the entire casing string is also disclosed. At least one linkage section extending within but not in contact with at least one casing section of the casing string may transmit the force. Also, a force limiting member may limit a force applied to the casing string.
Differences in intermittent postural control between normal-weight and obese children.
Villarrasa-Sapiña, Israel; García-Massó, Xavier; Serra-Añó, Pilar; Garcia-Lucerga, Consolación; Gonzalez, Luis-Millán; Lurbe, Empar
2016-09-01
The main objective of this study was to determine differences in postural control between obese and non-obese children. The study design was cross-sectional, prospective, between-subjects. Postural control variables were obtained from a group of obese children and a normal-weight control group under two different postural conditions: bipedal standing position with eyes open and bipedal standing with eyes closed. Variables were obtained for each balance condition using time domain and sway-density plot analysis of the center of pressure signals acquired by means of a force plate. Pairwise comparisons revealed significant differences between obese and normal-weight children in mean velocity in antero-posterior and medio-lateral directions, ellipse area and mean distance with both eyes open and eyes closed. Normal-weight subjects obtained lower values in all these variables than obese subjects. Furthermore, there were differences between both groups in mean peaks with eyes open and in mean time with eyes closed. Alterations were detected in the intermittent postural control in obese children. According to the results obtained, active anticipatory control produces higher center of pressure displacement responses in obese children and the periods during which balance is maintained by passive control and reflex mechanisms are of shorter duration. Copyright © 2016 Elsevier B.V. All rights reserved.
Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows
NASA Technical Reports Server (NTRS)
Wood, R. M.; Miller, D. S.
1985-01-01
An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.
26 CFR 49.4263-4 - Members of the armed forces.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Members of the armed forces. 49.4263-4 Section... the armed forces. The tax imposed by section 4261 does not apply to amounts paid for transportation or..., Air Force, Navy, Marine Corps, and Coast Guard, including authorized cadets and midshipmen, traveling...
26 CFR 49.4263-4 - Members of the armed forces.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Members of the armed forces. 49.4263-4 Section... the armed forces. The tax imposed by section 4261 does not apply to amounts paid for transportation or..., Air Force, Navy, Marine Corps, and Coast Guard, including authorized cadets and midshipmen, traveling...
Solar Energy Task Force Report: Technical Training Guidelines.
ERIC Educational Resources Information Center
O'Connor, Kevin
This task force report offers guidelines and information for the development of vocational education programs oriented to the commercial application of solar energy in water and space heating. After Section I introduces the Solar Energy Task Force and its activities, Section II outlines the task force's objectives and raises several issues and…
Cholewicki, Jacek; van Dieën, Jaap; Lee, Angela S.; Reeves, N. Peter
2011-01-01
The problem with normalizing EMG data from patients with painful symptoms (e.g. low back pain) is that such patients may be unwilling or unable to perform maximum exertions. Furthermore, the normalization to a reference signal, obtained from a maximal or sub-maximal task, tends to mask differences that might exist as a result of pathology. Therefore, we presented a novel method (GAIN method) for normalizing trunk EMG data that overcomes both problems. The GAIN method does not require maximal exertions (MVC) and tends to preserve distinct features in the muscle recruitment patterns for various tasks. Ten healthy subjects performed various isometric trunk exertions, while EMG data from 10 muscles were recorded and later normalized using the GAIN and MVC methods. The MVC method resulted in smaller variation between subjects when tasks were executed at the three relative force levels (10%, 20%, and 30% MVC), while the GAIN method resulted in smaller variation between subjects when the tasks were executed at the three absolute force levels (50 N, 100 N, and 145 N). This outcome implies that the MVC method provides a relative measure of muscle effort, while the GAIN-normalized EMG data gives an estimate of the absolute muscle force. Therefore, the GAIN-normalized EMG data tends to preserve the EMG differences between subjects in the way they recruit their muscles to execute various tasks, while the MVC-normalized data will tend to suppress such differences. The appropriate choice of the EMG normalization method will depend on the specific question that an experimenter is attempting to answer. PMID:21665489
Difference of motor overflow depending on the impaired or unimpaired hand in stroke patients.
Kim, Yushin; Kim, Woo-Sub; Shim, Jae Kun; Suh, Dong Won; Kim, TaeYeong; Yoon, BumChul
2015-02-01
The aim of this study was to investigate the patterns of contralateral motor overflow (i.e. mirror movement) between the homologous body parts on the right and left side, in stroke patients during single-finger and multi-finger maximum force production tasks. Forty subjects, including stroke (n=20) and normal subjects (n=20), participated in this study. The stroke subjects maximally pressed force sensors with their fingers in a flexed position using a single (index, middle, ring, or little) or all fingers (all 4 fingers) using the impaired (IH) or unimpaired (UIH) hand, while the non-patient subjects used their right hands for the same tasks. The maximal voluntary forces in the ipsilateral and unintended pressing forces of each contralateral finger were recorded during the tasks. The magnitude of motor overflow to the contralateral side was calculated using the index of contralateral independence (CI). During the single finger tasks, the finger CI was significantly decreased in the UIH (91%) compared with that in the IH (99%) or normal hands (99%). Likewise, the multiple finger tasks showed that the CI was significantly lower in the UIH (84%) compared with that in the IH (96%) or normal hands (99%). However, the maximal forces were significantly lower in the IH relative to those in the UIH and normal hands. These data demonstrate that stroke patients have greater motor overflow from the UIH to the IH. Copyright © 2014 Elsevier B.V. All rights reserved.
Description of a Normal-Force In-Situ Turbulence Algorithm for Airplanes
NASA Technical Reports Server (NTRS)
Stewart, Eric C.
2003-01-01
A normal-force in-situ turbulence algorithm for potential use on commercial airliners is described. The algorithm can produce information that can be used to predict hazardous accelerations of airplanes or to aid meteorologists in forecasting weather patterns. The algorithm uses normal acceleration and other measures of the airplane state to approximate the vertical gust velocity. That is, the fundamental, yet simple, relationship between normal acceleration and the change in normal force coefficient is exploited to produce an estimate of the vertical gust velocity. This simple approach is robust and produces a time history of the vertical gust velocity that would be intuitively useful to pilots. With proper processing, the time history can be transformed into the eddy dissipation rate that would be useful to meteorologists. Flight data for a simplified research implementation of the algorithm are presented for a severe turbulence encounter of the NASA ARIES Boeing 757 research airplane. The results indicate that the algorithm has potential for producing accurate in-situ turbulence measurements. However, more extensive tests and analysis are needed with an operational implementation of the algorithm to make comparisons with other algorithms or methods.
Scalability of the muscular action in a parametric 3D model of the index finger.
Sancho-Bru, Joaquín L; Vergara, Margarita; Rodríguez-Cervantes, Pablo-Jesús; Giurintano, David J; Pérez-González, Antonio
2008-01-01
A method for scaling the muscle action is proposed and used to achieve a 3D inverse dynamic model of the human finger with all its components scalable. This method is based on scaling the physiological cross-sectional area (PCSA) in a Hill muscle model. Different anthropometric parameters and maximal grip force data have been measured and their correlations have been analyzed and used for scaling the PCSA of each muscle. A linear relationship between the normalized PCSA and the product of the length and breadth of the hand has been finally used for scaling, with a slope of 0.01315 cm(-2), with the length and breadth of the hand expressed in centimeters. The parametric muscle model has been included in a parametric finger model previously developed by the authors, and it has been validated reproducing the results of an experiment in which subjects from different population groups exerted maximal voluntary forces with their index finger in a controlled posture.
Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.
Saito, Akira; Akima, Hiroshi
2013-12-01
It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG-force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20-100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P < 0.05). Comparing the normalized EMG among the four QF synergists, a significantly lower normalized EMG was observed in the VI at 150° as compared with the other three QF muscles (P < 0.05). These results suggest that the EMG-force relationship of the four QF synergists shifted downward at an extended knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.
Measuring lip force by oral screens. Part 1: Importance of screen size and individual variability.
Wertsén, Madeleine; Stenberg, Manne
2017-06-01
To reduce drooling and facilitate food transport in rehabilitation of patients with oral motor dysfunction, lip force can be trained using an oral screen. Longitudinal studies evaluating the effect of training require objective methods. The aim of this study was to evaluate a method for measuring lip strength, to investigate normal values and fluctuation of lip force in healthy adults on 1 occasion and over time, to study how the size of the screen affects the force, to evaluate the most appropriate measure of reliability, and to identify force performed in relation to gender. Three different sizes of oral screens were used to measure the lip force for 24 healthy adults on 3 different occasions, during a period of 6 months, using an apparatus based on strain gauge. The maximum lip force as evaluated with this method depends on the area of the screen size. By calculating the projected area of the screen, the lip force could be normalized to an oral screen pressure quantity expressed in kPa, which can be used for comparing measurements from screens with different sizes. Both the mean value and standard deviation were shown to vary between individuals. The study showed no differences regarding gender and only small variation with age. Normal variation over time (months) may be up to 3 times greater than the standard error of measurement at a certain occasion. The lip force increases in relation to the projected area of the screen. No general standard deviation can be assigned to the method and all measurements should be analyzed individually based on oral screen pressure to compensate for different screen sizes.
Inness, Elizabeth; McIlroy, William E.; Mansfield, Avril
2017-01-01
Purpose: The Berg Balance Scale (BBS) is a performance-based measure of standing balance commonly used by clinicians working with individuals post-stroke. Performance on the BBS can be influenced by compensatory strategies, but measures derived from two force plates can isolate compensatory strategies and thus better indicate balance impairment. This study examined BBS scores that reflect “normal” and disordered balance with respect to dual force-plate measures of standing balance in individuals post-stroke. Methods: BBS and force-plate measures were extracted from 75 patient charts. Individuals were classified by BBS score with respect to (1) age-matched normative values and (2) values that suggested increased risk of falls. Multiple analysis of variance was used to examine the effect of group assignment on force-plate measures of standing balance. Results: Individuals with BBS scores within and below normative values did not differ in force-plate measures. Individuals with BBS scores below the falls risk cutoff loaded their affected leg less than individuals with BBS scores above the cutoff. There were no other differences in force-plate measures between these two groups. Conclusions: BBS scores indicating either normal or disordered balance function are not necessarily associated with normal or disordered quiet standing-balance control measured by two force plates. This finding suggests that the BBS may reflect a capacity for compensation rather than any underlying impairments. PMID:28539694
Piezotronic Effect in Polarity-Controlled GaN Nanowires.
Zhao, Zhenfu; Pu, Xiong; Han, Changbao; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin
2015-08-25
Using high-quality and polarity-controlled GaN nanowires (NWs), we studied the piezotronic effect in crystal orientation defined wurtzite structures. By applying a normal compressive force on c-plane GaN NWs with an atomic force microscopy tip, the Schottky barrier between the Pt tip and GaN can be effectively tuned by the piezotronic effect. In contrast, the normal compressive force cannot change the electron transport characteristics in m-plane GaN NWs whose piezoelectric polarization axis is turned in the transverse direction. This observation provided solid evidence for clarifying the difference between the piezotronic effect and the piezoresistive effect. We further demonstrated a high sensitivity of the m-plane GaN piezotronic transistor to collect the transverse force. The integration of c-plane GaN and m-plane GaN indicates an overall response to an external force in any direction.
Schilling, Brian K.; Falvo, Michael J.; Chiu, Loren Z.F.
2008-01-01
The purpose of this brief review is to explain the mechanical relationship between impulse and momentum when resistance exercise is performed in a purposefully slow manner (PS). PS is recognized by ~10s concentric and ~4-10s eccentric actions. While several papers have reviewed the effects of PS, none has yet explained such resistance training in the context of the impulse-momentum relationship. A case study of normal versus PS back squats was also performed. An 85kg man performed both normal speed (3 sec eccentric action and maximal acceleration concentric action) and PS back squats over a several loads. Normal speed back squats produced both greater peak and mean propulsive forces than PS action when measured across all loads. However, TUT was greatly increased in the PS condition, with values fourfold greater than maximal acceleration repetitions. The data and explanation herein point to superior forces produced by the neuromuscular system via traditional speed training indicating a superior modality for inducing neuromuscular adaptation. Key pointsAs velocity approaches zero, propulsive force approaches zero, therefore slow moving objects only require force approximately equal to the weight of the resistance.As mass is constant during resistance training, a greater impulse will result in a greater velocity.The inferior propulsive forces accompanying purposefully slow training suggest other methods of resistance training have a greater potential for adaptation. PMID:24149464
26 CFR 1.113-1 - Mustering-out payments for members of the Armed Forces.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Forces. 1.113-1 Section 1.113-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY....113-1 Mustering-out payments for members of the Armed Forces. For the purposes of the exclusion from gross income under section 113 of mustering-out payments with respect to service in the Armed Forces...
Abdalbary, Sahar Ahmed; Elshaarawy, Ehab A A; Khalid, Bahaa E A
2016-02-01
The deep transverse metatarsal ligament (DTML) connects the neighboring2 metatarsal heads and is one of the stabilizers connecting the lateral sesamoid and second metatarsal head. In this study, we aimed to determine the tensile properties of the DTML in normal specimens and to compare these results with hallux valgus specimens. We hypothesized that the tensile properties of the DTML would be different between the 2 groups of specimens.The DTML in the first interspace was dissected from 12 fresh frozen human cadaveric specimens. Six cadavers had bilateral hallux valgus and the other 6 cadavers had normal feet. The initial length (L0) and cross-sectional area (A0) of the DTML were measured using a digital caliper, and tensile tests with load failure were performed using a material testing machine.There were significant between-groups differences in the initial length (L0) P = 0.009 and cross-sectional area (A0) of the DTML P = 0.007. There were also significant between-groups differences for maximum force (N) P = 0.004, maximum distance (mm) P = 0.005, maximum stress (N/mm) P = 0.003, and maximum strain (%) P = 0.006.The DTML is an anatomical structure for which the tensile properties differ in hallux valgus.
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Kamotani, Y.
2003-01-01
Bubble formation and detachment is an integral part of the two-phase flow science. The objective of the present work is to theoretically investigate the effects of liquid cross-flow velocity, gas flow rate embodied in the momentum flux force, and orifice diameter on bubble formation in a wall-bubble injection configuration. A two-dimensional one-stage theoretical model based on a global force balance on the bubble evolving from a wall orifice in a cross liquid flow is presented in this work. In this model, relevant forces acting on the evolving bubble are expressed in terms of the bubble center of mass coordinates and solved simultaneously. Relevant forces in low gravity included the momentum flux, shear-lift, surface tension, drag and inertia forces. Under normal gravity conditions, the buoyancy force, which is dominant under such conditions, can be added to the force balance. Two detachment criteria were applicable depending on the gas to liquid momentum force ratio. For low ratios, the time when the bubble acceleration in the direction of the detachment angle is greater or equal to zero is calculated from the bubble x and y coordinates. This time is taken as the time at which all the detaching forces that are acting on the bubble are greater or equal to the attaching forces. For high gas to liquid momentum force ratios, the time at which the y coordinate less the bubble radius equals zero is calculated. The bubble diameter is evaluated at this time as the diameter at detachment from the fact that the bubble volume is simply given by the product of the gas flow rate and time elapsed. Comparison of the model s predictions was also made with predictions from a two-dimensional normal gravity model based on Kumar-Kuloor formulation and such a comparison is presented in this work.
Tomlinson, David J.; Erskine, Robert M.; Winwood, Keith; Morse, Christopher Ian; Onambélé, Gladys L.
2014-01-01
Abstract Obesity has previously been associated with greater muscle strength. Aging, on the other hand, reduces muscle specific force (the force per unit physiological cross‐sectional area [PCSA] of muscle). However, neither the effect of obesity on skeletal muscle specific force nor the combined effects of aging and obesity on this parameter are known. This study aimed to describe the interplay between body mass index (BMI)/adiposity, aging, and skeletal muscle specific force. Ninety‐four untrained healthy women categorized by age into young (Y; mean ± SD: 25.5 ± 9.0 years) versus old (O; 64.8 ± 7.2 years) were assessed for body composition, gastrocnemius medialis (GM) muscle volume (V), net maximum voluntary contraction (nMVC), and specific force (SF). The young obese, while demonstrating 71% and 29% (P < 0.001) higher V and nMVC compared to normal BMI individuals, were in fact 26% (P = 0.007) weaker than these, where V was used to scale nMVC (i.e., nMVC/V). The weakness associated with obesity was further exemplified in the 34% (P < 0.001) lower SF relative to normal BMI individuals. Similarly, ≥40% body fat was associated with 60% and 27% (P < 0.001) higher V and nMVC, but 11% and 25% (P < 0.01) lower nMVC/V and SF than <40% body fat. The aging‐related rates of decline in V (−2 cm3/year P < 0.05) and nMVC (−1.2 cm3/year P < 0.05) were highest in obesity defined by BMI. This effect was also seen when segregating by >40% adiposity. Interestingly, however, obesity appeared advantageous to the aging‐related changes in nMVC/V (P < 0.001) and SF (P < 0.001). Unlike previous reports of greater strength in the obese compared with leaner age‐matched counterparts, we in fact demonstrate that the young sedentary obese, are substantially weaker, where the volume of skeletal muscle is used to scale the maximal torque output, or forces are quantified at the fascicular level. The seemingly positive impact of obesity on rate of aging, however, is complex and warrants further investigations. PMID:24963030
Tomlinson, David J; Erskine, Robert M; Winwood, Keith; Morse, Christopher Ian; Onambélé, Gladys L
2014-06-24
Obesity has previously been associated with greater muscle strength. Aging, on the other hand, reduces muscle specific force (the force per unit physiological cross-sectional area [PCSA] of muscle). However, neither the effect of obesity on skeletal muscle specific force nor the combined effects of aging and obesity on this parameter are known. This study aimed to describe the interplay between body mass index (BMI)/adiposity, aging, and skeletal muscle specific force. Ninety-four untrained healthy women categorized by age into young (Y; mean ± SD: 25.5 ± 9.0 years) versus old (O; 64.8 ± 7.2 years) were assessed for body composition, gastrocnemius medialis (GM) muscle volume (V), net maximum voluntary contraction (nMVC), and specific force (SF). The young obese, while demonstrating 71% and 29% (P < 0.001) higher V and nMVC compared to normal BMI individuals, were in fact 26% (P = 0.007) weaker than these, where V was used to scale nMVC (i.e., nMVC/V). The weakness associated with obesity was further exemplified in the 34% (P < 0.001) lower SF relative to normal BMI individuals. Similarly, ≥40% body fat was associated with 60% and 27% (P < 0.001) higher V and nMVC, but 11% and 25% (P < 0.01) lower nMVC/V and SF than <40% body fat. The aging-related rates of decline in V (-2 cm(3)/year P < 0.05) and nMVC (-1.2 cm(3)/year P < 0.05) were highest in obesity defined by BMI. This effect was also seen when segregating by >40% adiposity. Interestingly, however, obesity appeared advantageous to the aging-related changes in nMVC/V (P < 0.001) and SF (P < 0.001). Unlike previous reports of greater strength in the obese compared with leaner age-matched counterparts, we in fact demonstrate that the young sedentary obese, are substantially weaker, where the volume of skeletal muscle is used to scale the maximal torque output, or forces are quantified at the fascicular level. The seemingly positive impact of obesity on rate of aging, however, is complex and warrants further investigations. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Accuracy of State-of-the-Art Actuator-Line Modeling for Wind Turbine Wakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jha, Pankaj; Churchfield, Matthew; Moriarty, Patrick
The current actuator line method (ALM) within an OpenFOAM computational fluid dynamics (CFD) solver was used to perform simulations of the NREL Phase VI rotor under rotating and parked conditions, two fixed-wing designs both with an elliptic spanwise loading, and the NREL 5-MW turbine. The objective of this work is to assess and improve the accuracy of the state-of-the-art ALM in predicting rotor blade loads, particularly by focusing on the method used to project the actuator forces onto the flow field as body forces. Results obtained for sectional normal and tangential force coefficients were compared to available experimental data andmore » to the in-house performance code XTurb-PSU. It was observed that the ALM results agree well with measured data and results obtained from XTurb-PSU except in the root and tip regions if a three-dimensional Gaussian of width, ε, constant along the blade span is used to project the actuator force onto the flow field. A new method is proposed where the Gaussian width, ε, varies along the blade span following an elliptic distribution. A general criterion is derived that applies to any planform shape. It is found that the new criterion for ε leads to improved prediction of blade tip loads for a variety of blade planforms and rotor conditions considered.« less
NASA Technical Reports Server (NTRS)
Arabian, Donald D.; Runckel, Jack F.; Reid, Charles F, Jr.
1961-01-01
Measurements of the normal force and chord force were made on the slats of a sting-mounted wing-fuselage model through a Mach number range of 0.60 to 1.03 and at angles of attack from 0 to 20 deg at subsonic speeds and from 0 to 8 deg at Mach number 1.03. The 20-percent-chord tapered leading-edge slats extended from 25 to 95 percent of the semispan and consisted of five segments. The model wing had 45 deg sweep, an aspect ratio of 3.56, a taper ratio of 0.3, and NACA 64(06)AO07 airfoil sections. Slat forces and moments were determined for the slats in the almost-closed and open positions for spanwise extents of 35 to 95 percent and 46 to 95 percent of the semispan. The results of the investigation showed little change in the slat maximum force and moment coefficients with Mach number. The coefficients for the open and almost-closed slat positions had similar variations with angle of attack. The loads on the individual slat segments were found to increase toward the tip for moderate angles of attack and decrease toward the tip for high angles of attack. An analysis of the opening and closing characteristics of aerodynamically operated slats opening on a circular-arc path is included.
Wing motion measurement and aerodynamics of hovering true hoverflies.
Mou, Xiao Lei; Liu, Yan Peng; Sun, Mao
2011-09-01
Most hovering insects flap their wings in a horizontal plane (body having a large angle from the horizontal), called `normal hovering'. But some of the best hoverers, e.g. true hoverflies, hover with an inclined stroke plane (body being approximately horizontal). In the present paper, wing and body kinematics of four freely hovering true hoverflies were measured using three-dimensional high-speed video. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces of the insects. The stroke amplitude of the hoverflies was relatively small, ranging from 65 to 85 deg, compared with that of normal hovering. The angle of attack in the downstroke (∼50 deg) was much larger that in the upstroke (∼20 deg), unlike normal-hovering insects, whose downstroke and upstroke angles of attack are not very different. The major part of the weight-supporting force (approximately 86%) was produced in the downstroke and it was contributed by both the lift and the drag of the wing, unlike the normal-hovering case in which the weight-supporting force is approximately equally contributed by the two half-strokes and the lift principle is mainly used to produce the force. The mass-specific power was 38.59-46.3 and 27.5-35.4 W kg(-1) in the cases of 0 and 100% elastic energy storage, respectively. Comparisons with previously published results of a normal-hovering true hoverfly and with results obtained by artificially making the insects' stroke planes horizontal show that for the true hoverflies, the power requirement for inclined stroke-plane hover is only a little (<10%) larger than that of normal hovering.
Sensitivity of estimated muscle force in forward simulation of normal walking
Xiao, Ming; Higginson, Jill
2009-01-01
Generic muscle parameters are often used in muscle-driven simulations of human movement estimate individual muscle forces and function. The results may not be valid since muscle properties vary from subject to subject. This study investigated the effect of using generic parameters in a muscle-driven forward simulation on muscle force estimation. We generated a normal walking simulation in OpenSim and examined the sensitivity of individual muscle to perturbations in muscle parameters, including the number of muscles, maximum isometric force, optimal fiber length and tendon slack length. We found that when changing the number muscles included in the model, only magnitude of the estimated muscle forces was affected. Our results also suggest it is especially important to use accurate values of tendon slack length and optimal fiber length for ankle plantarflexors and knee extensors. Changes in force production one muscle were typically compensated for by changes in force production by muscles in the same functional muscle group, or the antagonistic muscle group. Conclusions regarding muscle function based on simulations with generic musculoskeletal parameters should be interpreted with caution. PMID:20498485
Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin
2016-07-01
In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers.
Ponderomotive Forces in Cosmos
NASA Astrophysics Data System (ADS)
Lundin, R.; Guglielmi, A.
2006-12-01
This review is devoted to ponderomotive forces and their importance for the acceleration of charged particles by electromagnetic waves in space plasmas. Ponderomotive forces constitute time-averaged nonlinear forces acting on a media in the presence of oscillating electromagnetic fields. Ponderomotive forces represent a useful analytical tool to describe plasma acceleration. Oscillating electromagnetic fields are also related with dissipative processes, such as heating of particles. Dissipative processes are, however, left outside these discussions. The focus will be entirely on the (conservative) ponderomotive forces acting in space plasmas. The review consists of seven sections. In Section 1, we explain the rational for using the auxiliary ponderomotive forces instead of the fundamental Lorentz force for the study of particle motions in oscillating fields. In Section 2, we present the Abraham, Miller, Lundin-Hultqvist and Barlow ponderomotive forces, and the Bolotovsky-Serov ponderomotive drift. The hydrodynamic, quasi-hydrodynamic, and ‘`test-particle’' approaches are used for the study of ponderomotive wave-particle interaction. The problems of self-consistency and regularization are discussed in Section 3. The model of static balance of forces (Section 4) exemplifies the interplay between thermal, gravitational and ponderomotive forces, but it also introduces a set of useful definitions, dimensionless parameters, etc. We analyze the Alfvén and ion cyclotron waves in static limit with emphasis on the specific distinction between traveling and standing waves. Particular attention has been given to the impact of traveling Alfvén waves on the steady state anabatic wind that blows over the polar regions (Section~5). We demonstrate the existence of a wave-induced cold anabatic wind. We also show that, at a critical point, the ponderomotive acceleration of the wind is a factor of 3 greater than the thermal acceleration. Section 6 demonstrates various manifestations of ponderomotive forces in the Earth's magnetosphere, for instance the ionospheric plasma acceleration and outflow. The polar wind and the auroral density cavities are considered in relation to results from the Freja and Viking satellites. The high-altitude energization and escape of ions is discussed. The ponderomotive anharmonicity of standing Alfvén waves is analyzed from ground based ULF wave measurements. The complexity of the many challenging problems related with plasma processes near the magnetospheric boundaries is discussed in the light of recent Cluster observations. At the end of Section 6, we consider the application of ponderomotive forces to the diversity of phenomena on the Sun, in the interstellar environment, on newborn stars, pulsars and active galaxies. We emphasize the role of forcing of magnetized plasmas in general and ponderomotive forcing in particular, presenting some simple conceivable scenarios for massive outflow and jets from astrophysical objects.
NASA Astrophysics Data System (ADS)
Majoube, M.; Vergoten, G.
1993-03-01
FTR, Raman, FTIR spectra are obtained for polycrystalline uric acid and seven of its D-and 15N-substituted analogues. Assignments are given from a normal coordinate analysis carried out using a 3-21G ab initio force field. These are discussed by considering observed and calculated frequencies and D- and 15N-isotopic shifts.
A validated computational model for the design of surface textures in full-film lubricated sliding
NASA Astrophysics Data System (ADS)
Schuh, Jonathon; Lee, Yong Hoon; Allison, James; Ewoldt, Randy
2016-11-01
Our recent experimental work showed that asymmetry is needed for surface textures to decrease friction in full-film lubricated sliding (thrust bearings) with Newtonian fluids; textures reduce the shear load and produce a separating normal force. The sign of the separating normal force is not predicted by previous 1-D theories. Here we model the flow with the Reynolds equation in cylindrical coordinates, numerically implemented with a pseudo-spectral method. The model predictions match experiments, rationalize the sign of the normal force, and allow for design of surface texture geometry. To minimize sliding friction with angled cylindrical textures, an optimal angle of asymmetry β exists. The optimal angle depends on the film thickness but not the sliding velocity within the applicable range of the model. The model has also been used to optimize generalized surface texture topography while satisfying manufacturability constraints.
Khumsap, S; Clayton, H M; Lanovaz, J L
2001-06-01
To measure the effect of subject velocity on hind limb ground reaction force variables at the walk and to use the data to predict the force variables at different walking velocities in horses. 5 clinically normal horses. Kinematic and force data were collected simultaneously. Each horse was led over a force plate at a range of walking velocities. Stance duration and force data were recorded for the right hind limb. To avoid the effect of horse size on the outcome variables, the 8 force variables were standardized to body mass and height at the shoulders. Velocity was standardized to height at the shoulders and expressed as velocity in dimensionless units (VDU). Stance duration was also expressed in dimensionless units (SDU). Simple regression analysis was performed, using stance duration and force variables as dependent variables and VDU as the independent variable. Fifty-six trials were recorded with velocities ranging from 0.24 to 0.45 VDU (0.90 to 1.72 m/s). Simple regression models between measured variables and VDU were significant (R2 > 0.69) for SDU, first peak of vertical force, dip between the 2 vertical force peaks, vertical impulse, and timing of second peak of vertical force. Subject velocity affects vertical force components only. In the future, differences between the forces measured in lame horses and the expected forces calculated for the same velocity will be studied to determine whether the equations can be used as diagnostic criteria.
Compartmentalized storage tank for electrochemical cell system
NASA Technical Reports Server (NTRS)
Piecuch, Benjamin Michael (Inventor); Dalton, Luke Thomas (Inventor)
2010-01-01
A compartmentalized storage tank is disclosed. The compartmentalized storage tank includes a housing, a first fluid storage section disposed within the housing, a second fluid storage section disposed within the housing, the first and second fluid storage sections being separated by a movable divider, and a constant force spring. The constant force spring is disposed between the housing and the movable divider to exert a constant force on the movable divider to cause a pressure P1 in the first fluid storage section to be greater than a pressure P2 in the second fluid storage section, thereby defining a pressure differential.
Effect of the callipyge phenotype and cooking method on tenderness of several major lamb muscles.
Shackelford, S D; Wheeler, T L; Koohmaraie, M
1997-08-01
We conducted three experiments to determine the effects of the callipyge phenotype on the tenderness of several major lamb muscles and to determine the effect of method of cookery on the tenderness of callipyge lamb at 7 d postmortem. In Exp. 1, chops from normal (n = 23) and callipyge (n = 16) carcasses were open-hearth-broiled. Warner-Bratzler shear force values of longissimus, gluteus medius, semimembranosus, biceps femoris, semitendinosus, adductor, and quadriceps femoris were 123, 44, 28, 26, 19, 16, and 13% greater, respectively, for callipyge (P < .05). In Exp. 2, muscles from normal (n = 18) and callipyge (n = 18) carcasses were oven-roasted. Shear force of triceps brachii was 11% greater for callipyge (P < .001); however, phenotype did not affect shear force of supraspinatus (P = .87) or psoas major (P = .64). In Exp. 3, a trained sensory panel evaluated leg roasts and open-hearth-broiled leg chops from normal (n = 60) and callipyge lamb carcasses (n = 60). Callipyge chops were less tender than normal chops (P < .05). Regardless of callipyge phenotype, muscles were more (P < .05) tender when roasted; however, the effect of method of cookery on tenderness scores was greater for callipyge muscles than for normal muscles. Callipyge roasts and normal roasts had similar tenderness (P = .58), and callipyge roasts were more tender than normal chops (P < .05). Regardless of cooking method, callipyge samples were less juicy than normal samples (P < .05). These data demonstrate that the callipyge phenotype will likely reduce consumer satisfaction due to reduced tenderness and juiciness; however, reduced tenderness in callipyge leg muscles could be prevented by ovenroasting.
42 CFR 70.8 - Members of military and naval forces.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Members of military and naval forces. 70.8 Section..., INSPECTION, LICENSING INTERSTATE QUARANTINE § 70.8 Members of military and naval forces. The provisions of §§ 70.3, 70.4, 70.5, 70.7, and this section shall not apply to members of the military or naval forces...
42 CFR 70.8 - Members of military and naval forces.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Members of military and naval forces. 70.8 Section..., INSPECTION, LICENSING INTERSTATE QUARANTINE § 70.8 Members of military and naval forces. The provisions of §§ 70.3, 70.4, 70.5, 70.7, and this section shall not apply to members of the military or naval forces...
Three dimensional profile measurement using multi-channel detector MVM-SEM
NASA Astrophysics Data System (ADS)
Yoshikawa, Makoto; Harada, Sumito; Ito, Keisuke; Murakawa, Tsutomu; Shida, Soichi; Matsumoto, Jun; Nakamura, Takayuki
2014-07-01
In next generation lithography (NGL) for the 1x nm node and beyond, the three dimensional (3D) shape measurements such as side wall angle (SWA) and height of feature on photomask become more critical for the process control. Until today, AFM (Atomic Force Microscope), X-SEM (cross-section Scanning Electron Microscope) and TEM (Transmission Electron Microscope) tools are normally used for 3D measurements, however, these techniques require time-consuming preparation and observation. And both X-SEM and TEM are destructive measurement techniques. This paper presents a technology for quick and non-destructive 3D shape analysis using multi-channel detector MVM-SEM (Multi Vision Metrology SEM), and also reports its accuracy and precision.
Nessler, Jeff A; Moustafa-Bayoumi, Moustafa; Soto, Dalziel; Duhon, Jessica; Schmitt, Ryan
2011-12-01
Robotic locomotor training devices have gained popularity in recent years, yet little has been reported regarding contact forces experienced by the subject performing automated locomotor training, particularly in animal models of neurological injury. The purpose of this study was to develop a means for acquiring contact forces between a robotic device and a rodent model of spinal cord injury through instrumentation of a robotic gait training device (the rat stepper) with miniature force/torque sensors. Sensors were placed at each interface between the robot arm and animal's hindlimb and underneath the stepping surface of both hindpaws (four sensors total). Twenty four female, Sprague-Dawley rats received mid-thoracic spinal cord transections as neonates and were included in the study. Of these 24 animals, training began for 18 animals at 21 days of age and continued for four weeks at five min/day, five days/week. The remaining six animals were untrained. Animal-robot contact forces were acquired for trained animals weekly and untrained animals every two weeks while stepping in the robotic device with both 60 and 90% of their body weight supported (BWS). Animals that received training significantly increased the number of weight supported steps over the four week training period. Analysis of raw contact forces revealed significant increases in forward swing and ground reaction forces during this time, and multiple aspects of animal-robot contact forces were significantly correlated with weight bearing stepping. However, when contact forces were normalized to animal body weight, these increasing trends were no longer present. Comparison of trained and untrained animals revealed significant differences in normalized ground reaction forces (both horizontal and vertical) and normalized forward swing force. Finally, both forward swing and ground reaction forces were significantly reduced at 90% BWS when compared to the 60% condition. These results suggest that measurement of animal-robot contact forces using the instrumented rat stepper can provide a sensitive and reliable measure of hindlimb locomotor strength and control of flexor and extensor muscle activity in neurologically impaired animals. Additionally, these measures may be useful as a means to quantify training intensity or dose-related functional outcomes of automated training.
Laboratory studies of frictional sliding and the implications of precursory seismicity
NASA Astrophysics Data System (ADS)
Selvadurai, Paul A.
The dynamic transition from slow to rapid sliding along a frictional interface is of interest to geophysicists, engineers and scientists alike. In our direct shear experiment, we simulated a pre-existing frictional fault similar to those occurring naturally in the Earth. The laboratory study reported here has incorporated appropriate sensors that can detect foreshock events on the fringe of a nucleation zone prior to a gross fault rupture (main shock). During loading we observed foreshocks sequences as slip transitioned from slow to rapid sliding. These laboratory-induced foreshocks showed similar acoustic characteristics and spatio-temporal evolution as those detected in nature. Through direct observation (video camera), foreshocks were found to be the rapid, localized (millimeter length scale) failure of highly stresses asperities formed along the interface. The interface was created by the meshing of two rough polymethyl methacrylate (PMMA) bodies in a direct shear configuration. A carefully calibrated pressure sensitive film was used to map the contact junctions (asperities) throughout the interface at a range of applied normal loads Fn. Foreshocks were found to coalesce in a region of the fault that exhibited a more dense distribution of asperities (referred to as the seismogenic region). Microscopy of the interface in the seismogenic region displayed a variety of surface roughness at various length scales. This may have been introduced from the surface preparation techniques use to create a mature interface. The mature interface consisted of 'flat-topped' asperity regions with separating sharp valleys. The 'flat-topped' sections spanned millimetric length scales and were considerably flatter (nanometric roughness) that the roughness exhibited at longer length scales (tens of millimeters). We believe that the smoother, 'flat-topped' sections were responsible for the individual asperity formation (determining their size and strength), whereas the longer length scale roughness influenced the asperity-asperity interaction during the nucleation phase. Asperities in the seismogenic region where shown to exist close enough to each other so that elastic communication (through the off-fault material) could not be neglected. Prior to gross fault rupture (i.e. mainshock), we measured the propagation of a slow nucleating rupture into the relatively 'locked', seimsogenic region of the fault. Slow slip dynamics were captured using slip sensors placed along the fault that measured a non-uniform slip profile leading up to failure. We found that the propagation of the slow rupture into the locked region was dependent on the normal force Fn. Higher Fn was found to slow the propagation of shear rupture into the locked region. Within the relatively 'locked' region, a noticeable increase in size and a more compact spatial-temporal distribution of foreshocks were measured when Fn was increased. In order to develop an understanding of the relationship between Fn and the resistance of the fault to slow rupture, a quasi-static finite element (FE) model was developed. The model used distributions of asperities measured directly from the pressure sensitive film in a small section of the interface where foreshocks coalesced; specifically, the region where the slowly propagating slip front encountered the more dense distribution of asperities. A single asperity was modeled and followed the Cattaneo partial slip asperity solution. As the shear force increased along the fault, the asperities in this model were able to accommodate tangential slip by entering a partial sliding regime; the central contact of the asperities remained adhered while sliding accumulated along its periphery. Partial slip on the asperity propagated inwards as the shear force was incrementally increased. A further increase in the shear force caused the asperity to enter a full sliding condition. Increasing confining loads caused increased stiffness and increased capacity to store potential shear strain energy -- a possible measure of the 'degree of coupling' between the fault surfaces. Physics from the numerical model followed the qualitative observations made using photometry of asperities along the interface, which visualized asperities in the 'locked' region -- larger asperities remained stuck throughout the loading cycle and the light transmitted through individual asperities decreased from the periphery as shear loads increased. The numerical partial slip, quantified by the potential energy stored by the asperity, increased relative to the normal pressure p. Asperity-asperity interactions were modeled along the interface using a quasi-static analysis. Progression of slip into the asperity field was increasingly inhibited as the normal confining force Fn was increased. The computational model provided an explanation as to why an increased confining force Fn could result in an increased resistance to slow rupture as well as an increased potential for larger foreshocks within the resistive, relatively 'locked' section of a fault. This study lays the foundation for more innovative laboratory work that could potentially improve the phenomenological models currently used to estimate earthquake hazard. (Abstract shortened by UMI.).
Nonlinear normal modes modal interactions and isolated resonance curves
Kuether, Robert J.; Renson, L.; Detroux, T.; ...
2015-05-21
The objective of the present study is to explore the connection between the nonlinear normal modes of an undamped and unforced nonlinear system and the isolated resonance curves that may appear in the damped response of the forced system. To this end, an energy balance technique is used to predict the amplitude of the harmonic forcing that is necessary to excite a specific nonlinear normal mode. A cantilever beam with a nonlinear spring at its tip serves to illustrate the developments. Furthermore, the practical implications of isolated resonance curves are also discussed by computing the beam response to sine sweepmore » excitations of increasing amplitudes.« less
Levitation and guidance force relaxations of the single-seeded and multi-seeded YBCO superconductors
NASA Astrophysics Data System (ADS)
Abdioglu, M.; Ozturk, K.; Kabaer, M.; Ekici, M.
2018-01-01
The stable levitation and guidance forces at higher force levels are important parameters for technological applicability of high temperature superconductors (HTSs) in Maglev and Flywheel energy storage systems. In this study, we have investigated the levitation and guidance force relaxation of both the single-seeded and multi-seeded YBCOs for different (HTS)-permanent magnetic guideway (PMG) arrangements in different cooling heights (CH). The measured saturated force values of Halbach PMG arrangements are bigger than the maximum force values of other PMGs. It is determined that the normalized magnetic levitation force (MLF) and normalized guidance force (GF) relaxation rate values decrease while the relaxation rates increase with increasing magnetic pole number and the effective external magnetic field area for both the single-seeded and multi-seeded YBCO. Also it can be said that the force stability at the higher force value of Halbach PMG arrangement indicates that the relaxation quality of Halbach PMG is better than that of the others. Additionally, it can be said that both the MLF and GF relaxation qualities of the multi-seeded YBCOs are better than that of the single-seeded ones. This magnetic force and relaxation results of the single-seeded and multi-seeded YBCOs are useful to optimize the loading capacity and lateral reliability of HTS Maglev and similar magnetic bearing systems.
Obtaining Magnetic Properties of Meteorites Using Magnetic Scanner
NASA Astrophysics Data System (ADS)
Kletetschka, G.; Nabelek, L.; Mazanec, M.; Simon, K.; Hruba, J.
2015-12-01
Magnetic images of Murchison meteorite's and Chelyabinsk meteorite's thin section have been obtained from magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses (Nabelek et al., 2015). Nabelek, L., Mazanec, M., Kdyr, S., and Kletetschka, G., 2015, Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section: Meteoritics & Planetary Science.
A soft-contact model for computing safety margins in human prehension.
Singh, Tarkeshwar; Ambike, Satyajit
2017-10-01
The soft human digit tip forms contact with grasped objects over a finite area and applies a moment about an axis normal to the area. These moments are important for ensuring stability during precision grasping. However, the contribution of these moments to grasp stability is rarely investigated in prehension studies. The more popular hard-contact model assumes that the digits exert a force vector but no free moment on the grasped object. Many sensorimotor studies use this model and show that humans estimate friction coefficients to scale the normal force to grasp objects stably, i.e. the smoother the surface, the tighter the grasp. The difference between the applied normal force and the minimal normal force needed to prevent slipping is called safety margin and this index is widely used as a measure of grasp planning. Here, we define and quantify safety margin using a more realistic contact model that allows digits to apply both forces and moments. Specifically, we adapt a soft-contact model from robotics and demonstrate that the safety margin thus computed is a more accurate and robust index of grasp planning than its hard-contact variant. Previously, we have used the soft-contact model to propose two indices of grasp planning that show how humans account for the shape and inertial properties of an object. A soft-contact based safety margin offers complementary insights by quantifying how humans may account for surface properties of the object and skin tissue during grasp planning and execution. Copyright © 2017 Elsevier B.V. All rights reserved.
Prediction of static friction coefficient in rough contacts based on the junction growth theory
NASA Astrophysics Data System (ADS)
Spinu, S.; Cerlinca, D.
2017-08-01
The classic approach to the slip-stick contact is based on the framework advanced by Mindlin, in which localized slip occurs on the contact area when the local shear traction exceeds the product between the local pressure and the static friction coefficient. This assumption may be too conservative in the case of high tractions arising at the asperities tips in the contact of rough surfaces, because the shear traction may be allowed to exceed the shear strength of the softer material. Consequently, the classic frictional contact model is modified in this paper so that gross sliding occurs when the junctions formed between all contacting asperities are independently sheared. In this framework, when the contact tractions, normal and shear, exceed the hardness of the softer material on the entire contact area, the material of the asperities yields and the junction growth process ends in all contact regions, leading to gross sliding inception. This friction mechanism is implemented in a previously proposed numerical model for the Cattaneo-Mindlin slip-stick contact problem, which is modified to accommodate the junction growth theory. The frictionless normal contact problem is solved first, then the tangential force is gradually increased, until gross sliding inception. The contact problems in the normal and in the tangential direction are successively solved, until one is stabilized in relation to the other. The maximum tangential force leading to a non-vanishing stick area is the static friction force that can be sustained by the rough contact. The static friction coefficient is eventually derived as the ratio between the latter friction force and the normal force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burge, S.W.
This report describes the FORCE2 flow program input, output, and the graphical post-processor. The manual describes the steps for creating the model, executing the programs and processing the results into graphical form. The FORCE2 post-processor was developed as an interactive program written in FORTRAN-77. It uses the Graphical Kernel System (GKS) graphics standard recently adopted by International Organization for Standardization, ISO, and American National Standards Institute, ANSI, and, therefore, can be used with many terminals. The post-processor vas written with Calcomp subroutine calls and is compatible with Tektkonix terminals and Calcomp and Nicolet pen plotters. B&W has been developing themore » FORCE2 code as a general-purpose tool for flow analysis of B&W equipment. The version of FORCE2 described in this manual was developed under the sponsorship of ASEA-Babcock as part of their participation in the joint R&D venture, ``Erosion of FBC Heat Transfer Tubes,`` and is applicable to the analyses of bubbling fluid beds. This manual is the principal documentation for program usage and is segmented into several sections to facilitate usage. In Section 2.0 the program is described, including assumptions, capabilities, limitations and uses, program status and location, related programs and program hardware and software requirements. Section 3.0 is a quick user`s reference guide for preparing input, executing FORCE2, and using the post-processor. Section 4.0 is a detailed description of the FORCE2 input. In Section 5.0, FORCE2 output is summarized. Section 6.0 contains a sample application, and Section 7.0 is a detailed reference guide.« less
Sidorowicz, Ł; Szymańska, J
2015-01-01
Better knowledge on the relationship between craniofacial structure and bite force may serve as a reference point for prophylactic and therapeutic activities targeted at developmental age patients. The aim of the study was to assess the correlation between facial skeletal morphology and bite force. The study included 54 subjects aged 7-16 years with a normal relation of the bases of jaws and skull, according to Segner's and Hasund's analysis standards (ML-NL and ML-NSL angles values were 20.0 ± 7.0° and 28.0 ± 5.0°, respectively). The study group included patients who volunteered to diagnosis and possible orthodontic treatment. Bite force was tested with a digital dynamometer calibrated in Newtons. The measurement was performed at the level of the first permanent molars. Cephalometric analysis was based on lateral cephalometric radiographs. The vertical relations were assessed using the following measurements: ML-NSL, ML-NL, NL-NSL, N-Me, Sp-Me, SpMe:NMe, ms-NL, SGo:NMe. Bite force does not depend on the following factors: lower anterior face height (Sp-Me), lower anterior face height to total anterior face height ratio (SpMe:NMe), posterior to anterior face height ratio (SG0:NMe), and the value of ML-NL, ML-NSL and NL-NSL angles. The posterior height of the maxilla alveolar process (ms-NL) exerts the greatest influence on bite force in people with a normal relation of the bases of jaws and skull: with an increase in ms-NL value bite force is reduced.
1991-08-31
was a great boost. Ecole Normale Sup~rieure The Rowland Institute for Science Ministbre de la Recherche et de la Technologie AFOSR (U. S. Air Force...551 Acknowledgments The organizers acknowledge financial support from the following public...and private institutions to which they are especially grateful: Ecole Normale Sup~rioure The Rowland Institute for Science AFOSR (US Air Force) C2V
New insights into the passive force enhancement in skeletal muscles.
Lee, Eun-Jeong; Joumaa, Venus; Herzog, Walter
2007-01-01
The steady-state isometric force following active stretching of a muscle is always greater than the steady-state isometric force obtained in a purely isometric contraction at the same length. This phenomenon has been termed "residual force enhancement" and it is associated with an active and a passive component. The origin of these components remains a matter of scientific debate. The purpose of this work was to test the hypothesis that the passive component of the residual force enhancement is caused by a passive structural element. In order to achieve this purpose, single fibers (n=6) from the lumbrical muscles of frog (Rana pipiens) were isolated and attached to a force transducer and a motor that could produce computer-controlled length changes. The passive force enhancement was assessed for three experimental conditions: in a normal Ringer's solution, and after the addition of 5 and 15mM 2,3-butanedione monoxime (BDM) which inhibits force production in a dose-dependent manner. If our hypothesis was correct, one would expect the passive force enhancement to be unaffected following BDM application. However, we found that increasing concentrations of BDM decreased the isometric forces, increased the normalized residual force enhancement, and most importantly for this study, increased the passive force enhancement. Furthermore, BDM decreased the rate of force relaxation after deactivation following active stretching of fibers, passive stretching in the Ringer's and BDM conditions produced the same passive force-sarcomere length relationship, and passive force enhancement required activation and force production. These results led to the conclusion that the passive force enhancement cannot be caused by a structural component exclusively as had been assumed up to date, but must be associated, directly or indirectly, with cross-bridge attachments upon activation and the associated active force.
NASA Astrophysics Data System (ADS)
Sakarya, Doǧan Uǧur
2017-05-01
Drag force effect is an important aspect of range performance in missile applications especially for long flight time. However, old fashioned gimbal approaches force to increase missile diameter. This increase has negative aspect of rising in both drag force and radar cross sectional area. A new gimbal approach was proposed recently. It uses a beam steering optical arrangement. Therefore, it needs less volume envelope for same field of regard and same optomechanical assembly than the old fashioned gimbal approaches. In addition to longer range performance achieved with same fuel in the new gimbal approach, this method provides smaller cross sectional area which can be more invisible in enemies' radar. In this paper, the two gimbal approaches - the old fashioned one and the new one- are compared in order to decrease drag force and radar cross sectional area in missile application. In this study; missile parameters are assumed to generate gimbal and optical design parameters. Optical design is performed according to these missile criteria. Two gimbal configurations are designed with respect to modeled missile parameters. Also analyzes are performed to show decreased drag force and radar cross sectional area in the new approach for comparison.
Predicted lattice-misfit stresses in a gallium-nitride (GaN) film
NASA Astrophysics Data System (ADS)
Suhir, E.; Yi, S.
2017-02-01
Effective, easy-to-use and physically meaningful analytical predictive models are developed for the evaluation the lattice-misfit stresses (LMS) in a semiconductor film grown on a circular substrate (wafer). The two-dimensional (plane-stress) theory-of-elasticity approximation (TEA) is employed. First of all, the interfacial shearing stresses are evaluated. These stresses might lead to the occurrence and growth of dislocations, as well as to possible delaminations (adhesive strength of the assembly) and the elevated stress and strain in the buffering material, if any (cohesive strength of the assembly). Second of all, the normal radial and circumferential (tangential) stresses acting in the film cross-sections are determined. These stresses determine the short- and long-term strength (fracture toughness) of the film material. It is shown that while the normal stresses in the semiconductor film are independent of its thickness, the interfacial shearing stresses increase with an increase in the induced force (not stress!) acting in the film cross-sections, and that this force increases with an increase in the film thickness. This leads, for a thick enough film, to the occurrence, growth and propagation of dislocations. These start at the assembly ends and propagate, when the film thickness increases, inwards the structure. The TEA data are compared with the results obtained using a simplified strength-of-materials approach (SMA). This approach considers, instead of an actual circular assembly, an elongated bi-material rectangular strip of unit width and of finite length equal to the wafer diameter. The analysis, although applicable to any semiconductor crystal growth (SCG) technology is geared in this analysis to the Gallium-Nitride (GaN) technology. The numerical example is carried out for a GaN film grown on a Silicon Carbide (SiC) substrate. It is concluded that the SMA model is acceptable for understanding the physics of the state of stress and for the prediction of the normal stresses acting in the major mid-portion of the assembly. The SMA model underestimates, however, the maximum interfacial shearing stress at the assembly periphery, and, because of the very nature of the SMA, is unable to address the circumferential stress. This stress can be quite high at the circular boundary of the assembly. At the assembly edge the circumferential stress is as high as σθ = (2-ν1)σ1, i.e., by the factor of 2-ν1 higher than the normal stress, σ1, in the mid-portion of the film. In this formula, ν1 is Poisson's ratio of the film material.
Insights into adhesion of abalone: A mechanical approach.
Li, Jing; Zhang, Yun; Liu, Sai; Liu, Jianlin
2018-01-01
Many living creatures possess extremely strong capability of adhesion, which has aroused great attention of many scientists and engineers. Based on the self-developed equipment, we measured the normal and shear adhesion strength of the abalone underwater and out of water on different contact surfaces. It is found that the adhesion force of the abalone can amount to 200 or 300 times its body weight. The effects of wettability and roughness of the surface, and the frictional coefficient of mucus on the adhesion strength have been discussed. The theoretical calculation manifests that the normal adhesion force mainly stems from the suction pressure, van der Waals force and capillary force of the pedal, and their limit values are given. These findings may provide some inspirations to engineer new-typed materials, micro-devices, adhesives and medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N; Rhode, R V
1938-01-01
The results of previous reports dealing with airfoil section characteristics and span load distribution data are coordinated into a method for determining the air forces and their distribution on airplane wings. Formulas are given from which the resultant force distribution may be combined to find the wing aerodynamic center and pitching moment. The force distribution may also be resolved to determine the distribution of chord and beam components. The forces are resolved in such a manner that it is unnecessary to take the induced drag into account. An illustration of the method is given for a monoplane and a biplane for the conditions of steady flight and a sharp-edge gust. The force determination is completed by outlining a procedure for finding the distribution of load along the chord of airfoil sections.
Stackhouse, Scott K.; Binder-Macleod, Stuart A.; Stackhouse, Carrie A.; McCarthy, James J.; Prosser, Laura A.; Lee, Samuel C. K.
2011-01-01
Background To date, no reports have investigated neuromuscular electrical stimulation (NMES) to increase muscle force production of children with cerebral palsy (CP) using high-force contractions and low repetitions. Objective The aims of this study were to determine if isometric NMES or volitional training in children with CP could increase muscle strength and walking speed and to examine the mechanisms that may contribute to increased force production. Methods Eleven children with spastic diplegia were assigned to an NMES training group or to a volitional training group. Participants in the NMES group had electrodes implanted percutaneously to activate the quadriceps femoris and triceps surae muscles. The volitional group trained with maximal effort contractions. Both groups performed a 12-week isometric strength-training program. Maximum voluntary isometric contract ion (MVIC) force, voluntary muscle activation, quadriceps and triceps surae cross-sectional area (CSA), and walking speed were measured pre- and post-strength training. Results The NMES-trained group had greater increases in normalized force production for both die quadriceps femoris and triceps surae. Similarly only the NMES group showed an increase in walking speed after training. Changes in voluntary muscle activation explained approximately 67% and 37% of the changes seen in the MVIC of the NMES and volitional groups, respectively. Quadriceps femoris maximum CSA increased significantly for the NMES group only. Conclusions This study was the first to quantitatively show strength gains with the use of NMES in children with CP. These results support the need for future experimental studies that will examine the clinical effectiveness of NMES strength training. PMID:17369515
Comparison of Ares I-X Wind-Tunnel Derived Buffet Environment with Flight Data
NASA Technical Reports Server (NTRS)
Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.
2011-01-01
The Ares I-X Flight Test Vehicle (FTV), launched in October 2009, carried with it over 243 buffet verification pressure sensors and was one of the most heavily instrumented launch vehicle flight tests. This flight test represented a unique opportunity for NASA and its partners to compare the wind-tunnel derived buffet environment with that measured during the flight of Ares I-X. It is necessary to define the launch vehicle buffet loads to ensure that structural components and vehicle subsystems possess adequate strength, stress, and fatigue margins when the vehicle structural dynamic response to buffet forcing functions are considered. Ares I-X buffet forcing functions were obtained via wind-tunnel testing of a rigid buffet model (RBM) instrumented with hundreds of unsteady pressure transducers designed to measure the buffet environment across the desired frequency range. This paper discusses the comparison of RBM and FTV buffet environments, including fluctuating pressure coefficient and normalized sectional buffet forcing function root-mean-square magnitudes, frequency content of power-spectral density functions, and force magnitudes of an alternating flow phenomena. Comparison of wind-tunnel model and flight test vehicle buffet environments show very good agreement with root-mean-square magnitudes of buffet forcing functions at the majority of vehicle stations. Spectra proved a challenge to compare because of different wind-tunnel and flight test conditions and data acquisition rates. However, meaningful and promising comparisons of buffet spectra are presented. Lastly, the buffet loads resulting from the transition of subsonic separated flow to supersonic attached flow were significantly over-predicted by wind-tunnel results.
Length oscillation induces force potentiation in infant guinea pig airway smooth muscle.
Wang, Lu; Chitano, Pasquale; Murphy, Thomas M
2005-12-01
Deep inspiration counteracts bronchospasm in normal subjects but triggers further bronchoconstriction in hyperresponsive airways. Although the exact mechanisms for this contrary response by normal and hyperresponsive airways are unclear, it has been suggested that the phenomenon is related to changes in force-generating ability of airway smooth muscle after mechanical oscillation. It is known that healthy immature airways of both humans and animals exhibit hyperresponsiveness. We hypothesize that the profile of active force generation after mechanical oscillation changes with maturation and that this change contributes to the expression of airway hyperresponsiveness in juveniles. We examined the effect of an acute sinusoidal length oscillation on the force-generating ability of tracheal smooth muscle from 1 wk, 3 wk, and 2- to 3-mo-old guinea pigs. We found that the length oscillation produced 15-20% initial reduction in active force equally in all age groups. This was followed by a force recovery profile that displayed striking maturation-specific features. Unique to tracheal strips from 1-wk-old animals, active force potentiated beyond the maximal force generated before oscillation. We also found that actin polymerization was required in force recovery and that prostanoids contributed to the maturation-specific force potentiation in immature airway smooth muscle. Our results suggest a potentiated mechanosensitive contractile property of hyperresponsive airway smooth muscle. This can account for further bronchoconstriction triggered by deep inspiration in hyperresponsive airways.
Architectural analysis and predicted functional capability of the human latissimus dorsi muscle
Gerling, Michael E; Brown, Stephen H M
2013-01-01
The latissimus dorsi is primarily considered a muscle with actions at the shoulder, despite its widespread attachments at the spine. There is some dispute regarding the potential contribution of this muscle to lumbar spine function. The architectural design of a muscle is one of the most accurate predictors of muscle function; however, detailed architectural data on the latissimus dorsi muscle are limited. Therefore, the aim of this study was to quantify the architectural properties of the latissimus dorsi muscle and model mechanical function in light of these new data. One latissimus dorsi muscle was removed from each of 12 human cadavers, separated into regions, and micro-dissected for quantification of fascicle length, sarcomere length, and physiological cross-sectional area. From these data, sarcomere length operating ranges were modelled to determine the force–length characteristics of latissimus dorsi across the spine and shoulder ranges of motion. The physiological cross-sectional area of latissimus dorsi was 5.6 ± 0.5 cm2 and normalized fascicle length was 26.4 ± 1.0 cm, indicating that this muscle is designed to produce a moderate amount of force over a large range of lengths. Measured sarcomere length in the post-mortem neutral spine posture was nearly optimal at 2.69 ± 0.06 μm. Across spine range of motion, biomechanical modelling predicted latissimus dorsi acts across both the ascending and descending limbs of the force–length curve during lateral bend, and primarily at or near the plateau region (where maximum force generation is possible) during flexion/extension and axial twist. Across shoulder range of motion, latissimus dorsi acts primarily on the plateau region and descending limbs of the force length curve during both flexion/extension and abduction/adduction. These data provide novel insights into the ability of the latissimus dorsi muscle to generate force and change length throughout the spine and shoulder ranges of motion. In addition, these findings provide an improved understanding of the spine and shoulder positions at which the force-generating capacity of this muscle can become jeopardized, and consequently how this may affect its spine-stabilizing ability. PMID:23758053
Sim, Jae Ang; Gadikota, Hemanth R.; Li, Jing-Sheng; Li, Guoan; Gill, Thomas J.
2013-01-01
Background Recently, anatomic anterior cruciate ligament (ACL) reconstruction is emphasized to improve joint laxity and to potentially avert initiation of cartilage degeneration. There is a paucity of information on the efficacy of ACL reconstructions by currently practiced tunnel creation techniques in restoring normal joint laxity. Study Design Controlled laboratory study. Hypothesis Anterior cruciate ligament reconstruction by the anteromedial (AM) portal technique, outside-in (OI) technique, and modified transtibial (TT) technique can equally restore the normal knee joint laxity and ACL forces. Methods Eight fresh-frozen human cadaveric knee specimens were tested using a robotic testing system under an anterior tibial load (134 N) at 0°, 30°, 60°, and 90° of flexion and combined torques (10-N·m valgus and 5-N·m internal tibial torques) at 0° and 30° of flexion. Knee joint kinematics, ACL, and ACL graft forces were measured in each knee specimen under 5 different conditions (ACL-intact knee, ACL-deficient knee, ACL-reconstructed knee by AM portal technique, ACL-reconstructed knee by OI technique, and ACL-reconstructed knee by TT technique). Results Under anterior tibial load, no significant difference was observed between the 3 reconstructions in terms of restoring anterior tibial translation (P > .05). However, none of the 3 ACL reconstruction techniques could completely restore the normal anterior tibial translations (P <.05). Under combined tibial torques, both AM portal and OI techniques closely restored the normal knee anterior tibial translation (P > .05) at 0° of flexion but could not do so at 30° of flexion (P <.05). The ACL reconstruction by the TT technique was unable to restore normal anterior tibial translations at both 0° and 30° of flexion under combined tibial torques (P <.05). Forces experienced by the ACL grafts in the 3 reconstruction techniques were lower than those experienced by normal ACL under both the loading conditions. Conclusion Anterior cruciate ligament reconstructions by AM portal, OI, and modified TT techniques are biomechanically comparable with each other in restoring normal knee joint laxity and in situ ACL forces. Clinical Relevance Anterior cruciate ligament reconstructions by AM portal, OI, and modified TT techniques result in similar knee joint laxities. Technical perils and pearls should be carefully considered before choosing a tunnel creating technique. PMID:21908717
77 FR 30023 - Notice of Withdrawal Application and Opportunity for Public Meeting; Alaska
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-21
... Management, Interior. ACTION: Notice. SUMMARY: The United States Air Force has filed an application with the... Force King Salmon Station. This notice gives the public an opportunity to comment on the proposed action... receive a reply during normal business hours. SUPPLEMENTARY INFORMATION: The United States Air Force...
Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces.
Kwon, Jiwoon; Cheung, Eugene; Park, Sukho; Sitti, Metin
2006-12-01
A micro-pillar-based silicone rubber adhesive coated with a thin silicone oil layer is investigated in this paper for developing friction-based clamping mechanisms for robotic endoscopic microcapsules. These adhesives are shown to enhance the frictional force between the capsule and the intestinal wall by a factor of about seven over a non-patterned flat elastomer material. In this study, tests performed on fresh samples of pig small intestine are used to optimize the diameter of the micro-pillars to maximize the frictional forces. In addition, the effects of other factors such as the oil viscosity and applied normal forces are investigated. It is demonstrated that the proposed micro-pillar pattern based elastomer adhesive exhibits a maximal frictional force when the pillar diameter is 140 microm and coated silicon oil has a very high viscosity (10,000 cSt). It is also found that the frictional force of the micro-patterned adhesive increases nonlinearly in proportion to the applied normal force. These adhesives would be used as a robust attachment material for developing robotic capsule endoscopes inside intestines with clamping capability.
Influence of altered gait patterns on the hip joint contact forces.
Carriero, Alessandra; Zavatsky, Amy; Stebbins, Julie; Theologis, Tim; Lenaerts, Gerlinde; Jonkers, Ilse; Shefelbine, Sandra J
2014-01-01
Children who exhibit gait deviations often present a range of bone deformities, particularly at the proximal femur. Altered gait may affect bone growth and lead to deformities by exerting abnormal stresses on the developing bones. The objective of this study was to calculate variations in the hip joint contact forces with different gait patterns. Muscle and hip joint contact forces of four children with different walking characteristics were calculated using an inverse dynamic analysis and a static optimisation algorithm. Kinematic and kinetic analyses were based on a generic musculoskeletal model scaled down to accommodate the dimensions of each child. Results showed that for all the children with altered gaits both the orientation and magnitude of the hip joint contact force deviated from normal. The child with the most severe gait deviations had hip joint contact forces 30% greater than normal, most likely due to the increase in muscle forces required to sustain his crouched stance. Determining how altered gait affects joint loading may help in planning treatment strategies to preserve correct loading on the bone from a young age.
Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces
NASA Astrophysics Data System (ADS)
Kwon, Jiwoon; Cheung, Eugene; Park, Sukho; Sitti, Metin
2006-12-01
A micro-pillar-based silicone rubber adhesive coated with a thin silicone oil layer is investigated in this paper for developing friction-based clamping mechanisms for robotic endoscopic microcapsules. These adhesives are shown to enhance the frictional force between the capsule and the intestinal wall by a factor of about seven over a non-patterned flat elastomer material. In this study, tests performed on fresh samples of pig small intestine are used to optimize the diameter of the micro-pillars to maximize the frictional forces. In addition, the effects of other factors such as the oil viscosity and applied normal forces are investigated. It is demonstrated that the proposed micro-pillar pattern based elastomer adhesive exhibits a maximal frictional force when the pillar diameter is 140 µm and coated silicon oil has a very high viscosity (10 000 cSt). It is also found that the frictional force of the micro-patterned adhesive increases nonlinearly in proportion to the applied normal force. These adhesives would be used as a robust attachment material for developing robotic capsule endoscopes inside intestines with clamping capability.
Falda-Buscaiot, Thomas; Hintzy, Frédérique; Rougier, Patrice; Lacouture, Patrick; Coulmy, Nicolas
2017-01-01
The purpose of this study was to investigate the evolution of ground reaction force during alpine skiing turns. Specifically, this study investigated how turn phases and slope steepness affected the whole foot normal GRF pattern while performing giant slalom turns in a race-like setting. Moreover, the outside foot was divided into different plantar regions to see whether those parameters affected the plantar pressure distribution. Eleven skiers performed one giant slalom course at race intensity. Runs were recorded synchronously using a video camera in the frontal plane and pressure insoles under both feet’s plantar surface. Turns were divided according to kinematic criteria into four consecutive phases: initiation, steering1, steering2 and completion; both steering phases being separated by the gate passage. Component of the averaged Ground Reaction Force normal to the ski’s surface(nGRF¯, /BW), and Pressure Time Integral relative to the entire foot surface (relPTI, %) parameters were calculated for each turn phases based on plantar pressure data. Results indicated that nGRF¯ under the total foot surface differed significantly depending on the slope (higher in steep sections vs. flat sections), and the turn phase (higher during steering2 vs. three other phases), although such modifications were observable only on the outside foot. Moreover, nGRF¯ under the outside foot was significantly greater than under the inside foot.RelPTI under different foot regions of the outside foot revealed a global shift from forefoot loading during initiation phase, toward heel loading during steering2 phase, but this was dependent on the slope studied. These results suggest a differentiated role played by each foot in alpine skiing turns: the outside foot has an active role in the turning process, while the inside foot may only play a role in stability. PMID:28472092
Falda-Buscaiot, Thomas; Hintzy, Frédérique; Rougier, Patrice; Lacouture, Patrick; Coulmy, Nicolas
2017-01-01
The purpose of this study was to investigate the evolution of ground reaction force during alpine skiing turns. Specifically, this study investigated how turn phases and slope steepness affected the whole foot normal GRF pattern while performing giant slalom turns in a race-like setting. Moreover, the outside foot was divided into different plantar regions to see whether those parameters affected the plantar pressure distribution. Eleven skiers performed one giant slalom course at race intensity. Runs were recorded synchronously using a video camera in the frontal plane and pressure insoles under both feet's plantar surface. Turns were divided according to kinematic criteria into four consecutive phases: initiation, steering1, steering2 and completion; both steering phases being separated by the gate passage. Component of the averaged Ground Reaction Force normal to the ski's surface([Formula: see text], /BW), and Pressure Time Integral relative to the entire foot surface (relPTI, %) parameters were calculated for each turn phases based on plantar pressure data. Results indicated that [Formula: see text] under the total foot surface differed significantly depending on the slope (higher in steep sections vs. flat sections), and the turn phase (higher during steering2 vs. three other phases), although such modifications were observable only on the outside foot. Moreover, [Formula: see text] under the outside foot was significantly greater than under the inside foot.RelPTI under different foot regions of the outside foot revealed a global shift from forefoot loading during initiation phase, toward heel loading during steering2 phase, but this was dependent on the slope studied. These results suggest a differentiated role played by each foot in alpine skiing turns: the outside foot has an active role in the turning process, while the inside foot may only play a role in stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhnovskii, Yurii A.; Berezhkovskii, Alexander M.; Antipov, Anatoly E.
This paper is devoted to particle transport in a tube formed by alternating wide and narrow sections, in the presence of an external biasing force. The focus is on the effective transport coefficients—mobility and diffusivity, as functions of the biasing force and the geometric parameters of the tube. Dependences of the effective mobility and diffusivity on the tube geometric parameters are known in the limiting cases of no bias and strong bias. The approximations used to obtain these results are inapplicable at intermediate values of the biasing force. To bridge the two limits Brownian dynamics simulations were run to determinemore » the transport coefficients at intermediate values of the force. The simulations were performed for a representative set of tube geometries over a wide range of the biasing force. They revealed that there is a range of the narrow section length, where the force dependence of the mobility has a maximum. In contrast, the diffusivity is a monotonically increasing function of the force. A simple formula is proposed, which reduces to the known dependences of the diffusivity on the tube geometric parameters in both limits of zero and strong bias. At intermediate values of the biasing force, the formula catches the diffusivity dependence on the narrow section length, if the radius of these sections is not too small.« less
Axial-Force Reduction by Interference Between Jet and Neighboring Afterbody
NASA Technical Reports Server (NTRS)
Pitts, William C.; Wiggins, Lyle E.
1960-01-01
Experimental results are presented for an exploratory investigation of the effectiveness of interference between jet and afterbody in reducing the axial force on an afterbody with a neighboring jet. In addition to the interference axial force., measurements are presented of the interference normal force and the center of pressure of the interference normal force. The free-stream Mach number was 2.94, the jet-exit Mach number was 2.71, and the Reynolds number was 0.25 x 10, based on body diameter. The variables investigated include static-pressure ratio of the jet (up to 9), nacelle position relative to afterbody, angle of attack (-5 deg to 10 deg), and afterbody shape. Two families of afterbody shapes were tested. One family consisted of tangent-ogive bodies of revolution with varying length and base areas. The other family was formed by taking a planar slice off a circular cylinder with varying angle between the plane and cylinder. The trends with these variables are shown for conditions near maximum jet-afterbody interference. The interference axial forces are large and favorable. For several configurations the total afterbody axial force is reduced to zero by the interference.
Does Foot Anthropometry Predict Metabolic Cost During Running?
van Werkhoven, Herman; Piazza, Stephen J
2017-10-01
Several recent investigations have linked running economy to heel length, with shorter heels being associated with less metabolic energy consumption. It has been hypothesized that shorter heels require larger plantar flexor muscle forces, thus increasing tendon energy storage and reducing metabolic cost. The goal of this study was to investigate this possible mechanism for metabolic cost reduction. Fifteen male subjects ran at 16 km⋅h -1 on a treadmill and subsequently on a force-plate instrumented runway. Measurements of oxygen consumption, kinematics, and ground reaction forces were collected. Correlational analyses were performed between oxygen consumption and anthropometric and kinetic variables associated with the ankle and foot. Correlations were also computed between kinetic variables (peak joint moment and peak tendon force) and heel length. Estimated peak Achilles tendon force normalized to body weight was found to be strongly correlated with heel length normalized to body height (r = -.751, p = .003). Neither heel length nor any other measured or calculated variable were correlated with oxygen consumption, however. Subjects with shorter heels experienced larger Achilles tendon forces, but these forces were not associated with reduced metabolic cost. No other anthropometric and kinetic variables considered explained the variance in metabolic cost across individuals.
NASA Astrophysics Data System (ADS)
Lai, Tianmao; Meng, Yonggang
2017-10-01
The influences of contact time, normal load, piezo velocity, and measurement number of times on the adhesion force between two silicon surfaces were studied with an atomic force microscope (AFM) at low humidity (17-15%). Results show that the adhesion force is time-dependent and increases logarithmically with contact time until saturation is reached, which is related with the growing size of a water bridge between them. The contact time plays a dominant role among these parameters. The adhesion forces with different normal loads and piezo velocities can be quantitatively obtained just by figuring out the length of contact time, provided that the contact time dependence is known. The time-dependent adhesion force with repeated contacts at one location usually increases first sharply and then slowly with measurement number of times until saturation is reached, which is in accordance with the contact time dependence. The behavior of the adhesion force with repeated contacts can be adjusted by the lengths of contact time and non-contact time. These results may help facilitate the anti-adhesion design of silicon-based microscale systems working under low humidity.
Forces on Elliptic Cylinders in Uniform Air Stream
NASA Technical Reports Server (NTRS)
Zahm, A F; Smith, R H; Louden, F A
1929-01-01
This report presents the results of wind tunnel tests on four elliptic cylinders with various fineness ratios, conducted in the Navy Aerodynamic Laboratory, Washington. The object of the tests was to investigate the characteristics of sections suitable for streamline wire which normally has an elliptic section with a fineness ratio of 4.0; also to learn whether a reduction in fineness ratio would result in improvement; also to determine the pressure distribution on the model of fineness ratio of 4. Four elliptic cylinders with fineness ratios of 2.5, 3.0, 3.5, and 4.0 were made and then tested in the 8 by 8 wind tunnel; first, for cross-wind force, drag, and yawing moment at 30 miles an hour and various angles of yaw; next for drag 0 degree pitch and 0 degree yaw and various wind speeds; then for end effect on the smallest and largest models; and lastly for pressure distribution over the surface of the largest model at 0 degree pitch and 0 degree yaw and various wind speeds. In all tests, the length of the model was transverse to the current. The results are given for standard air density, p = .002378 slug per cubic foot. This account is a slight revised form of report no. 315. A summary of conclusions is given at the end of the text. (author)
Geothermal studies at Kirtland Air Force Base, Albuquerque, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riddle, L.; Grant, B.
Due to an effort by government installations to discontinue use of natural gas, alternative energy sources are being investigated at Kirtland Air Force Base, Albuquerque, New Mexico. New Mexico has geologic characteristics favorable for geothermal energy utilization. Local heat flow and geochemical studies indicate a normal subsurface temperature regime. The alluvial deposits, however, extend to great depths where hot fluids, heated by the normal geothermal gradient, could be encountered. Two potential models for tapping geothermal energy are presented: the basin model and the fault model.
NASA Technical Reports Server (NTRS)
Harris, C. D.
1975-01-01
This report documents the experimental aerodynamic characteristics of a 14 percent thick supercritical airfoil based on an off design sonic pressure plateau criterion. The design normal force coefficient was 0.7. The results are compared with those of the family related 10 percent thick supercritical airfoil 33. Comparisons are also made between experimental and theoretical characteristics and composite drag rise characteristics derived for a full scale Reynolds number of 40 million.
COPD prevalence in a random population survey: a matter of definition.
Shirtcliffe, P; Weatherall, M; Marsh, S; Travers, J; Hansell, A; McNaughton, A; Aldington, S; Muellerova, H; Beasley, R
2007-08-01
A recent American Thoracic Society and European Respiratory Society joint Task Force report recommends using a lower limit of normal (LLN) of forced expiratory volume in one second/forced vital capacity as opposed to a fixed ratio of <0.7 to diagnose airflow obstruction, in order to reduce false positive diagnoses of chronic obstructive pulmonary disease (COPD) as defined by the Global Initiative for Obstructive Lung Disease (GOLD). To date, there is no reliable spirometry-based prevalence data for COPD in New Zealand and the effect of different definitions of airflow obstruction based on post-bronchodilator spirometry is not known. Detailed written questionnaires, full pulmonary function tests (including pre- and post-bronchodilator flow-volume loops) and atopy testing were completed in 749 subjects recruited from a random population sample. The GOLD-defined, age-adjusted prevalence (95% confidence interval) for adults aged >or=40 yrs was 14.2 (11.0-17.0)% compared with an LLN-defined, age-adjusted, post-bronchodilator prevalence in the same group of 9.0 (6.7-11.3)%. The prevalence of chronic obstructive pulmonary disease varied markedly depending on the definition used. Further research using longitudinal rather than cross-sectional data will help decide the preferred approach in chronic obstructive pulmonary disease prevalence surveys.
A Comparison of the Physiology and Mechanics of Exercise in LBNP and Upright Gait
NASA Technical Reports Server (NTRS)
Boda, W. L.; Watenpaugh, D. E.; Ballard, R. E.; Chang, D.; Looft-Wilson, R.; Hargens, A. R.
1996-01-01
Bone, muscular strength, aerobic capacity, and normal fluid pressure gradients within the body are lost during bed rest and spaceflight. Lower Body Negative Pressure (LBNP) exercise may create musculoskeletal and cardiovascular strains equal to a greater than those experienced on Earth and elucidate some of the mechanisms for maintaining bone integrity. LBNP exercise simulates gravity during supine posture by using negative pressure to pull subjects inward against a treadmill generating footward forces and increasing transmural pressures. Footward forces are generated which equal the product of the pressure differential and the cross-sectional area of the LBNP waist seal. Subjects lie supine within the chamber with their legs suspended from one another via cuffs, bungee cords, and pulleys, such that each leg acts as a counterweight to the other leg during the gait cycle. The subjects then walk or run on a treadmill which is positioned vertically within the chamber. Supine orientation allows only footward force production due to the negative pressure within the chamber. The purpose of this study was to determine if the kinematics, kinetics, and metabolic rate during supine walking and slow running on a vertical treadmill within LBNP are similar to those on a treadmill in 1-g environment in an upright posture.
Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing
2015-03-10
Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke's law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%.
Scalar Casimir densities and forces for parallel plates in cosmic string spacetime
NASA Astrophysics Data System (ADS)
Bezerra de Mello, E. R.; Saharian, A. A.; Abajyan, S. V.
2018-04-01
We analyze the Green function, the Casimir densities and forces associated with a massive scalar quantum field confined between two parallel plates in a higher dimensional cosmic string spacetime. The plates are placed orthogonal to the string, and the field obeys the Robin boundary conditions on them. The boundary-induced contributions are explicitly extracted in the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor for both the single plate and two plates geometries. The VEV of the energy-momentum tensor, in additional to the diagonal components, contains an off diagonal component corresponding to the shear stress. The latter vanishes on the plates in special cases of Dirichlet and Neumann boundary conditions. For points outside the string core the topological contributions in the VEVs are finite on the plates. Near the string the VEVs are dominated by the boundary-free part, whereas at large distances the boundary-induced contributions dominate. Due to the nonzero off diagonal component of the vacuum energy-momentum tensor, in addition to the normal component, the Casimir forces have nonzero component parallel to the boundary (shear force). Unlike the problem on the Minkowski bulk, the normal forces acting on the separate plates, in general, do not coincide if the corresponding Robin coefficients are different. Another difference is that in the presence of the cosmic string the Casimir forces for Dirichlet and Neumann boundary conditions differ. For Dirichlet boundary condition the normal Casimir force does not depend on the curvature coupling parameter. This is not the case for other boundary conditions. A new qualitative feature induced by the cosmic string is the appearance of the shear stress acting on the plates. The corresponding force is directed along the radial coordinate and vanishes for Dirichlet and Neumann boundary conditions. Depending on the parameters of the problem, the radial component of the shear force can be either positive or negative.
NASA Astrophysics Data System (ADS)
Geng, Li; Feng, Jiantao; Sun, Quanmei; Liu, Jing; Hua, Wenda; Li, Jing; Ao, Zhuo; You, Ke; Guo, Yanli; Liao, Fulong; Zhang, Youyi; Guo, Hongyan; Han, Jinsong; Xiong, Guangwu; Zhang, Lufang; Han, Dong
2015-09-01
Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis.Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03662c
77 FR 71183 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-29
...-6575. SUPPLEMENTARY INFORMATION: The Department of the Air Force's notices for systems of records... Person Sections; Official mailing addresses are published as an appendix to the Air Force's compilation..., Department of the Air Force; 10 U.S.C. Sections 885, 886, and 887 (UCMJ Articles 85, 86, and 87) allows...
Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols
NASA Technical Reports Server (NTRS)
Boucher, O.; Schwartz, S. E.; Ackerman, T. P.; Anderson, T. L.; Bergstrom, B.; Bonnel, B.; Dahlback, A.; Fouquart, Y.; Chylek, P.; Fu, Q.;
2000-01-01
The importance of aerosols as agents of climate change has recently been highlighted. However, the magnitude of aerosol forcing by scattering of shortwave radiation (direct forcing) is still very uncertain even for the relatively well characterized sulfate aerosol. A potential source of uncertainty is in the model representation of aerosol optical properties and aerosol influences on radiative transfer in the atmosphere. Although radiative transfer methods and codes have been compared in the past, these comparisons have not focused on aerosol forcing (change in net radiative flux at the top of the atmosphere). Here we report results of a project involving 12 groups using 15 models to examine radiative forcing by sulfate aerosol for a wide range of values of particle radius, aerosol optical depth, surface albedo, and solar zenith angle. Among the models that were employed were high and low spectral resolution models incorporating a variety of radiative transfer approximations as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the several radiative transfer models were examined, and the discrepancies were characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence) except at high surface albedo combined with small solar zenith angle. The relative standard deviation of the zenith-angle-averaged normalized broadband forcing for 15 models-was 8% for particle radius near the maximum in this forcing (approx. 0.2 microns) and at low surface albedo. Somewhat greater model-to-model discrepancies were exhibited at specific solar zenith angles. Still greater discrepancies were exhibited at small particle radii and much greater discrepancies were exhibited at high surface albedos, at which the forcing changes sign; in these situations, however, the normalized forcing is quite small quite small. Discrepancies among the models arise from inaccuracies in Mie calculations, differing treatment of the angular scattering phase function, differing wavelength and angular resolution, and differing treatment of multiple scattering. These results imply the need for standardized radiative transfer methods tailored to the direct aerosol forcing problem. However, the relatively small spread in these results suggests that the uncertainty in forcing arising from the treatment of radiative forcing of a well-characterized aerosol at well-specified surface albedo is smaller than some of the other sources of uncertainty in estimates of direct forcing by anthropogenic sulfate aerosols and anthropogenic aerosols generally.
Fleming, Braden C.; Brady, Mark F.; Bradley, Michael P.; Banerjee, Rahul; Hulstyn, Michael J.; Fadale, Paul D.
2008-01-01
Purpose To document the tibiofemoral (TF) compression forces produced during clinical initial graft tension protocols. Methods An image analysis system was used to track the position of the tibia relative to the femur in 11 cadaver knees. TF compression forces were quantified using thin-film pressure sensors. Prior to performing ACL reconstructions with patellar tendon grafts, measurements of TF compression force were obtained from the ACL-intact knee with knee flexion. ACL reconstructions were then performed using “force-based” and “laxity-based” graft tension approaches. Within each approach, high- and low-tension conditions were compared to the ACL-intact condition over the range of knee flexion angles. Results The TF compression forces for all initial graft tension conditions were significantly greater than that of the normal knee when the knee was in full extension (0°). The TF compression forces when using the laxity-based approach were greater than those produced with the force-based approach. However the laxity-based approach was necessary to restore normal laxity at the time of surgery. Conclusions The initial graft tension conditions produce different TF compressive force profiles at the time of surgery. A compromise must be made between restoring knee laxity or TF compressive forces when reconstructing the ACL with patellar tendon graft. Clinical Relevance The TF compression forces were greater in the ACL-reconstructed knee for all the initial graft tension conditions when compared to the ACL-intact knee, and that clinically relevant initial graft tension conditions produce different TF compressive forces. PMID:18760214
Altenburg, Teatske M; de Ruiter, Cornelis J; Verdijk, Peter W L; van Mechelen, Willem; de Haan, Arnold
2008-12-01
A single shortening contraction reduces the force capacity of muscle fibers, whereas force capacity is enhanced following lengthening. However, how motor unit recruitment and discharge rate (muscle activation) are adapted to such changes in force capacity during submaximal contractions remains unknown. Additionally, there is limited evidence for force enhancement in larger muscles. We therefore investigated lengthening- and shortening-induced changes in activation of the knee extensors. We hypothesized that when the same submaximal torque had to be generated following shortening, muscle activation had to be increased, whereas a lower activation would suffice to produce the same torque following lengthening. Muscle activation following shortening and lengthening (20 degrees at 10 degrees /s) was determined using rectified surface electromyography (rsEMG) in a 1st session (at 10% and 50% maximal voluntary contraction (MVC)) and additionally with EMG of 42 vastus lateralis motor units recorded in a 2nd session (at 4%-47%MVC). rsEMG and motor unit discharge rates following shortening and lengthening were normalized to isometric reference contractions. As expected, normalized rsEMG (1.15 +/- 0.19) and discharge rate (1.11 +/- 0.09) were higher following shortening (p < 0.05). Following lengthening, normalized rsEMG (0.91 +/- 0.10) was, as expected, lower than 1.0 (p < 0.05), but normalized discharge rate (0.99 +/- 0.08) was not (p > 0.05). Thus, muscle activation was increased to compensate for a reduced force capacity following shortening by increasing the discharge rate of the active motor units (rate coding). In contrast, following lengthening, rsEMG decreased while the discharge rates of active motor units remained similar, suggesting that derecruitment of units might have occurred.
NASA Technical Reports Server (NTRS)
Coltrane, Lucille C.
1959-01-01
A cone with a blunt nose tip and a 10.7 deg cone half angle and an ogive with a blunt nose tip and a 20 deg flared cylinder afterbody have been tested in free flight over a Mach number range of 0.30 to 2.85 and a Reynolds number range of 1 x 10(exp 6) to 23 x 10(exp 6). Time histories, cross plots of force and moment coefficients, and plots of the longitudinal force,coefficient, rolling velocity, aerodynamic center, normal- force-curve slope, and dynamic stability are presented. With the center-of-gravity location at about 50 percent of the model length, the models were both statically and dynamically stable throughout the Mach number range. For the cone, the average aerodynamic center moved slightly forward with decreasing speeds and the normal-force-curve slope was fairly constant throughout the speed range. For the ogive, the average aerodynamic center remained practically constant and the normal-force-curve slope remained practically constant to a Mach number of approximately 1.6 where a rising trend is noted. Maximum drag coefficient for the cone, with reference to the base area, was approximately 0.6, and for the ogive, with reference to the area of the cylindrical portion, was approximately 2.1.
NASA Technical Reports Server (NTRS)
Haggard, J. B., Jr.
1981-01-01
An experimental investigation was conducted on methane, laminar-jet, diffusion flames with coaxial, forced-air flow to examine flame shapes in zero-gravity and in situations where buoyancy aids (normal-gravity flames) or hinders (inverted-gravity flames) the flow velocities. Fuel nozzles ranged in size from 0.051 to 0.305 cm inside radius, while the coaxial, convergent, air nozzle had a 1.4 cm inside radius at the fuel exit plane. Fuel flows ranged from 1.55 to 10.3 cu cm/sec and air flows from 0 to 597 cu cm/sec. A computer program developed under a previous government contract was used to calculate the characteristic dimensions of normal and zero-gravity flames only. The results include a comparison between the experimental data and the computed axial flame lengths for normal gravity and zero gravity which showed good agreement. Inverted-gravity flame width was correlated with the ratio of fuel nozzle radius to average fuel velocity. Flame extinguishment upon entry into weightlessness was studied, and it was found that relatively low forced-air velocities (approximately 10 cm/sec) are sufficient to sustain methane flame combustion in zero gravity. Flame color is also discussed.
Ground reaction forces on stairs. Part II: knee implant patients versus normals.
Stacoff, Alex; Kramers-de Quervain, Inès A; Luder, Gerhard; List, Renate; Stüssi, Edgar
2007-06-01
The goal of this study was to compare selected parameters of vertical ground reaction forces (GRF) of good outcome patients with different prosthesis designs with a matched control group during level walking, stair ascent and descent. Forty subjects, 29 with three main implant designs (including four subjects with a passive knee flexion restriction), and 11 healthy controls were measured with 8-10 repetitions. Vertical ground reaction forces were measured during two consecutive steps with force plates embedded in the walkway and the staircase. Defined parameters of the force signals were used to compare the results of the test groups. The results show, that, postoperatively, good outcome patients produce gait patterns of the vertical ground reaction force which are comparable to normal healthy subjects with the exception of a few distinct differences: a significant reduction (p<0.05) in the vertical loading on the operated side during level walking at take-off, at weight acceptance and take-off during stair ascent of the normal stair. During stair descent, the patients did not reduce load on the operated side, but increased load variation and side-to-side asymmetry; thus, the mechanical loads on the implants were high, which may be important information with respect to loading protocols of knee implant simulators. No systematic differences in any of the test parameters were found between posterior cruciate-retaining (LCS MB and Innex CR) versus non-retaining (LCS RP and Innex UCOR) implant designs. The restricted group showed significant reductions (p<0.05) of several loading parameters as well as an increased side-to-side asymmetry. About one third of the force parameters of the good outcome patients showed a side-to-side asymmetry between two consecutive steps, which was over a proposed level of acceptance.
Salt dependence of compression normal forces of quenched polyelectrolyte brushes
NASA Astrophysics Data System (ADS)
Hernandez-Zapata, Ernesto; Tamashiro, Mario N.; Pincus, Philip A.
2001-03-01
We obtained mean-field expressions for the compression normal forces between two identical opposing quenched polyelectrolyte brushes in the presence of monovalent salt. The brush elasticity is modeled using the entropy of ideal Gaussian chains, while the entropy of the microions and the electrostatic contribution to the grand potential is obtained by solving the non-linear Poisson-Boltzmann equation for the system in contact with a salt reservoir. For the polyelectrolyte brush we considered both a uniformly charged slab as well as an inhomogeneous charge profile obtained using a self-consistent field theory. Using the Derjaguin approximation, we related the planar-geometry results to the realistic two-crossed cylinders experimental set up. Theoretical predictions are compared to experimental measurements(Marc Balastre's abstract, APS March 2001 Meeting.) of the salt dependence of the compression normal forces between two quenched polyelectrolyte brushes formed by the adsorption of diblock copolymers poly(tert-butyl styrene)-sodium poly(styrene sulfonate) [PtBs/NaPSS] onto an octadecyltriethoxysilane (OTE) hydrophobically modified mica, as well as onto bare mica.
Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang
2015-10-29
Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.
Arastoo, Ali Asghar; Aghdam, Esmaeil Moharrami; Habibi, Abdoul Hamid; Zahednejad, Shahla
2014-06-01
According to literature, little is known regarding the effects of orthotic management of flatfoot on kinetics of vertical jump. To compare the kinetic and temporal events of two-legged vertical jumping take-off from a force plate for heading a ball in normal and flexible flatfoot subjects with and without insole. A functional based interventional controlled study. Random sampling method was employed to draw a control group of 15 normal foot subjects to a group of 15 flatfoot subjects. A force platform was used to record kinetics of two-legged vertical jump shots. Results indicate that insole did not lead to a significant effect on kinetics regarding anterior-posterior and mediolateral directions (p > 0.05). Results of kinetics related to vertical direction for maximum force due to take-off and stance duration revealed significant differences between the normal and flexible flatfoot subjects without insole (p < 0.05) and no significant differences between the normal foot and flexible flatfoot subjects with insole adoption (p > 0.05). These results suggest that the use of an insole in the flexible flatfoot subjects led to improved stance time and decrease of magnitude of kinetics regarding vertical direction at take-off as the main feature of two-legged vertical jumping function. Adoption of the insole improved the design of the shoe-foot interface support for the flexible flatfoot athletes, enabling them to develop more effective take-off kinetics for vertical jumping in terms of ground reaction force and stance duration similar to that of normal foot subjects without insole. © The International Society for Prosthetics and Orthotics 2013.
Overview of the Space Launch System Transonic Buffet Environment Test Program
NASA Technical Reports Server (NTRS)
Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.; Florance, James R.; Ivanco, Thomas G.
2015-01-01
Fluctuating aerodynamic loads are a significant concern for the structural design of a launch vehicle, particularly while traversing the transonic flight environment. At these trajectory conditions, unsteady aerodynamic pressures can excite the vehicle dynamic modes of vibration and result in high structural bending moments and vibratory environments. To ensure that vehicle structural components and subsystems possess adequate strength, stress, and fatigue margins in the presence of buffet and other environments, buffet forcing functions are required to conduct the coupled load analysis of the launch vehicle. The accepted method to obtain these buffet forcing functions is to perform wind-tunnel testing of a rigid model that is heavily instrumented with unsteady pressure transducers designed to measure the buffet environment within the desired frequency range. Two wind-tunnel tests of a 3 percent scale rigid buffet model have been conducted at the Langley Research Center Transonic Dynamics Tunnel (TDT) as part of the Space Launch System (SLS) buffet test program. The SLS buffet models have been instrumented with as many as 472 unsteady pressure transducers to resolve the buffet forcing functions of this multi-body configuration through integration of the individual pressure time histories. This paper will discuss test program development, instrumentation, data acquisition, test implementation, data analysis techniques, and several methods explored to mitigate high buffet environment encountered during the test program. Preliminary buffet environments will be presented and compared using normalized sectional buffet forcing function root-meansquared levels along the vehicle centerline.
Fluid forces on two circular cylinders in crossflow
NASA Astrophysics Data System (ADS)
Jendrzejczyk, J. A.; Chen, S. S.
1986-07-01
Fluid excitation forces are measured in a water loop for two circular cylinders arranged in tandem and normal to flow. The Strouhal number and fluctuating drag and lift coefficients for both cylinders are presented for various spacings and incoming flow conditions. The results show the effects of Reynolds number, pitch ratio, and upstream turbulence on the fluid excitation forces.
Experiment measurement of Alford's force in axial-flow turbomachinery
NASA Technical Reports Server (NTRS)
Vance, J. M.; Laudadio, F. J.
1982-01-01
Results of experimental measurements made on a small high speed, axial flow test apparatus are presented to verify the existence of Alford's force (that circumferential variation of blade-tip clearances in axial-flow turbomachinery will produce cross-coupled (normal to the eccentricity) aerodynamic forces on the rotor) and to investigate the validity of his mathematical prediction model.
ERIC Educational Resources Information Center
Cross, Rod
2017-01-01
When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It…
Precipitating factors of somnambulism: impact of sleep deprivation and forced arousals.
Pilon, Mathieu; Montplaisir, Jacques; Zadra, Antonio
2008-06-10
Experimental attempts to induce sleepwalking with forced arousals during slow-wave sleep (SWS) have yielded mixed results in children and have not been investigated in adult patients. We hypothesized that the combination of sleep deprivation and external stimulation would increase the probability of inducing somnambulistic episodes in sleepwalkers recorded in the sleep laboratory. The main goal of this study was to assess the effects of forced arousals from auditory stimuli (AS) in adult sleepwalkers and control subjects during normal sleep and following post-sleep deprivation recovery sleep. Ten sleepwalkers and 10 controls were investigated. After a baseline night, participants were presented with AS at predetermined sleep stages either during normal sleep or recovery sleep following 25 hours of sleep deprivation. One week later, the conditions with AS were reversed. No somnambulistic episodes were induced in controls. When compared to the effects of AS during sleepwalkers' normal sleep, the presentation of AS during sleepwalkers' recovery sleep significantly increased their efficacy in experimentally inducing somnambulistic events and a significantly greater proportion of sleepwalkers (100%) experienced at least one induced episode during recovery SWS as compared to normal SWS (30%). There was no significant difference between the mean intensity of AS that induced episodes during sleepwalkers' SWS and the mean intensity of AS that awakened sleepwalkers and controls from SWS. Sleep deprivation and forced arousals during slow-wave sleep can induce somnambulistic episodes in predisposed adults. The results highlight the potential value of this protocol in establishing a video-polysomnographically based diagnosis for sleepwalking.
Static Performance of a Wing-Mounted Thrust Reverser Concept
NASA Technical Reports Server (NTRS)
Asbury, Scott C.; Yetter, Jeffrey A.
1998-01-01
An experimental investigation was conducted in the Jet-Exit Test Facility at NASA Langley Research Center to study the static aerodynamic performance of a wing-mounted thrust reverser concept applicable to subsonic transport aircraft. This innovative engine powered thrust reverser system is designed to utilize wing-mounted flow deflectors to produce aircraft deceleration forces. Testing was conducted using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0, a supercritical left-hand wing section attached via a pylon, and wing-mounted flow deflectors attached to the wing section. Geometric variations of key design parameters investigated for the wing-mounted thrust reverser concept included flow deflector angle and chord length, deflector edge fences, and the yaw mount angle of the deflector system (normal to the engine centerline or parallel to the wing trailing edge). All tests were conducted with no external flow and high pressure air was used to simulate core and fan engine exhaust flows. Test results indicate that the wing-mounted thrust reverser concept can achieve overall thrust reverser effectiveness levels competitive with (parallel mount), or better than (normal mount) a conventional cascade thrust reverser system. By removing the thrust reverser system from the nacelle, the wing-mounted concept offers the nacelle designer more options for improving nacelle aero dynamics and propulsion-airframe integration, simplifying nacelle structural designs, reducing nacelle weight, and improving engine maintenance access.
NASA Technical Reports Server (NTRS)
Pepper, Edward; Foster, Gerald V.
1946-01-01
The XF-12 airplane is a high performance, photo-reconnaissance aircraft designed by the Republic Aviation Corporation for Army Air Forces. A series of tests of a 1/8.33-scale powered model was conducted in the Langley 9-foot pressure tunnel to obtain information relative to the aerodynamic design of the airplane. This report presents the results of tests to determine the static longitudinal stability and stalling characteristics of the model. From this investigation it was indicated that the airplane will possess a positive static margin for all probable flight conditions. The stalling characteristics are considered satisfactory in that the stall initiates near the root section and progresses toward the tips. Early root section stalling occurs, with the flaps retracted and may cause undesirable tail buffeting and erratic elevator control in the normal flight range. From considerations of sinking speed landing flap deflections of 40 degrees may be preferable to 55 degrees of 65 degrees.
Description and calibration of the Langley 6- by 19-inch transonic tunnel
NASA Technical Reports Server (NTRS)
Ladson, C. L.
1973-01-01
A description and calibration is presented of the Langley 6- by 19-inch transonic tunnel which is a two-dimensional facility with top and bottom slotted walls used for testing two-dimensional airfoil sections. Basic tunnel-empty Mach number distributions and schlieren flow photographs as well as integrated normal-force coefficients, pitching-moment coefficients, surface-pressure distributions, and schlieren flow photographs of an NACA 0012 airfoil calibration model are presented. The Mach number capability of the facility is from 0.5 to about 1.1 with a corresponding Reynolds number range of 1.5 million to 3 million based on a 4.0-in. model chord. Comparisons of experimental results from the tests with previous data are also presented.
NASA Technical Reports Server (NTRS)
Tyson, R. W.; Muraca, R. J.
1975-01-01
The local linearization method for axisymmetric flow is combined with the transonic equivalence rule to calculate pressure distribution on slender bodies at free-stream Mach numbers from .8 to 1.2. This is an approximate solution to the transonic flow problem which yields results applicable during the preliminary design stages of a configuration development. The method can be used to determine the aerodynamic loads on parabolic arc bodies having either circular or elliptical cross sections. It is particularly useful in predicting pressure distributions and normal force distributions along the body at small angles of attack. The equations discussed may be extended to include wing-body combinations.
Computer quantitation of coronary angiograms
NASA Technical Reports Server (NTRS)
Ledbetter, D. C.; Selzer, R. H.; Gordon, R. M.; Blankenhorn, D. H.; Sanmarco, M. E.
1978-01-01
A computer technique is being developed at the Jet Propulsion Laboratory to automate the measurement of coronary stenosis. A Vanguard 35mm film transport is optically coupled to a Spatial Data System vidicon/digitizer which in turn is controlled by a DEC PDP 11/55 computer. Programs have been developed to track the edges of the arterial shadow, to locate normal and atherosclerotic vessel sections and to measure percent stenosis. Multiple frame analysis techniques are being investigated that involve on the one hand, averaging stenosis measurements from adjacent frames, and on the other hand, averaging adjacent frame images directly and then measuring stenosis from the averaged image. For the latter case, geometric transformations are used to force registration of vessel images whose spatial orientation changes.
Ontogenetic scaling of burrowing forces in the earthworm Lumbricus terrestris.
Quillin, K J
2000-09-01
In hydrostatic skeletons, it is the internal fluid under pressure surrounded by a body wall in tension (rather than a rigid lever) that enables the stiffening of the organism, the antagonism of muscles and the transmission of force from the muscles to the environment. This study examined the ontogenetic effects of body size on force production by an organism supported with a hydrostatic skeleton. The earthworm Lumbricus terrestris burrows by forcefully enlarging crevices in the soil. I built a force-measuring apparatus that measured the radial forces as earthworms of different sizes crawled through and enlarged pre-formed soil burrows. I also built an apparatus that measured the radial and axial forces as earthworms of different sizes attempted to elongate a dead-end burrow. Earthworms ranging in body mass m(b) from hatchlings (0.012 g) to adults (8.9 g) exerted maximum forces (F, in N) during active radial expansion of their burrows (F=0.32 m(b)(0.43)) and comparable forces during axial elongation of the burrow (F=0.26 m(b)(0.47)). Both these forces were almost an order of magnitude greater than the radial anchoring forces during normal peristalsis within burrows (F=0.04 m(b)(0.45)). All radial and axial forces scaled as body mass raised to the 2/5 power rather than to the 2/3 power expected by geometric similarity, indicating that large worms exert greater forces than small worms on an absolute scale, but the difference was less than predicted by scaling considerations. When forces were normalized by body weight, hatchlings could push 500 times their own body weight, while large adults could push only 10 times their own body weight.
Pol, Tejas R; Vandekar, Meghna; Patil, Anuradha; Desai, Sanjana; Shetty, Vikram; Hazarika, Saptarshi
2018-01-01
The aim of present study was to investigate the difference of torque control during intrusive force on upper central incisors with normal, under and high torque in lingual and labial orthodontic systems through 3D finite element analysis. Six 3D models of an upper right central incisor with different torque were designed in Solid Works 2006. Software ANSYS Version 16.0 was used to evaluate intrusive force on upper central incisor model . An intrusive force of 0.15 N was applied to the bracket slot in different torque models and the displacements along a path of nodes in the upper central incisor was assessed. On application of Intrusive force on under torqued upper central incisor in Labial system produce labial crown movement but in Lingual system caused lingual movement in the apical and incisal parts. The same intrusive force in normal-torqued central incisor led to a palatal movement in apical and labial displacement of incisal edge in Lingual system and a palatal displacement in apical area and a labial movement in the incisal edge in Labial systemin. In overtorqued upper central incisor, the labial crown displacement in Labial system is more than Lingual system. In labial and lingual system on application of the same forces in upper central incisor with different inclinations showed different responses. The magnitudes of torque Loss during intrusive loads in incisors with normal, under and over-torque were higher in Labial system than Lingual orthodontic appliances. Key words: FEM, lingual orthodontics, intrusion, torque control, labial bracket systems.
Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei
2012-01-01
Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation. PMID:22659883
A contact stress model for multifingered grasps of rough objects
NASA Technical Reports Server (NTRS)
Sinha, Pramath Raj; Abel, Jacob M.
1990-01-01
The model developed utilizes a contact-stress analysis of an arbitrarily shaped object in a multifingered grasp. The fingers and the object are all treated as elastic bodies, and the region of contact is modeled as a deformable surface patch. The relationship between the friction and normal forces is nonlocal and nonlinear in nature and departs from the Coulomb approximation. The nature of the constraints arising out of conditions for compatibility and static equilibrium motivated the formulation of the model as a nonlinear constrained minimization problem. The model is able to predict the magnitude of the inwardly directed normal forces and both the magnitude and direction of the tangential (friction) forces at each finger-object interface for grasped objects in static equilibrium.
To believe the past or to trust the future
NASA Astrophysics Data System (ADS)
Jin, Fengtao; Zhou, Zhaoyan
2012-01-01
A small ball rolls down from a quarter-circle to a frictionless plane. What will be the magnitude of the normal force when the ball arrives at the tangent point of the circle and the plane? According to the centripetal force formula, the normal force will be 3mg when the curvature radius of the circle is considered, but will be mg instead when the curvature radius of the plane is considered. Which one is the correct answer? The difficulty is that Newton's second law requires the second time derivative of displacement to be continuous; however, this condition is not fulfilled at the tangent point. In this paper we will discuss several possible solutions to this problem in detail.
NASA Technical Reports Server (NTRS)
Glenny, R. W.; Lamm, W. J.; Bernard, S. L.; An, D.; Chornuk, M.; Pool, S. L.; Wagner, W. W. Jr; Hlastala, M. P.; Robertson, H. T.
2000-01-01
To compare the relative contributions of gravity and vascular structure to the distribution of pulmonary blood flow, we flew with pigs on the National Aeronautics and Space Administration KC-135 aircraft. A series of parabolas created alternating weightlessness and 1.8-G conditions. Fluorescent microspheres of varying colors were injected into the pulmonary circulation to mark regional blood flow during different postural and gravitational conditions. The lungs were subsequently removed, air dried, and sectioned into approximately 2 cm(3) pieces. Flow to each piece was determined for the different conditions. Perfusion heterogeneity did not change significantly during weightlessness compared with normal and increased gravitational forces. Regional blood flow to each lung piece changed little despite alterations in posture and gravitational forces. With the use of multiple stepwise linear regression, the contributions of gravity and vascular structure to regional perfusion were separated. We conclude that both gravity and the geometry of the pulmonary vascular tree influence regional pulmonary blood flow. However, the structure of the vascular tree is the primary determinant of regional perfusion in these animals.
Design of a resistive exercise device for use on the Space Shuttle
NASA Technical Reports Server (NTRS)
Carlson, Dennis L.; Durrani, Mohammed; Redilla, Christi L.
1992-01-01
The National Aeronautics and Space Administration in conjunction with the Universities Space Research Association sponsored the design of a Resistive Exercise Device (RED) for use on the Space Shuttle. The device must enable the astronauts to perform a number of exercises to prevent skeletal muscle atrophy and neuromuscular deconditioning in microgravity environments. The RED must fit the requirements for limited volume and weight and must provide a means of restraint during exercise. The design team divided the functions of the device into three major groups: methods of supplying force, methods of adjusting force, and methods of transmitting the force to the user. After analyzing the three main functions of the RED and developing alternatives for each, the design team used a comparative decision process to choose the most feasible components for the overall design. The design team selected the constant force spring alternative for further embodiment. The device consists of an array of different sized constant force springs which can be pinned in different combinations to produce the required output forces. The force is transmitted by means of a shaft and gear system. The final report is divided into four sections. An introduction section discusses the sponsor background, problem background and requirements of the device. The second section covers the alternative designs for each of the main functions. The design solution and pertinent calculations comprises the third section. The final section contains design conclusions and recommendations including topics of future work.
Dynamic axial crushing of bitubular tubes with curvy polygonal inner-tube sections
NASA Astrophysics Data System (ADS)
Ahmed, Naveed; Xue, Pu; Zafar, Naeem
Bitubular structural configurations, where the outer tube is circular, square and curvy square in shape while the inner-tube section is curvy triangular, square and hexagonal in different proposed configurations, are numerically crushed under dynamic axial loading. The crashworthiness effectiveness for changing inner-tube polygonal cross-section for each of the outer tube sections is studied and compared with changing outer tube shape. The deformation plots and energy absorption (EA) parameters such as peak crushing force (PCF) mean crushing force (MCF), energy absorption and crush force efficiency for each case are evaluated. Most of the configurations showed ovalization with low PCF and MCF and moderate crush force efficiency. Afterwards, effects of L/D and t/R on deformation modes and EA are demonstrated by selecting one of the configurations from each group using published experimental results.
Polymer-induced forces at interfaces
NASA Astrophysics Data System (ADS)
Rangarajan, Murali
This dissertation concerns studies of forces generated by confined and physisorbed flexible polymers using lattice mean-field theories, and those generated by confined and clamped semiflexible polymers modeled as slender elastic rods. Lattice mean-field theories have been used in understanding and predicting the behavior of polymeric interfacial systems. In order to efficiently tailor such systems for various applications of interest, one has to understand the forces generated in the interface due to the polymer molecules. The present work examines the abilities and limitations of lattice mean-field theories in predicting the structure of physisorbed polymer layers and the resultant forces. Within the lattice mean-field theory, a definition of normal force of compression as the negative derivative of the partition-function-based excess free energy with surface separation gives misleading results because the theory does not explicitly account for the normal stresses involved in the system. Correct expressions for normal and tangential forces are obtained from a continuum-mechanics-based formulation. Preliminary comparisons with lattice Monte Carlo simulations show that mean-field theories fail to predict significant attractive forces when the surfaces are undersaturated, as one would expect. The corrections to the excluded volume (non-reversal chains) and the mean-field (anisotropic field) approximations improve the predictions of layer structure, but not the forces. Bending of semiflexible polymer chains (elastic rods) is considered for two boundary conditions---where the chain is hinged on both ends and where the chain is clamped on one end and hinged on the other. For the former case, the compressive forces and chain shapes obtained are consistent with the inflexional elastica published by Love. For the latter, multiple and higher-order solutions are observed for the hinged-end position for a given force. Preliminary studies are conducted on actin-based motility of Listeria monocytogenes by treating actin filaments as elastic rods, using the actoclampin model. The results show qualitative agreement with calculations where the filaments are modeled as Hookean springs. The feasibility of the actoclampin model to address long length-scale rotation of Listeria during actin-based motility is addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yanju; Wang, Hailong; Singh, Balwinder
The linearity of dependence of aerosol direct and indirect radiative forcing (DRF and IRF) on emissions is essential to answer the policy-relevant question on how the change in forcing would result from a change in emission. In this study, the forcing-to-emission relationship is investigated for black carbon (BC) and primary organic carbon (OC) emitted from North America and Asia. Direct and indirect radiative forcing of BC and OC are simulated with the Community Atmosphere Model (CAM5.1). Two diagnostics are introduced to aid in policy-relevant discussion: emission-normalized forcing (ENF) and linearity (R). DRF is linearly related to emission for both BCmore » and OC from the two regions and emission-normalized DRF is similar, within 15%. IRF is linear to emissions for weaker sources and regions far from source (North American BC and OC), while for large emission sources and near source regions (Asian OC) the response of forcing to emission is sub-linear. In North America emission-normalized IRF (ENIRF) is 2-4 times higher than that in Asia. The difference among regions and species is primarily caused by failure of accumulation mode particles to become CCN, and then to activate into CDNC. Optimal aggregation area (30ºx 30º) has been used to communicate the regional variation of forcing-to-emission relationship. For IRF, only 15-40% of the Earth’s surface is significantly affected by the two emission regions, but the forcing in these regions comprises most of the global impact. Linearity of IRF occurs in about two-thirds of the significant regions except for Asian OC. ENF is an effective tool to estimate forcing changes due to reduction of surface emissions, as long as there is sufficient attention to the causes of nonlinearity in the simulations used to derive ENIRF (emission into polluted regions and emission elevation). The differences in ENIRF have important implications for policy decisions. Lower ENIRF in more polluted region like Asia means that reductions of large amounts of OC in these regions would be relatively climate-neutral rather than causing significant warming via IRF reduction.« less
The Rhetoric That Dare Not Speak Its Name.
ERIC Educational Resources Information Center
Moss, Roger
1992-01-01
Suggests how Oscar Wilde uses "linguistic armory" to force the question of the apparent "normal relationships" between "signifieds" and "signifiers" that have led to the folly of belief in the absoluteness of such "normal relationships." (RS)
Atomic force microscopy studies on cellular elastic and viscoelastic properties.
Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao
2018-01-01
In this work, a method based on atomic force microscopy (AFM) approach-reside-retract experiments was established to simultaneously quantify the elastic and viscoelastic properties of single cells. First, the elastic and viscoelastic properties of normal breast cells and cancerous breast cells were measured, showing significant differences in Young's modulus and relaxation times between normal and cancerous breast cells. Remarkable differences in cellular topography between normal and cancerous breast cells were also revealed by AFM imaging. Next, the elastic and viscoelasitc properties of three other types of cell lines and primary normal B lymphocytes were measured; results demonstrated the potential of cellular viscoelastic properties in complementing cellular Young's modulus for discerning different states of cells. This research provides a novel way to quantify the mechanical properties of cells by AFM, which allows investigation of the biomechanical behaviors of single cells from multiple aspects.
Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt
2017-01-01
Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.
Tha, S P; Shuster, J; Goldsmith, H L
1986-01-01
The expressions derived in the previous paper for the respective normal, F3, and shear forces, Fshear, acting along and perpendicular to the axis of a doublet of rigid spheres, were used to determine the hydrodynamic forces required to separate two red cell spheres of antigenic type B crosslinked by the corresponding antibody. Cells were sphered and swollen in isotonic buffered glycerol containing 8 X 10(-5) M sodium dodecyl sulfate, fixed in 0.085% glutaraldehyde, and suspended in aqueous glycerol (viscosity: 15-34 mPa s), containing 0.15 M NaCl and anti-B antibody from human hyperimmune antiserum at concentrations from 0.73 to 3.56 vol%. After incubating and mixing for 12 h, doublets were observed through a microscope flowing in a 178-micron tube by gravity feed between two reservoirs. Using a traveling microtube apparatus, the doublets were tracked in a constantly accelerating flow and the translational and rotational motions were recorded on videotape until breakup occurred. From a frame by frame replay of the tape, the radial position, velocity and orientation of the doublet were obtained and the normal and shear forces of separation at breakup computed. Both forces increased significantly with increasing antiserum concentration, the mean values of F3 increasing from 0.060 to 0.197 nN, and Fshear from 0.023 to 0.072 nN. There was no significant effect of glycerol viscosity on the forces of separation. It was not possible to determine whether the shear or normal force was responsible for doublet separation. Measurements of the mean dimensionless period of rotation, TG, of doublets in suspensions containing 0.73 and 2.40% antiserum undergoing steady flow were also made to test whether the spheres were rigidly linked or capable of some independent rotation. A fairly narrow distribution in TG about the value 15.64, predicted for rigidly-linked doublets, was obtained at both antiserum concentrations. Images FIGURE 1 PMID:3801572
Stationary Apparatus Would Apply Forces of Walking to Feet
NASA Technical Reports Server (NTRS)
Hauss, Jessica; Wood, John; Budinoff, Jason; Correia, Michael; Albrecht, Rudolf
2006-01-01
A proposed apparatus would apply controlled cyclic forces to both feet for the purpose of preventing the loss of bone density in a human subject whose bones are not subjected daily to the mechanical loads of normal activity in normal Earth gravitation. The apparatus was conceived for use by astronauts on long missions in outer space; it could also be used by bedridden patients on Earth, including patients too weak to generate the necessary forces by their own efforts. The apparatus (see figure) would be a modified version of a bicycle-like exercise machine, called the cycle ergometer with vibration isolation system (CEVIS), now aboard the International Space Station. Attached to each CEVIS pedal would be a computer-controlled stress/ vibration exciter connected to the heel portion of a special-purpose pedal. The user would wear custom shoes that would amount to standard bicycle shoes equipped with cleats for secure attachment of the balls of the feet to the special- purpose pedals. If possible, prior to use of the apparatus, the human subject would wear a portable network of recording accelerometers, while walking, jogging, and running. The information thus gathered would be fed to the computer, wherein it would be used to make the exciters apply forces and vibrations closely approximating the forces and vibrations experienced by that individual during normal exercise. It is anticipated that like the forces applied to bones during natural exercise, these artificial forces would stimulate the production of osteoblasts (bone-forming cells), as needed to prevent or retard loss of bone mass. In addition to helping to prevent deterioration of bones, the apparatus could be used in treating a person already suffering from osteoporosis. For this purpose, the magnitude of the applied forces could be reduced, if necessary, to a level at which weak hip and leg bones would still be stimulated to produce osteoblasts without exposing them to the full stresses of walking and thereby risking fracture.
San Antonio Creek Restoration, Vandenberg Air Force Base, California
2008-06-27
Management (Section 4.5), Human Health and Safety (Section 4.6), Land Use and Aesthetics (Section 4.7), 1 FINAL DRAFT and Transportation...Environmental Assessment for the San Antonio Creek Restoration at Vandenberg Air Force Base, California Environmental, Safety , and Occupational Health...Environmental, Safety , and Occupational Health Council Vandenberg AFB, CA MAJCOM Approval
Kuntze, Gregor; Sellers, William I.; Mansfield, Neil
2009-01-01
Racquet sports have high levels of joint injuries suggesting the joint loads during play may be excessive. Sports such as badminton employ lateral sidestepping (SS) and crossover stepping (XS) movements which so far have not been described in terms of biomechanics. This study examined bilateral ground reaction forces and three dimensional joint kinetics for both these gaits in order to determine the demands of the movements on the leading and trailing limb and predict the contribution of these movements to the occurrence of overuse injury of the lower limbs. A force platform and motion-analysis system were used to record ground reaction forces and track marker trajectories of 9 experienced male badminton players performing lateral SS, XS and forward running tasks at a controlled speed of 3 m·s-1 using their normal technique. Ground reaction force and kinetic data for the hip, knee and ankle were analyzed, averaged across the group and the biomechanical variables compared. In all cases the ground reaction forces and joint moments were less than those experienced during moderate running suggesting that in normal play SS and XS gaits do not lead to high forces that could contribute to increased injury risk. Ground reaction forces during SS and XS do not appear to contribute to the development of overuse injury. The distinct roles of the leading and trailing limb, acting as a generator of vertical force and shock absorber respectively, during the SS and XS may however contribute to the development of muscular imbalances which may ultimately contribute to the development of overuse injury. However it is still possible that faulty use of these gaits might lead to high loads and this should be the subject of future work. Key pointsGround reaction forces and joint moments during lateral stepping are smaller in magnitude than those experienced during moderate running.Force exposure in SS and XS gaits in normal play does not appear to contribute to the development of overuse injuryThe leading and trailing limbs perform distinct roles, acting as a generator of vertical force and shock absorber respectively.This distinct contribution may contribute to the development of muscular imbalances which may ultimately contribute to the development of overuse injury. PMID:24150549
Aerodynamic characteristics of horizontal tail surfaces
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Katzoff, S
1940-01-01
Collected data are presented on the aerodynamic characteristics of 17 horizontal tail surfaces including several with balanced elevators and two with end plates. Curves are given for coefficients of normal force, drag, and elevator hinge moment. A limited analysis of the results has been made. The normal-force coefficients are in better agreement with the lifting-surface theory of Prandtl and Blenk for airfoils of low aspect ratio than with the usual lifting-line theory. Only partial agreement exists between the elevator hinge-moment coefficients and those predicted by Glauert's thin-airfoil theory.
Downhill Cycling Symmetry Breaking: How the Rider Foils Experiment
ERIC Educational Resources Information Center
Abu, Yuval Ben; Wolfson, Ira; Bran, Gil; Yizhaq, Hezi
2017-01-01
In high-school teaching of mechanics, we deal, among other things, with the nature of static and kinetic friction, forces that are proportional to the normal force. Under the influence of frictional forces, a body moves down a rough sloped decline at a fixed rate of acceleration that is independent of its mass. This situation does not apply to…
Snowboard Jumping, Newton's Second Law and the Force on Landing
ERIC Educational Resources Information Center
O'Shea, Michael J.
2004-01-01
An application of Newton's second law to a snowboarder dropping off a vertical ledge shows that the average normal force during landing (force exerted by the ground on the snowboarder) is determined by four factors. It is shown that the flexing of the legs, the softness of the snow, the angle of the landing surface and the forward motion of the…
Dynamics of ultrasonic additive manufacturing.
Hehr, Adam; Dapino, Marcelo J
2017-01-01
Ultrasonic additive manufacturing (UAM) is a solid-state technology for joining similar and dissimilar metal foils near room temperature by scrubbing them together with ultrasonic vibrations under pressure. Structural dynamics of the welding assembly and work piece influence how energy is transferred during the process and ultimately, part quality. To understand the effect of structural dynamics during UAM, a linear time-invariant model is proposed to relate the inputs of shear force and electric current to resultant welder velocity and voltage. Measured frequency response and operating performance of the welder under no load is used to identify model parameters. Using this model and in-situ measurements, shear force and welder efficiency are estimated to be near 2000N and 80% when welding Al 6061-H18 weld foil, respectively. Shear force and welder efficiency have never been estimated before in UAM. The influence of processing conditions, i.e., welder amplitude, normal force, and weld speed, on shear force and welder efficiency are investigated. Welder velocity was found to strongly influence the shear force magnitude and efficiency while normal force and weld speed showed little to no influence. The proposed model is used to describe high frequency harmonic content in the velocity response of the welder during welding operations and coupling of the UAM build with the welder. Copyright © 2016 Elsevier B.V. All rights reserved.
Is the boundary layer of an ionic liquid equally lubricating at higher temperature?
Hjalmarsson, Nicklas; Atkin, Rob; Rutland, Mark W
2016-04-07
Atomic force microscopy has been used to study the effect of temperature on normal forces and friction for the room temperature ionic liquid (IL) ethylammonium nitrate (EAN), confined between mica and a silica colloid probe at 25 °C, 50 °C, and 80 °C. Force curves revealed a strong fluid dynamic influence at room temperature, which was greatly reduced at elevated temperatures due to the reduced liquid viscosity. A fluid dynamic analysis reveals that bulk viscosity is manifested at large separation but that EAN displays a nonzero slip, indicating a region of different viscosity near the surface. At high temperatures, the reduction in fluid dynamic force reveals step-like force curves, similar to those found at room temperature using much lower scan rates. The ionic liquid boundary layer remains adsorbed to the solid surface even at high temperature, which provides a mechanism for lubrication when fluid dynamic lubrication is strongly reduced. The friction data reveals a decrease in absolute friction force with increasing temperature, which is associated with increased thermal motion and reduced viscosity of the near surface layers but, consistent with the normal force data, boundary layer lubrication was unaffected. The implications for ILs as lubricants are discussed in terms of the behaviour of this well characterised system.
The desmoplakin–intermediate filament linkage regulates cell mechanics
Broussard, Joshua A.; Yang, Ruiguo; Huang, Changjin; Nathamgari, S. Shiva P.; Beese, Allison M.; Godsel, Lisa M.; Hegazy, Marihan H.; Lee, Sherry; Zhou, Fan; Sniadecki, Nathan J.; Green, Kathleen J.; Espinosa, Horacio D.
2017-01-01
The translation of mechanical forces into biochemical signals plays a central role in guiding normal physiological processes during tissue development and homeostasis. Interfering with this process contributes to cardiovascular disease, cancer progression, and inherited disorders. The actin-based cytoskeleton and its associated adherens junctions are well-established contributors to mechanosensing and transduction machinery; however, the role of the desmosome–intermediate filament (DSM–IF) network is poorly understood in this context. Because a force balance among different cytoskeletal systems is important to maintain normal tissue function, knowing the relative contributions of these structurally integrated systems to cell mechanics is critical. Here we modulated the interaction between DSMs and IFs using mutant forms of desmoplakin, the protein bridging these structures. Using micropillar arrays and atomic force microscopy, we demonstrate that strengthening the DSM–IF interaction increases cell–substrate and cell–cell forces and cell stiffness both in cell pairs and sheets of cells. In contrast, disrupting the interaction leads to a decrease in these forces. These alterations in cell mechanics are abrogated when the actin cytoskeleton is dismantled. These data suggest that the tissue-specific variability in DSM–IF network composition provides an opportunity to differentially regulate tissue mechanics by balancing and tuning forces among cytoskeletal systems. PMID:28495795
Load measurement system with load cell lock-out mechanism
NASA Technical Reports Server (NTRS)
Le, Thang; Carroll, Monty; Liu, Jonathan
1995-01-01
In the frame work of the project Shuttle Plume Impingement Flight Experiment (SPIFEX), a Load Measurement System was developed and fabricated to measure the impingement force of Shuttle Reaction Control System (RCS) jets. The Load Measurement System is a force sensing system that measures any combination of normal and shear forces up to 40 N (9 lbf) in the normal direction and 22 N (5 lbf) in the shear direction with an accuracy of +/- 0.04 N (+/- 0.01 lbf) Since high resolution is required for the force measurement, the Load Measurement System is built with highly sensitive load cells. To protect these fragile load cells in the non-operational mode from being damaged due to flight loads such as launch and landing loads of the Shuttle vehicle, a motor driven device known as the Load Cell Lock-Out Mechanism was built. This Lock-Out Mechanism isolates the load cells from flight loads and re-engages the load cells for the force measurement experiment once in space. With this highly effective protection system, the SPIFEX load measurement experiment was successfully conducted on STS-44 in September 1994 with all load cells operating properly and reading impingement forces as expected.
Code of Federal Regulations, 2014 CFR
2014-07-01
...; 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.595 Section 334.595.... The regulations in this section shall be enforced by the Commander, 45th Space Wing, Patrick Air Force... AND RESTRICTED AREA REGULATIONS § 334.595 Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape...
Code of Federal Regulations, 2013 CFR
2013-07-01
...; 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.595 Section 334.595.... The regulations in this section shall be enforced by the Commander, 45th Space Wing, Patrick Air Force... AND RESTRICTED AREA REGULATIONS § 334.595 Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape...
Code of Federal Regulations, 2012 CFR
2012-07-01
...; 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.595 Section 334.595.... The regulations in this section shall be enforced by the Commander, 45th Space Wing, Patrick Air Force... AND RESTRICTED AREA REGULATIONS § 334.595 Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape...
Code of Federal Regulations, 2010 CFR
2010-07-01
...; 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.595 Section 334.595.... The regulations in this section shall be enforced by the Commander, 45th Space Wing, Patrick Air Force... AND RESTRICTED AREA REGULATIONS § 334.595 Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape...
Code of Federal Regulations, 2011 CFR
2011-07-01
...; 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.595 Section 334.595.... The regulations in this section shall be enforced by the Commander, 45th Space Wing, Patrick Air Force... AND RESTRICTED AREA REGULATIONS § 334.595 Atlantic Ocean off Cape Canaveral; 45th Space Wing, Cape...
Cho, Keunhee; Cho, Jeong-Rae; Kim, Sung Tae; Park, Sung Yong; Kim, Young-Jin; Park, Young-Hwan
2016-01-01
The recently developed smart strand can be used to measure the prestress force in the prestressed concrete (PSC) structure from the construction stage to the in-service stage. The higher cost of the smart strand compared to the conventional strand renders it unaffordable to replace all the strands by smart strands, and results in the application of only a limited number of smart strands in the PSC structure. However, the prestress forces developed in the strands of the multi-strand system frequently adopted in PSC structures differ from each other, which means that the prestress force in the multi-strand system cannot be obtained by simple proportional scaling using the measurement of the smart strand. Therefore, this study examines the prestress force distribution in the multi-strand system to find the correlation between the prestress force measured by the smart strand and the prestress force distribution in the multi-strand system. To that goal, the prestress force distribution was measured using electromagnetic sensors for various factors of the multi-strand system adopted on site in the fabrication of actual PSC girders. The results verified the possibility to assume normal distribution for the prestress force distribution per anchor head, and a method computing the mean and standard deviation defining the normal distribution is proposed. This paper presents a meaningful finding by proposing an estimation method of the prestress force based upon field-measured data of the prestress force distribution in the multi-strand system of actual PSC structures. PMID:27548172
Electrostatic Enhancement of Coagulation in Protoplanetary Nebulae
NASA Technical Reports Server (NTRS)
Marshall, J.; Cuzzi, J.
2001-01-01
Microgravity experiments suggest that electrostatic forces (overwhelmed by normal Earth gravity) could greatly enhance cohesive strength of preplanetary aggregates. Cohesive forces may be 103 times larger than those for van der Waals adhesion. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Niazi, M. Khalid Khan; Beamer, Gillian; Gurcan, Metin N.
2017-03-01
Accurate detection and quantification of normal lung tissue in the context of Mycobacterium tuberculosis infection is of interest from a biological perspective. The automatic detection and quantification of normal lung will allow the biologists to focus more intensely on regions of interest within normal and infected tissues. We present a computational framework to extract individual tissue sections from whole slide images having multiple tissue sections. It automatically detects the background, red blood cells and handwritten digits to bring efficiency as well as accuracy in quantification of tissue sections. For efficiency, we model our framework with logical and morphological operations as they can be performed in linear time. We further divide these individual tissue sections into normal and infected areas using deep neural network. The computational framework was trained on 60 whole slide images. The proposed computational framework resulted in an overall accuracy of 99.2% when extracting individual tissue sections from 120 whole slide images in the test dataset. The framework resulted in a relatively higher accuracy (99.7%) while classifying individual lung sections into normal and infected areas. Our preliminary findings suggest that the proposed framework has good agreement with biologists on how define normal and infected lung areas.
Associations of muscle force, power, cross-sectional muscle area and bone geometry in older UK men.
Zengin, Ayse; Pye, Stephen R; Cook, Michael J; Adams, Judith E; Rawer, Rainer; Wu, Frederick C W; O'Neill, Terence W; Ward, Kate A
2017-08-01
Ageing is associated with sarcopenia, osteoporosis, and increased fall risk, all of which contribute to increased fracture risk. Mechanically, bone strength adapts in response to forces created by muscle contractions. Adaptations can be through changes in bone size, geometry, and bending strength. Muscle mass is often used as a surrogate for muscle force; however, force can be increased without changes in muscle mass. Increased fall risk with ageing has been associated with a decline in muscle power-which is a measure of mobility. The aims of this study were as follows: (i) to investigate the relationship between muscle parameters in the upper and lower limbs with age in UK men and the influence of ethnicity on these relationships; (ii) to examine the relationships between jump force/grip strength/cross-sectional muscle area (CSMA) with bone outcomes at the radius and tibia. White European, Black Afro-Caribbean, and South Asian men aged 40-79 years were recruited from Manchester, UK. Cortical bone mineral content, cross-sectional area, cortical area, cross-sectional moment of inertia, and CSMA were measured at the diaphysis of the radius and tibia using peripheral quantitative computed tomography. Lower limb jump force and power were measured from a single two-legged jump performed on a ground-reaction force platform. Grip strength was measured using a dynamometer. Associations between muscle and bone outcomes was determined using linear regression with adjustments for age, height, weight, and ethnicity. Three hundred and one men were recruited. Jump force was negatively associated with age; for every 10 year increase in age, there was a 4% reduction in jump force (P < 0.0001). There was a significant age-ethnicity interaction for jump power (P = 0.039); after adjustments, this was attenuated (P = 0.088). For every 10 year increase in age, grip strength decreased by 11%. Jump force was positively associated with tibial bone outcomes: a 1 standard deviation greater jump force was associated with significantly higher cortical bone mineral content 3.1%, cross-sectional area 4.2%, cortical area 3.4%, and cross-sectional moment of inertia 6.8% (all P < 0.001). Cross-sectional muscle area of the lower leg was not associated with tibial bone outcomes. Both grip strength and CSMA of the arm were positively associated, to a similar extent, with radius diaphyseal bone outcomes. Jump force and power are negatively associated with age in UK men. In the lower limb, the measurement of jump force is more strongly related to bone outcomes than CSMA. It is important to consider jump force and power when understanding the aetiology of bone loss and mobility in ageing men. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section
NASA Astrophysics Data System (ADS)
Nabelek, Ladislav; Mazanec, Martin; Kdyr, Simon; Kletetschka, Gunther
2015-06-01
Magnetic images of Chelyabinsk meteorite's (fragment F1 removed from Chebarkul lake) thin section have been unraveled by a magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses. Bcr of magnetic sources in Chelyabinsk meteorite ranges between 4 and 7 mT. These magnetic sources enter their saturation states when applying 40 mT external magnetic field pulse.
Electron impact cross sections for the 2,2P state excitation of lithium
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Trajmar, S.; Register, D. F.
1982-01-01
Electron impact excitation of the 2p 2P state of Li was studied at 10, 20, 60, 100, 150 and 200 eV. Relative differential cross sections in the angular range 3-120 deg were measured and then normalized to the absolute scale by using the optical f value. Integral and momentum transfer cross sections were obtained by extrapolating the differential cross sections to 0 deg and to 180 deg. The question of normalizing electron-metal-atom collision cross sections in general was examined and the method of normalization to optical f values in particular was investigated in detail. It has been concluded that the extrapolation of the apparent generalized oscillator strength (obtained from the measured differential cross sections) to the zero momentum transfer limit with an expression using even powers of the momentum transfer and normalization of the limit to the optical f value yields reliable absolute cross sections.
Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing
2015-01-01
Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%. PMID:25763650
Brotto, Leticia S.; Bougoin, Sylvain; Nosek, Thomas M.; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome
2011-01-01
Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca2+ to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca2+ entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca2+ to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca2+ release channel-mediated Ca2+ release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca2+ entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle. PMID:21666285
Thornton, Angela M; Zhao, Xiaoli; Weisleder, Noah; Brotto, Leticia S; Bougoin, Sylvain; Nosek, Thomas M; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome; Brotto, Marco
2011-06-01
Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca(2+) to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca(2+) entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca(2+) to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca(2+) release channel-mediated Ca(2+) release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca(2+) entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle.
NASA Technical Reports Server (NTRS)
Hawkins, Richard; Penland, Jim A.
1997-01-01
Observations have been made and reported that the experimental normal force coefficients at a constant angle of attack were constant with a variation of more than 2 orders of magnitude of Reynolds number at a free-stream Mach number M(sub infinity) of 8.00 and more than 1 order of magnitude variation at M(sub infinity) = 6.00 on the same body-wing hypersonic cruise configuration. These data were recorded under laminar, transitional, and turbulent boundary layer conditions with both hot-wall and cold-wall models. This report presents experimental data on 25 configurations of 17 models of both simple and complex geometry taken at M(sub infinity) = 6.00, 6.86, and 8.00 in 4 different hypersonic facilities. Aerodynamic calculations were made by computational fluid dynamics (CID) and engineering methods to analyze these data. The conclusions were that the normal force coefficients at a given altitude are constant with Reynolds numbers at hypersonic speeds and that the axial force coefficients recorded under laminar boundary-layer conditions at several Reynolds numbers may be plotted against the laminar parameter (the reciprocal of the Reynolds number to the one-half power) and extrapolated to the ordinate axis to determine the inviscid-wave-drag coefficient at the intercept.
Carson, Daniel W.; Myer, Gregory D.; Hewett, Timothy E.; Heidt, Robert S.; Ford, Kevin R.
2014-01-01
Background Risk of overuse injury among athletes is high due in part to repeated loading of the lower extremities. Compared to individuals with normal arch (NA) structure, those with high (HA) or low arch (LA) may be at increased risk of specific overuse injuries, including stress fractures. A high medial longitudinal arch may result in decreased shock absorbing properties due to increased rigidity in foot mechanics. While the effect of arch structure on dynamic function has been examined in straight line walking and running, the relationship between the two during multi-directional movements remains unstudied. Objective The purpose of this study was to determine if differences in plantar loading in football players occur during both walking and pivoting movements. Method Plantar loading was examined in 9 regions of the foot for 26 participants (16 NA, 10 HA). Results High arch athletes demonstrated increased maximum force in the lateral rear foot and medial forefoot, and force time integral in the medial forefoot while walking. HA athletes also demonstrated increased maximum force in the medial rear foot and medial and central forefoot during rapid pivoting. Conclusions The current findings demonstrate that loading patterns differ between football players with high and normal arch structure, which could possibly influence injury risk in this population. PMID:23141809
Abd Razak, Nasrul Anuar; Abu Osman, Noor Azuan; Gholizadeh, Hossein; Ali, Sadeeq
2014-09-10
Understanding of kinematics force applied at the elbow is important in many fields, including biomechanics, biomedical engineering and rehabilitation. This paper provides a comparison of a mathematical model of elbow joint using three different types of prosthetics for transhumeral user, and characterizes the forces required to overcome the passive mechanical of the prosthetics at the residual limb. The study modeled the elbow as a universal joint with intersecting axes of x-axis and y-axis in a plain of upper arm and lower arm. The equations of force applied, torque, weight and length of different type of prosthetics and the anthropometry of prosthetics hand are discussed in this study. The study also compares the force, torque and pressure while using all three types of prosthetics with the normal hand. The result was measured from the elbow kinematics of seven amputees, using three different types of prosthetics. The F-Scan sensor used in the study is to determine the pressure applied at the residual limb while wearing different type of prostheses. These technological advances in assessment the biomechanics of an elbow joint for three different type of prosthetics with the normal hand bring the new information for the amputees and prosthetist to choose the most suitable device to be worn daily.
Aspects of body self-calibration
NASA Technical Reports Server (NTRS)
Lackner, J. R.; DiZio, P. A.
2000-01-01
The representation of body orientation and configuration is dependent on multiple sources of afferent and efferent information about ongoing and intended patterns of movement and posture. Under normal terrestrial conditions, we feel virtually weightless and we do not perceive the actual forces associated with movement and support of our body. It is during exposure to unusual forces and patterns of sensory feedback during locomotion that computations and mechanisms underlying the ongoing calibration of our body dimensions and movements are revealed. This review discusses the normal mechanisms of our position sense and calibration of our kinaesthetic, visual and auditory sensory systems, and then explores the adaptations that take place to transient Coriolis forces generated during passive body rotation. The latter are very rapid adaptations that allow body movements to become accurate again, even in the absence of visual feedback. Muscle spindle activity interpreted in relation to motor commands and internally modeled reafference is an important component in permitting this adaptation. During voluntary rotary movements of the body, the central nervous system automatically compensates for the Coriolis forces generated by limb movements. This allows accurate control to be maintained without our perceiving the forces generated.
10 CFR 1047.7 - Use of deadly force.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Use of deadly force. 1047.7 Section 1047.7 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) LIMITED ARREST AUTHORITY AND USE OF FORCE BY PROTECTIVE FORCE OFFICERS General Provisions § 1047.7 Use of deadly force. (a) Deadly force means that force which a...
Liu, Chia-Feng; Aschbacher-Smith, Lindsey; Barthelery, Nicolas J.; Dyment, Nathaniel; Butler, David
2011-01-01
Tendons connect muscles to bones, and serve as the transmitters of force that allow all the movements of the body. Tenocytes are the basic cellular units of tendons, and produce the collagens that form the hierarchical fiber system of the tendon. Tendon injuries are common, and difficult to repair, particularly in the case of the insertion of tendon into bone. Successful attempts at cell-based repair therapies will require an understanding of the normal development of tendon tissues, including their differentiated regions such as the fibrous mid-section and fibrocartilaginous insertion site. Many genes are known to be involved in the formation of tendon. However, their functional roles in tendon development have not been fully characterized. Tissue engineers have attempted to generate functional tendon tissue in vitro. However, a lack of knowledge of normal tendon development has hampered these efforts. Here we review studies focusing on the developmental mechanisms of tendon development, and discuss the potential applications of a molecular understanding of tendon development to the treatment of tendon injuries. PMID:21314435
An unsteady lifting surface method for single rotation propellers
NASA Technical Reports Server (NTRS)
Williams, Marc H.
1990-01-01
The mathematical formulation of a lifting surface method for evaluating the steady and unsteady loads induced on single rotation propellers by blade vibration and inflow distortion is described. The scheme is based on 3-D linearized compressible aerodynamics and presumes that all disturbances are simple harmonic in time. This approximation leads to a direct linear integral relation between the normal velocity on the blade (which is determined from the blade geometry and motion) and the distribution of pressure difference across the blade. This linear relation is discretized by breaking the blade up into subareas (panels) on which the pressure difference is treated as approximately constant, and constraining the normal velocity at one (control) point on each panel. The piece-wise constant loads can then be determined by Gaussian elimination. The resulting blade loads can be used in performance, stability and forced response predictions for the rotor. Mathematical and numerical aspects of the method are examined. A selection of results obtained from the method is presented. The appendices include various details of the derivation that were felt to be secondary to the main development in Section 1.
SECTION BB, FLOOR PLAN Dyess Air Force Base, Atlas ...
SECTION B-B, FLOOR PLAN - Dyess Air Force Base, Atlas F Missle Site S-8, Launch Facility, Approximately 3 miles east of Winters, 500 feet southwest of Highway 1770, center of complex, Winters, Runnels County, TX
Raman mapping of oral buccal mucosa: a spectral histopathology approach
NASA Astrophysics Data System (ADS)
Behl, Isha; Kukreja, Lekha; Deshmukh, Atul; Singh, S. P.; Mamgain, Hitesh; Hole, Arti R.; Krishna, C. Murali
2014-12-01
Oral cancer is one of the most common cancers worldwide. One-fifth of the world's oral cancer subjects are from India and other South Asian countries. The present Raman mapping study was carried out to understand biochemical variations in normal and malignant oral buccal mucosa. Data were acquired using WITec alpha 300R instrument from 10 normal and 10 tumors unstained tissue sections. Raman maps of normal sections could resolve the layers of epithelium, i.e. basal, intermediate, and superficial. Inflammatory, tumor, and stromal regions are distinctly depicted on Raman maps of tumor sections. Mean and difference spectra of basal and inflammatory cells suggest abundance of DNA and carotenoids features. Strong cytochrome bands are observed in intermediate layers of normal and stromal regions of tumor. Epithelium and stromal regions of normal cells are classified by principal component analysis. Classification among cellular components of normal and tumor sections is also observed. Thus, the findings of the study further support the applicability of Raman mapping for providing molecular level insights in normal and malignant conditions.
NASA Technical Reports Server (NTRS)
Sivo, Joseph M.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.
1993-01-01
Recent experiments conducted in the Rotor Force Test Facility at the California Institute of Technology have examined the effects of a tip leakage restriction and swirl brakes on the rotordynamic forces due to leakage flows on an impeller undergoing a prescribed circular whirl. The experiments simulate the leakage flow conditions and geometry of the Alternate Turbopump Design (ATD) of the Space Shuttle High Pressure Oxygen Turbopump and are critical to evaluating the pump's rotordynamic instability problems. Previous experimental and analytical results have shown that discharge-to-suction leakage flows in the annulus of a shrouded centrifugal pump contribute substantially to the fluid induced rotordynamic forces. Also, previous experiments have shown that leakage inlet (pump discharge) swirl can increase the cross-coupled stiffness coefficient and hence increase the range of positive whirl for which the tangential force is destabilizing. In recent experimental work, the present authors demonstrated that when the swirl velocity within the leakage path is reduced by the introduction of ribs or swirl brakes, then a substantial decrease in both the destabilizing normal and tangential forces could be achieved. Motivation for the present research is that previous experiments have shown that restrictions such as wear rings or orifices at pump inlets affect the leakage forces. Recent pump designs such as the Space Shuttle Alternate Turbopump Design (ATD) utilize tip orifices at discharge for the purpose of establishing axial thrust balance. The ATD has experienced rotordynamic instability problems and one may surmise that these tip discharge orifices may also have an important effect on the normal and tangential forces in the plane of impeller rotation. The present study determines if such tip leakage restrictions contribute to undesirable rotordynamic forces. Additional motivation for the present study is that the widening of the leakage path annular clearance and the installation of swirl brakes in the ATD has been proposed to solve its instability problems. The present study assesses the effect of such a design modification on the rotordynamic forces. The experimental apparatus consists of a solid or dummy impeller, a housing instrumented for pressure measurements, a rotating dynamometer and an eccentric whirl mechanism. The solid impeller is used so that leakage flow contributions to the forces are measured, but the main throughflow contributions are not experienced. The inner surface of the housing has been modified to accommodate meridional ribs or swirl brakes within the leakage annulus. In addition, the housing has been modified to accommodate a discharge orifice that qualitatively simulates one side of the balance piston orifice of the Space Shuttle ATD. Results indicate the detrimental effects of a discharge orifice and the beneficial effects of brakes. Plots of the tangential and normal forces versus whirl ratio show a substantial increase in these forces along with destabilizing resonances at some positive whirl ratios when a discharge orifice is added. When brakes are added, some of the detrimental effects of the orifice are reduced. For the tangential force, a plot versus whirl ratio shows a significant reduction and a destabilizing resonance appears to be eliminated. For the normal force, although the overall force is not reduced, again a destabilizing resonance appears to be eliminated.
Dimiskovski, Marko; Scheinfield, Richard; Higgin, Dwight; Krupka, Alexander; Lemay, Michel A.
2017-01-01
BACKGROUND The measurement of ground reaction forces (GRFs) in animals trained to locomote on a treadmill after spinal cord injury (SCI) could prove valuable for evaluating training outcomes; however, quantitative measures of the GRFs in spinal felines are limited. NEW METHOD A split belt treadmill was designed and constructed to measure the GRFs of feline hindlimbs during stepping. The treadmill consists of two independent treadmill assemblies, each mounted on a force plate. The design allows measurements of the vertical (Fz), fore-aft (Fy) and mediolateral (Fx) ground-reaction forces for both hindlimbs while the forelimbs are resting on a platform. RESULTS Static and dynamic noise tests revealed little to no noise at frequencies below 6 Hz. Validation of the force plate measurements with a hand-held force sensor force showed good agreement between the two force readings. Peak normalized (to body mass) vertical GRFs for intact cats were 4.89±0.85N/Kg for the left hindlimb and 4.79±0.97N/Kg for the right. In comparison, trained spinalized cats peak normalized vertical GRFs were 2.20±0.94N/Kg for the left hindlimb and 2.85±0.99N/Kg for the right. COMPARISON WITH OTHER EXISTING METHODS Previous methods of measuring GRFs used stationary single force plates or treadmill mounted to single force plate. Using independent treadmills for each hindlimb allows measurement of the individual hindlimb’s GRFs in spinalized cats following body-weight supported treadmill training. CONCLUSIONS The split belt force treadmill enables the simultaneous recording of ground-reaction forces for both hindlimbs in cats prior to spinalization, and following spinalization and body-weight-supported treadmill training (BWST). PMID:28069392
NASA Technical Reports Server (NTRS)
Sawyer, J. W.; Waters, W. A., Jr.
1981-01-01
Tests were conducted at room temperature to determine the shear properties of the strain isolator pad (SIP) material used in the thermal protection system of the space shuttle. Tests were conducted on both the .23 cm and .41 cm thick SIP material in the virgin state and after fifty fully reversed shear cycles. The shear stress displacement relationships are highly nonlinear, exhibit large hysteresis effects, are dependent on material orientation, and have a large low modulus region near the zero stress level where small changes in stress can result in large displacements. The values at the higher stress levels generally increase with normal and shear force load conditioning. Normal forces applied during the shear tests reduces the low modulus region for the material. Shear test techniques which restrict the normal movement of the material give erroneous stress displacement results. However, small normal forces do not significantly effect the shear modulus for a given shear stress. Poisson's ratio values for the material are within the range of values for many common materials. The values are not constant but vary as a function of the stress level and the previous stress history of the material. Ultimate shear strengths of the .23 cm thick SIP are significantly higher than those obtained for the .41 cm thick SIP.
ERIC Educational Resources Information Center
New Hampshire State Div. of Mental Health and Developmental Services, Concord.
This report presents results and recommendations of a two-year study and information-gathering effort by the New Hampshire Task Force on Homelessness, in compliance with the charge of the State legislature. The report is comprised of five sections. Section 1, "Introduction," presents an overview of the Task Force and a report on the…
Simulating Bone Loss in Microgravity Using Mathematical Formulations of Bone Remodeling
NASA Technical Reports Server (NTRS)
Pennline, James A.
2009-01-01
Most mathematical models of bone remodeling are used to simulate a specific bone disease, by disrupting the steady state or balance in the normal remodeling process, and to simulate a therapeutic strategy. In this work, the ability of a mathematical model of bone remodeling to simulate bone loss as a function of time under the conditions of microgravity is investigated. The model is formed by combining a previously developed set of biochemical, cellular dynamics, and mechanical stimulus equations in the literature with two newly proposed equations; one governing the rate of change of the area of cortical bone tissue in a cross section of a cylindrical section of bone and one governing the rate of change of calcium in the bone fluid. The mechanical stimulus comes from a simple model of stress due to a compressive force on a cylindrical section of bone which can be reduced to zero to mimic the effects of skeletal unloading in microgravity. The complete set of equations formed is a system of first order ordinary differential equations. The results of selected simulations are displayed and discussed. Limitations and deficiencies of the model are also discussed as well as suggestions for further research.
NASA Technical Reports Server (NTRS)
Luna, M.; Diaz, A. J.; Oliver, R.; Terradas, J.; Karpen, J.
2016-01-01
Solar prominences are subject to both field-aligned (longitudinal) and transverse oscillatory motions, as evidenced by an increasing number of observations. Large-amplitude longitudinal motions provide valuable information on the geometry of the filament channel magnetic structure that supports the cool prominence plasma against gravity. Our pendulum model, in which the restoring force is the gravity projected along the dipped field lines of the magnetic structure, best explains these oscillations. However, several factors can influence the longitudinal oscillations, potentially invalidating the pendulum model. Aims. The aim of this work is to study the influence of large-scale variations in the magnetic field strength along the field lines, i.e., variations of the cross-sectional area along the flux tubes supporting prominence threads. Methods. We studied the normal modes of several flux tube configurations, using linear perturbation analysis, to assess the influence of different geometrical parameters on the oscillation properties. Results. We found that the influence of the symmetric and asymmetric expansion factors on longitudinal oscillations is small.Conclusions. We conclude that the longitudinal oscillations are not significantly influenced by variations of the cross-section of the flux tubes, validating the pendulum model in this context.
Biomechanical analysis of low back load when sneezing.
Hasegawa, Tetsuya; Katsuhira, Junji; Matsudaira, Ko; Iwakiri, Kazuyuki; Maruyama, Hitoshi
2014-09-01
Although sneezing is known to induce low back pain, there is no objective data of the load generated when sneezing. Moreover, the approaches often recommended for reducing low back pain, such as leaning with both hands against a wall, are not supported by objective evidence. Participants were 12 healthy young men (mean age 23.25 ± 1.54 years) with no history of spinal column pain or low back pain. Measurements were taken using a three-dimensional motion capture system and surface electromyograms in three experimental conditions: normal for sneezing, characterized by forward trunk inclination; stand, in which the body was deliberately maintained in an upright posture when sneezing; and table, in which the participants leaned with both hands on a table when sneezing. We analyzed and compared the intervertebral disk compressive force, low back moment, ground reaction force, trunk inclination angle, and co-contraction of the rectus abdominis and erector spinae muscles in the three conditions. The intervertebral disk compressive force and ground reaction force were significantly lower in the stand and table conditions than in the normal condition. The co-contraction index value was significantly higher in the stand condition than in the normal and table conditions. When sneezing, body posture in the stand or table condition can reduce load on the low back compared with body posture in the normal sneezing condition. Thus, placing both hands on a table or otherwise maintaining an upright body posture appears to be beneficial for reducing low back load when sneezing. Copyright © 2014 Elsevier B.V. All rights reserved.
Constant strain rate experiments and constitutive modeling for a class of bitumen
NASA Astrophysics Data System (ADS)
Reddy, Kommidi Santosh; Umakanthan, S.; Krishnan, J. Murali
2012-08-01
The mechanical properties of bitumen vary with the nature of the crude source and the processing methods employed. To understand the role of the processing conditions played in the mechanical properties, bitumen samples derived from the same crude source but processed differently (blown and blended) are investigated. The samples are subjected to constant strain rate experiments in a parallel plate rheometer. The torque applied to realize the prescribed angular velocity for the top plate and the normal force applied to maintain the gap between the top and bottom plate are measured. It is found that when the top plate is held stationary, the time taken by the torque to be reduced by a certain percentage of its maximum value is different from the time taken by the normal force to decrease by the same percentage of its maximum value. Further, the time at which the maximum torque occurs is different from the time at which the maximum normal force occurs. Since the existing constitutive relations for bitumen cannot capture the difference in the relaxation times for the torque and normal force, a new rate type constitutive model, incorporating this response, is proposed. Although the blended and blown bitumen samples used in this study correspond to the same grade, the mechanical responses of the two samples are not the same. This is also reflected in the difference in the values of the material parameters in the model proposed. The differences in the mechanical properties between the differently processed bitumen samples increase further with aging. This has implications for the long-term performance of the pavement.
[Testing and analyzing the lung functions in the normal population in Hebei province].
Chen, Li; Zhao, Ming; Han, Shao-mei; Li, Zhong-ming; Zhu, Guang-jin
2004-08-01
To investigate the lung function of the normal subjects living in Hebei province and its correlative factors such as living circumstance, age, height, and body weight. The lung volumes and breath capacities of 1,587 normal subjects were tested by portable spirometers (Scope Rotry) from August to October in 2002. The influences of living circumstance, age, gender, height, and body weight on lung functions were observed and analyzed. No significant difference was found between urban and rural areas in all indexes (P > 0.05); however, significant difference existed between male and female subjects (P = 0.000). The change trends of lung function in male and female subjects were similar. Growth spurt appeared at the age of 12-16 years in male subjects and 12-14 years in female subjects. Vital capacity (VC), forced vital capacity (FVC), and forced expiratory volume in one second (FEV1) reached their peaks at the age of 26-34 years and then decreased with age. Peak expiratory flow (PEF), 25% forced expiratory flow (FEF50%), and 75% forced expiratory flow (FEF75%) appeared at the age of 18 and then went down with age. Both height and weight had a correlation with all the indexes of lung functions, although the influence of height is stronger than weight. All the indexes of lung function have correlations with age, height, and weight. Lung function changes with aging, therefore different expected values shall be available for the adolescence, young adults, and middle-aged and old people. This study provides reference values of lung function for normal population.
Allman, A C; Genevier, E S; Johnson, M R; Steer, P J
1996-08-01
To investigate the relation between the rise in intrauterine pressure and rise in fetal head to cervix force in normal, slow and induced labour. Prospective observational study. The labour ward of a London teaching hospital. Forty patients were recruited from the antenatal clinic and labour ward of a West London Hospital. Five had normal onset and progression of labour, 14 had slow progression of labour and 21 had induced onset of labour. Intrauterine pressure and head-to-cervix force was measured simultaneously using an intrauterine pressure catheter and a specially designed four sensor head-to-cervix force probe. For each contraction of each labour, scattergrams of force by pressure were plotted. Three patterns were observed. When the rise in pressure preceded the rise in force, a positive 'loop' was generated. When the rise in pressure and force occurred simultaneously a linear pattern was generated (a neutral 'loop'). When the rise in pressure lags the rise in force, a negative 'loop' was generated. In normally progressive labour the distribution of loops was 29.1%, 22.6% and 48.3%, respectively, in slow labour the distribution was 26.1%, 14.1% and 59.8% and in induced labour the distribution was 33.8%, 14.4% and 51.8%. These distributions were not statistically different. However, a higher proportion of negative loops was observed in labours augmented with oxytocin compared to those receiving no oxytocin (MW-U = 87, P = 0.036). No differences were observed comparing parity, use of PGE2, epidural analgesia, or mode of delivery. Contraction frequency (number/10 minutes) was inversely correlated to the percentage of negative loops (rs = -0.34, P = 0.033) and positively correlated with percentage of positive loops (rs = 0.36, P = 0.027). This is the first report of the temporal relation between intrauterine pressure and head-to-cervix force in labour. The most common pattern is that the rise in pressure lags the rise in force, suggesting that a seal has to be created between the fetal head and cervix before a rise in pressure can occur. When oxytocin is given in labour, a higher proportion of loops are negative indicating that there is poor application of the fetal head and cervix in a greater proportion of contractions.
SECTION AA, AXONOMETRIC Dyess Air Force Base, Atlas F ...
SECTION A-A, AXONOMETRIC - Dyess Air Force Base, Atlas F Missle Site S-8, Launch Control Center (LCC), Approximately 3 miles east of Winters, 500 feet southwest of Highway 17700, northwest of Launch Facility, Winters, Runnels County, TX
Rehwaldt, Jordan D; Rodgers, Buel D; Lin, David C
2017-12-01
Limb-girdle muscular dystrophy (LGMD) 2i results from mutations in fukutin-related protein and aberrant α-dystroglycan glycosylation. Although this significantly compromises muscle function and ambulation, the comprehensive characteristics of contractile dysfunction are unknown. Therefore, we quantified the in situ contractile properties of the medial gastrocnemius in young adult P448L mice, an affected muscle of a novel model of LGMD2i. Normalized maximal twitch force, tetanic force, and power were significantly smaller in P448L mice, compared with sex-matched, wild-type mice. These differences were consistent with the replacement of contractile fibers by passive tissue. The shape of the active force-length relationships were similar in both groups, regardless of sex, consistent with an intact sarcomeric structure in P448L mice. Passive force-length curves normalized to maximal isometric force were steeper in P448L mice, and passive elements contribute disproportionately more to total contractile force in P448L mice. Sex differences were mostly noted in the force-velocity curves, as normalized values for maximal and optimal velocities were significantly slower in P448L males, compared with wild-type, but not in P448L females. This suggests that the dystrophic phenotype, which may include possible changes in cross-bridge kinetics and fiber-type proportions, progresses more quickly in P448L males. These results together indicate that active force and power generation are compromised in both sexes of P448L mice, while passive forces increase. More importantly, the results identified several functional markers of disease pathophysiology that could aid in developing and assessment of novel therapeutics for LGMD2i and possibly other dystroglycanopathies as well. NEW & NOTEWORTHY Comprehensive assessments of muscle contractile function have, until now, never been performed in an animal model for any dystroglycanopathy. This study suggests that skeletal muscle contractile properties are significantly compromised in a recently developed model for limb-girdle muscular dystrophy 2i, the P448L mouse. It further identifies novel pathological markers of muscle function that are suitable for developing therapeutics and for better understanding of disease pathogenesis.
Two-dimensional simulation of red blood cell motion near a wall under a lateral force
NASA Astrophysics Data System (ADS)
Hariprasad, Daniel S.; Secomb, Timothy W.
2014-11-01
The motion of a red blood cell suspended in a linear shear flow adjacent to a fixed boundary subject to an applied lateral force directed toward the boundary is simulated. A two-dimensional model is used that represents the viscous and elastic properties of normal red blood cells. Shear rates in the range of 100 to 600 s-1 are considered, and the suspending medium viscosity is 1 cP. In the absence of a lateral force, the cell executes a tumbling motion. With increasing lateral force, a transition from tumbling to tank-treading is predicted. The minimum force required to ensure tank-treading increases nonlinearly with the shear rate. Transient swinging motions occur when the force is slightly larger than the transition value. The applied lateral force is balanced by a hydrodynamic lift force resulting from the positive orientation of the long axis of the cell with respect to the wall. In the case of cyclic tumbling motions, the orientation angle takes positive values through most of the cycle, resulting in lift generation. These results are used to predict the motion of a cell close to the outer edge of the cell-rich core region that is generated when blood flows in a narrow tube. In this case, the lateral force is generated by shear-induced dispersion, resulting from cell-cell interactions in a region with a concentration gradient. This force is estimated using previous data on shear-induced dispersion. The cell is predicted to execute tank-treading motions at normal physiological hematocrit levels, with the possibility of tumbling at lower hematocrit levels.
Rader, Erik P; Cederna, Paul S; Weinzweig, Jeffrey; Panter, Kip E; Yu, Deborah; Buchman, Steven R; Larkin, Lisa M; Faulkner, John A
2007-03-01
Levator veli palatini muscles from normal palates of adult humans and goats are predominantly slow oxidative (type 1) fibers. However, 85% of levator veli palatini fibers from cleft palates of adult goats are physiologically fast (type 2). This fiber composition difference between cleft and normal palates may have implications in palatal function. For limb muscles, type 2 muscle fibers are more susceptible to lengthening contraction-induced injury than are type 1 fibers. We tested the hypothesis that, compared with single permeabilized levator veli palatini muscle fibers from normal palates of adult goats, those from cleft palates are more susceptible to lengthening contraction-induced injury. Congenital cleft palates were the result of chemically-induced decreased movement of the fetal head and tongue causing obstruction of palatal closure. Each muscle fiber was maximally activated and lengthened. Fiber type was determined by contractile properties and gel electrophoresis. Susceptibility to injury was assessed by measuring the decrease in maximum force following the lengthening contraction, expressed as a percentage of the initial force. Compared with fibers from normal palates that were all type 1 and had force deficits of 23 +/- 1%, fibers from cleft palates were all type 2 and sustained twofold greater deficits, 40 +/- 1% (p = .001). Levator veli palatini muscles from cleft palates of goats contain predominantly type 2 fibers that are highly susceptible to lengthening contraction-induced injury. This finding may have implications regarding palatal function and the incidence of velopharyngeal incompetence.
Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems
NASA Astrophysics Data System (ADS)
Mikhlin, Yu V.; Perepelkin, N. V.; Klimenko, A. A.; Harutyunyan, E.
2012-08-01
Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a regime when all generalized coordinates and velocities are univalent functions of a couple of dominant (active) phase variables. The NNMs approach is used in some applied problems. In particular, the Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the frequency responses in the rotor dynamics.
Reinnervation of the lateral gastrocnemius and soleus muscles in the rat by their common nerve.
Gillespie, M J; Gordon, T; Murphy, P R
1986-01-01
To determine whether there is any specificity of regenerating nerves for their original muscles, the common lateral gastrocnemius soleus nerve (l.g.s.) innervating the fast-twitch lateral gastrocnemius (l.g.) and slow-twitch soleus muscles was sectioned in the hind limb of twenty adult rats. The proximal nerve stump was sutured to the dorsal surface of the l.g. muscle and 4-14 months later, the contractile properties of the reinnervated l.g. and soleus muscles and their single motor units were studied by dissection and stimulation of the ventral root filaments. Contractile properties of normal contralateral muscles were examined for comparison and motor units were isolated in l.g. and soleus muscles for study in a group of untreated animals. Measurement of time and rate parameters of maximal twitch and tetanic contractions showed that the rate of development of force increased significantly in reinnervated soleus muscles and approached the speed of l.g. muscles but rate of relaxation did not change appreciably. In reinnervated l.g. muscles, contraction speed was similar to normal l.g. muscles but relaxation rate declined toward the rates of relaxation in control soleus muscles. After reinnervation by the common l.g.s. nerve, the proportion of slow motor units in l.g. increased from 10 to 31% and decreased in soleus from 80 to 31%. The relative proportions of fast and slow motor units in each muscle were the same as the proportions of fast and slow units in the normal l.g. and soleus muscles combined. It was concluded that fast and slow muscles do not show any preference for their former nerves and that the change in the force profile of the reinnervated muscles is indicative of the relative proportions of fast and slow motor units: fast units dominate the contraction phase and slow units the relaxation phase of twitch and tetanic contractions of the muscle. PMID:3723414
Contractile properties of rat, rhesus monkey, and human type I muscle fibers
NASA Technical Reports Server (NTRS)
Widrick, J. J.; Romatowski, J. G.; Karhanek, M.; Fitts, R. H.
1997-01-01
It is well known that skeletal muscle intrinsic maximal shortening velocity is inversely related to species body mass. However, there is uncertainty regarding the relationship between the contractile properties of muscle fibers obtained from commonly studied laboratory animals and those obtained from humans. In this study we determined the contractile properties of single chemically skinned fibers prepared from rat, rhesus monkey, and human soleus and gastrocnemius muscle samples under identical experimental conditions. All fibers used for analysis expressed type I myosin heavy chain as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Allometric coefficients for type I fibers from each muscle indicated that there was little change in peak tension (force/fiber cross-sectional area) across species. In contrast, both soleus and gastrocnemius type I fiber maximal unloaded shortening velocity (Vo), the y-intercept of the force-velocity relationship (Vmax), peak power per unit fiber length, and peak power normalized for fiber length and cross-sectional area were all inversely related to species body mass. The present allometric coefficients for soleus fiber Vo (-0.18) and Vmax (-0.11) are in good agreement with published values for soleus fibers obtained from common laboratory and domesticated mammals. Taken together, these observations suggest that the Vo of slow fibers from quadrupeds and humans scale similarly and can be described by the same quantitative relationships. These findings have implications in the design and interpretation of experiments, especially those that use small laboratory mammals as a model of human muscle function.
Special Operations Forces--Responsive, Capable, and Ready
1990-05-01
communication Planning Criticisms of poor communications that hammeted mission success rangea from radio inoperability amorng raid force elements to strict...ons, an armory. and a means of rapid escape are also face the Unenviable choice of rushing light and inad- normally part of the complex. equate
Experimental study of a flexible and environmentally stable electroadhesive device
NASA Astrophysics Data System (ADS)
Guo, J.; Bamber, T.; Singh, J.; Manby, D.; Bingham, P. A.; Justham, L.; Petzing, J.; Penders, J.; Jackson, M.
2017-12-01
Electroadhesion is a promising adhesion mechanism for robotics and material handling applications due to several distinctive advantages it has over existing technologies. These advantages include enhanced adaptability, gentle/flexible handling, reduced complexity, and ultra-low energy consumption. Unstable electroadhesive forces, however, can arise in ambient environments. Electroadhesive devices that can produce stable forces in changing environments are thus desirable. In this study, a flexible and environmentally stable electroadhesive device was designed and manufactured by conformally coating a layer of barium titanate dielectric on a chemically etched thin copper laminate. The results, obtained from an advanced electroadhesive "normal force" testing platform, show that only a relative difference of 5.94% in the normal force direction was observed. This was achieved when the relative humidity changed from 25% to 53%, temperature from 13.7 °C to 32.8 °C, and atmospheric pressure from 999 hPa to 1016.9 hPa. This environmentally stable electroadhesive device may promote the application of the electroadhesion technology.
Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated
NASA Astrophysics Data System (ADS)
Chen, Xiaoguang; Brodland, G. Wayne
2008-03-01
The novel multi-scale computational approach introduced here makes possible a new means for testing hypotheses about the forces that drive specific morphogenetic movements. A 3D model based on this approach is used to investigate neurulation in the axolotl (Ambystoma mexicanum), a type of amphibian. The model is based on geometric data from 3D surface reconstructions of live embryos and from serial sections. Tissue properties are described by a system of cell-based constitutive equations, and parameters in the equations are determined from physical tests. The model includes the effects of Shroom-activated neural ridge reshaping and lamellipodium-driven convergent extension. A typical whole-embryo model consists of 10 239 elements and to run its 100 incremental time steps requires 2 days. The model shows that a normal phenotype does not result if lamellipodium forces are uniform across the width of the neural plate; but it can result if the lamellipodium forces decrease from a maximum value at the mid-sagittal plane to zero at the plate edge. Even the seemingly simple motions of neurulation are found to contain important features that would remain hidden, they were not studied using an advanced computational model. The present model operates in a setting where data are extremely sparse and an important outcome of the study is a better understanding of the role of computational models in such environments.
Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated.
Chen, Xiaoguang; Brodland, G Wayne
2008-04-11
The novel multi-scale computational approach introduced here makes possible a new means for testing hypotheses about the forces that drive specific morphogenetic movements. A 3D model based on this approach is used to investigate neurulation in the axolotl (Ambystoma mexicanum), a type of amphibian. The model is based on geometric data from 3D surface reconstructions of live embryos and from serial sections. Tissue properties are described by a system of cell-based constitutive equations, and parameters in the equations are determined from physical tests. The model includes the effects of Shroom-activated neural ridge reshaping and lamellipodium-driven convergent extension. A typical whole-embryo model consists of 10,239 elements and to run its 100 incremental time steps requires 2 days. The model shows that a normal phenotype does not result if lamellipodium forces are uniform across the width of the neural plate; but it can result if the lamellipodium forces decrease from a maximum value at the mid-sagittal plane to zero at the plate edge. Even the seemingly simple motions of neurulation are found to contain important features that would remain hidden, they were not studied using an advanced computational model. The present model operates in a setting where data are extremely sparse and an important outcome of the study is a better understanding of the role of computational models in such environments.
Structural and functional characteristics of the thoracolumbar multifidus muscle in horses.
García Liñeiro, J A; Graziotti, G H; Rodríguez Menéndez, J M; Ríos, C M; Affricano, N O; Victorica, C L
2017-03-01
The multifidus muscle fascicles of horses attach to vertebral spinous processes after crossing between one to six metameres. The fascicles within one or two metameres are difficult to distinguish in horses. A vertebral motion segment is anatomically formed by two adjacent vertebrae and the interposed soft tissue structures, and excessive mobility of a vertebral motion segment frequently causes osteoarthropathies in sport horses. The importance of the equine multifidus muscle as a vertebral motion segment stabilizer has been demonstrated; however, there is scant documentation of the structure and function of this muscle. By studying six sport horses postmortem, the normalized muscle fibre lengths of the the multifidus muscle attached to the thoracic (T)4, T9, T12, T17 and lumbar (L)3 vertebral motion segments were determined and the relative areas occupied by fibre types I, IIA and IIX were measured in the same muscles after immunohistochemical typying. The values for the normalized muscle fibre lengths and the relative areas were analysed as completely randomized blocks using an anova (P ≤ 0.05). The vertebral motion segments of the T4 vertebra include multifidus bundles extending between two and eight metameres; the vertebral motion segments of the T9, T12, T17 and L3 vertebrae contain fascicles extending between two and four metameres The muscle fibres with high normalized lengths that insert into the T4 (three and eight metameres) vertebral motion segment tend to have smaller physiological cross-sectional areas, indicating their diminished capacity to generate isometric force. In contrast, the significantly decreased normalized muscle fibre lengths and the increased physiological cross-sectional areas of the fascicles of three metameres with insertions on T9, T17, T12, L3 and the fascicles of four metameres with insertions on L3 increase their capacities to generate isometric muscle force and neutralize excessive movements of the vertebral segments with great mobility. There were no significant differences in the values of relative areas occupied by fibre types I, IIA and IIX. In considering the relative areas occupied by the fibre types in the multifidus muscle fascicles attached to each vertebral motion segment examined, the relative area occupied by the type I fibres was found to be significantly higher in the T4 vertebral motion segment than in the other segments. It can be concluded that the equine multifidus muscle in horses is an immunohistochemically homogeneous muscle with various architectural designs that have functional significance according to the vertebral motion segments considered. The results obtained in this study can serve as a basis for future research aimed at understanding the posture and dynamics of the equine spine. © 2016 Anatomical Society.
Roussel, Jean-Romain; Clair, Bruno
2015-12-01
To recover verticality after disturbance, angiosperm trees produce 'tension wood' allowing them to bend actively. The driving force of the tension has been shown to take place in the G-layer, a specific unlignified layer of the cell wall observed in most temperate species. However, in tropical rain forests, the G-layer is often absent and the mechanism generating the forces to reorient trees remains unclear. A study was carried out on tilted seedlings, saplings and adult Simarouba amara Aubl. trees-a species known to not produce a G-layer. Microscopic observations were done on sections of normal and tension wood after staining or observed under UV light to assess the presence/absence of lignin. We showed that S. amara produces a cell-wall layer with all of the characteristics typical of G-layers, but that this G-layer can be observed only as a temporary stage of the cell-wall development because it is masked by a late lignification. Being thin and lignified, tension wood fibres cannot be distinguished from normal wood fibres in the mature wood of adult trees. These observations indicate that the mechanism generating the high tensile stress in tension wood is likely to be the same as that in species with a typical G-layer and also in species where the G-layer cannot be observed in mature cells. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
14 CFR 1203b.106 - Use of deadly force.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of deadly force. 1203b.106 Section 1203b.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.106 Use of deadly force. Deadly force...
14 CFR 1203b.106 - Use of deadly force.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of deadly force. 1203b.106 Section 1203b.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.106 Use of deadly force. Deadly force...
14 CFR 1203b.106 - Use of deadly force.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of deadly force. 1203b.106 Section 1203b.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.106 Use of deadly force. Deadly force...
14 CFR 1203b.106 - Use of deadly force.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of deadly force. 1203b.106 Section 1203b.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.106 Use of deadly force. Deadly force...
28 CFR 552.21 - Types of force.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Types of force. 552.21 Section 552.21... Force and Application of Restraints on Inmates § 552.21 Types of force. (a) Immediate use of force. Staff may immediately use force and/or apply restraints when the behavior described in § 552.20...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Deadly force. 632.4 Section 632.4 National... INVESTIGATIONS USE OF FORCE BY PERSONNEL ENGAGED IN LAW ENFORCEMENT AND SECURITY DUTIES § 632.4 Deadly force. (a) Deadly force is destructive physical force directed against a person or persons (e.g., firing a lethal...
Force fluctuations while pressing and moving against high- and low-friction touch screen surfaces.
Joshi, Mukta N; Keenan, Kevin G
2016-07-01
The purpose of this study was to identify the influence of a high- and low-friction surface on the ability to maintain a steady downward force during an index finger pressing and moving task. Fifteen right-handed subjects (24-48 years) performed a static force pressing task and a hybrid pressing and moving task on the surface of an iPad mini while holding a steady 2-N force on high- and low-friction surfaces. Variability of force was quantified as the standard deviation (SD) of normal force (F z) and shear force (F xy) across friction conditions and tasks. The SD of F z was 227 % greater during the hybrid task as compared to the static task (p < .001) and was 19 % greater for the high- versus low-friction condition (p = .033). There were positive correlations between SD of F z and F xy during the hybrid force/motion tasks on the high- and low-friction conditions (r (2) = 0.5 and 0.86, respectively), suggesting significant associations between normal and shear forces for this hybrid task. The correlation between the SD of F z for static and hybrid tasks was r (2) = 0.44, indicating that the common practice of examining the control of static tasks may not sufficiently explain performance during hybrid tasks, at least for the young subjects tested in the current study. As activities of daily living frequently require hybrid force/motion tasks (e.g., writing, doing the dishes, and cleaning counters), the results of this study emphasize the need to study motor performance during hybrid tasks in addition to static force tasks.
DOT National Transportation Integrated Search
1977-07-01
The altitude tolerance of 10 spirometrically impaired (SI) general aviation pilots with an average forced midexpiratory flow (FEF sub 25-75%) value of 65.1 percent was compared to that of 10 spirometrically normal (SN) pilots. Cardiorespiratory param...
NASA Technical Reports Server (NTRS)
Perkins, Edward W; Jorgensen, Leland H
1956-01-01
Effects of Reynolds number and angle of attack on the pressure distribution and normal-force characteristics of a body of revolution consisting of a fineness ratio 3 ogival nose tangent to a cylindrical afterbody 7 diameters long have been determined. The test Mach number was 1.98 and the angle-of-attack range from 0 degree to 20 degrees. The Reynolds numbers, based on body diameter, were 0.15 x 10(6) and 0.45 x 10(6). The experimental results are compared with theory.
Identification of nonlinear normal modes of engineering structures under broadband forcing
NASA Astrophysics Data System (ADS)
Noël, Jean-Philippe; Renson, L.; Grappasonni, C.; Kerschen, G.
2016-06-01
The objective of the present paper is to develop a two-step methodology integrating system identification and numerical continuation for the experimental extraction of nonlinear normal modes (NNMs) under broadband forcing. The first step processes acquired input and output data to derive an experimental state-space model of the structure. The second step converts this state-space model into a model in modal space from which NNMs are computed using shooting and pseudo-arclength continuation. The method is demonstrated using noisy synthetic data simulated on a cantilever beam with a hardening-softening nonlinearity at its free end.
Substantial vertebral body osteophytes protect against severe vertebral fractures in compression
Aubin, Carl-Éric; Chaumoître, Kathia; Mac-Thiong, Jean-Marc; Ménard, Anne-Laure; Petit, Yvan; Garo, Anaïs; Arnoux, Pierre-Jean
2017-01-01
Recent findings suggest that vertebral osteophytes increase the resistance of the spine to compression. However, the role of vertebral osteophytes on the biomechanical response of the spine under fast dynamic compression, up to failure, is unclear. Seventeen human spine specimens composed of three vertebrae (from T5-T7 to T11-L1) and their surrounding soft tissues were harvested from nine cadavers, aged 77 to 92 years. Specimens were imaged using quantitative computer tomography (QCT) for medical observation, classification of the intervertebral disc degeneration (Thomson grade) and measurement of the vertebral trabecular density (VTD), height and cross-sectional area. Specimens were divided into two groups (with (n = 9) or without (n = 8) substantial vertebral body osteophytes) and compressed axially at a dynamic displacement rate of 1 m/s, up to failure. Normalized force-displacement curves, videos and QCT images allowed characterizing failure parameters (force, displacement and energy at failure) and fracture patterns. Results were analyzed using chi-squared tests for sampling distributions and linear regression for correlations between VTD and failure parameters. Specimens with substantial vertebral body osteophytes present higher stiffness (2.7 times on average) and force at failure (1.8 times on average) than other segments. The presence of osteophytes significantly influences the location, pattern and type of fracture. VTD was a good predictor of the dynamic force and energy at failure for specimens without substantial osteophytes. This study also showed that vertebral body osteophytes provide a protective mechanism to the underlying vertebra against severe compression fractures. PMID:29065144
Methods for the Organogenesis of Skeletal Muscle in Tissue Culture
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman; Shansky, Janet; DelTatto, Michael; Chromiak, Joseph
1997-01-01
Skeletal muscle structure is regulated by many factors, including nutrition, hormones, electrical activity, and tension. The muscle cells are subjected to both passive and active mechanical forces at all stages of development and these forces play important but poorly understood roles in regulating muscle organogenesis and growth. For example, during embryogenesis, the rapidly growing skeleton places large passive mechanical forces on the attached muscle tissue. These forces not only help to organize the proliferating mononucleated myoblasts into the oriented, multinucleated myofibers of a functional muscle but also tightly couple the growth rate of muscle to that of bone. Postnatally, the actively contracting, innervated muscle fibers are subjected to different patterns of active and passive tensions which regulate longitudinal and cross sectional myofiber growth. These mechanically-induced organogenic processes have been difficult to study under normal tissue culture conditions, resulting in the development of numerous methods and specialized equipment to simulate the in vivo mechanical environment.These techniques have led to the "engineering" of bioartificial muscles (organoids) which display many of the characteristics of in vivo muscle including parallel arrays of postmitotic fibers organized into fascicle-like structures with tendon-like ends. They are contractile, express adult isoforms of contractile proteins, perform directed work, and can be maintained in culture for long periods. The in vivo-like characteristics and durability of these muscle organoids make them useful for long term in vitro studies on mechanotransduction mechanisms and on muscle atrophy induced by decreased tension. In this report, we described a simple method for generating muscle organoids from either primary embrionic avain or neonatal rodent myoblasts.
Three-dimensional touch interface for medical education.
Panchaphongsaphak, Bundit; Burgkart, Rainer; Riener, Robert
2007-05-01
We present the technical principle and evaluation of a multimodal virtual reality (VR) system for medical education, called a touch simulator. This touch simulator comes with an innovative three-dimensional (3-D) touch sensitive input device. The device comprises a six-axis force-torque sensor connected to a tangible object representing the shape of an anatomical structure. Information related to the point of contact is recorded by the sensor, processed, and audiovisually displayed. The touch simulator provides a high level of user-friendliness and fidelity compared to other purely graphically oriented simulation environments. In this paper, the touch simulator has been realized as an interactive neuroanatomical training simulator. The user can visualize and manipulate graphical information of the brain surface or different cross-sectional slices by a finger-touch on a brain-like shaped tangible object. We evaluated the system by theoretical derivations, experiments, and subjective questionnaires. In the theoretical analysis, we could show that the contact point estimation error mainly depends on the accuracy and the noise of the sensor, the amount and direction of the applied force, and the geometry of the tangible object. The theoretical results could be validated by experiments: applying a normal force of 10 N on a 120 mm x 120 mm x 120 mm cube causes a maximum error of 2.5 +/- 0.7 mm. This error becomes smaller when increasing the contact force. Based on the survey results, the touch simulator may be a useful tool for assisting medical schools in the visualization of brain image data and the study of neuroanatomy.
Harrington, Constance A.; Gould, Peter J.
2015-01-01
Many temperate and boreal tree species have a chilling requirement, that is, they need to experience cold temperatures during fall and winter to burst bud normally in the spring. Results from trials with 11 Pacific Northwest tree species are consistent with the concept that plants can accumulate both chilling and forcing units simultaneously during the dormant season and they exhibit a tradeoff between amount of forcing and chilling. That is, the parallel model of chilling and forcing was effective in predicting budburst and well chilled plants require less forcing for bud burst than plants which have received less chilling. Genotypes differed in the shape of the possibility line which describes the quantitative tradeoff between chilling and forcing units. Plants which have an obligate chilling requirement (Douglas-fir, western hemlock, western larch, pines, and true firs) and received no or very low levels of chilling did not burst bud normally even with long photoperiods. Pacific madrone and western redcedar benefited from chilling in terms of requiring less forcing to promote bud burst but many plants burst bud normally without chilling. Equations predicting budburst were developed for each species in our trials for a portion of western North America under current climatic conditions and for 2080. Mean winter temperature was predicted to increase 3.2–5.5°C and this change resulted in earlier predicted budburst for Douglas-fir throughout much of our study area (up to 74 days earlier) but later budburst in some southern portions of its current range (up to 48 days later) as insufficient chilling is predicted to occur. Other species all had earlier predicted dates of budburst by 2080 than currently. Recent warming trends have resulted in earlier budburst for some woody plant species; however, the substantial winter warming predicted by some climate models will reduce future chilling in some locations such that budburst will not consistently occur earlier. PMID:25784922
NASA Technical Reports Server (NTRS)
Bar-Itzhack, I. Y.; Deutschmann, J.; Markley, F. L.
1991-01-01
This work introduces, examines and compares several quaternion normalization algorithms, which are shown to be an effective stage in the application of the additive extended Kalman filter to spacecraft attitude determination, which is based on vector measurements. Three new normalization schemes are introduced. They are compared with one another and with the known brute force normalization scheme, and their efficiency is examined. Simulated satellite data are used to demonstate the performance of all four schemes.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area... during firing periods to be specified by the Commander, Air Force Missile Test Center, Patrick Air Force...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area... during firing periods to be specified by the Commander, Air Force Missile Test Center, Patrick Air Force...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area... during firing periods to be specified by the Commander, Air Force Missile Test Center, Patrick Air Force...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area... during firing periods to be specified by the Commander, Air Force Missile Test Center, Patrick Air Force...
Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan RT
2016-01-01
Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function. PMID:29805194
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false General. 25.143 Section 25.143 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... control forces permitted during the testing required by paragraph (a) through (c) of this section: Force...
Boyer, Elizabeth R; Derrick, Timothy R
2018-03-01
Our purpose was to compare joint loads between habitual rearfoot (hRF) and habitual mid/forefoot strikers (hFF), rearfoot (RFS) and mid/forefoot strike (FFS) patterns, and shorter stride lengths (SLs). Thirty-eight hRF and hFF ran at their normal SL, 5% and 10% shorter, as well as with the opposite foot strike. Three-dimensional ankle, knee, patellofemoral (PF) and hip contact forces were calculated. Nearly all contact forces decreased with a shorter SL (1.2-14.9% relative to preferred SL). In general, hRF had higher PF (hRF-RFS: 10.8 ± 1.4, hFF-FFS: 9.9 ± 2.0 BWs) and hip loads (axial hRF-RFS: -9.9 ± 0.9, hFF-FFS: -9.6 ± 1.0 BWs) than hFF. Many loads were similar between foot strike styles for the two groups, including axial and lateral hip, PF, posterior knee and shear ankle contact forces. Lateral knee and posterior hip contact forces were greater for RFS, and axial ankle and knee contact forces were greater for FFS. The tibia may be under greater loading with a FFS because of these greater axial forces. Summarising, a particular foot strike style does not universally decrease joint contact forces. However, shortening one's SL 10% decreased nearly all lower extremity contact forces, so it may hold potential to decrease overuse injuries associated with excessive joint loads.
Harding, Graeme T; Dunbar, Michael J; Hubley-Kozey, Cheryl L; Stanish, William D; Astephen Wilson, Janie L
2016-01-01
Obesity is an important risk factor for knee osteoarthritis initiation and progression. However, it is unclear how obesity may directly affect the mechanical loading environment of the knee joint, initiating or progressing joint degeneration. The objective of this study was to investigate the interacting role of obesity and moderate knee osteoarthritis presence on tibiofemoral contact forces and muscle forces within the knee joint during walking gait. Three-dimensional gait analysis was performed on 80 asymptomatic participants and 115 individuals diagnosed with moderate knee osteoarthritis. Each group was divided into three body mass index categories: healthy weight (body mass index<25), overweight (25≤body mass index≤30), and obese (body mass index>30). Tibiofemoral anterior-posterior shear and compressive forces, as well as quadriceps, hamstrings and gastrocnemius muscle forces, were estimated based on a sagittal plane contact force model. Peak contact and muscle forces during gait were compared between groups, as well as the interaction between disease presence and body mass index category, using a two-factor analysis of variance. There were significant osteoarthritis effects in peak shear, gastrocnemius and quadriceps forces only when they were normalized to body mass, and there were significant BMI effects in peak shear, compression, gastrocnemius and hamstrings forces only in absolute, non-normalized forces. There was a significant interaction effect in peak quadriceps muscle forces, with higher forces in overweight and obese groups compared to asymptomatic healthy weight participants. Body mass index was associated with higher absolute tibiofemoral compression and shear forces as well as posterior muscle forces during gait, regardless of moderate osteoarthritis presence or absence. The differences found may contribute to accelerated joint damage with obesity, but with the osteoarthritic knees less able to accommodate the high loads. Copyright © 2015 Elsevier Ltd. All rights reserved.
32 CFR 806.12 - Record availability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... manager, in coordination with the functional OPR, or the owner of the records, determines qualifying... clearance of these records with the PAO before posting on the WWW. (b) Normally, if the FOIA office or OPR... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION AIR FORCE...
32 CFR 806.12 - Record availability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... manager, in coordination with the functional OPR, or the owner of the records, determines qualifying... clearance of these records with the PAO before posting on the WWW. (b) Normally, if the FOIA office or OPR... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION AIR FORCE...
32 CFR 806.12 - Record availability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... manager, in coordination with the functional OPR, or the owner of the records, determines qualifying... clearance of these records with the PAO before posting on the WWW. (b) Normally, if the FOIA office or OPR... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION AIR FORCE...
32 CFR 806.12 - Record availability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... manager, in coordination with the functional OPR, or the owner of the records, determines qualifying... clearance of these records with the PAO before posting on the WWW. (b) Normally, if the FOIA office or OPR... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION AIR FORCE...
32 CFR 806.12 - Record availability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... manager, in coordination with the functional OPR, or the owner of the records, determines qualifying... clearance of these records with the PAO before posting on the WWW. (b) Normally, if the FOIA office or OPR... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION AIR FORCE...
High Temperature Tribometer. Phase 1
1989-06-01
13 Figure 2.3.2 Setpoint and Gain Windows in FW.EXE ......... . Figure 2.4.1 Data-Flow Diagram for Data-Acquisition Module ..... .. 23 I Figure...mounted in a friction force measuring device. Optimally , material testing results should not be test machine sensitiye; but due to equipment variables...fixed. The friction force due to sliding should be continuously measured. This is optimally done in conjunction with the normal force measurement via
Experimental studies of breaking of elastic tired wheel under variable normal load
NASA Astrophysics Data System (ADS)
Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.
2017-10-01
The paper analyzes the braking of a vehicle wheel subjected to disturbances of normal load variations. Experimental tests and methods for developing test modes as sinusoidal force disturbances of the normal wheel load were used. Measuring methods for digital and analogue signals were used as well. Stabilization of vehicle wheel braking subjected to disturbances of normal load variations is a topical issue. The paper suggests a method for analyzing wheel braking processes under disturbances of normal load variations. A method to control wheel baking processes subjected to disturbances of normal load variations was developed.
Three-Dimensional Culture Model of Skeletal Muscle Tissue with Atrophy Induced by Dexamethasone.
Shimizu, Kazunori; Genma, Riho; Gotou, Yuuki; Nagasaka, Sumire; Honda, Hiroyuki
2017-06-15
Drug screening systems for muscle atrophy based on the contractile force of cultured skeletal muscle tissues are required for the development of preventive or therapeutic drugs for atrophy. This study aims to develop a muscle atrophy model by inducing atrophy in normal muscle tissues constructed on microdevices capable of measuring the contractile force and to verify if this model is suitable for drug screening using the contractile force as an index. Tissue engineered skeletal muscles containing striated myotubes were prepared on the microdevices for the study. The addition of 100 µM dexamethasone (Dex), which is used as a muscle atrophy inducer, for 24 h reduced the contractile force significantly. An increase in the expression of Atrogin-1 and MuRF-1 in the tissues treated with Dex was established. A decrease in the number of striated myotubes was also observed in the tissues treated with Dex. Treatment with 8 ng/mL Insulin-like Growth Factor (IGF-I) for 24 h significantly increased the contractile force of the Dex-induced atrophic tissues. The same treatment, though, had no impact on the force of the normal tissues. Thus, it is envisaged that the atrophic skeletal muscle tissues induced by Dex can be used for drug screening against atrophy.
Three-Dimensional Culture Model of Skeletal Muscle Tissue with Atrophy Induced by Dexamethasone
Shimizu, Kazunori; Genma, Riho; Gotou, Yuuki; Nagasaka, Sumire; Honda, Hiroyuki
2017-01-01
Drug screening systems for muscle atrophy based on the contractile force of cultured skeletal muscle tissues are required for the development of preventive or therapeutic drugs for atrophy. This study aims to develop a muscle atrophy model by inducing atrophy in normal muscle tissues constructed on microdevices capable of measuring the contractile force and to verify if this model is suitable for drug screening using the contractile force as an index. Tissue engineered skeletal muscles containing striated myotubes were prepared on the microdevices for the study. The addition of 100 µM dexamethasone (Dex), which is used as a muscle atrophy inducer, for 24 h reduced the contractile force significantly. An increase in the expression of Atrogin-1 and MuRF-1 in the tissues treated with Dex was established. A decrease in the number of striated myotubes was also observed in the tissues treated with Dex. Treatment with 8 ng/mL Insulin-like Growth Factor (IGF-I) for 24 h significantly increased the contractile force of the Dex-induced atrophic tissues. The same treatment, though, had no impact on the force of the normal tissues. Thus, it is envisaged that the atrophic skeletal muscle tissues induced by Dex can be used for drug screening against atrophy. PMID:28952535
NASA Astrophysics Data System (ADS)
Chu, Henry; Zia, Roseanna
In our recently developed non-equilibrium Stokes-Einstein relation, we showed that, in the absence of hydrodynamic interactions, the stress in a suspension is given by a balance between fluctuation and dissipation. Here, we generalize our theory for systems of hydrodynamically interacting colloids, via active microrheology, where motion of a Brownian probe through the medium reveals rheological properties. The strength of probe forcing compared to the entropic restoring force defines a Peclet number, Pe. In the absence of hydrodynamics, the first normal stress difference and the osmotic pressure scale as Pe4 and Pe2 respectively when probe forcing is weak, and uniformly as Pe for strong probe forcing. As hydrodynamics become important, interparticle forces give way to lubrication interactions. Hydrodynamic coupling leads to a new low-Pe scaling of the first normal stress difference and the osmotic pressure as Pe2, and high-Pe scaling as Peδ, where 0.799 <= δ <= 1 as hydrodynamics vary from strong to weak. For the entire range of the strength of hydrodynamic interactions and probe forcing, the new phenomenological theory is shown to agree with standard micromechanical definitions of the stress. We further draw a connection between the stress and the energy storage in a suspension, and the entropic nature of such storage is identified.
Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy
NASA Astrophysics Data System (ADS)
Dinelli, F.; Biswas, S. K.; Briggs, G. A. D.; Kolosov, O. V.
2000-05-01
Ultrasonic force microscopy (UFM) was introduced to probe nanoscale mechanical properties of stiff materials. This was achieved by vibrating the sample far above the first resonance of the probing atomic force microscope cantilever where the cantilever becomes dynamically rigid. By operating UFM at different set force values, it is possible to directly measure the absolute values of the tip-surface contact stiffness. From this an evaluation of surface elastic properties can be carried out assuming a suitable solid-solid contact model. In this paper we present curves of stiffness as a function of the normal load in the range of 0-300 nN. The dependence of stiffness on the relative humidity has also been investigated. Materials with different elastic constants (such as sapphire lithium fluoride, and silicon) have been successfully differentiated. Continuum mechanics models cannot however explain the dependence of stiffness on the normal force and on the relative humidity. In this high-frequency regime, it is likely that viscous forces might play an important role modifying the tip-surface interaction. Plastic deformation might also occur due to the high strain rates applied when ultrasonically vibrating the sample. Another possible cause of these discrepancies might be the presence of water in between the two bodies in contact organizing in a solidlike way and partially sustaining the load.
Effect of coating on properties of esthetic orthodontic nickel-titanium wires.
Iijima, Masahiro; Muguruma, Takeshi; Brantley, William; Choe, Han-Cheol; Nakagaki, Susumu; Alapati, Satish B; Mizoguchi, Itaru
2012-03-01
To determine the effect of coating on the properties of two esthetic orthodontic nickel-titanium wires. Woowa (polymer coating; Dany Harvest) and BioForce High Aesthetic Archwire (metal coating; Dentsply GAC) with cross-section dimensions of 0.016 × 0.022 inches were selected. Noncoated posterior regions of the anterior-coated Woowa and uncoated Sentalloy were used for comparison. Nominal coating compositions were determined by x-ray fluorescence (JSX-3200, JOEL). Cross-sectioned and external surfaces were observed with a scanning electron microscope (SEM; SSX-550, Shimadzu) and an atomic force microscope (SPM-9500J2, Shimadzu). A three-point bending test (12-mm span) was carried out using a universal testing machine (EZ Test, Shimadzu). Hardness and elastic modulus of external and cross-sectioned surfaces were obtained by nanoindentation (ENT-1100a, Elionix; n = 10). Coatings on Woowa and BioForce High Aesthetic Archwire contained 41% silver and 14% gold, respectively. The coating thickness on Woowa was approximately 10 µm, and the coating thickness on BioForce High Aesthetic Archwire was much smaller. The surfaces of both coated wires were rougher than the noncoated wires. Woowa showed a higher mean unloading force than the noncoated Woowa, although BioForce High Aesthetic Archwire showed a lower mean unloading force than Sentalloy. While cross-sectional surfaces of all wires had similar hardness and elastic modulus, values for the external surface of Woowa were smaller than for the other wires. The coating processes for Woowa and BioForce High Aesthetic Archwire influence bending behavior and surface morphology.
NASA Astrophysics Data System (ADS)
Chopra, Sahila; Kaur, Arshdeep; Gupta, Raj K.
2015-01-01
The earlier study of excitation functions of *105Ag, formed in the 12C+93Nb reaction, based on the dynamical cluster-decay model (DCM), using the pocket formula for nuclear proximity potential is extended to the use of other nuclear interaction potentials derived from the Skyrme energy density functional (SEDF) based on the semiclassical extended Thomas Fermi (ETF) approach and to the use of the extended-Wong model of Gupta and collaborators. The Skyrme forces used are the old SIII and SIV and the new SSk, GSkI, and KDE0(v1) given for both normal and isospin-rich nuclei, with densities added in the frozen-density approximation. Taking advantage of the fact that different Skyrme forces provide different barrier characteristics, we look for the "barrier modification" effects in terms of choosing an appropriate force and hence for the existence or nonexistence of noncompound nucleus (nCN) effects in this reaction. Interestingly, independent of the choice of Skyrme or proximity force, the extended-Wong model fits the experimental data nicely, without any barrier modification and hence no nCN component in the measured fusion cross section, which consists of light-particle evaporation residue (ER) and intermediate-mass fragments (IMFs) up to mass 13, i.e., σfusionExpt .=σER+σIMFs . However, the predicted fusion cross section due to the extended-Wong model is much larger, possibly because of the so-far missing fusion-fission (ff) component in the data. On the other hand, in agreement with the earlier work using the pocket proximity potential, the DCM fits only some data (mainly IMFs) for only some Skyrme forces, and hence it presents the chosen reaction as a case of a large nCN component, whose empirically estimated content is fitted for use of the DCM with a fragment preformation factor taken equal to one, i.e., using DCM (P0=1 ), by introducing "barrier modification" through changing the neck-length parameter Δ R for a best fit to the empirical nCN data in each (ER and IMF) decay channel. Also, the ff component of the DCM is predicted to lie around the symmetric mass A /2 ±16 . All calculations are made for deformed and oriented coplanar nuclei.
32 CFR 855.22 - Air Force procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 6 2013-07-01 2013-07-01 false Air Force procedures. 855.22 Section 855.22 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Agreements for Civil Aircraft Use of Air Force Airfields § 855...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Armed forces. 130.3 Section 130.3 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS POLITICAL CONTRIBUTIONS, FEES AND COMMISSIONS § 130.3 Armed forces. Armed forces means the army, navy, marine, air force, or coast guard, as...
32 CFR 855.22 - Air Force procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Air Force procedures. 855.22 Section 855.22 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Agreements for Civil Aircraft Use of Air Force Airfields § 855...
7 CFR 1753.29 - Force account procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Force account procedures. 1753.29 Section 1753.29... Force account procedures. (a) The borrower must obtain RUS approval of the force account method of... item not provided for in the approved loan. (d) Force Account construction to be financed with loan...
32 CFR 855.22 - Air Force procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false Air Force procedures. 855.22 Section 855.22 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Agreements for Civil Aircraft Use of Air Force Airfields § 855...
Adhesion between peptides/antibodies and breast cancer cells
NASA Astrophysics Data System (ADS)
Meng, J.; Paetzell, E.; Bogorad, A.; Soboyejo, W. O.
2010-06-01
Atomic force microscopy (AFM) techniques were used to measure the adhesion forces between the receptors on breast cancer cells specific to human luteinizing hormone-releasing hormone (LHRH) peptides and antibodies specific to the EphA2 receptor. The adhesion forces between LHRH-coated AFM tips and human MDA-MB-231 cells (breast cancer cells) were shown to be about five times greater than those between LHRH-coated AFM tips and normal Hs578Bst breast cells. Similarly, those between EphA2 antibody-coated AFM tips and breast cancer cells were over five times greater than those between EphA2 antibody-coated AFM tips and normal breast cells. The results suggest that AFM can be used for the detection of breast cancer cells in biopsies. The implications of the results are also discussed for the early detection and localized treatment of cancer.
Roghani, Taybeh; Khalkhali Zavieh, Minoo; Rahimi, Abbas; Talebian, Saeed; Manshadi, Farideh Dehghan; Akbarzadeh Baghban, Alireza; King, Nicole; Katzman, Wendy
2018-01-25
The purpose of this study was to investigate the intra-rater reliability and validity of a designed load cell setup for the measurement of back extensor muscle force and endurance. The study sample included 19 older women with hyperkyphosis, mean age 67.0 ± 5.0 years, and 14 older women without hyperkyphosis, mean age 63.0 ± 6.0 years. Maximum back extensor force and endurance were measured in a sitting position with a designed load cell setup. Tests were performed by the same examiner on two separate days within a 72-hour interval. The intra-rater reliability of the measurements was analyzed using intraclass correlation coefficient (ICC), standard errors of measurement (SEM), and minimal detectable change (MDC). The validity of the setup was determined using Pearson correlation analysis and independent t-test. Using our designed load cell, the values of ICC indicated very high reliability of force measurement (hyperkyphosis group: 0.96, normal group: 0.97) and high reliability of endurance measurement (hyperkyphosis group: 0.82, normal group: 0.89). For all tests, the values of SEM and MDC were low in both groups. A significant correlation between two documented forces (load cell force and target force) and significant differences in the muscle force and endurance among the two groups were found. The measurements of static back muscle force and endurance are reliable and valid with our designed setup in older women with and without hyperkyphosis.
Spinal manipulation force and duration affect vertebral movement and neuromuscular responses.
Colloca, Christopher J; Keller, Tony S; Harrison, Deed E; Moore, Robert J; Gunzburg, Robert; Harrison, Donald D
2006-03-01
Previous study in human subjects has documented biomechanical and neurophysiological responses to impulsive spinal manipulative thrusts, but very little is known about the neuromechanical effects of varying thrust force-time profiles. Ten adolescent Merino sheep were anesthetized and posteroanterior mechanical thrusts were applied to the L3 spinous process using a computer-controlled, mechanical testing apparatus. Three variable pulse durations (10, 100, 200 ms, force = 80 N) and three variable force amplitudes (20, 40, 60 N, pulse duration = 100 ms) were examined for their effect on lumbar motion response (L3 displacement, L1, L2 acceleration) and normalized multifidus electromyographic response (L3, L4) using a repeated measures analysis of variance. Increasing L3 posteroanterior force amplitude resulted in a fourfold linear increase in L3 posteroanterior vertebral displacement (p < 0.001) and adjacent segment (L1, L2) posteroanterior acceleration response (p < 0.001). L3 displacement was linearly correlated (p < 0.001) to the acceleration response over the 20-80 N force range (100 ms). At constant force, 10 ms thrusts resulted in nearly fivefold lower L3 displacements and significantly increased segmental (L2) acceleration responses compared to the 100 ms (19%, p = 0.005) and 200 ms (16%, p = 0.023) thrusts. Normalized electromyographic responses increased linearly with increasing force amplitude at higher amplitudes and were appreciably affected by mechanical excitation pulse duration. Changes in the biomechanical and neuromuscular response of the ovine lumbar spine were observed in response to changes in the force-time characteristics of the spinal manipulative thrusts and may be an underlying mechanism in related clinical outcomes.
Yuan, Wei; Zhang, Haiping; Zhou, Xiaoshu; Wu, Weidong; Zhu, Yue
2018-05-01
Artificial cervical disc replacement is expected to maintain normal cervical biomechanics. At present, the effect of the Prestige LP prosthesis height on cervical biomechanics has not been thoroughly studied. This finite element study of the cervical biomechanics aims to predict how the parameters, like range of motion (ROM), adjacent intradiscal pressure, facet joint force, and bone-implant interface stress, are affected by different heights of Prestige LP prostheses. The finite element model of intact cervical spine (C3-C7) was obtained from our previous study, and the model was altered to implant Prestige LP prostheses at the C5-C6 level. The effects of the height of 5, 6, and 7 mm prosthesis replacement on ROM, adjacent intradiscal pressure, facet joint force, as well as the distribution of bone-implant interface stress were examined. ROM, adjacent intradiscal pressure, and facet joint force increased with the prosthesis height, whereas ROM and facet joint force decreased at C5-C6. The maximal stress on the inferior surface of the prostheses was greater than that on the superior surface, and the stresses increased with the prosthesis height. The biomechanical changes were slightly affected by the height of 5 and 6 mm prostheses, but were strongly affected by the 7-mm prosthesis. An appropriate height of the Prestige LP prosthesis can preserve normal ROM, adjacent intradiscal pressure, and facet joint force. Prostheses with a height of ≥2 mm than normal can lead to marked changes in the cervical biomechanics and bone-implant interface stress. Copyright © 2018 Elsevier Inc. All rights reserved.
Evaluation of Motor Control Using Haptic Device
NASA Astrophysics Data System (ADS)
Nuruki, Atsuo; Kawabata, Takuro; Shimozono, Tomoyuki; Yamada, Masafumi; Yunokuchi, Kazutomo
When the kinesthesia and the touch act at the same time, such perception is called haptic perception. This sense has the key role in motor information on the force and position control. The haptic perception is important in the field where the evaluation of the motor control is needed. The purpose of this paper is to evaluate the motor control, perception of heaviness and distance in normal and fatigue conditions using psychophysical experiment. We used a haptic device in order to generate precise force and distance, but the precedent of the evaluation system with the haptic device has been few. Therefore, it is another purpose to examine whether the haptic device is useful as evaluation system for the motor control. The psychophysical quantity of force and distance was measured by two kinds of experiments. Eight healthy subjects participated in this study. The stimulation was presented by haptic device [PHANTOM Omni: SensAble Company]. The subjects compared between standard and test stimulation, and answered it had felt which stimulation was strong. In the result of the psychophysical quantity of force, just noticeable difference (JND) had a significant difference, and point of subjective equality (PSE) was not different between normal and muscle fatigue. On the other hand, in the result of the psychophysical quantity of distance, JND and PSE were not difference between normal and muscle fatigue. These results show that control of force was influenced, but control of distance was not influenced in muscle fatigue. Moreover, these results suggested that the haptic device is useful as the evaluation system for the motor control.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23.321 General. (a) Flight load factors represent the ratio of the aerodynamic force component (acting normal to... distribution of disposable load within the operating limitations specified in §§ 23.1583 through 23.1589. (c...
Technological Advance in an Expanding Economy: Its Impact on a Cross-Section of the Labor Force.
ERIC Educational Resources Information Center
Mueller, Eva; And Others
In 1967 the Survey Research Center at the University of Michigan conducted a nationwide survey to determine the impact of changes in machine technology on a cross-section of the labor force. Although many studies have been made about automation, this study was larger in scope than most research and made use of cross-sectional analysis to show the…
2016-05-01
between the active and reserve component. Section 1055 of the Carl Levin and Howard P. “Buck” McKeon National Defense Authorization Act for Fiscal...for fiscal years 2016 through 2019—on the response of the Air Force to the 42 recommendations. Section 1055 required that the first report set forth...4Pub. L. No. 113-291, § 1055 (a), (b
Li, Chen; Zhang, Feihu; Ding, Ye; Liu, Lifei
2016-08-20
Nano scratch for optical glass BK7 based on the ductile-removal regime was carried out, and the influence rule of scratch parameters on surface deformation and friction characteristic was analyzed. Experimental results showed that, with increase of normal force, the deformation of burrs in the edge of the scratch was more obvious, and with increase of the scratch velocity, the deformation of micro-fracture and burrs in the edge of the scratch was more obvious similarly. The residual depth of the scratch was measured by atomic force microscope. The experimental results also showed that, with increase of normal force, the residual depth of the scratch increased linearly while the elastic recovery rate decreased. Furthermore, with increase of scratch velocity, the residual depth of the scratch decreased while the elastic recovery rate increased. The scratch process of the Berkovich indenter was divided into the cutting process of many large negative rake faces based on the improved cutting model, and the friction characteristic of the Berkovich indenter and the workpiece was analyzed. The analysis showed that the coefficient of friction increased and then tended to be stable with the increase of normal force. Meanwhile, the coefficient of friction decreased with the increase of scratch velocity, and the coefficients, k ln(v) and μ0, were introduced to improve the original formula of friction coefficient.
Potential roles of force cues in human stance control.
Cnyrim, Christian; Mergner, Thomas; Maurer, Christoph
2009-04-01
Human stance is inherently unstable. A small deviation from upright body orientation is enough to yield a gravitational component in the ankle joint torque, which tends to accelerate the body further away from upright ('gravitational torque'; magnitude is related to body-space lean angle). Therefore, to maintain a given body lean position, a corresponding compensatory torque must be generated. It is well known that subjects use kinematic sensory information on body-space lean from the vestibular system for this purpose. Less is known about kinetic cues from force/torque receptors. Previous work indicated that they are involved in compensating external contact forces such as a pull or push having impact on the body. In this study, we hypothesized that they play, in addition, a role when the vestibular estimate of the gravitational torque becomes erroneous. Reasons may be sudden changes in body mass, for instance by a load, or an impairment of the vestibular system. To test this hypothesis, we mimicked load effects on the gravitational torque in normal subjects and in patients with chronic bilateral vestibular loss (VL) with eyes closed. We added/subtracted extra torque to the gravitational torque by applying an external contact force (via cable winches and a body harness). The extra torque was referenced to body-space lean, using different proportionality factors. We investigated how it affected body-space lean responses that we evoked using sinusoidal tilts of the support surface (motion platform) with different amplitudes and frequencies (normals +/-1 degrees, +/-2 degrees, and +/-4 degrees at 0.05, 0.1, 0.2, and 0.4 Hz; patients +/-1 degrees and +/-2 degrees at 0.05 and 0.1 Hz). We found that added/subtracted extra torque scales the lean response in a systematic way, leading to increase/decrease in lean excursion. Expressing the responses in terms of gain and phase curves, we compared the experimental findings to predictions obtained from a recently published sensory feedback model. For the trials in which the extra torque tended to endanger stance control, predictions in normals were better when the model included force cues than without these cues. This supports our notion that force cues provide an automatic 'gravitational load compensation' upon changes in body mass in normals. The findings in the patients support our notion that the presumed force cue mechanism provides furthermore vestibular loss compensation. Patients showed a body-space stabilization that cannot be explained by ankle angle proprioception, but must involve graviception, most likely by force cues. Our findings suggest that force cues contribute considerably to the redundancy and robustness of the human stance control system.
Manual discrimination of force
NASA Technical Reports Server (NTRS)
Pang, Xiao-Dong; Tan, HONG-Z.; Durlach, Nathaniel I.
1991-01-01
Optimal design of human-machine interfaces for teleoperators and virtual-environment systems which involve the tactual and kinesthetic modalities requires knowledge of the human's resolving power in these modalities. The resolution of the interface should be appropriately matched to that of the human operator. We report some preliminary results on the ability of the human hand to distinguish small differences in force under a variety of conditions. Experiments were conducted on force discrimination with the thumb pushing an interface that exerts a constant force over the pushing distance and the index finger pressing against a fixed support. The dependence of the sensitivity index d' on force increment can be fit by a straight line through the origin and the just-noticeable difference (JND) in force can thus be described by the inverse of the slope of this line. The receiver operating characteristic (ROC) was measured by varying the a priori probabilities of the two alternatives, reference force and reference force plus an increment, in one-interval, two-alternative, forced-choice experiments. When plotted on normal deviate coordinates, the ROC's were roughly straight lines of unit slope, thus supporting the assumption of equal-variance normal distributions and the use of the conventional d' measure. The JND was roughly 6-8 percent for reference force ranging from 2.5 to 10 newtons, pushing distance from 5 to 30 mm, and initial finger-span from 45 to 125 mm. Also, the JND remained the same when the subjects were instructed to change the average speed of pushing from 23 to 153 mm/sec. The pushing was terminated by reaching either a wall or a well, and the JND's were essentially the same in both cases.
14 CFR 23.255 - Out of trim characteristics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... apply: (a) From an initial condition with the airplane trimmed at cruise speeds up to VMO/MMO, the... speeds between VFC/MFC and VDF/MDF , the direction of the primary longitudinal control force may not... control force, flight tests must be accomplished from the normal acceleration at which a marginal...
Pressures force hospitals to declare major incidents.
Evans, Nick
2017-02-10
More than 40% of hospitals in England were forced to declare major incidents during the first week of January, as bed shortages led to delays in emergency departments (EDs), thousands of trolley waits for beds and long queues of ambulances outside units. Even cancer operations, normally protected, were cancelled.
49 CFR 178.345-3 - Structural integrity.
Code of Federal Regulations, 2014 CFR
2014-10-01
... accelerative force equal to 0.35 times the vertical reaction at the suspension assembly of a trailer; or the... the suspension assembly of a trailer, and the horizontal pivot of the upper coupler (fifth wheel) or... normal operating accelerative force equal to 0.35 times the vertical reaction at the suspension assembly...
49 CFR 178.345-3 - Structural integrity.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accelerative force equal to 0.35 times the vertical reaction at the suspension assembly of a trailer; or the... the suspension assembly of a trailer, and the horizontal pivot of the upper coupler (fifth wheel) or... normal operating accelerative force equal to 0.35 times the vertical reaction at the suspension assembly...
49 CFR 178.345-3 - Structural integrity.
Code of Federal Regulations, 2013 CFR
2013-10-01
... accelerative force equal to 0.35 times the vertical reaction at the suspension assembly of a trailer; or the... the suspension assembly of a trailer, and the horizontal pivot of the upper coupler (fifth wheel) or... normal operating accelerative force equal to 0.35 times the vertical reaction at the suspension assembly...
Vanommeslaeghe, Kenno; Guvench, Olgun; MacKerell, Alexander D.
2014-01-01
Molecular Mechanics (MM) force fields are the methods of choice for protein simulations, which are essential in the study of conformational flexibility. Given the importance of protein flexibility in drug binding, MM is involved in most if not all Computational Structure-Based Drug Discovery (CSBDD) projects. This section introduces the reader to the fundamentals of MM, with a special emphasis on how the target data used in the parametrization of force fields determine their strengths and weaknesses. Variations and recent developments such as polarizable force fields are discussed. The section ends with a brief overview of common force fields in CSBDD. PMID:23947650
Noguchi, Hiroshi; Takehara, Kimie; Ohashi, Yumiko; Suzuki, Ryo; Yamauchi, Toshimasa; Kadowaki, Takashi; Sanada, Hiromi
2016-01-01
Aim. Callus is a risk factor, leading to severe diabetic foot ulcer; thus, prevention of callus formation is important. However, normal stress (pressure) and shear stress associated with callus have not been clarified. Additionally, as new valuables, a shear stress-normal stress (pressure) ratio (SPR) was examined. The purpose was to clarify the external force associated with callus formation in patients with diabetic neuropathy. Methods. The external force of the 1st, 2nd, and 5th metatarsal head (MTH) as callus predilection regions was measured. The SPR was calculated by dividing shear stress by normal stress (pressure), concretely, peak values (SPR-p) and time integral values (SPR-i). The optimal cut-off point was determined. Results. Callus formation region of the 1st and 2nd MTH had high SPR-i rather than noncallus formation region. The cut-off value of the 1st MTH was 0.60 and the 2nd MTH was 0.50. For the 5th MTH, variables pertaining to the external forces could not be determined to be indicators of callus formation because of low accuracy. Conclusions. The callus formation cut-off values of the 1st and 2nd MTH were clarified. In the future, it will be necessary to confirm the effect of using appropriate footwear and gait training on lowering SPR-i. PMID:28050567
Dorchies, Olivier M; Reutenauer-Patte, Julie; Dahmane, Elyes; Ismail, Heham M; Petermann, Olivier; Patthey- Vuadens, Ophélie; Comyn, Sophie A; Gayi, Elinam; Piacenza, Tony; Handa, Robert J; Décosterd, Laurent A; Ruegg, Urs T
2013-02-01
Duchenne muscular dystrophy (DMD) is a severe disorder characterized by progressive muscle wasting,respiratory and cardiac impairments, and premature death. No treatment exists so far, and the identification of active substances to fight DMD is urgently needed. We found that tamoxifen, a drug used to treat estrogen-dependent breast cancer, caused remarkable improvements of muscle force and of diaphragm and cardiac structure in the mdx(5Cv) mouse model of DMD. Oral tamoxifen treatment from 3 weeks of age for 15 months at a dose of 10 mg/kg/day stabilized myofiber membranes, normalized whole body force, and increased force production and resistance to repeated contractions of the triceps muscle above normal values. Tamoxifen improved the structure of leg muscles and diminished cardiac fibrosis by~ 50%. Tamoxifen also reduced fibrosis in the diaphragm, while increasing its thickness,myofiber count, and myofiber diameter, thereby augmenting by 72% the amount of contractile tissue available for respiratory function. Tamoxifen conferred a markedly slower phenotype to the muscles.Tamoxifen and its metabolites were present in nanomolar concentrations in plasma and muscles,suggesting signaling through high-affinity targets. Interestingly, the estrogen receptors ERa and ERb were several times more abundant in dystrophic than in normal muscles, and tamoxifen normalized the relative abundance of ERb isoforms. Our findings suggest that tamoxifen might be a useful therapy for DMD.
Dynamic analysis of elastic rubber tired car wheel breaking under variable normal load
NASA Astrophysics Data System (ADS)
Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.
2017-10-01
The purpose of the paper is to analyze the dynamics of the braking of the wheel under normal load variations. The paper uses a mathematical simulation method according to which the calculation model of an object as a mechanical system is associated with a dynamically equivalent schematic structure of the automatic control. Transfer function tool analyzing structural and technical characteristics of an object as well as force disturbances were used. It was proved that the analysis of dynamic characteristics of the wheel subjected to external force disturbances has to take into account amplitude and phase-frequency characteristics. Normal load variations impact car wheel braking subjected to disturbances. The closer slip to the critical point is, the higher the impact is. In the super-critical area, load variations cause fast wheel blocking.
Skyrme forces and the fusion-fission dynamics of the 132Sn+64Ni→196Pt* reaction
NASA Astrophysics Data System (ADS)
Jain, Deepika; Kumar, Raj; Sharma, Manoj K.; Gupta, Raj K.
2012-02-01
The dependence of the fusion-fission process on Skyrme forces is studied by using the dynamical cluster-decay model (DCM) and the ℓ-summed extended-Wong model in the 132Sn+64Ni→196Pt* reaction, where the nuclear proximity potential is obtained by using the semiclassical extended Thomas-Fermi (ETF) approach in the Skyrme energy density formalism (SEDF) under the frozen density approximation. The DCM gives an excellent fit to the measured fusion evaporation residue (ER) and the fission cross sections below and above barrier energies, with ER data needing “barrier lowering” at below-barrier energies for each Skyrme force (an in-built property of the DCM). The fission cross sections show a contribution of quasifission (qf) at the above-barrier two or three highest energies, depending on the Skyrme force. Calculations are illustrated for three Skyrme forces, GSkI, SSk, and SIII. Another interesting result is that there is a change of fission mass distribution from a predominantly asymmetric one to a symmetric one with a decrease in the N/Z ratio of the compound nucleus, independent of the choice of nuclear interaction potential, which gives an opportunity to address the isospin effects in the Pt* nucleus. Within the ℓ-summed extended-Wong model we find that the GSkI and SSk forces fit the total fusion cross-section data exactly, whereas the SIII force needs “barrier modification” in order to fit the data at below-barrier energies. This happens because the isospin and neutron-proton asymmetry nature of GSkI and SSk forces is different from that of the SIII force, and because the center-of-mass energy Ec.m. dependence of the barrier height for the SIII force and that of Blocki [Ann. Phys. (NY)10.1016/0003-4916(77)90249-4 105, 427 (1977)] differs strongly (by a constant amount of ˜7 MeV) from those for GSKI and SSk forces. Note that, because of the associated preformation factor with each fragment, the DCM has the advantage of treating various decay processes separately, whereas the Wong model describes only the total fusion cross section, a sum of cross sections due to all contributing processes.
NASA Technical Reports Server (NTRS)
Lackner, J. R.; DiZio, P.; Jeka, J.; Horak, F.; Krebs, D.; Rabin, E.
1999-01-01
Contact of the hand with a stationary surface attenuates postural sway in normal individuals even when the level of force applied is mechanically inadequate to dampen body motion. We studied whether subjects without vestibular function would be able to substitute contact cues from the hand for their lost labyrinthine function and be able to balance as well as normal subjects in the dark without finger contact. We also studied the relative contribution of sight of the test chamber to the two groups. Subjects attempted to maintain a tandem Romberg stance for 25 s under three levels of fingertip contact: no contact; light-touch contact, up to 1 N (approximately 100 g) force; and unrestricted contact force. Both eyes open and eyes closed conditions were evaluated. Without contact, none of the vestibular loss subjects could stand for more than a few seconds in the dark without falling; all the normals could. The vestibular loss subjects were significantly more stable in the dark with light touch of the index finger than the normal subjects in the dark without touch. They also swayed less in the dark with light touch than when permitted sight of the test chamber without touch, and less with sight and touch than just sight. The normal subjects swayed less in the dark with touch than without, and less with sight and touch than sight alone. These findings show that during quiet stance light touch of the index finger with a stationary surface can be as effective or even more so than vestibular function for minimizing postural sway.
NASA Technical Reports Server (NTRS)
Olson, S. L.; T'ien, J. S.; Armstrong, J. B.
2001-01-01
The objective of this ground-based program is to study low stretch diffusion flames burning PMMA as the solid fuel to determine the relationship between buoyant low stretch burning in normal gravity and forced flow low stretch burning in microgravity. The low stretch is generated in normal gravity by using the buoyant convection induced by burning the bottom of a large radius of curvature sample. Low stretch is also generated using the Combustion Tunnel drop tower rig (2.2 and 5.2 second facilities), which provides a forced convective low velocity flow past smaller radius of curvature samples. Lastly, an ISS glovebox investigation is being developed to study low stretch burning of PMMA spheres to obtain long duration testing needed to accurately assess the flammability and burning characteristics of the material in microgravity. A comparison of microgravity experiment results with normal gravity test results allows us to establish a direct link between a material's burning characteristics in normal gravity (easily measured) with its burning characteristics in extraterrestrial environments, including microgravity forced convective environments. Theoretical predictions and recent experimental results indicate that it should be possible to understand a material's burning characteristics in the low stretch environment of spacecraft (non-buoyant air movement induced by fans and crew disturbances) by understanding its burning characteristics in an equivalent Earth-based low stretch environment (induced by normal gravity buoyancy). Similarly, Earth-based stretch environments can be made equivalent to those in Lunar- and Martian-surface stretch environments (which would induce partial-gravity buoyancy).
Army Task Force on Behavioral Health: Corrective Action Plan
2013-01-01
Veterans Affairs Legal Section KNOWLEDGE MGMT SECTION • KMO • CAA Analyst Figure I-1. Task Force Organization. ACRONYM Key ASA(M&RA): Assistant...Army Audit Agency OTIG: Office of the Inspector General OTSG: Office of the Surgeon General KMO : Knowledge Management Officer CAA: Center for
48 CFR 37.109 - Services of quasi-military armed forces.
Code of Federal Regulations, 2010 CFR
2010-10-01
... armed forces. 37.109 Section 37.109 Federal Acquisition Regulations System FEDERAL ACQUISITION... quasi-military armed forces. Contracts with Pinkerton Detective Agencies or similar organizations are...-military armed forces for hire, or with their employees, regardless of the contract's character. An...
Rolling Friction on a Wheeled Laboratory Cart
2012-01-01
by gravity, and a vehicle (such as a car or bicycle) accelerating along a level road is driven by a motor or by pedalling. In such cases, static...is slowing down, its acceleration a points downhill). The normal force N, frictional force f and axle torque four wheels. θ υ N a θ ω τ ƒ mg...friction force pointed backward (to translationally decelerate the object), then it would simultaneously rotationally accelerate the cylinder about its
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. (a) The danger zone. An area in the Atlantic Ocean immediately offshore from...
Strength Calculation of Inclined Sections of Reinforced Concrete Elements under Transverse Bending
NASA Astrophysics Data System (ADS)
Filatov, V. B.
2017-11-01
The authors propose a design model to determine the strength of inclined sections of bent reinforced concrete elements without shear reinforcement for the action of transverse force taking into account the aggregate interlock forces in the inclined crack. The calculated dependences to find out the components of forces acting in an inclined section are presented. The calculated dependences are obtained from the consideration of equilibrium conditions of the block over the inclined crack. A comparative analysis of the experimental values of the failure loads of the inclined section and the theoretical values obtained for the proposed dependencies and normative calculation methods is performed. It is shown that the proposed design model makes it possible to take into account the effect the longitudinal reinforcement percentage has on the inclined section strength, the element cross section height without the introduction of empirical coefficients which contributes to an increase in the structural safety of design solutions including the safety of high-strength concrete elements.
NASA Astrophysics Data System (ADS)
Wang, Aiming; Cheng, Xiaohan; Meng, Guoying; Xia, Yun; Wo, Lei; Wang, Ziyi
2017-03-01
Identification of rotor unbalance is critical for normal operation of rotating machinery. The single-disc and single-span rotor, as the most fundamental rotor-bearing system, has attracted research attention over a long time. In this paper, the continuous single-disc and single-span rotor is modeled as a homogeneous and elastic Euler-Bernoulli beam, and the forces applied by bearings and disc on the shaft are considered as point forces. A fourth-order non-homogeneous partial differential equation set with homogeneous boundary condition is solved for analytical solution, which expresses the unbalance response as a function of position, rotor unbalance and the stiffness and damping coefficients of bearings. Based on this analytical method, a novel Measurement Point Vector Method (MPVM) is proposed to identify rotor unbalance while operating. Only a measured unbalance response registered for four selected cross-sections of the rotor-shaft under steady-state operating conditions is needed when using the method. Numerical simulation shows that the detection error of the proposed method is very small when measurement error is negligible. The proposed method provides an efficient way for rotor balancing without test runs and external excitations.
NASA Astrophysics Data System (ADS)
Zhou, Yi; Chen, Zhifen; Kang, Deyong; li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Guan, Guoxian; Chen, Jianxin
2016-01-01
Multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) as a potential diagnostic tool is attractive. MPM can effectively provide information about morphological and biochemical changes in biological tissues at the molecular level. In this paper, we attempt to identify normal and cancerous human colorectal muscularis propria by multiphoton microscopy in different sections (both in transverse and longitudinal sections). The results show that MPM can display different microstructure changes in the transverse and longitudinal sections of colorectal muscularis propria. MPM also can quantitatively describe the alteration of collagen content between normal and cancerous muscle layers. These are important pathological findings that MPM images can bring more detailed complementary information about tissue architecture and cell morphology through observing the transverse and longitudinal sections of colorectal muscularis propria. This work demonstrates that MPM can be better for identifying the microstructural characteristics of normal and cancerous human colorectal muscularis propria in different sections.
Swenson, Carolyn W; Smith, Tovia M; Luo, Jiajia; Kolenic, Giselle E; Ashton-Miller, James A; DeLancey, John O
2017-02-01
It is unknown how initial cervix location and cervical support resistance to traction, which we term "apical support stiffness," compare in women with different patterns of pelvic organ support. Defining a normal range of apical support stiffness is important to better understand the pathophysiology of apical support loss. The aims of our study were to determine whether: (1) women with normal apical support on clinic Pelvic Organ Prolapse Quantification, but with vaginal wall prolapse (cystocele and/or rectocele), have the same intraoperative cervix location and apical support stiffness as women with normal pelvic support; and (2) all women with apical prolapse have abnormal intraoperative cervix location and apical support stiffness. A third objective was to identify clinical and biomechanical factors independently associated with clinic Pelvic Organ Prolapse Quantification point C. We conducted an observational study of women with a full spectrum of pelvic organ support scheduled to undergo gynecologic surgery. All women underwent a preoperative clinic examination, including Pelvic Organ Prolapse Quantification. Cervix starting location and the resistance (stiffness) of its supports to being moved steadily in the direction of a traction force that increased from 0-18 N was measured intraoperatively using a computer-controlled servoactuator device. Women were divided into 3 groups for analysis according to their pelvic support as classified using the clinic Pelvic Organ Prolapse Quantification: (1) "normal/normal" was women with normal apical (C < -5 cm) and vaginal (Ba and Bp < 0 cm) support; (2) normal/prolapse had normal apical support (C < -5 cm) but prolapse of the anterior or posterior vaginal walls (Ba and/or Bp ≥ 0 cm); and (3) prolapse/prolapse had both apical and vaginal wall prolapse (C > -5 cm and Ba and/or Bp ≥ 0 cm). Demographics, intraoperative cervix locations, and apical support stiffness values were then compared. Normal range of cervix location during clinic examination and operative testing was defined by the total range of values observed in the normal/normal group. The proportion of women in each group with cervix locations within and outside the normal range was determined. Linear regression was performed to identify variables independently associated with clinic Pelvic Organ Prolapse Quantification point C. In all, 52 women were included: 14 in the normal/normal group, 11 in the normal/prolapse group, and 27 in the prolapse/prolapse group. At 1 N of traction force in the operating room, 50% of women in the normal/prolapse group had cervix locations outside the normal range while 10% had apical support stiffness outside the normal range. Of women in the prolapse/prolapse group, 81% had cervix locations outside the normal range and 8% had apical support stiffness outside the normal range. Similar results for cervix locations were observed at 18 N of traction force; however the proportion of women with apical support stiffness outside the normal range increased to 50% in the normal/prolapse group and 59% in the prolapse/prolapse group. The prolapse/prolapse group had statistically lower apical support stiffness compared to the normal/normal group with increased traction from 1-18 N (0.47 ± 0.18 N/mm vs 0.63 ± 0.20 N/mm, P = .006), but all other comparisons were nonsignificant. After controlling for age, parity, body mass index, and apical support stiffness, cervix location at 1 N traction force remained an independent predictor of clinic Pelvic Organ Prolapse Quantification point C, but only in the prolapse/prolapse group. Approximately 50% of women with cystocele and/or rectocele but normal apical support in the clinic had cervix locations outside the normal range under intraoperative traction, while 19% of women with uterine prolapse had normal apical support. Identifying women whose apical support falls outside a defined normal range may be a more accurate way to identify those who truly need a hysterectomy and/or an apical support procedure and to spare those who do not. Copyright © 2016 Elsevier Inc. All rights reserved.
Pressure Distribution Over a Symmetrical Airfoil Section with Trailing Edge Flap
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N; Pinkerton, Robert M
1931-01-01
Measurements were made to determine the distribution of pressure over one section of an R. A. F. 30 (symmetrical) airfoil with trailing edge flaps. In order to study the effect of scale measurements were made with air densities of approximately 1 and 20 atmospheres. Isometric diagrams of pressure distribution are given to show the effect of change in incidence, flap displacement, and scale upon the distribution. Plots of normal force coefficient versus angle of attack for different flap displacements are given to show the effect of a displaced flap. Plots are given of both the experimental and theoretical characteristic coefficients versus flap angle, in order to provide a comparison with the theory. It is concluded that for small flap displacements the agreement for the pitching and hinge moments is such that it warrants the use of the theoretical parameters. However, the agreement for the lift is not as good, particularly for the smaller flaps. In an appendix, an example is given of the calculation of the load and moments on an airfoil with hinged flap from these parameters.
Effect of hinge-moment parameters on elevator stick forces in rapid maneuvers
NASA Technical Reports Server (NTRS)
Jones, R. T.; Greenberg, H.
1976-01-01
The importance of the stick force per unit normal acceleration as a criterion of longitudinal stability and the critical dependence of this gradient on elevator hinge moment parameters are investigated with special reference to transient effects for maneuvers of short duration. The analysis shows that different combinations of elevator parameters, which give the same stick force per unit acceleration in turns, give widely different force variations during the entries into and recoveries from steady turns and during maneuvers of short duration such as abrupt pull-ups. The stick force per unit acceleration is greater for abrupt than for gradual control movements.
Calculation of forces on magnetized bodies using COSMIC NASTRAN
NASA Technical Reports Server (NTRS)
Sheerer, John
1987-01-01
The methods described may be used with a high degree of confidence for calculations of magnetic traction forces normal to a surface. In this circumstance all models agree, and test cases have resulted in theoretically correct results. It is shown that the tangential forces are in practice negligible. The surface pole method is preferable to the virtual work method because of the necessity for more than one NASTRAN run in the latter case, and because distributed forces are obtained. The derivation of local forces from the Maxwell stress method involves an undesirable degree of manipulation of the problem and produces a result in contradiction of the surface pole method.
Measurement and calculation of forces in a magnetic journal bearing actuator
NASA Technical Reports Server (NTRS)
Knight, Josiah; Mccaul, Edward; Xia, Zule
1991-01-01
Numerical calculations and experimental measurements of forces from an actuator of the type used in active magnetic journal bearings are presented. The calculations are based on solution of the scalar magnetic potential field in and near the gap regions. The predicted forces from single magnet with steady current are compared with experimental measurements in the same geometry. The measured forces are smaller than calculated ones in the principal direction but are larger than calculated in the normal direction. This combination of results indicate that material and spatial effects other than saturation play roles in determining the force available from an actuator.
Prehension of Half-Full and Half-Empty Glasses: Time and History Effects on Multi-Digit Coordination
Sun, Yao; Zatsiorsky, Vladimir M.; Latash, Mark L.
2011-01-01
We explored how digit forces and indices of digit coordination depend on the history of getting to a particular set of task parameters during static prehension tasks. The participants held in the right hand an instrumented handle with a light-weight container attached on top of the handle. At the beginning of each trial, the container could be empty, filled to the half with water (0.4 l) or filled to the top (0.8 l). The water was pumped in/out of the container at a constant, slow rate over 10 s. At the end of each trial, the participants always held a half-filled container that has just been filled (Empty-Half), emptied (Full-Half), or stayed half-filled throughout the trial (Half-Only). Indices of co-variation (synergy indices) of elemental variables (forces and moments of force produced by individual digits) stabilizing such performance variables as total normal force, total tangetial force, and total moment of force were computed at two levels of an assumed control hierarchy. At the upper level, the task is shared between the thumb and virtual finger (an imagined digit with the mechanical action equal to that of the four fingers), while at the lower level, action of the virtual finger is shared among the actual four fingers. Filling or emptying the container led to a drop in the safety margin (proportion of grip force over the slipping threshold) below the values observed in the Half-Only condition. Synergy indices at both levels of the hierarchy showed changes over the Full-Half and Empty-Half condition. These changes could be monotonic (typical of moment of force and normal force) or non-monotonic (typical of tangential force). For both normal and tangential forces, higher synergy indices at the higher level of the hierarchy corresponded to lower indices at the lower level. Significant differences in synergy indices across conditions were seen at the final steady-state showing that digit coordination during steady holding an object is history dependent. The observations support an earlier hypothesis on a trade-off between synergies at the two levels of a hierarchy. They also suggest that, when a change in task parameters is expected, the neural strategy may involve producing less stable (easier to change) actions. The results suggest that synergy indices may be highly sensitive to changes in a task variable and that effects of such changes persist after the changes are over. PMID:21331525
Self-Advancing Step-Tap Drills
NASA Technical Reports Server (NTRS)
Pettit, Donald R.; Camarda, Charles J.; Penner, Ronald K.; Franklin, Larry D.
2007-01-01
Self-advancing tool bits that are hybrids of drills and stepped taps make it possible to form threaded holes wider than about 1/2 in. (about 13 mm) without applying any more axial force than is necessary for forming narrower pilot holes. These self-advancing stepped-tap drills were invented for use by space-suited astronauts performing repairs on reinforced carbon/carbon space-shuttle leading edges during space walks, in which the ability to apply axial drilling forces is severely limited. Self-advancing stepped-tap drills could also be used on Earth for making wide holes without applying large axial forces. A self-advancing stepped-tap drill (see figure) includes several sections having progressively larger diameters, typically in increments between 0.030 and 0.060 in. (between about 0.8 and about 1.5 mm). The tip section, which is the narrowest, is a pilot drill bit that typically has a diameter between 1/8 and 3/16 in. (between about 3.2 and about 4.8 mm). The length of the pilot-drill section is chosen, according to the thickness of the object to be drilled and tapped, so that the pilot hole is completed before engagement of the first tap section. Provided that the cutting-edge geometry of the drill bit is optimized for the material to be drilled, only a relatively small axial force [typically of the order of a few pounds (of the order of 10 newtons)] must be applied during drilling of the pilot hole. Once the first tap section engages the pilot hole, it is no longer necessary for the drill operator to apply axial force: the thread engagement between the tap and the workpiece provides the axial force to advance the tool bit. Like the pilot-drill section, each tap section must be long enough to complete its hole before engagement of the next, slightly wider tap section. The precise values of the increments in diameter, the thread pitch, the rake angle of the tap cutting edge, and other geometric parameters of the tap sections must be chosen, in consideration of the workpiece material and thickness, to prevent stripping of threads during the drilling/tapping operation. A stop-lip or shoulder at the shank end of the widest tap section prevents further passage of the tool bit through the hole.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Purpose. 1203b.100 Section 1203b.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.100 Purpose. This regulation implements section...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Purpose. 1203b.100 Section 1203b.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.100 Purpose. This regulation implements section...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Purpose. 1203b.100 Section 1203b.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.100 Purpose. This regulation implements section...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Purpose. 1203b.100 Section 1203b.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.100 Purpose. This regulation implements section...
Code of Federal Regulations, 2012 CFR
2012-01-01
... control forces permitted during the testing required by paragraph (a) through (c) of this section: Force... practices must be followed when demonstrating compliance with the control force limitations for short term... with the control force limitations for long term application that are prescribed in paragraph (d) of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... control forces permitted during the testing required by paragraph (a) through (c) of this section: Force... practices must be followed when demonstrating compliance with the control force limitations for short term... with the control force limitations for long term application that are prescribed in paragraph (d) of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... control forces permitted during the testing required by paragraph (a) through (c) of this section: Force... practices must be followed when demonstrating compliance with the control force limitations for short term... with the control force limitations for long term application that are prescribed in paragraph (d) of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... control forces permitted during the testing required by paragraph (a) through (c) of this section: Force... practices must be followed when demonstrating compliance with the control force limitations for short term... with the control force limitations for long term application that are prescribed in paragraph (d) of...
Phan, Xuan; Grisbrook, Tiffany L; Wernli, Kevin; Stearne, Sarah M; Davey, Paul; Ng, Leo
2017-08-01
This study aimed to determine if a quantifiable relationship exists between the peak sound amplitude and peak vertical ground reaction force (vGRF) and vertical loading rate during running. It also investigated whether differences in peak sound amplitude, contact time, lower limb kinematics, kinetics and foot strike technique existed when participants were verbally instructed to run quietly compared to their normal running. A total of 26 males completed running trials for two sound conditions: normal running and quiet running. Simple linear regressions revealed no significant relationships between impact sound and peak vGRF in the normal and quiet conditions and vertical loading rate in the normal condition. t-Tests revealed significant within-subject decreases in peak sound, peak vGRF and vertical loading rate during the quiet compared to the normal running condition. During the normal running condition, 15.4% of participants utilised a non-rearfoot strike technique compared to 76.9% in the quiet condition, which was corroborated by an increased ankle plantarflexion angle at initial contact. This study demonstrated that quieter impact sound is not directly associated with a lower peak vGRF or vertical loading rate. However, given the instructions to run quietly, participants effectively reduced peak impact sound, peak vGRF and vertical loading rate.
Analysis of the Sediment Hydrograph of the alluvial deltas in the Apalachicola River, Florida
NASA Astrophysics Data System (ADS)
Daranpob, A.; Hagen, S.; Passeri, D.; Smar, D. E.
2011-12-01
Channel and alluvial characteristics in lowlands are the products of boundary conditions and driving forces. The boundary conditions normally include materials and land cover types, such as soil type and vegetation cover. General driving forces include discharge rate, sediment loadings, tides and waves. Deltas built up of river-transported sediment occur in depositional zones of the river mouth in flat terrains and slow currents. Total sediment load depends on two major abilities of the river, the river shear stress and capacity. The shear stress determines transport of a given sediment grain size, normally expressed as tractive force. The river capacity determines the total load or quantity of total sediments transported across a section of the river, generally expressed as the sediment loading rate. The shear stress and sediment loading rate are relatively easy to measure in the headwater and transfer zones where streams form a v-shape valley and the river begins to form defined banks compared to the deposition zone where rivers broaden across lower elevation landscapes creating alluvial forms such as deltas. Determinations of deposition and re-suspension of sediment in fluvial systems are complicated due to exerting tidal, wind, and wave forces. Cyclic forces of tides and waves repeatedly change the sediment transport and deposition rate spatially and temporally in alluvial fans. However, the influence decreases with water depth. Understanding the transport, deposition, and re-suspension of sediments in the fluvial zone would provide a better understanding of the morphology of landscape in lowland estuaries such as the Apalachicola Bay and its estuary systems. The Apalachicola River system is located in the Florida Panhandle. Shelf sedimentation process is not a strong influence in this region because it is protected by barrier islands from direct ocean forces of the Gulf of Mexico. This research explores the characteristic of suspended sediment loadings in fluvial zones of the Apalachicola River and its distributaries through field investigation and laboratory analysis of a series of total suspended solid (TSS) samples. Time-series TSS samples are collected at the alluvial zone. TSS and particle-size distribution analyses are performed to determine the TSS hydrograph and particle-size distribution of suspended solids. Relationships between the TSS hydrograph, discharge hydrograph, and tidal data provide a better understanding of the deposition and re-suspension of the fluvial system in the region. Total suspended particle-size distribution data are used to determine the deposition rate or diminishing rate of alluvial landform in the estuarine system. This dataset and analysis provide excellent information for future modeling work and wetland morphologic studies in the Apalachicola River and similar systems.
Hypersonic rarefied-flow aerodynamics inferred from Shuttle Orbiter acceleration measurements
NASA Technical Reports Server (NTRS)
Blanchard, R. C.; Hinson, E. W.
1989-01-01
Data obtained from multiple flights of sensitive accelerometers on the Space Shuttle Orbiter during reentry have been used to develop an improved aerodynamic model for the Orbiter normal- and axial-force coefficients in hypersonic rarefied flow. The lack of simultaneous atmospheric density measurements was overcome in part by using the ratio of normal-to-axial acceleration, in which density cancels, as a constraint. Differences between the preflight model and the flight-acceleration-derived model in the continuum regime are attributed primarily to real gas effects. New insights are gained into the variation of the force coefficients in the transition between the continuum regime and free molecule flow.
NASA Technical Reports Server (NTRS)
Runckel, Jack F.; Hieser, Gerald
1961-01-01
An investigation has been conducted at the Langley 16-foot transonic tunnel to determine the loading characteristics of flap-type ailerons located at inboard, midspan, and outboard positions on a 45 deg. sweptback-wing-body combination. Aileron normal-force and hinge-moment data have been obtained at Mach numbers from 0.80 t o 1.03, at angles of attack up to about 27 deg., and at aileron deflections between approximately -15 deg. and 15 deg. Results of the investigation indicate that the loading over the ailerons was established by the wing-flow characteristics, and the loading shapes were irregular in the transonic speed range. The spanwise location of the aileron had little effect on the values of the slope of the curves of hinge-moment coefficient against aileron deflection, but the inboard aileron had the greatest value of the slope of the curves of hinge-moment coefficient against angle of attack and the outboard aileron had the least. Hinge-moment and aileron normal-force data taken with strain-gage instrumentation are compared with data obtained with pressure measurements.
Effect of Elastase-induced Emphysema on the Force-generating Ability of the Diaphragm
Supinski, Gerald S.; Kelsen, Steven G.
1982-01-01
The effect of emphysema on the ability of the diaphragm to generate force was examined in costal diaphragm muscle strips from 10 Golden hamsters killed 18 mo after intratracheal injection of pancreatic elastase in a dose producing hyperinflation (mean total lung capacity [TLC] = 163% of control) and generalized panacinar emphysema. 13 saline-injected normal animals served as controls. The time course of isometric tension and the effect of alterations in muscle fiber and sarcomere length on the isometric tension (T) generated in response to tetanizing electrical stimuli (length-tension [L-T] relationship) were examined. Elastase administration caused an increase in diaphragm muscle thickness and reduction in the length of costal diaphragm muscle fibers measured in situ. Emphysema significantly increased the maximum tetanic tension as a result of hypertrophy. Maximal tension corrected for increases in muscle cross-sectional area (T/cm2), however, was the same in emphysematous (E) and control (C) animals. Emphysema also shifted the muscle fiber L-T curve of the diaphragm but not of a control muscle, the soleus, toward shorter lengths. In contrast to the effects of E on the diaphragm muscle fiber L-T curve, the sarcomere L-T curve was the same in E and C. Since the length at which tension was maximal correlated closely with sarcomere number (r = 0.94; P < 0.001) reduction in the number of sarcomeres in series in muscles from emphysematous animals appeared to explain the shift in the muscle fiber L-T curve. We conclude that in elastase-induced emphysema adaptive changes both in diaphragm cross-sectional area and sarcomere number augment the force-generating ability of the diaphragm. We speculate that changes in sarcomere number compensate for alterations in muscle fiber length resulting from chronic hyperinflation of the thorax, while diaphragmatic muscle hypertrophy represents a response to changes in respiratory load and/or diaphragm configuration (LaPlace relationship). Images PMID:6922866
Schierbaum, Nicolas; Rheinlaender, Johannes; Schäffer, Tilman E
2017-06-01
Malignant transformation drastically alters the mechanical properties of the cell and its response to the surrounding cellular environment. We studied the influence of the physical contact between adjacent cells in an epithelial monolayer on the viscoelastic behavior of normal MCF10A, non-invasive cancerous MCF7, and invasive cancerous MDA-MB-231 human breast cells. Using an atomic force microscopy (AFM) imaging technique termed force clamp force mapping (FCFM) to record images of the viscoelastic material properties, we found that normal MCF10A cells are stiffer and have a lower fluidity at confluent than at sparse density. Contrarily, cancerous MCF7 and MDA-MB-231 cells do not stiffen and do not decrease their fluidity when progressing from sparse to confluent density. The behavior of normal MCF10A cells appears to be governed by the formation of stable cell-cell contacts, because their disruption with a calcium-chelator (EGTA) causes the stiffness and fluidity values to return to those at sparse density. In contrast, EGTA-treatment of MCF7 and MDA-MB-231 cells does not change their viscoelastic properties. Confocal fluorescence microscopy showed that the change of the viscoelastic behavior in MCF10A cells when going from sparse to confluent density is accompanied by a remodeling of the actin cytoskeleton into thick stress fiber bundles, while in MCF7 and MDA-MB-231 cells the actin cytoskeleton is only composed of thin and short fibers, regardless of cell density. While the observed behavior of normal MCF10A cells might be crucial for providing mechanical stability and thus in turn integrity of the epithelial monolayer, the dysregulation of this behavior in cancerous MCF7 and MDA-MB-231 cells is possibly a central aspect of cancer progression in the epithelium. We measured the viscoelastic properties of normal and cancerous human breast epithelial cells in different states of confluency using atomic force microscopy. We found that confluent normal cells are stiffer and have lower fluidity than sparse normal cells, which appears to be governed by the formation of cell-cell contacts. Contrarily, confluent cancer cells do not stiffen and not have a decreased fluidity compared to sparse cancer cells and their viscoelastic properties are independent of cell-cell contact formation. While the observed behavior of normal cells appears to be crucial for providing the mechanical stability and therefore the integrity of the epithelial monolayer, the dysregulation of this behavior in cancer cells might be a central aspect of early stage cancer progression and metastasis in the epithelium. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Penskiy, Ivan (Inventor); Charalambides, Alexandros (Inventor); Bergbreiter, Sarah (Inventor)
2018-01-01
At least one tactile sensor includes an insulating layer and a conductive layer formed on the surface of the insulating layer. The conductive layer defines at least one group of flexible projections extending orthogonally from the surface of the insulating layer. The flexible projections include a major projection extending a distance orthogonally from the surface and at least one minor projection that is adjacent to and separate from the major projection wherein the major projection extends a distance orthogonally that is greater than the distance that the minor projection extends orthogonally. Upon a compressive force normal to, or a shear force parallel to, the surface, the major projection and the minor projection flex such that an electrical contact resistance is formed between the major projection and the minor projection. A capacitive tactile sensor is also disclosed that responds to the normal and shear forces.
A linear induction motor with a coated conductor superconducting secondary
NASA Astrophysics Data System (ADS)
Chen, Xin; Zheng, Shijun; Li, Jing; Ma, Guang Tong; Yen, Fei
2018-07-01
A linear induction motor system composed of a high-Tc superconducting secondary with close-ended coils made of REBCO coated conductor wire was designed and tested experimentally. The measured thrust, normal force and power loss are presented and explained by combining the flux dynamics inside superconductors with existing linear drive theory. It is found that an inherent capacitive component associated to the flux motion of vortices in the Type-II superconductor reduces the impedance of the coils; from such, the associated Lorentz forces are drastically increased. The resulting breakout thrust of the designed linear motor system was found to be extremely high (up to 4.7 kN/m2) while the associated normal forces only a fraction of the thrust. Compared to its conventional counterparts, high-Tc superconducting secondaries appear to be more feasible for use in maglev propulsion and electromagnetic launchers.
Pataky, Todd C; Slota, Gregory P; Latash, Mark L; Zatsiorsky, Vladimir M
2012-01-10
Radial force (F(r)) distributions describe grip force coordination about a cylindrical object. Recent studies have employed only explicit F(r) tasks, and have not normalized for anatomical variance when considering F(r) distributions. The goals of the present study were (i) to explore F(r) during tangential force production tasks, and (ii) to examine the extent to which anatomical registration (i.e. spatial normalization of anatomically analogous structures) could improve signal detectability in F(r) data. Twelve subjects grasped a vertically oriented cylindrical handle (diameter=6 cm) and matched target upward tangential forces of 10, 20, and 30 N. F(r) data were measured using a flexible pressure mat with an angular resolution of 4.8°, and were registered using piecewise-linear interpolation between five manually identified points-of-interest. Results indicate that F(r) was primarily limited to three contact regions: the distal thumb, the distal fingers, and the fingers' metatacarpal heads, and that, while increases in tangential force caused significant increases in F(r) for these regions, they did not significantly affect the F(r) distribution across the hand. Registration was found to substantially reduce between-subject variability, as indicated by both accentuated F(r) trends, and amplification of the test statistic. These results imply that, while subjects focus F(r) primarily on three anatomical regions during cylindrical grasp, inter-subject anatomical differences introduce a variability that, if not corrected for via registration, may compromise one's ability to draw anatomically relevant conclusions from grasping force data. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shull, Peter B; Huang, Yangjian; Schlotman, Taylor; Reinbolt, Jeffrey A
2015-09-18
While gait retraining paradigms that alter knee loads typically focus on modifying kinematics, the underlying muscle force modifications responsible for these kinematic changes remain largely unknown. As humans are generally thought to select uniform gait muscle patterns such as strategies based on fatigue cost functions or energy minimization, we hypothesized that a kinematic gait change known to reduce the knee adduction moment (i.e. toe-in gait) would be accompanied by a uniform muscle force modification strategy for individuals with symptomatic knee osteoarthritis. Ten subjects with self-reported knee pain and radiographic evidence of medial compartment knee osteoarthritis performed normal gait and toe-in gait modification walking trials. Two hundred muscle-actuated dynamic simulations (10 steps for normal gait and 10 steps from toe-in gait for each subject) were performed to determine muscle forces for each gait. Results showed that subjects internally rotated their feet during toe-in gait, which decreased the foot progression angle by 7° (p<0.01) and reduced the first peak knee adduction moment by 20% (p<0.01). While significant muscle force modifications were evidenced within individuals, there were no consistent muscle force modifications across all subjects. It may be that self-selected muscle pattern changes are not uniform for gait modification particularly for individuals with knee pain. Future studies focused on altering knee loads should not assume consistent muscle force modifications for a given kinematic gait change across subjects and should consider muscle forces in addition to kinematics in gait retraining paradigms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experimental Investigation of Forces Produced by Misaligned Steel Rollers
NASA Technical Reports Server (NTRS)
Krantz, Timothy; DellaCorte, Christopher; Dube, Michael
2010-01-01
The International Space Station Solar Alpha Rotary Joint (SARJ) uses a roller-based mechanism for positioning of the solar arrays. The forces and moments that develop at the roller interfaces are influenced by the design including the kinematic constraints and the lubrication condition. To help understand the SARJ operation, a set of dedicated experiments were completed using roller pairs. Of primary interest was to measure the axial force directed along the axis of rotation of the roller as a function of shaft misalignment. The conditions studied included dry and clean surfaces; one surface plated by a gold film, and greased surfaces. For the case of a bare 440C roller against a nitrided 15-5 roller without lubrication, the axial force can be as great as 0.4 times the normal load for a shaft angle of 0.5 degree. Such a magnitude of force on a roller in the SARJ mechanism would cause roller tipping and contact pressures much greater than anticipated by the designers. For the case of a bare 440C roller against a nitrided 15-5 roller with grease lubrication, the axial force does not exceed about 0.15 times the normal load even for the largest misalignment angles tested. Gold films provided good lubrication for the short duration testing reported herein. Grease lubrication limited the magnitude of the axial force to even smaller magnitudes than was achieved with the gold films. The experiments demonstrate the critical role of good lubrication for the SARJ mechanism.
Experimental Investigation of Forces Produced by Misaligned Steel Rollers
NASA Technical Reports Server (NTRS)
Krantz, Timothy; DellaCorte, Christopher; Dube, Michael
2010-01-01
The International Space Station (ISS) Solar Alpha Rotary Joint (SARJ) uses a roller-based mechanism for positioning of the solar arrays. The forces and moments that develop at the roller interfaces are influenced by the design including the kinematic constraints and the lubrication condition. To help understand the SARJ operation, a set of dedicated experiments were completed using roller pairs. Of primary interest was to measure the axial force directed along the axis of rotation of the roller as a function of shaft misalignment. The conditions studied included dry and clean surfaces; one surface plated by a gold film, and greased surfaces. For the case of a bare 440C roller against a nitrided 15-5 roller without lubrication, the axial force can be as great as 0.4 times the normal load for a shaft angle of 0.5 deg. Such a magnitude of force on a roller in the SARJ mechanism would cause roller tipping and contact pressures much greater than anticipated by the designers. For the case of a bare 440C roller against a nitrided 15-5 roller with grease lubrication, the axial force does not exceed about 0.15 times the normal load even for the largest misalignment angles tested. Gold films provided good lubrication for the short duration testing reported herein. Grease lubrication limited the magnitude of the axial force to even smaller magnitudes than was achieved with the gold films. The experiments demonstrate the critical role of good lubrication for the SARJ mechanism.
Anterior Tibial Translation in Collegiate Athletes with Normal Anterior Cruciate Ligament Integrity
Rosene, John M.; Fogarty, Tracey D.
1999-01-01
Objective: To examine differences in anterior tibial translation (ATT) among sports, sex, and leg dominance in collegiate athletes with normal anterior cruciate ligament integrity. Design and Setting: Subjects from various athletic teams were measured for ATT in right and left knees. Subjects: Sixty subjects were measured for ATT with a KT-1000 knee arthrometer. Measurements: Statistical analyses were computed for each sex and included a 2 × 3 × 4 mixed-factorial analysis of variance (ANOVA) for anterior cruciate ligament displacement, right and left sides, and force and sport. A 2 × 2 × 3 mixed-factorial ANOVA was computed to compare means for sex and force. A 2 × 3 mixed-factorial ANOVA was computed to compare sex differences across 3 forces. Results: For males and females, no significant interactions were found among leg, force, and sport for mean ATT, for leg and sport or leg and force, or for translation values between dominant and nondominant legs. Males had a significant interaction for force and sport, and a significant difference was found for side of body, since the right side had less translation than the left side. Females had greater ATT than males at all forces. Conclusions: Sex differences exist for ATT, and differences in ATT exist among sports for both sexes. Differences between the right and left sides of the body should be expected when making comparisons of ligamentous laxity. ImagesFigure 2.Figure 3.Figure 5. PMID:16558565
The Armored Infantry in the US Force Structure.
1985-12-02
armored infantry and tank integration occurred during the capture of the town of Troyes , France, in 1944, by Task Force West of the 4th Armored...Singling and Troyes . The same can not be said of the foot infantryman because normally he was not associated with tanks. Such was the case in the previously
Effect of hinge-moment parameters on elevator stick forces in rapid maneuvers
NASA Technical Reports Server (NTRS)
Jones, Robert T; Greenberg, Harry
1944-01-01
The importance of the stick force per unit normal acceleration as a criterion of longitudinal stability and the critical dependence of this gradient on elevator hinge-moment parameters have been shown in previous reports. The present report continues the investigation with special reference to transient effects for maneuvers of short duration.
NASA Astrophysics Data System (ADS)
Cross, Rod
2018-03-01
Experimental and theoretical results are presented concerning the rise of a spinning egg. It was found that an egg rises quickly while it is sliding and then more slowly when it starts rolling. The angular momentum of the egg projected in the XZ plane changed in the same direction as the friction torque, as expected, by rotating away from the vertical Z axis. The latter result does not explain the rise. However, an even larger effect arises from the Y component of the angular momentum vector. As the egg rises, the egg rotates about the Y axis, an effect that is closely analogous to rotation of the egg about the Z axis. Both effects can be described in terms of precession about the respective axes. Steady precession about the Z axis arises from the normal reaction force in the Z direction, while precession about the Y axis arises from the friction force in the Y direction. Precession about the Z axis ceases if the normal reaction force decreases to zero, and precession about the Y axis ceases if the friction force decreases to zero.