Sample records for section river km

  1. Changes in river discharge and hydrograph separation in the upper basins of Yangtze and Yellow Rivers on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ding, Y.

    2017-12-01

    Systematic changes of river discharge and the concentration-discharge relation were explored to elucidate the response of river discharge to climate change as well as the connectivity of hydrologic and hydrochemical processes using hydrological data during 1956-2015 and chemical data during 2013-2015 at Yanshiping (YSP, 4,538 km2), Tuotuohe (TTH, 15,924 km2) and Zhimenda (ZMD, 137,704 km2) gauging sections in the upper basin of Yangtze River (UBYA), and at Huangheyan (HHY, 20,930 km2), Jimai (JM, 45,019 km2), Jungong (JG, 98,414 km2) and Tangnaihai (TNH, 121,972 km2) gauging sections in the upper basin of Yellow River (UBYE) on the Tibetan Plateau (TP). Results showed that annual discharge in UBYA presents a decreasing trend from 1950s to late 1970s and exhibits an increasing trend since 1970s due to increased temperature and precipitation. However, discharge in UBYE increases from 1950s to 1980s and decrease since late 1980s due to increased temperature and decreased precipitation. Snow/ice meltwater may play an important role on changes in river discharge from the most upper catchments, particularly for periods with increasing temperature, where snow cover, glaciers and frozen soils are widely distributed. Concentration/flux-discharge in discharge was dominated by a well-defined power law relation, with R2 values lower on rising than falling limbs. This finding has important implications for efforts to estimate annual concentrations and export of major solutes from similar catchments in cold regions where only river discharge is available. Concentrations of conservative solutes in discharge resulted from mixing of two end-members at the most upper gauging sections (YSP, TTH and HHY), and three end-members at the lower gauging sections (ZMD, JM, JG and TNH), with relatively constant solute concentrations in end-members. Relationship between the fractional contributions of meltwater and/or precipitation and groundwater and river discharge followed the same relation as the concentration-discharge as a result of end-member mixing. This study suggests that combining concentration-discharge and end-member mixing analyses can be used as a tool to understand runoff generation and hydrochemical process, and the export of water and solutes from the TP may affect water balance and ecosystems downstream.

  2. A systematic overview of the coincidences of river sinuosity changes and tectonically active structures in the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Petrovszki, Judit; Székely, Balázs; Timár, Gábor

    2012-12-01

    As tectonic movements change the valley slope (low-gradient reaches of valleys, in sedimentary basins), the alluvial rivers, as sensitive indicators, respond to these changes, by varying their courses to accommodate this forcing. In our study sinuosity values, a commonly used characteristic parameter to detect river pattern changes, were studied for the major rivers in the Pannonian Basin in order to reveal neotectonic influence on their planform shape. Our study area comprises the entire Pannonian Basin (330,000 km2) located in eastern Central-Europe, bounded by the Alps, Carpathians and Dinarides. The studied rivers were mostly in their natural meandering state before the main river regulations of the 19th century. The last quasi-natural, non-regulated river planforms were surveyed somewhat earlier, during the Second Military Survey of the Habsburg Empire. Using the digitized river sections of that survey, the sinuosities of the rivers were calculated with different sample section sizes ranging from 5 km to 80 km. Depending on the bank-full discharge, also a 'most representative' section size is given, which can be connected to the neotectonic activity. In total, the meandering reaches of 28 rivers were studied; their combined length is 7406 km. The places where the river sinuosity changed were compared to the structural lines of the "Atlas of the present-day geodynamics of the Pannonian Basin" (Horváth et al., 2006). 36 junctions along 26 structural lines were identified where the fault lines of this neotectonic map crossed the rivers. Across these points the mean sinuosity changed. Depending on the direction of the relative vertical movements, the sinuosity values increased or decreased. There were some points, where the sinuosity changed in an opposite way. Along these sections, the rivers belong to the range of unorganized meandering or there are lithological margins. Assuming that the rivers indicate on-going faulting accurately, some places were found, where positioning of the faults of the neotectonic map could be improved according to the sinuosity jumps. However, some significant sinuosity changes cannot be correlated to known faults. In these cases other factors may play a role (e.g., hydrological changes, increase of sediment discharge also can modify sinuosity). In order to clarify the origin of these changes seismic sections and other geodynamical information should be analyzed to prove or disprove tectonic relationship if hydrological reasons can be excluded.

  3. Correlation between river slope and meandering variability (obtained by DGPS data) and morphotectonics for two Andean tributaries of the Amazon river: the case of Beni (Bolivia) and Napo (Ecuador-Peru) rivers.

    NASA Astrophysics Data System (ADS)

    Bourrel, L.; Darrozes, J.; Guyot, J.; Christophoul, F.; Bondoux, F.

    2007-05-01

    The Beni river drains a catchment area of 282 000 km2 of which 40 percent are located in the Cordillera of the Bolivian and Peruvian Andes, and the rest in the Amazonian plain : the studied reaches runs from Guanay (Andean Piedmont) to Riberalta (junction with Madre de Dios river) that represents a distance by the river of 1055 km. The Napo river starts in the Ecuadorian Andes and leaves Ecuador in Nuevo Rocafuerte (27 400 km2) and enters in Peru until its junction with the Amazon river : the studied section runs from Misahualli (Andean Piedmont) to this junction, that represents a distance by the river of 995 km. The GPS data were acquired using a mobile GPS embarked on a boat and 4 fixed bases located along the Beni river, 6 along the Napo river and the two rivers profile calculated from post-treated differential GPS solutions. For the Beni river, two sectors were identified: - the upstream sector (~230 km) between Guanay (414 m) and 50 km downstream Rurrenabaque (245 m) is located in Andean Piedmont, which consists in a series of thrusts associated with anticlines and synclines (the subandean zone), and presents slope values range between 135 cm/km and 10 cm/km and an average index of sinuosity (IS) of 1.29, - the downstream sector (~ 820 km) which runs in Amazonian plain (until Riberalta -165 m-), is characterized by an average slope of 8 cm/km and an average IS of 2.06 (this sector is much more homogeneous and the Beni river shows a meandering channel). For the Napo River, three sectors were identified: - the first sector (~140 km) between Misahualli (401 m) and Coca (265 m), is located in Andean Piedmont (subandean zone) and presents slope values range between 170 cm/km and 30 cm/km and an average IS of 1.6, - the second sector (~250 km) between Coca (when the Napo river enters in the Amazonian plain) and Nuevo Rocafuerte (190 m), presents slope values range between 30 cm/km and 20 cm/km and an average IS of 1.2, and a convex-up shape profile corresponding to the preserved part of the Pastaza-Napo Megafan, not yet affected by headwater erosion, - the third sector (~600 km) between Nuevo Rocafuerte and the confluence with the Amazon river (101 m), where the Napo river flows through the quaternary deposits of the Pastaza-Napo Megafan, presents slope values ranging from 20 to 10 cm/km and an average IS of 1.2, and is characterized by a more classical concave-up shape profile. Our main results established using DGPS data (an important difference between the slope and IS averages of the Napo and the Beni rivers in their Amazonian part, respectively ~20 cm/km and ~8 cm/km, ie a ratio ~2.5, 1.2 and 2.06, ie a ratio ~0.6) bring an additional explanation to the results obtained by the preceding authors, with balance methods, and confirm respectively the erosion and the sedimentation behaviour of the Napo and the Beni rivers.

  4. Simulation of irrigation effect on water cycle in Yellow River catchment, China

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Watanabe, M.

    2006-12-01

    The Yellow River is 5,464 km long with a catchment area of 794,712 km2 if the Erdos inner flow area is included. This river catchment is divided between the upper region (length: 3472 km, area: 428,235 km2) from the headwater to Lanzhou in Gansu province, the middle region (length: 1,206 km, area: 343,751 km2) from Lanzhou to Huayuankou in Henan province, and the lower region (length: 786 km, area: 22,726 km2) from Huayuankou to the estuary. This river is well known for high sand content, frequent floods, unique channel characteristics in the lower reach (the river bed is higher than the land outside the banks), and the limited water resources. Since the competition of a large-scale irrigation project in 1969, noticeable river drying has been observed in the Yellow River. This flow dry-up phenomena, i.e., zero-flow in sections of the river channel, resulting from the intense competition between water supply and water demand, has occurred more and more often during the last 30 years. It is very important for decision making to ensure sustainable water resource utilization whether human activities were the only cause of the water shortage, the climate has changed during the last several decades in this catchment, and the water shortage has anything to do with climatic warming. The present research focuses on simulating the groundwater/river irrigation-effects on the water/heat dynamics in the Yellow River catchment. We combined the NIES Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama and Watanabe, 2004, 2006; Nakayama et al., 2006) with the agricultural model in order to evaluate river drying in the Yellow River (NICE-DRY). We simulated the water/heat dynamics in the entire catchment with a resolution of 10 km mesh by using the NICE-DRY. The model reproduced excellently the river discharge, soil moisture, evapotranspiration, groundwater level, crop water use, crop productivity, et al. Furthermore, we evaluated the role of irrigation on the water/heat budgets, and simulated the change of water/heat dynamics by human activity in order to help decision-making on sustainable development in the catchment.

  5. Timing of compaction and quartz cementation from integrated petrographic and burial-history analyses, Lower Cretaceous Fall River Formation, Wyoming and South Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutton, S.P.

    1997-01-01

    Integrated petrographic and burial-history studies of Fall River sandstones from outcrop and the subsurface provide insight into the timing of compaction and quartz cementation, the two main porosity-reducing processes in quartzose sandstones. Petrographic study of 95 thin sections of Fall River fluvial valley-fill sandstones from outcrop, Donkey Creek field at 2 km burial depth, and Buck Draw field at 3.8 km indicates that reservoir quality differs significantly in these three areas. Fall River sandstones at the surface contain an average of 31% intergranular volume (IGV) and 2% quartz cement. In both Donkey Creek and Buck Draw fields, the sandstones averagemore » 22% IGV, but quartz-cement volume averages 8% in the shallower field and 12% in the deeper. Geometric mean permeability at the surface is 4,700 md, compared with 42 md at 2 km and 2 md at 3.8 km. Burial history of the Fall River sandstone differs greatly in the three areas. The outcropping sandstones were buried to 2 km and had reached 80 C by the end of the Cretaceous. They were then uplifted and have remained at near-surface temperatures since the Paleocene; the calculated time-temperature index (TTI) of these sandstones is 1. Fall River sandstones at Donkey Creek were also buried to 2 km and had reached 80 C by the end of the Cretaceous but remained at that depth during the Tertiary; TTI is 14. In Buck Draw field, Fall River sandstones were buried to 2.5 km during the Cretaceous and then continued to subside during the Tertiary, reaching depths of 4 km and temperatures of 140 C; TTI is 512.« less

  6. Cumulative River Dynamic Assessment using Topo-Hydrographical High Definition Surveying in the Danube River area - Km 347-Km344

    NASA Astrophysics Data System (ADS)

    Nichersu, Iulian; Mierla, Marian; Trifanov, Cristian

    2013-04-01

    Cumulative River Dynamic Assessment using Topo-Hydrographical High Definition Surveying in the Danube River area - Km 347-Km344 Iulian NICHERSU, Cristian TRIFANOV, Marian MIERLA The purpose of this paper is to depict and illustrate the benefits of Topo-Hydrographical High Definition Surveying (THHDS), also known as 3D multi-beam scanning, on a topo-hydrological survey application in Danube Valley. This research investigates the evolution of Danube river dynamics. We start with cross-sections made in 2002, 2007 and 2010 in this area and we coupled with 2012 THHDS. 3D multi-beam scanning method of data acquisition improve the spatial hydrological model and offers better dynamics assessment for future studies, considering that this area is carried out dredging works to improve navigation conditions - THHDS technique true modeling capabilities have applications in hydrotechnical works. Dynamics stands out on all 3 axes and cartographic documents have used both the 1930, 1950, and orthophoto images taken during flight to obtain the 3D model of the floodplain through LIDAR method, in 2007.

  7. Continuous measurements of water surface height and width along a 6.5km river reach for discharge algorithm development

    NASA Astrophysics Data System (ADS)

    Tuozzolo, S.; Durand, M. T.; Pavelsky, T.; Pentecost, J.

    2015-12-01

    The upcoming Surface Water and Ocean Topography (SWOT) satellite will provide measurements of river width and water surface elevation and slope along continuous swaths of world rivers. Understanding water surface slope and width dynamics in river reaches is important for both developing and validating discharge algorithms to be used on future SWOT data. We collected water surface elevation and river width data along a 6.5km stretch of the Olentangy River in Columbus, Ohio from October to December 2014. Continuous measurements of water surface height were supplemented with periodical river width measurements at twenty sites along the study reach. The water surface slope of the entire reach ranged from during 41.58 cm/km at baseflow to 45.31 cm/km after a storm event. The study reach was also broken into sub-reaches roughly 1km in length to study smaller scale slope dynamics. The furthest upstream sub-reaches are characterized by free-flowing riffle-pool sequences, while the furthest downstream sub-reaches were directly affected by two low-head dams. In the sub-reaches immediately upstream of each dam, baseflow slope is as low as 2 cm/km, while the furthest upstream free-flowing sub-reach has a baseflow slope of 100 cm/km. During high flow events the backwater effect of the dams was observed to propagate upstream: sub-reaches impounded by the dams had increased water surface slopes, while free flowing sub-reaches had decreased water surface slopes. During the largest observed flow event, a stage change of 0.40 m affected sub-reach slopes by as much as 30 cm/km. Further analysis will examine height-width relationships within the study reach and relate cross-sectional flow area to river stage. These relationships can be used in conjunction with slope data to estimate discharge using a modified Manning's equation, and are a core component of discharge algorithms being developed for the SWOT mission.

  8. The origin and mechanisms of salinization of the Lower Jordan River

    USGS Publications Warehouse

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.

    2004-01-01

    The chemical and isotopic (87Sr/86Sr, ??11B, ??34Ssulfate, ??18Owater, ??15Nnitrate) compositions of water from the Lower Jordan River and its major tributaries between the Sea of Galilee and the Dead Sea were determined in order to reveal the origin of the salinity of the Jordan River. We identified three separate hydrological zones along the flow of the river: (1) A northern section (20 km downstream of its source) where the base flow composed of diverted saline and wastewaters is modified due to discharge of shallow sulfate-rich groundwater, characterized by low 87Sr/86Sr (0.7072), ??34Ssulfate (-2???), high ??11B (???36???), ??15Nnitrate (???15???) and high ??18Owater (-2 to-3???) values. The shallow groundwater is derived from agricultural drainage water mixed with natural saline groundwater and discharges to both the Jordan and Yarmouk rivers. The contribution of the groundwater component in the Jordan River flow, deduced from mixing relationships of solutes and strontium isotopes, varies from 20 to 50% of the total flow. (2) A central zone (20-50 km downstream from its source) where salt variations are minimal and the rise of 87Sr/86Sr and SO4/Cl ratios reflects predominance of eastern surface water flows. (3) A southern section (50-100 km downstream of its source) where the total dissolved solids of the Jordan River increase, particularly during the spring (70-80 km) and summer (80-100 km) to values as high as 11.1 g/L. Variations in the chemical and isotopic compositions of river water along the southern section suggest that the Zarqa River (87Sr/86Sr???0.70865; ??11B???25???) has a negligible affect on the Jordan River. Instead, the river quality is influenced primarily by groundwater discharge composed of sulfate-rich saline groundwater (Cl-=31-180 mM; SO4/Cl???0.2-0.5; Br/Cl???2-3??10-3; 87Sr/86Sr???0.70805; ??11B???30???; ??15Nnitrate ???17???, ??34Ssulfate=4-10???), and Ca-chloride Rift valley brines (Cl-=846-1500 mM; Br/Cl???6-8??10-3; 87Sr/86Sr???0.7080; ??11B???40???; ??34Ssulfate=4-10???). Mixing calculations indicate that the groundwater discharged to the river is composed of varying proportions of brines and sulfate-rich saline groundwater. Solute mass balance calculations point to a ???10% contribution of saline groundwater (Cl-=282 to 564 mM) to the river. A high nitrate level (up to 2.5 mM) in the groundwater suggests that drainage of wastewater derived irrigation water is an important source for the groundwater. This irrigation water appears to leach Pleistocene sediments of the Jordan Valley resulting in elevated sulfate contents and altered strontium and boron isotopic compositions of the groundwater that in turn impacts the water quality of the lower Jordan River. ?? 2004 Elsevier Ltd.

  9. Questa baseline and pre-mining ground-water quality investigation. 12. Geochemical and reactive-transport modeling based on tracer injection-synoptic sampling studies for the Red River, New Mexico, 2001-2002

    USGS Publications Warehouse

    Ball, James W.; Runkel, Robert L.; Nordstrom, D. Kirk

    2005-01-01

    Reactive-transport processes in the Red River, downstream from the town of Red River in north-central New Mexico, were simulated using the OTEQ reactive-transport model. The simulations were calibrated using physical and chemical data from synoptic studies conducted during low-flow conditions in August 2001 and during March/April 2002. Discharge over the 20-km reach from the town of Red River to the USGS streamflow-gaging station near the town of Questa ranged from 395 to 1,180 L/s during the 2001 tracer and from 234 to 421 L/s during the 2002 tracer. The pH of the Red River ranged from 7.4 to 8.5 during the 2001 tracer and from 7.1 to 8.7 during the 2002 tracer, and seep and tributary samples had pH values of 2.8 to 9.0 during the 2001 tracer and 3.8 to 7.2 during the 2002 tracer. Mass-loading calculations allowed identification of several specific locations where elevated concentrations of potential contaminants entered the Red River . These locations, characterized by features on the north side of the Red River that are known to be sources of low-pH water containing elevated metal and sulfate concentrations, are: the initial 2.4 km of the study reach, including Bitter Creek, the stream section from 6.2 to 7.8 km, encompassing La Bobita well and the Hansen debris fan, Sulphur Gulch, at about 10.5 km, the area near Portal Springs, from 12.2 to 12.6 km, and the largest contributors of mass loading, the 13.7 to 13.9 km stream section near Cabin Springs and the 14.7 to 17.5 km stream section from Shaft Spring to Thunder Bridge, Goathill Gulch, and Capulin Canyon. Speciation and saturation index calculations indicated that although solubility limits the concentration of aluminum above pH 5.0, at pH values above 7 and aluminum concentrations below 0.3 mg/L inorganic speciation and mineral solubility controls no longer dominate and aluminum-organic complexing may occur. The August 2001 reactive-transport simulations included dissolved iron(II) oxidation, constrained using measured concentrations of dissolved iron(II) and dissolved iron(total). Both simulations included precipitation of amorphous Al(OH)3 and hydrous ferric oxide as Fe(OH)3, and sorption of copper and zinc to the precipitated hydrous ferric oxide. Simulations revealed that hydrogen, iron, aluminum, copper, and zinc were non-conservative and that mineral precipitation can account for iron and aluminum concentrations. Copper and zinc concentrations can be accounted for by simulating their sorption to hydrous ferric oxide forming in the water column of the Red River , although hydrous manganese oxides also may be important sorption substrates.

  10. Late Quaternary Surface Displacement Across a Normal-Fault Structural Boundary on the Northern Lost River Fault Zone (Idaho, USA)

    NASA Astrophysics Data System (ADS)

    DuRoss, C. B.; Bunds, M. P.; Reitman, N. G.; Gold, R. D.; Personius, S. F.; Briggs, R. W.; Toke, N. A.; Johnson, K. L.; Lajoie, L. J.

    2017-12-01

    In 1983, about 36 km of the 130-km-long multisegment Lost River fault zone (LRFZ) (Idaho, USA) ruptured in the M 6.9 Borah Peak earthquake. Normal-faulting surface rupture propagated along the entire 24-km-long Thousand Springs section, then branched to the northwest along a 4-km-long fault (western section) that continues into the Willow Creek Hills, a prominent bedrock ridge that forms a structural boundary between the Thousand Springs section and Warms Springs section to the north. North of the Willow Creek Hills, the 1983 rupture continued onto the southern 8 km of the 16-km-long Warm Springs section. To improve our understanding of the Borah Peak earthquake and the role of structural boundaries in normal-fault rupture propagation, we acquired low-altitude aerial imagery of the southern 8 km of the Warm Springs section and northern 6 km of the Thousand Springs section, including the western section branch fault. Using 5-10-cm-pixel digital surface models generated from this dataset, we measured vertical surface offsets across both 1983 and prehistoric scarps. On the Warm Springs section, 1983 displacement is minor (mean of 0.3 m) compared to at least two prehistoric events having mean displacements of 1.1 m and 1.7 m inferred from displacement difference curves. Prehistoric scarps on the western section indicate rupture of this branch fault prior to 1983. Correcting for 1983 displacement, mean prehistoric displacement on the western section is 0.9 m compared to a mean of 0.7 m in 1983. Using these data and previous paleoseismic displacements, we evaluate the spatial distribution of cumulative and per-earthquake displacement. Our results suggest that at least one prehistoric rupture of the Thousand Springs section occurred with a similar length and displacement to that in 1983. Further, the 1983 spillover rupture from the Thousand Springs section to the southernmost Warm Springs section appears unique from larger displacement, prehistoric ruptures that may have spanned the majority of the Warm Springs section and possibly continued south into the Willow Creek Hills based on paleoseismic and surface-offset data. We conclude that the Willow Creek Hills structural boundary has likely moderated, but not completely impeded both prehistoric and 1983 ruptures of the northern LRFZ.

  11. Interannual kinetics (2010-2013) of large wood in a river corridor exposed to a 50-year flood event and fluvial ice dynamics

    NASA Astrophysics Data System (ADS)

    Boivin, Maxime; Buffin-Bélanger, Thomas; Piégay, Hervé

    2017-02-01

    Semi-alluvial rivers of the Gaspé Peninsula, Québec, are prone to produce and transport vast quantities of large wood (LW). The high rate of lateral erosion owing to high energy flows and noncohesive banks is the main process leading to the recruitment of large wood, which in turn initiates complex patterns of wood accumulation and reentrainment within the active channel. The delta of the Saint-Jean River (SJR) has accumulated large annual wood fluxes since 1960 that culminated in a wood raft of > 3-km in length in 2014. To document the kinetics of large wood on the main channel of SJR, four annual surveys were carried out from 2010 to 2013 to locate and describe > 1000 large wood jams (LWJ) and 2000 large wood individuals (LWI) along a 60-km river section. Airborne and ground photo/video images were used to estimate the wood volume introduced by lateral erosion and to identify local geomorphic conditions that control wood mobility and deposits. Video camera analysis allowed the examination of transport rates from three hydrometeorological events for specific river sections. Results indicate that the volume of LW recruited between 2010 and 2013 represents 57% of the total LW production over the 2004-2013 period. Volumes of wood deposited along the 60-km section were four times higher in 2013 than in 2010. Increases in wood amount occurred mainly in upper alluvial sections of the river, whereas decreases were observed in the semi-alluvial middle sections. Observations suggest that the 50-year flood event of 2010 produced large amounts of LW that were only partly exported out of the basin so that a significant amount was still available for subsequent floods. Large wood storage continued after this flood until a similar flood or an ice-breakup event could remobilise these LW accumulations into the river corridor. Ice-jam floods transport large amounts of wood during events with fairly low flow but do not contribute significantly to recruitment rates (ca. 10 to 30% early). It is fairly probable that the wood export peak observed in 2012 at the river mouth, where no flood occurred and which is similar to the 1-in 10-year flood of 2010, is mainly linked to such ice-break events that occurred in March 2012.

  12. Bank Erosion Vulnerability Zonation (BEVZ) -A Proposed Method of Preparing Bank Erosion Zonation and Its Application on the River Haora, Tripura, India

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Shreya; de, Sunil Kumar

    2014-05-01

    In the present paper an attempt has been made to propose RS-GIS based method for erosion vulnerability zonation for the entire river based on simple techniques that requires very less field investigation. This method consist of 8 parameters, such as, rainfall erosivity, lithological factor, bank slope, meander index, river gradient, soil erosivity, vegetation cover and anthropogenic impact. Meteorological data, GSI maps, LISS III (30m resolution), SRTM DEM (56m resolution) and Google Images have been used to determine rainfall erosivity, lithological factor, bank slope, meander index, river gradient, vegetation cover and anthropogenic impact; Soil map of the NBSSLP, India has been used for assessing Soil Erosivity index. By integrating the individual values of those six parameters (the 1st two parameters are remained constant for this particular study area) a bank erosion vulnerability zonation map of the River Haora, Tripura, India (23°37' - 23°53'N and 91°15'-91°37'E) has been prepared. The values have been compared with the existing BEHI-NBS method of 60 spots and also with field data of 30 cross sections (covering the 60 spots) taken along 51 km stretch of the river in Indian Territory and found that the estimated values are matching with the existing method as well as with field data. The whole stretch has been divided into 5 hazard zones, i.e. Very High, High, Moderate, Low and Very Low Hazard Zones and they are covering 5.66 km, 16.81 km, 40.82km, 29.67 km and 9.04 km respectively. KEY WORDS: Bank erosion, Bank Erosion Hazard Index (BEHI), Near Bank Stress (NBS), Erosivity, Bank Erosion Vulnerability Zonation.

  13. Constructing river stage-discharge rating curves using remotely sensed river cross-sectional inundation areas and river bathymetry

    NASA Astrophysics Data System (ADS)

    Pan, Feifei; Wang, Cheng; Xi, Xiaohuan

    2016-09-01

    Remote sensing from satellites and airborne platforms provides valuable data for monitoring and gauging river discharge. One effective approach first estimates river stage from satellite-measured inundation area based on the inundation area-river stage relationship (IARSR), and then the estimated river stage is used to compute river discharge based on the stage-discharge rating (SDR) curve. However, this approach is difficult to implement because of a lack of data for constructing the SDR curves. This study proposes a new method to construct the SDR curves using remotely sensed river cross-sectional inundation areas and river bathymetry. The proposed method was tested over a river reach between two USGS gauging stations, i.e., Kingston Mines (KM) and Copperas Creek (CC) along the Illinois River. First a polygon over each of two cross sections was defined. A complete IARSR curve was constructed inside each polygon using digital elevation model (DEM) and river bathymetric data. The constructed IARSR curves were then used to estimate 47 river water surface elevations at each cross section based on 47 river inundation areas estimated from Landsat TM images collected during 1994-2002. The estimated water surface elevations were substituted into an objective function formed by the Bernoulli equation of gradually varied open channel flow. A nonlinear global optimization scheme was applied to solve the Manning's coefficient through minimizing the objective function value. Finally the SDR curve was constructed at the KM site using the solved Manning's coefficient, channel cross sectional geometry and the Manning's equation, and employed to estimate river discharges. The root mean square error (RMSE) in the estimated river discharges against the USGS measured river discharges is 112.4 m3/s. To consider the variation of the Manning's coefficient in the vertical direction, this study also suggested a power-law function to describe the vertical decline of the Manning's coefficient with the water level from the channel bed lowest elevation to the bank-full level. The constructed SDR curve with the vertical variation of the Manning's coefficient reduced the RMSE in the estimated river discharges to 83.9 m3/s. These results indicate that the method developed and tested in this study is effective and robust, and has the potential for improving our ability of remote sensing of river discharge and providing data for water resources management, global water cycle study, and flood forecasting and prevention.

  14. Inorganic and organic carbon spatial variability in the Congo River during high waters (December 2013)

    NASA Astrophysics Data System (ADS)

    Borges, Alberto V.; Bouillon, Steven; Teodoru, Cristian; Leporcq, Bruno; Descy, Jean-Pïerre; Darchambeau, François

    2014-05-01

    Rivers are important components of the global carbon cycle, as they transport terrestrial organic matter from the land to the sea, and emit CO2 to the atmosphere. In particular, tropical systems that account for 60% of global freshwater discharge to the oceans. In contrast with south American rivers, very little information is available for African rivers on their carbon flows and stocks, in particular the Congo river, the second largest river in the World in terms of freshwater discharge (1457 km3 yr-1) and in terms of drainage basin (3.75 106 km2) located the second largest tropical forest in the World. Here, we report a data-set of continuous (every minute) records of the partial pressure of CO2 (pCO2) (total of 10,000 records), and discrete samples of particulate (POC) and dissolved (DOC) organic carbon (total of 75 samples) in the mainstem and major tributaries of the Congo river, along the 1700 km stretch from Kisangani to Kinshasa (total river length = 4374 km), during the high water period (December 2013). The pCO2 dynamic range was high ranging from minimum values of 2000 ppm in white waters tributaries (higher turbidity, conductivity and O2, lower DOC), up to maximal values of 18,000 ppm in blackwaters tributaries (lower turbidity, conductivity and O2, higher DOC). In the mainstem, very strong horizontal (cross-section) gradients were imposed by the presence of blackwaters close to the riverbanks and the presence of whitewaters in the middle of the river. In the mainstem, a distinct horizontal (longitudinal) pattern was observed with pCO2 increasing, and conductivity and turbidity decreasing downstream.

  15. Morphological changes of Gumara River channel over 50 years, upper Blue Nile basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Abate, Mengiste; Nyssen, Jan; Steenhuis, Tammo S.; Moges, Michael M.; Tilahun, Seifu A.; Enku, Temesgen; Adgo, Enyew

    2015-06-01

    In response to anthropogenic disturbances, alluvial rivers adjust their geometry. The alluvial river channels in the upper Blue Nile basin have been disturbed by human-induced factors since a longtime. This paper examines channel adjustment along a 38-km stretch of the Gumara River which drains towards Lake Tana and then to the Blue Nile. Over a 50 years period, agriculture developed rapidly in the catchment and flooding of the alluvial plain has become more frequent in recent times. The objectives of this study were to document the changes in channel planform and cross-section of the Gumara River and to investigate whether the changes could have contributed to the frequent flooding or vice versa. Two sets of aerial photographs (1957 and 1980) were scanned, and then orthorectified. Recent channel planform information was extracted from SPOT images of 2006 and Google Earth. Channel planform and bed morphology (vertical changes) were determined for these nearly 50 years period. The vertical changes were determined based on aggradation along a permanent structure, historic information on river cross-sections at a hydrological gauging station, and field observations. The results indicate that the lower reach of Gumara near its mouth has undergone major planform changes. A delta with approx. 1.12 km2 of emerged land was created between 1957 and 1980 and an additional 1 km2 of land has been added between 1980 and 2006. The sinuosity of the river changed only slightly: negatively (-1.1% i.e. meandering decreased) for the period from 1957 to 1980 and positively (+3.0%) for the period 1980-2006. Comparison of cross-sections at the hydrological gauging station showed that the deepest point in the river bed aggraded by 2.91 m for the period 1963-2009. The importance of sediment deposition in the stream and on its banks is related to land degradation in the upper catchment, and to artificial rising of Lake Tana level that creates a backwater effect and sediment deposition in Gumara River. Direct anthropogenic impacts (irrigation activities and building of dykes along the river banks) have contributed to the huge deposition in the river bed. Where the abstraction of water for irrigation is intensive, seepage water through the banks has contributed to river bank failure. In general, this study showed that changes to the planform at the mouth of the river and to the riverbed level are substantial. Moreover, the study indicated that the flood carrying capacity of the Gumara River channel has diminished in recent times.

  16. Restoring ecological integrity of great rivers: Historical hydrographs aid in defining reference conditions for the Missouri River

    USGS Publications Warehouse

    Galat, D.L.; Lipkin, R.

    2000-01-01

    Restoring the ecological integrity of regulated large rivers necessitates characterizing the natural flow regime. We applied 'Indicators of Hydrologic Alteration' to assess the natural range of variation of the Missouri River's flow regime at 11 locations before (1929-1948) and after (1967-1996) mainstem impoundment. The 3768 km long Missouri River was divided into three sections: upper basin least-altered from flow regulation, including the lower Yellowstone River; middle basin inter-reservoir, and lower basin channelized. Flow regulation was associated with a reduction in magnitude and duration of the annual flood pulse, an increase in magnitude and duration of annual discharge minima, a reduction in frequency of annual low-flow pulses, earlier timing of March-October low-flow pulses, and a general increase in frequency of flow reversals with a reduction in the rate of change in river flows. Hydrologic alterations were smallest at two least-altered upper-basin sites and most frequent and severe in inter-reservoir and upper-channelized river sections. The influence of reservoir operations on depressing the annual flood pulse was partially offset by tributary inflow in the lower 600 km of river. Reservoir operations could be modified to more closely approximate the 1929-1948 flow regime to establish a simulated natural riverine ecosystem. For inter-reservoir and upper channelized-river sections, we recommend periodic controlled flooding through managed reservoir releases during June and July; increased magnitude, frequency and duration of annual high-flow pulses; and increased annual rates of hydrograph rises and falls. All of the regulated Missouri River would benefit from reduced reservoir discharges during August-February, modified timing of reservoir releases and a reduced number of annual hydrograph reversals. Assessment of ecological responses to a reregulation of Missouri River flows that more closely approximates the natural flow regime should then be used in an adaptive fashion to further adjust reservoir operations.

  17. Effects of river-floodplain exchange on water quality and nutrient export in the dam-impacted Kafue River (Zambia)

    NASA Astrophysics Data System (ADS)

    Zurbrugg, R.; Wamulume, J.; Blank, N.; Nyambe, I.; Wehrli, B.; Senn, D. B.

    2010-12-01

    Biogeochemical processes in river-floodplain ecosystems are strongly influenced by hydrology and, in particular, river-floodplain exchange. In tropical systems, where the hydrology is dominated by distinct dry and rainy seasons, annual flood waters trigger organic matter mineralization within and nutrient export from the dried and rewetted floodplain, and the magnitude of hydrological exchange between a river and its floodplain has the potential to substantially influence nutrient and carbon exports and water quality in the river. In this study we examined the extent and the effects of hydrological river-floodplain exchange in the Kafue River and its floodplain, the Kafue Flats, in Zambia. The Kafue Flats is a 7000 km2 seasonal wetland whose hydrological regime has been impacted by upstream and downstream large dams constructed in the 1970s, leading to changes in the flooding pattern in this high-biodiversity ecosystem. Field campaigns, carried out during flood recession (May 2008, 2009, 2010) and covering a ~400 km river stretch, revealed a steep decline in dissolved oxygen from 6 mg/L to 1 mg/L over a ~20 km stretch of river beginning approximately 200 km downstream from the first dam, with low oxygen persisting for an additional 150 km downstream. To further explore this phenomenon discharge measurements (ADCP) were conducted in May 2009 and May 2010. River discharge decreased from ~600 m3/s at the upstream dam to 100 m3/s midway through the Kafue Flats, and increased to >800 m3/s towards the end of the floodplain (400 km downstream). River cross section data indicate that the dramatic decrease in discharge occured primarily because of variations in channel area and channel carrying capacity, with channel constrictions forcing ~85% of the discharge out of the river channel and into the floodplain. Using specific conductivity and δ18O-H2O as tracers for floodplain water, we estimate that the downstream increases in flow occur through lateral inflows of receding floodplain waters, induced by an expansion of the river channel, and that 80% of the downstream flow came from the floodplain. Model calculations indicate that intense exchange between river and floodplain and the introduction of low-oxygen floodplain water into the river was the primary cause of the low dissolved oxygen levels observed in the river during flood recession in May 2008-2010. This exchange also appears to play an important role in nutrient and carbon export, with the floodplain acting as a net source of phosphate (220 tons/yr), total nitrogen (1300 tons/yr, of which ~90% was organic nitrogen) and total organic carbon (50,000 tons/yr) to downstream systems.

  18. Developing Depositional Models for Mercury Contaminated Floodplain Deposits Using Geomorphic Mapping and GIS in South River, Virginia

    NASA Astrophysics Data System (ADS)

    Barbieri, A.; Pizzuto, J.; O'Neal, M. A.; Rhoades, E.

    2007-12-01

    Mercury was introduced into the South River from the 1930s to the 1950s from an industrial plant in Waynesboro, Virginia. Mercury contamination in fish tissue continues to exceed acceptable levels. The contaminated sediments in the river's floodplains are probably the present source of mercury to the South River ecosystem. Locating and determining the extent and depositional history of these deposits are important for understanding the mercury cycle in the river as well as for remediation plans. The South River is a sinuous, single thread alluvial river with frequent bedrock exposures along its bed and banks. Overbank deposits are discontinuous and thin. Rates of lateral migration by the South River are extremely low, averaging 0.02 m/yr, and the river has been influenced by mill dams along a 19 km study reach. This 19 km section of the 37 km river reach was selected for the study because of its high concentration of Hg. Six different categories of floodplain deposits dating from 1937-2005 have been identified throughout the river using studies of historical aerial photographs in a GIS framework, field mapping, dendro- and radionuclide dating, grain size and Hg analysis. Not surprisingly, traditional depositional models of meandering rivers do not apply. Floodplain depositional units include mill dam deposits, point bar/bench deposits, concave bank bench deposits, islands, cattle deposits, and tributary confluences deposits. The most important deposits for sequestering historic mercury are those that also store the most silt and clay. These include mill dam deposits, point bar/bench deposits, concave bank deposits, and tributary confluence deposits. Many of these deposits represent reservoirs of mercury-contaminated sediments that could supply significant amounts of mercury into the river presently and in the future.

  19. Hydro- and sediment dynamics in the estuary zone of the Mekong Delta: case study Dinh An estuary.

    NASA Astrophysics Data System (ADS)

    Tran, Anh Tuan; Thoss, Heiko; Gratiot, Nicolas; Dussouillez, Philippe; Brunier, Guillaume; Apel, Heiko

    2017-04-01

    The Mekong River is the tenth largest river in the world, covers an area of 795,000 km2, 4400km in length, the main river flows over the six countries including: China, Myanmar, Thailand, Laos, Cambodia and Vietnam. Its water discharge is 470 km3year-1 and the sediment discharge is estimated about 160 million ton year-1. The sediment transported by the Mekong River is the key factor in the formation and development of the delta. It is a vital factor for the stability of the coastline and river banks. Furthermore it compensates land subsidence by floodplain deposition, and is the major natural nutrient source for agriculture and aquaculture. However, only a few studies were conducted to characterize and quantify sediment properties and process in the Delta. Also the morphodynamic processes were hardly studied systematically. Hence, this study targets to fill some important and open knowledge gaps with extensive field works that provide important information about the sediment properties and hydrodynamic processes in different seasons Firstly three field survey campaigns are carried out along a 30 km section of the Bassac River from the beginning of Cu Lao Dung Island to Dinh An estuary in 2015 and 2016. During the field campaign, the movement of the salt wedge and the turbidity were monitored by vertical profiles along the river, as well as discharge measurements by ADCP were carried out at three cross sections continuously for 72 hours. The extension of the salt wedge in the river was determined, along with mixing processes. The movement and dynamics observed under different flow conditions indicate that sediment was pumped during low flow upwards the river, while during high flow net transport towards the sea dominated. Also a distinct difference in the sediment properties in the different seasons was observed, with a general tendency towards a higher proportion of coarser particles in the high flow season. These quantitative results give insights into the important sediment dynamics in the estuary and the vital sediment transport towards the coast of the Mekong delta, which is the basis for morphological stability of the coast. The results of the field campaigns will be used for the development of a detailed 3D sediment transport model (Delft 3D) for the quantification of the morphodynamic processes at Dinh An estuary.

  20. What multi-beam bathymetric data can tell about morphodynamics and sediment transport in an estuarine environment?

    NASA Astrophysics Data System (ADS)

    Winterscheid, Axel; Reiß, Marcel

    2017-04-01

    The Elbe River Estuary is one of the most important waterways for commercial shipping in Europe. It connects the North Sea with the Port of Hamburg located about 100 km inlands. To secure navigation, the Federal Waterways and Shipping Administration (WSV) is operating a fleet of survey vessels all equipped with a multi-beam echo sounder controlling the required water depths. Beyond navigational purposes, this monitoring is creating a comprehensive and ever-growing data base, which can be used for a consistent morphodynamical description of the river bed. The history of multi-beam records in the Elbe River Estuary reaches back to 2008. At particular river sections where large amounts of fine grained sediments accumulate surveys are taken biweekly; at other sections there are monthly surveys. Locally, sedimentation rates of up to 12 cm per day have been observed within the fairway. The time series of multiple multi-beam records have been analyzed with a particular focus on morphodynamics and sedimentation rates. Here we compare the morphodynamical characteristics of two river sections. The first section is located at the downstream end of the estuarine turbidity zone near the city of Cuxhaven; the second section is located 50 km away at the upstream end of the turbidity zone near the city of Hamburg. These two sections have been selected because in both the morphology of the river bed and the sedimentation processes are strongly influenced by the presence of fine grained sediments. The results show that changing sedimentation rates in both sections are conditioned by different site specific factors, e.g. the dynamic shifting of the turbidity zone along the estuary, which is resulting in a temporarily higher availability of suspended sediments and more intense sedimentation rates in the upper part of the estuary and the respective section. In contrast, in the downstream located river section more intense sedimentation rates could be related to periods of strong north-western wind conditions causing increased water levels and higher wave loads on the adjacent wadden areas of the German Bight. These processes were formerly inferred from theory and numerical studies but could not so far be supported on the basis of direct measurements due to a lack of continuous data records on sedimentation rates with a sufficiently high spatial and temporal resolution.

  1. Analysis of long-term water quality for effective river health monitoring in peri-urban landscapes--a case study of the Hawkesbury-Nepean river system in NSW, Australia.

    PubMed

    Pinto, U; Maheshwari, B L; Ollerton, R L

    2013-06-01

    The Hawkesbury-Nepean River (HNR) system in South-Eastern Australia is the main source of water supply for the Sydney Metropolitan area and is one of the more complex river systems due to the influence of urbanisation and other activities in the peri-urban landscape through which it flows. The long-term monitoring of river water quality is likely to suffer from data gaps due to funding cuts, changes in priority and related reasons. Nevertheless, we need to assess river health based on the available information. In this study, we demonstrated how the Factor Analysis (FA), Hierarchical Agglomerative Cluster Analysis (HACA) and Trend Analysis (TA) can be applied to evaluate long-term historic data sets. Six water quality parameters, viz., temperature, chlorophyll-a, dissolved oxygen, oxides of nitrogen, suspended solids and reactive silicates, measured at weekly intervals between 1985 and 2008 at 12 monitoring stations located along the 300 km length of the HNR system were evaluated to understand the human and natural influences on the river system in a peri-urban landscape. The application of FA extracted three latent factors which explained more than 70 % of the total variance of the data and related to the 'bio-geographical', 'natural' and 'nutrient pollutant' dimensions of the HNR system. The bio-geographical and nutrient pollution factors more likely related to the direct influence of changes and activities of peri-urban natures and accounted for approximately 50 % of variability in water quality. The application of HACA indicated two major clusters representing clean and polluted zones of the river. On the spatial scale, one cluster was represented by the upper and lower sections of the river (clean zone) and accounted for approximately 158 km of the river. The other cluster was represented by the middle section (polluted zone) with a length of approximately 98 km. Trend Analysis indicated how the point sources influence river water quality on spatio-temporal scales, taking into account the various effects of nutrient and other pollutant loads from sewerage effluents, agriculture and other point and non-point sources along the river and major tributaries of the HNR. Over the past 26 years, water temperature has significantly increased while suspended solids have significantly decreased (p < 0.05). The analysis of water quality data through FA, HACA and TA helped to characterise the key sections and cluster the key water quality variables of the HNR system. The insights gained from this study have the potential to improve the effectiveness of river health-monitoring programs in terms of cost, time and effort, particularly in a peri-urban context.

  2. Swath-altimetry measurements of the main stem Amazon River: measurement errors and hydraulic implications

    NASA Astrophysics Data System (ADS)

    Wilson, M. D.; Durand, M.; Jung, H. C.; Alsdorf, D.

    2015-04-01

    The Surface Water and Ocean Topography (SWOT) mission, scheduled for launch in 2020, will provide a step-change improvement in the measurement of terrestrial surface-water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water-surface elevations. In this paper, we aimed to (i) characterise and illustrate in two dimensions the errors which may be found in SWOT swath measurements of terrestrial surface water, (ii) simulate the spatio-temporal sampling scheme of SWOT for the Amazon, and (iii) assess the impact of each of these on estimates of water-surface slope and river discharge which may be obtained from SWOT imagery. We based our analysis on a virtual mission for a ~260 km reach of the central Amazon (Solimões) River, using a hydraulic model to provide water-surface elevations according to SWOT spatio-temporal sampling to which errors were added based on a two-dimensional height error spectrum derived from the SWOT design requirements. We thereby obtained water-surface elevation measurements for the Amazon main stem as may be observed by SWOT. Using these measurements, we derived estimates of river slope and discharge and compared them to those obtained directly from the hydraulic model. We found that cross-channel and along-reach averaging of SWOT measurements using reach lengths greater than 4 km for the Solimões and 7.5 km for Purus reduced the effect of systematic height errors, enabling discharge to be reproduced accurately from the water height, assuming known bathymetry and friction. Using cross-sectional averaging and 20 km reach lengths, results show Nash-Sutcliffe model efficiency values of 0.99 for the Solimões and 0.88 for the Purus, with 2.6 and 19.1 % average overall error in discharge, respectively. We extend the results to other rivers worldwide and infer that SWOT-derived discharge estimates may be more accurate for rivers with larger channel widths (permitting a greater level of cross-sectional averaging and the use of shorter reach lengths) and higher water-surface slopes (reducing the proportional impact of slope errors on discharge calculation).

  3. Cathodic protection of a remote river pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, B.A.

    1994-03-01

    The 261-km long 500-mm diam Kutubu pipeline, which runs through dense jungle swamps in Papua, New Guinea, was built for Chevron Niugini to transport oil from the remote Kutubu oil production facility in the Southern Highlands to an offshore loading facility. The pipeline was laid with a section in the bed of a wide, fast-flowing river. This section was subject to substantial telluric effects and current density variations from changing water resistivities. The cathodic protection system's effectiveness was monitored by coupon off'' potentials and required an innovative approach.

  4. Spatial Structure of a Braided River: Metric Resolution Hydrodynamic Modeling Reveals What SWOT Might See

    NASA Astrophysics Data System (ADS)

    Schubert, J.; Sanders, B. F.; Andreadis, K.

    2013-12-01

    The Surface Water and Ocean Topography (SWOT) mission, currently under study by NASA (National Aeronautics and Space Administration) and CNES (Centre National d'Etudes Spatiales), is designed to provide global spatial measurements of surface water properties at resolutions better than 10 m and with centimetric accuracy. The data produced by SWOT will include irregularly spaced point clouds of the water surface height, with point spacings from roughly 2-50 m depending on a point's location within SWOT's swath. This could offer unprecedented insight into the spatial structure of rivers. Features that may be resolved include backwater profiles behind dams, drawdown profiles, uniform flow sections, critical flow sections, and even riffle-pool flow structures. In the event that SWOT scans a river during a major flood, it becomes possible to delineate the limits of the flood as well as the spatial structure of the water surface elevation, yielding insight into the dynamic interaction of channels and flood plains. The Platte River in Nebraska, USA, is a braided river with a width and slope of approximately 100 m and 100 cm/km, respectively. A 1 m resolution Digital Terrain Model (DTM) of the river basin, based on airborne lidar collected during low-flow conditions, was used to parameterize a two-dimensional, variable resolution, unstructured grid, hydrodynamic model that uses 3 m resolution triangles in low flow channels and 10 m resolution triangles in the floodplain. Use of a fine resolution mesh guarantees that local variability in topography is resolved, and after applying the hydrodynamic model, the effects of topographic variability are expressed as variability in the water surface height, depth-averaged velocity and flow depth. Flow is modeled over a reach length of 10 km for multi-day durations to capture both frequent (diurnal variations associated with regulated flow) and infrequent (extreme flooding) flow phenomena. Model outputs reveal a number of interesting features, including a high degree of variability in the water depth and velocity and lesser variability in the free-surface profile and river discharge. Hydraulic control sections are also revealed, and shown to depend on flow stage. Reach-averaging of model output is applied to study the macro-scale balance of forces in this system, and the scales at which such a force balance is appropriate. We find that the reach-average slope exhibits a declining reach-length dependence with increasing reach length, up to reach lengths of 1 km. Hence, 1 km appears to be the minimum appropriate length for reach-averaging, and at this scale, a diffusive-wave momentum balance is a reasonable approximation suitable for emerging models of discharge estimation that rely only on SWOT-observable river properties (width, height, slope, etc.).

  5. Crustal structure revealed by a deep seismic sounding profile of Baijing-Gaoming-Jinwan in the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Ye, Xiuwei; Lv, Jinshui; Sun, Jinlong; Wang, Xiaona

    2018-02-01

    The Pearl River Estuary area, located in the middle part of the southern China coastal seismic belt, has long been considered a potential source of strong earthquakes above magnitude 7.0. To scientifically assess the potential strong earthquake risk in this area, a three-dimensional artificial seismic sounding experiment, consisting of a receiving array and seabed seismograph, was performed to reveal the deep crustal structure in this region. We used artificial ship-borne air-gun excitation shots as sources, and fixed and mobile stations as receivers to record seismic data from May to August 2015. This paper presents results along a line from the western side of the Pearl River Estuary to the western side of the Baijing-Gaoming-Jinwan profile. A two-dimensional velocity structure was constructed using seismic travel-time tomography. The inversion results show that the Moho depth is 27 km in the coastal area and 30 km in the northwest of the Pearl River Estuary area, indicating that the crust thins from land to sea. Two structural discontinuities and multiple low-velocity anomalies appear in the crustal section. Inside both discontinuity zones, a low-velocity layer, with a minimum velocity of 6.05 km s-1, exists at a depth of about 15 km, and another, with a minimum velocity of 6.37 km s-1, exists at a depth of about 21.5 km between the middle and lower crust. These low velocities suggest that the discontinuities may consist of partly molten material. Earthquakes with magnitudes higher than 5.0 occurred in the low-velocity layer along the profile. The deep Kaiping-Enping fault, rooted in the crust, may be one of the most important channels for deep material upwelling and is related to tectonic movement since the Cretaceous in the Pearl River Delta tectonic rift basin.

  6. Application of advection-diffusion routing model to flood wave propagation: A case study on Big Piney River, Missouri USA

    Treesearch

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2016-01-01

    Flood wave propagation modeling is of critical importance to advancing water resources management and protecting human life and property. In this study, we investigated how the advection-diffusion routing model performed in flood wave propagation on a 16 km long downstream section of the Big Piney River, MO. Model performance was based on gaging station data at the...

  7. River salinity on a mega-delta, an unstructured grid model approach.

    NASA Astrophysics Data System (ADS)

    Bricheno, Lucy; Saiful Islam, Akm; Wolf, Judith

    2014-05-01

    With an average freshwater discharge of around 40,000 m3/s the BGM (Brahmaputra Ganges and Meghna) river system has the third largest discharge worldwide. The BGM river delta is a low-lying fertile area covering over 100,000 km2 mainly in India and Bangladesh. Approximately two-thirds of the Bangladesh people work in agriculture and these local livelihoods depend on freshwater sources directly linked to river salinity. The finite volume coastal ocean model (FVCOM) has been applied to the BGM delta in order to simulate river salinity under present and future climate conditions. Forced by a combination of regional climate model predictions, and a basin-wide river catchment model, the 3D baroclinic delta model can determine river salinity under the current climate, and make predictions for future wet and dry years. The river salinity demonstrates a strong seasonal and tidal cycle, making it important for the model to be able to capture a wide range of timescales. The unstructured mesh approach used in FVCOM is required to properly represent the delta's structure; a complex network of interconnected river channels. The model extends 250 km inland in order to capture the full extent of the tidal influence and grid resolutions of 10s of metres are required to represent narrow inland river channels. The use of FVCOM to simulate flows so far inland is a novel challenge, which also requires knowledge of the shape and cross-section of the river channels.

  8. A sampling scheme to assess persistence and transport characteristics of xenobiotics within an urban river section

    NASA Astrophysics Data System (ADS)

    Schwientek, Marc; Guillet, Gaelle; Kuch, Bertram; Rügner, Hermann; Grathwohl, Peter

    2014-05-01

    Xenobiotic contaminants such as pharmaceuticals or personal care products typically are continuously introduced into the receiving water bodies via wastewater treatment plant (WWTP) outfalls and, episodically, via combined sewer overflows in the case of precipitation events. Little is known about how these chemicals behave in the environment and how they affect ecosystems and human health. Examples of traditional persistent organic pollutants reveal, that they may still be present in the environment even decades after they have been released. In this study a sampling strategy was developed which gives valuable insights into the environmental behaviour of xenobiotic chemicals. The method is based on the Lagrangian sampling scheme by which a parcel of water is sampled repeatedly as it moves downstream while chemical, physical, and hydrologic processes altering the characteristics of the water mass can be investigated. The Steinlach is a tributary of the River Neckar in Southwest Germany with a catchment area of 140 km². It receives the effluents of a WWTP with 99,000 inhabitant equivalents 4 km upstream of its mouth. The varying flow rate of effluents induces temporal patterns of electrical conductivity in the river water which enable to track parcels of water along the subsequent urban river section. These parcels of water were sampled a) close to the outlet of the WWTP and b) 4 km downstream at the confluence with the Neckar. Sampling was repeated at a 15 min interval over a complete diurnal cycle and 2 h composite samples were prepared. A model-based analysis demonstrated, on the one hand, that substances behaved reactively to a varying extend along the studied river section. On the other hand, it revealed that the observed degradation rates are likely dependent on the time of day. Some chemicals were degraded mainly during daytime (e.g. the disinfectant Triclosan or the phosphorous flame retardant TDCP), others as well during nighttime (e.g. the musk fragrance HHCB and the pharmaceutical oxcarbacepine). Some behaved conservatively (some phosphorous flame retardants and the pharmaceutical carbamazepine). A differing susceptibility to photo degradation appears a likely explanation. A deeper investigation of the involved processes will be subject of future studies.

  9. The flash flood of October 2011 in the Magra River basin (Italy): rainstorm characterisation and flood response analysis

    NASA Astrophysics Data System (ADS)

    Marchi, Lorenzo; Boni, Giorgio; Cavalli, Marco; Comiti, Francesco; Crema, Stefano; Lucía, Ana; Marra, Francesco; Zoccatelli, Davide

    2013-04-01

    On 25 October 2011, the Magra River, a stream of northwest Italy outflowing into the Ligurian Sea, was affected by a flash flood, which caused severe economic damage and loss of lives. The catchment covers an area of 1717 km2, of which 605 km2 are drained by the Vara River, the major tributary of the Magra River. The flood was caused by an intense rainstorm which lasted approximately 20 hours. The most intense phase lasted about 8 hours, with rainfall amounts up to around 500 mm. The largest rainfall depths (greater than 300 mm) occurred in a narrow southwest - northeast oriented belt covering an area of approximately 400 km2. This flash flood was studied by analysing rainstorm characteristics, runoff response and geomorphic effects. The rainfall fields used in the analysis are based on data from the Settepani weather radar antenna (located at around 100 km from the study basin) and the local rain gauge network. Radar observations and raingauge data were merged to obtain rainfall estimates at 30 min with a resolution of 1 km2. River stage and discharge rating curves are available for few cross-sections on the main channels. Post-flood documentation includes the reconstruction of peak discharge by means of topographic surveys and application of the slope-conveyance method in 34 cross-sections, observations on the geomorphic effects of the event - both in the channel network and on the hillslopes - and the assessment of the timing of the flood based on interviews to eyewitnesses. Regional authorities and local administrations contributed to the documentation of the flood by providing hydrometeorological data, civil protection volunteers accounts, photos and videos recorded during and immediately after the flood. A spatially distributed rainfall-runoff model, fed with rainfall estimates obtained by the radar-derived observations, was used to check the consistency of field-derived peak discharges and to derive the time evolution of the flood. The assessment of unit peak discharges confirmed the severity of the flood, with values up to approximately 20 m3s-1km-2 in catchments up to 10-20 km2. The strong spatial gradients of the precipitation had a major influence on flood response, with large differences in peak discharge between neighbouring catchments. The magnitude of sediment transport processes, featuring as well a large variability among sub-basins, seems to have been controlled both by peak water discharge and by local geomorphological conditions affecting sediment supply, i.e. occurrence of large landslides connected to the channel network. A striking characteristic of the flood event was the recruitment and transport of large amounts of wood elements, deriving mostly from eroded portions of floodplains and islands along the main channels.

  10. Plan form changes of Gumara River channel over 50 years (Upper Blue Nile basin, Ethiopia)

    NASA Astrophysics Data System (ADS)

    Abate, Mengiste; Nyssen, Jan; Mehari, Michael

    2014-05-01

    Channel plan form changes were investigated along the 65 km long Gumara River in Lake Tana basin (Ethiopia) by overlaying information from aerial photographs and SPOT imagery. Two sets of aerial photographs (1957 and 1980) were scanned, and then orthorectified in ENVI 4.2 environment. Recent channel plan form information was extracted from SPOT images of 2006. ERDAS 2010 and ArcGIS 10.1 tools were used for the data preparation and analysis. The information on river plan form changes spans from 1957 to 2006 (49 years), during which time the Gumara catchment has been subjected to changes in land use/cover and increasing water abstraction, which may have affected its hydrogeomorphology. The results indicated that the lower reach of Gumara at its mouth has undergone major plan form changes. A delta of 1.12 km² was created between 1957 and 1980 and additional 1.00 km² land has been created between 1980 and 2006. The sinuosity of the plan form changed only slightly through the study period: 1.78 in 1957, 1.76 in 1980, and 1.81 in 2006. Comparison of cross sections at the hydrological gauging station showed that the river bed aggraded in the order of 1.5 m to 2.5 m for the period 1963-2009. The trend analysis of stream flow of Gumara River versus rainfall in the catchment also indicated that the bed level of the Gumara river at its gauging station has risen. From field observations, the impact of direct human interventions was identified. The building of artificial levees along the river banks has contributed to huge deposition in the river bed. At locations where intensive irrigation takes place in the floodplain, seepage water through the banks created river bank failure and modifications in plan form. The unstable segments of the river reach were identified and will be further analysed.

  11. Trends and future challenges of water resources in the Tigris-Euphrates Rivers basin in Iraq

    NASA Astrophysics Data System (ADS)

    Issa, I. E.; Al-Ansari, N. A.; Sherwany, G.; Knutsson, S.

    2013-12-01

    Iraq is one of the riparian countries within basins of Tigris-Euphrates Rivers in the Middle East region. The region is currently facing water shortage problems due to the increase of the demand and climate changes. In the present study, average monthly water flow measurements for 15 stream flow gaging stations within basins of these rivers in Iraq with population growth rate data in some of its part were used to evaluate the reality of the current situation and future challenges of water availability and demand in Iraq. The results showed that Iraq receives annually 70.29 km3 of water 45.4 and 25.52 km3 from River Tigris and Euphrates respectively. An amount of 18.04 km3 is supplied by its tributaries inside Iraq. The whole amount of water in the Euphrates Rivers comes outside the Iraqi borders. Annual decrease of the water inflow is 0.1335 km3 yr-1 for Tigris and 0.245 km3 yr-1 for Euphrates. This implies the annual percentage reduction of inflow rates for the two rivers is 0.294 and 0.960% respectively. Iraq consumes annually 88.89% (63.05 km3) of incoming water from the two rivers, where about 60.43 and 39.57% are from Rivers Tigris and Euphrates respectively. Water demand increases annually by 0.896 km3; of which 0.5271 and 0.475 km3 within Tigris and Euphrates basins respectively. The average water demand in 2020 will increase to 42.844 km3 yr-1 for Tigris basin and for Euphrates 29.225 km3 yr-1 (total 72.069 km3 yr-1), while water availability will decrease to 63.46 km3 yr-1. This means that the overall water shortage will be restricted to 8.61 km3.

  12. Epic Erosion Along Newly Constructed Roads in Yunnan, China

    NASA Astrophysics Data System (ADS)

    Sidle, R. C.; Kono, Y.; Yamaguchi, T.

    2007-05-01

    The recent expansion and construction of new mountain roads in northwestern Yunnan Province, China, poses problems related to landslides and surface erosion that are impacting the headwaters of three great river systems: the Salween, Mekong, and Yangtze. Many of these newer roads are simply blasted into unstable hillsides with virtually no attention paid to optimal road location, construction practices, and erosion control measures. During summer 2006, seven people traveling in a minivan along a newly constructed road to Weixi were killed by a landslide. A survey conducted along a this 23.5 km road section (4 yr old) in the headwaters of the Mekong River revealed epic levels of landslides and surface erosion. Based on a preliminary survey, the road erosion was categorized as moderately severe, severe, or very severe, and a representative 0.75 to 0.90 km stretch of road was then surveyed for both landslide (based on dimensional analysis) and surface erosion (based on soil pedestal height). Average mass wasting rates (9608 t ha-1yr-1) along the road were more than 13 times higher than surface erosion (720 t ha-1yr-1), even though surface erosion rates are among the highest reported for disturbed lands. Dry ravel constituted a minor proportion of the mass wasting: 4% in the severe erosion section of the road and 0.5-0.6% in the moderately severe and very severe sections. For the very severe erosion road section (6 km long), estimated landslide erosion alone was > 33,000 t ha- 1yr-1, 620 times the average landslide erosion from forest roads built in unstable terrain in western North America. These levels of landslide erosion along the Weixi road are the highest ever documented and are somewhat representative of erosion along new mountain roads in this region of Yunnan. Sediment produced from roads is highly connected to fluvial systems; we estimate that 80-95% of the direct sediment contributions into the headwaters of these rivers are attributable to road erosion and landslides. These epic sediment loads represent cumulative effects that may persist in these important transnational rivers for decades.

  13. Hydrographic survey of Chaktomuk, the confluence of the Mekong, Tonlé Sap, and Bassac Rivers near Phnom Penh, Cambodia, 2012

    USGS Publications Warehouse

    Dietsch, Benjamin J.; Densmore, Brenda K.; Wilson, Richard C.

    2014-01-01

    Detailed hydrographic maps of Mekong, Tonlé Sap, and Bassac Rivers showing the riverbed elevations surveyed April 21–May 2, 2012, referenced to Ha Tien 1960 were produced. The surveyed area included a 2-km stretch of the Mekong River between the confluence with the Tonlé Sap and Bassac Rivers, and extended 4 km upstream and 3.6 km downstream from the 2,000-m confluence stretch of the Mekong River. In addition, 0.7 km of the Bassac River downstream and 3.5 km of the Tonlé Sap River (from the confluence to Chroy Changvar Bridge) upstream from their confluence with the Mekong River were surveyed. Riverbed features (such as dunes, shoals, and the effects of sediment mining, which were observed during data collection) are visible on the hydrographic maps. All surveys were completed at low annual water levels as referenced to nearby Mekong River Commission streamflow-gaging stations. Riverbed elevations surveyed ranged from 24.08 m below to 1.54 m above Ha Tien 1960.

  14. Trace element fluxes in sediments of an environmentally impacted river from a coastal zone of Brazil.

    PubMed

    da Silva, Yuri Jacques Agra Bezerra; Cantalice, José Ramon Barros; Singh, Vijay P; do Nascimento, Clístenes Williams Araújo; Piscoya, Victor Casimiro; Guerra, Sérgio M S

    2015-10-01

    Data regarding trace element concentrations and fluxes in suspended sediments and bedload are scarce. To fill this gap and meet the international need to include polluted rivers in future world estimation of trace element fluxes, this study aimed to determine the trace element fluxes in suspended sediment and bedload of an environmentally impacted river in Brazil. Water, suspended sediment, and bedload from both the upstream and the downstream cross sections were collected. To collect both the suspended sediment and water samples, we used the US DH-48. Bedload measurements were carried out using the US BLH 84 sampler. Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined by inductively coupled plasma (ICP-OES). As and Hg were determined by an atomic absorption spectrophotometer (AA-FIAS). The suspended sediments contributed more than 99 % of the trace element flux. By far Pb and to a less extent Zn at the downstream site represents major concerns. The yields of Pb and Zn in suspended sediments were 4.20 and 2.93 kg km(2) year(-1), respectively. These yields were higher than the values reported for Pb and Zn for Tuul River (highly impacted by mining activities), 1.60 and 1.30 kg km(2) year(-1), respectively, as well as the Pb yield (suspended + dissolved) to the sea of some Mediterranean rivers equal to 3.4 kg km(2) year(-1). Therefore, the highest flux and yield of Pb and Zn in Ipojuca River highlighted the importance to include medium and small rivers-often overlooked in global and regional studies-in the future estimation of world trace element fluxes in order to protect estuaries and coastal zones.

  15. Tectonic Signals Deduced from Quantitative Analysis of Geomorphic Parameters in Bedrock Rivers and Structural Mapping: A case study from the Surai Khola Siwalik Section, Nepalese Himalaya

    NASA Astrophysics Data System (ADS)

    Bhattarai, I.; Gani, N. D.

    2016-12-01

    The Nepalese Himalaya is one of the most active regions within the Himalayan Mountain Belt, which is characterized by a thick succession of Siwalik sedimentary rocks deposited at its foreland basin. To date, much of the tectonic geomorphologic study in the Nepalese Siwalik is poorly understood, particularly in the Surai Khola section. Thus, the study of quantitative analysis of bedrock river parameters will provide crucial information regarding tectonic activities in the area. This study investigates geomorphic parameters of longitudinal river profiles from 54 watersheds within the Siwalik section of the Nepalese Himalaya. We extracted a total of 140 bedrock rivers from these watersheds using stream power-law function and 30-meter resolution ASTER DEM. In addition, we used 90-meter resolution SRTM DEM for structural mapping within the Surai Khola section. Our new results show presence of major and minor knickpoints that were classified on the basis of relief of the longitudinal profiles. We identified 180 major knickpoints out of 305 total knickpoints. Normalized steepness index (ksn) and concavity index values vary above and below these knicpoints. The ksn values range from 5.3 to 140.6 while concavity index of the streams in the study area ranges from as low as -12.1 to as high as 31.1. We also identified a total of 133 structural lineations that were mapped for the first time using various sun illumination angles and azimuths, and slope. Most of these structural lineations are likely faults that follow the similar east-west trends of the Main Frontal Thrust (MFT) Fault. The length of these faults ranges from 0.5 km to 8 km. We interpreted that a few measured knickpoints might be associated with our mapped mesoscale faults, while the majority of the knickpoints in the river profiles are locally adjusting to the MFT related uplift.

  16. The Northern end of the Dead Sea Basin: Geometry from reflection seismic evidence

    USGS Publications Warehouse

    Al-Zoubi, A. S.; Heinrichs, T.; Qabbani, I.; ten Brink, Uri S.

    2007-01-01

    Recently released reflection seismic lines from the Eastern side of the Jordan River north of the Dead Sea were interpreted by using borehole data and incorporated with the previously published seismic lines of the eastern side of the Jordan River. For the first time, the lines from the eastern side of the Jordan River were combined with the published reflection seismic lines from the western side of the Jordan River. In the complete cross sections, the inner deep basin is strongly asymmetric toward the Jericho Fault supporting the interpretation of this segment of the fault as the long-lived and presently active part of the Dead Sea Transform. There is no indication for a shift of the depocenter toward a hypothetical eastern major fault with time, as recently suggested. Rather, the north-eastern margin of the deep basin takes the form of a large flexure, modestly faulted. In the N-S-section along its depocenter, the floor of the basin at its northern end appears to deepen continuously by roughly 0.5??km over 10??km distance, without evidence of a transverse fault. The asymmetric and gently-dipping shape of the basin can be explained by models in which the basin is located outside the area of overlap between en-echelon strike-slip faults. ?? 2007 Elsevier B.V. All rights reserved.

  17. Digital Elevation Model Correction for the thalweg values of Obion River system, TN

    NASA Astrophysics Data System (ADS)

    Dullo, T. T.; Bhuyian, M. N. M.; Hawkins, S. A.; Kalyanapu, A. J.

    2016-12-01

    Obion River system is located in North-West Tennessee and discharges into the Mississippi River. To facilitate US Department of Agriculture (USDA) to estimate water availability for agricultural consumption a one-dimensional HEC-RAS model has been proposed. The model incorporates the major tributaries (north and south), main stem of Obion River along with a segment of the Mississippi River. A one-meter spatial resolution Light Detection and Ranging (LiDAR) derived Digital Elevation Model (DEM) was used as the primary source of topographic data. LiDAR provides fine-resolution terrain data over given extent. However, it lacks in accurate representation of river bathymetry due to limited penetration beyond a certain water depth. This reduces the conveyance along river channel as represented by the DEM and affects the hydrodynamic modeling performance. This research focused on proposing a method to overcome this issue and test the qualitative improvement by the proposed method over an existing technique. Therefore, objective of this research is to compare effectiveness of a HEC-RAS based bathymetry optimization method with an existing hydraulic based DEM correction technique (Bhuyian et al., 2014) for Obion River system in Tennessee. Accuracy of hydrodynamic simulations (upon employing bathymetry from respective sources) would be regarded as the indicator of performance. The aforementioned river system includes nine major reaches with a total river length of 310 km. The bathymetry of the river was represented via 315 cross sections equally spaced at about one km. This study targeted to selecting best practice for treating LiDAR based terrain data over complex river system at a sub-watershed scale.

  18. 55. Mayfield (Imper 1991b)

    Treesearch

    Sheauchi Cheng

    2004-01-01

    This candidate RNA is on the Lassen National Forest in Siskiyou County. It is approximately 37 air miles (60 km) due E. of Mount Shasta and about 27 miles (43 km) N. of Fall River Mills. The cRNA lies within the Hat Creek Ranger District. Its boundaries include parts of sections 10, 11, 12, 14, and 15 of T40N, R3E MDM (41°19'N., 122°36'W.), USGS Hambone quad...

  19. Distribution and movement of Big Spring spinedace (Lepidomeda mollispinis pratensis) in Condor Canyon, Meadow Valley Wash, Nevada

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.

    2013-01-01

    Big Spring spinedace (Lepidomeda mollispinis pratensis) is a cyprinid whose entire population occurs within a section of Meadow Valley Wash, Nevada. Other spinedace species have suffered population and range declines (one species is extinct). Managers, concerned about the vulnerability of Big Spring spinedace, have considered habitat restoration actions or translocation, but they have lacked data on distribution or habitat use. Our study occurred in an 8.2-km section of Meadow Valley Wash, including about 7.2 km in Condor Canyon and 0.8 km upstream of the canyon. Big Spring spinedace were present upstream of the currently listed critical habitat, including in the tributary Kill Wash. We found no Big Spring spinedace in the lower 3.3 km of Condor Canyon. We tagged Big Spring spinedace ≥70 mm fork length (range 70–103 mm) with passive integrated transponder tags during October 2008 (n = 100) and March 2009 (n = 103) to document movement. At least 47 of these individuals moved from their release location (up to 2 km). Thirty-nine individuals moved to Kill Wash or the confluence area with Meadow Valley Wash. Ninety-three percent of movement occurred in spring 2009. Fish moved both upstream and downstream. We found no movement downstream over a small waterfall at river km 7.9 and recorded only one fish that moved downstream over Delmue Falls (a 12-m drop) at river km 6.1. At the time of tagging, there was no significant difference in fork length or condition between Big Spring Spinedace that were later detected moving and those not detected moving. We found no significant difference in fork length or condition at time of tagging of Big Spring spinedace ≥70 mm fork length that were detected moving and those not detected moving. Kill Wash and its confluence area appeared important to Big Spring spinedace; connectivity with these areas may be key to species persistence. These areas may provide a habitat template for restoration or translocation. The lower 3.3 km of Meadow Valley Wash in Condor Canyon may be a good candidate section for habitat restoration actions.

  20. Crustal-scale thrusting and origin of the Montreal River monocline-A 35-km-thick cross section of the midcontinent rift in northern Michigan and Wisconsin

    USGS Publications Warehouse

    Cannon, W.F.; Peterman, Z.E.; Sims, P.K.

    1993-01-01

    A structurally simple, 35-km-thick, north facing stratigraphic succession of Late Archean to Middle Proterozoic rocks is exposed near the Montreal River, which forms the border between northern Wisconsin and Michigan. This structure, the Montreal River monocline, is composed of steeply dipping to vertical sedimentary rocks and flood basalts of the Keweenawan Supergroup (Middle Proterozoic) along the south limb of the Midcontinent rift, and disconformably underlying sedimentary rocks of the Marquette Range Supergroup (Early Proterozoic). These rocks lie on an Archean granite-greenstone complex, about 10 km of which is included in the monocline. This remarkable thickness of rocks appears to be essentially structurally intact and lacks evidence of tectonic thickening or repetition.Tilting to form the monocline resulted from southward thrusting on listric faults of crustal dimension. The faults responsible for the monocline are newly recognized components of a well-known regional fault system that partly closed and inverted the Midcontinent rift system. Resetting of biotite ages on the upper plate of the faults indicates that faulting and uplift occurred at about 1060 +/−20 Ma and followed very shortly after extension that formed the Midcontinent rift system.

  1. Diversity in migratory patterns among Neotropical fishes in a highly regulated river basin.

    PubMed

    Makrakis, M C; Miranda, L E; Makrakis, S; Fontes Júnior, H M; Morlis, W G; Dias, J H P; Garcia, J O

    2012-07-01

    Migratory behaviour of selected fish species is described in the Paraná River, Brazil-Argentina-Paraguay, to search for patterns relevant to tropical regulated river systems. In a 10 year mark-recapture study, spanning a 1425 km section of the river, 32 867 fishes composed of 18 species were released and 1083 fishes were recaptured. The fishes recaptured were at liberty an average 166 days (maximum 1548 days) and travelled an average 35 km (range 0-625 km). Cluster analysis applied to variables descriptive of movement behaviour identified four general movement patterns. Cluster 1 included species that moved long distances (mean 164 km) upstream (54%) and downstream (40%) the mainstem river and showed high incidence (27%) of passage through dams; cluster 2 also exhibited high rate of movement along the mainstem (49% upstream, 13% downstream), but moved small distances (mean 10 km); cluster 3 included the most fishes moving laterally into tributaries (45%) or not moving at all (25%), but little downstream movement (8%); fishes in cluster 4 exhibited little upstream movement (13%) and farthest downstream movements (mean 41 km). Whereas species could be numerically clustered with statistical models, a species ordination showed ample spread, suggesting that species exhibit diverse movement patterns that cannot be easily classified into just a few classes. The cluster and ordination procedures also showed that adults and juveniles of the same species exhibit similar movement patterns. Conventional concepts about Neotropical migratory fishes portray them as travelling long distances upstream. The present results broaden these concepts suggesting that migratory movements are more diverse, could be long, short or at times absent, upriver, downriver or lateral, and the diversity of movements can vary within and among species. The intense lateral migrations exhibited by a diversity of species, especially to and from large tributaries (above reservoirs) and reservoir tributaries, illustrate the importance of these habitats for the fish species life cycle. Considering that the Paraná River is highly impounded, special attention should be given to the few remaining low-impact habitats as they continue to be targets of hydropower development that will probably intensify the effects on migratory fish stocks. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  2. Seasonal Movement and Distribution of Fluvial Adult Bull Trout in Selected Watersheds in the Mid-Columbia River and Snake River Basins

    PubMed Central

    Starcevich, Steven J.; Howell, Philip J.; Jacobs, Steven E.; Sankovich, Paul M.

    2012-01-01

    From 1997 to 2004, we used radio telemetry to investigate movement and distribution patterns of 206 adult fluvial bull trout (mean, 449 mm FL) from watersheds representing a wide range of habitat conditions in northeastern Oregon and southwestern Washington, a region for which there was little previous information about this species. Migrations between spawning and wintering locations were longest for fish from the Imnaha River (median, 89 km) and three Grande Ronde River tributaries, the Wenaha (56 km) and Lostine (41 km) rivers and Lookingglass Creek (47 km). Shorter migrations were observed in the John Day (8 km), Walla Walla (20 km) and Umatilla river (22 km) systems, where relatively extensive human alterations of the riverscape have been reported. From November through May, fish displayed station-keeping behavior within a narrow range (basin medians, 0.5–6.2 km). Prespawning migrations began after snowmelt-driven peak discharge and coincided with declining flows. Most postspawning migrations began by late September. Migration rates of individuals ranged from 0.1 to 10.7 km/day. Adults migrated to spawning grounds in consecutive years and displayed strong fidelity to previous spawning areas and winter locations. In the Grande Ronde River basin, most fish displayed an unusual fluvial pattern: After exiting the spawning tributary and entering a main stem river, individuals moved upstream to wintering habitat, often a substantial distance (maximum, 49 km). Our work provides additional evidence of a strong migratory capacity in fluvial bull trout, but the short migrations we observed suggest adult fluvial migration may be restricted in basins with substantial anthropogenic habitat alteration. More research into bull trout ecology in large river habitats is needed to improve our understanding of how adults establish migration patterns, what factors influence adult spatial distribution in winter, and how managers can protect and enhance fluvial populations. PMID:22655037

  3. Effects of fluvial processes in different order river valleys on redistribution and storage of particle-bound radioactive caesium-137 in area of significant Chernobyl fallout and impact on linked rivers with lower contamination levels

    NASA Astrophysics Data System (ADS)

    Belyaev, Vladimir; Golosov, Valentin; Shamshurina, Evgeniya; Ivanov, Maxim; Ivanova, Nadezhda; Bezukhov, Dmitry; Onda, Yuichi; Wakiyama, Yoshifumi; Evrard, Olivier

    2015-04-01

    Detailed investigations of the post-fallout fate of radionuclide contamination represent an important task in terms of environmental quality assessment. In addition, particle-bound radionuclides such as the most widespread anthropogenic isotope caesium-137 can be used as tracers for quantitative assessment of different sediment redistribution processes. In landscapes of humid plains with agriculture-dominated land use the post-fallout redistribution of caesium-137 is primarily associated with fluvial activity of various scales in cascade systems starting from soil erosion on cultivated hillslopes through gully and small dry valley network into different order perennial streams and rivers. Our investigations in the so-called Plavsk hotspot (area of very high Chernobyl caesium-137 contamination within the Plava River basin, Tula Region, Central European Russia) has been continuing for more than 15 years by now, while the time passed since the Chernobyl disaster and associated radioactive fallout (1986) is almost 29 years. Detailed information on the fluvial sediment and associated caesium-137 redistribution has been obtained for case study sites of different size from individual cultivated slopes and small catchments of different size (2-180 km2) to the entire Plava River basin scale (1856 km2). It has been shown that most of the contaminated sediment over the time passed since the fallout has remained stored within the small dry valleys of the 1-4 Hortonian order and local reservoirs (>70%), while only about 5% reached the 5-6 order valleys (main tributaries of the Plava River) and storage of the Plava floodplain itself represents as low as 0.3% of the basin-scale total sediment production from eroded cultivated hillslopes. Nevertheless, it has been shown that contaminated sediment yield from the Plava River basin exerts significant influence on less polluted downstream-linked river system. Recent progress of the investigations involved sampling of 7 detailed depth-incremental floodplain sediment sections along the Upa River valley, which is the receiving river for the Plava and is characterized by generally much lower caesium-137 contamination within other parts of its basin. One of the sampled sections was located several kilometers upstream from the Plava River mouth and the other 6 - at different distances downstream starting from about 2 km to about 40 km. In this case we can assume the Plava River mouth to be the point-source of sediment-associated radioactive contamination additional to the initial fallout. It has been found that while at the nearest point downstream the floodplain sediment contamination by caesium-137 is about 2 order of magnitude higher, than upstream, it decreases quickly along the Upa River valley two about 3 times higher than upstream at the most remote downstream point. Importantly, the decrease is not represented by gradual and uniform curve. In contrast, it is interrupted by local increase caused by smaller tributary from relatively high contamination area. It is believed that the obtained information on decadal-scale sediment and associated post-fallout caesium-137 redistribution through the fluvial network, patterns of sinks and rate of contamination propagation into the less polluted downstream-linked river basin can be used for testing and improving the predictive models being developed for applications in other contaminated areas such as river basins around the Fukushima Daiichi nuclear power plant, providing that differences in landscape settings, hydrological regime and land use patterns are taken into account.

  4. An assessment of fish assemblage structure in a large river

    USGS Publications Warehouse

    Kiraly, Ian A.; Coghlan, S.M.; Zydlewski, Joseph D.; Hayes, D.

    2015-01-01

    The Penobscot River drains the largest watershed in Maine and once provided spawning and rearing habitats to 11 species of diadromous fishes. The construction of dams blocked migrations of these fishes and likely changed the structure and function of fish assemblages throughout the river. The proposed removal of two main-stem dams, improved upstream fish passage at a third dam, and construction of a fish bypass on a dam obstructing a major tributary is anticipated to increase passage of and improve habitat connectivity for both diadromous and resident fishes. We captured 61 837 fish of 35 species in the Penobscot River and major tributaries, through 114 km of boat electrofishing. Patterns of fish assemblage structure did not change considerably during our sampling; relatively few species contributed to seasonal and annual variability within the main-stem river, including smallmouth bass Micropterus dolomieu, white sucker Catostomus commersonii, pumpkinseed Lepomis gibbosus, and golden shiner Notemigonus crysoleucas. However, distinct fish assemblages were present among river sections bounded by dams. Many diadromous species were restricted to tidal waters downriver of the Veazie Dam; Fundulus species were also abundant within the tidal river section. Smallmouth bass and pumpkinseed were most prevalent within the Veazie Dam impoundment and the free-flowing river section immediately upriver, suggesting the importance of both types of habitat that supports multiple life stages of these species. Further upriver, brown bullhead Ameiurus nebulosus, yellow perch Perca flavescens, chain pickerel Esox niger, and cyprinid species were more prevalent than within any other river section. Our findings describe baseline spatial patterns of fish assemblages in the Penobscot River in relation to dams with which to compare assessments after dam removal occurs.

  5. Geochemistry of the dissolved loads of the Liao River basin in northeast China under anthropogenic pressure: Chemical weathering and controlling factors

    NASA Astrophysics Data System (ADS)

    Ding, Hu; Liu, Cong-Qiang; Zhao, Zhi-Qi; Li, Si-Liang; Lang, Yun-Chao; Li, Xiao-Dong; Hu, Jian; Liu, Bao-Jian

    2017-05-01

    This study focuses on the chemical and Sr isotopic compositions of the dissolved load of the rivers in the Liao River basin, which is one of the principal river systems in northeast China. Water samples were collected from both the tributaries and the main channel of the Liao River, Daling River and Hun-Tai River. Chemical and isotopic analyses indicated that four major reservoirs (carbonates (+gypsum), silicates, evaporites and anthropogenic inputs) contribute to the total dissolved solutes. Other than carbonate (+gypsum) weathering, anthropogenic inputs provide the majority of the solutes in the river water. The estimated chemical weathering rates (as TDS) of silicate, carbonate (+gypsum) and evaporites are 0.28, 3.12 and 0.75 t/km2/yr for the main stream of the Liao River and 7.01, 25.0 and 2.80 t/km2/yr for the Daliao River, respectively. The associated CO2 consumption rates by silicate weathering and carbonate (+gypsum) weathering are 10.1 and 9.94 × 103 mol/km2/yr in the main stream of the Liao River and 69.0 and 80.4 × 103 mol/km2/yr in the Hun-Tai River, respectively. The Daling River basin has the highest silicate weathering rate (TDSsil, 3.84 t/km2/yr), and the Hun-Tai River has the highest carbonate weathering rate (TDScarb, 25.0 t/km2/yr). The Raoyang River, with an anthropogenic cation input fraction of up to 49%, has the lowest chemical weathering rates, which indicates that human impact is not a negligible parameter when studying the chemical weathering of these rivers. Both short-term and long-term study of riverine dissolved loads are needed to a better understanding of the chemical weathering and controlling factors.

  6. Influence of urban area on the water quality of the Campo River basin, Paraná State, Brazil.

    PubMed

    Carvalho, K Q; Lima, S B; Passig, F H; Gusmão, L K; Souza, D C; Kreutz, C; Belini, A D; Arantes, E J

    2015-12-01

    The Campo River basin is located on the third plateau of the Paraná State or trap plateau of Paraná, at the middle portion between the rivers Ivaí and Piquiri, southern Brazil, between the coordinates 23° 53 and 24° 10' South Latitude and 52° 15' and 52° 31' West Longitude. The basin has 384 Km² area, being 247 km² in the municipality of Campo Mourão and 137 km² in the municipality of Peabiru, in Paraná State. The Campo River is a left bank tributary of the Mourão River, which flows into the Ivaí River. The objective of this study was to monitor water quality in the Km 119 River and the Campo River, tributaries of the Mourão River, with monthly collection of water samples to determine pH, temperature, turbidity, biochemical oxygen demand, dissolved oxygen, fecal coliforms, total solids, total nitrogen, ammoniacal nitrogen, nitrite, nitrate and total phosphorus. The results obtained were compared with the indices established by the environmental legislation and applied in the determination of the Water Quality Index (WQI) used by the Water Institute of Paraná State, regulating environmental agency. Poor water quality in these rivers presents a worrying scenario for the region, since this river is the main source of water supply for the public system. Results of organic matter, fecal coliforms and total phosphorus were higher than the limits established by Resolution CONAMA 357/2005 to river class 2, specially at downstream of the Km 119 River and the Campo River, due to the significant influence of the urban anthropic activity by the lack of tertiary treatment and also rural by the lack of basic sanitation in this area. Results of WQI of Km 119 River and do Campo River indicated that water quality can be classified as average in 71% and good in 29% of the sites evaluated.

  7. Climate, runoff and landuse trends in the Owo River Catchment in Nigeria

    NASA Astrophysics Data System (ADS)

    Adegun, O.; Odunuga, S.; Ajayi, O. S.

    2015-06-01

    The Owo River is an important surface water source in Lagos particularly to the western section. It is the source of direct water intake for water supply by Lagos State Water Corporation to Amuwo-Odofin, Ojo and parts of Badagry Local Government Areas. This paper examines the complex interactions and feedbacks between many variables and processes within that catchment and analyses the future ability of this semi-urban watershed in sustaining water supply in the face of cumulative environmental change. Stationarity analysis on rainfall, change detection analysis and morphometry analysis were combined to analyse the non-stationarity of Owo River catchment. On rainfall trend analysis, since the correlation coefficient (0.38) with test statistic of 2.17 did not satisfy the test condition we concluded that there is trend and that rainfall in the watershed is not stationary. The dominant land use impacting on the bio-geochemical fluxes is built up area (including structures and paved surfaces) which grew from about 142.92 km2 (12.20%) in 1984 to 367.22 km2 (31.36%) in 2013 recording gain of 224.3 km2 at average growth rate of 7.73 km2 per annum. Total length of streams within the catchment reduced from 622.24 km in 1964 to 556 km in 2010, while stream density reduced from 0.53 in 1964 to 0.47 in 2010 an indication of shrinking hydrological network. The observed trends in both natural and anthropogenic processes indicated non-stationarity of the hydrological fluxes within the Catchment and if this continues, the urban ecosystem services of water supply will be compromised.

  8. Intimate Views of Cretaceous Plutons, the Colorado River Extensional Corridor, and Colorado River Stratigraphy in and near Topock Gorge, Southwest USA

    NASA Astrophysics Data System (ADS)

    Howard, K. A.; John, B. E.; Nielson, J. E.; Miller, J. M.; Priest, S. S.

    2010-12-01

    Geologic mapping of the Topock 7.5’ quadrangle, CA-AZ, reveals a structurally complex part of the Colorado River extensional corridor, and a younger stratigraphic record of landscape evolution during the history of the Colorado River. Paleoproterozoic gneisses and Mesoproterozoic granitoids and diabase sheets are exposed through cross-sectional thicknesses of many kilometers. Mesozoic to Tertary igneous rocks intrude the older rocks and include dismembered parts of the Late Cretaceous Chemehuevi Mountains Plutonic Suite. Plutons of this suite exposed in the Arizona part of the quad reconstruct, if Miocene deformation is restored, as cupolas capping the sill-like Chemehuevi Mountains batholith exposed in California. A nonconformity between Proterozoic and Miocene rocks reflects pre-Miocene uplift and erosional stripping of regional Paleozoic and Mesozoic strata. Thick (1-3 km) Miocene sections of volcanic rocks, sedimentary breccias, and conglomerate record the Colorado River extensional corridor’s structural and erosional evolution. Four major Miocene low-angle normal faults and a steep block-bounding Miocene fault divide the deformed rocks into major structural plates and giant tilted blocks on the east side of the Chemehuevi Mountains core complex. The low-angle faults attenuate >10 km of crustal section, superposing supracrustal and upper crustal rocks against originally deeper gneisses and granitoids. The block-bounding Gold Dome fault zone juxtaposes two large hanging-wall blocks, each tilted 90°, and splays at its tip into folds that deform layered Miocene rocks. A 15-16 Ma synfaulting intrusion occupies the triangular zone or gap where the folding strata detached from an inside corner along this fault between the tilt blocks. Post-extensional landscape evolution is recorded by upper Miocene to Quaternary strata, locally deformed. This includes several Pliocene and younger aggradational episodes in the Colorado River valley, and intervening degradation episodes at times when the river re-incised. Post-Miocene aggradational sequences include (1) the Bouse Formation, (2) fluvial deposits correlated with the alluvium of Bullhead City, (3) a younger fluvial boulder conglomerate, (4) the Chemehuevi Formation and related valley-margin deposits, and (5) and Holocene deposits under the valley floor.

  9. Influence of bedrock on river hydrodynamics and channel geometry

    NASA Astrophysics Data System (ADS)

    Rennie, C. D.; Church, M. A.; Venditti, J. G.; Bomhof, J.; Adderley, C.

    2013-12-01

    We present an acoustic Doppler current profiler (aDcp) survey of a 524 km long reach of Fraser River, British Columbia, Canada, as it passes through the Fraser Canyons. The channel alternates between gravel-bedded reaches that are incised into semi-consolidated glacial deposits and bedrock-bound reaches (7.7% of the reach between the towns of Quesnel and Hope). A continuous centreline aDcp survey was employed to measure longitudinal variation in slope, depth, depth-averaged velocity, and shear velocity. A total of 71 aDcp sectional surveys throughout the reach provided section widths (w), section-averaged depths (d), velocity distributions, and discharge (Q). Finally, air photo analysis using Google imagery provided channel widths at 0.5 km spacing. The survey reach was subdivided into 10 morphological sub-reaches, which ranged from alluvial gravel-bed reaches with relatively moderate slope to steep non-alluvial rock-walled canyons. The resulting data provide a unique opportunity to evaluate the influence of bedrock confinement on river hydrodynamics and channel geometry. Continuous centreline longitudinal aDcp data and the widths from air photo analysis were grouped within each sub-reach based on presence of bedrock confinement on both banks, either bank, or neither bank. The results demonstrate that river widths decreased and water depths, flow velocities, and shear velocities increased from the alluvial sub-reaches to the semi-alluvial reaches to the canyon reaches. Within each sub-reach, locations with bedrock encroachment on both banks were also narrower and deeper, but had lower depth-averaged velocity and shear velocity. Sectional geometry data were homogenized along the river (to compensate increasing flows at tributary junctions) by computing w/Q^{1/2} and d/Q^{1/3}, following commonly observed scaling relations. Alluvial reaches are 2.3x wider than rock-bound reaches (from the more abundant imagery data) and 0.60x as deep (from aDcp sections), implying that mean velocity is accelerated in rock reaches by 38%. There is also variation from reach to reach along the river controlled by variation in rock lithologies, with the narrowest canyons occurring in Fraser Canyon proper (w/Q^{1/2} = 0.083 compared with 1.4 elsewhere). The uppermost (';Marguerite') and lowermost (';Agassiz') alluvial reaches are considerably wider (w/Q^{1/2}= 3.9 and 7.1 respectively) than intervening ones ( 2.35). These reaches have lower gradients and exhibit wandering channels. Because of lithological control, the downstream hydraulic geometry of the river does not, in fact, conform with the common pattern, even when sections are analyzed according to boundary material. However, river gradient is well correlated with scaled width; inversely for gravel reaches and directly, but with little sensitivity, for rock-bound reaches.

  10. Flow regulation and fragmentation imperil pelagic-spawning riverine fishes.

    PubMed

    Dudley, Robert K; Platania, Steven P

    2007-10-01

    Flow regulation and fragmentation of the world's rivers threaten the integrity of freshwater ecosystems and have resulted in the loss or decline of numerous fish species. Pelagic-spawning fishes (pelagophils) are thought to be particularly susceptible to river regulation because their early life stages (ichthyoplankton) drift until becoming free-swimming, although the extent of transport is largely unknown. Transport velocity and distance were determined for passively drifting particles, which mimicked physical properties of ichthyoplankton, in two large, regulated rivers (Rio Grande and Pecos River) of the arid Southwest United States. Particle drift data were incorporated into celerity-discharge equations (r2 > 0.90; P < 0.001), and reach-specific transport velocity was modeled as a function of discharge. Transport velocities of particles exceeded 0.7 m/s in all river reaches during typical spawning flows (i.e., reservoir releases or rainstorms) and were greatest in highly incised and narrow channel reaches. Mean transport distance of particles released in the Pecos River during sustained reservoir flows (141.1 km; 95% CI = 117.0-177.5 km) was significantly longer than during declining reservoir flows that mimicked a natural rainstorm (52.4 km; 95% CI = 48.8-56.5 km). Mean transport distance of particles in the Rio Grande during sustained reservoir flows was 138.7 km (95% CI = 131.0-147.2 km). There are 68 dams and 13 reservoirs that fragment habitats and regulate flow in the Rio Grande Basin (Rio Grande and Pecos River) in areas historically occupied by pelagophils. While the basin historically provided 4029 km of free-flowing riverine habitat, reservoir habitat now represents > 10% of the longitudinal distance. Only five unfragmented nonreservoir reaches > 100 km remain in the Rio Grande, and two remain in the Pecos River. Pelagophils were extirpated from all reservoirs and from nearly all short, fragmented reaches (< 100 km) of the Rio Grande Basin, but at least some fraction persisted in all longer reaches (> 100 km). The recovery and long-term persistence of pelagophils in regulated rivers, including those in this study, will likely depend on reestablishment and protection of long unfragmented reaches coupled with mimicry of the natural flow regime.

  11. A Holocene sedimentary record of tectonically influenced reduced channel mobility, Skokomish River delta, Washington State, USA

    NASA Astrophysics Data System (ADS)

    Arcos, Maria Elizabeth Martin

    2012-12-01

    At the Skokomish River delta in Washington State's Puget Lowland, coseismic uplift and tilting trapped the river against a valley wall, resulting in little to no channel migration for the last 1000 years. The most recent earthquake occurred before AD 780-990, based on stratigraphic evidence such as sand blows and abrupt facies changes. Since the hypothesized tilting a 5-km-long section of the river has not migrated laterally or avulsed, resulting in reduced migration and a muddy intertidal flat that is 2 km wider in the east than on the west side of Annas Bay. A ridge running perpendicular to the river may also have restricted channel mobility. The ridge may be either the surface expression of a blind thrust fault or a relict, uplifted and tilted shoreline. The uplift and tilting of the delta can be ascribed to any of three nearby active fault zones, of which the most likely, based on the orientation of deformation, is the Saddle Mountain fault zone, which produced a surface rupture 1000-1300 years ago. The delta has experienced submergence since the earthquake. A forest that colonized an uplifted part of the delta about 800-1200 years ago was later submerged by at least 1.6 m and is now a brackish-water marsh.

  12. Fluvial architecture of dinosaur bonebeds in the Cretaceous Judith River Formation, south-central Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, K.M.; Dodson, P.; Fiorillo, A.R.

    1991-03-01

    Fluvial architecture of dinosaur bonebeds in the Cretaceous Judith River Formation, south-central Montana, has been the subject of intensive paleontological study for many years. However, little has been published on the sedimentology of the formation in this area. The authors have completed a preliminary field study of fluvial facies, with a view towards correcting this omission. Initial results include detailed facies descriptions and maps for five quarries along a line of transect stretching some 40 km parallel to depositional dip. Facies identified are predominantly overbank splays and levees, with common point bar/alluvial channel units and occasional small, possibly estuarine sandmore » bodies in parts of the section. Shell beds (mainly oysters) and bedded, 1 m thick coals are also significant in some sections. Preliminary attempts at paleohydrology suggest river channels in some parts of the section were about 100 m wide and 2 m deep; however, other parts of the section exhibit much larger channel widths. Channel stacking is common. Preliminary results suggest a strong correlation between the occurrence of reddish brown carbonaceous silty shales, and dinosaur bone deposits.« less

  13. Preliminary assessment of channel stability and bed-material transport in the Rogue River basin, southwestern Oregon

    USGS Publications Warehouse

    Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary assessment of bed-material transport, vertical and lateral channel changes, and existing datasets for the Rogue River basin, which encompasses 13,390 square kilometers (km2) along the southwestern Oregon coast. This study, conducted to inform permitting decisions regarding instream gravel mining, revealed that: * The Rogue River in its lowermost 178.5 kilometers (km) alternates between confined and unconfined segments, and is predominately alluvial along its lowermost 44 km. The study area on the mainstem Rogue River can be divided into five reaches based on topography, hydrology, and tidal influence. The largely confined, active channel flows over bedrock and coarse bed material composed chiefly of boulders and cobbles in the Grants Pass (river kilometers [RKM] 178.5-152.8), Merlin (RKM 152.8-132.7), and Galice Reaches (RKM 132.7-43.9). Within these confined reaches, the channel contains few bars and has stable planforms except for locally wider segments such as the Brushy Chutes area in the Merlin Reach. Conversely, the active channel flows over predominately alluvial material and contains nearly continuous gravel bars in the Lobster Creek Reach (RKM 43.9-6.7). The channel in the Tidal Reach (RKM 6.7-0) is also alluvial, but tidally affected and unconfined until RKM 2. The Lobster Creek and Tidal Reaches contain some of the most extensive bar deposits within the Rogue River study area. * For the 56.6-km-long segment of the Applegate River included in this study, the river was divided into two reaches based on topography. In the Upper Applegate River Reach (RKM 56.6-41.6), the confined, active channel flows over alluvium and bedrock and has few bars. In the Lower Applegate River Reach (RKM 41.6-0), the active channel alternates between confined and unconfined segments, flows predominantly over alluvium, shifts laterally in unconfined sections, and contains more numerous and larger bars. * The 6.5-km segment of the lower Illinois River included in this study was treated as one reach. This stretch of the Illinois River is fully alluvial, with nearly continuous gravel bars flanking the channel. The width of the active channel is confined by the narrow topography of the valley. * The primary human activities that have likely influenced channel condition, bed-material transport, and the extent and area of bars are (1) historical gold mining throughout the basin, (2) historical and ongoing gravel mining from instream sites in the Tidal Reach and floodplain sites such as those in the Lower Applegate River Reach, (3) hydropower and flow control structures, (4) forest management and fires throughout the basin, and (5) dredging. These anthropogenic activities likely have varying effects on channel condition and the transport and deposition of sediment throughout the study area and over time. * Several vertical (aspect) aerial photographs (including the complete coverages of the study area taken in 1995, 2000, 2005, and 2009 and the partial coverages taken in 1967, 1968, 1969, and 1990) are available for assessing long-term changes in attributes such as channel condition, bar area, and vegetation cover. A Light Detection And Ranging (LiDAR) survey performed in 2007-2008 provides 1-m resolution topographic data for sections of the Grants Pass (RKM 178.5-167.6) and Lobster Creek (RKM 17.8-12 and 10-6.7) Reaches and the entire Tidal Reach. * Previous studies provide information for specific locations, including (1) an estimated average annual bed-material load of 76,000 m3 at the former Savage Rapids Dam site (RKM 173.1, Grants Pass Reach), (2) over 490 m of channel shifting from 1965 to 1991 in the Brushy Chutes area (RKM 142-141, Merlin Reach), (3) active sediment transport and channel processes in the Lobster Creek Reach, (4) lateral channel migration in the Tidal Reach, and (5) up to 1.8 m of bar aggradation from the town of Agness (RKM 45.1) to the Rogue River mouth following the flood in water year 1997. * Review of the repeat surveys conducted at the instream gravel-mining sites on Elephant and Wedderburn Bars tentatively indicated that these bars (1) experience some bed-material deposition in most years and more substantial deposition following high flows such as those in water years 1997 and 2006, and (2) are dynamic and subject to local scour and deposition. * Results from the specific gage analyses completed for five long-term USGS streamflow-gaging stations showed that only the Grants Pass station on the Rogue River (RKM 164.4, Grants Pass Reach) experienced substantial changes in the stage-discharge relationship across a range of flows from 1938 to 2009. Observed changes indicate channel incision at this site. * The Rogue and Applegate Rivers are dynamic and subject to channel shifting, aggradation, and incision, as indicated by channel cross sections surveyed during 2000-2010 on the Rogue River and 1933-2010 on the Applegate River. The elevation of the riverbed changed substantially (defined here as more than a net 0.5 m of incision or aggradation) at three locations on the Rogue River (near RKM 164.5, 139.2, and 1.3) and two on the Applegate River (near RKM 42 and 13.5). * Systematic delineation of bar features from vertical photographs taken in 1967-69, 2005, and 2009 indicated that most of the repeat mapping sites had a net loss in bar area over the analysis period, ranging from 22 percent at the Oak Flat site (Illinois River Reach) to 69 percent at the Thompson Creek site (Upper Applegate River Reach). Bar area remained stable at the Williams Creek site (Lower Applegate River Reach), but increased 11 percent at the Elephant Rock site (Tidal Reach). The declines in bar area were associated primarily with the establishment of vegetation on upper bar surfaces lacking obvious vegetation in the 1960s. Some of the apparent changes in bar area may also owe to some differences in streamflow and tide levels between the vertical photographs. * On the mainstem Rogue River, the median diameter of surface particles varied from 21 mm at the Wedderburn Bar in the Tidal Reach to more than 100 millimeters (mm) at some of the coarsest bars in the Galice Reach. Low armoring ratios tentatively indicated that sediment supply likely exceeds transport capacity at Orchard (Lobster Creek Reach) and Wedderburn (Tidal Reach) Bars. Conversely, relatively higher armoring ratios indicated that transport capacity likely is in balance with sediment supply at Roberston Bridge Bar (Merlin Reach) and exceeds sediment supply at Rogue River City (Grants Pass Reach), Solitude Riffle (Galice Reach), and Hooks Gulch (Galice Reach) Bars. * Limited particle data were collected in the study areas on the Applegate and Illinois Rivers. Particle size measurements and armoring ratios tentatively show that sediment supply likely exceeds transport capacity at Bakery Bar in the Lower Applegate Reach. Also, the bed material exiting the Applegate River is likely finer than the bed material in the Rogue River, whereas bed material exiting the Illinois River is likely coarser than the bed material in the Rogue River. * Together, these observations and findings indicate that (1) the size, area, and overall position of bars in the Rogue River study area are determined largely by valley physiography, such that unconfined alluvial sections have large channel-flanking bars, whereas confined sections have fewer and smaller bars, (2) segments within the Grants Pass, Merlin, Tidal, Upper Applegate River, and Lower Applegate River Reaches are prone to vertical and/or lateral channel adjustments, and (3) the balance between transport capacity and sediment supply varies throughout the study area. * High winter flows and the steep, confined character of much of the Rogue River within the study area result in a river corridor with a high capacity to transport bed material. In the Grants Pass and Galice Reaches, the extensive in-channel bedrock as well as the sparse number and coarse texture of bars indicate that these reaches are likely supply-limited, meaning that the river's transport capacity exceeds the supply of bed material. In contrast, the Lobster Creek and Tidal Reaches and perhaps portions of the Merlin Reach receive bed-material inputs that more closely balance or even exceed the river's transport capacity. * The lowermost reaches on the Illinois and Applegate Rivers are fully alluvial segments that are likely transport limited, meaning sediment supply likely exceeds the river's transport capacity. However, the steeper Upper Applegate River Reach is likely supply-limited as indicated by the sparse number and area of bars mapped in this reach and the intermittent bedrock outcrops in the channel. The sediment loads derived from these large tributaries draining the Klamath Mountains are probably important contributions to the overall transport of bed material in the Rogue River basin. * Compared to the slightly smaller Umpqua River basin (drainage area 12,103 km2) to the north, the Rogue River (13,390 km2) likely transports more bed material. Although this conclusion of greater bed-material transport in the Rogue River is tentative in the absence of either actual transport measurements or transport capacity calculations, empirical evidence, including the much greater area and frequency of bars along most of the Rogue River as well as the much shorter tidal reach on the Rogue River (6.7 km) compared to the Umpqua River (40 km) supports this inference. * More detailed investigations of bed-material transport rates and channel morphology would support assessments of channel condition, longitudinal trends in particle size, the relation between sediment supply and transport capacity, and the potential causes of bar area loss (such as vegetation establishment and potential changes in peak flow patterns). The reaches most practical for such assessments and relevant to several management and ecological issues are (1) the lower Rogue River basin, including the Lobster Creek and Tidal Reaches of the Rogue River as well as the Illinois River Reach and (2) the Lower Applegate River Reach.

  14. Assesment of future river habitat suitability under climate change scenarios in a mesoscale Alpine watershed of Italy (Serio River, Italian Alps)

    NASA Astrophysics Data System (ADS)

    Groppelli, B.; Confortola, G.; Soncini, A.; Bocchiola, D.; Rosso, R.

    2011-12-01

    We merge hydraulic river modelling, use of suitability functions for fish guild colonization and hydrological modelling of catchment response to investigate future (until 2100) hydrological cycle and fish habitat suitability for an Alpine catchment in Italy, Serio river (drainage area 450 Km2, average altitude 1300 m a.s.l., main channel length ca. 36 km). Based upon detailed river channel morphology data for 73 river sections and direct local investigation we then set up and tune a quasi 2-D (i.e. with floodplains) hydraulic model for in channel flows hydraulics, depending upon daily in stream discharge. We then evaluate distributed values of hydraulic variables and therein composite habitat suitability indexes CS for a representative target species (brown trout, Salmo Trutta Fario L.), resulting into usable wetted area WUA for fish colonization. We consider both juvenile JUV and adults AD, and we evaluate the frequency (days in a year/season) of yearly/seasonal, spatially distributed and bulk (whole stream) habitat quality. We then provide synthetic indicators of (yearly/seasonal) suitability level and duration within the river. We then set up a minimal (T, P), properly tuned hydrological model able to mimick Serio river's hydrological cycle. We then use downscaled future precipitation and temperature from three general circulation models, GCMs (PCM, CCSM3, and HadCM3) available within the IPCC's data base chosen for the purpose based upon previous studies, to feed our hydrological model and provide projected hydrological regime of the catchment, together with modified habitat suitability. We then comment upon modified flow regime, habitat suitability as obtained and related uncertainty. The proposed results may be of use for river managers and may provide a template for investigation about future river habitat quality pending climate change.

  15. Use of Aerial high resolution visible imagery to produce large river bathymetry: a multi temporal and spatial study over the by-passed Upper Rhine

    NASA Astrophysics Data System (ADS)

    Béal, D.; Piégay, H.; Arnaud, F.; Rollet, A.; Schmitt, L.

    2011-12-01

    Aerial high resolution visible imagery allows producing large river bathymetry assuming that water depth is related to water colour (Beer-Bouguer-Lambert law). In this paper we aim at monitoring Rhine River geometry changes for a diachronic study as well as sediment transport after an artificial injection (25.000 m3 restoration operation). For that a consequent data base of ground measurements of river depth is used, built on 3 different sources: (i) differential GPS acquisitions, (ii) sounder data and (iii) lateral profiles realized by experts. Water depth is estimated using a multi linear regression over neo channels built on a principal component analysis over red, green and blue bands and previously cited depth data. The study site is a 12 km long reach of the by-passed section of the Rhine River that draws French and German border. This section has been heavily impacted by engineering works during the last two centuries: channelization since 1842 for navigation purposes and the construction of a 45 km long lateral canal and 4 consecutive hydroelectric power plants of since 1932. Several bathymetric models are produced based on 3 different spatial resolutions (6, 13 and 20 cm) and 5 acquisitions (January, March, April, August and October) since 2008. Objectives are to find the optimal spatial resolution and to characterize seasonal effects. Best performances according to the 13 cm resolution show a 18 cm accuracy when suspended matters impacted less water transparency. Discussions are oriented to the monitoring of the artificial reload after 2 flood events during winter 2010-2011. Bathymetric models produced are also useful to build 2D hydraulic model's mesh.

  16. Hydraulic Geometry and Microtopography of Tidal Freshwater Forested Wetlands and Implications for Restoration, Columbia River, U.S.A.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenderfer, Heida L.; Coleman, Andre M.; Borde, Amy B.

    2008-01-01

    The hydrologic reconnection of tidal channels, riverine floodplains, and main stem channels are among responses by ecological restoration practitioners to the increasing fragmentation and land conversion occurring in coastal and riparian zones. Design standards and monitoring of such ecological restoration depend upon the characterization of reference sites that vary within and among regions. Few locales, such as the 235 km tidal portion of the Columbia River on the West Coast U.S.A., remain in which the reference conditions and restoration responses of tidal freshwater forested wetlands on temperate zone large river floodplains can be compared. This study developed hydraulic geometry relationshipsmore » for Picea sitchensis (Sitka spruce) dominated tidal forests (swamps) in the vicinity of Grays Bay on the Columbia River some 37 km from the Pacific Coast using field surveys and Light Detection and Ranging (LiDAR) data. Scaling relationships between catchment area and the parameters of channel cross-sectional area at outlet and total channel length were comparable to tidally influenced systems of San Francisco Bay and the United Kingdom. Dike breaching, culvert replacement, and tide gate replacement all affected channel cross-sectional geometry through changes in the frequency of over-marsh flows. Radiocarbon dating of buried wood provided evidence of changes in sedimentation rates associated with diking, and restoration trajectories may be confounded by historical subsidence behind dikes rendering topographical relationships with water level incomparable to reference conditions. At the same time, buried wood is influencing the development of channel morphology toward characteristics resembling reference conditions. Ecological restoration goals and practices in tidal forested wetland regions of large river floodplains should reflect the interactions of these controlling factors.« less

  17. Assessment of fluvial geomorphological change in the confluence of Chindwin and Ayeyarwady Rivers in Myanmar using remote sensing

    NASA Astrophysics Data System (ADS)

    Piman, T.; Vasconcelos, V. V.; Apirumanekul, C.; Krittasudthacheewa, C.

    2017-12-01

    Bank erosion along the braided stretches of Ayeyarwady and Chindwin Rivers has been one of the main concerns at Sagaing region, in Myanmar, because it threatens villages, infrastructure and farmland, while the consequent sedimentation hampers boat transportation. This study assesses the changes on these two river channels and its sandbanks, in their confluence area. A special focus is given to infer the risk of villages to bank erosion. Landsat images from 1973, 1989, and annual series from 1998 to 2015 were used to evaluate frequency and rates of erosion, deposition and vegetation restabilization. Maps showed where the channels maintained stable and which areas faced bank erosion more frequently. From 1973 to 2015, 30% of the river valley in the studied area faced bank erosion. Although the summed area of the river channel remained relatively stable throughout the period, the rates of bank erosion vs. bank restabilization were higher after 2004. Most of the village area in the in the river valley within the bluffs (89% - 71km2) have not faced bank erosion since 1973, while 8.9% (7 km2) are in vulnerable areas that faced erosion before 2012, and bank erosion destroyed 1.3% (1 km2) of the villages from 2012 to 2015. The average rate of village land loss from bank erosion within the river valley from 1973 to 2012 was 0.18 km2/year, but increased to 0.33km2/year during 2012-2015. The villages located just downstream from the confluence of Chindwin and Ayeyarwady River faced higher problems with bank erosion. Approximately half of the village area (51.5% - 87km2) adjacent to the bluffs (outside the river valley) were facing stable land since 1973 (lowest risk), while 5.8% (10 km2) were facing stable river channel (low risk) and 42.7% (73 km2) were facing areas of unstable river channel (possible risk). As for the biggest urban sites, Monywa and Pakokku face areas of unstable river channel, while Sagaing and Myingyan are safer, facing areas of stable land. A detailed assessment of remote sensing images also showed how Chindwin channel widened progressively due to bank erosion in the direction of Su Lay Kon and Ah Myning villages, in Monywa district. The rapid changes in river geomorphology calls for public's attention on alternative ways to live with these dynamic but important rivers.

  18. Avulsion threshold in a large Himalayan river: the case of the Kosi, India and Nepal

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Kommula, S.

    2010-12-01

    Avulsion, the relatively rapid shift of a river to a new course on a lower part of a floodplain, is considered as a major fluvial hazard in large population centers such as the north Bihar plains, eastern India and the adjoining areas of Nepal. This region witnessed one of the most recent avulsions of the Kosi River on 18 August, 2008 when the river shifted by ~120 km eastward. This was perhaps one of the greatest avulsions in a large river in recent years triggered by the breach of the eastern afflux bund at Kusaha in Nepal at a location 12 km upstream of the Kosi barrage and affecting more than 3 million people in Nepal and north Bihar. The trigger for an avulsion largely depends upon the regional channel-floodplain slope relationships and the lowest elevation available in the region. Most of the available assessments of avulsion threshold have therefore been based on the examination of channel slopes- longitudinal and cross-sectional. However, planform dynamics in a sediment-charged river such as the Kosi also plays an important role in pushing the river towards threshold for avulsion. The present study has made use of SRTM DEM, temporal satellite images and maps to compute the avulsion threshold for a ~50 km long reach of the Kosi river after incorporating planform dynamics in a GIS environment. Flow accumulation paths generated from the SRTM data match closely with the zones of high avulsion threshold. Not just that the Kusaha plots in a high avulsion threshold zone, we also identify several critical points where breach (avulsion) can occur in near future. This study assumes global significance keeping in view the most recent flooding in the Indus River in Pakistan. Like the Kusaha breach in Kosi in August 2008, the Indus flood trauma started with the breach of the eastern marginal embankment in the upstream of Taunsa barrage and was apparently triggered by rise of bed level due to excessive sediment load. The mega avulsion of the Kosi on 18th August 2008 which occurred due to a breach in the eastern embankment at Kusaha, Nepal

  19. Assessment of metallic mineral resources in the Humboldt River Basin, Northern Nevada, with a section on Platinum-Group-Element (PGE) Potential of the Humboldt Mafic Complex

    USGS Publications Warehouse

    Wallace, Alan R.; Ludington, Steve; Mihalasky, Mark J.; Peters, Stephen G.; Theodore, Ted G.; Ponce, David A.; John, David A.; and Berger, Byron R.; Zientek, Michael L.; Sidder, Gary B.; Zierenberg, Robert A.

    2004-01-01

    The Humboldt River Basin is an arid to semiarid, internally drained basin that covers approximately 43,000 km2 in northern Nevada. The basin contains a wide variety of metallic and nonmetallic mineral deposits and occurrences, and, at various times, the area has been one of the Nation's leading or important producers of gold, silver, copper, mercury, and tungsten. Nevada currently (2003) is the third largest producer of gold in the world and the largest producer of silver in the United States. Current exploration for additional mineral deposits focuses on many areas in northern Nevada, including the Humboldt River Basin.

  20. Application of a source apportionment model in consideration of volatile organic compounds in an urban stream

    USGS Publications Warehouse

    Asher, W.E.; Luo, W.; Campo, K.W.; Bender, D.A.; Robinson, K.W.; Zogorski, J.S.; Pankow, J.F.

    2007-01-01

    Position-dependent concentrations of trichloroethylene and methyl-tert-butyl ether are considered for a 2.81-km section of the Aberjona River in Massachusetts, USA. This river flows through Woburn and Winchester (Massachusetts, USA), an area that is highly urbanized, has a long history of industrial activities dating to the early 1800s, and has gained national attention because of contamination from chlorinated solvent compounds in Woburn wells G and H. The river study section is in Winchester and begins approximately five stream kilometers downstream from the Woburn wells superfund site. Approximately 300 toxic release sites are documented in the watershed upstream from the terminus of the study section. The inflow to the river study section is considered one source of contamination. Other sources are the atmosphere, a tributary flow, and groundwater flows entering the river; the latter are categorized according to stream zone (1, 2, 3, etc.). Loss processes considered include outflows to groundwater and water-to-atmosphere transfer of volatile compounds. For both trichloroethylene and methyl-rerf-butyl ether, degradation is neglected over the timescale of interest. Source apportionment fractions with assigned values ??inflow, ??1, ??2, ??3, etc. are tracked by a source apportionment model. The strengths of the groundwater and tributary sources serve as fitting parameters when minimizing a reduced least squares statistic between water concentrations measured during a synoptic study in July 2001 versus predictions from the model. The model fits provide strong evidence of substantial unknown groundwater sources of trichloroethylene and methyl-tert-butyl ether amounting to tens of grams per day of trichloroethylene and methyl-tert-butyl ether in the river along the study section. Modeling in a source apportionment manner can be useful to water quality managers allocating limited resources for remediation and source control. ?? 2007 SETAC.

  1. Evaluating sourcing and fluvial integration of plant wax biomarkers from the Peruvian Andes to Amazonian lowlands

    NASA Astrophysics Data System (ADS)

    Wu, M. S.; Feakins, S. J.; Ponton, C.; West, A. J.; Galy, V.

    2017-12-01

    The carbon and hydrogen isotopic compositions (respectively δ13C and δD) of plant wax biomarkers have been widely used to reconstruct past climate and environment. To understand how leaf waxes are sourced within a river catchment, and how their isotopic signature is transferred from source to sink, we study δ13C and δD of C29 n-alkanes and C30 n-alkanoic acids in the Madre de Dios River catchment along the eastern flank of the Peruvian Andes. We sampled soils across a 3.5km elevation transect and find gradients in δ13Cwax (ca. +1.5‰/km) and δDwax (ca. -10 ‰/km) similar to gradients in tree canopy leaves (Feakins et al., 2016 GCA; Wu et al., 2017 GCA). We also collected river suspended sediment samples along the Madre de Dios River and its tributaries, which together drain an area of 75,400 km2 and 6 km of elevation. We utilize soil data and a digital elevation model to construct isoscapes, delineate catchments for each river sampling location, predict river values assuming spatial uniform integration, and compare our predictions with observed values. Although both compounds generally follow isotopic gradients defined by catchment elevations, the dual isotope and compound-class comparison reveals additional processes. For C30 n-alkanoic acid we find an up to 1km lower-than-expected catchment signal, indicating degradation of upland contributions in transit and replacement with lowland inputs. In contrast, mountain-front river locations are susceptible to upland-biases (up to 1km higher sourcing) in C29 n-alkane sourcing, likely due to enhanced erosion and higher leaf wax stock in Andean soil compared to the lowland, and greater persistence of n-alkanes than n-alkanoic acids. For both compounds, the bias is eliminated with several hundred km of river transit across the floodplain. In one location, we identify significant petrogenic contamination of n-alkanes but not n-alkanoic acids. These results indicate the power in combining dual compound classes and dual isotopes to analyze source-to-sink processes and to evaluate sourcing of river exported plant wax biomarkers.

  2. Influence of hydropower dams on the composition of the suspended and riverbank sediments in the Danube.

    PubMed

    Klaver, Gerard; van Os, Bertil; Negrel, Philippe; Petelet-Giraud, Emmanuelle

    2007-08-01

    Large hydropower dams have major impacts on flow regime, sediment transport and the characteristics of water and sediment in downstream rivers. The Gabcikovo and Iron Gate dams divide the studied Danube transect (rkm 1895-795) into three parts. In the Gabcikovo Reservoir (length of 40km) only a part of the incoming suspended sediments were deposited. Contrary to this, in the much larger Iron Gate backwater zone and reservoir (length of 310km) all riverine suspended sediments were deposited within the reservoir. Subsequently, suspended sediments were transported by tributaries into the Iron Gate backwater zone. Here they were modified by fractional sedimentation before they transgressed downstream via the dams. Compared with undammed Danube sections, Iron Gate reservoir sediment and suspended matter showed higher clay contents and different K/Ga and Metal/Ga ratios. These findings emphasize the importance of reservoir-river sediment-fractionation.

  3. Social, political, and institutional setting: Water management problems of the Rio Grande

    USGS Publications Warehouse

    Douglas, A.J.

    2009-01-01

    This paper discusses various water management issues facing federal, state, and local agencies charged with managing the water resources of the Rio Grande River Basin and its major tributaries. The Rio Grande - 3,058 km (=1,900 mi) long - is the fourth longest river in the United States. The river's basin is 870,236 km2 (=336,000 mi2) and for roughly two-thirds of its length it forms the United States-Mexican border. It is a major recreational resource providing world class trout fishing near its headwaters in Colorado's San Juan Mountains and shoreline, angling, and boating opportunities near the Colorado-New Mexico border. The Rio Grande is the principal tourist attraction of Big Bend National Park and flows through downtown Albuquerque and El Paso. Many reaches are wide and broad, but almost all are relatively shallow and not navigable by commercial ships. Nevertheless, it is one of the most important renewable water resources of the southwestern United States and North America. The issue of the "manageability" of the river in the face of social forces and disparate administrative jurisdictions that adversely impact Rio Grande flows is a thread linking various sections of the paper together. The length of the river; the fact that major reaches lie in Colorado, New Mexico, and Texas; and its unique role as an international boundary pose complex management problems. The allocation status quo formed by the complex nexus of existing river laws make it difficult to reshape Rio Grande management. ?? 2009 ASCE.

  4. A comparison of drainage basin nutrient inputs with instream nutrient loads for seven rivers in Georgia and Florida, 1986-90

    USGS Publications Warehouse

    Asbury, C.E.; Oaksford, E.T.

    1997-01-01

    Instream nutrient loads of the Altamaha, Suwannee, St. Johns, Satilla, Ogeechee, Withlacoochee, and Ochlockonee River Basins were computed and compared with nutrient inputs for each basin for the period 1986-90. Nutrient constituents that were considered included nitrate, ammonia, organic nitrogen, and total phosphorus. Sources of nutrients considered for this analysis included atmospheric deposition, fertilizer, animal waste, wastewater-treatment plant discharge, and septic discharge. The mean nitrogen input ranged from 2,400 kilograms per year per square kilometer (kg/yr)km2 in the Withlacoochee River Basin to 5,470 (kg/yr)km2 in the Altamaha River Basin. The Satilla and Ochlockonee River Basins also had large amounts of nitrogen input per unit area, totaling 5,430 and 4,920 (kg/yr)km2, respectively.Fertilizer or animal waste, as sources of nitrogen, predominated in all basins. Atmospheric deposition contributed less than one-fourth of the mean total nitrogen input to all basins and was consistently the third largest input in all but the Ogeechee River Basin, where it was the second largest.The mean total phosphorus input ranged from 331 (kg/yr)km2 in the Withlacoochee River Basin to 1,380 (kg/yr)km2 in both the Altamaha and Satilla River Basins. The Ochlockonee River Basin had a phosphorus input of 1,140 (kg/yr)km2.Per unit area, the Suwannee River discharged the highest instream mean total nitrogen and phosphorus loads and also discharged higher instream nitrate loads per unit area than the other six rivers. Phosphorus loads in stream discharge were highest in the Suwannee and Ochlockonee Rivers.The ratio of nutrient outputs to inputs for the seven studied rivers ranged from 4.2 to 14.9 percent, with the St. Johns (14.9 percent) and Suwannee (12.1 percent) Rivers having significantly higher percentages than those from the other basins. The output/input percentages for mean total phosphorus ranged from 1.0 to 7.0 percent, with the St. Johns (6.2 percent) and Suwannee (7.0 percent) Rivers exporting the highest percentage of phosphorus.Although instream nutrient loads constitute only one of the various pathways nutrients may take in leaving a river basin, only a relatively small part of nutrient input to the basin leaves the basin in stream discharge for the major coastal rivers examined in this study. The actual amount of nutrient transported in a river basin depends on the ways in which nutrients are physically handled, geographically distributed, and chemically assimilated within a river basin.

  5. A Muskingum-based methodology for river discharge estimation and rating curve development under significant lateral inflow conditions

    NASA Astrophysics Data System (ADS)

    Barbetta, Silvia; Moramarco, Tommaso; Perumal, Muthiah

    2017-11-01

    Quite often the discharge at a site is estimated using the rating curve developed for that site and its development requires river flow measurements, which are costly, tedious and dangerous during severe floods. To circumvent the conventional rating curve development approach, Perumal et al. in 2007 and 2010 applied the Variable Parameter Muskingum Stage-hydrograph (VPMS) routing method for developing stage-discharge relationships especially at those ungauged river sites where stage measurements and details of section geometry are available, but discharge measurements are not made. The VPMS method enables to estimate rating curves at ungauged river sites with acceptable accuracy. But the application of the method is subjected to the limitation of negligible presence of lateral flow within the routing reach. To overcome this limitation, this study proposes an extension of the VPMS method, henceforth, known herein as the VPMS-Lin method, for enabling the streamflow assessment even when significant lateral inflow occurs along the river reach considered for routing. The lateral inflow is estimated through the continuity equation expressed in the characteristic form as advocated by Barbetta et al. in 2012. The VPMS-Lin, is tested on two rivers characterized by different geometric and hydraulic properties: 1) a 50 km reach of the Tiber River in (central Italy) and 2) a 73 km reach of the Godavari River in the peninsular India. The study demonstrates that both the upstream and downstream discharge hydrographs are well reproduced, with a root mean square error equal on average to about 35 and 1700 m3 s-1 for the Tiber River and the Godavari River case studies, respectively. Moreover, simulation studies carried out on a river stretch of the Tiber River using the one-dimensional hydraulic model MIKE11 and the VPMS-Lin models demonstrate the accuracy of the VMPS-Lin model, which besides enabling the estimation of streamflow, also enables the estimation of reach averaged optimal roughness coefficients for the considered routing events.

  6. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiquí River Basin, Costa Rica

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Pringle, Catherine M.; Freeman, Mary C.

    2008-01-01

    Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiquí River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (<15 m tall) and operate as water diversion projects.While the potential environmental effects of individual projects are evaluated prior to dam construction, there is a need for consideration of the basin-scale ecological consequences of hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiquí River Basin.Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiquí River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9 km) and Lower Montane Rain Forest (168.2 km).Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiquí River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

  7. Red tree voles in the Columbia River Gorge and Hood River basin, Oregon

    Treesearch

    Eric D. Forsman; James K. Swingle; Michael A. McDonald; Scott A. Graham; Nicholas R. Hatch

    2009-01-01

    In 2003 to 2008, we conducted surveys to document the eastern and northern range limits of red tree voles (Arborimus longicaudus) in the Columbia River Gorge and Hood River basin, Oregon. Our survey indicated the current range of the vole includes the area from Wahkeena Creek, 20 km east of Troutdale to Seneca Fouts State Park, 6 km west of Hood...

  8. Structure and petroleum potential of the continental margin between Cross Sound and Icy Bay, northern Gulf of Alaska

    USGS Publications Warehouse

    Bruns, T.R.

    1982-01-01

    Major structural features of the Yakutat segment, the segment of the continental margin between Cross Sound and Icy Bay, northern Gulf of Alaska, are delineated by multichannel seismic reflection data. A large structural high is centered on Fairweather Ground and lies generally at the edge of the shelf from Cross Sound to west of the Alsek Valley. A basement uplift, the Dangerous River zone, along which the seismic acoustic basement shallows by up to two kilometers, extends north from the western edge of Fairweather Ground towards the mouth of the Dangerous River. The Dangerous River zone separates the Yakutat segment into two distinct subbasins. The eastern subbasin has a maximum sediment thickness of about 4 km, and the axis of the basin is near and parallel to the coast. Strata in this basin are largely of late Cenozoic age (Neogene and Quaternary) and approximately correlate with the onshore Yakataga Formation. The western subbasin has a maximum of at least 9 km of sediment, comprised of a thick (greater than 4.5 km) Paleogene section overlain by late Cenozoic strata. The Paleogene section is truncated along the Dangerous River zone by a combination of erosion, faulting, and onlap onto the acoustic basement. Within the western subbasin, the late Cenozoic basin axis is near and parallel to the coast, but the Paleogene basin axis appears to trend in a northwest direction diagonally across the shelf. Sedimentary strata throughout the Yakutat shelf show regional subsidence and only minor deformation except in the vicinity of the Fairweather Ground structural high, near and along the Dangerous River zone, and at the shoreline near Lituya Bay. Seismic data across the continental slope and adjacent deep ocean show truncation at the continental slope of Paleogene strata, the presence of a thick (to 6 km) undeformed or mildly deformed abyssal sedimentary section at the base of the slope that in part onlaps the slope, and a relatively narrow zone along the slope or at the base of the slope where faulting may have occurred. Observed deformation at the base of the slope is primarily related to the late Cenozoic uplift of Fairweather Ground, and to Quaternary folding perpendicular to the Pacific-North America relative convergence vector. No accretionary section or major deformation is observed along the continental slope. The absence of these features suggests that no major subduction of the Pacific plate beneath the Yakutat margin has occurred during the late Cenozoic. However, transform faulting along the base of the slope has occurred, because probable Oligocene oceanic basement is juxtaposed against Mesozoic and Paleogene sedimentary strata of the Yakutat slope. This juxtaposition most likely occurred during late Oligocene and Miocene time. During much of the late Cenozoic, and especially during Pliocene-Pleistocene time, the Yakutat segment has apparently been moving northward with the Pacific plate. Dredge samples from the continental slope recovered potential hydrocarbon source and reservoir rocks from the Paleogene sedimentary sequence. Most of the organic matter from these samples is immature to marginally mature. Lopatin calculations suggest that rocks beneath the shelf are likely to be thermally mature at a depth of 4 to 5 km and deeper. In general, the strata at these depths are largely of Paleogene age. Thus, the Paleogene strata may have significant resource potential if source and reservoir rocks similar to those dredged at the slope are present below the shelf. The Paleogene strata are contained primarily within the western subbasin; strata in the east subbasin appear to have little resource potential. Structural traps are apparently present in parts of the basin near and along the Dangerous River zone. These traps are in an updip position from potentially mature strata of the western subbasin, and may hold commercial accumulations of hydrocarbons, if sufficient hydrocarbon generation and migration has occurred

  9. Changes in the channel-bed level of the western Carpathian rivers over the last 40years

    NASA Astrophysics Data System (ADS)

    Kijowska-Strugała, Małgorzata; Bucała-Hrabia, Anna

    2017-04-01

    Channel-bed level is constantly changing in time and space, and the process is dependent on both natural and anthropogenic factors. In mountain areas this is one of the more visible morphological processes. The main aim of the research was to analyze the dynamics of the position of river channel beds. Three rivers located within the western part of Polish Carpathians were chosen for the analysis: the Ropa river, the Kamienica Nawojowska river and the Ochotnica river. They are typical rivers for the Beskidy Mountains, medium Flysch mountains. To assess changes in the position of channel bed long-term series of data of minimum water stages in the river were used. The Ropa river is the biggest left tributary of the Wisłoka river (basin a of the upper Vistula River). The total length of the river amounts to 80 km, its gradient equals 58.9‰ and the water basin area amounts to 974 km2. The Kamienica Nawojowska river, with a length of 32.2 km is a right tributary of Dunajec river. The average decrease for the entire watercourse is 18.1‰. The catchment area is 238 km2. The Ochotnica river is 22.7 km long and it is a left tributary of the Dunajec river. The average slope for the entire watercourse is 36.1‰. The Ochotnica river characterized by deep valleys (catchment area 107.6 km2). Analysis of trends in minimum annual water stages in the alluvial Ropa river channel throughout the multi-year period of 1995-2014 shows an increasing trend amounting to 0.8 cm/year. In the Kamienica Nawojowska river the tendency of incision was observed starting from the 1960 to 2014. Average annual rate of increase of the minimum stages was between 0.4 to 1.2 cm/year. On the basis of the analysis of the minimum water levels in the years 1972-2011 two periods can be seen with different tendencies to change the position of the Ochotnica channel bottom. The first covers the years 1972-1996, where aggradation (3.9 cm/year) was the predominant process while in the period 1997-2011 incision (3.2 cm/year) was dominated. Two main factors determine changes in the position of the rivers channel beds: natural (floods, tributaries, type of the channel bed substrate) and anthropogenic (control works in the channel, extraction gravels, reservoir backwater. The deep erosion observed in the Carpathians rivers in the last decade is also associated with changes in land use that have increased due to the economic transformation of the country, and in recent years, the Polish accession to the EU.

  10. Response of the St. Joseph River to lake level changes during the last 12,000 years in the Lake Michigan basin

    USGS Publications Warehouse

    Kincare, K.A.

    2007-01-01

    The water level of the Lake Michigan basin is currently 177 m above sea level. Around 9,800 14C years B.P., the lake level in the Lake Michigan basin had dropped to its lowest level in prehistory, about 70 m above sea level. This low level (Lake Chippewa) had profound effects on the rivers flowing directly into the basin. Recent studies of the St. Joseph River indicate that the extreme low lake level rejuvenated the river, causing massive incision of up to 43 m in a valley no more than 1.6 km wide. The incision is seen 25 km upstream of the present shoreline. As lake level rose from the Chippewa low, the St. Joseph River lost competence and its estuary migrated back upstream. Floodplain and channel sediments partially refilled the recently excavated valley leaving a distinctly non-classical morphology of steep sides with a broad, flat bottom. The valley walls of the lower St. Joseph River are 12-18 m tall and borings reveal up to 30 m of infill sediment below the modern floodplain. About 3 ?? 108 m3 of sediment was removed from the St. Joseph River valley during the Chippewa phase lowstand, a massive volume, some of which likely resides in a lowstand delta approximately 30 km off-shore in Lake Michigan. The active floodplain below Niles, Michigan, is inset into an upper terrace and delta graded to the Calumet level (189 m) of Lake Chicago. In the lower portion of the terrace stratigraphy a 1.5-2.0 m thick section of clast-supported gravel marks the entry of the main St. Joseph River drainage above South Bend, Indiana, into the Lake Michigan basin. This gravel layer represents the consolidation of drainage that probably occurred during final melting out of ice-marginal kettle chains allowing stream piracy to proceed between Niles and South Bend. It is unlikely that the St. Joseph River is palimpsest upon a bedrock valley. The landform it cuts across is a glaciofluvial-deltaic feature rather than a classic unsorted moraine that would drape over pre-glacial topography. ?? 2006 Springer Science+Business Media B.V.

  11. Landscape assessment of side channel plugs and associated cumulative side channel attrition across a large river floodplain.

    PubMed

    Reinhold, Ann Marie; Poole, Geoffrey C; Bramblett, Robert G; Zale, Alexander V; Roberts, David W

    2018-04-24

    Determining the influences of anthropogenic perturbations on side channel dynamics in large rivers is important from both assessment and monitoring perspectives because side channels provide critical habitat to numerous aquatic species. Side channel extents are decreasing in large rivers worldwide. Although riprap and other linear structures have been shown to reduce side channel extents in large rivers, we hypothesized that small "anthropogenic plugs" (flow obstructions such as dikes or berms) across side channels modify whole-river geomorphology via accelerating side channel senescence. To test this hypothesis, we conducted a geospatial assessment, comparing digitized side channel areas from aerial photographs taken during the 1950s and 2001 along 512 km of the Yellowstone River floodplain. We identified longitudinal patterns of side channel recruitment (created/enlarged side channels) and side channel attrition (destroyed/senesced side channels) across n = 17 river sections within which channels were actively migrating. We related areal measures of recruitment and attrition to the density of anthropogenic side channel plugs across river sections. Consistent with our hypothesis, a positive spatial relationship existed between the density of anthropogenic plugs and side channel attrition, but no relationship existed between plug density and side channel recruitment. Our work highlights important linkages among side channel plugs and the persistence and restoration of side channels across floodplain landscapes. Specifically, management of small plugs represents a low-cost, high-benefit restoration opportunity to facilitate scouring flows in side channels to enable the persistence of these habitats over time.

  12. Heavy metal contamination status and source apportionment in sediments of Songhua River Harbin region, Northeast China.

    PubMed

    Li, Ning; Tian, Yu; Zhang, Jun; Zuo, Wei; Zhan, Wei; Zhang, Jian

    2017-02-01

    The Songhua River represents one of the seven major river systems in China. It flows through Harbin city with 66 km long, locating in the northern China with a longer winter time. This paper aimed to study concentration distributions, stability, risk assessment, and source apportionment of heavy metals including chromium (Cr), cadmium (Cd), lead (Pb), mercury (Hg), arsenic (As), copper (Cu), zinc (Zn), and nickel (Ni) in 11 selected sections of the Songhua River Harbin region. Results showed that Cr, Cd, Pb, Hg, and As exceeded their respective geochemical background values in sediments of most monitoring sections. Compared with other important rivers and lakes in China, Cr, Hg, Cd, and As pollutions in surface sediments were above medium level. Further analysis of chemical speciation indicated that Cr and As in surface sediments were relatively stable while Pb and Cd were easily bioavailable. Correlation analysis revealed sources of these metals except As might be identical. Pollution levels and ecological risks of heavy metals in surface sediments presented higher in the mainstream region (45° 47.0' N ~ 45° 53.3' N, 126° 37.0' E ~ 126° 42.1' E). Source apportionment found Hejiagou and Ashi River were the main contributors to metal pollution of this region. Thus, anthropogenic activities along the Hejiagou and Ashi River should be restricted in order to protect the Songhua River Harbin region from metal contamination.

  13. Implications of the miocene(?) crooked ridge river of northern arizona for the evolution of the colorado river and grand canyon

    USGS Publications Warehouse

    Lucchitta, Ivo; Holm, Richard F.; Lucchitta, Baerbel K.

    2013-01-01

    The southwesterly course of the probably pre–early Miocene and possibly Oligocene Crooked Ridge River can be traced continuously for 48 km and discontinuously for 91 km in northern Arizona (United States). The course is visible today in inverted relief. Pebbles in the river gravel came from at least as far northeast as the San Juan Mountains (Colorado). The river valley was carved out of easily eroded Jurassic and Cretaceous rocks whose debris overloaded the river with abundant detritus, probably steepening the gradient. After the river became inactive, the regional drainage network was rearranged three times, and the nearby Four Corners region was lowered 1–2 km by erosion. The river provides constraints on the early evolution of the Colorado River and Grand Canyon. Continuation of this river into lakes in Arizona or Utah is unlikely, as is integration through Grand Canyon by lake spillover. The downstream course of the river probably was across the Kaibab arch in a valley roughly coincident with the present eastern Grand Canyon. Beyond this point, the course may have continued to the drainage basin of the Sacramento River, or to the proto–Snake River drainage. Crooked Ridge River was beheaded by the developing San Juan River, which pirated its waters and probably was tributary to a proto–Colorado River, flowing roughly along its present course west of the Monument upwarp.

  14. Channel Storage change: a new remote sensed surface water measurement

    NASA Astrophysics Data System (ADS)

    Coss, S. P.; Durand, M. T.; Yi, Y.; Guo, Q.; Shum, C. K.; Allen, G. H.; Pavelsky, T.

    2017-12-01

    Here we present river channel storage change (CSC) measurements for 17 major world rivers from 2002-2016. We combined interpolated daily 1 km resolution Global River Radar Altimeter Time Series (GRRATS) river surface elevation data with static widths from the global river Global River Widths from Landsat (GRWL) dataset, to generate preliminary channel storage measurements. CSC is a previously unmeasured component of the terrestrial water balance It is a fundamental Earth science quantity with global bearing on floodplains, ecology, and geochemistry. CSC calculations require only remote sensed data, making them an ideal tool for studying remote regions where hydrological data is not easily accessible. CSC is uniquely suited to determine the role of hydrologic and hydraulic controls in basins with strong seasonal cycles (freeze-up and break-up). The cumulative CSC anomaly can impart spatial details that discharge measurements cannot. With this new measurement, we may be able to determine critical hydrological and hydraulic controls on rapidly changing systems like Arctic rivers. Results for Mississippi River indicate that peak CSC anomaly was the highest in 2011 (12.6 km3) and minimum CSC anomaly was in 2012 (-12.2 km3). Peak CSC has most frequently occurs in May (5 years), but has come as late in the year as July, and as early as January. Results for the Yukon River indicate that peak CSC anomaly was the highest in 2013 (13.9 km3) and minimum CSC anomaly was in 2010 (-14.2 km3). Peak CSC has most frequently come in early to mid-June (4-18), but has occurred in May (19-31) four years in the study period (three of the last 6 years) and once on April 30th.

  15. Changing trends of rainfall and sediment fluxes in the Kinta River catchment, Malaysia

    NASA Astrophysics Data System (ADS)

    Ismail, W. R.; Hashim, M.

    2015-03-01

    The Kinta River, draining an area of 2566 km2, originates in the Korbu Mountain in Perak, Malaysia, and flows through heterogeneous, mixed land uses ranging from extensive forests to mining, rubber and oil palm plantations, and urban development. A land use change analysis of the Kinta River catchment was carried out together with assessment of the long-term trend in rainfall and sediment fluxes. The Mann-Kendall test was used to examine and assess the long-term trends in rainfall and its relationship with the sediment discharge trend. The land use analysis shows that forests, water bodies and mining land declined whilst built and agricultural land use increased significantly. This has influenced the sediment flux of the catchment. However, most of the rainfall stations and river gauging stations are experiencing an increasing trends, except at Kinta river at Tg. Rambutan. Sediment flux shows a net erosion for the period from 1961 to 1969. The total annual sediment discharge in the Kinta River catchment was low with an average rate of 1,757 t/km2/year. From 1970 to 1985, the annual sediment yield rose to an average rate of 4062 t/km2/year. Afterwards, from 1986 to 1993, the total annual sediment discharge decreased to an average rate of 1,306 t/km2/year and increased back during the period 1994 to 2000 to 2109 t/km2/year. From 2001 to 2006 the average sediment flux rate declined to 865 t/km2/year. The decline was almost 80% from the 1970s. High sediment flux in the early 1970s is partly associated with reduced tin mining activities in the area. This decreasing trend in sediment delivery leaving the Kinta River catchment is expected to continue dropping in the future.

  16. Abundance of Harpy and Crested Eagles from a reservoir-impact area in the Low- and Mid-Xingu River.

    PubMed

    Sanaiotti, T M; Junqueira, T G; Palhares, V; Aguiar-Silva, F H; Henriques, L M P; Oliveira, G; Guimarães, V Y; Castro, V; Mota, D; Trombin, D F; Villar, D N A; Lara, K M; Fernandes, D; Castilho, L; Yosheno, E; Alencar, R M; Cesca, L; Dantas, S M; Laranjeiras, T O; Mathias, P C; Mendonça, C V

    2015-08-01

    In the Brazilian Amazon, two monospecific genera, the Harpy Eagle and Crested Eagle have low densities and are classified by IUCN as Near Threatened due to habitat loss, deforestation, habitat degradation and hunting. In this study, we evaluate occurrence of these large raptors using the environmental surveys database from Belo Monte Hydroelectric Power Plant. Integrating the dataset from two methods, we plotted a distribution map along the Xingu River, including records over a 276-km stretch of river. Terrestrial surveys (RAPELD method) were more efficient for detecting large raptors than standardized aquatic surveys, although the latter were complementary in areas without modules. About 53% of the records were obtained during activities of wildlife rescue/flushing, vegetation suppression or in transit. Between 2012 and 2014, four Harpy Eagles were removed from the wild; two shooting victims, one injured by collision with power lines and one hit by a vehicle. Also, seven nests were mapped. The mean distance between Harpy Eagle records was 15 km along the river channel, with a mean of 20 km between nests near the channel, which allowed us to estimate 20 possible pairs using the alluvial forest, riverine forest and forest fragments. Territories of another ten pairs will probably be affected by inundation of the Volta Grande channel, which is far from the main river. The average distance between Crested Eagle records was 16 km along the river channel. The only nest found was 1.3 km away from a Harpy Eagle nest. The remnant forests are under threat of being replaced by cattle pastures, so we recommend that permanently protected riparian vegetation borders (APP) be guaranteed, and that forest fragments within 5 km of the river be conserved to maintain eagle populations.

  17. Bedload pulses in a hydropower affected alpine gravel bed river

    NASA Astrophysics Data System (ADS)

    Aigner, Johann; Kreisler, Andrea; Rindler, Rolf; Hauer, Christoph; Habersack, Helmut

    2017-08-01

    This study investigated the sediment resupply and transport dynamics at the Upper Drau River upstream of Lienz (Eastern Tyrol, Austria). Due to a hydropower plant, a 24 km long river reach of this alpine gravel bed river is under residual flow conditions, although sediment is still resupplied into the reach through many active torrents and tributaries. As a result, sediment deposition in the residual flow reach intensified, hence increasing maintenance efforts to stabilize this river section and ensure flood protection. In combination with a new sediment management program, a continuous bedload monitoring system was installed 2 km downstream of the residual reach in 2001 to support the development of adapted sediment management strategies. The surrogate bedload monitoring system consists of 16 impact plate geophones, installed over a 17 m wide cross section. The unprecedented 15-year dataset of high-resolution bedload intensity revealed a complex process of gravel storage and intermittent resupply from the residual reach, allowing the authors a detailed analysis of frequently occurring bedload pulses. These transport features are triggered by increased discharges during floods in the residual reach and created pronounced anticlockwise bedload hysteresis or, with a temporal shift to the event peak, caused distinct shifts in the bedload activity downstream. Bedload pulses produce very high bedload fluxes while in transit, tend to increase bedload flux in the post-event phase, and can alter and reduce the upstream sediment storage leading to a lowering of bedload availability for future pulses. The observed time lags between main discharge events and the arrival of the macro-pulses are correlated with mean water discharge during pulse propagation, thus enabling a prediction of the pulse arrival at the monitoring station solely based on the hydrograph. In combination with the hydrological setup of the reach, the observed bedload pulse time lags allowed an estimation of pulse velocities in the range 0.002 - 0.05 m s- 1.

  18. Analysis and classification of topographic flow steering and inferred geomorphic processes as a function of discharge in a mountain river

    NASA Astrophysics Data System (ADS)

    Gore, J.; Pasternack, G. B.; Wiener, J.

    2016-12-01

    Process-based river classification tends to be done at reach to catchment scales assuming channels are uniform and thus differentiated by the simple specific stream power metric. In fact, mountain rivers are highly variable at subreach scales to the point that local topographic steering may be the dominant control on geomorphic processes. This study presents a new framework for characterizing how stage-dependent topographic steering varies continuously down a river, leading to a classification of subreach landforms on the basis of the geomorphic mechanism of flow convergence routing. The two remote mountain river segments were located in the 3480-km2 Yuba River, with the upper South Yuba having a substantial sediment supply from legacy hydraulic gold mining and the mainstem Yuba downstream of New Bullards Bar Dam having a restricted sediment supply. Meter-scale DEMs were produced for both cases using airborne LiDAR and survey data. DEMs were slope detrended to focus the analysis on cross-sectional variability. DEMs were then heavily smoothed to allow for automated tracing of the valley centerline, and then cross-sectional rectangles were spaced every 5 m. The average width (W) and detrended bed elevation (Z) of the wetted area was computed from the DEM for each raster for 6-7 different river stages. Both width and cross-sectionally averaged bed elevation were standardized. The product of these two variables was computed as a measure of cross-sectional area, and is termed the geomorphic covariance (Czw) series when plotted along each river corridor. Cwz was then used to classify each cross-section as one of five distinct landform types: nozzle, wide bar, normal channel, constricted pool, and oversized pool- with this classification varying with discharge such that a section could, for example, function as a nozzle during low flow but an oversized pool at high flow, or any other combination. Longitudinal profiles of bed elevation, width, covariance, and landform type were analyzed for their stage-dependent patterns to understand their geomorphic significance and to contrast the two rivers. This new method may be the first example of a hierarchical, process-based classification at the subreach scale in which one mechanism is assessed for how it varies not only in space, but as a function of discharge.

  19. Drastic change in China's lakes and reservoirs over the past decades.

    PubMed

    Yang, Xiankun; Lu, Xixi

    2014-08-13

    Using remote sensing images, we provided the first complete picture of freshwater bodies in mainland China. We mapped 89,700 reservoirs, covering about 26,870 km(2) and approximately 185,000 lakes with a surface area of about 82,232 km(2). Despite relatively small surface area, the total estimated storage capacity of reservoirs (794 km(3)) is triple that of lakes (268 km(3)). Further analysis indicates that reservoir construction has made the river systems strongly regulated: only 6% of the assessed river basins are free-flowing; 20% of assessed river basins have enough cumulative reservoir capacity to store more than the entire annual river flow. Despite the existence of 2,721 lakes greater than 1 km(2), we found that about 50 lakes greater than km(2) have formed on the Tibetan Plateau resulting from climate change. More than 350 lakes of ≥1 km(2) vanished in four other major lake regions. Although the disappearance of lakes happened in the context of global climate change, it principally reflects the severe anthropogenic impacts on natural lakes, such as, the excessive plundering of water resources on the Inner Mongolia-Xinjiang Plateau and serious destruction (land reclamation and urbanization) on the eastern plains.

  20. Habitat use of juvenile pallid sturgeon and shovelnose sturgeon with implications for water-level management in a downstream reservoir

    USGS Publications Warehouse

    Gerrity, Paul C.; Guy, C.S.; Gardner, W.M.

    2008-01-01

    Natural recruitment of pallid sturgeon Scaphirhynchus albus has not been observed in the Missouri River above Fort Peck Reservoir, Montana, for at least 20 years. To augment the population, age-1 hatchery-reared juvenile pallid sturgeon were released in 1998. The objective of this study was to evaluate the habitat use of these fish and compare it with that of indigenous shovelnose sturgeon S. platorynchus. Twenty-nine juvenile pallid sturgeon and 21 indigenous shovelnose sturgeon were implanted with radio transmitters in 2003 and 2004. The two species showed no differences in habitat use in terms of mean depth, cross-sectional relative depth, longitudinal relative depth, column velocity, bottom velocity, and channel width. However, there were seasonal differences within both species for cross-sectional relative depth, column velocity, and channel width. Both shovelnose sturgeon and juvenile pallid sturgeon were primarily associated with silt and sand substrate. However, shovelnose sturgeon were associated with gravel and cobble substrate more than juvenile pallid sturgeon. Shovelnose sturgeon and juvenile pallid sturgeon both selected reaches without islands and avoided reaches with islands; the two species also selected main-channel habitat and avoided secondary channels. Mean home range was similar between juvenile pallid sturgeon (15 km; 90% confidence interval, ??5.0 km) and shovelnose sturgeon (16.5 km; ??4.7 km). Spatial distribution differed between the two species, with shovelnose sturgeon using upstream areas more often than juvenile pallid sturgeon. Twenty-eight percent of juvenile pallid sturgeon frequented 60 km of lotie habitat that would be inundated by Fort Peck Reservoir at maximum pool. Stocking juvenile pallid sturgeon can successfully augment the wild pallid sturgeon population in the Missouri River above Fort Peck Reservoir, which is crucial to the long-term recovery of the species. However, water-level management in downstream reservoirs such as Fort Peck can influence the amount of habitat available for pallid sturgeon. ?? Copyright by the American Fisheries Society 2008.

  1. Fire chronology and windstorm effects on persistence of a disjunct oak-shortleaf pine community

    Treesearch

    Michael D. Jones; Marlin L. Bowles

    2012-01-01

    We investigated effects of a human-altered fire regime and wind storms on persistence of disjunct oak-shortleaf pine vegetation occurring along 5.5 km of xeric habitat on the east bluffs of the Mississippi River in Union County, IL. In 2009, we resampled vegetation transects established in seven stands in 1954 and obtained 26 cross sections containing fire scars from...

  2. Investigation of Hyporheic Thermal Flux and Downstream Attenuation Driven by Hydropeaking in the Colorado River, Austin, Texas

    NASA Astrophysics Data System (ADS)

    Watson, J. A.; Cardenas, M. B.; Neilson, B. T.; Bennett, P. C.

    2015-12-01

    Thermal flux related to regulated river hydropeaking has been extensively researched at the single-study site scale, but little work has been done quantifying the downstream attenuation of a single regulated flood pulse at multiple sites. In order to better understand this flood pulse attenuation we instrumented four sites with temperature probes along a 91 km stretch of the Colorado River downstream of longhorn dam, Austin, TX. Piezometer transects perpendicular to the river at each site were instrumented with HOBO thermistors over a 1.4m screened interval within the saturated zone at 20cm spacing. As flood pulses are attenuated downstream, temperature gradients and distance of lateral temperature pulse penetration into the bank are hypothesized to decrease. The data collected in this investigation will test this hypothesis by providing 2D temperature cross-sections along an attenuating flood pulse, providing detailed spatial data on temperature gradients adjacent to the river.

  3. The Eel River, northwestern California; high sediment yields from a dynamic landscape

    Treesearch

    Thomas E. Lisle

    1990-01-01

    The Eel River draining the Coast Range of northwestern California has the highest recorded average suspended sediment yield per drainage area of any river of its size or larger unaffected by volcanic eruptions or active glaciers in the conterminous United States (1,720 t/km 2 yr from 9,390 km 2 ; Brown and Ritter, 1971).

  4. Hydroecological monitoring in the headwaters of the Volga River

    NASA Astrophysics Data System (ADS)

    Kuzovlev, Viacheslav V.; Zhenikov, Yuri N.; Zhenikov, Kyrill Y.; Shaporenko, Sergey I.; Haun, Stefan; Füreder, Leopold; Schletterer, Martin

    2016-04-01

    Europe's largest river, the Volga (3551 km), has experienced multiple stressors from human activities (i.e. the Volga Basin comprises about 40 % of the Russian population, 45 % of the country's industry and more than 50 % of its agriculture). During the research expedition "Upper Volga 2005" an assessment of hydrological, limnochemical and biological parameters was carried out by scientists from the Russian Federation and from Austria. The extensive sampling in 2005 showed that the free-flowing section of the Volga River, located upstream of Tver, represents conditions which are either reference or least disturbed - thus it can be considered as a refugial system for freshwater biota of the European lowlands. Subsequently three stretches in the headwaters of the Volga River (Rzhev, Staritsa, Tver) were selected for the monitoring programme "REFCOND_VOLGA", which is in operation since 2006. These locations correspond also with the sampling sites of ROSHYDROMET, i.e. at Tver physic-chemical samples are taken monthly and at Rzhev samples are taken in the main hydrological periods. The laboratory ship "ROSHYDROMET 11" conducted monthly cruises between Tver and Kalyazin (Ivankovskoye and Uglichskoye reservoirs on Volga) in the headwaters during the navigation period (May - October). This also includes measurements with ADCP, which further allow the analyses of the spatial distribution of the suspended solids within cross sections. In addition sediment fluxes were derived by using the acoustic backscatter signal strength from the acoustic current Doppler profiler (ADCP). We exemplify at the monitoring sites the spatial distribution of different sediments, i.e. choriotope types, according the longitudinal profile of the river. We show that it is highly influenced by morphodynamics in the different river sections and this corresponds with the zoobenthos fauna accordingly. This interdisciplinary approach, including sediment conditions, limnochemistry, hydrology and hydrobiology, leads to a hydro-ecological reference for European lowland rivers.

  5. Nitrogen attenuation in the Connecticut River, northeastern USA; a comparison of mass balance and N2 production modeling approaches

    USGS Publications Warehouse

    Smith, T.E.; Laursen, A.E.; Deacon, J.R.

    2008-01-01

    Two methods were used to measure in-stream nitrogen loss in the Connecticut River during studies conducted in April and August 2005. A mass balance on nitrogen inputs and output for two study reaches (55 and 66 km), at spring high flow and at summer low flow, was computed on the basis of total nitrogen concentrations and measured river discharges in the Connecticut River and its tributaries. In a 10.3 km subreach of the northern 66 km reach, concentrations of dissolved N2 were also measured during summer low flow and compared to modeled N2 concentrations (based on temperature and atmospheric gas exchange rates) to determine the measured "excess" N2 that indicates denitrification. Mass balance results showed no in-stream nitrogen loss in either reach during April 2005, and no nitrogen loss in the southern 55 km study reach during August 2005. In the northern 66 km reach during August 2005, however, nitrogen output was 18% less than the total nitrogen inputs to the reach. N2 sampling results gave an estimated rate of N2 production that would remove 3.3% of the nitrogen load in the river over the 10.3 km northern sub-reach. The nitrogen losses measured in the northern reach in August 2005 may represent an approximate upper limit for nitrogen attenuation in the Connecticut River because denitrification processes are most active during warm summer temperatures and because the study was performed during the annual low-flow period when total nitrogen loads are small. ?? 2008 Springer Science+Business Media B.V.

  6. Predicted effects of future climate warming on thermal habitat suitability for Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) in rivers in Wisconsin, USA

    USGS Publications Warehouse

    Lyons, John D.; Stewart, Jana S.

    2015-01-01

    The Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) may be threatened by future climate warming. The purpose of this study was to identify river reaches in Wisconsin, USA, where they might be vulnerable to warming water temperatures. In Wisconsin, A. fulvescens is known from 2291 km of large-river habitat that has been fragmented into 48 discrete river-lake networks isolated by impassable dams. Although the exact temperature tolerances are uncertain, water temperatures above 28–30°C are potentially less suitable for this coolwater species. Predictions from 13 downscaled global climate models were input to a lotic water temperature model to estimate amounts of potential thermally less-suitable habitat at present and for 2046–2065. Currently, 341 km (14.9%) of the known habitat are estimated to regularly exceed 28°C for an entire day, but only 6 km (0.3%) to exceed 30°C. In 2046–2065, 685–2164 km (29.9–94.5%) are projected to exceed 28°C and 33–1056 km (1.4–46.1%) to exceed 30°C. Most river-lake networks have cooler segments, large tributaries, or lakes that might provide temporary escape from potentially less suitable temperatures, but 12 short networks in the Lower Fox and Middle Wisconsin rivers totaling 93.6 km are projected to have no potential thermal refugia. One possible adaptation to climate change could be to provide fish passage or translocation so that riverine Lake Sturgeon might have access to more thermally suitable habitats.

  7. Mackenzie River Delta, Canada

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Mackenzie River in the Northwest Territories, Canada, with its headstreams the Peace and Finley, is the longest river in North America at 4241 km, and drains an area of 1,805,000 square km. The large marshy delta provides habitat for migrating Snow Geese, Tundra Swans, Brant, and other waterfowl. The estuary is a calving area for Beluga whales. The Mackenzie (previously the Disappointment River) was named after Alexander Mackenzie who travelled the river while trying to reach the Pacific in 1789.

    The image was acquired on August 4, 2005, covers an area of 55.8 x 55.8 km, and is located at 68.6 degrees north latitude, 134.7 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  8. Do rivers really obey power-laws? Using continuous high resolution measurements to define bankfull channel and evaluate downstream hydraulic-scaling over large changes in drainage area

    NASA Astrophysics Data System (ADS)

    Scher, C.; Tennant, C.; Larsen, L.; Bellugi, D. G.

    2016-12-01

    Advances in remote-sensing technology allow for cost-effective, accurate, high-resolution mapping of river-channel topography and shallow aquatic bathymetry over large spatial scales. A combination of near-infrared and green spectra airborne laser swath mapping was used to map river channel bathymetry and watershed geometry over 90+ river-kilometers (75-1175 km2) of the Greys River in Wyoming. The day of flight wetted channel was identified from green LiDAR returns, and more than 1800 valley-bottom cross-sections were extracted at regular 50-m intervals. The bankfull channel geometry was identified using a "watershed-based" algorithm that incrementally filled local minima to a "spill" point, thereby constraining areas of local convergence and delineating all the potential channels along the cross-section for each distinct "spill stage." Multiple potential channels in alluvial floodplains and lack of clearly defined channel banks in bedrock reaches challenge identification of the bankfull channel based on topology alone. Here we combine a variety of topological measures, geometrical considerations, and stage levels to define a stage-dependent bankfull channel geometry, and compare the results with day of flight wetted channel data. Initial results suggest that channel hydraulic geometry and basin hydrology power-law scaling may not accurately capture downstream channel adjustments for rivers draining complex mountain topography.

  9. Effects of large floods on channel width: recent insights from Italian rivers

    NASA Astrophysics Data System (ADS)

    Scorpio, Vittoria; Righini, Margherita; Amponsah, William; Crema, Stefano; Ciccarese, Giuseppe; Nardi, Laura; Zoccatelli, Davide; Borga, Marco; Cavalli, Marco; Comiti, Francesco; Corsini, Alessandro; Marchi, Lorenzo; Rinaldi, Massimo; Surian, Nicola

    2017-04-01

    Variations of channel morphology occurring during large flood events (recurrence interval > 50-100 years.) are very often the cause of damages to buildings and infrastructures, as well as of casualties. However, our knowledge of such processes remains poor, as is our capability to predict them. Post-event campaigns documenting channel changes and linking them to hydrological and morphological factors thus bear an enormous value for both the scientific community and river management agencies. We present the results of an analysis on the geomorphic response associated to 4 large floods that occurred between October 2011 and September 2015, affecting several catchments in Northern Italy (Magra-Vara, Trebbia, Nure rivers) and Sardinia (Posada and Mannu di Bitti rivers), characterized by different climatic, lithological and geomorphological settings. The analysis considered more than 400 channel reaches characterized by a drainage area ranging from 39 to 1,100 km2 and featuring a wide range of lateral confinement, mostly within the partly- and unconfined conditions. The approach to flood analysis encompassed: (i) hydrological and hydraulic analysis; (ii) analysis of sediment delivery by landslides to the channel network; (iii) GIS-based and field assessment of morphological channel modifications. For the Nure River flood event (September 2015) a quantitative assessment on average bed level variations was also carried out. Return period for maximum hourly rainfall intensities and peak water discharges exceeded in all basins 100 yr, in some cases even 300 yr. Very high unit peak discharges were estimated, reaching 8.8 m3 s-1km-2 in the Nure River (205 km2) and up to 30 m3 s-1km-2in few Magra River tributaries (5-10 km2). Notable channel widening (post-flood width / pre-flood width > 1.1) occurred in 83% of studied reaches, and it was found more relevant in the channels with narrower initial width, i.e. along the relatively steep tributaries. For these tributaries, the ratio between post-flood and pre-flood width presents an average value of 4.2, with a maximum approaching 20. In the main river channels, due to the presence of wider sections and lower slope, the ratio resulted < 5, on average 1.3. The analysis of width ratio vs. flood peak unit stream power shows that the minimum unit stream power required to cause relevant widening was about 500 Wm-2. Nonetheless, some reaches affected by unit stream power as high as 4,000 Wm-2 exhibited limited or no widening at all. Indeed, a statistical analysis on the relationship between widening and both morphological and hydraulic controlling factors indicates that unit stream power and confinement index were the most relevant variables, whereas sediment input from mass wasting processes seems to have a localized influence. Remarkably, the analysis of subset referring to Trebbia and Nure basins showed that channel widening is strongly associated to bed aggradation, and that steeper tributaries underwent higher aggradation despite their larger sediment transport capacity. These results points out that geomorphic changes due to large floods are controlled by several factors that induce a highly variable pattern of change even within the same river basin.

  10. Spatiotemporal distribution and fluctuation of radiocesium in Tokyo Bay in the five years following the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident

    PubMed Central

    Yamazaki, Hideo; Hinokio, Ryoichi; Yamashiki, Yosuke Alexandre; Azuma, Ryokei

    2018-01-01

    A monitoring survey was conducted from August 2011 to July 2016 of the spatiotemporal distribution in the 400 km2 area of the northern part of Tokyo Bay and in rivers flowing into it of radiocesium released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. The average inventory in the river mouth (10 km2) was 131 kBq⋅m-2 and 0.73 kBq⋅m-2 in the central bay (330 km2) as the decay corrected value on March 16, 2011. Most of the radiocesium that flowed into Tokyo Bay originated in the northeastern section of the Tokyo metropolitan area, where the highest precipitation zone of 137Cs in soil was almost the same level as that in Fukushima City, then flowed into and was deposited in the Old-Edogawa River estuary, deep in Tokyo Bay. The highest precipitation of radiocesium measured in the high contaminated zone was 460 kBq⋅m-2. The inventory in sediment off the estuary of Old-Edogawa was 20.1 kBq⋅m-2 in August 2011 immediately after the accident, but it increased to 104 kBq⋅m-2 in July 2016. However, the radiocesium diffused minimally in sediments in the central area of Tokyo Bay in the five years following the FDNPP accident. The flux of radiocesium off the estuary decreased slightly immediately after the accident and conformed almost exactly to the values predicted based on its radioactive decay. Contrarily, the inventory of radiocesium in the sediment has increased. It was estimated that of the 8.33 TBq precipitated from the atmosphere in the catchment regions of the rivers Edogawa and Old-Edogawa, 1.31 TBq migrated through rivers and was deposited in the sediments of the Old-Edogawa estuary by July 2016. Currently, 0.25 TBq⋅yr-1 of radiocesium continues to flow into the deep parts of Tokyo Bay. PMID:29494667

  11. AirSWOT observations versus hydrodynamic model outputs of water surface elevation and slope in a multichannel river

    NASA Astrophysics Data System (ADS)

    Altenau, Elizabeth H.; Pavelsky, Tamlin M.; Moller, Delwyn; Lion, Christine; Pitcher, Lincoln H.; Allen, George H.; Bates, Paul D.; Calmant, Stéphane; Durand, Michael; Neal, Jeffrey C.; Smith, Laurence C.

    2017-04-01

    Anabranching rivers make up a large proportion of the world's major rivers, but quantifying their flow dynamics is challenging due to their complex morphologies. Traditional in situ measurements of water levels collected at gauge stations cannot capture out of bank flows and are limited to defined cross sections, which presents an incomplete picture of water fluctuations in multichannel systems. Similarly, current remotely sensed measurements of water surface elevations (WSEs) and slopes are constrained by resolutions and accuracies that limit the visibility of surface waters at global scales. Here, we present new measurements of river WSE and slope along the Tanana River, AK, acquired from AirSWOT, an airborne analogue to the Surface Water and Ocean Topography (SWOT) mission. Additionally, we compare the AirSWOT observations to hydrodynamic model outputs of WSE and slope simulated across the same study area. Results indicate AirSWOT errors are significantly lower than model outputs. When compared to field measurements, RMSE for AirSWOT measurements of WSEs is 9.0 cm when averaged over 1 km squared areas and 1.0 cm/km for slopes along 10 km reaches. Also, AirSWOT can accurately reproduce the spatial variations in slope critical for characterizing reach-scale hydraulics, while model outputs of spatial variations in slope are very poor. Combining AirSWOT and future SWOT measurements with hydrodynamic models can result in major improvements in model simulations at local to global scales. Scientists can use AirSWOT measurements to constrain model parameters over long reach distances, improve understanding of the physical processes controlling the spatial distribution of model parameters, and validate models' abilities to reproduce spatial variations in slope. Additionally, AirSWOT and SWOT measurements can be assimilated into lower-complexity models to try and approach the accuracies achieved by higher-complexity models.

  12. Age and extent of a giant glacial-dammed lake at Yarlung Tsangpo gorge in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Weiming; Lai, Zhongping; Hu, Kaiheng; Ge, Yonggang; Cui, Peng; Zhang, Xiaogang; Liu, Feng

    2015-10-01

    Many glacier dams on major rivers at the southeastern edge of the Tibetan Plateau had been previously determined through remote sensing and glacier terminal position calculation. It was hypothesized that such damming substantially impeded river incision into the plateau interior. Investigation on the large glacial-dammed lake at the entrance of Tsangpo gorge is critical for understanding this hypothesis. So far, the issues, such as age, lake surface elevation, and stages of this dammed lake, are still in debate. Our field survey of lacustrine deposits and loess distribution along the middle Yarlung Tsangpo River and its tributary, Nyang River, suggested that the lake surface elevation was at about 3180 m asl. The 23 quartz optically stimulated luminescence (OSL) and 4 organic AMS 14C ages all fall into the Last Glacial period ( 41-13 ka). The OSL and 14C ages are in general agreement with each other where applicable. There might be only one long damming event because the ages of lacustrine deposits from 2970 to 3100 m asl are similar, and every lacustrine section is sustained for a long time. The estimated lake surface area was 1089 km2, and the volume was 170 km3, which differ from previous estimations which suggested two-stage (about early Holocene and 1.5 ka) lakes, and the largest lake surface elevation reached 3500 m.

  13. Audio-magnetotelluric methods in reconnaissance geothermal exploration

    USGS Publications Warehouse

    Hoover, D.B.; Long, C.L.

    1976-01-01

    and 18 600 Hz where artificial VLF sources are available. As a reconnaissance technique we use AMT surveys in conjunction with regional gravity, magnetic, and telluric surveys. The exploration depth is a function of the resistivities of the lithologic section, but typically ranges from the surface to 0.2 km in low-resistivity areas and to greater than 2 km in high-resistivity regions. Results of the initial reconnaissance AMT surveys provide a rational basis for deciding on the extent of costlier follow-up surveys. As part of the U.S. Geological Survey geothermal program, surveys were conducted in Long Valley and Surprise Valley, California; the Vale, Ore-Weiser, Idaho region; and Bruneau-Grand View, Raft River, and Island Park regions of Idaho. AMT surveys in five additional known geothermal resource areas (KGRA's) have been scheduled for completion by May 1975. In the Raft River and Bruneau-Grand View regions and Long Valley, follow-up electrical surveys substantiated the effectiveness of the AMT technique for reconnaissance surveying.

  14. The Interaction between Logjams, Channel Evolution, and Sports Fisheries on a Dam Regulated Low Gradient River.

    NASA Astrophysics Data System (ADS)

    Schenk, E.; Hupp, C. R.; Moulin, B.

    2014-12-01

    The purpose of our study was to determine the interaction between in-stream large wood (LW), bank erosion, and sports fisheries in the 210 river kilometer (km) Coastal Plain segment of the dam-regulated Roanoke River, North Carolina. Methods included collecting background geomorphic data including a 200 km channel geometry survey and measurements from 701 bank erosion pins at 36 cross-sections over 132 km. LW concentrations were evaluated over a 177 km reach using georeferenced aerial video taken during regulated low flow (56 m3/s). LW transport was measured using 290 radio tagged LW pieces (mean diameter = 35.0 cm, length = 9.3 m) installed between 2008 and 2010. Largemouth bass (Micropterus salmoides) were surveyed in 2010 at 29 sites using a boat mounted electroshock unit. The abundance of LW in logjams was 59 pieces/km and these were concentrated (21.5 logjams/km) in an actively eroding reach with relatively high sinuosity, high local LW production rates, and narrow channel widths. Most jams (70%) are available nearly year round as aquatic habitat, positioned either on the lower bank or submerged at low-water flows. The actively eroding reach is adjusting to upstream dam regulation by channel widening. The channel upstream of this reach has widened and stabilized while the channel downstream of the eroding reach is still relatively narrow but with lower bank erosion rates. Repeat surveys of radio tagged LW determined that transport was common throughout the study area despite dam regulation and a low channel gradient (0.0016). The mean distance travelled by a radio tagged piece of LW was 11.9 km with a maximum of 101 km (84 tags moved, 96 stationary, 110 not found). Radio tagged LW that moved during the study was found at low flow either in logjams (44%), as individual LW (43%), or submerged mid-channel (14%). Largemouth bass biomass density (g/hr effort) was highest in the actively eroding reach where logjams were most common. Our results support the hypothesis that channel evolution processes control bank stability and complexity that in turn control logjam frequency. Areas with higher concentrations of logjams have larger and more largemouth bass, a valued sports fish.

  15. Raptor Use of the Rio Grande Gorge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponton, David A.

    2015-03-20

    The Rio Grande Gorge is a 115 km long river canyon located in Southern Colorado (15 km) and Northern New Mexico (100 km). The majority of the canyon is under the administration of the Bureau of Land Management {BLM), and 77 km of the canyon south of the Colorado/New Mexico border are designated Wild River under the National Wild and Scenic Rivers Act of 1968. Visits I have made to the Rio Grande Gorge over the past 15 .years disclosed some raptor utilization. As the Snake River Birds of Prey Natural Area gained publicity, its similarity to the Rio Grandemore » Gorge became obvious, and I was intrigued by the possibility of a high raptor nesting density in the Gorge. A survey in 1979 of 20 km of the northern end of the canyon revealed a moderately high density of red-tailed hawks and prairie falcons. With the encouragement of that partial survey, and a need to assess the impact of river-running on nesting birds of prey, I made a more comprehensive survey in 1980. The results of my surveys, along with those of a 1978 helicopter survey by the BLM, are presented in this report, as well as general characterization of the area, winter use by raptors, and an assessment of factors influencing the raptor population.« less

  16. Riparian forest and instream large wood characteristics, West Branch Sheepscot River, Maine, USA

    Treesearch

    Melissa Laser; James Jordan; Keith Nislow

    2009-01-01

    This study examined riparian forest and instream large wood characteristics in a 2.7 km reach of the West Branch of the Sheepscot River in Maine in order to increase our basic knowledge of these components in a system that is known to have undergone multiple land conversion. The West Branch is approximately 40 km long, drains a 132 km2...

  17. Designation of River Klina-Skenderaj Inputs, in the Absence of Measurements (Monitoring)-Kosova

    NASA Astrophysics Data System (ADS)

    Osmanaj, Lavdim; Karahoda, Dafina

    2009-11-01

    The territory of Republic of Kosova is divided in four catchment basins, such as: Basin of river Drini i Bardhë, river Ibri, river Morava of Binca and river Lepenci. [1]The river Klina is left part of the Drini i Bardhë basin.The inputs are designated by the following authors:a) GIANDOTT - VISSENTINb) GA VRILOVICc) THE METHOD OF TYPICALHYDROGRAMAs a result of this studies derive the following parameters: the surface of basin F=77.75km2, width of main flow L=22.00km', width of basin Wb=68.00km', highest quota of the basin Hqb=1750m.l.m, highest quota of inflow Hi=600.00m.l.m, average difference of height D=303.5m, maximal water input: Qmax100 years=112.00 m3/s, an average produce of Alluvium W=980.76m3/s, specific produce of Alluvium Gyears=35270.57 m3/s, secondary conveyance of Alluvium Qa=14.70 m3/s.

  18. Downstream effects of a hydroelectric reservoir on aquatic plant assemblages.

    PubMed

    Bernez, Ivan; Haury, Jacques; Ferreira, Maria Teresa

    2002-03-16

    Macrophytes were studied downstream of the Rophémel hydroelectric dam on the River Rance (Côtes d'Armor Department, western France) to assess the effects of hydroelectric functioning on river macrophyte communities. We studied ten representative sections of the hydro-peaking channel on five occasions in 1995 and 1996, on a 15-km stretch of river. Floristic surveys were carried out on sections 50 m in length, and genera of macroalgae, species of bryophyta, hydrophytes, and emergent rhizophytes were identified. For the aquatic bryophytes and spermatophytes section of our study, we compared our results with 19th century floristic surveys, before the dam was built. During the vegetative growth period, the hydro-peaking frequency was low. The plant richness was highest near the dam. The macrophyte communities were highly modified according to the distance to the dam. The frequency and magnitude of hydro-peaking was related to the aquatic macrophyte richness in an Intermediate Disturbance Hypothesis position. However, the results of the eco-historical comparison with 19th century floristic surveys point to the original nature of the flora found at the site. Some floral patterns, seen during both periods and at an interval of 133 years, were indicative of the ubiquity of the aquatic flora and of the plants" adaptability. This demonstrates the importance of taking river basin history into account in such biological surveys.

  19. Landscape assessment of side channel plugs and associated cumulative side channel attrition across a large river floodplain

    USGS Publications Warehouse

    Reinhold, Ann Marie; Poole, Geoffrey C.; Bramblett, Robert G.; Zale, Alexander V.; Roberts, David W.

    2018-01-01

    Determining the influences of anthropogenic perturbations on side channel dynamics in large rivers is important from both assessment and monitoring perspectives because side channels provide critical habitat to numerous aquatic species. Side channel extents are decreasing in large rivers worldwide. Although riprap and other linear structures have been shown to reduce side channel extents in large rivers, we hypothesized that small “anthropogenic plugs” (flow obstructions such as dikes or berms) across side channels modify whole-river geomorphology via accelerating side channel senescence. To test this hypothesis, we conducted a geospatial assessment, comparing digitized side channel areas from aerial photographs taken during the 1950s and 2001 along 512 km of the Yellowstone River floodplain. We identified longitudinal patterns of side channel recruitment (created/enlarged side channels) and side channel attrition (destroyed/senesced side channels) across n = 17 river sections within which channels were actively migrating. We related areal measures of recruitment and attrition to the density of anthropogenic side channel plugs across river sections. Consistent with our hypothesis, a positive spatial relationship existed between the density of anthropogenic plugs and side channel attrition, but no relationship existed between plug density and side channel recruitment. Our work highlights important linkages among side channel plugs and the persistence and restoration of side channels across floodplain landscapes. Specifically, management of small plugs represents a low-cost, high-benefit restoration opportunity to facilitate scouring flows in side channels to enable the persistence of these habitats over time.

  20. Distribution and characterization of in-channel large wood in relation to geomorphic patterns on a low-gradient river

    USGS Publications Warehouse

    Moulin, Bertrand; Schenk, Edward R.; Hupp, Cliff R.

    2011-01-01

    A 177 river km georeferenced aerial survey of in-channel large wood (LW) on the lower Roanoke River, NC was conducted to determine LW dynamics and distributions on an eastern USA low-gradient large river. Results indicate a system with approximately 75% of the LW available for transport either as detached individual LW or as LW in log jams. There were approximately 55 individual LW per river km and another 59 pieces in log jams per river km. Individual LW is a product of bank erosion (73% is produced through erosion) and is isolated on the mid and upper banks at low flow. This LW does not appear to be important for either aquatic habitat or as a human risk. Log jams rest near or at water level making them a factor in bank complexity in an otherwise homogenous fine-grained channel. A segmentation test was performed using LW frequency by river km to detect breaks in longitudinal distribution and to define homogeneous reaches of LWfrequency. Homogeneous reaches were then analyzed to determine their relationship to bank height, channel width/depth, sinuosity, and gradient. Results show that log jams are a product of LW transport and occur more frequently in areas with high snag concentrations, low to intermediate bank heights, high sinuosity, high local LW recruitment rates, and narrow channel widths. The largest concentration of log jams (21.5 log jams/km) occurs in an actively eroding reach. Log jam concentrations downstream of this reach are lower due to a loss of river competency as the channel reaches sea level and the concurrent development of unvegetated mudflats separating the active channel from the floodplain forest. Substantial LW transport occurs on this low-gradient, dam-regulated large river; this study, paired with future research on transport mechanisms should provide resource managers and policymakers with options to better manage aquatic habitat while mitigating possible negative impacts to human interests.

  1. The persistence of lead from past gasoline emissions and mining drainage in a large riparian system: Evidence from lead isotopes in the Sacramento River, California

    USGS Publications Warehouse

    Dunlap, C.E.; Alpers, Charles N.; Bouse, R.; Taylor, Howard E.; Unruh, D.M.; Flegal, A.R.

    2008-01-01

    Lead concentrations and isotope ratios measured in river water colloids and streambed sediment samples along 426 km of the Sacramento River, California reveal that the influence of lead from the historical mining of massive sulfide deposits in the West Shasta Cu-mining district (at the headwaters of the Sacramento River) is confined to a 60 km stretch of river immediately downstream of that mining region, whereas inputs from past leaded gasoline emissions and historical hydraulic Au-mining in the Sierra Nevadan foothills are the dominant lead sources in the remaining 370 km of the river. Binary mixing calculations suggest that more than 50% of the lead in the Sacramento River outside of the region of influence of the West Shasta Cu-mining district is derived from past depositions of leaded gasoline emissions. This predominance is the first direct documentation of the geographic extent of gasoline lead persistence throughout a large riparian system (>160,000 km2) and corroborates previous observations based on samples taken at the mouth of the Sacramento River. In addition, new analyses of sediment samples from the hydraulic gold mines of the Sierra Nevada foothills confirm the present-day fluxes into the Sacramento River of contaminant metals derived from historical hydraulic Au-mining that occurred during the latter half of the 19th and early part of the 20th centuries. These fluxes occur predominantly during periods of elevated river discharge associated with heavy winter precipitation in northern California. In the broadest context, the study demonstrates the potential for altered precipitation patterns resulting from climate change to affect the mobility and transport of soil-bound contaminants in the surface environment. ?? 2008 Elsevier Ltd.

  2. Water geochemistry of the Qiantangjiang River, East China: Chemical weathering and CO2 consumption in a basin affected by severe acid deposition

    NASA Astrophysics Data System (ADS)

    Liu, Wenjing; Shi, Chao; Xu, Zhifang; Zhao, Tong; Jiang, Hao; Liang, Chongshan; Zhang, Xuan; Zhou, Li; Yu, Chong

    2016-09-01

    The chemical composition of the Qiantangjiang River, the largest river in Zhejiang province in eastern China, was measured to understand the chemical weathering of rocks and the associated CO2 consumption and anthropogenic influences within a silicate-dominated river basin. The average total dissolved solids (TDS, 113 mg l-1) and total cation concentration (TZ+, 1357 μeq l-1) of the river waters are comparable with those of global major rivers. Ca2+ and HCO3- followed by Na2+ and SO42-, dominate the ionic composition of the river water. There are four major reservoirs (carbonates, silicates, atmospheric and anthropogenic inputs) contributing to the total dissolved load of the investigated rivers. The dissolved loads of the rivers are dominated by both carbonate and silicate weathering, which together account for about 76.3% of the total cationic load origin. The cationic chemical weathering rates of silicate and carbonate for the Qiantangjiang basin are estimated to be approximately 4.9 ton km-2 a-1 and 13.9 ton km-2 a-1, respectively. The calculated CO2 consumption rates with the assumption that all the protons involved in the weathering reaction are provided by carbonic acid are 369 × 103 mol km-2 a-1 and 273 × 103 mol km-2 a-1 by carbonate and silicate weathering, respectively. As one of the most severe impacted area by acid rain in China, H2SO4 from acid precipitation is also an important proton donor in weathering reactions. When H2SO4 is considered, the CO2 consumption rates for the river basin are estimated at 286 × 103 mol km-2 a-1 for carbonate weathering and 211 × 103 mol km-2 a-1 for silicate weathering, respectively. The results highlight that the drawdown effect of CO2 consumption by carbonate and silicate weathering can be largely overestimated if the role of sulfuric acid is ignored, especially in the area heavily impacted by acid deposition like Qiantangjiang basin. The actual CO2 consumption rates (after sulfuric acid weathering effect deduction) is only about 77% of the value calculated with the assumption that carbonic acid donates all the protons involved in the weathering reaction.

  3. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, T.P.

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physicalmore » characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Escapement estimates for fall of 2000 indicate more than 9000 adult fall Chinook salmon returned to this area, accounting for more than 2100 redds within a 5 km section of river.« less

  4. Simulated changes in salinity in the York and Chickahominy Rivers from projected sea-level rise in Chesapeake Bay

    USGS Publications Warehouse

    Rice, Karen C.; Bennett, Mark; Shen, Jian

    2011-01-01

    As a result of climate change and variability, sea level is rising throughout the world, but the rate along the east coast of the United States is higher than the global mean rate. The U.S. Geological Survey, in cooperation with the City of Newport News, Virginia, conducted a study to evaluate the effects of possible future sea-level rise on the salinity front in two tributaries to Chesapeake Bay, the York River, and the Chickahominy/James River estuaries. Numerical modeling was used to represent sea-level rise and the resulting hydrologic effects. Estuarine models for the two tributaries were developed and model simulations were made by use of the Three-Dimensional Hydrodynamic-Eutrophication Model (HEM-3D), developed by the Virginia Institute of Marine Science. HEM-3D was used to simulate tides, tidal currents, and salinity for Chesapeake Bay, the York River and the Chickahominy/James River. The three sea-level rise scenarios that were evaluated showed an increase of 30, 50, and 100 centimeters (cm). Model results for both estuaries indicated that high freshwater river flow was effective in pushing the salinity back toward Chesapeake Bay. Model results indicated that increases in mean salinity will greatly alter the existing water-quality gradients between brackish water and freshwater. This will be particularly important for the freshwater part of the Chickahominy River, where a drinking-water-supply intake for the City of Newport News is located. Significant changes in the salinity gradients for the York River and Chickahominy/James River estuaries were predicted for the three sea-level rise scenarios. When a 50-cm sea-level rise scenario on the York River during a typical year (2005) was used, the model simulation showed a salinity of 15 parts per thousand (ppt) at river kilometer (km) 39. During a dry year (2002), the same salinity (15 ppt) was simulated at river km 45, which means that saltwater was shown to migrate 6 km farther upstream during a dry year than a typical year. The same was true of the Chickahominy River for a 50-cm sea-level rise scenario but to a greater extent; a salinity of 4 ppt was simulated at river km 13 during a typical year and at river km 28 during a dry year, indicating that saltwater migrated 15 km farther upstream during a dry year. Near a drinking-water intake on the Chickahominy River, for a dry year, salinity is predicted to more than double for all three sea-level rise scenarios, relative to a typical year. During a typical year at this location, salinity is predicted to increase to 0.006, 0.07, and more than 2 ppt for the 30-, 50-, and 100-cm rise scenarios, respectively.

  5. Modeling the Long-term Planform Evolution of Meandering Rivers in Confined Alluvial Valleys: Etsch-Adige River, NE Italy.

    NASA Astrophysics Data System (ADS)

    Zen, S.; Bogoni, M.; Zolezzi, G.; Lanzoni, S.; Scorpio, V.

    2016-12-01

    We combine the use of a morphodynamic model for river meander planform evolution with a geological dataset to investigate the influence of external confinements on the long-term evolution of a meandering river flowing in an Alpine valley. The analysis focuses on a 100 km reach of the Adige River, NE Italy, which had several sinuous/meandering sections before being extensively channelized in the 1800s. Geological surveys and historical maps revealed that many sections of the study reach impinge on the borders of the valley during its evolution. Moreover, a marked spatial heterogeneity in floodplain vertical accretion rates likely reflects preferential positions of the river channel in the floodplain. Valley confinements are represented by bedrock outcrops and by alluvial fans created by lateral tributaries, and were extracted from the geological and historical maps to build the computational domain for the meander morphodynamic model. The model predicts the long-term planform evolution of a meandering river based on a linear solution of the 2D De St Venant-Exner differential system and can manage changes in floodplain erodibility. Model applications allow to isolate the effects of valley bedrock and of alluvial fans in constraining the lateral channel migration. Modeled river channel persistence maps are compared with the available geological information. The present work allows further insights into the role of external confinements to river meander belts, which have been conducted so far mostly assuming the channel to evolve in unconfined floodplains. Future research shall incorporate model components for floodplain vertical accretion rates and for the advancement of alluvial fans occurring at the same time scale considered for meander evolution.

  6. ASTER First Views of San Francisco River, Brazil - Visible/near Infrared VNIR Image monochrome

    NASA Image and Video Library

    2000-03-11

    This image of the San Francisco River channel, and its surrounding flood zone, in Brazil was acquired by band 3N of ASTER's Visible/Near Infrared sensor. The surrounding area along the river channel in light gray to white could be covered by dense tropical rain forests. The water surface of the San Francisco River shows rather gray color as compared to small lakes and tributaries, which could indicate that the river water is contaminated by suspended material. The size of image: 20 km x 20 km approx., ground resolution 15 m x 15 m approximately. http://photojournal.jpl.nasa.gov/catalog/PIA02451

  7. Estimating the gas transfer velocity: a prerequisite for more accurate and higher resolution GHG fluxes (lower Aare River, Switzerland)

    NASA Astrophysics Data System (ADS)

    Sollberger, S.; Perez, K.; Schubert, C. J.; Eugster, W.; Wehrli, B.; Del Sontro, T.

    2013-12-01

    Currently, carbon dioxide (CO2) and methane (CH4) emissions from lakes, reservoirs and rivers are readily investigated due to the global warming potential of those gases and the role these inland waters play in the carbon cycle. However, there is a lack of high spatiotemporally-resolved emission estimates, and how to accurately assess the gas transfer velocity (K) remains controversial. In anthropogenically-impacted systems where run-of-river reservoirs disrupt the flow of sediments by increasing the erosion and load accumulation patterns, the resulting production of carbonic greenhouse gases (GH-C) is likely to be enhanced. The GH-C flux is thus counteracting the terrestrial carbon sink in these environments that act as net carbon emitters. The aim of this project was to determine the GH-C emissions from a medium-sized river heavily impacted by several impoundments and channelization through a densely-populated region of Switzerland. Estimating gas emission from rivers is not trivial and recently several models have been put forth to do so; therefore a second goal of this project was to compare the river emission models available with direct measurements. Finally, we further validated the modeled fluxes by using a combined approach with water sampling, chamber measurements, and highly temporal GH-C monitoring using an equilibrator. We conducted monthly surveys along the 120 km of the lower Aare River where we sampled for dissolved CH4 (';manual' sampling) at a 5-km sampling resolution, and measured gas emissions directly with chambers over a 35 km section. We calculated fluxes (F) via the boundary layer equation (F=K×(Cw-Ceq)) that uses the water-air GH-C concentration (C) gradient (Cw-Ceq) and K, which is the most sensitive parameter. K was estimated using 11 different models found in the literature with varying dependencies on: river hydrology (n=7), wind (2), heat exchange (1), and river width (1). We found that chamber fluxes were always higher than boundary layer results based on ';manual' sampling. The closest flux approximation was obtained using the river width-dependent model. The higher fluxes obtained by the chambers could partially be explained by an enhanced turbulence created in the chambers themselves, especially because the ratio between the water surface area and chamber volume was rather small. The high resolution combined sampling approach helped constrain K and determine which river model best fits Aare River emissions. This experimental setup ultimately allows us to (1) define the dependence of K, (2) measure CH4 and CO2 fluxes from the main river and different tributaries more accurately, (3) estimate more spatially-resolved fluxes via either models or water sampling and the newly found K, and (4) determine one of the fates of carbon in the Aare River.

  8. Evaluate Status of Pacific Lamprey in the Clearwater River and Salmon River Drainages, Idaho, 2009 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochnauer, Tim; Claire, Christopher

    2009-05-07

    Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based onmore » potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.« less

  9. Migration and spawning of radio-tagged zulega Prochilodus argenteus in a dammed Brazilian river

    USGS Publications Warehouse

    Godinho, Alexandre L.; Kynard, B.

    2006-01-01

    It is difficult for agencies to evaluate the impacts of the many planned dams on Sa??o Francisco River, Brazil, migratory fishes because fish migrations are poorly known. We conducted a study on zulega Prochilodus argenteus, an important commercial and recreational fish in the Sa??o Francisco River, to identify migrations and spawning areas and to determine linear home range. During two spawning seasons (2001-2003), we radio-tagged fish in three main-stem reaches downstream of Tre??s Marias Dam (TMD), located at river kilometer (rkm) 2,109. We tagged 10 fish at Tre??s Marias (TM), which is 5 km downstream of TMD; 12 fish at Pontal, which is 28 km downstream of TMD and which includes the mouth of the Abaete?? River, and 10 fish at Cilga, which is 45 km downstream of TMD. Late-stage (ripe) adults tagged in each area during the spawning season remained at or near the tagging site, except for four Cilga fish that went to Pontal and probably spawned. The Pontal area at the Abaete?? River mouth was the most important spawning site we found. Prespawning fish moved back and forth between main-stem staging areas upstream of the Abaete?? River mouth and Pontal for short visits. These multiple visits were probably needed as ripe fish waited for spawning cues from a flooding Abaete?? River. Some fish homed to prespaw ning staging areas, spawning areas, and nonspawning areas. The migratory style of zulega was dualistic, with resident and migratory fish. Total linear home range was also dualistic, with small (<26-km) and large (53-127-km) ranges. The locations of spawning areas and home ranges suggest that the Pontal group (which includes Cilga fish) is one population that occupies about 110 km. The Pontal population overlaps a short distance with a population located downstream of Cilga. Movements of late-stage TM adults suggest that the TM group is a separate population, possibly with connections to populations upstream of TMD. ?? Copyright by the American Fisheries Society 2006.

  10. Occurrence and toxicity of Microcystis aeruginosa (Cyanobacteria) in the Paraná River, downstream of the Yacyretá dam (Argentina).

    PubMed

    Forastier, Marina Elizabet; Zalocar, Yolanda; Andrinolo, Dario; Domitrovic, Hugo Alberto

    2016-03-01

    Cyanobacteria constitute the main toxin producers in inland water ecosystems and have extensive global distribution. The presence of hepatotoxins in aquatic environments is hazardous to human and animal health; even though the presence and identification of hepatotoxic microcystins in rivers and reservoirs of the world have been confirmed by several studies in the last few years. Herein, we studied the abundance and toxicity of Microcystis aeruginosa in the Argentine section of the Paraná River at the beginning of the Middle Paraná (Corrientes Hydrometer), near Corrientes city (27º28´ S - 58º51´ W) and approximately 220 km downstream of the Yacyretá dam (High Paraná). The Paraná River basin, with a drainage area of 3.1 x 10(6) km(2) and 3 965 km in length, is the second largest catchment of South America, after that of the Amazon. The Paraná River is the main source of drinking water supply for the Northeastern Argentine region. Phytoplankton samples were collected and environmental variables were measured in a monthly basis (exceptionally fortnightly), from March 2004 to June 2008. Fifty-eight samples were analyzed for phytoplankton density and biomass. Five samples were used for toxicity testing; the latter were obtained during the cyanobacteria blooms from 2005 to 2008. Phytoplankton counts were performed with an inverted microscope, and biomass was expressed as biovolume. Bioassays with mice and high-performance liquid chromatography (HPLC) analysis were performed to evaluate the presence of cyanotoxins. Phytoplankton mainly consisted of Cryptophyta, Chlorophyta and Bacillariophyta. Microcystis aeruginosa was identified during the warmer months each year (November to March). Density varied between 189 and 25 027 cells/mL (1-10 colonies/mL) and biomass from 0.34 to 44 mm(3)/L. Taking into account the number of cells, the highest abundance occurred in April 2004 (25 027 cells/mL), coinciding with the largest biovolume (44 mm(3)/L). All mice subjected to intraperitoneal injections with samples obtained during bloom episodes showed positive results for the presence of hepatotoxins. Three microcystins variants: LR, RR and [D-Leu(1)] Mcyst-LR were detected by analysis with semi-preparative high-performance liquid chromatography with diode array detector system (HPLC-PDA). This constitutes the first report of microcystins recorded during M. aeruginosa blooms in the Argentine stretch of the Paraná River at the beginning of the Middle Paraná (Corrientes Hydrometer), approximately 220 km downstream of the Yacyretá dam (High Paraná).

  11. Habitat assessment of non-wadeable rivers in Michigan.

    PubMed

    Wilhelm, Jennifer G O; Allan, J David; Wessell, Kelly J; Merritt, Richard W; Cummins, Kenneth W

    2005-10-01

    Habitat evaluation of wadeable streams based on accepted protocols provides a rapid and widely used adjunct to biological assessment. However, little effort has been devoted to habitat evaluation in non-wadeable rivers, where it is likely that protocols will differ and field logistics will be more challenging. We developed and tested a non-wadeable habitat index (NWHI) for rivers of Michigan, where non-wadeable rivers were defined as those of order >or=5, drainage area >or=1600 km2, mainstem lengths >or=100 km, and mean annual discharge >or=15 m3/s. This identified 22 candidate rivers that ranged in length from 103 to 825 km and in drainage area from 1620 to 16,860 km2. We measured 171 individual habitat variables over 2-km reaches at 35 locations on 14 rivers during 2000-2002, where mean wetted width was found to range from 32 to 185 m and mean thalweg depth from 0.8 to 8.3 m. We used correlation and principal components analysis to reduce the number of variables, and examined the spatial pattern of retained variables to exclude any that appeared to reflect spatial location rather than reach condition, resulting in 12 variables to be considered in the habitat index. The proposed NWHI included seven variables: riparian width, large woody debris, aquatic vegetation, bottom deposition, bank stability, thalweg substrate, and off-channel habitat. These variables were included because of their statistical association with independently derived measures of human disturbance in the riparian zone and the catchment, and because they are considered important in other habitat protocols or to the ecology of large rivers. Five variables were excluded because they were primarily related to river size rather than anthropogenic disturbance. This index correlated strongly with indices of disturbance based on the riparian (adjusted R2 = 0.62) and the catchment (adjusted R2 = 0.50), and distinguished the 35 river reaches into the categories of poor (2), fair (19), good (13), and excellent (1). Habitat variables retained in the NWHI differ from several used in wadeable streams, and place greater emphasis on known characteristic features of larger rivers.

  12. A transect of metamorphic rocks along the Copper River, Cordova and Valdez Quadrangles, Alaska: A section in The United States Geological Survey in Alaska: Accomplishments during 1982

    USGS Publications Warehouse

    Miller, Marti L.; Dumoulin, Julie A.; Nelson, S.W.

    1984-01-01

    The lower Tertiary Orca Group is juxtaposed against the Upper Cretaceous Valdez Group along the Contact fault system (Winkler and Plafker, 1974, 198; Plafker and others, 1977)(fig. 33). In both groups, turbidites are the dominant rock type, with lesser mafic volcanic rocks (table 10). The Valdez Group, on the north, has traditionally been considered to be of higher metamorphic grade than the Orca Group (Moffit, 1954; Tysdal and Case, 1979; Winkler and Plafker, 198; Winkler and others, 1981). In 1982, we made a transect across the regional strike of the rocks and the contact between the two groups. The transect area follows the Copper River for 85 km from the Cordova quadrangle north into the Valdez quadrangle and extends for about 25 km on either side of the river (fig. 33). We planned, by systematic sampling of the area, to examine the metamorphic differences between the Orca and Valdez Groups. We found, however, that a strong thermal metamorphic event has overprinted and obscured regional metamorphic relations. We believe intrusion of Tertiary granite (fig. 33) to be responsible for this metamorphism. (Figures 33 and 34 and tables follow this article.)

  13. Global and local scale flood discharge simulations in the Rhine River basin for flood risk reduction benchmarking in the Flagship Project

    NASA Astrophysics Data System (ADS)

    Gädeke, Anne; Gusyev, Maksym; Magome, Jun; Sugiura, Ai; Cullmann, Johannes; Takeuchi, Kuniyoshi

    2015-04-01

    The global flood risk assessment is prerequisite to set global measurable targets of post-Hyogo Framework for Action (HFA) that mobilize international cooperation and national coordination towards disaster risk reduction (DRR) and requires the establishment of a uniform flood risk assessment methodology on various scales. To address these issues, the International Flood Initiative (IFI) has initiated a Flagship Project, which was launched in year 2013, to support flood risk reduction benchmarking at global, national and local levels. In the Flagship Project road map, it is planned to identify the original risk (1), to identify the reduced risk (2), and to facilitate the risk reduction actions (3). In order to achieve this goal at global, regional and local scales, international research collaboration is absolutely necessary involving domestic and international institutes, academia and research networks such as UNESCO International Centres. The joint collaboration by ICHARM and BfG was the first attempt that produced the first step (1a) results on the flood discharge estimates with inundation maps under way. As a result of this collaboration, we demonstrate the outcomes of the first step of the IFI Flagship Project to identify flood hazard in the Rhine river basin on the global and local scale. In our assessment, we utilized a distributed hydrological Block-wise TOP (BTOP) model on 20-km and 0.5-km scales with local precipitation and temperature input data between 1980 and 2004. We utilized existing 20-km BTOP model, which is applied globally, and constructed the local scale 0.5-km BTOP model for the Rhine River basin. For the BTOP model results, both calibrated 20-km and 0.5-km BTOP models had similar statistical performance and represented observed flood river discharges, epecially for 1993 and 1995 floods. From 20-km and 0.5-km BTOP simulation, the flood discharges of the selected return period were estimated using flood frequency analysis and were comparable to the the river gauging station data at the German part of the Rhine river basin. This is an important finding that both 0.5-km and 20-km BTOP models produce similar flood peak discharges although the 0.5-km BTOP model results indicate the importance of scale in the local flood hazard assessment. In summary, we highlight that this study serves as a demonstrative example of institutional collaboration and is stepping stone for the next step implementation of the IFI Flagship Project.

  14. Active tectonics around the Yakutat indentor: New geomorphological constraints on the eastern Denali, Totschunda and Duke River Faults

    NASA Astrophysics Data System (ADS)

    Marechal, Anaïs; Ritz, Jean-François; Ferry, Matthieu; Mazzotti, Stephane; Blard, Pierre-Henri; Braucher, Régis; Saint-Carlier, Dimitri

    2018-01-01

    The Yakutat collision in SE Alaska - SW Yukon is an outstanding example of indentor tectonics. The impinging Yakutat block strongly controls the pattern of deformation inland. However, the relationship between this collision system and inherited tectonic structures such as the Denali, Totschunda, and Duke River Faults remains debated. A detailed geomorphological analysis, based on high-resolution imagery, digital elevation models, field observations, and cosmogenic nuclide dating, allow us to estimate new slip rates along these active structures. Our results show a vertical motion of 0.9 ± 0.3 mm/yr along the whole eastern Denali Fault, while the dextral component of the fault tapers to less than 1 mm/yr ∼80 km south of the Denali-Totschunda junction. In contrast, the Totschunda Fault accommodates 14.6 ± 2.7 mm/yr of right-lateral strike-slip along its central section ∼100 km south of the junction. Further south, preliminary observations suggest a slip rate comprised between 3.5 and 6.5 mm/yr along the westernmost part of the Duke River thrust fault. Our results highlight the complex partitioning of deformation inland of the Yakutat collision, where the role and slip rate of the main faults vary significantly over distances of ∼100 km or less. We propose a schematic model of present-day tectonics that suggests ongoing partitioning and reorganization of deformation between major inherited structures, relay zones, and regions of distributed deformation, in response to the radial stress and strain pattern around the Yakutat collision eastern syntaxis.

  15. A postulated new source for the White River Ash, Alaska: A section in Geologic studies in Alaska by the US. Geological Survey, 1990

    USGS Publications Warehouse

    McGimsey, Robert G.; Richter, Donald H.; DuBois, Gregory D.; Miller, T.P.

    1992-01-01

    The White River Ash (Lerbekmo and others, 1968), product of two of the most voluminous pyroclastic eruptions in North America in the past 2,000 yr, blankets much of the Yukon Terrtory, Canada, and a small part of adjoining eastern Alaska. Lerbekmo and Campbell (1969) narrowed the source of the ash to an area northeast of the Mt. Bona-Mt. Churchill massif in the St. Elias Mountains of southern Alaska. Based on indirect evidence, Lerbekmo and Campbell (1969) further suggested that the vent was beneath the Klutlan Glacier, adjacent to a mound of coarse pumice, 16 km northeast of Mt. Bona. Recently discovered pumice and ash deposits and a possible vent structure near the summit of Mt. Churchill suggest an alternate source area. The White River Ash is a bilobate plinian fallout deposit covering more than 340,000 km2 and containing an estimated 25-50 km3 of tephra (Bostock, 1952; Berger, 1960; fig. 1). Radiocarbon ages indicate that the northern lobe was deposited about 1,887 yr B.P. and the eastern, and larger, lobe about 1,250 yr B.P. (Lerbekmo and others, 1975). The axes of the two lobes converge near Mt. Bona (16,420 ft (5,005 m)) and Mt. Churchill [15,638 ft (4,766 m)], which together form a prominent massif in the St. Elias Mountains. The Klutlan Glacier, a large valley glacier that flows eastward into Canada, has its principal source on the eastern flank of the massif. 

  16. Seeing the landscape for the trees: Metrics to guide riparian shade management in river catchments

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew F.; Wilby, Robert L.

    2015-05-01

    Rising water temperature (Tw) due to anthropogenic climate change may have serious consequences for river ecosystems. Conservation and/or expansion of riparian shade could counter warming and buy time for ecosystems to adapt. However, sensitivity of river reaches to direct solar radiation is highly heterogeneous in space and time, so benefits of shading are also expected to be site specific. We use a network of high-resolution temperature measurements from two upland rivers in the UK, in conjunction with topographic shade modeling, to assess the relative significance of landscape and riparian shade to the thermal behavior of river reaches. Trees occupy 7% of the study catchments (comparable with the UK national average) yet shade covers 52% of the area and is concentrated along river corridors. Riparian shade is most beneficial for managing Tw at distances 5-20 km downstream from the source of the rivers where discharge is modest, flow is dominated by near-surface hydrological pathways, there is a wide floodplain with little landscape shade, and where cumulative solar exposure times are sufficient to affect Tw. For the rivers studied, we find that approximately 0.5 km of complete shade is necessary to off-set Tw by 1°C during July (the month with peak Tw) at a headwater site; whereas 1.1 km of shade is required 25 km downstream. Further research is needed to assess the integrated effect of future changes in air temperature, sunshine duration, direct solar radiation, and downward diffuse radiation on Tw to help tree planting schemes achieve intended outcomes.

  17. Sand deposition in the Colorado River in the Grand Canyon from flooding of the Little Colorado River

    USGS Publications Warehouse

    Wiele, S.M.; Graf, J.B.; Smith, J.D.

    1996-01-01

    Methods for computing the volume of sand deposited in the Colorado River in Grand Canyon National Park by floods in major tributaries and for determining redistribution of that sand by main-channel flows are required for successful management of sand-dependent riparian resources. We have derived flow, sediment transport, and bed evolution models based on a gridded topography developed from measured channel topography and used these models to compute deposition in a short reach of the river just downstream from the Little Colorado River, the largest tributary in the park. Model computations of deposition from a Little Colorado River flood in January 1993 were compared to bed changes measured at 15 cross sections. The total difference between changes in cross-sectional area due to deposition computed by the model and the measured changes was 6%. A wide reach with large areas of recirculating flow and large depressions in the main channel accumulated the most sand, whereas a reach with similar planimetric area but a long, narrow shape and relatively small areas of recirculating flow and small depressions in the main channel accumulated only about a seventh as much sand. About 32% of the total deposition was in recirculation zones, 65% was in the main channel, and 3% was deposited along the channel margin away from the recirculation zone. Overall, about 15% of the total input of sand from this Little Colorado River flood was deposited in the first 3 km below the confluence, suggesting that deposition of the flood-derived material extended for only several tens of kilometers downstream from the confluence.

  18. Spatial and temporal variations of river nitrogen exports from major basins in China.

    PubMed

    Ti, Chaopu; Yan, Xiaoyuan

    2013-09-01

    Provincial-level data for population, livestock, land use, economic growth, development of sewage systems, and wastewater treatment rates were used to construct a river nitrogen (N) export model in this paper. Despite uncertainties, our results indicated that river N export to coastal waters increased from 531 to 1,244 kg N km(-2) year(-1) in the Changjiang River basin, 107 to 223 kg N km(-2) year(-1) in the Huanghe River basin, and 412 to 1,219 kg N km(-2) year(-1) in the Zhujiang River basin from 1980 to 2010 as a result of rapid population and economic growth. Significant temporal changes in water N sources showed that as the percentage of runoff from croplands increased, contributions of natural system runoff and rural human and livestock excreta decreased in the three basins from 1980 to 2010. Moreover, the nonpoint source N decreased from 72 to 58 % in the Changjiang River basin, 80 to 67 % in the Huanghe River basin, and 69 to 51 % in the Zhujiang River basin, while the contributions of point sources increased greatly during the same period. Estimated results indicated that the N concentrations in the Changjiang, Huanghe, and Zhujiang rivers during 1980-2004 were higher than those in the St. Lawrence River in Canada and lower than those in the Thames, Donau, Rhine, Seine, and Han rivers during the same period. River N export will reduce by 58, 54, and 57 % for the Changjiang River, Huanghe River, and Zhujiang River in the control scenario in 2050 compared with the basic scenario.

  19. Effects of water use diversion regulation and conservation on sediemtn transport with comparisons from the United States

    USGS Publications Warehouse

    Gray, J. R.; Osterkamp, W. R.; Jianhua, Xu

    2002-01-01

    Too much sediment and too little water are related problems in China’s Yellow River Basin. Sediment yield in the basin averages about 2,100 t/(km2·a), greatest is of the world’s large rivers although the Yellow River ranks 31st in mean flow. A quarter of the sediment deposited in the 780-km lower reach, causing bed levels to rise an average of a meter per decade wang and other. Sediment aggradation along this reach is concentrated between dikes, resulting in average river-bed elevations 5 m higher, and at Xinxiang as much as 10 m higher, than surrounding bottomlands. The dikes, which have breached nearly 1,600 times in the last 24 centuries, reduce the threat of flooding for 85-million people on 120,000 km2 in five provinces of northeastern China (Decun, undated). This paper addresses some environmental and social factors related to this problem, and provides descriptions of two United States rivers that exhibit some analogous responses, albeit not to the extent of those associated with the Yellow River, “China’s Sorrow”.

  20. A drifter for measuring water turbidity in rivers and coastal oceans.

    PubMed

    Marchant, Ross; Reading, Dean; Ridd, James; Campbell, Sean; Ridd, Peter

    2015-02-15

    A disposable instrument for measuring water turbidity in rivers and coastal oceans is described. It transmits turbidity measurements and position data via a satellite uplink to a processing server. The primary purpose of the instrument is to help document changes in sediment runoff from river catchments in North Queensland, Australia. The 'river drifter' is released into a flooded river and drifts downstream to the ocean, measuring turbidity at regular intervals. Deployment in the Herbert River showed a downstream increase in turbidity, and thus suspended sediment concentration, while for the Johnstone River there was a rapid reduction in turbidity where the river entered the sea. Potential stranding along river banks is a limitation of the instrument. However, it has proved possible for drifters to routinely collect data along 80 km of the Herbert River. One drifter deployed in the Fly River, Papua New Guinea, travelled almost 200 km before stranding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. How frequently will the Surface Water and Ocean Topography (SWOT) observe floods?

    NASA Astrophysics Data System (ADS)

    Frasson, R. P. M.; Schumann, G.

    2017-12-01

    The SWOT mission will measure river width and water surface elevations of rivers wider than 100 m. As the data gathered by this mission will be freely available, it can be of great use for flood modeling, especially in areas where streamgage networks are exceedingly sparse, or when data sharing barriers prevent the timely access to information. Despite having world-wide coverage, SWOT's temporal sampling is limited, with most locations being revisited once or twice every 21 days. Our objective is to evaluate which fraction of world-wide floods SWOT will observe and how many observations per event the satellite will likely obtain. We take advantage of the extensive database of floods constructed by the Dartmouth Flood Observatory, who, since 1985, searches through news sources and governmental agencies, and more recently remote sensing imagery for flood information, including flood duration, location and affected area. We cross-referenced the flood locations in the DFO archive with the SWOT prototype prior database of river centerlines and the anticipated satellite's orbit to identify how many of the SWOT swaths were located within 10 km, 20 km, and 50 km from a flood centroid. Subsequently, we estimated the probability that SWOT would have at least one observation of a flood event per distance bin by multiplying the number of swaths in the distance bin by the flood duration divided by the SWOT orbit repeat period. Our analysis contemplated 132 world-wide floods recorded between May 2016 and May 2017. From these, 29, 52, and 86 floods had at least a 50% probability of having one overpass within 10 km, 20 km, and 50 km respectively. Moreover, after excluding flood events with no river centerlines within 10 km of its centroid, the average number of swaths within 10 km of a flood centroid was 1.79, indicating that in the 37 flood events that were likely caused by river flooding, at least one measurement was guaranteed to happen during the event.

  2. Floodplain sediment from a 100-year-recurrence flood in 2005 of the Ping River in northern Thailand

    NASA Astrophysics Data System (ADS)

    Wood, S. H.; Ziegler, A. D.

    2008-07-01

    The tropical storm, floodwater, and the floodplain-sediment layer of a 100-year recurrence flood are examined to better understand characteristics of large monsoon floods on medium-sized rivers in northern Thailand. Storms producing large floods in northern Thailand occur early or late in the summer rainy season (May October). These storms are associated with tropical depressions evolving from typhoons in the South China Sea that travel westward across the Indochina Peninsula. In late September, 2005, the tropical depression from Typhoon Damrey swept across northern Thailand delivering 100 200 mm/day at stations in mountainous areas. Peak flow from the 6355-km2 drainage area of the Ping River upstream of the city of Chiang Mai was 867 m3s-1 (river-gage of height 4.93 m) and flow greater than 600 m3s-1 lasted for 2.5 days. Parts of the city of Chiang Mai and some parts of the floodplain in the intermontane Chiang Mai basin were flooded up to 1-km distant from the main channel. Suspended-sediment concentrations in the floodwater were measured and estimated to be 1000 1300 mg l-1. The mass of dry sediment (32.4 kg m-2), measured over a 0.32-km2 area of the floodplain is relatively high compared to reports from European and North American river floods. Average wet sediment thickness over the area was 3.3 cm. Sediment thicker than 8 cm covered 16 per cent of the area, and sediment thicker than 4 cm covered 44 per cent of the area. High suspended-sediment concentration in the floodwater, flow to the floodplain through a gap in the levee afforded by the mouth of a tributary stream as well as flow over levees, and floodwater depths of 1.2 m explain the relatively large amount of sediment in the measured area. Grain-size analyses and examination of the flood layer showed about 15-cm thickness of massive fine-sandy silt on the levee within 15-m of the main channel, sediment thicker than 6 cm within 200 m of the main channel containing a basal coarse silt, and massive clayey silt beyond 200 m. The massive clayey silt would not be discernable as a separate layer in section of similar deposits. The fine-sand content of the levee sediment and the basal coarse silt of sediment within 200 m of the main channel are sedimentological features that may be useful in identifying flood layers in a stratigraphic section of floodplain deposits.

  3. Reconnaissance Report, Section 205 Chattooga River Trion, Georgia, Chattooga County

    DTIC Science & Technology

    1991-07-01

    magnitude, mb, of 7.5, at a distance of about 118 km, in the New Madrid source zone. The earthquake motions estimated to occur at Barkley from an...4: Liquefaction Susceptibility Evaluation and Post- Earthquake Strength Determination Volume 5: Stability Evaluation of Geotechnical Structures The...contributions from ORN. Mssrs. Ronald E. Wahl of Soil and Rock Mechanics Division, Richard S. Olsen, and Dr. M. E. Hynes of the Earthquake Engineering and

  4. Postglacial volcanic deposits at Glacier Peak, Washington, and potential hazards from future eruptions; a preliminary report

    USGS Publications Warehouse

    Beget, J.E.

    1982-01-01

    Eruptions and other geologic events at Glacier Peak volcano in northern Washington have repeatedly affected areas near the volcano as well as areas far downwind and downstream. This report describes the evidence of this activity preserved in deposits on the west and east flanks of the volcano. On the west side of Glacier Peak the oldest postglacial deposit is a large, clayey mudflow which traveled at least 35 km down the White Chuck River valley sometime after 14,000 years ago. Subsequent large explosive eruptions produced lahars and at least 10 pyroclastic-flow deposits, including a semiwelded vitric tuff in the White Chuck River valley. These deposits, known collectively as the White Chuck assemblage, form a valley fill which is locally preserved as far as 100 km downstream from the volcano in the Stillaguamish River valley. At least some of the assemblage is about 11,670-11,500 radiocarbon years old. A small clayey lahar, containing reworked blocks of the vitric tuff, subsequently traveled at least 15 km down the White Chuck River. This lahar is overlain by lake sediments containing charred wood which is about 5,500 years old. A 150-m-thick assemblage of pyroclastic-flow deposits and lahars, called the Kennedy Creek assemblage, is in part about 5,500-5,100 radiocarbon years old. Lithic lahars from this assemblage extend at least 100 km downstream in the Skagit River drainage. The younger lahar assemblages, each containing at least three lahars and reaching at least 18 km downstream from Glacier Peak in the White Chuck River valley, are about 2,800 and 1,800 years old, respectively. These are postdated by a lahar containing abundant oxyhornblende dacite, which extends at least 30 km to the Sauk River. A still younger lahar assemblage that contains at least five lahars, and that also extends at least 30 km to the Sauk River, is older than a mature forest growing on its surface. At least one lahar and a flood deposit form a low terrace at the confluence of the White Chuck and Sauk Rivers, and were deposited before 300 years ago, but more recently than about 1,800 years ago. Several small outburst floods, including one in 1975, have affected Kennedy and Baekos Creek and the upper White Chuck River in the last hundred years. East of Glacier Peak the oldest postglacial deposits consist of ash-cloud deposits that underlie tephra erupted by Glacier Peak between 12,750 and 11,250 radiocarbon years ago. Although pyroclastic-flow deposits correlative with the ash-cloud deposits have not been recognized, late Pleistocene pumiceous lahars extend at least 50 km downstream in the Suiattle River valley. A younger clayey mudflow extends at least 6 km down Dusty Creek. This lahar is overlain by deposits of lithic pyroclastic flows and lahars that form the Dusty assemblage. This assemblage is at least 300 m thick in the upper valleys of Dusty and Chocolate Creeks, and contains more than 10 km3 of lithic debris. Lahars derived from the Dusty assemblage extend at least 100 km down the Skagit River valley from Glacier Peak. This assemblage is younger than tephra layer 0 from Mount Mazama, and older than tephra layer Yn from Mount St. Helens, and thus was formed between about 7,000 and 3,400 years ago. The Dusty assemblage may have been formed at the same time as the Kennedy Creek assemblage. A 100-m-thick assemblage of pyroclastic flows and lahars preserved in the Chocolate Creek valley is about 1,800 radiocarbon years old. A clayey lahar in the upper Chocolate Creek valley extended at least 2 km downvalley after 1,800 years ago, but before pyroclastic flows and lahars were deposited in upper Chocolate Creek 1,100 radiocarbon years ago. Several clayey lahars in the Dusty Creek valley east of Glacier Peak are also about 1,100 years old. A lahar in the valley of Dusty Creek, which contains rare prismatically jointed blocks of vesiculated dacite, and a white ash that is locally as much as 50 cm thick may be the products of small

  5. Comprehensive model-based prediction of micropollutants from diffuse sources in the Swiss river network

    NASA Astrophysics Data System (ADS)

    Strahm, Ivo; Munz, Nicole; Braun, Christian; Gälli, René; Leu, Christian; Stamm, Christian

    2014-05-01

    Water quality in the Swiss river network is affected by many micropollutants from a variety of diffuse sources. This study compares, for the first time, in a comprehensive manner the diffuse sources and the substance groups that contribute the most to water contamination in Swiss streams and highlights the major regions for water pollution. For this a simple but comprehensive model was developed to estimate emission from diffuse sources for the entire Swiss river network of 65 000 km. Based on emission factors the model calculates catchment specific losses to streams for more than 15 diffuse sources (such as crop lands, grassland, vineyards, fruit orchards, roads, railways, facades, roofs, green space in urban areas, landfills, etc.) and more than 130 different substances from 5 different substance groups (pesticides, biocides, heavy metals, human drugs, animal drugs). For more than 180 000 stream sections estimates of mean annual pollutant loads and mean annual concentration levels were modeled. This data was validated with a set of monitoring data and evaluated based on annual average environmental quality standards (AA-EQS). Model validation showed that the estimated mean annual concentration levels are within the range of measured data. Therefore simulations were considered as adequately robust for identifying the major sources of diffuse pollution. The analysis depicted that in Switzerland widespread pollution of streams can be expected. Along more than 18 000 km of the river network one or more simulated substances has a concentration exceeding the AA-EQS. In single stream sections it could be more than 50 different substances. Moreover, the simulations showed that in two-thirds of small streams (Strahler order 1 and 2) at least one AA-EQS is always exceeded. The highest number of substances exceeding the AA-EQS are in areas with large fractions of arable cropping, vineyards and fruit orchards. Urban areas are also of concern even without considering wastewater treatment plants. Only a small number of problematic substances are expected from grassland. Landfills and roadways are insignificant within the entire Swiss river network, but may locally lead to considerable water pollution. Considering all substance groups, pesticides and some heavy metals are the main polluters. Many pesticides are expected to exceed AA-EQS and in a substantial percentage of the river network. Modeling a large number of substances from many sources and a huge quantity of stream sections is only possible with a simple model. Nevertheless conclusions are robust and may indicate where and for what kind of substance groups additional efforts for water quality improvements should be undertaken.

  6. Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA

    USGS Publications Warehouse

    Gray, J.E.; Crock, J.G.; Fey, D.L.

    2002-01-01

    The Humboldt River is a closed basin and is the longest river in Nevada. Numerous abandoned Hg mines are located within the basin, and because Hg is a toxic heavy metal, the potential transport of Hg from these mines into surrounding ecosystems, including the Humboldt River, is of environmental concern Samples of ore, sediment, water, calcines (roasted ore), and leachates of the calcines were analyzed for Hg and other heavy metals to evaluate geochemical dispersion from the mines. Cinnabar-bearing ore samples collected from the mines contain highly elevated Hg concentrations, up to 6.9 %, whereas calcines collected from the mines contain up to 2000 mg Hg/kg. Stream-sediment samples collected within 1 km of the mines contain as much as 170 mg Hg/kg, but those collected distal from the mines (> 5 km) contain 8 km from the Humboldt River, and Hg is transported and diluted through a large volume of pediment before it reaches the Humboldt River. ?? 2002 Elsevier Science Ltd. All rights reserved.

  7. Evolution of the Kιzιlιrmak river and its interaction with the North Anatolian Fault, Turkey

    NASA Astrophysics Data System (ADS)

    Drab, L.; Hubert Ferrari, A.; Benedetti, L.; van der Woerd, J.

    2010-12-01

    The North Anatolian Fault (NAF) is a 1500km long dextral strike-slip fault, which accommodates the extrusion of the Anatolian Plate away from the Arabia/Eurasia collision zone at a rate of 20-25mm/yr. The fault strongly affects the whole drainage network and, especially, the Kιzιlιrmak River. The Kιzιlιrmak River is the longest river in Turkey (1350km); it formed during the Pliocene and rose in eastern Anatolia. The river drains a part of the Anatolian Plateau, crosses the North Anatolian Fault and the Pontides mountains before reaching the Black Sea. Whereas wide terraces are preserved along the Kιzιlιrmak River in the Anatolian Plateau, where a recent study (Dogan 2009) determines an incision rate of 0.08 mm/yr according to 40Ar/39Ar datations on basalts, no clear terraces can be mapped further North where the river incises through the Pontides Mountains. Our study focuses on the central part of the fault affected by the 280 km long 1943 Tosya earthquake rupture. In this area the NAF makes a wide convex arc about 100km south to the Black Sea coast, and offset by 30 km the Kιzιlιrmak River. Indeed, south of the NAF the Kιzιlιrmak River flows to North/East. Then it is deviated along the NAF in the Kargι pull-apart and flows to the East parallel to the fault for 30km before bending again to the North/East in the Kamil pull-apart. Around the two bends of the River three alluvial terraces can be mapped. The lowest one (10m high above the present river level) is preserved in the Kargι pull-apart. The two other ones (60 and 100m above the Kιzιlιrmak River) are situated further east in the Kamil pull-apart. The highest terrace is offset by at least 300m offset along the NAF. The ages of sampled terraces are constrained using 10Be and 36Cl cosmogenic dating methods. The in situ cosmogenic 36Cl exposure ages calculated apply from 22ka for the lowest terrace, to 100 ka for the highest terrace in the erosion preserved area. The highest terrace shows a contribution of younger ages (the same time interval of 50ka of the intermediate terrace) certainly coming from the catchement just above. The proximity of ages may be due to the short time-interval between the both highest terraces incision by the Kιzιlιrmak river. 10Be measurements on sand coming from river beds will provide past to actual erosion rates along the Kιzιlιrmak River as well as present erosion rate from small rivers flowing to the river. The goals of this study are to constrain, 1/ the origin of the terraces (climatic or tectonic), 2/ the slip rate of the NAF integrated over more than 20 000 years, 3/ the evolution of the Kιzιlιrmak River incision rate, 4/ the influence of the vertical motion in the NAF convex arc region on the present incision rate of small rivers flowing toward the Kιzιlιrmak.

  8. Life history and status of shortnose sturgeon (Acipenser brevirostrum) in the potomac river

    USGS Publications Warehouse

    Kynard, B.; Breece, M.; Atcheson, M.; Kieffer, M.; Mangold, M.

    2009-01-01

    We collected the first life history information on shortnose sturgeon (Acipenser brevirostrum) in any of the rivers to Chesapeake Bay, the geographic center of the species range. In the Potomac River, two telemetry-tagged adult females used 124 km of river: A saltwater/freshwater reach at river km (rkm) 63-141 was the foraging-wintering concentration area, and one female migrated to spawn at rkm 187 in Washington, DC. The spawning migration explained the life history context of an adult captured 122 years ago in Washington, DC, supporting the idea that a natal population once lived in the river. Repeated homing migrations to foraging and wintering areas suggested the adults were residents, not transient coastal migrants. All habitats that adults need to complete life history are present in the river. The Potomac River shortnose sturgeon offers a rare opportunity to learn about the natural rebuilding of a sturgeon population. ?? 2009 Blackwell Verlag, Berlin.

  9. Life history and status of shortnose sturgeon (Acipenser brevirostrum) in the Potomac River

    USGS Publications Warehouse

    Kieffer, Micah

    2009-01-01

    We collected the first life history information on shortnose sturgeon (Acipenser brevirostrum) in any of the rivers to Chesapeake Bay, the geographic center of the species range. In the Potomac River, two telemetry-tagged adult females used 124 km of river: a saltwater/freshwater reach at river km (rkm) 63-141 was the foraging-wintering concentration area, and one female migrated to spawn at rkm 187 in Washington, DC. The spawning migration explained the life history context of an adult captured 122 years ago in Washington, DC, supporting the idea that a natal population once lived in the river. Repeated homing migrations to foraging and wintering areas suggested the adults were residents, not transient coastal migrants. All habitats that adults need to complete life history are present in the river. The Potomac River shortnose sturgeon offers a rare opportunity to learn about the natural rebuilding of a sturgeon population.

  10. Numerical model of the catchments of the oziąbel and wołczyński strumień rivers - Wołczyn municipality

    NASA Astrophysics Data System (ADS)

    Olichwer, Tomasz; Wcisło, Marek; Staśko, Stanisław; Buczyński, Sebastian; Modelska, Magdalena; Tarka, Robert

    2012-10-01

    The article presents a numerical model designed for determining groundwater dynamics and water balance of the catchments of the Oziąbel (Czarna Woda) river and the Wołczyński Strumień river in Wołczyn region. Hydrogeological mapping and modelling research covered the area of 238.9 km2. As a result of measurements performed in 2008-2009, flows were determined in major rivers and water table positions were measured at 26 points. In the major part of the area described, the water table, lying at the depth of 1.5-18.7 m, has unconfined character, and the aquifer is built of Neogene (Quaternary) sands and gravels. In the area under study, groundwaters are drawn from 6 wells with total withdrawal of 6133 m3/d. The numerical modelling was performed with the use of Visual Modflow 3.1.0 software. The area was partitioned by a discretization grid with a step size l = 250 m. The conceptual model of the hydrogeological system is based on hydrological data gathered over a period of one year, data from HYDRO bank database, cross-sections and maps. The boundaries of the modelled hydrogeological system were established on the watersheds of the Wołczyński Strumień river and the Oziąbel river, apart from the areas where they run together. The modelled area was extended (271.5 km2) around the Wołczyński Strumień river catchment to achieve a more effective mapping of the anthropogenic impact on its balance and the hydrodynamic system of the catchment area. The structure is characterised by the occurrence of one or rarely two aquifers separated by a pack of Quaternary clays. The investigation produced a detailed water balance and its components.

  11. River flow modeling using artificial neural networks in Kapuas river, West Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Herawati, Henny; Suripin, Suharyanto

    2017-11-01

    Kapuas River is located in the province of West Kalimantan. Kapuas river length is 1,086 km and river basin areas about 100,000 Km2. The availability of river flow data in the Long River and very wide catchments are difficult to obtain, while river flow data are essential for planning waterworks. To predict the water flow in the catchment area requires a lot of hydrology coefficient, so it is very difficult to predict and obtain results that closer to the real conditions. This paper demonstrates that artificial neural network (ANN) could be used to predict the water flow. The ANN technique can be used to predict the incidence of water discharge that occurs in the Kapuas River based on rainfall and evaporation data. With the data available to do training on the artificial neural network model is obtained mean square error (MSE) 0.00007. The river flow predictions could be carried out after the training. The results showed differences in water discharge measurement and prediction of about 4%.

  12. Backwater effects in the Amazon River basin of Brazil

    USGS Publications Warehouse

    Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.

    1991-01-01

    The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.

  13. Resistivity structures across the Humboldt River basin, north-central Nevada

    USGS Publications Warehouse

    Rodriguez, Brian D.; Williams, Jackie M.

    2002-01-01

    Magnetotelluric data collected along five profiles show deep resistivity structures beneath the Battle Mountain-Eureka and Carlin gold trends in north-central Nevada, which appear consistent with tectonic breaks in the crust that possibly served as channels for hydrothermal fluids. It seems likely that gold deposits along these linear trends were, therefore, controlled by deep regional crustal fault systems. Two-dimensional resistivity modeling of the magnetotelluric data generally show resistive (30 to 1,000 ohm-m) crustal blocks broken by sub-vertical, two-dimensional, conductive (1 to 10 ohmm) zones that are indicative of large-scale crustal fault zones. These inferred fault zones are regional in scale, trend northeast-southwest, north-south, and northwest-southeast, and extend to mid-crustal (20 km) depths. The conductors are about 2- to 15-km wide, extend from about 1 to 4 km below the surface to about 20 km depth, and show two-dimensional electrical structure. By connecting the locations of similar trending conductors together, individual regional crustal fault zones within the upper crust can be inferred that range from about 4- to 10-km wide and about 30- to 150-km long. One of these crustal fault zones coincides with the Battle Mountain-Eureka mineral trend. The interpreted electrical property sections also show regional changes in the resistive crust from south to north. Most of the subsurface in the upper 20 km beneath Reese River Valley and southern Boulder Valley are underlain by rock that is generally more conductive than the subsurface beneath Kelly Creek Basin and northern Boulder Valley. This suggests that either elevated-temperature or high-salinity fluids, alteration, or carbonaceous rocks are more pervasive in the more conductive area (Battle Mountain Heat-Flow High), which implies that the crust beneath these valleys is either more fractured or has more carbonaceous rocks than in the area surveyed along the 41st parallel.

  14. Rapid increase of lakes in Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ren, H.; Fan, W.; Yao, Y., Sr.; Tian, D.; MA, B.; LIU, R.; Qin, Q.

    2016-12-01

    The Tibetan Plateau, covered with a huge area of snow, glaciers and lakes, feeds several large rivers, incluidng Yangtze River, Yellow River, Yarlung Tsangpo River and Lancang River. Climate change can cause lakes to expand and bring floods and mudflows, and the response of lakes in this plateau to global climate change is very crucial. Using time-series Landsats clear-sky images in summer from the late 1980s to 2015, we established a new finer-resolution (30m) database of lakes in the plateau among five stages (1980s, 1995, 2000, 2005 and 2015), analyzed lake changes in the past three decades, and explored the possible driving forces. Results and discussions(1) Changes in lakes > 1km2 between 1980s and 2015The changes of lake numbers and surface areas were investigated between 1980s and 2015. The lakes were identified by visual interpretation and classified to several different sizes: small (1-10km2), medium (10-50km2), large (50-100km2) and huge (>100km2) lakes. A total of 1375 lakes (>1km2) were detected in 2015, in which the small, medium, large and huge lakes respectively account for 97, 74, 262 and 942 (Fig.1 and Table 1). The numbers of lakes (> 1km2 ) has increased by 384 from 991 in 1980s (Fig.2 a, b). Meanwhile, a rapid increase of lake surface area also occurred: increased by 28.2% from 37711.0km2 in 1980s to 48335.2km2 in 2015 (Fig.2c and Table 1). (2) Temporal changes in lakes > 10km2 between 1980s and 2015Temporal variation in all lakes > 10km2 were investigated at the five stages. Most lakes have expanded (Fig.3). The water surface area of large and huge lakes increased by 13.7% from a total area of 32056.7km2 in 1980s to 36437.0km2 in 2015. For example, Siling Co, which is the largest lake in Tibet region and second largest lake in Tibetan Plateau, has increased by 702.1 km2 (41.0%) to 2416.08 km2 since 1980s with an rate about 28 km2 /a. Some new lakes or water bodies appeared due to melting glaciers or anthropogenic intervention. A few of small lakes were dried up. (3) Effects analysis on Lake changesWe used annual average temperature (AVT), annual precipitation (AP), snow cover (SC) and glacier cover (GC) in spring, and lake salt mining (LSM). The preliminary results shows that the AVT anomaly and GC are the possible drivers for most lake changes, while some lakes are affected by LSM. More details are still on investigation.

  15. Morphology and evolution of salmonid habitats in a recently deglaciated river basin, Washington state, USA.

    Treesearch

    L Benda; T.J. Beechie; R.C. Wissmar; A. Johnson

    1992-01-01

    Morphology and distribution of salmonid habitats were related to the geomorphology of a river basin at three spatial scales including reach (l02-103 m2), subbasin (2-26 km2), and the watershed (240 km2). Stream reaches on a young fluvial terrace (1700 yr...

  16. Nutrient dynamics and budget with the surface water-groundwater interaction in the tidal river in Japan

    NASA Astrophysics Data System (ADS)

    Onodera, S.; Saito, M.; Maruyama, Y.; Jin, G.; Miyaoka, K.; Shimizu, Y.

    2013-12-01

    In coastal megacities, sever groundwater depression and water pollution occurred. These impacts affected to river environment change. Especially, the river mouth area has been deposited the polluted matters. These areas have characteristics of water level fluctuation which causes river water-groundwater interaction and the associated change in dynamics of nutrients. However, these effects on the nutrient transport in tidal reaches and nutrient load to the sea have not been fully evaluated in previous studies. Therefore, we aimed to clarify the characteristics of the nutrient transport with the river water-groundwater interaction in the tidal river of Osaka metropolitan city. We conducted the field survey from the river mouth to the 7km upstream area of Yamato River, which has a length of 68km and a watershed area of 1070 km2. Spatial variations in radon (222Rn) concentrations and the difference of hydraulic potential between river waters and the pore waters suggest that the groundwater discharges to the river channel in the upstream area. In contrast, the river water recharged into the groundwater near the river mouth area. It may be caused by the lowering of groundwater level associated with the excess abstraction of groundwater in the urban area. The result also implies the seawater intrusion would accelerate the salinization of groundwater. The spatial and temporal variations in nutrient concentrations indicate that nitrate-nitrogen (NO3-N) concentrations changed temporally and it negative correlated with dissolved organic nitrogen (DON) concentrations. Inorganic phosphorous (PO4-P) concentrations showed the increasing trend with the increase of the river water level. Based on the mass balance, nutrient reproduction from the river bed was suggested in tidal reach. That was estimated to be 10 % of total nitrogen and 3% of phosphorus loads from the upstream.

  17. Changes in freshwater mussel communities linked to legacy pollution in the Lower Delaware River

    USGS Publications Warehouse

    Blakeslee, Carrie J.; Silldorff, Erik L.; Galbraith, Heather S.

    2018-01-01

    Freshwater mussels are among the most-imperiled organisms worldwide, although they provide a variety of important functions in the streams and rivers they inhabit. Among Atlantic-slope rivers, the Delaware River is known for its freshwater mussel diversity and biomass; however, limited data are available on the freshwater mussel fauna in the lower, non-tidal portion of the river. This section of the Delaware River has experienced decades of water-quality degradation from both industrial and municipal sources, primarily as a function of one of its major tributaries, the Lehigh River. We completed semi-quantitative snorkel surveys in 53.5 of the 121 km of the river to document mussel community composition and the continued impacts from pollution (particularly inputs from the Lehigh River) on mussel fauna. We detected changes in mussel catch per unit effort (CPUE) below the confluence of the Lehigh River, with significant declines in the dominant species Elliptio complanata (Eastern Elliptio) as we moved downstream from its confluence—CPUE dropped from 179 to 21 mussels/h. Patterns in mussel distribution around the Lehigh confluence matched chemical signatures of Lehigh water input. Specifically, Eastern Elliptio CPUE declined more quickly moving downstream on the Pennsylvania bank, where Lehigh River water input was more concentrated compared to the New Jersey bank. A definitive causal link remains to be established between the Lehigh River and the dramatic shifts in mussel community composition, warranting continued investigation as it relates to mussel conservation and restoration in the basin.

  18. Nile River, Lake Nasser, Aswan High Dam, Egypt, Africa

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Lake Nasser, (24.0N, 33.0E) at the Aswan High Dam on the Nile River, in Egypt is the world's second largest artificial lake, extending 500 km, in length and about 5000 sq. km. in area. The lake has a storage capacity sufficient to irrigate farms in Egypt and Sudan year round allowing up to three harvests per year. Other benefits include year round river navagation, hydroelectric power, more fish harvests, reduced flooding and more industrial employment. opportunites.

  19. Omo River Delta, Lake Turkana, Ethiopia/Kenya border, Africa

    NASA Technical Reports Server (NTRS)

    1991-01-01

    As a result of land clearing operations in the local area, the Omo River Delta (4.5N, 36.0E) at the north end of Lake Turkana, on the Ethiopia/Kenya border has become enlarged through topsoil erosion. The delta measured 800 sq. km. in 1981 doubled to 1,600 sq. km. by 1988 and was up to 1,800 sq. km. in 1991. This is the same area where the Leaky Anthropological Team discovered the earliest remains of human ancestors.

  20. The Mississippi River: A place for fish

    USGS Publications Warehouse

    Schramm, Harold; Ickes, Brian; Chen, Yushun; Chapman, Duane C.; Jackson, John; Chen, Daqing; Li, Zhongjie; Kilgore, Jack; Phelps, Quinton E.; Eggleton, Michael

    2016-01-01

    The Mississippi River flows 3,734 km from its source at Lake Itasca, Minnesota to its outlet at the Gulf of Mexico. Along its course, it collects water from portions of two Canadian provinces and 41 % of the conterminous United States. Although greatly altered for navigation and flood control throughout much of its length, the Mississippi River remains an important fishery resource that provides habitat for 188 species of fishes and recreational and commercial fishing opportunities. The objectives of this chapter are to describe the contemporary fisheries habitat throughout the Mississippi River, identify how management to achieve human benefits influences the fishes and their habitats, and summarize efforts to conserve and enhance fish habitat. The 826-km headwater reach is entirely in Minnesota and remains largely unaltered. The reaches that extend 1,059 km from St. Anthony Falls, Minnesota to above the confluence with the Missouri River near St. Louis, Missouri have been altered by impoundment that has affected floodplain function, increased sedimentation of backwaters, and homogenized the formerly diverse aquatic habitats. After the confluence with the Missouri River, the Mississippi River flows freely for 1,849 km to the Gulf of Mexico. The alterations of the free-flowing reaches of greatest significance to the fisheries resource are reducing the duration and height of the flood pulse as a consequence of shortening the river channel, disconnection of the river from its historic and present floodplain, and loss of secondary channel-island complexes. Engineering features to improve commercial navigation have also added habitat and, when wisely manipulated, can be used to rehabilitate habitat. Some aspects of water quality have improved, but legacy chemicals and nutrient-laden inflows and sediments remain problems. Although true restoration in the sense of restoring all environmental conditions to an unaltered state is unlikely, the future value of the Mississippi River as a fisheries resource will depend on actively maintaining diverse and accessible aquatic habitats to support food webs and water quality suitable for fishes.

  1. Habitat use and population characteristics of potentially spawning shovelnose sturgeon Scaphirhynchus platorynchus (Rafinesque, 1820), blue sucker ( Cycleptus elongatus (Lesueur, 1817), and associated species in the lower Wisconsin River, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, John D.; Walchak, D.; Haglund, J.

    The goal of this study was to compare the possible locations, timing, and characteristics of potentially spawning shovelnose sturgeon ( Scaphirhynchus platorynchus), blue sucker ( Cycleptus elongatus), and associated species during the spring of 2007-2015 in the 149-km-long lower Wisconsin River, Wisconsin, USA, a large, shallow, sand-dominated Mississippi River tributary. A 5-km index station of two pairs of rocky shoals surrounded by sandy areas was electrofished for shovelnose sturgeon and blue sucker in a standardized fashion a total of 40 times from late March through mid- June, the presumed spawning period. On one date in 2008 and two dates inmore » 2012, all rocky shoals and adjacent sandy areas in the lowermost 149 km of the river were also electrofished for both species. Shovelnose sturgeon and blue sucker appeared to spawn in the limited rocky areas of the river along with at least four other species: mooneye ( Hiodon tergisus), quillback ( Carpiodes cyprinus), smallmouth buffalo ( Ictiobus bubalus), and shorthead redhorse ( Moxostoma macrolepidotum), usually at depths of 0.8-2.0 m and surface velocities of 0.4–1.0 m/s. However, apparently spawning shovelnose sturgeon were found only on mid-channel cobble and coarse gravel shoals within a single 7-km segment that included the 5-km index station, whereas apparently spawning blue suckers were encountered on these same shoals but also more widely throughout the river on eroding bluff shorelines of bedrock and boulder and on artificial boulder wing dams and shoreline rip-rap. Both species showed evidence of homing to the same mid-channel shoal complexes across years.« less

  2. Habitat use and population characteristics of potentially spawning shovelnose sturgeon Scaphirhynchus platorynchus (Rafinesque, 1820), blue sucker ( Cycleptus elongatus (Lesueur, 1817), and associated species in the lower Wisconsin River, USA

    DOE PAGES

    Lyons, John D.; Walchak, D.; Haglund, J.; ...

    2016-11-07

    The goal of this study was to compare the possible locations, timing, and characteristics of potentially spawning shovelnose sturgeon ( Scaphirhynchus platorynchus), blue sucker ( Cycleptus elongatus), and associated species during the spring of 2007-2015 in the 149-km-long lower Wisconsin River, Wisconsin, USA, a large, shallow, sand-dominated Mississippi River tributary. A 5-km index station of two pairs of rocky shoals surrounded by sandy areas was electrofished for shovelnose sturgeon and blue sucker in a standardized fashion a total of 40 times from late March through mid- June, the presumed spawning period. On one date in 2008 and two dates inmore » 2012, all rocky shoals and adjacent sandy areas in the lowermost 149 km of the river were also electrofished for both species. Shovelnose sturgeon and blue sucker appeared to spawn in the limited rocky areas of the river along with at least four other species: mooneye ( Hiodon tergisus), quillback ( Carpiodes cyprinus), smallmouth buffalo ( Ictiobus bubalus), and shorthead redhorse ( Moxostoma macrolepidotum), usually at depths of 0.8-2.0 m and surface velocities of 0.4–1.0 m/s. However, apparently spawning shovelnose sturgeon were found only on mid-channel cobble and coarse gravel shoals within a single 7-km segment that included the 5-km index station, whereas apparently spawning blue suckers were encountered on these same shoals but also more widely throughout the river on eroding bluff shorelines of bedrock and boulder and on artificial boulder wing dams and shoreline rip-rap. Both species showed evidence of homing to the same mid-channel shoal complexes across years.« less

  3. Longitudinal thermal heterogeneity in rivers and refugia for coldwater species: Effects of scale and climate change

    USGS Publications Warehouse

    Fullerton, A.H.; Torgersen, Christian E.; Lawer, J.J.; Steel, E. A.; Ebersole, J.L.; Lee, S.Y.

    2018-01-01

    Climate-change driven increases in water temperature pose challenges for aquatic organisms. Predictions of impacts typically do not account for fine-grained spatiotemporal thermal patterns in rivers. Patches of cooler water could serve as refuges for anadromous species like salmon that migrate during summer. We used high-resolution remotely sensed water temperature data to characterize summer thermal heterogeneity patterns for 11,308 km of second–seventh-order rivers throughout the Pacific Northwest and northern California (USA). We evaluated (1) water temperature patterns at different spatial resolutions, (2) the frequency, size, and spacing of cool thermal patches suitable for Pacific salmon (i.e., contiguous stretches ≥ 0.25 km, ≤ 15 °C and ≥ 2 °C, aooler than adjacent water), and (3) potential influences of climate change on availability of cool patches. Thermal heterogeneity was nonlinearly related to the spatial resolution of water temperature data, and heterogeneity at fine resolution (< 1 km) would have been difficult to quantify without spatially continuous data. Cool patches were generally > 2.7 and < 13.0 km long, and spacing among patches was generally > 5.7 and < 49.4 km. Thermal heterogeneity varied among rivers, some of which had long uninterrupted stretches of warm water ≥ 20 °C, and others had many smaller cool patches. Our models predicted little change in future thermal heterogeneity among rivers, but within-river patterns sometimes changed markedly compared to contemporary patterns. These results can inform long-term monitoring programs as well as near-term climate-adaptation strategies.

  4. Genetic status and conservation of Westslope Cutthroat Trout in Glacier National Park

    USGS Publications Warehouse

    Muhlfeld, Clint C.; D'Angelo, Vincent S.; Downs, Christopher C.; Powell, John D.; Amish, Stephen J.; Luikart, Gordon; Kovach, Ryan; Boyer, Matthew; Kalinowski, Steven T.

    2016-01-01

    Invasive hybridization is one of the greatest threats to the persistence of Westslope Cutthroat Trout Oncorhynchus clarkii lewisi. Large protected areas, where nonhybridized populations are interconnected and express historical life history and genetic diversity, provide some of the last ecological and evolutionary strongholds for conserving this species. Here, we describe the genetic status and distribution of Westslope Cutthroat Trout throughout Glacier National Park, Montana. Admixture between Westslope Cutthroat Trout and introduced Rainbow Trout O. mykiss and Yellowstone Cutthroat Trout O. clarkii bouvieri was estimated by genotyping 1,622 fish collected at 115 sites distributed throughout the Columbia, Missouri, and South Saskatchewan River drainages. Currently, Westslope Cutthroat Trout occupy an estimated 1,465 km of stream habitat and 45 lakes (9,218 ha) in Glacier National Park. There was no evidence of introgression in samples from 32 sites along 587 km of stream length (40% of the stream kilometers currently occupied) and 17 lakes (2,555 ha; 46% of the lake area currently occupied). However, nearly all (97%) of the streams and lakes that were occupied by nonhybridized populations occurred in the Columbia River basin. Based on genetic status (nonnative genetic admixture ≤ 10%), 36 Westslope Cutthroat Trout populations occupying 821 km of stream and 5,482 ha of lakes were identified as “conservation populations.” Most of the conservation populations (N = 27; 736 km of stream habitat) occurred in the Columbia River basin, whereas only a few geographically restricted populations were found in the South Saskatchewan River (N = 7; 55 km) and Missouri River (N = 2; 30 km) basins. Westslope Cutthroat Trout appear to be at imminent risk of genomic extinction in the South Saskatchewan and Missouri River basins, whereas populations in the Columbia River basin are widely distributed and conservation efforts are actively addressing threats from hybridization and other stressors. A diverse set of pro-active management approaches will be required to conserve, protect, and restore Westslope Cutthroat Trout populations in Glacier National Park throughout the 21st century.

  5. Short- to Medium-Term Geomorphic Response of the Souhegan River to the 2008 Removal of the Merrimack Village Dam in Southern New Hampshire

    NASA Astrophysics Data System (ADS)

    Snyder, N. P.; Collins, M. J.; Armistead, C. C.; Conlon, M.; David, G. C.; Lisius, G.; Lucy, C. O.; Munz, K. T.; Pearson, A.; Santaniello, D. J.

    2014-12-01

    Removing the Merrimack Village Dam on the lower Souhegan River (drainage area ~570 km2) in southern New Hampshire in August 2008 provided a field-scale experiment in river response to a major change in sediment flux and base level. We began monitoring the study area in August 2007, surveying a series of eight permanent cross sections within the impoundment and four downstream between the dam and the confluence with the Merrimack River (drainage area ~8,000 km2). We also surveyed the longitudinal profile through the 1-km study reach, measured bed grain size distribution, and photographed the site from ground-level stations. We conducted nine repeat surveys from 2008 to 2014, with the greatest frequency soon after dam removal. In 2012 and 2014, we also surveyed the former impoundment using low-altitude aerial photographs and structure-from-motion photogrammetry. The dam removal resulted in a near-instantaneous 3.9-m drop in base level in the impoundment. The river incised rapidly through the impounded sand and removed over 50% of it within the first two months. This added sediment load resulted in up to 3.2 m of deposition in the downstream reach. After the initial, rapid phase of channel adjustment, ongoing erosion of reservoir sediment depended primarily on flood events that could access sediment stored outside of the newly developed, active channel. By 2011, about 20% of the impounded sand remained, and this proportion was similar in the 2012 and 2014 surveys. The erosion process in the former impoundment was modulated by the recruitment of large wood (several 15-20 m tall trees with intact rootballs) from terraces through bank erosion, which remained stable in the channel and armored the banks. In the past two years, these trees have begun to be buried in newly deposited sediment, suggesting initiation of a floodplain large-wood cycle (Collins et al., 2012). At present, establishment of herbaceous vegetation on geomorphic surfaces is an important process controlling the medium-term response of the former impoundment.

  6. Channel Characteristics and Planform Dynamics in the Indian Terai, Sharda River

    NASA Astrophysics Data System (ADS)

    Midha, Neha; Mathur, Pradeep K.

    2014-01-01

    The Sharda River creates and maintains the ecologically diverse remnant patches of rare Terai ecosystem in northern India. This study used repeat satellite imagery and geographic information system analysis to assess the planform dynamics along a 60 km length of the Sharda River between 1977 and 2001 to understand the altered dynamics and its plausible causes in this data-poor region. Analyses revealed that the Sharda River has undergone significant change corresponding to enhanced instability in terms of increased number of neck cut-offs and consistent occurrence of avulsions in subsequent shorter assessment periods. An increased channel area (8 %), decreased sinuosity (15 %), increased braiding intensity, and abrupt migrations were also documented. The river has migrated toward the east with its west bankline being more unstable. The maximum shifts were 2.85 km in 13 years (1977-1990), 2.33 km in next 9 years (1990-1999), and a substantial shift of 2.39 km in just 2 years (1999-2001). The altered dynamics is making the future of critical wildlife habitats in Kishanpur Wildlife Sanctuary and North Kheri Forest Division precarious and causing significant economic damage. Extensive deforestation and expansion of agriculture since the 1950s in the catchment area are presumed to have severely impacted the equilibrium of the river, which urgently needs a management plan including wildlife habitat conservation, control, and risk reduction. The present study provides a strong foundation for understanding channel changes in the Sharda River and the finding can serve as a valuable information base for effective management planning and ecological restoration.

  7. Morphodynamic change analysis of bedforms in the Lower Orinoco River, Venezuela

    NASA Astrophysics Data System (ADS)

    Yepez, Santiago Paul; Laraque, Alain; Gualtieri, Carlo; Christophoul, Frédéric; Marchan, Claudio; Castellanos, Bartolo; Azocar, Jose Manuel; Lopez, Jose Luis; Alfonso, Juan

    2018-04-01

    The Orinoco River has the third largest discharge in the world, with an annual mean flow of 37 600 m3 s-1 at its outlet to the Atlantic Ocean. Due to the presence of the Guiana Shield on the right bank, the lower reach of the Orinoco has a plan form characterized by contraction and expansion zones. Typical 1-1.5 km wide narrow reaches are followed by 7-8 km wide reaches. A complex pattern of bed aggradation and degradation processes takes place during the annual hydrological regime. A series of Acoustic Doppler Current Profiler (ADCP) transects were collected on an expansion channel in the Orinoco River, specifically over a fluvial island, representative of the lower Orinoco. In this study, temporal series of bathymetric cartography obtained by ADCP profiles combined with Differential Global Position System (DGPS) measurements (with dual-frequency), were used to recover the local displacement of bed forms in this island. The principal aims of this analysis were: (1) to understand the dynamics and evolution of sand waves and bars at this section and (2) to quantify the volume (erosion vs. accretion) of a mid-channel bar with dunes by applying DEM of Difference (DoD) maps on time series of bathymetric data. This required sampling with ADCP transects during the months of: May 2016; November 2016 and April 2017. Each bathymetric transect was measured twice, 1 day apart and on the same trajectory obtained by a GPS receptor. The spatial analysis of these ADCP transects is presented as a novel tool in the acquisition of time series of bathymetry for a relatively deep section ( ˜ 20 m) and under variable flow conditions.

  8. Preliminary cross section of Englebright Lake sediments

    USGS Publications Warehouse

    Snyder, Noah P.; Hampton, Margaret A.

    2003-01-01

    Overview -- The Upper Yuba River Studies Program is a CALFED-funded, multidisciplinary investigation of the feasibility of introducing anadromous fish species to the Yuba River system upstream of Englebright Dam. Englebright Lake (Figure 1 on poster) is a narrow, 14-km-long reservoir located in the northern Sierra Nevada, northeast of Marysville, CA. The dam was completed in 1941 for the primary purpose of trapping sediment derived from mining operations in the Yuba River watershed. Possible management scenarios include lowering or removing Englebright Dam, which could cause the release of stored sediments and associated contaminants, such as mercury used extensively in 19th-century hydraulic gold mining. Transport of released sediment to downstream areas could increase existing problems including flooding and mercury bioaccumulation in sport fish. To characterize the extent, grain size, and chemistry of this sediment, a coring campaign was done in Englebright Lake in May and June 2002. More than twenty holes were drilled at 7 different locations along the longitudinal axis of the reservoir (Figure 4 on poster), recovering 6 complete sequences of post-reservoir deposition and progradation. Here, a longitudinal cross section of Englebright Lake is presented (Figure 5 on poster), including pre-dam and present-day topographic profiles, and sedimentologic sections for each coring site. This figure shows the deltaic form of the reservoir deposit, with a thick upper section consisting of sand and gravel overlying silt, a steep front, and a thinner lower section dominated by silt. The methodologies used to create the reservoir cross section are discussed in the lower part of this poster.

  9. Impact of Watershed Development on Sediment Transport and Seasonal Flooding in the Main Stream of the Mekong River

    NASA Astrophysics Data System (ADS)

    Kameyama, S.; Nohara, S.; Sato, T.; Fujii, Y.; Kudo, K.

    2009-12-01

    The Mekong River watershed is undergoing rapid economic progress and population growth, raising conflicts between watershed development and environmental conservation. A typical conflict is between the benefits of dam construction versus the benefits of watershed ecological services. In developed countries, this conflict is changing to a coordinated search for outcomes that are mutually acceptable to all stakeholders. In the Mekong River, however, government policy gives priority to watershed development for ensuring steady energy supplies. Since the 1990s, a series of dams called “the Mekong Cascade” have been under construction. Dam construction has multiple economic values as electric power supply, irrigation water, flood control, etc. On the other hand, the artificial flow discharge controls of dam moderate seasonal hydrologic patterns of the Asian monsoon region. Dam operations can change the sediment transport regime and river structure. Furthermore, their impacts on watershed ecosystems and traditional economic activities of fisheries and agriculture in downstream areas may be severe. We focus on dam impacts on spatio-temporal patterns of sediment transport and seasonal flood in riparian areas downstream from Mekong River dams. Our study river section is located on 100 km down stream from the Golden Triangle region of Myanmar, Laos, and Thailand. We selected a 10-km section in this main channel to simulate seasonal flooding. We modeled the river hydrology in the years 1991 and 2002, before and after the Manwan dam construction (1986-1993). For this simulation, we adapted three models (distributed runoff model, 1-D hydrological model, and 2-D flood simulation with sediment movement algorithm.) Input data on river structure, water velocity, and flow volume were acquired from field survey data in November 2007 and 2008. In the step of parameter decision, we adopted the shuffled complex evolution method. To validate hydrologic parameters, we used annual water level data observed in Chiang Sean and Luang Prabang. To calculate sediment flux volume, we employed a Load-Quantity equation using total suspended solids data from monthly water sampling and flow discharge volumes over 13 months. To evaluate the impact of dam construction and watershed development, we inputted the same year of precipitation data using two watershed conditions with different parameters. Our results from the 1-D model displayed a seasonal delay of water flooding time after summer rainy season and an increase in sediment transport volume from September to October. In the flood simulation by the 2-D model, most of the annual sediment transport was concentrated from July to October. The spatial pattern of sediment dynamics was dependent largely on river structure including river meander shape, river bottom elevation, and geometry of the riparian zone. Our study approaches and simulation results show promise for beginning a quantitative assessment approach to cross-boundary environmental issues in the Mekong River watershed.

  10. Dispersal forcing of a southern California river plumes, based on field and remote sensing observations

    USGS Publications Warehouse

    Warrick, Jonathan A.; Mertes, Leal A.K.; Washburn, Libe; Siegel, David A.

    2004-01-01

    River plumes are important pathways of terrestrial materials entering the sea. In southern California, rivers are known to be the dominant source of littoral, shelf and basin sediment and coastal pollution, although a basic understanding of the dynamics of these river inputs does not exist. Here we evaluate forcing parameters of a southern California river plume using ship-based hydrographic surveys and satellite remote sensing measurements to provide the first insights of river dispersal dynamics in southern California. Our results suggest that plumes of the Santa Clara River are strongly influenced by river inertia, producing jet-like structures ~10 km offshore during annual recurrence (~two-year) flood events and ~30 km during exceptional (~10-year recurrence) floods. Upwelling-favorable winds may be strong following stormwater events and can alter dispersal pathways of thse plumes. Due to similar runoff relationships and other reported satellite observations, we hypothesize that interia-dominated dispersal may be an important characteristic of the small, mountainous rivers throughout southern California.

  11. Lack of significant changes in the herpetofauna of Theodore Roosevelt National Park, North Dakota, since the 1920s

    Treesearch

    Blake R. Hossack; Paul Stephen Corn; David S. Pilliod

    2005-01-01

    We surveyed 88 upland wetlands and 12 1-km river sections for amphibians in Theodore Roosevelt National Park, North Dakota, during 2001–2002 to gather baseline data for future monitoring efforts and to evaluate changes in the distribution of species. We compared our results to collections of herpetofauna made during 1920–1922, 1954 and 1978–1979. The boreal chorus frog...

  12. River eutrophication: irrigated vs. non-irrigated agriculture through different spatial scales.

    PubMed

    Monteagudo, Laura; Moreno, José Luis; Picazo, Félix

    2012-05-15

    The main objective of this study was to determine how spatial scale may affect the results when relating land use to nutrient enrichment of rivers and, secondly, to investigate which agricultural practices are more responsible for river eutrophication in the study area. Agriculture was split into three subclasses (irrigated, non-irrigated and low-impact agriculture) which were correlated to stream nutrient concentration on four spatial scales: large scale (drainage area of total subcatchment and 100 m wide subcatchment corridors) and local scale (5 and 1 km radius buffers). Nitrate, ammonium and orthophosphate concentrations and land use composition (agriculture, urban and forest) were measured at 130 river reaches in south-central Spain during the 2001-2009 period. Results suggested that different spatial scales may lead to different conclusions. Spatial autocorrelation and the inadequate representation of some land uses produced unreal results on large scales. Conversely, local scales did not show data autocorrelation and agriculture subclasses were well represented. The local scale of 1 km buffer was the most appropriate to detect river eutrophication in central Spanish rivers, with irrigated cropland as the main cause of river pollution by nitrate. As regards river management, a threshold of 50% irrigated cropland within a 1 km radius buffer has been obtained using breakpoint regression analysis. This means that no more than 50% of irrigation croplands should be allowed near river banks in order to avoid river eutrophication. Finally, a methodological approach is proposed to choose the appropriate spatial scale when studying river eutrophication caused by diffuse pollution like agriculture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Li-Zn-Pb multi isotopic characterization of the Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A.; Widory, D.; Bourrain, X.

    2013-12-01

    The Loire River in France is approximately 1010 km long and drains an area of 117 800 km2. Upstream, the Loire River flows following a south to north direction from the Massif Central down to the city of Orléans, 650 km from its source. The Loire River is one of the main European riverine inputs to the Atlantic Ocean. Over time, its basin has been exposed to numerous sources of anthropogenic metal pollutions, such as metal mining, industry, agriculture and domestic inputs. The Loire River basin is thus an excellent study site to develop new isotope systematics for tracking anthropogenic sources of metal pollutions (Zn and Pb) and also to investigate Li isotope tracing that can provide key information on the nature of weathering processes at the Loire River Basin scale. Preliminary data show that Li-Zn-Pb concentrations and isotopic compositions span a wide range in river waters of the Loire River main stream and the main tributaries. There is a clear contrast between the headwaters upstream and rivers located downstream in the lowlands. In addition, one of the major tributaries within the Massif Central (the Allier River) is clearly influenced by inputs resulting from mineralizations and thermomineral waters. The results showed that, on their own, each of these isotope systematics reveals important information about the geogenic or anthropogenic origin Li-Zn-Pb. Considered together, they are however providing a more integrated understanding of the overall budgets of these elements at the scale of the Loire River Basin.

  14. PATHOGEN TRANSPORT AND FATE MODELING IN THE UPPER SALEM RIVER WATERSHED USING SWAT MODEL - PEER-REVIEWED JOURNAL ARTICLE

    EPA Science Inventory

    Simulation of the fate and transport of pathogen contamination was conducted with SWAT for the Upper Salem River Watershed, located in Salem County, New Jersey. This watershed is 37 km2 and land uses are predominantly agricultural. The watershed drains to a 32 km str...

  15. Migratory behaviour and survival rates of wild northern Atlantic salmon Salmo salar post-smolts: Effects of environmental factors

    USGS Publications Warehouse

    Davidsen, J.G.; Rikardsen, A.H.; Halttunen, E.; Thorstad, E.B.; Okland, F.; Letcher, B.H.; Skarhamar, J.; Naesje, T.F.

    2009-01-01

    To study smolt behaviour and survival of a northern Atlantic salmon Salmo salar population during river descent, sea entry and fjord migration, 120 wild S. salar were tagged with acoustic tags and registered at four automatic listening station arrays in the mouth of the north Norwegian River Alta and throughout the Alta Fjord. An estimated 75% of the post-smolts survived from the river mouth, through the estuary and the first 17 km of the fjord. Survival rates in the fjord varied with fork length (LF), and ranged from 97??0 to 99??5% km-1. On average, the post-smolts spent 1??5 days (36 h, range 11-365 h) travelling from the river mouth to the last fjord array, 31 km from the river mouth. The migratory speed was slower (1??8 LF s-1) in the first 4 km after sea entry compared with the next 27 km (3??0 LF s-1). Post-smolts entered the fjord more often during the high or ebbing tide (70%). There was no clear diurnal migration pattern within the river and fjord, but most of the post-smolts entered the fjord at night (66%, 2000-0800 hours), despite the 24 h daylight at this latitude. The tidal cycle, wind-induced currents and the smolts' own movements seemed to influence migratory speeds and routes in different parts of the fjord. A large variation in migration patterns, both in the river and fjord, might indicate that individuals in stochastic estuarine and marine environments are exposed to highly variable selection regimes, resulting in different responses to environmental factors on both temporal and spatial scales. Post-smolts in the northern Alta Fjord had similar early marine survival rates to those observed previously in southern fjords; however, fjord residency in the north was shorter. ?? 2009 The Fisheries Society of the British Isles.

  16. Modelling Suspended Sediment Transport in Monsoon Season: A Case Study of Pahang River Estuary, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Zakariya, Razak; Ahmad, Zuhairi; Saad, Shahbudin; Yaakop, Rosnan

    2013-04-01

    Sediment transport based on 2-dimensional real time model was applied to Pahang River estuary, Pahang, Malaysia and has been evaluated and verified with time series of tidal elevation, flow and suspended sediment load. Period of modelling was during highest high tide and lowest low tide in Northeast Monsoon (NE) which happened in December 2010 and Southwest Monsoon (SW) in July 2011. Simulated model outputs has been verify using Pearson's coefficient and has showed high accuracy. The validated model was used to simulate hydrodynamic and sediment transport of extreme conditions during both monsoon seasons. Based on field measurement and model simulation, tidal elevation and flow velocity, freshwater discharge of Pahang River were found to be higher during NE Monsoon. Based on the fluxes, the estuary also showed 'ebb-dominant' characteristic during highest high tide and lowest low tide in NE monsoon and normal ebbing-flooding characteristics during SW monsoon. In the Pahang River estuary, inflow and outflow patterns were perpendicular to the open boundary with circular flow formed at the shallow area in the middle of estuary during both monsoons. Referring to sea water intrusion from the river mouth, both seasons show penetration of more than 9 km (upstream input boundary) during higher high water tide. During higher lower water tide, the water intrusion stated varies which 5.6km during NE monsoon and 7.8km during SW monsoon. Regarding to the times lap during high tide, the sea water takes 2.8 hours to reach 9km upstream during NE monsoon compared to 1.9 hour during SW monsoon. The averages of suspended sediment concentration and suspended sediment load were higher during Northeast monsoon which increased the sedimentation potentials.Total of suspended sediment load discharged to the South China Sea yearly from Pahang River is approximately 96727.5 tonnes/day or 3.33 tonnes/km2/day which 442.6 tonnes/day during Northeast Monsoon and 25.3 tonnes/day during Southwest Monsoon. Thus, Pahang River estuary found to be directly affected by the monsoon factors especially due to high amount of river discharge and surface erosion from catchment areas. This study provides several useful understanding on the hydrodynamic and sediment transport of Pahang River estuary and catchment area. Keywords: Pahang River Estuary, hydrodynamic, sediment transport, MIKE21 MT

  17. Sele coastal plain flood risk due to wave storm and river flow interaction

    NASA Astrophysics Data System (ADS)

    Benassai, Guido; Aucelli, Pietro; Di Paola, Gianluigi; Della Morte, Renata; Cozzolino, Luca; Rizzo, Angela

    2016-04-01

    Wind waves, elevated water levels and river discharge can cause flooding in low-lying coastal areas, where the water level is the interaction between wave storm elevated water levels and river flow interaction. The factors driving the potential flood risk include weather conditions, river water stage and storm surge. These data are required to obtain inputs to run the hydrological model used to evaluate the water surface level during ordinary and extreme events regarding both the fluvial overflow and storm surge at the river mouth. In this paper we studied the interaction between the sea level variation and the river hydraulics in order to assess the location of the river floods in the Sele coastal plain. The wave data were acquired from the wave buoy of Ponza, while the water level data needed to assess the sea level variation were recorded by the tide gauge of Salerno. The water stages, river discharges and rating curves for Sele river were provided by Italian Hydrographic Service (Servizio Idrografico e Mareografico Nazionale, SIMN).We used the dataset of Albanella station (40°29'34.30"N, 15°00'44.30"E), located around 7 km from the river mouth. The extreme river discharges were evaluated through the Weibull equation, which were associated with their return period (TR). The steady state river water levels were evaluated through HEC-RAS 4.0 model, developed by Hydrologic Engineering Center (HEC) of the United States Army Corps of Engineers Hydrologic Engineering Center (USACE,2006). It is a well-known 1D model that computes water surface elevation (WSE) and velocity at discrete cross-sections by solving continuity, energy and flow resistance (e.g., Manning) equation. Data requirements for HEC-RAS include topographic information in the form of a series of cross-sections, friction parameter in the form of Manning's n values across each cross-section, and flow data including flow rates, flow change locations, and boundary conditions. For a steady state sub-critical simulation, the boundary condition is a known downstream WSE, in this case the elevated water level due to wave setup, wind setup and inverted barometer, while the upstream boundary condition consisted in WSE corresponding to river discharges associated to different return periods. The results of the simulations evidence, for the last 10 kilometers of the river, the burst of critical inundation scenarios even with moderate flow discharge, if associated with concurrent storm surge which increase the water level at the river mouth, obstructing normal flow discharge.

  18. Distribution of heavy metals in vegetation surrounding the Blackstone River, USA: considerations regarding sediment contamination and long term metals transport in freshwater riverine ecosystems.

    PubMed

    Ozdilek, Hasan Goksel; Mathisen, Paul P; Pellegrino, Don

    2007-04-01

    The Blackstone River, a 74 km interstate stream located in South Central Massachusetts and Rhode Island (USA), has had a long history of problems due to high concentrations of metals such as copper and lead. The river has been subjected to metals load that include contributions from urban runoff, wastewater discharges, contaminated sediments, and also resuspension of contaminated sediments in the river-bed. All of these effects lead to elevated concentrations of metals such as lead, copper, zinc, chromium, cadmium and arsenic. Furthermore, the contaminated sediments located behind impoundments become especially important when higher flows cause resuspension of the previously deposited sediments and associated metals. While it is known that high metals concentrations in this river are found in the bottom sediments, the fate of the metals and impact on the ecosystem are not well known. This paper addresses the potential impacts that metals may have on vegetation and plant tissues in the vicinity of the river Plant tissues (primarily mosses), were collected from a number of sampling sites along a 14 km stretch of this river. At each site, samples were collected from multiple distances from the riverbank. Laboratory analyses made use of both wet digestion and dry ashing digestion methods, followed by analysis using an atomic absorption spectrophotometer. The wet and dry ashing digestion methods yielded similar results, although the results afforded by the dry ashing methods were slightly lower than the results obtained from the wet method. The results showed that the metals concentrations in vegetation (as determined from plant tissue analyses) were generally inversely related to the distance between the vegetation and the riverbank, with higher metals concentrations existing in plant tissues located close to the riverbank. In addition, it was found that the transport of metals concentrations to the terrestrial vegetation adjacent to this section of the Blackstone River was affected by the river morphology and flow characteristics (including velocity, flow rate and depth of flow, which can govern the potential for plant submergence, as well as the dynamics of flow and transport in the soil near the river). The analyses help to provide an improved understanding of metals transport and potential significance of metals contamination in a terrestrial ecosystem that is located adjacent to a river.

  19. Comparative geomorphic analysis of surficial deposits at three central Appalachian watersheds: Implications for controls on sediment-transport efficiency

    NASA Astrophysics Data System (ADS)

    Taylor, Stephen B.; Steven Kite, J.

    2006-08-01

    Factors that control the routing and storage of sediments in the Appalachian region are poorly understood. This study involves a comparative geomorphic analysis of three watersheds underlain by sandstones and shales of the Acadian clastic wedge. These areas include the Fernow Experimental Forest, Tucker County, West Virginia; the North Fork basin, Pocahontas County, West Virginia; and the Little River basin, Augusta County, Virginia. GIS-based analyses of surficial map units allow first-order approximation of sediment-storage volumes in valley bottoms. Estimates of volumes are examined in tandem with morphometric analyses and the distribution of bedrock channels to make inferences regarding controls on sediment-transport efficiency in the central Appalachians. The Fernow and North Fork areas are characterized by V-shaped valleys with mixed reaches of alluvial-bedrock channels distributed throughout the drainage network. In contrast, the Little River valley is notably wider and gravelly alluvial fill is abundant. Comparator watershed parameters for the Fernow, North Fork and Little River areas include, respectively: (1) basin area = 15.2 km 2, 49.3 km 2, 41.5 km 2; (2) basin relief = 0.586 km, 0.533 km, 0.828 km; (3) drainage density = 4.2 km - 1 , 3.3 km - 1 , 4.7 km - 1 ; (4) ruggedness = 2.5, 1.7, 3.9; (5) Shreve magnitude = 139, 287, 380; (6) total valley-bottom area (km 2) = 0.76 km 2, 1.86 km 2, 3.09 km 2; (7) average hillslope gradients = 17.2°, 18.4°, 22.1°; (8) total debris-fan surface area = 0.113 km 2, 0.165 km 2, 0.486 km 2; and (9) debris-fan frequency = 2.0 km - 2 , 1.0 km - 2 , 2.8 km - 2 . The storage volumes in valley bottoms were estimated using map polygon areas and surface heights above channel grade. The Little River contains significantly higher sediment volumes in floodplain, terrace and fan storage compartments; total volumes of the valley bottoms are approximately twice that of the Fernow and North Fork areas combined. Unit storage volumes for the Fernow, North Fork and Little River are 5.2 × 10 4 m 3 km - 2 , 5.5 × 10 4 m 3 km - 2 and 1.6 × 10 5 m 3 km - 2 , respectively. A conceptual model postulates that valley-width morphometry and style of delivery from hillslopes are the primary factors controlling the efficiency of sediment transport. Steep, debris-flow-prone hillslopes at the Little River deliver high volumes of gravelly sediment at magnitudes greater than transport capacity of the channel. Patterns of stream power are complex, as low-order tributaries are under capacity and high-order tributaries over capacity with respect to sediment load. Aggraded alluvial fill insulates valley-floor bedrock from vertical erosion and valley widening dominates. Expansion of the valley width creates a positive response via increased storage capacity and lower unit stream power. Conversely, the Fernow and North Fork are characterized by diffusive mass movement on hillslopes with incremental bedload transport to higher-order tributaries. Rates of hillslope delivery are balanced by the rate of channel export. Mixed alluvial-bedrock reaches provide the optimal channel configuration for active incision of the valley floor. Low expansion of valley width promotes high unit stream power and processes of vertical erosion. The model implies that the Fernow and North Fork have been more effective at sediment transport during the Late Quaternary. Given similar climatic and tectonic settings, variation in bedrock lithofacies is likely the primary factor modulating the efficiency of sediment transport.

  20. Record of drainage rearrangement and erosion in a transpressive orogen: relative role of horizontal and vertical rock advection in drainage evolution

    NASA Astrophysics Data System (ADS)

    Brocard, G. Y.; Teyssier, C.; Dunlap, W. J.; Willenbring, J.; Simon-Labric, T.; Authemayou, C.

    2008-12-01

    Along transpressive orogens, both range-transverse and range-parallel motions influence drainage network evolution. Range-parallel motions promote stretching of drainage networks, river lengthening or shortening, and sudden shortenings by river capture. Range-transverse motions induce river course shortening or lengthening, and generates stronger rock uplift. River incision patterns are influenced by rock uplift and waves of incision resulting from drainage rearrangement. Thus, under steady conditions of wrenching, drainages evolve by continued deformation and discrete rearrangements. Therefore, a significant part of erosion can be achieved in a state of significant departure from dynamic equilibrium. The frequency, intensity, and duration of these events set the timescale over which their integrated effects can be regarded as the expression of a long-term dynamic equilibrium. We document the growth of a 103-104 km2 catchment drained by the Chixoy River in Guatemala. The catchment covers a large part of a 50 km wide orogen located astride the North American - Caribbean plates boundary (Sierra de las Minas - Sierra de Chuacus range). The range is wrenched by sinistral tectonics with a varying amount of transpression and transtension. On the northern flank of this range, the Polochic Fault (PF) accumulated 130 km of total strike-slip displacement, but the Chixoy River only displays a 25 km tectonic bend. Geological evidence indicates that the river probably experienced a diversion that reset earlier tectonic bending. Upstream, the catchment stands out as a large (110x30 km) zone of enhanced erosion (2500 km3 removed since the Middle Miocene). The catchment retains many paleovalleys that we use as markers to track drainage rearrangement, bedrock deformation and changes in erosion rates. Study of the paleovalleys includes: satellite image detection, field mapping of river deposits, analyses of grain-size, clast provenance, heavy mineral provenance, deposit architecture, geochemical analyses, Ar40 -Ar39 dating of volcanic tuffs, 10 Be-26 Al burial dating, and apatite He cooling ages of the bedrock. Coupled analyses of erosion and drainage rearrangement show that, in the studied case, catchment growth occurred over 107 years. Most of the catchment erosion and growth is attributable to uplift along the PF rather than strike-slip motion, although both motion types contribute to the rearrangement. Growth of the catchment is strongly catalyzed by a wealth of other factors, such as river avulsion, volcanism, karstic flow, phreatic flow, and aridity resulting from catchment deepening.

  1. Depositional settings of sand beaches along whitewater rivers

    USGS Publications Warehouse

    Vincent, K.R.; Andrews, E.D.

    2008-01-01

    The numbers and sizes of sand beaches suitable for recreation along selected whitewater rivers in the western United States depend on sand concentrations, range of discharge and the size, frequency and type of depositional settings. River-width expansions downstream from constrictions are the predominant depositional setting for sand beaches in the upper Grand Canyon and along five Wild and Scenic Rivers in Idaho, but not along other rivers. Beaches located upstream from constrictions are rare, in general, except in the Grand Canyon. Beaches found in expansions without constrictions dominate depositional sites along the Yampa and Green Rivers, are fairly common along the rivers in Idaho, but are relatively rare in the Grand Canyon. The magnitude of flow expansion is a reliable predictor of beach size. Beaches located on the inside of curves are uncommon, in general, but can be important recreation sites. The mid-channel bar setting is the least important from a recreation standpoint because that setting is rare and beaches there are typically small, and emergent only at low flow. The frequency of beaches is highly variable among rivers and the concentration of sand in transport is only partially responsible. Of the rivers studied, the unregulated Yampa River carries the highest concentrations of suspended sand and has among the most beaches (1.2 beaches km-1). Emergent sand beaches are essentially nonexistent along the Deschutes River and are rare along other Oregon rivers, yet these rivers transport some sand. Sand beaches are fairly common (0.8-1.1 beaches km-1) along the regulated Colorado River, but are comparatively rare (0.6 beaches km-1) along the unregulated Middle Fork Salmon River. The suspended sand concentrations in study reaches of these two rivers are similar, and the difference in the frequency of beaches may be largely because the processes that create beach-deposition settings are less active along the Middle Fork Salmon.

  2. The influence of the macro-sediment from the mountainous area to the river morphology in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, S. C.; Wu, C.; Shih, P.

    2012-12-01

    Chen, Su-Chin scchen@nchu.edu.tw Wu, Chun-Hung* chwu@mail.nchu.edu.tw Dept. Soil & Water Conservation, National Chung Hsing University, Taichung, Taiwan. The Chenyulan River was varied changed with the marco-sediment yielded source area, Shenmu watershed, with 10 debris flow events in the last decade, in Central Taiwan. Multi-term DEMs, the measurement data of the river topographic profile and aerial photos are adopted to analyze the decade influences of the marco-sediment to the river morphology in Chenyulan River. The changes of river morphology by observing the river pattern, calculating the multi-term braided index, and estimating the distribution of sediment deposition and main channel in the river. The response for the macro-sediment from the mountainous areas into the river in the primary stage is the increase in river width, the depth of sediment deposition and volume of sediment transport. The distribution of sediment deposition from upstream landslide and river bank erosion along the river dominates the change of river morphology in the primary stage. The river morphology achieves stable gradually as the river discharge gradually decreases in the later stage. Both of the braided index and the volume of sediment transport decrease, and the river flow maintains in a main channel instead of the braided pattern in this stage. The decade sediment deposition depth is estimated as > 0.5 m, especially > 3.5 m in the sections closed to the sediment-yield source areas, the mean river width increases 15%, and the sediment with a total volume of 8×107 tons has been transported in last decade in Chenyulan River. The river morphology in Chenyulan River maintains a short-term stable, i.e. 2 or 3 years, and changes again because of the flooding events with a large amount of sediment caused by frequently heavy rainfall events in Taiwan. Furthermore, the response of river morphology in Chenyulan River due to the heavy rainfall with a total precipitation of around 860 mm in 3 days in 2009 Typhoon Morakot is also discussed in the study. A extreme river discharge with the return period of 100 year transported the macro sediment with the total volume of around 3.2×107 m3 in 8 days during 2009 Typhoon Morakot, and it also resulted in 18.1% increase of the mean river width and 4 m increase of the mean scouring depth in Chenyulan River, especially the mean increase of 50 m in river width resulted from the total sediment volume of 1.9×107 m3 deposited within 8 km from the sediment-yielded area, i.e. Shenmu watershed. Furthermore, the distribution of sediment deposition in a narrow pass is also discussed in the research. Sediment deposited apparently in the upstream of a narrow pass and also results in the disordered river patterns. The high velocity flow due to the contraction of the river width in the narrow pass section also leads to the headwater erosion in the upstream of the narrow pass section. Contrarily, the unapparent sediment deposition in the downstream of the narrow pass section brings about the stable main channel and swinging flow patterns from our decade observation.

  3. Channel Bank Cohesion and the Maintenance of Suspension Rivers

    NASA Astrophysics Data System (ADS)

    Dunne, K. B. J.; Jerolmack, D. J.

    2017-12-01

    Gravel-bedded rivers organize their channel geometry and grain size such that transport is close to the threshold of motion at bankfull. Sand-bedded rivers, however, typically maintain bankfull fluid shear (or Shields) stresses far in excess of threshold; there is no widely accepted explanation for these "suspension rivers". We propose that all alluvial rivers are at the threshold of motion for their erosion-limiting material, i.e., the structural component of the river cross-section that is most difficult to mobilize. The entrainment threshold of gravel is large enough that bank cohesion has little influence on gravel-bed rivers. Sand, however, is the most easily entrained material; silt and clay can raise the entrainment threshold of sand by orders of magnitude. We examine a global dataset of river channel geometry and show that the shear stress range for sand-bedded channels is entirely within the range of entrainment thresholds for sand-mud mixtures - suggesting that rivers that suspend their sandy bed material are still threshold rivers in terms of bank material. We then present new findings from a New Jersey coastal-plain river examining if and how river-bank toe composition controls hydraulic geometry. We consider the toe because it is the foundation of the river bank, and its erosion leads to channel widening. Along a 20-km profile of the river we measure cross-section geometry, bed slope, and bed and bank composition, and we explore multiple methods of measuring the threshold shear stress of the the river-bank toe in-situ. As the composition of the river bed transitions from gravel to sand, we see preliminary evidence of a shift from bed-threshold to bank-threshold control on hydraulic geometry. We also observe that sub-bankfull flows are insufficient to erode (cohesive) bank materials, even though transport of sand is active at nearly all flows. Our findings highlight the importance of focusing on river-bank toe material, which in the studied stream is always submerged. The toe is more compacted and more resistant to erosion than the subaerially-exposed upper bank. We find mounting evidence that sand-bedded rivers are much like gravel-bedded river; they are near-threshold channels in which the suspended load does not play a controlling role in the determination of equilibrium hydraulic geometry.

  4. Characterization of the Kootenai River Aquatic Macroinvertebrate Community before and after Experimental Nutrient Addition, 2003-2006. [Chapter 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holderman, Charlie

    2009-02-19

    The Kootenai River ecosystem has experienced numerous ecological changes since the early 1900s. Some of the largest impacts to habitat, biological communities, and ecological function resulted from levee construction along the 120 km of river upstream from Kootenay Lake, completed by the 1950s, and the construction and operation of Libby Dam, completed in 1972 on the river near Libby Montana. Levee construction isolated tens of thousands of hectares of historic functioning floodplain habitat from the river channel, eliminating nutrient production and habitat diversity crucial to the functioning of a large river-floodplain ecosystem. Libby Dam continues to create large changes inmore » the timing, duration, and magnitude of river flows, and greatly reduces sediment and nutrient transport to downstream river reaches. These changes have contributed to the ecological collapse of the post-development Kootenai River ecosystem and its native biological communities. In response to this artificial loss of nutrients, experimental nutrient addition was initiated in the Kootenay Lake's North Arm in 1992, the South Arm in 2004, and in the Kootenai River at the Idaho-Montana border during 2005. This report characterizes the macroinvertebrate community in the Kootenai River and its response to experimental nutrient addition during 2005 and 2006. This report also provides an initial evaluation of cascading trophic interactions in response to nutrient addition. Macroinvertebrates were sampled at 12 sites along a 325 km section of the Kootenai River, representing an upriver unimpounded reference reach, treatment and control canyon reach sites, and braided and meandering reach sites, all downstream from Libby Dam. Principle component analysis revealed that richness explained the greatest amount of variability in response to nutrient addition as did taxa from Acari, Coleoptera, Ephemeroptera, Plecoptera, and Trichoptera. Analysis of variance revealed that nutrient addition had a significant effect (p<0.0001) on invertebrate abundance, biomass, and richness at sites KR-9 and KR-9.1 combined (the zone of maximum biological response). Richness, a valuable ecological metric, increased more than abundance and biomass, which were subject to greater sampling bias. Cascading trophic interactions were observed as increased algal accrual, increased in-river invertebrate abundance, and increased invertebrate counts in mountain whitefish (Prosopium williamsonii) guts samples, but were not quantitatively tested. Sampling and analyses across trophic levels are currently ongoing and are expected to better characterize ecological responses to experimental nutrient addition in the Kootenai River.« less

  5. Will river erosion below the Three Gorges Dam stop in the middle Yangtze?

    NASA Astrophysics Data System (ADS)

    Lai, X.; Yin, D.; Finlayson, B. L.; Wei, T.; Li, M.; Yuan, W.; Yang, S.; Dai, Z.; Gao, S.; Chen, Z.

    2017-11-01

    The environmental impact of the Three Gorges Dam has been a subject of vigorous academic, political and social debate since its inception. This includes the key issue of post-dam river channel erosion, which was predicted by the feasibility study to extend to the river mouth. In this paper we examine the geomorphic response of the channel of the middle Yangtze for 660 km downstream of the dam. Using data on channel characteristics, bed material and sediment transport, we show that in the decade following the dam closure, pre-dam seasonal erosion has been replaced by year-round erosion, a pattern most marked at the upstream end of the study area. The sediment carrying capacity of the river channel has been largely reduced below the dam. The locus of bed scour has moved progressively downstream, ceasing as the bed material became too coarse to be transported (e.g. D50: 0.29 mm pre-dam coarsened to 20 mm below the dam by 2008). About 400 km below the dam there is a reduction in channel slope that changes the sediment carrying capacity from 0.25 kg m-3 to only about 0.05 kg m-3, which is insufficient to move bed sediment. The new long-term hydro-morphological equilibrium that will be established in this section of the middle Yangtze will prevent the further incision downstream initiated by the Three Gorges Dam. The results suggest that the full extent of adverse environmental impact predicted by the pre-dam studies will not eventuate.

  6. Downstream changes of water quality in a lowland river due to groundwater inflows.

    NASA Astrophysics Data System (ADS)

    Zieba, Damian; Bar-Michalczyk, Dominika; Kania, Jarosław; Malina, Grzegorz; Michalczyk, Tomasz; Rozanski, Kazimierz; Witczak, Stanislaw; Wachniew, Przemyslaw; Zurek, Anna J.

    2016-04-01

    The Kocinka catchment (ca. 250 km2) in southern Poland receives substantial inflows of groundwater from a major fissured-carbonate aquifer polluted with nitrates originating from agriculture and domestic sewage. The 40 km long Kocinka river reveals large spatial variations in physical and chemical water properties with large downstream changes of nitrate concentrations. Detailed longitudinal surveys of such water characteristics as nitrate concentration, water temperature, pH, electric conductivity, stable isotopic composition, tritium concentration were performed in order to identify and quantify groundwater inflows. The river gains groundwater down to the 25 km from the source and a looses water further downstream. The subsequent increase and decrease of nitrate concentration in the upper and middle reaches of the river are caused by inflows of the, respectively, polluted and non-polluted groundwaters. The range of such changes can be even five-fold while the drop of nitrate concentration along the semi natural, 18 km long, lower reach where the river is well connected to its riparian and hyporheic zones nitrate loss is of the order of 10%. More significant nitrate losses were observed in the dammed reaches and in a small reservoir in the upper part of the river. Results of the study have implications for identification of measures that can be undertaken to reduce nitrate export from the catchment. Because of the role of groundwater in river runoff reduction of nitrate loads to the aquifer should be primary objective. Acknowledgements. The work was carried out as part of the BONUS Soils2Sea project on groundwater system (http:/www.soils2sea.eu) financed by the European Commission 7 FP contract 226536 and the statutory funds of the AGH University of Science and Technology (project No.11.11.140.026 and 11.11.220.01).

  7. Migratory patterns of hatchery and stream-reared Atlantic salmon Salmo salar smolts in the Connecticut River, U.S.A.

    USGS Publications Warehouse

    McCormick, Stephen D.; Haro, Alexander; Lerner, Darren T.; O'Dea, Michael F.; Regish, Amy M.

    2014-01-01

    The timing of downstream migration and detection rates of hatchery-reared Atlantic salmon Salmo salar smolts and stream-reared smolts (stocked 2 years earlier as fry) were examined in the Connecticut River (U.S.A.) using passive integrated transponder (PIT) tags implanted into fish and then detected at a downstream fish bypass collection facility at Turners Falls, MA (river length 192 km). In two successive years, hatchery-reared smolts were released in mid-April and early May at two sites: the West River (river length 241 km) or the Passumpsic (river length 450 km). Hatchery-reared smolts released higher in the catchment arrived 7 to 14 days later and had significantly lower detection rates than smolts stocked lower in the catchment. Hatchery-reared smolts released 3 weeks apart at the same location were detected downstream at similar times, indicating that early-release smolts had a lower average speed after release and longer residence time. The size and gill Na+/K+-ATPase (NKA) activity of smolts at the time of release were significantly greater for detected fish (those that survived and migrated) than for those that were not detected. Stream-reared pre-smolts (>11·5 cm) from four tributaries (length 261–551 km) were tagged in autumn and detected during smolt migration the following spring. Stream-reared smolts higher in the catchment arrived later and had significantly lower detection rates. The results indicate that both hatchery and stream-reared smolts from the upper catchment will arrive at the mouth of the river later and experience higher overall mortality than fish from lower reaches, and that both size and gill NKA activity are related to survival during downstream migration.

  8. 36 year trends in dissolved organic carbon export from Finnish rivers to the Baltic Sea.

    PubMed

    Räike, Antti; Kortelainen, Pirkko; Mattsson, Tuija; Thomas, David N

    2012-10-01

    Increasing dissolved organic carbon (DOC) concentrations in lakes, rivers and streams in northern mid latitudes have been widely reported during the last two decades, but relatively few studies have dealt with trends in DOC export. We studied the export of DOC from Finnish rivers to the Baltic Sea between 1975 and 2010, and estimated trends in DOC fluxes (both flow normalised and non-normalised). The study encompassed the whole Finnish Baltic Sea catchment area (301,000 km(2)) covering major land use patterns in the boreal zone. Finnish rivers exported annually over 900,000 t DOC to the Baltic Sea, and the mean area specific export was 3.5 t km(-2). The highest export (7.3t km(-2)) was measured in peat dominated catchments, whereas catchments rich in lakes had the lowest export (2.2 t km(-2)). Inter-annual variation in DOC export was high and controlled mainly by hydrology. There was no overall trend in the annual water flow, although winter flow increased in northern Finland over 36 years. Despite the numerous studies showing increases in DOC concentrations in streams and rivers in the northern hemisphere, we could not find any evidence of increases in DOC export to the northern Baltic Sea from Finnish catchments since 1975. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Estimating mortality rates of adult fish from entrainment through the propellers of river towboats

    USGS Publications Warehouse

    Gutreuter, S.; Dettmers, J.M.; Wahl, David H.

    2003-01-01

    We developed a method to estimate mortality rates of adult fish caused by entrainment through the propellers of commercial towboats operating in river channels. The method combines trawling while following towboats (to recover a fraction of the kills) and application of a hydrodynamic model of diffusion (to estimate the fraction of the total kills collected in the trawls). The sampling problem is unusual and required quantifying relatively rare events. We first examined key statistical properties of the entrainment mortality rate estimators using Monte Carlo simulation, which demonstrated that a design-based estimator and a new ad hoc estimator are both unbiased and converge to the true value as the sample size becomes large. Next, we estimated the entrainment mortality rates of adult fishes in Pool 26 of the Mississippi River and the Alton Pool of the Illinois River, where we observed kills that we attributed to entrainment. Our estimates of entrainment mortality rates were 2.52 fish/km of towboat travel (80% confidence interval, 1.00-6.09 fish/km) for gizzard shad Dorosoma cepedianum, 0.13 fish/km (0.00-0.41) for skipjack herring Alosa chrysochloris, and 0.53 fish/km (0.00-1.33) for both shovelnose sturgeon Scaphirhynchus platorynchus and smallmouth buffalo Ictiobus bubalus. Our approach applies more broadly to commercial vessels operating in confined channels, including other large rivers and intracoastal waterways.

  10. Modeling Surface Water Dynamics in the Amazon Basin Using Mosart-Inundation-v1.0: Impacts of Geomorphological Parameters and River Flow Representation

    NASA Technical Reports Server (NTRS)

    Luo, Xiangyu; Li, Hong-Yi; Leung, Ruby; Tesfa, Teklu K.; Getirana, Augusto; Papa, Fabrice; Hess, Laura L.

    2017-01-01

    Surface water dynamics play an important role in water, energy and carbon cycles of the Amazon Basin. A macro-scale inundation scheme was integrated with a surface-water transport model and the extended model was applied in this vast basin. We addressed the challenges of improving basin-wide geomorphological parameters and river flow representation for 15 large-scale applications. Vegetation-caused biases embedded in the HydroSHEDS DEM data were alleviated by using a vegetation height map of about 1-km resolution and a land cover dataset of about 90-m resolution. The average elevation deduction from the DEM correction was about 13.2 m for the entire basin. Basin-wide empirical formulae for channel cross-sectional geometry were adjusted based on local information for the major portion of the basin, which could significantly reduce the cross-sectional area for the channels of some subregions. The Manning roughness coefficient of the channel 20 varied with the channel depth to reflect the general rule that the relative importance of riverbed resistance in river flow declined with the increase of river size. The entire basin was discretized into 5395 subbasins (with an average area of 1091.7 km2), which were used as computation units. The model was driven by runoff estimates of 14 years (1994 2007) generated by the ISBA land surface model. The simulated results were evaluated against in situ streamflow records, and remotely sensed Envisat altimetry data and GIEMS inundation data. The hydrographs were reproduced fairly well for the majority of 25 13 major stream gauges. For the 11 subbasins containing or close to 11 of the 13 gauges, the timing of river stage fluctuations was captured; for most of the 11 subbasins, the magnitude of river stage fluctuations was represented well. The inundation estimates were comparable to the GIEMS observations. Sensitivity analyses demonstrated that refining floodplain topography, channel morphology and Manning roughness coefficients, as well as accounting for backwater effects could evidently affect local and upstream inundation, which consequently affected flood waves and inundation of the downstream 30 area. It was also shown that the river stage was sensitive to local channel morphology and Manning roughness coefficients, as well as backwater effects. The understanding obtained in this study could be helpful to improving modeling of surface hydrology in basins with evident inundation, especially at regional or larger scales.

  11. Ganges-Brahmaputra Delta: Balance of Subsidence, Sea level and Sedimentation in a Tectonically-Active Delta (Invited)

    NASA Astrophysics Data System (ADS)

    Steckler, M. S.; Goodbred, S. L.; Akhter, S. H.; Seeber, L.; Reitz, M. D.; Paola, C.; Nooner, S. L.; DeWolf, S.; Ferguson, E. K.; Gale, J.; Hossain, S.; Howe, M.; Kim, W.; McHugh, C. M.; Mondal, D. R.; Petter, A. L.; Pickering, J.; Sincavage, R.; Williams, L. A.; Wilson, C.; Zumberge, M. A.

    2013-12-01

    Bangladesh is vulnerable to a host of short and long-term natural hazards - widespread seasonal flooding, river erosion and channel avulsions, permanent land loss from sea level rise, natural groundwater arsenic, recurrent cyclones, landslides and huge earthquakes. These hazards derive from active fluvial processes related to the growth of the delta and the tectonics at the India-Burma-Tibet plate junctions. The Ganges and Brahmaputra rivers drain 3/4 of the Himalayas and carry ~1 GT/y of sediment, 6-8% of the total world flux. In Bangladesh, these two great rivers combine with the Meghna River to form the Ganges-Brahmaputra-Meghna Delta (GBMD). The seasonality of the rivers' water and sediment discharge is a major influence causing widespread flooding during the summer monsoon. The mass of the water is so great that it causes 5-6 cm of seasonal elastic deformation of the delta discerned by our GPS data. Over the longer-term, the rivers are also dynamic. Two centuries ago, the Brahmaputra River avulsed westward up to 100 km and has since captured other rivers. The primary mouth of the Ganges has shifted 100s of km eastward from the Hooghly River over the last 400y, finally joining the Brahmaputra in the 19th century. These avulsions are influenced by the tectonics of the delta. On the east side of Bangladesh, the >16 km thick GBMD is being overridden by the Burma Arc where the attempted subduction of such a thick sediment pile has created a huge accretionary prism. The foldbelt is up to 250-km wide and its front is buried beneath the delta. The main Himalayan thrust front is <100 km north, but adjacent to the GBMD is the Shillong Massif, a 300-km long, 2-km high block of uplifted Indian basement that is overthrusting and depressing GBMD sediments to the south. The overthrusting Shillong Massif may represent a forward jump of the Himalayan front to a new plate boundary. This area ruptured in a ~M8 1897 earthquake. Subsidence from the tectonics and differential loading also influences the river patterns and avulsion rates of the delta. We are beginning to unravel these interactions through sampling and numerical modeling. One advantage for geologic research in Bangladesh is that the rapid sediment accumulation preserves a detailed structural and stratigraphic archive. We have been tapping into these records using the combination of a local, low-cost drilling method, resistivity imaging and MCS seismics, while GPS, seismology and other geophysical methods are helping to unravel GBMD dynamics. Five transects of >130 wells are illuminating the Holocene shifts of the Brahmaputra River and subsidence patterns. Very high resolution MCS seismics on the rivers shows deformation by subsidence and compaction. Resistivity is further mapping surfaces warped by the anticlinal folds. GPS geodesy is quantifying the rates of overthrusting and differential subsidence across the delta. Optical fiber strain meters installed in well nests are constraining sediment compaction rates. Seismology is imaging the tectonics in and around Bangladesh, while structural geology maps the tectonic deformation exposed on the margins of the delta. Numerical modeling is beginning to integrate all these results. I will present an overview of the GBMD and our growing research into the dynamics of the delta. A comprehensive view of these processes and their interaction is critical for understanding human impact and the future evolution of the delta.

  12. Seasonal Distribution and Movements of Atlantic and Shortnose Sturgeon in the Penobscot River Estuary, Maine

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Fernandes, Stephen J.; Zydlewski, Gayle B.; Wippelhauser, Gail S.; Kinnison, Michael T.

    2016-01-01

    Relatively little is known about the distribution and seasonal movement patterns of shortnose sturgeon Acipenser brevirostrum and Atlantic sturgeon Acipenser oxyrinchus oxyrinchus occupying rivers in the northern part of their range. During 2006 and 2007, 40 shortnose sturgeon (66–113.4 cm fork length [FL]) and 8 Atlantic sturgeon (76.2–166.2 cm FL) were captured in the Penobscot River, Maine, implanted with acoustic transmitters, and monitored using an array of acoustic receivers in the Penobscot River estuary and Penobscot Bay. Shortnose sturgeon were present year round in the estuary and overwintered from fall (mid-October) to spring (mid-April) in the upper estuary. In early spring, all individuals moved downstream to the middle estuary. Over the course of the summer, many individuals moved upstream to approximately 2 km of the downstream-most dam (46 river kilometers [rkm] from the Penobscot River mouth [rkm 0]) by August. Most aggregated into an overwintering site (rkm 36.5) in mid- to late fall. As many as 50% of the tagged shortnose sturgeon moved into and out of the Penobscot River system during 2007, and 83% were subsequently detected by an acoustic array in the Kennebec River, located 150 km from the Penobscot River estuary. Atlantic sturgeon moved into the estuary from the ocean in the summer and concentrated into a 1.5-km reach. All Atlantic sturgeon moved to the ocean by fall, and two of these were detected in the Kennebec River. Although these behaviors are common for Atlantic sturgeon, regular coastal migrations of shortnose sturgeon have not been documented previously in this region. These results have important implications for future dam removals as well as for rangewide and river-specific shortnose sturgeon management.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, S. J.; Bruhn, D. F.; Hodges, J. M.

    During 2012, the Idaho National Laboratory Seismic Monitoring Program evaluated 17,329 independent triggers that included earthquakes from around the world, the western United States, and local region of the Snake River Plain. Seismologists located 1,460 earthquakes and man-made blasts within and near the 161-km (or 100-mile) radius of the Idaho National Laboratory. Of these earthquakes, 16 had small-to-moderate size magnitudes (M) from 3.0 to 3.6. Within the 161-km radius, the majority of 695 earthquakes (M < 3.6) occurred in the active regions of the Basin and Range Provinces adjacent to the eastern Snake River Plain. Only 11 microearthquakes occurred withinmore » the Snake River Plain, four of which occurred in Craters of the Moon National Monument. The earthquakes had magnitudes from 1.0 to 1.7 and occurred at deep depths (11-24 km). Two events with magnitudes less than 1.0 occurred within the Idaho National Laboratory boundaries and had depths less than 10 km.« less

  14. The raft of the Saint-Jean River, Gaspé (Québec, Canada): A dynamic feature trapping most of the wood transported from the catchment

    NASA Astrophysics Data System (ADS)

    Boivin, Maxime; Buffin-Bélanger, Thomas; Piégay, Hervé

    2015-02-01

    The rivers of the Gaspé Peninsula, Québec (Canada), a coastal drainage system of the St. Lawrence River, receive and transport vast quantities of large wood. The rapid rate of channel shifting caused by high-energy flows and noncohesive banks allows wood recruitment that in turn greatly influences river dynamics. The delta of the Saint-Jean River has accumulated wood since 1960, leading to frequent avulsions over that time period. The wood raft there is now more than 3-km in length, which is unusual but natural. This jam configuration allows a unique opportunity to estimate a wood budget at the scale of a long river corridor and to better understand the dynamics of large wood (LW) in rivers. A wood budget includes the evaluation of wood volumes (i) produced by bank erosion (input), (ii) still in transit in the river corridor (deposited on sand bars or channel edges), and (iii) accumulated in the delta (output). The budget is based on an analysis of aerial photos dating back to 1963 as well as surveys carried out in 2010, all of which were used to locate and describe large wood accumulations along a 60-km river section. The main results of this paper show that the raft formation in the delta is dynamic and can be massive, but it is a natural process. Considering the estimated wood volume trapped in the delta from 1963 to 2013 (≈ 25,000 m3), two important points are revealed by the quantification of the wood recruitment volume from 1963 to 2004 (≈ 27,000 m3 ± 400 m3) and of the wood volume stored on the bars in 2010 (≈ 5950 m3). First, the recruitment of large wood from lateral migration for the 40-year period can account for the volume of large wood in the delta and in transit. Second, the excess wood volume produced by lateral migration and avulsion represents a minimum estimation of the large wood trapped on the floodplain owing to wood volume that has decomposed and large wood that exited the river system. Rafts are major trapping structures that provide good potential sites to monitor wood delivery from the catchment through time and allow estimations of LW residence time while in transit. These results contribute to understanding the interannual large wood dynamics in the Saint-Jean River and can assist river managers in determining sustainable solutions for coping with the issue of wood rafts in rivers.

  15. Study on glacier changes from multi-source remote sensing data in the mountainous areas of the upper reaches of Shule River Basin

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Li, H.

    2017-12-01

    The changes of glacier area, ice surface elevation and ice storage in the upper reaches of the Shule River Basin were investigated by the Landsat TM series SRTM and stereo image pairs of Third Resources Satellite (ZY-3)from 2000 to 2015. There are 510 glaciers with areas large than 0.01 km2 in 2015, and the glacier area is 435 km2 in the upper reach of Shule River basin. 96 glaciers were disappeared from 2000 to 2015, and the total glacier area decreased by 57.6±2.68km2 (11.7 %). After correcting the elevation difference between ZY-3 DEM and SRTM and aspect, we found that the average ice surface elevation of glaciers reduced by 2.58±0.6m from 2000 to 2015 , with average reduction 0.172 ±0.04m a-1, and the ice storage reduced by 1.277±0.311km3. Elevation variation of ice surface in different sub-regions reflects the complexity of glacier change. The ice storage change calculated from the sum of single glacier area-volume relationship is glacier 1.46 times higher than that estimated from ice surface elevation change, indicating that the global ice storage change estimated from glacier area-volume change probably overestimated. The shrinkage of glacier increased glacier runoff, and led the significant increase of river runoff. The accuracy of projecting the potential glacier change, glacier runoff and river runoff is the key issues of delicacy water resource management in Shule River Basin.

  16. Risk assessment for arsenic-contaminated groundwater along River Indus in Pakistan.

    PubMed

    Rabbani, Unaib; Mahar, Gohar; Siddique, Azhar; Fatmi, Zafar

    2017-02-01

    The study determined the risk zone and estimated the population at risk of adverse health effects for arsenic exposure along the bank of River Indus in Pakistan. A cross-sectional survey was conducted in 216 randomly selected villages of one of the districts along River Indus. Wells of ten households from each village were selected to measure arsenic levels. The location of wells was identified using global positioning system device, and spatial variations of the groundwater contamination were assessed using geographical information system tools. Using layers of contaminated drinking water wells according to arsenic levels and population with major landmarks, a risk zone and estimated population at risk were determined, which were exposed to arsenic level ≥10 µg/L. Drinking wells with arsenic levels of ≥10 µg/L were concentrated within 18 km near the river bank. Based on these estimates, a total of 13 million people were exposed to ≥10 µg/L arsenic concentration along the course of River Indus traversing through 27 districts in Pakistan. This information would help the researchers in designing health effect studies on arsenic and policy makers in allocating resources for designing focused interventions for arsenic mitigation in Pakistan. The study methods have implication on similar populations which are affected along rivers due to arsenic contamination.

  17. The Impact of the Dachaoshan Dam on Seasonal Hydrological Dynamics in the Main Stream of the Mekong River

    NASA Astrophysics Data System (ADS)

    Kameyama, S.; Shimazaki, H.; Nohara, S.; Fukushima, M.; Kudo, K.; Sato, T.

    2008-12-01

    In the Mekong River watershed, traditional social and industrial systems have long existed in harmony with water and biological resources. Since the 1950s, many dam-construction projects have been started to develop power and water resources to meet increasing demand for energy and food production. Since the 1970s, there have been temporary interruptions to these projects because of civil war or regional volatility of international relations. Many of these projects have been restarted in the last 15 years. This raises international interest, as there are transboundary issues cross-border issues related to both development assistance and environmental conservation. By 2008, two Chinese dams had already been completed (the Manwan dam in 1996 and the Dachaoshan dam in 2003) on the Mekong River in Yunnan province. Dam construction has some positive impacts, such as electricity production, management of water resources, and flood control. However, upstream control of water discharge can have negative impacts on traditional agricultural systems and fisheries downstream from the dams, such as drastic changes in flow volume and sediment load. We used hydrological simulation of the watershed to quantify the impact of the construction of the Dachaoshan dam by comparing annual water discharge and sediment transport before and after the dam was completed. Our main objectives were to use watershed hydrologic modeling to simulate changes to annual hydrological parameters and sediment transport, and to map spatio-temporal changes of these data before and after dam construction. Our study area covered the part of the Mekong River main channel that extends about 100 km downstream from the junction of the borders of Myanmar, Thailand, and the Lao People's Democratic Republic. We used five data validation points at 25-km intervals along this section of the river and calculated model parameters every 1 km. The years we modeled were 1990 (began dam construction) and 2006 (after dam completed). We used the MIKE-SHE and MIKE11-Enterprise (developed by DHI) to calculate seasonal changes of water level, water velocity, and sediment transport. These models provided both water discharge and sediment transport dynamics at each modeled point along the river. The sediment budget was calculated as the difference of sediment load by volume between adjacent modeled points. All parameters used in the model were calibrated with field survey data; the river structure and water flows were measured in November 2007. To validate our simulated results we used historical water-level records from the towns of Chensean and Chencone. To determine the relationship between water discharge and sediment load, we analyzed the turbidity of monthly river water samples collected in the study region between November 2007 and November 2008. Our watershed runoff models simulated water discharge and sediment load at 1-km intervals and 1-h time steps for 1990 and 2006. The model results were compiled in GIS format and maps were produced to provide simple spatial displays of modeled parameters. Our simulations show that after construction of the dam, there was a moderate decrease in peak discharge volume and water velocity during the rainy season from August to September.

  18. SENSITIVITY OF THE REGIONAL WATER BALANCE IN THE COLUMBIA RIVER BASIN TO CLIMATE VARIABILITY: APPLICATION OF A SPATIALLY DISTRIBUTED WATER BALANCE MODEL

    EPA Science Inventory

    A one-dimensional water balance model was developed and used to simulate water balance for the Columbia River Basin. he model was run over a 10 km X 10 km grid for the United State's portion of the basin. he regional water balance was calculated using a monthly time-step for a re...

  19. Water quality and dissolved inorganic fluxes of N, P, SO₄, and K of a small catchment river in the Southwestern Coast of India.

    PubMed

    Padmalal, D; Remya, S I; Jyothi, S Jissy; Baijulal, B; Babu, K N; Baiju, R S

    2012-03-01

    The southwestern coast of India is drained by many small rivers with lengths less than 250 km and catchment areas less than 6,500 km(2). These rivers are perennial and are also the major drinking water sources in the region. But, the fast pace of urbanization, industrialization, fertilizer intensive agricultural activities and rise in pilgrim tourism in the past four to five decades have imposed marked changes in water quality and solute fluxes of many of these rivers. The problems have aggravated further due to leaching of ionic constituents from the organic-rich (peaty) impervious sub-surface layers that are exposed due to channel incision resulting from indiscriminate instream mining for construction-grade sand and gravel. In this context, an attempt has been made here to evaluate the water quality and the net nutrient flux of one of the important rivers in the southwestern coast of India, the Manimala river which has a length of about 90 km and catchment area of 847 km(2). The river exhibits seasonal variation in most of the water quality parameters (pH, electrical conductivity, dissolved oxygen, total dissolved solids, Ca, Mg, Na, K, Fe, HCO(3), NO(2)-N, NO(3)-N, P[Formula: see text], P[Formula: see text], chloride, SO(4), and SiO(2)). Except for NO(3)-N and SiO(2), all the other parameters are generally enriched in non-monsoon (December-May) samples than that of monsoon (June-November). The flux estimation reveals that the Manimala river transports an amount of 2,308 t y(-1) of dissolved inorganic nitrogen, 87 t y(-1) dissolved inorganic phosphorus, and 9246 t y(-1) of SO(4), and 1984 t y(-1) K into the receiving coastal waters. These together constitute about 23% of the total dissolved fluxes transported by the Manimala river. Based on the study, a set of mitigation measures are also suggested to improve the overall water quality of small catchment rivers of the densely populated tropics in general and the south western coast in particular.

  20. Influence of multiple dam passage on survival of juvenile Chinook salmon in the Columbia River estuary and coastal ocean

    PubMed Central

    Rechisky, Erin L.; Welch, David W.; Porter, Aswea D.; Jacobs-Scott, Melinda C.; Winchell, Paul M.

    2013-01-01

    Multiple dam passage during seaward migration is thought to reduce the subsequent survival of Snake River Chinook salmon. This hypothesis developed because juvenile Chinook salmon from the Snake River, the Columbia River’s largest tributary, migrate >700 km through eight hydropower dams and have lower adult return rates than downstream populations that migrate through only 3 or 4 dams. Using a large-scale telemetry array, we tested whether survival of hatchery-reared juvenile Snake River spring Chinook salmon is reduced in the estuary and coastal ocean relative to a downstream, hatchery-reared population from the Yakima River. During the initial 750-km, 1-mo-long migration through the estuary and coastal ocean, we found no evidence of differential survival; therefore, poorer adult returns of Snake River Chinook may develop far from the Columbia River. Thus, hydrosystem mitigation efforts may be ineffective if differential mortality rates develop in the North Pacific Ocean for reasons unrelated to dam passage. PMID:23576733

  1. Hydrological applications of Landsat imagery used in the study of the 1973 Indus River flood, Pakistan

    USGS Publications Warehouse

    Deutsch, Morris; Ruggles, F.H.

    1978-01-01

    During August and September 1973, the Indus River Valley of Pakistan experienced one of the largest floods on record, resulting in damages to homes, businesses, public works, and crops amounting to millions of rupees. Tremendous areas of lowlands were inundated along the Indus River and major tributaries. Landsat data made it possible to easily measure the extent of flooding, totaling about 20,000 km2 within an area of about 400,000 km2 south from the Punjab to the Arabian Sea.The Indus River data were used to continue experimentation in the development of rapid, accurate, and inexpensive optical techniques of flood mapping by satellite begun in 1973 for the Mississipi River floods. The research work on the Indus River not resulted in the development of more effective procedures for optical processing of flood data and synoptically depicting flooding, but also provided potentially valuable ancillary information concerning the hydrology of much of the Indus River Basin.

  2. High Resolution Airborne Shallow Water Mapping

    NASA Astrophysics Data System (ADS)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved throughout the project. During the data processing meshes for multiple purposes like monitoring sediment transport or accumulation and hydro-dynamic numeric modeling were generated. The meshes were professionally conditioned considering the adherence of, both, geometric and physical mesh quality criterions. Whereas the research is focused on the design and implementation of monitoring database structures, the airborne hydrographic data are also made available for classical processing means (cross sections, longitudinal section).

  3. Distribution and establishment of the alien Australian redclaw crayfish, Cherax quadricarinatus, in South Africa and Swaziland

    PubMed Central

    Zengeya, Tsungai A.; Hoffman, Andries C.; Measey, G. John; Weyl, Olaf L.F.

    2017-01-01

    Background The Australian redclaw crayfish (Cherax quadricarinatus, von Martens), is native to Australasia, but has been widely translocated around the world due to aquaculture and aquarium trade. Mostly as a result of escape from aquaculture facilities, this species has established extralimital populations in Australia and alien populations in Europe, Asia, Central America and Africa. In South Africa, C. quadricarinatus was first sampled from the wild in 2002 in the Komati River, following its escape from an aquaculture facility in Swaziland, but data on the current status of its populations are not available. Methods To establish a better understanding of its distribution, rate of spread and population status, we surveyed a total of 46 sites in various river systems in South Africa and Swaziland. Surveys were performed between September 2015 and August 2016 and involved visual observations and the use of collapsible crayfish traps. Results Cherax quadricarinatus is now present in the Komati, Lomati, Mbuluzi, Mlawula and Usutu rivers, and it was also detected in several off-channel irrigation impoundments. Where present, it was generally abundant, with populations having multiple size cohorts and containing ovigerous females. In the Komati River, it has spread more than 112 km downstream of the initial introduction point and 33 km upstream of a tributary, resulting in a mean spread rate of 8 km year−1 downstream and 4.7 km year−1 upstream. In Swaziland, estimated downstream spread rate might reach 14.6 km year−1. Individuals were generally larger and heavier closer to the introduction site, which might be linked to juvenile dispersal. Discussion These findings demonstrate that C. quadricarinatus is established in South Africa and Swaziland and that the species has spread, not only within the river where it was first introduced, but also between rivers. Considering the strong impacts that alien crayfish usually have on invaded ecosystems, assessments of its potential impacts on native freshwater biota and an evaluation of possible control measures are, therefore, urgent requirements. PMID:28439454

  4. Migration and spawning of female surubim (Pseudoplatystoma corruscans, Pimelodidae) in the São Francisco river, Brazil

    USGS Publications Warehouse

    Godinho, Alexandre L.; Kynard, Boyd; Godinho, Hugo P.

    2007-01-01

    Surubim, Pseudoplatystoma corruscans, is the most valuable commercial and recreational fish in the São Francisco River, but little is known about adult migration and spawning. Movements of 24 females (9.5–29.0 kg), which were radio-tagged just downstream of Três Marias Dam (TMD) at river kilometer 2,109 and at Pirapora Rapids (PR) 129 km downstream of TMD, suggest the following conceptual model of adult female migration and spawning. The tagged surubims used only 274 km of the main stem downstream of TMD and two tributaries, the Velhas and Abaeté rivers. Migration style was dualistic with non-migratory (resident) and migratory fish. Pre-spawning females swam at ground speeds of up to 31 km day-1 in late September–December to pre-spawning staging sites located 0–11 km from the spawning ground. In the spawning season (November–March), pre-spawning females migrated back and forth from nearby pre-spawning staging sites to PR for short visits to spawn, mostly during floods. Multiple visits to the spawning site suggest surubim is a multiple spawner. Most post-spawning surubims left the spawning ground to forage elsewhere, but some stayed at the spawning site until the next spawning season. Post-spawning migrants swam up or downstream at ground speeds up to 29 km day-1 during January–March. Construction of proposed dams in the main stem and tributaries downstream of TMD will greatly reduce surubim abundance by blocking migrations and changing the river into reservoirs that eliminate riverine spawning and non-spawning habitats, and possibly, cause extirpation of populations.

  5. Temporal and Spatial Variation of Water Yield Modulus in the Yangtze River Basin in Recent 60 Years

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoqing; Weng, Baisha; Qin, Tianling

    2018-01-01

    The Yangtze River Basin is the largest river basin of Asia and the third largest river basin of the world, the gross water resources amount ranks first in the river basins of the country, and it occupies an important position in the national water resources strategic layout. Under the influence of climate change and human activities, the water cycle has changed. The temporal and spatial distribution of precipitation in the basin is more uneven and the floods are frequent. In order to explore the water yield condition in the Yangtze River Basin, we selected the Water Yield Modulus (WYM) as the evaluation index, then analyzed the temporal and spatial evolution characteristics of the WYM in the Yangtze River Basin by using the climate tendency method and the M-K trend test method. The results showed that the average WYM of the Yangtze River Basin in 1956-2015 are between 103,600 and 1,262,900 m3/km2, with an average value of 562,300 m3/km2, which is greater than the national average value of 295,000 m3/km2. The minimum value appeared in the northwestern part of the Tongtian River district, the maximum value appeared in the northeastern of Dongting Lake district. The rate of change in 1956-2015 is between -0.68/a and 0.79/a, it showed a downward trend in the western part but not significantly, an upward trend in the eastern part reached a significance level of α=0.01. The minimum value appeared in the Tongtian River district, the largest value appeared in the Hangjia Lake district, and the average tendency rate is 0.04/a in the whole basin.

  6. Impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon

    USGS Publications Warehouse

    Dauble, D.D.; Hanrahan, T.P.; Geist, D.R.; Parsley, M.J.

    2003-01-01

    Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the main-stem Columbia River and 163 km of the main-stem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains, which were once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment and more bars and islands and had lower water surface slopes than did less extensively used areas. Because flows in the main stem are now highly regulated, the predevelopment alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes - specifically, sustained peak flows for scouring - is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries, tailrace spawning areas, and hatcheries) be considered.

  7. Salinization Sources Along the Lower Jordan River Under Draught Conditions

    NASA Astrophysics Data System (ADS)

    Holtzman, R.; Shavit, U.; Segal, M.; Vengosh, A.; Farber, E.; Gavrieli, I.

    2003-12-01

    The Lower Jordan River, once a flowing freshwater river, is suffering from an ongoing reduction of discharge and water quality. The river flows between the Sea of Galilee and the Dead Sea, an aerial distance of about 105 Km. The severe reduction is caused by an excessive exploitation of its sources and diversion of sewage and agricultural drainage into the river. The extreme low flows and low water quality threaten the natural existence of the river and its potential use for agriculture. In spite of its importance, little research has been done in the river. The objectives of the study were to measure the discharge and water composition along the river and to evaluate the main sources that control its flow and chemical characteristics. The hypothesis of the study was that interaction with subsurface flows significantly affects the river flow and chemical composition. The research is based on a detailed field study, which included flow rate measurements in the river and its tributaries, water sampling and analysis and mass balance calculations of water and solutes. A portable Acoustic Doppler Velocimeter (ADV) was used to measure velocities and bathymetry at different locations across the river sections. Due to accessibility constraints, a floating traverse construction, which enables the ADV's deployment from one bank of the river, was developed. It was found that flow rate ranges between 500-1,100 L/s in northern (upstream) sections and 300-1,650 L/s in the south. This low discharge represents a significant reduction from historical values and is lower than recent published estimations. This research represents base flows only, as the measurements were done during a period of two consecutive draught years. Calculated mass balance of water flows in the northern sections shows that the subsurface source contributes to the river around 200-670 L/s (30-80% of the river flow). Calculations of solute balance show that the subsurface flows add 20-50% of the mass of solutes (e.g. Sulfate) that flows in the river. The assumption of a hydraulic gradient that points at inflows from subsurface flows is encouraged by high water levels measured in nearby piezometers. Possible natural subsurface sources include shallow groundwater or rising of water from deep formations. The existence of adjacent thermal wells strengthens the reasonability of such water rise. Possible anthropogenic sources include return flows and effluents. The results are consistent and agree with the geochemical and isotopic analyses. It is concluded that the impact of the subsurface component on the Jordan River is significant and must be taken into consideration, for future water management schemes and implementation of the Peace Treaty between Israel and Jordan.

  8. Hugli River Delta, India

    NASA Image and Video Library

    2001-10-22

    The western-most part of the Ganges Delta is seen in this 54.5 by 60 km ASTER sub-scene acquired on January 6, 2005. The Hugli River branches off from the Ganges River 300 km to the north, and flows by the city of Calcutta before emptying into the Bay of Bengal. High sediment load is evident by the light tan colors in the water, particularly downstream from off-shore islands. The deep green colors of some of these islands are mangrove swamps. The image is centered at 21.9 degrees north latitude, 88 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA11158

  9. Microplastics profile along the Rhine River

    PubMed Central

    Mani, Thomas; Hauk, Armin; Walter, Ulrich; Burkhardt-Holm, Patricia

    2015-01-01

    Microplastics result from fragmentation of plastic debris or are released to the environment as pre-production pellets or components of consumer and industrial products. In the oceans, they contribute to the ‘great garbage patches’. They are ingested by many organisms, from protozoa to baleen whales, and pose a threat to the aquatic fauna. Although as much as 80% of marine debris originates from land, little attention was given to the role of rivers as debris pathways to the sea. Worldwide, not a single great river has yet been studied for the surface microplastics load over its length. We report the abundance and composition of microplastics at the surface of the Rhine, one of the largest European rivers. Measurements were made at 11 locations over a stretch of 820 km. Microplastics were found in all samples, with 892,777 particles km −2 on average. In the Rhine-Ruhr metropolitan area, a peak concentration of 3.9 million particles km −2 was measured. Microplastics concentrations were diverse along and across the river, reflecting various sources and sinks such as waste water treatment plants, tributaries and weirs. Measures should be implemented to avoid and reduce the pollution with anthropogenic litter in aquatic ecosystems. PMID:26644346

  10. Microplastics profile along the Rhine River

    NASA Astrophysics Data System (ADS)

    Mani, Thomas; Hauk, Armin; Walter, Ulrich; Burkhardt-Holm, Patricia

    2015-12-01

    Microplastics result from fragmentation of plastic debris or are released to the environment as pre-production pellets or components of consumer and industrial products. In the oceans, they contribute to the ‘great garbage patches’. They are ingested by many organisms, from protozoa to baleen whales, and pose a threat to the aquatic fauna. Although as much as 80% of marine debris originates from land, little attention was given to the role of rivers as debris pathways to the sea. Worldwide, not a single great river has yet been studied for the surface microplastics load over its length. We report the abundance and composition of microplastics at the surface of the Rhine, one of the largest European rivers. Measurements were made at 11 locations over a stretch of 820 km. Microplastics were found in all samples, with 892,777 particles km -2 on average. In the Rhine-Ruhr metropolitan area, a peak concentration of 3.9 million particles km -2 was measured. Microplastics concentrations were diverse along and across the river, reflecting various sources and sinks such as waste water treatment plants, tributaries and weirs. Measures should be implemented to avoid and reduce the pollution with anthropogenic litter in aquatic ecosystems.

  11. More than 100 Years of Background-Level Sedimentary Metals, Nisqually River Delta, South Puget Sound, Washington

    USGS Publications Warehouse

    Takesue, Renee K.; Swarzenski, Peter W.

    2011-01-01

    The Nisqually River Delta is located about 25 km south of the Tacoma Narrows in the southern reach of Puget Sound. Delta evolution is controlled by sedimentation from the Nisqually River and erosion by strong tidal currents that may reach 0.95 m/s in the Nisqually Reach. The Nisqually River flows 116 km from the Cascade Range, including the slopes of Mount Rainier, through glacially carved valleys to Puget Sound. Extensive tidal flats on the delta consist of late-Holocene silty and sandy strata from normal river streamflow and seasonal floods and possibly from distal sediment-rich debris flows associated with volcanic and seismic events. In the early 1900s, dikes and levees were constructed around Nisqually Delta salt marshes, and the reclaimed land was used for agriculture and pasture. In 1974, U.S. Fish and Wildlife Service established the Nisqually National Wildlife Refuge on the reclaimed land to protect migratory birds; its creation has prevented further human alteration of the Delta and estuary. In October 2009, original dikes and levees were removed to restore tidal exchange to almost 3 km2 of man-made freshwater marsh on the Nisqually Delta.

  12. Microplastics profile along the Rhine River.

    PubMed

    Mani, Thomas; Hauk, Armin; Walter, Ulrich; Burkhardt-Holm, Patricia

    2015-12-08

    Microplastics result from fragmentation of plastic debris or are released to the environment as pre-production pellets or components of consumer and industrial products. In the oceans, they contribute to the 'great garbage patches'. They are ingested by many organisms, from protozoa to baleen whales, and pose a threat to the aquatic fauna. Although as much as 80% of marine debris originates from land, little attention was given to the role of rivers as debris pathways to the sea. Worldwide, not a single great river has yet been studied for the surface microplastics load over its length. We report the abundance and composition of microplastics at the surface of the Rhine, one of the largest European rivers. Measurements were made at 11 locations over a stretch of 820 km. Microplastics were found in all samples, with 892,777 particles km (-2) on average. In the Rhine-Ruhr metropolitan area, a peak concentration of 3.9 million particles km (-2) was measured. Microplastics concentrations were diverse along and across the river, reflecting various sources and sinks such as waste water treatment plants, tributaries and weirs. Measures should be implemented to avoid and reduce the pollution with anthropogenic litter in aquatic ecosystems.

  13. Geomorphology, active duplexing, and earthquakes within the Central Himalayan seismic gap

    NASA Astrophysics Data System (ADS)

    Morell, K. D.; Sandiford, M.; Rajendran, C. C.; Rajendran, K.

    2013-12-01

    The ~500 km long 'Central Himalayan seismic gap' of northwest India, is the largest section of the Himalaya that has not experienced a very large earthquake (Mw > 7.0) in the past 200-500 years. The slip deficit associated with this seismic quiescence has led many to suggest that the region is overdue for a great earthquake (Mw >8), an event which could be potentially devastating given the region's high population (>10 million). Despite the recognition that the region is under considerable seismic risk, the geometry of active fault structures that could potentially fail during large earthquakes remains poorly defined. This has arisen, to a certain extent, because moderate earthquakes, such as the Mw 6.3 1999 event near the city of Chamoli and the Mw 7.0 1991 earthquake near Uttarkashi (responsible for ~1000 deaths), have not produced obvious surface ruptures and do not appear to coincide with surficially mapped faults. We present new geomorphic and river longitudinal profile data that define a prominent ~400 km long distinctive geomorphic transition at the base of the high Himalaya in the seismic gap, defined as a sharp dividing line north of which there are significant increases in normalized river steepness (ksn), hillslope angles, and local relief. We interpret the morphologic changes across the geomorphic boundary to be produced due to a northward increase in rock uplift rate, given that the boundary cross-cuts mapped structures and lithologic contacts, yet coincides exactly with: 1) the axial trace of the geophysically-imaged ramp-flat transition in the Main Himalayan Thrust, 2) significant northward increases in instrumentally-recorded seismicity, and 3) an order of magnitude change in published Ar-Ar bedrock cooling ages. The available datasets suggest that such an increase in rock uplift rate is best explained by a ~400 km long by ~50 km wide active duplex along the Main Himalayan Thrust ramp, with the leading edge of the duplex giving rise to the geomorphic boundary. The observation that the geomorphic boundary of the seismic gap lies ~350 km to the west of the analogous PT2 of Central Nepal (yet there is no such well-defined physiographic transition in the region between them) suggests that the changing along-strike character of the middle/high Himalaya transition could reflect changes, on the order of 102 km, in the geometry and/or kinematics of the plate boundary thrust along-strike. These along-strike variations could segment the plate boundary and effectively restrict the locality and rupture length of large earthquakes. This hypothesis is supported by historical records of seismicity which indicate that the Mw ~7.5 earthquake of 1803 occurred roughly within the section of the seismic gap containing the geomorphic boundary, and the Mw ~7.7 earthquake of 1833 ruptured the ~350 km long section of the plate boundary occupied by the Nepalese PT2.

  14. Mercury methylation at mercury mines in the Humboldt River Basin, Nevada, USA

    USGS Publications Warehouse

    Gray, J.E.; Crock, J.G.; Lasorsa, B.K.

    2002-01-01

    Total Hg and methylmercury concentrations were measured in mine-waste calcines (retorted ore), sediment, and water samples collected in and around abandoned mercury mines in western Nevada to evaluate Hg methylation at the mines and in the Humboldt River Basin. Mine-waste calcines contain total Hg concentrations as high as 14 000 ??g g-1. Stream-sediment samples collected within 1 km of the mercury mines contain total Hg concentrations as high as 170 ??g g-1, whereas stream sediments collected at a distance >5 km from the mines, and those collected from the Humboldt River and regional baseline sites, contain total Hg concentrations 8 km from the nearest mercury mines. Our data indicate little transference of Hg and methylmercury from the sediment to the water column due to the lack of mine runoff in this desert climate.

  15. Establishing spatial trends in water chemistry and stable isotopes (δ15N and δ13C) in the Elwha River prior to dam removal and salmon recolonization

    USGS Publications Warehouse

    Duda, J.J.; Coe, H.J.; Morley, S.A.; Kloehn, K.K.

    2011-01-01

    Two high-head dams on the Elwha River in Washington State (USA) have changed the migratory patterns of resident and anadromous fish, limiting Pacific salmon to the lower 7.9 km of a river that historically supported large Pacific salmon runs. To document the effects of the dams prior to their removal, we measured carbon and nitrogen stable isotope ratios of primary producers, benthic macroinvertebrates, and fish, and water chemistry above, between and below the dams. We found that δ15N was significantly higher in fish, stoneflies, black flies, periphyton and macroalgae where salmon still have access. Fish and chloroperlid stoneflies were enriched in δ13C, but the values were more variable than in δ15N. For some taxa, there were also differences between the two river sections that lack salmon, suggesting that factors other than marine-derived nutrients are structuring longitudinal isotopic profiles. Consistent with trophic theory, macroalgae had the lowest δ15N, followed by periphyton, macroinvertebrates and fish, with a range of 6.9, 6.2 and 7.7‰ below, between, and above the dams, respectively. Water chemistry analyses confirmed earlier reports that the river is oligotrophic. Phosphorous levels in the Elwha were lower than those found in other regional rivers, with significant differences among regulated, unregulated and reference sections. The removal of these dams, among the largest of such projects ever attempted, is expected to facilitate the return of salmon and their marine-derived nutrients (MDN) throughout the watershed, possibly altering the food web structure, nutrient levels and stable isotope values that we documented.

  16. How big of an effect do small dams have? Using geomorphological footprints to quantify spatial impact of low-head dams and identify patterns of across-dam variation

    USGS Publications Warehouse

    Fencl, Jane S.; Mather, Martha E.; Costigan, Katie H.; Daniels, Melinda D.

    2015-01-01

    Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (<7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic approach that has been applied to larger dams.

  17. Characteristics and Trends of River Discharge into Hudson, James, and Ungava Bays, 1964-2000.

    NASA Astrophysics Data System (ADS)

    Déry, Stephen J.; Stieglitz, Marc; McKenna, Edward C.; Wood, Eric F.

    2005-07-01

    The characteristics and trends of observed river discharge into the Hudson, James, and Ungava Bays (HJUBs) for the period 1964-2000 are investigated. Forty-two rivers with outlets into these bays contribute on average 714 km3 yr-1 [= 0.023 Sv (1 Sv 106 m3s-1)] of freshwater to high-latitude oceans. For the system as a whole, discharge attains an annual peak of 4.2 km3 day-1 on average in mid-June, whereas the minimum of 0.68 km3 day-1 occurs on average during the last week of March. The Nelson River contributes as much as 34% of the daily discharge for the entire system during winter but diminishes in relative importance during spring and summer. Runoff rates per contributing area are highest (lowest) on the eastern (western) shores of the Hudson and James Bays. Linear trend analyses reveal decreasing discharge over the 37-yr period in 36 out of the 42 rivers. By 2000, the total annual freshwater discharge into HJUBs diminished by 96 km3 (-13%) from its value in 1964, equivalent to a reduction of 0.003 Sv. The annual peak discharge rate associated with snowmelt has advanced by 8 days between 1964 and 2000 and has diminished by 0.036 km3 day-1 in intensity. There is a direct correlation between the timing of peak spring discharge rates and the latitude of a river's mouth; the spring freshet varies by 5 days for each degree of latitude. Continental snowmelt induces a seasonal pulse of freshwater from HJUBs that is tracked along its path into the Labrador Current. It is suggested that the annual upper-ocean salinity minimum observed on the inner Newfoundland Shelf can be explained by freshwater pulses composed of meltwater from three successive winter seasons in the river basins draining into HJUBs. A gradual salinization of the upper ocean during summer over the period 1966-94 on the inner Newfoundland Shelf is in accord with a decadal trend of a diminishing intensity in the continental meltwater pulses.

  18. How Big of an Effect Do Small Dams Have? Using Geomorphological Footprints to Quantify Spatial Impact of Low-Head Dams and Identify Patterns of Across-Dam Variation

    PubMed Central

    Costigan, Katie H.; Daniels, Melinda D.

    2015-01-01

    Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (<7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic approach that has been applied to larger dams. PMID:26540105

  19. Sediment and nutrient trapping as a result of a temporary Mississippi River floodplain restoration: The Morganza Spillway during the 2011 Mississippi River Flood

    USGS Publications Warehouse

    Kroes, Daniel; Schenk, Edward R.; Noe, Gregory; Benthem, Adam J.

    2015-01-01

    The 2011 Mississippi River Flood resulted in the opening of the Morganza Spillway for the second time since its construction in 1954 releasing 7.6 km3 of water through agricultural and forested lands in the Morganza Floodway and into the Atchafalaya River Basin. This volume, released over 54 days, represented 5.5% of the Mississippi River (M.R.) discharge and 14% of the total discharge through the Atchafalaya River Basin (A.R.B.) during the Spillway operation and 1.1% of the M.R. and 3.3% of the A.R.B. 2011 water year discharge. During the release, 1.03 teragrams (Tg) of sediment was deposited on the Morganza Forebay and Floodway and 0.26 Tg was eroded from behind the Spillway structure. The majority of deposition (86 %) occurred in the Forebay (upstream of the structure) and within 4 km downstream of the Spillway structure with minor deposition on the rest of the Floodway. There was a net deposition of 26 × 10−4 Tg of N and 5.36 × 10−4 Tg of P, during the diversion, that was equivalent to 0.17% N and 0.33% P of the 2011 annual M.R. load. Median deposited sediment particle size at the start of the Forebay was 13 μm and decreased to 2 μm 15 km downstream of the Spillway structure. Minimal accretion was found greater than 4 km downstream of the structure suggesting the potential for greater sediment and nutrient trapping in the Floodway. However, because of the large areas involved, substantial sediment mass was deposited even at distances greater than 30 km. Sediment and nutrient deposition on the Morganza Floodway was limited because suspended sediment was quickly deposited along the flowpath and not refreshed by incremental water exchanges between the Atchafalaya River (A.R.) and the Floodway. Sediment and nutrient trapping could have been greater and more evenly distributed if additional locations of hydraulic input from and outputs to the A.R. (connectivity) were added.

  20. Preliminary assessment of channel stability and bed-material transport in the Tillamook Bay tributaries and Nehalem River basin, northwestern Oregon

    USGS Publications Warehouse

    Jones, Krista L.; Keith, Mackenzie K.; O'Connor, Jim E.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary study of bed-material transport, vertical and lateral channel changes, and existing datasets for the Tillamook (drainage area 156 square kilometers [km2]), Trask (451 km2), Wilson (500 km2), Kilchis (169 km2), Miami (94 km2), and Nehalem (2,207 km2) Rivers along the northwestern Oregon coast. This study, conducted in coopera-tion with the U.S. Army Corps of Engineers and Oregon Department of State Lands to inform permitting decisions regarding instream gravel mining, revealed that: * Study areas along the six rivers can be divided into reaches based on tidal influence and topography. The fluvial (nontidal or dominated by riverine processes) reaches vary in length (2.4-9.3 kilometer [km]), gradient (0.0011-0.0075 meter of elevation change per meter of channel length [m/m]), and bed-material composition (a mixture of alluvium and intermittent bedrock outcrops to predominately alluvium). In fluvial reaches, unit bar area (square meter of bar area per meter of channel length [m2/m]) as mapped from 2009 photographs ranged from 7.1 m2/m on the Tillamook River to 27.9 m2/m on the Miami River. * In tidal reaches, all six rivers flow over alluvial deposits, but have varying gradients (0.0001-0.0013 m/m) and lengths affected by tide (1.3-24.6 km). The Miami River has the steepest and shortest tidal reach and the Nehalem River has the flattest and longest tidal reach. Bars in the tidal reaches are generally composed of sand and mud. Unit bar area was greatest in the Tidal Nehalem Reach, where extensive mud flats flank the lower channel. * Background factors such as valley and channel confinement, basin geology, channel slope, and tidal extent control the spatial variation in the accumulation and texture of bed material. Presently, the Upper Fluvial Wilson and Miami Reaches and Fluvial Nehalem Reach have the greatest abundance of gravel bars, likely owing to local bed-material sources in combination with decreasing channel gradient and valley confinement. * Natural and human-caused disturbances such as mass movements, logging, fire, channel modifications for navigation and flood control, and gravel mining also have varying effects on channel condition, bed-material transport, and distribution and area of bars throughout the study areas and over time. * Existing datasets include at least 16 and 18 sets of aerial and orthophotographs that were taken of the study areas in the Tillamook Bay tributary basins and Nehalem River basin, respectively, from 1939 to 2011. These photographs are available for future assessments of long-term changes in channel condition, bar area, and vegetation establishment patterns. High resolution Light Detection And Ranging (LiDAR) surveys acquired in 2007-2009 could support future quantitative analyses of channel morphology and bed-material transport in all study areas. * A review of deposited and mined gravel volumes reported for instream gravel mining sites shows that bed-material deposition tends to rebuild mined bar surfaces in most years. Mean annual deposition volumes on individual bars exceeded 3,000 cubic meters (m3) on Donaldson Bar on the Wilson River, Dill Bar on the Kilchis River, and Plant and Winslow Bars on the Nehalem River. Cumulative reported volumes of bed-material deposition were greatest at Donaldson and Dill Bars, totaling over 25,000 m3 per site from 2004 to 2011. Within this period, reported cumulative mined volumes were greatest for the Donaldson, Plant, and Winslow Bars, ranging from 24,470 to 33,940 m3. * Analysis of historical stage-streamflow data collected by the U.S. Geological Survey on the Wilson River near Tillamook (14301500) and Nehalem River near Foss (14301000) shows that these rivers have episodically aggraded and incised, mostly following high flow events, but they do not exhibit systematic, long-term trends in bed elevation. * Multiple cross sections show that channels near bridge crossings in all six study areas are dynamic with many subject to incision and aggradation as well as lateral shifts in thalweg position and bank deposition and erosion. * In fluvial reaches, unit bar area declined a net 5.3-83.6 percent from 1939 to 2009. The documented reduction in bar area may be attributable to several factors, including vegetation establishment and stabilization of formerly active bar surfaces, lateral channel changes and resulting alterations in sediment deposition and erosion patterns, and streamflow and/or tide differences between photographs. Other factors that may be associated with the observed reduction in bar area but not assessed in this reconnaissance level study include changes in the sediment and hydrology regimes of these rivers over the analysis period. * In tidal reaches, unit bar area increased on the Tillamook and Nehalem Rivers (98.0 and 14.7 percent, respectively), but declined a net 24.2 to 83.1 percent in the other four tidal reaches. Net increases in bar area in the Tidal Tillamook and Nehalem Reaches were possibly attributable to tidal differences between the photographs as well as sediment deposition behind log booms and pile structures on the Tillamook River between 1939 and 1967. * The armoring ratio (ratio of the median grain sizes of a bar's surface and subsurface layers) was 1.6 at Lower Waldron Bar on the Miami River, tentatively indicating a relative balance between transport capacity and sediment supply at this location. Armoring ratios, however, ranged from 2.4 to 5.5 at sites on the Trask, Wilson, Kilchis, and Nehalem Rivers; these coarse armor layers probably reflect limited bed-material supply at these sites. * On the basis of mapping results, measured armoring ratios, and channel cross section surveys, preliminary conclusions are that the fluvial reaches on the Tillamook, Trask, Kilchis, and Nehalem Rivers are currently sediment supply-limited in terms of bed material - that is, the transport capacity of the channel generally exceeds the supply of bed material. The relation between transport capacity and sediment is more ambiguous for the fluvial reaches on the Wilson and Miami Rivers, but transport-limited conditions are likely for at least parts of these reaches. Some of these reaches have possibly evolved from sediment supply-limited to transport-limited over the last several decades in response to changing basin and climate conditions. * Because of exceedingly low gradients, all the tidal reaches are transport-limited. Bed material in these reaches, however, is primarily sand and finer grain-size material and probably transported as suspended load from upstream reaches. These reaches will be most susceptible to watershed conditions affecting the supply and transport of fine sediment. * Compared to basins on the southwestern Oregon coast, such as the Chetco and Rogue River basins, these six basins likely transport overall less gravel bed material. Although tentative in the absence of actual transport measurements, this conclusion is supported by the much lower area and frequency of bars and longer tidal reaches along all the northcoast rivers examined in this study. * Previous studies suggest that the expansive and largely unvegetated bars visible in the 1939 photographs are primarily associated with voluminous sedimentation starting soon after the first Tillamook Burn fire in 1933. However, USGS studies of temporal bar trends in other Oregon coastal rivers unaffected by the Tillamook Burn show similar declines in bar area over approximately the same analysis period. In the Umpqua and Chetco River basins, historical declines in bar area are associated with long-term decreases in flood magnitude. Other factors may include changes in the type and volume of large wood and riparian vegetation. Further characterization of hydrology patterns in these basins and possible linkages with climate factors related to flood peaks, such as the Pacific Decadal Oscillation, could support inferences of expected future changes in vegetation establishment and channel planform and profile. * More detailed investigations of bed-material transport rates and channel morphology would support assessments of lateral and vertical channel condition and longitudinal trends in bed material. Such assessments would be most practical for the fluvial study areas on the Wilson, Kilchis, Miami, and Nehalem Rivers and relevant to several ongoing management and ecological issues pertaining to sand and gravel transport. Tidal reaches may also be logical subjects for indepth analysis where studies would be more relevant to the deposition and transport of fine sediment (and associated channel and riparian conditions and processes) rather than coarse bed material.

  1. Emplacement history and inflation evidence of a long basaltic lava flow located in Southern Payenia Volcanic Province, Argentina

    NASA Astrophysics Data System (ADS)

    Bernardi, Mauro I.; Bertotto, Gustavo W.; Jalowitzki, Tiago L. R.; Orihashi, Yuji; Ponce, Alexis D.

    2015-02-01

    The El Corcovo lava flow, from the Huanul shield volcano in the southern Mendoza province (central-western Argentina) traveled a distance of 70 km and covered a minimum area of ~ 415 km2. The flow emplacement was controlled both by extrinsic (e.g., topography) and intrinsic (e.g., lava supply rate, lava physicochemical characteristics) factors. The distal portion of the lava flow reached the Colorado River Valley, in La Pampa Province, where it spread and then was confined by earlier river channels. Cross-sections through the flow surveyed at several localities show two vesicular layers surrounding a dense central section, where vesicles are absent or clustered in sheet-shaped and cylindrical-shaped structures. Lavas of the El Corcovo flow are alkaline basalts with low values of viscosity. The morphological and structural characteristics of the flow and the presence of landforms associated with lava accumulation are the evidence of inflation. This process involved the formation of a tabular sheet flow up to 4 m of thick with a large areal extent in the proximal sectors, while at terminal sectors frontal lobes reached inflation values up to 10 m. The numerous swelling structures present at these portions of the flow suggest the movement of lava in lava tubes. We propose that this aspect and the low viscosity of the lava allowed the flow travel to a great distance on a gentle slope relief.

  2. PROPOSED STANDARDIZED ASSESSMENT METHODS (SAMS) FOR ELECTROFISHING LARGE RIVERS

    EPA Science Inventory

    The effects of electrofishing design and sampling distance were studied at 49 sites across four boatable rivers ranging in drainage area from 13,947 to 23,041 km2 in the Ohio River basin. Two general types of sites were sampled: Run-of-the-River (Free-flowing sites or with smal...

  3. Analysis of persistence in fluctuation of the Cauca river through the Hurst coefficient

    NASA Astrophysics Data System (ADS)

    Prada, D. A.; Sanabria, M. P.; Torres, A. F.; Acevedo, A.; Gómez, J.

    2018-04-01

    Study the continuous changes in the fluctuations in the levels of watersheds, it is of great importance because it allows you to adjust predictions about behaviors that can lead to floods or droughts. The Cauca River is one of the most important rivers in Colombia due to its 1350km long, its drainage area of 59.074km 2 which represents 5% of the national territory. The Government entity Cormagdalena records daily levels of the Cauca River to the height of La Mojana in the rods. From these data, we developed a series of time on which normal test were applied to calculate the coefficient of Hurst and the fractal dimension to determine the persistence associated with this behavior.

  4. Navigable rivers facilitated the spread and recurrence of plague in pre-industrial Europe

    NASA Astrophysics Data System (ADS)

    Pak Hong, Y. R.

    2016-12-01

    nfectious diseases have become a rising challenge to mankind in a globalizing world. Yet, little is known about the inland transmission of infectious diseases in history. In this study, we based on the spatio-temporal information of 5559 plague (Yersinia pestis) outbreaks in Europe and its neighboring regions in AD1347-1760 to statistically examine the connection between navigable rivers and plague outbreak. Our results showed that 95.5% of plague happened within 10km proximity of navigable rivers. Besides, the count of plague outbreak was positively correlated with the width of river and negatively correlated with the distance between city and river. This association remained robust in different regression model specifications. An increase of 100m in the width of river and a shortening of 1km distance between city and river resulted in 9 and 0.96 more plague outbreaks in our study period, respectively. We suggested that trade and transportation brought by river was an important medium for the spread and recurrence of plague in pre-industrial Europe.

  5. Seismic-reflection profiles of the New Madrid seismic zone-data along the Mississippi River near Caruthersville, Missouri

    USGS Publications Warehouse

    Crone, A.J.; Harding, S.T.; Russ, D.P.; Shedlock, K.M.

    1986-01-01

    Three major seismic-reflection programs have been conducted by the USGS in the New Madrid seismic zone. The first program consisted of 32 km of conventional Vibroseis profiling designed to investigate the subsurface structure associated with scarps and lineaments in northwestern Tennessee (Zoback, 1979). A second, more extensive Vibroseis program collected about 250 km of data from all parts of the New Madrid seismic zone in Missouri, Arkansas, and Tennessee (Hamilton and Zoback, 1979, 1982; Zoback and others, 1980). The profiles presented here are part of the third program that collected about 240 km of high-resolution seismic-reflection data from a boat along the Mississippi River between Osceola, Ark., and Wickliffe, Ky. (fig. 1). The data for profiles A, B, C, and D were collected between river miles 839-1/2 and 850-1/2 from near the Interstate-155 bridge to upstream of Caruthersville, Mo. (fig. 2). Profiles on this part of the river are important for three reasons: (1) they connect many of the land-based profiles on either side of the river, (2) they are near the northeast termination of a linear, 120km-long, northeast-southwest zone of seismicity that extends from northeast Arkansas to Caruthersville, Mo. (Stauder, 1982; fig. 1), and (3) they cross the southwesterly projection of the Cottonwood Grove fault (fig. 1), a fault having a substantial amount of vertical Cenozoic offset (Zoback and others, 1980).

  6. Fine-grained sediment storage conditioned by Large Woody Debris in a gravel-bed river

    NASA Astrophysics Data System (ADS)

    Skalak, K. J.; Narinesingh, P.; Pizzuto, J. E.

    2006-05-01

    The purposes of this study are 1) to determine the quantity of mud and sand stored in the channel margins and near-bank regions of South River, a steep gravel-bedded stream in western Virginia, and 2) to understand the geomorphic and hydrologic processes that control the erosion and deposition of these fine-grained deposits. The volume of storage in these deposits is equivalent to about 5-10 percent of the river's annual suspended sediment load. Sediment storage in the near-bank regions is a result of reduced velocity caused by the bank obstructions. Storage occurs in four different geomorphic settings: 1) long pooled sections caused by bedrock or old mill dams, 2) regions downstream of riffles in channel margins with LWD accumulations, 3) bank obstructions usually caused by trees, 4) side channel backwaters where flow separates around islands. Most storage occurs in regions downstream of riffles (approximately 44 percent of the total). Long pooled sections account for roughly 37 percent of the total storage, bank obstructions account for 13 percent, and backwaters account for roughly 6 percent. In approximately 17 km of river, there are 38 separate fine-grained deposits (total volume more than 1600 m3). On average, these deposits are about 35 cm deep, 20 m long, and 4 m wide. They average 30 percent mud, 68 percent sand, and 2 percent gravel. These deposits have been cored and analyzed for Hg, grain size, loss-on-ignition, and bomb radiocarbon. High Hg concentrations in fish tissue are an ongoing problem along South River, further motivating detailed study of these deposits.

  7. Major and Trace Element Fluxes to the Ganges River: Significance of Small Flood Plain Tributary as Non-Point Pollution Source

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Sen, I. S.; Mishra, G.

    2017-12-01

    There has been much discussion amongst biologists, ecologists, chemists, geologists, environmental firms, and science policy makers about the impact of human activities on river health. As a result, multiple river restoration projects are on going on many large river basins around the world. In the Indian subcontinent, the Ganges River is the focal point of all restoration actions as it provides food and water security to half a billion people. Serious concerns have been raised about the quality of Ganga water as toxic chemicals and many more enters the river system through point-sources such as direct wastewater discharge to rivers, or non-point-sources. Point source pollution can be easily identified and remedial actions can be taken; however, non-point pollution sources are harder to quantify and mitigate. A large non-point pollution source in the Indo-Gangetic floodplain is the network of small floodplain rivers. However, these rivers are rarely studied since they are small in catchment area ( 1000-10,000 km2) and discharge (<100 m3/s). As a result, the impact of these small floodplain rivers on the dissolved chemical load of large river systems is not constrained. To fill this knowledge gap we have monitored the Pandu River for one year between February 2015 and April 2016. Pandu river is 242 km long and is a right bank tributary of Ganges with a total catchment area of 1495 km2. Water samples were collected every month for dissolved major and trace elements. Here we show that the concentration of heavy metals in river Pandu is in higher range as compared to the world river average, and all the dissolved elements shows a large spatial-temporal variation. We show that the Pandu river exports 192170, 168517, 57802, 32769, 29663, 1043, 279, 241, 225, 162, 97, 28, 25, 22, 20, 8, 4 Kg/yr of Ca, Na, Mg, K, Si, Sr, Zn, B, Ba, Mn, Al, Li, Rb, Mo, U, Cu, and Sb, respectively, to the Ganga river, and the exported chemical flux effects the water chemistry of the Ganga river downstream of its confluence point. We further speculate that small floodplain rivers is an important source that contributes to the dissolved chemical budget of large river systems, and they must be better monitored to address future challenges in river basin management.

  8. Modern Sedimentation off the Kaoping River, SW Taiwan: A Comparison with Eel River's S2S System

    NASA Astrophysics Data System (ADS)

    Huh, C.; Lin, H.; Lin, S.

    2006-12-01

    The Kaoping (KP) River in SW Taiwan has a watershed area of 3257 km2 and an annual sediment discharge of 49 MT. Although the sediment yield of the KP River basin (1.5×104 ton km-2 yr^{- 1}) is the 4th highest among Taiwan's catchment basins, it is nearly one order of magnitude higher than that of the Eel River's basin (~1.8×103 ton km-2 yr-1; the highest in the U.S.). The KP canyon extends almost immediately seaward from the river's mouth and terminates in the northwestern corner of the South China Sea. The head of the canyon is characterized by high and steep walls exceeding 600 m. The KP river's source-to-sink system offers a dramatic case of mountainous rivers at active margins for S2S study. Here we report some results about modern sedimentation in KP river's dispersal system. Seventy-six sediment cores collected from an area of ~3000 km2 were analyzed for fallout nuclides 7Be, 137Cs and 210Pb by gamma spectrometry. From profiles of excess 210Pb and 137Cs sediment accumulation rates in the coring sites were estimated, which vary from 0.06 to 1.6 cm/yr, with the highest rates (>1 cm/yr) distributed in the upper slope (<600 m) on both sides of the KP canyon. The area with high sedimentation rates on Pb-210 time scale coincides with the area covered by a flood layer resulting from Typhoon Haitang during July 18-20, 2005. This suggests that the open margin on the upper slope is a depocenter for sediment dispersed via a surface component of the river's plume on various timescales (from events to centennial). With a total of 76 sampling points laid out, a framework consisting of 105 triangular grids is configured to calculate the budget of sediment in the study area. The calculated budget, at 7.2 MT/yr, accounts for only ~15% of KP river's sediment discharge. We speculate that most of the remainder is exported out of the study area via the KP canyon to the deep sea by gravity-driven turbidity or hyperpycnal flows.

  9. Evaluating Riparian and Agricultural Systems as Sinks for Surface Water Nutrients in the Upper Rio Grande

    NASA Astrophysics Data System (ADS)

    Oelsner, G. P.; Brooks, P. D.; Hogan, J. F.; Phillips, F. M.; Villinski, J. E.

    2005-12-01

    We have performed five years of biannual synoptic sampling along a 1200km reach of the Rio Grande to develop relationships between discharge, land use, and major water quality parameters. Both total dissolved nitrogen (TDN) and dissolved organic carbon (DOC) concentrations gradually increase with distance downstream, however for TDN and phosphate this trend is punctuated by large, localized inputs primarily from urban wastewater. Somewhat surprisingly, surface water draining from areas of intensive, irrigated agriculture during the growing season often had lower nutrient and DOC concentrations than the river. To better quantify the effects of urban and agricultural systems on water quality we conducted three years of higher spatial resolution sampling of a 250km reach (between Cochiti Dam and Elephant Butte Reservoir) that contains both major agricultural and urban water users. During the higher flow years of 2001 and 2005 TDN concentrations in the river were higher (x = 1.19mg/L, SD = 0.21) than in the drier years 2002-2004 (x = 0.52mg/L, SD = 0.42). TDN concentrations decreased from 1.97mg/L to 0.78 mg/L in a 5km reach below the Albuquerque wastewater treatment plant during the low discharge year of 2004, but there was little to no decrease in TDN concentrations over the 180km below the wastewater treatment plant in years with higher river discharge. In contrast, water diverted to agricultural fields and returned to the river in drains experienced a 60% reduction in TDN concentrations in dry years and a 30% reduction in wet years compared to initial river water. During the dry years, water in the conveyance channel appears to be a mixture of river and drain water whereas in wetter years the conveyance channel has a lower average TDN concentration than either the river or the drains. These data suggest that the river-riparian-hyporheic system of the Rio Grande can serve at best as a weak N sink, while the combination of agricultural fields and drains serve as a strong nutrient sink. Ongoing research is quantifying the locations and potential rates of N transformation in both the river and agricultural drain systems.

  10. Wood duck brood movements and habitat use on prairie rivers in South Dakota

    USGS Publications Warehouse

    Granfors, D.A.; Flake, Lester D.

    1999-01-01

    Wood duck (Aix sponsa) populations have been increasing in the Central Flyway, but little is known about wood duck brood rearing in prairie ecosystems. We compared movements and habitat use of radiomarked female wood ducks with broods in South Dakota on 2 rivers with contrasting prairie landscapes. The perennial Big Sioux River had a broad floodplain and riparian forest, whereas the intermittent Maple River had emergent vegetation along the river channel. Movements between nest sites and brood-rearing areas were longer on the Maple River than on the Big Sioux River (P = 0.02) and were among the longest reported for wood duck broods. Movements on the Big Sioux River were longer in 1992 (P = 0.01), when the floodplain was dry, than in 1993 or 1994. Before flooding occurred on the Big Sioux River, broods used semipermanent wetlands and tributaries outside the floodplain; thereafter, females selected forested wetlands along the river. Broods on the Maple River used emergent vegetation along the river channel throughout the study. Because median length of travel to brood-rearing areas was 2-3 km we recommend maintenance of brood-rearing habitat every 3-5 km along prairie rivers. Wildlife managers should encourage landowners to retain riparian vegetation along perennial rivers and emergent vegetation along intermittent streams to provide brood-rearing habitat during wet and dry cycles.

  11. Preliminary assessment of aggradation potential in the North Fork Stillaguamish River downstream of the State Route 530 landslide near Oso, Washington

    USGS Publications Warehouse

    Magirl, Christopher S.; Keith, Mackenzie K.; Anderson, Scott W.; O'Connor, Jim; Robert Aldrich,; Mastin, Mark C.

    2015-12-28

    On March 22, 2014, the State Route 530 Landslide near Oso, Washington, traveled almost 2 kilometers (km), destroyed more than 40 structures, and impounded the North Fork Stillaguamish River to a depth of 8 meters (m) and volume of 3.3×106 cubic meters (m3). The landslide killed 43 people. After overtopping and establishing a new channel through the landslide, the river incised into the landslide deposit over the course of 10 weeks draining the impoundment lake and mobilizing an estimated 280,000±56,000 m3 of predominantly sand-sized and finer sediment. During the first 4 weeks after the landslide, this eroded sediment caused downstream riverbed aggradation of 1–2 m within 1 km of the landslide and 0.4 m aggradation at Whitman Road Bridge, 3.5 km downstream. Winter high flows in 2014–15 were anticipated to mobilize an additional 220,000±44,000 m3 of sediment, potentially causing additional aggradation and exacerbating flood risk downstream of the landslide. Analysis of unit stream power and bed-material transport capacity along 35 km of the river corridor indicated that most fine-grained sediment will transport out of the North Fork Stillaguamish River, although some localized additional aggradation was possible. This new aggradation was not likely to exceed 0.1 m except in reaches within a few kilometers downstream of the landslide, where additional aggradation of up to 0.5 m is possible. Alternative river response scenarios, including continued mass wasting from the landslide scarp, major channel migration or avulsion, or the formation of large downstream wood jams, although unlikely, could result in reaches of significant local aggradation or channel change.

  12. Large wood budget and transport dynamics on a large river using radio telemetry

    USGS Publications Warehouse

    Schenk, Edward R.; Moulin, Bertrand; Hupp, Cliff R.; Richte, Jean M.

    2014-01-01

    Despite the abundance of large wood (LW) river studies there is still a lack of understanding of LW transport dynamics on large low gradient rivers. This study used 290 radio frequency identification tagged (RFID) LW and 54 metal (aluminum) tagged LW, to quantify the percent of in-channel LW that moves per year and what variables play a role in LW transport dynamics. Aluminum tags were installed and monitored on LW in-transit during the rising limb of a flood, the mean distance traveled by those pieces during the week was 13.3 river kilometers (km) with a maximum distance of 72 km. RFID tagged LW moved a mean of 11.9 km/yr with a maximum observed at 101.1 km/yr. Approximately 41% of LW low on the bank moves per year. The high rate of transport and distance traveled is likely due to the lack of interaction between LW floating in the channel and the channel boundaries, caused primarily by the width of the channel relative to length of the LW. Approximately 80% of the RFID tags moved past a fixed reader during the highest 20% of river stage per year. LW transport and logjam dynamics are complicated at high flows as pieces form temporary jams that continually expand and contract. Unlike most other studies, key members that create a logjam were defined more by stability than jam size or channel/hydrologic conditions. Finally, using an existing geomorphic database for the river, and data from this study, we were able to develop a comprehensive LW budget showing that 5% of the in-channel LW population turns over each year (input from mass wasting and fluvial erosion equals burial, decomposition, and export out of system) and another 16% of the population moving within the system.

  13. Tectonic controls on the morphodynamics of the Brahmaputra River system in the upper Assam valley, India

    NASA Astrophysics Data System (ADS)

    Lahiri, Siddhartha K.; Sinha, Rajiv

    2012-10-01

    The Brahmaputra is one of the largest tropical rivers of the world and is located in an area of high structural instability as evidenced from the presence of a large number of earthquakes in the Himalayan catchment through which it flows. Syntectonic evidence of changes in the morphodynamics is difficult to identify for the large rivers. Nevertheless, we note that the Brahmaputra River has become astonishingly large in planform in a historical timescale. Reconstruction of planform changes over a period of 90 years in the upper reaches of the Assam valley shows that the 240-km-long channel belt is widening all along its course in the region. From the average width of 9.74 km in 1915, the channel belt has widened to the average width of 14.03 km in 2005 (44% widening), and in certain reaches the average widening is as high as 250%. However, the bank line shift is not symmetric along both banks. Further, the planform characteristics of the Brahmaputra River reveal significant spatial and temporal variability from upstream to downstream reaches, and we attribute this variability to tectonogeomorphic zonation of the river based on subsurface configuration and channel slope. Further, the tributaries joining the northern and southern banks of the Brahmaputra differ remarkably in terms of river dynamics, and this is attributed to the differences in tectonic regimes of the Himalaya in the north and the Naga Patkai hills in the south.

  14. Landform Evolution of the Zanskar Valley, Ladakh Himalaya.

    NASA Astrophysics Data System (ADS)

    Chahal, P.; Kumar, A.; Sharma, P.; Sundriyal, Y.; Srivastava, P.

    2017-12-01

    Zanskar River flow from south-west to north-east, perpendicularly through Higher Himalayan crystalline sequences, Tethyan sedimentary sequences, and Indus Molasses; and finally merge with the Indus River at Nimu. Geologically, the Indus valley is bounded by Ladakh Batholith in the north and highly folded and thrusted Zanskar mountain ranges in the south. Sedimentary sequences of Zanskar ranges are largely of continental origin, which were uplifted and deformed via several north verging thrusts, where Zanskar counter thrust, Choksti and Indus-Bazgo thrusts are important thrust zone, and there is atleast 36 km of crustal shortening in the Zanskar section which continued from middle Miocene to the late Pleistocene. This shortening is accommodated mainly by north or north-east directed Zanskar backthrusts. Two major tributaries of Zanskar: Tsrapchu and Doda, flow in the headwaters, along the strike of South Tibetan Detachment System (STDs), an east-west trending regional fault. The present study incorporate field sedimentology, geomorphology and chronology of landform associated with Zanskar valley. In the upper Zanskar, alluvial fan, valley fill and strath terraces configured the major landforms with paleo-lake deposits­­­ in the area between the fans. The lower catchment, at the confluence of Zanskar and Indus rivers, exhibit mainly valley fill terraces and strath terraces. Chronology suggests diachronous aggradation in the upper and lower Zanskar catchments. In the upper Zanskar large scale valley aggradation took place with simultaneously fan progradation and flooding events from 45-15 ka. Luminescence chronology of the lower Zanskar indicates aggradation from 145-55 ka and 18-12 ka. The two aggradation basins are separated by a deep V-shaped gorge which is approximately 60 km long. The longitudinal profile of the Zanskar River shows several local convexities marking knick point zone, which suggests tectonically controlled topography.

  15. Offshore Deterioration in the Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Stattegger, K.; Unverricht, D.; Heinrich, C.

    2016-02-01

    The interplay of river, tide and wave forcing controls shape and sedimentation at the front of the Mekong Delta. Specific hydro- and morphodynamic conditions in the western subaqueous part of the asymmetric Mekong Delta generate a sand ridge - channel system (SRCS) which is unique in subaqueous delta formation. This large-scale morphological element extends 130 km along the delta front consisting of two sand ridges and two erosional channels. Three different zones within SRCS can be distinguished. The eastern initial zone stretches along delta slope and inner shelf platform southwest of the Bassac river mouth, the largest and westernmost distributary of the Mekong Delta. In the central zone SRCS covers the outer part of the subaqueous delta platform with a pronounced sand-ridge and erosional channel morphology. Cross-sections of the SRCS reveal an asymmetric shape including steeper ridge flanks facing into offshore direction. Channels incise down to 18.2 m water depth (wd) and 10.5 down the ridge top at the outer subaqueous delta platform, respectively. Towards the west the sand ridges pinch out while the two channels merge into one and form a giant erosional scour of up to 33 m wd within the subaqueous delta platform. In the western zone, the channel gets shallower and vanishes along the south-western edge of the subaqueous delta platform around Ca Mau Cape. Sediment transport from the Mekong River nourishes the sand ridges. In contrast, tide and wind-driven currents cut the erosional channels, which act also as fine-sediment conveyor from eroding headlands to the distal part of the delta front that is 200 km apart of the Bassac river mouth. SRCS in the subaqueous Mekong Delta is a relevant indicator of delta-front instability and erosion.

  16. New insights into hydrologic sources and sinks in the Nile Basin: A multi-source satellite data analysis

    NASA Astrophysics Data System (ADS)

    Senay, G. B.; Velpuri, N. M.; Bohms, S.; Demissie, Y.; Gebremichael, M.

    2014-12-01

    The Nile River is the longest in the world with a length of 6,800 km. However, the contrast between the length of the river or the size of the basin and the comparatively small volume of basin runoff generated is a unique feature of the Nile Basin. Due to non-availability of in-situ hydrologic data, we do not clearly understand the spatial distribution of hydrologic sources and sinks and how much they control input-output dynamics? In this study, we integrated satellite-derived precipitation, and modeled evapotranspiration data (2000-2012) to describe spatial variability of hydrologic sources and sinks in the Nile Basin. We also used long-term gridded runoff and river discharge data (1869-1984) to understand the discrepancy in the observed and expected flow along the Nile River. Results indicate that over 2000-2012 period, 4 out of 11 countries (Ethiopia, Tanzania, Kenya, and Uganda) in the Nile basin showed a positive water balance while three downstream countries (South Sudan, Sudan, and Egypt) showed a negative balance. The top three countries that contribute most to the flow are Ethiopia, Tanzania and Kenya. The study revealed that ~85% of the runoff generated in the Equatorial region is lost in an inter-station basin that includes the Sudd wetlands in South Sudan; this proportion is higher than the reported loss of 50% at the Sudd wetlands alone. The loss in runoff and flow volume at different sections of the river tend to be more than what can be explained by evaporation losses, suggesting a potential recharge to deeper aquifers that are not connected to the Nile channel systems. On the other hand, we also found that the expected average annual Nile flow at Aswan is larger (97 km3) than the reported amount (84 km3). Gravity Recovery and Climate Experiment (GRACE) mass deviation in storage data analysis showed that at annual time-scales, the Nile Basin shows storage change is substantial while over longer-time periods, it is minimal (<1% of basin precipitation). Due to the large variations of the reported Nile flow at different locations and time periods, the study recommends increased hydro-meteorological instrumentation of the basin. This study improves our understanding of the spatial dynamics of water sources and sinks in the Nile basin and identified emerging hydrologic questions that require further attention.

  17. Long-term Sediment Accumulation in Mid-channel Bars of the Upper Reach of the Lower Mississippi River.

    NASA Astrophysics Data System (ADS)

    Wang, B.; Xu, Y. J.

    2016-02-01

    A recent study reported that about 44% of the total Mississippi River suspended load reaching the Old River Control Structure (ORCS) was trapped upstream of the Gulf of Mexico by overbank storage and channel bed aggradation. Considering an average annual sediment load of 120 million metric tons passing ORCS to the Mississippi River main channel, the trapped sediment load would be equivalent to annually rebuilding 44-km2 coastal land of 1 meter in depth, assuming a sedimentation bulk density of 1.2 tons m-3. No study has yet demonstrated such a high sediment accumulation rate within the confined river channel or on a floodplain area that surrounds the only unleeved stretch ( 30-km long) of the Lower Mississippi River downstream of ORCS. In this study, we utilized satellite images taken from 1983 to 2013 and analyzed changes in surface area of nine major mid-channel and point bars over a 130-km river reach from ORCS to Baton Rouge. Using river stage records and the estimated surface areas, we developed a stage - surface area rating curve for each of the bars and estimated changes in bar volume over time. We found that more than half of the bars have grown, while the others have shrunken in the past three decades. As a whole, there was a substantial net gain of surface area and volume accretion. Sediment trapping was most prevalent during the spring floods, especially during the period from 2007 to 2011 when two large floods occurred. This paper presents the channel morphological change and sediment accumulation rates under different flow conditions, and discusses their implications for the current understanding and practices of the Mississippi River sediment diversion.

  18. Assessment of juvenile coho salmon movement and behavior in relation to rehabilitation efforts in the Trinity River, California, using PIT tags and radiotelemetry

    USGS Publications Warehouse

    Chase, Robert; Hemphill, Nina; Beeman, John; Juhnke, Steve; Hannon, John; Jenkins, Amy M.

    2013-01-01

    Coho salmon (Oncorhynchus kisutch) of the Southern Oregon/Northern California Coast (SONCC) Evolutionarily Significant Unit (ESU) is federally listed as a threatened species. The Trinity River Restoration Program (TRRP) is rehabilitating the Trinity River to restore coho salmon (coho) and other salmonid populations. In order to evaluate the program’s actions, several studies of movements and behavior of coho in the Trinity River were conducted from 2006 to 2009, including snorkel surveys and mark-recapture techniques based on Passive Integrated Transponder (PIT) tags, elastomer tags, and radio transmitters. Catch, recapture, and condition of natural sub-yearlings, along with site fidelity and emigration of hatchery-reared yearlings in rehabilitated and reference habitats, were studied. Location was important because coho were absent from the lower controlled and rehabilitated sites most of the time. However, rehabilitation did not have a significant effect on natural coho salmon at the site level. Apparent survival of radio-tagged, hatchery-reared yearling coho released downstream from Lewiston Dam was much lower in the first 10 km downstream from the release site than in other areas between Lewiston Dam and the Klamath River estuary. Estimated survival of yearling hatchery coho salmon per 100 km down to Blake’s Riffle was estimated at 64 % over the distance of the 239 km study area. Migration primarily occurred at night in the upper Trinity River; however, as yearlings moved through the lower Trinity River towards the Klamath River, estuary nocturnal migration became less. Apparent survival was generally lowest in areas upstream from the North Fork of the Trinity River.

  19. Absolute water storages in the Congo River floodplains from integration of InSAR and satellite radar altimetry

    NASA Astrophysics Data System (ADS)

    Lee, H.; Yuan, T.; Jung, H. C.; Aierken, A.; Beighley, E.; Alsdorf, D. E.; Tshimanga, R.; Kim, D.

    2017-12-01

    Floodplains delay the transport of water, dissolved matter and sediments by storing water during flood peak seasons. Estimation of water storage over the floodplains is essential to understand the water balances in the fluvial systems and the role of floodplains in nutrient and sediment transport. However, spatio-temporal variations of water storages over floodplains are not well known due to their remoteness, vastness, and high temporal variability. In this study, we propose a new method to estimate absolute water storages over the floodplains by establishing relations between water depths (d) and water volumes (V) using 2-D water depth maps from the integration of Interferometric Synthetic Aperture Radar (InSAR) and altimetry measurements. We applied this method over the Congo River floodplains and modeled the d-V relation using a power function (note that d-V indicates relation between d and V, not d minus V), which revealed the cross-section geometry of the floodplains as a convex curve. Then, we combined this relation and Envisat altimetry measurements to construct time series of floodplain's absolute water storages from 2002 to 2011. Its mean annual amplitude over the floodplains ( 7,777 km2) is 3.860.59 km3 with peaks in December, which lags behind total water storage (TWS) changes from the Gravity Recovery and Climate Experiment (GRACE) and precipitation changes from Tropical Rainfall Measuring Mission (TRMM) by about one month. The results also exhibit inter-annual variability, with maximum water volume to be 5.9 +- 0.72 km3 in the wet year of 2002 and minimum volume to be 2.01 +- 0.63 km3 in the dry year of 2005. The inter-annual variation of water storages can be explained by the changes of precipitation from TRMM.

  20. Columbia River Component Data Evaluation Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.S. Cearlock

    2006-08-02

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  1. Recent Advances in Subsurface Imaging and Monitoring with Active Sources in China

    NASA Astrophysics Data System (ADS)

    Wang, B.; Chen, Y.; Wang, W.; Yang, W.

    2017-12-01

    Imaging high-resolution crustal structures and monitoring their temporal changes with active sources is essential to our understanding of regional tectonics and seismic hazards. In the past decades, great efforts has been made in China to looking for an ideal artificial seismic source to study continental crustal structures. After a mountain of field experiments, we developed permanent and portable seismic airgun sources for inland seismotectonic studies. Here we introduce several applications of using airgun source to imaging local crustal structures and monitoring velocity changes associated with natural and anthropogenic loadings. During Oct. 10th-20th, 2015, we carried out a crustal structure exploration experiment by firing portable airgun source along the Yangtze River in Anhui Province of eastern China. About 5000 shots were fired along 300km long section of the river. More than 2000 portable short period seismometers or geophones were deployed during the experiment. About 3000 of 5000 shots were fired at 20 fixed sites roughly evenly distributed along the river, and the rest shots were fired in the walkway. Seismic signal radiated by airgun source can be tracked to 350km. 2D/3D near surface and crustal velocity structure along the Yangtze River and adjacent region were inverted from airgun seismic records. Inverted velocity show well consistence with previous images and geological structure. The high resolution structural image provides a better understanding on regional geologic features and distribution of mineral resources. In the past five years, three Fixed Aigun Signal Transmitting Stations (FASTS) were built in western China. Those FASTS generate seismic signals with high repeatability, which can be tracked to the distance 1300 km. The highly reproducible signals are used to monitor the subtle subsurface changes. Observed diurnal and semi-diurnal velocity changes 10-4 are supposed to be results of barometrical and tidal loading. Suspicious velocity changes prior to several moderate earthquakes are detected around. Seismic velocity measured around the Hutubi underground gas storage show clear correlation with the gas pressure. Those results shed some light on the short term evolution of the shallow to low crust, which may boost our understanding the mechanism of local seismic hazards.

  2. Flooding and forest succession in a modified stretch along the Upper Mississippi River

    USGS Publications Warehouse

    Yin, Yao

    1998-01-01

    This research examines the effect of a rare flood on floodplain forest regeneration in a 102-km stretch of the Mississippi River beginning 21 km above the mouth of the Ohio River. The river has been restricted by levees and navigation structures and subjected to sediment dredging to maintain a stable navigation channel. Because the bank erosion–accretion process has been slowed or eliminated, cottonwood (Populus spp.) and willow (Salix spp.) communities regenerate poorly in the modified river environment. An unusually large flood in 1993 destroyed the entire ground vegetation layer, killing 77.2% of the saplings and 32.2% of the trees. The flood created an alternative mechanism for cottonwood and willow to regenerate under canopy openings, enabling the community type composition of the present-day forest to be sustained for the next 50 years. Over time, however, the forest will likely exhibit considerable compositional fluctuation. 

  3. Riverine Sustainment 2012

    DTIC Science & Technology

    2007-06-01

    which is about 473,606 sq km in size; the most fertile and densely populated islands, Java/Madura, 132,107 sq km; Kalimantan , which comprises two...Sumatra, and Kalimantan , and the small islands in-between, lie on the Sunda Shelf which begin on the coasts of Malaysia and Indo China, where the sea... Kalimantan ; and the Memberamo and Digul rivers in Irian Jaya.On Java rivers are important for irrigation purposes, i.e., the Bengawan Solo, Citarum

  4. Stonefly (Plecoptera) Feeding Modes: Variation Along a California River Continuum

    Treesearch

    Richard L. Bottorff; Allen W. Knight

    1989-01-01

    The distribution of Plecoptera along a California river was used to test several predictions of the River Continuum Concept about how functional feeding groups should change along a stream's length. Stoneflies were collected from stream orders 1-6 (123 km) of the Cosumnes River continuum in the central Sierra Nevada. The 69 stonefly species collected were...

  5. Size distribution of Amazon River bed sediment

    USGS Publications Warehouse

    Nordin, C.F.; Meade, R.H.; Curtis, W.F.; Bosio, N.J.; Landim, P.M.B.

    1980-01-01

    The first recorded observations of bed material of the Amazon River were made in 1843 by Lt William Lewis Herndon of the US Navy, when he travelled the river from its headwaters to its mouth, sounding its depths, and noting the nature of particles caught in a heavy grease smeared to the bottom of his sounding weight1. He reported the bed material of the river to be mostly sand and fine gravel. Oltman and Ames took samples at a few locations in 1963 and 1964, and reported the bed material at O??bidos, Brazil, to be fine sands, with median diameters ranging from 0.15 to 0.25 mm (ref. 2). We present here a summary of particle-size analyses of samples of streambed material collected from the Amazon River and its major tributaries along a reach of the river from Iquitos in Peru, ???3,500 km above Macapa?? Brazil, to a point 220 km above Macapa??3. ?? 1980 Nature Publishing Group.

  6. Relationship between passive microwave-derived snowmelt and surface-measured discharge, Wheaton River, Yukon Territory, Canada

    NASA Astrophysics Data System (ADS)

    Ramage, J. M.; McKenney, R. A.; Thorson, B.; Maltais, P.; Kopczynski, S. E.

    2006-03-01

    Snow volume and melt timing are major factors influencing the water cycle at northern high altitudes and latitudes, yet both are hard to quantify or monitor in remote mountainous regions. Twice-daily special sensor microwave imager (SSM/I) passive microwave observations of seasonal snow melt onset in the Wheaton River basin, Yukon Territory, Canada (60 ° 0805N, 134 ° 5345W), are used to test the idea that melt onset date and duration of snowpack melt-refreeze fluctuations control the timing of the early hydrograph peaks with predictable lags. This work uses the SSM/I satellite data from 1988 to 2002 to evaluate the chronology of melt and runoff patterns in the upper Yukon River basin. The Wheaton River is a small (875 km2) tributary to the Yukon, and is a subarctic, partly glacierized heterogeneous basin with near-continuous hydrographic records dating back to 1966. SSM/I pixels are sensitive to melt onset due to the strong increase in snow emissivity, and have a robust signal, in spite of coarse (>25 × 25 km2) pixel resolution and varied terrain. Results show that Wheaton River peak flows closely follow the end of large daily variations in brightness temperature of pixels covering the Wheaton River, but the magnitude of flow is highly variable, as might be expected from interannual snow mass variability. Spring rise in the hydrograph follows the end of high diurnal brightness temperature (Tb) amplitude variations (DAV) by 0 to 5 days approximately 90% of the time for this basin. Subsequent work will compare these findings for a larger (7250 km2), unglacierized tributary, the Ross River, which is farther northeast (61 ° 5940N, 132 ° 2240W) in the Yukon Territory. These techniques will also be used to try to determine the improvement in melt detection and runoff prediction from the higher resolution (15 × 15 km2) advanced microwave scanning radiometer for EOS (AMSR-E) sensor.

  7. An ECOMAG-based Regional Hydrological Model for the Mackenzie River basin

    NASA Astrophysics Data System (ADS)

    Motovilov, Yury; Kalugin, Andrey; Gelfan, Alexander

    2017-04-01

    A physically-based distributed model of runoff generation has been developed for the Mackenzie River basin (the catchment area is 1 660 000 km2). The model is based on the ECOMAG (ECOlogical Model for Applied Geophysics) hydrological modeling platform and describes processes of interception of rainfall/snowfall by the canopy, snow accumulation and melt, soil freezing and thawing, water infiltration into unfrozen and frozen soil, evapotranspiration, thermal and water regime of soil, overland, subsurface and ground flow, flow routing through a channel network accounting for flow regulation by lakes and reservoirs. The governing model's equations are derived from integration of the basic hydro- and thermodynamics equations of water and heat vertical transfer in snowpack, frozen/unfrozen soil, horizontal water flow under and over catchment slopes, etc. The Mackenzie basin's schematization was performed on the basis of the global DEM data (1-km resolution) from the HYDRO1K database of the U.S. Geological Survey. Most of the model parameters are physically meaningful and derived through the global datasets of the basin characteristics: FAO/IIASA Harmonized World Soil Database, USGS EROS Global Land Cover Characteristics project, etc. The 0.5ox0.5o WATCH reanalysis daily precipitation, air temperature and air humidity data were used as the model input for the period of 1971-2002. The daily discharge data provided by the Water Survey of Canada for 10 streamflow gauges, which are located at the Mackenzie River and the main tributaries (Peel River, Great Bear River, Liard River, Slave River and Athabasca River), were used for calibration (1991-2001) and validation (1971-1990) of the model. The gauges' catchment areas vary from 70600 km2 (Peel River above Fort Mopherson) to 1 660 000 km2 (Mackenzie River at Arctic Red River). The model demonstrated satisfactory performance in terms of Nash-and Sutcliffe efficiency (NSE(daily)0.60 and NSE(monthly)0.70) and percent bias (PBIAS15%) for 8 gauges of 10. Weaker results were obtained for Great Bear River at outlet of Great Bear Lake and Peace River at Peace Point. Possibilities of a model approach for the construction of mean annual hydrological fields (maps) using meteorological data for the large river basins are shown. Spatial fields of the 32-year mean annual runoff and evaporation (1971-2002) for the Mackenzie River basin were simulated by the distributed model and the corresponding maps were compared with that provided by Hydrological Atlas of Canada (1972) for 30-year period (1941-1970). Analysis of fields conformity is made and possible sources of errors are discussed.

  8. River basin affected by rare perturbation events: the Chaiten volcanic eruption.

    NASA Astrophysics Data System (ADS)

    Picco, Lorenzo; Iroumé, Andrés; Oss-Cazzador, Daniele; Ulloa, Hector

    2017-04-01

    Natural disasters can strongly and rapidly affect a wide array of environments. Among these, volcanic eruptions can exert severe impacts on the dynamic equilibrium of riverine environment. The production and subsequent mobilization of large amounts of sediment all over the river basin, can strongly affect both hydrology and sediment and large wood transport dynamics. The aim of this research is to quantify the impact of a volcanic eruption along the Blanco River basin (Southern Chile), considering the geomorphic settings, the sediment dynamics and wood transport. Moreover, an overview on the possible management strategies to reduce the risks will be proposed. The research was carried out mainly along a 2.2 km-long reach of the fourth-order Blanco stream. Almost the entire river basin was affected by the volcanic eruption, several meters of tephra (up to 8 m) were deposited, affecting the evergreen forest and the fluvial corridor. Field surveys and remote sense analysis were carried out to investigate the effect of such extreme event. A Terrestrial Laser Scanner (TLS) was used to detect the morphological changes by computing Difference of Dems (DoDs), while field surveys were carried out to detect the amount of in-channel wood; moreover aerial photos have been analyzed to detect the extension of the impact of volcanic eruption over the river basin. As expected, the DoDs analysis permitted to detect predominant erosional processes along the channel network. In fact, over 190569 m2 there was erosion that produced about 362999 m3 of sediment mobilized, while the deposition happened just over 58715 m2 for a total amount of 23957 m3. Looking then to the LW recruited and transported downstream, was possible to detect as along the active channel corridor a total amount of 113 m3/ha of wood was present. Moreover, analyzing aerial photographs taken before and after the volcanic eruption was possible to define as a total area of about 2.19 km2 was affected by tephra deposition, 0.87 km2 has already been eroded by floods, while 1.32 km2 is still there. Considering an average depth of 5 m, the potential amount of sediment erodible and potentially transported downstream during the next near future is around 6.5 x 106 m3. Finally, from the same area can be recruited other 7.3 x 104 m3 of LW that can be transported towards the mouth. These results may help to better define management strategies to reduce the potential risks to the sensitive structures and cross section downstream. In fact, the management of sediment and LW transport through the lower Chaiten village appear of fundamental importance to guarantee a safer condition. This research is funded by the Chilean research Project FONDECYT 1141064 "Effects of vegetation on channel morphodynamics: a multiscale investigation in Chilean gravel-bed rivers".

  9. Nitrogen dynamics in a tidal river zone influenced by highly urbanization, western Japan

    NASA Astrophysics Data System (ADS)

    Saito, M.; Onodera, S. I.; Shimizu, Y.; Maruyama, Y.; Jin, G.; Aritomi, D.

    2014-12-01

    Tidal river and estuary are the transition zone between freshwater and seawater with high biological production. These areas have characteristics of water level fluctuation which causes surface water-groundwater interaction and the associated change in dynamics of nitrogen. Generally in coastal megacities, severe groundwater depression and high contaminants load influence on the environment of tidal river. However, these effects on the nitrogen dynamics and its load from a river to sea have not been fully evaluated in previous studies. Therefore, we aimed to clarify the characteristics of the nitrogen dynamics with the surface water-groundwater interaction in the tidal river zone of Osaka metropolitan city, western Japan. We conducted the field survey from the river mouth to the 7km upstream area of Yamato River, which has a length of 68km and a watershed area of 1,070 km2. Spatial variations in radon (222Rn) concentrations and the difference of hydraulic potential between river waters and the pore waters suggest that the groundwater discharges to the river channel in the upstream area. In contrast, the river water recharged into the groundwater near the river mouth area. It may be caused by the lowering of groundwater level associated with the excess abstraction in the urban area. The spatial and temporal variations in nutrient concentration indicate that nitrate-nitrogen (NO3-N) concentration changed temporally and it was negatively correlated with dissolved organic nitrogen (DON) concentration. Based on the mass balance estimation in winter and summer periods, nitrogen was removed in tidal river zone in both periods which was estimated to be about 10 % of total nitrogen (TN) load from the upstream. However, dissolved inorganic nitrogen (DIN) and DON was re-produced in winter and summer periods, respectively. NO3-N concentrations were negatively correlated with velocity of river water, which suggests the progress of denitrification in the tidal river zone under low discharge condition. Nitrogen and oxygen stable isotope ratios (δ15N, δ18O) of nitrate (NO3-) suggests the possibility of nitrification progress in the winter periods.

  10. Air-photo based change in channel width in the Minnesota River basin: Modes of adjustment and implications for sediment budget

    NASA Astrophysics Data System (ADS)

    Wesley Lauer, J.; Echterling, Caitlyn; Lenhart, Christian; Belmont, Patrick; Rausch, Rachel

    2017-11-01

    The Minnesota River and major tributaries have experienced large increases in discharge over the past century. Aerial photograph-based measurements of channel width were made for the 1938-2015 period at 16 multibend subreaches by digitizing the area between vegetation lines and dividing by centerline length. Results show considerable increases in width for the main stem (0.62 ± 0.10%/y) and major tributaries (0.31 ± 0.08%/y) but are inconclusive for smaller channels (width < 25 m). Width change for a 146.5-km reach of the lower Minnesota River between 1938 and 2008 is similar to that from the subreach-scale analysis. Widening was associated with lateral centerline movement and temporal change in at-a-station hydraulic geometry for water surface width, indicating that widening is associated with cross-sectional change and not simply upward movement of the vegetation line. Digital elevation model analysis and regional hydraulic geometry show that the main stem and larger tributaries account for the vast majority ( 85%) of bankfull channel volume. High-order channels are thus disproportionately responsible for sediment production through cross section enlargement, although floodplains or off-channel water bodies adjacent to these channels likely represent important sediment sinks. Because channel enlargement can play an important role in sediment production, it should be considered in sediment reduction strategies in the Minnesota River basin and carefully evaluated in other watersheds undergoing long-term increases in discharge.

  11. Use of induced polarization to characterize the hydrogeologic framework of the zone of surface‐water/groundwater exchange at the Hanford 300 Area, WA

    USGS Publications Warehouse

    Slater, Lee; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Mwakanyamale, Kisa; Lane, John W.; Ward, Andy; Versteeg, Roelof J.

    2010-01-01

    An extensive continuous waterborne electrical imaging (CWEI) survey was conducted along the Columbia River corridor adjacent to the U.S. Department of Energy (DOE) Hanford 300 Area, WA, in order to improve the conceptual model for exchange between surface water and U‐contaminated groundwater. The primary objective was to determine spatial variability in the depth to the Hanford‐Ringold (H‐R) contact, an important lithologic boundary that limits vertical transport of groundwater along the river corridor. Resistivity and induced polarization (IP) measurements were performed along six survey lines parallel to the shore (each greater than 2.5 km in length), with a measurement recorded every 0.5–3.0 m depending on survey speed, resulting in approximately 65,000 measurements. The H‐R contact was clearly resolved in images of the normalized chargeability along the river corridor due to the large contrast in surface area (hence polarizability) of the granular material between the two lithologic units. Cross sections of the lithologic structure along the river corridor reveal a large variation in the thickness of the overlying Hanford unit (the aquifer through which contaminated groundwater discharges to the river) and clearly identify locations along the river corridor where the underlying Ringold unit is exposed to the riverbed. Knowing the distribution of the Hanford and Ringold units along the river corridor substantially improves the conceptual model for the hydrogeologic framework regulating U exchange between groundwater and Columbia River water relative to current models based on projections of data from boreholes on land into the river.

  12. High frequency longitudinal profiling reveals hydrologic controls on solute sourcing, transport and processing in a karst river

    NASA Astrophysics Data System (ADS)

    Hensley, R. T.; Cohen, M. J.; Spangler, M.; Gooseff, M. N.

    2017-12-01

    The lower Santa Fe River is a large, karst river of north Florida, fed by numerous artesian springs and also containing multiple sink-rise systems. We performed repeated longitudinal profiles collecting very high frequency measurements of multiple stream parameters including temperature, dissolved oxygen, carbon dioxide, pH, dissolved organic matter, nitrate, ammonium, phosphate and turbidity. This high frequency dataset provided a spatially explicit understanding of solute sources and coupled biogeochemical processing rates along the 25 km study reach. We noted marked changes in river profiles as the river transitioned from low to high flow during the onset of the wet season. The role of lateral inflow from springs as the primary solute source was greatly reduced under high flow conditions. Effects of sink-rise systems, which under low flow conditions allow the majority of flow to bypass several kilometer long sections of the main channel, virtually disappeared under high flow conditions. Impeded light transmittance at high flow reduced primary production and by extension assimilatory nutrient uptake. This study demonstrates how high frequency longitudinal profiling can be used to observe how hydrologic conditions can alter groundwater-surface water interactions and modulate the sourcing, transport and biogeochemical processing of stream solutes.

  13. Food and growth parameters of juvenile chinook in the central Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, C.D.

    1994-10-01

    Juvenile chinook, salmon (Oncorhynchus tshawytscha) in the Hanford area of the free-flowing central Columbia River, Washington consume almost entirely adult and larval stages of aquatic insects. The diet is dominated by midges (Diptera: Chironomidae). By numbers, adult midges provided 64 and 58% of the diet and larval midges 17 and 18% of the diet, in 1968 and 1969, respectively. The families Hydropsychidae (Trichoptera), Notonectidae (Hemiptera) and Hypogastruridae (Collembola) are of minor numerical importance with a combined utilization of 7% in 1968 and 15% in 1969. Distinctive features of food and feeding activity of juvenile chinook at Hanford are fourfold: (1)more » the fish utilize relatively few insect groups, predominantly Chironomidae; (2) they depend largely upon autochthonous river organisms; (3) they visually select living prey drifting, floating or swimming in the water; and (4) they are apparently habitat opportunists to a large extent. Analyses were made of variations in diet and numbers of insects consumed between six sampling stations distributed along a 38 km section of the river. Data are provided on feeding intensity, fish lengths, length-weight relationships, and coefficients of condition. Seasonal changes in river temperature and discharge, as well as variations in regulated flow levels are environmental features influencing feeding, growth, and emigration of fish in the Hanford environs.« less

  14. Influence of hyporheic flow and geomorphology on temperature of a large, gravel-bed river, Clackamas River, Oregon, USA

    Treesearch

    Vol. 22 Hydrological Processes

    2008-01-01

    The hyporheic zone influences the thermal regime of rivers, buffering temperature by storing and releasing heat over a range of timesscales. We examined the relationship between hyporheic exchange and temperature along a 24-km reach of the lower Clackamas River, a large gravel-bed river in northwestern Oregon (median discharge = 75·7 m3/s;...

  15. Geochemical composition of river loads in the Tropical Andes: first insights from the Ecuadorian Andes

    NASA Astrophysics Data System (ADS)

    Tenorio Poma, Gustavo; Govers, Gerard; Vanacker, Veerle; Bouillon, Steven; Álvarez, Lenín; Zhiminaicela, Santiago

    2015-04-01

    Processes governing the transport of total suspended material (TSM), total dissolved solids (TDS) and particulate organic carbon (POC) are currently not well known for Tropical Andean river systems. We analyzed the geochemical behavior and the budgets of the particulate and dissolved loads for several sub-catchments in the Paute River basin in the southern Ecuadorian Andes, and examined how anthropogenic activities influenced the dynamics of riverine suspended and dissolved loads. We gathered a large dataset by regularly sampling 8 rivers for their TSM, POC, and TDS. Furthermore, we determined the major elements in the dissolved load and stable isotope composition (δ13C) of both the POC, and the dissolved inorganic carbon (DIC). The rivers that were sampled flow through a wide range of land uses including: 3 nature conservation areas (100 - 300 Km²), an intensive grassland and arable zone (142 Km²); downstream of two cities (1611 and 443 Km²), and 2 degraded basins (286 and 2492 Km²). We described the geochemical characteristics of the river loads both qualitatively and quantitatively. Important differences in TSM, POC and TDS yields were found between rivers: the concentration of these loads increases according with human activities within the basins. For all rivers, TSM, TDS and POC concentrations were dependent on discharge. Overall, a clear relation between TSM and POC (r²=0.62) was observed in all tributaries. The C:N ratios and δ13CPOC suggest that the POC in most rivers is mainly derived from soil organic matter eroded from soils dominated by C3 vegetation (δ13CPOC < -22‰). Low Ca:Si ratios (<1)and high δ13CDIC (-9 to -4) in the Yanuncay, Tomebamba1 and Machángara, rivers suggest that weathering of silica rocks is dominant in these catchments, and that the DIC is mainly derived from the soil or atmospheric CO2. In contrast, the Ca:Si ratio was high for the Burgay and Jadán rivers (1-13), and the low δ13CDIC values (-9 to -15) suggest that carbonate rock weathering is dominant in these catchments. Our data suggest that anthropogenic effects are the dominant control on variations in sediment and carbon export between the river catchments we studied, while differences in topography are of lesser importance. However, the effects of anthropogenic disturbances may confound with differences in lithology, as the disturbed catchments are underlain by relatively soft, carbonate-rich sedimentary rocks while the less disturbed catchments are underlain by the silicate-rich rocks.

  16. Spatial gradients in stream power and the implications for lateral and downstream transport of material during the 2013 Floods in Colorado and 2011 Irene Floods in Vermont, USA

    NASA Astrophysics Data System (ADS)

    Gartner, J. D.; Renshaw, C. E.; Magilligan, F. J.; Buraas, E. M.; Dethier, E.; Dade, W. B.

    2014-12-01

    Classic approaches to understand sediment transport and channel-hillslope coupling focus on magnitudes of forces at a point location or reach. Yet often overlooked are downstream gradients in forces along a river. Here we show a physical rationale supported by field evidence that downstream spatial gradients in sediment transport capacity affect lateral exchange of material in the form of landslides, bank failures and floodplain deposition. Taking advantage of the strong signals of near-channel deposition and erosion during the record-high 2011 Irene floods in Vermont and 2013 floods in Colorado, USA, we test if these spatial gradients can predict geomorphic response in flood events. Total stream power, an indicator of total sediment transport capacity, was mapped using GIS analysis along the Saxtons River (190 km2) and West Branch of White River (112 km2) in Vermont and Fourmile Creek (20 km2) and an unnamed creek on Mt Sanitas (7 km2) in Boulder, CO. These mountainous streams exhibit reach slopes of 0.5 to > 10%, with less steep reaches interspersed among steeper reaches. Near-channel erosion and deposition were quantified along 52 river km by pre/post satellite imagery, field surveys, and, when available, differencing of pre/post topography measured by aerial LiDAR. Zones of abundant mass wasting inputs—up to 11,000 m3 per km—were generally distinct from zones of abundant floodplain deposition—up to 30,000 m3 per km. Spatial patterns indicate that zones of abundant mass wasting into the channels align approximately with zones of down-flow increasing stream power. These reaches can convey material delivered from upstream plus additional lateral inputs of sediment. Conversely, reaches of abundant lateral flux out of the channel via near-channel deposition occur predominantly where mapped total stream power declines in the down-flow direction. These reaches appear unable to convey material supplied from upstream, which induces lateral deposition. The demonstrated interaction between downstream and lateral fluxes of material provides insight on physical controls on broad-scale geomorphic processes at channel margins as well as the sources and fates of matter transported by rivers, with implications for flood recovery and long-term river management.

  17. Marine Habitat Use by Anadromous Bull Trout from the Skagit River, Washington

    USGS Publications Warehouse

    Hayes, Michael C.; Rubin, Steve P.; Reisenbichler, Reginald; Goetz, Fred A.; Jeanes, Eric; McBride, Aundrea

    2011-01-01

    Acoustic telemetry was used to describe fish positions and marine habitat use by tagged bull trout Salvelinus confluentus from the Skagit River, Washington. In March and April 2006, 20 fish were captured and tagged in the lower Skagit River, while 15 fish from the Swinomish Channel were tagged during May and June. Sixteen fish tagged in 2004 and 2005 were also detected during the study. Fish entered Skagit Bay from March to May and returned to the river from May to August. The saltwater residency for the 13 fish detected during the out-migration and return migration ranged from 36 to 133 d (mean ± SD, 75 ± 22 d). Most bull trout were detected less than 14 km (8.5 ± 4.4 km) from the Skagit River, and several bay residents used the Swinomish Channel while migrating. The bull trout detected in the bay were associated with the shoreline (distance from shore, 0.32 ± 0.27 km) and occupied shallow-water habitats (mean water column depth, Zostera sp.) vegetation classes made up more than 70% of the area used by bull trout. Our results will help managers identify specific nearshore areas that may require further protection to sustain the unique anadromous life history of bull trout.

  18. Foraging ecology of Caspian Terns in the Columbia River Estuary, USA

    USGS Publications Warehouse

    Lyons, Donald E.; Roby, D.D.; Collis, K.

    2005-01-01

    Comparisons were made of the foraging ecology of Caspian Terns (Sterna caspia) nesting on two islands in the Columbia River estuary using radio telemetry and observations of prey fed to chicks and mates at each colony. Early in the chick-rearing period, radio-tagged terns nesting at Rice Island (river km 34) foraged mostly in the freshwater zone of the estuary close to the colony, while terns nesting on East Sand Island (river km 8) foraged in the marine or estuarine mixing zones close to that colony. Late in the chick-rearing period, Rice Island terns moved more of their foraging to the two zones lower in the estuary, while East Sand Island terns continued to forage in these areas. Tern diets at each colony corresponded to the primary foraging zone (freshwater vs. marine/ mixing) of radio-tagged individuals: Early in chick-rearing, Rice Island terns relied heavily on juvenile salmonids (Oncorhynchus spp., 71% of identified prey), but this declined late in chick-rearing (46%). East Sand Island terns relied less on salmonids (42% and 16%, early and late in chick-rearing), and instead utilized marine fishes such as Anchovy (Engraulis mordax) and Herring (Clupea pallasi). Throughout chick-rearing, Rice Island terns foraged farther from their colony (median distance: 12.3 km during early chick-rearing and 16.9 km during late chick-rearing) than did East Sand Island terns (9.6 and 7.7 km, respectively). The study leads to the conclusion that Caspian Terns are generalist foragers and make use of the most proximate available forage fish resources when raising young.

  19. Complex channel responses to changes in stream flow and sediment supply on the lower Duchesne River, Utah

    USGS Publications Warehouse

    Gaeuman, D.; Schmidt, J.C.; Wilcock, P.R.

    2005-01-01

    Channel responses to flow depletions in the lower Duchesne River over the past 100 years have been highly complex and variable in space and time. In general, sand-bed reaches adjusted to all perturbations with bed-level changes, whereas the gravel-bed reaches adjusted primarily through width changes. Gravel-bed reaches aggraded only when gravel was supplied to the channel through local bank erosion and degraded only during extreme flood events. A 50% reduction in stream flow and an increase in fine sediment supply to the study area occurred in the first third of the 20th century. The gravel-bed reach responded primarily with channel narrowing, whereas bed aggradation and four large-scale avulsions occurred in the sand-bed reaches. These avulsions almost completely replaced a section of sinuous channel about 14 km long with a straighter section about 7 km long. The most upstream avulsion, located near a break in valley slope and the transition from a gravel bed upstream and a sand bed downstream, transformed a sinuous sand-bed reach into a braided gravel-bed reach and eventually into a meandering gravel-bed reach over a 30-year period. Later, an increase in flood magnitudes and durations caused widening and secondary bed aggradation in the gravel-bed reaches, whereas the sand-bed reaches incised and narrowed. Water diversions since the 1950s have progressively eliminated moderate flood events, whereas larger floods have been less affected. The loss of frequent flooding has increased the duration and severity of drought periods during which riparian vegetation can establish along the channel margins. As a result, the channel has gradually narrowed throughout the study area since the late 1960s, despite the occasional occurrence of large floods. No tributaries enter the Duchesne River within the study area, so all reaches have experienced identical changes in stream flow and upstream sediment supply. ?? 2004 Elsevier B.V. All rights reserved.

  20. A Bayesian Analysis of the Flood Frequency Hydrology Concept

    DTIC Science & Technology

    2016-02-01

    located in northern Austria . It not only underscores attributes of the method as applied to the Kamp at Zwettl but also discusses ways in which the...hydrology concept originally performed by Viglione et al. (2013) for the 622 km2 Kamp at Zwettl river basin located in northern Austria . Eight primary...parts of the example originally profiled by Viglione et al. (2013) for the 622 km2 Kamp at Zwettl river basin located in northern Austria . A Bayesian

  1. Tide-Dominated Tract (TDT) as a key sedimentary zone characterizing tide-dominated large-river delta and estuary systems

    NASA Astrophysics Data System (ADS)

    Saito, Y.

    2017-12-01

    Large rivers in continents have a characteristic of slow rise and fall in water levels during floods or the wet season due to a wide drainage basin. A gentle river gradient and large water discharge have relatively large tidal ranges at the river mouth, resulting in large backwater effects further upstream. The result of the Mekong River survey (386 riverbed sediments, river topography, CTD, and biofacies) shows that the distributary channels of the Mekong River delta in Vietnam are divided into two parts: the landward river-dominated tract (RDT) and seaward tide-dominated tract (TDT). The RDT is characterized by a highly variable and deepening trend in water depth and coarse-grained sediments with a fining trend downstream. The TDT is characterized by a shallowing trend in water depth with river-widening, smooth riverbeds, a straight shape, and heterolithic f- to vf-sand and mud alternation (tidal thythmite). The boundary of both tracts is sharply identified by sediment facies and river morphology. Sediment facies indicates that the dominant sedimentary process of bottom sediments is "bedload" in the RDT and "suspension" in the TDT. Daily tidal changes are observed through the year, while water-level changes during the flood/wet season are limited in the TDT. Saltwater intrusion is limited within the seaward part of the TDT alone ( 50 km), close to final bifurcation points. However, brackish-water biofacies is observed in the TDT mainly due to diluted brackish water and/or tolerance to the freshwater environment. These characteristics are also found in the Yangtze; the distance of the TDT/RDT boundary from the river mouth is ca. 100 km in the Mekong, and 200 km in the Yangtze. The preservation potential of sediments in a TDT is low in a progradational system, and high in abandoned channels. The early Holocene transgressive estuary system in the incised valley of the Yangtze formed during the Last Glacial Maximum was composed of 20 m-thick fine-grained heterolithic sediments (inclusive of tidal thythmite), distributed over 200 km in the valley, inside of the paleo-shoreline. Similarly, such well-preserved sediments are formed in a TDT of a large-river transgressive estuarine system. An estuarine facies model for large-river systems is the need of the hour. cf. references Gugliotta et al., Process regime, salinity, morphological, and sedimentary trends along the fluvial to marine transition zone of the mixed-energy Mekong River delta, Vietnam. Continental Shelf Research. http://dx.doi.org/10.1016/j.csr.2017.03.001. Hori et al., 2001. Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression. Marine Geology, 177, 331-351.

  2. Navigable rivers facilitated the spread and recurrence of plague in pre-industrial Europe

    PubMed Central

    Yue, Ricci P. H.; Lee, Harry F.; Wu, Connor Y. H.

    2016-01-01

    Infectious diseases have become a rising challenge to mankind in a globalizing world. Yet, little is known about the inland transmission of infectious diseases in history. In this study, we based on the spatio-temporal information of 5559 plague (Yersinia pestis) outbreaks in Europe and its neighboring regions in AD1347–1760 to statistically examine the connection between navigable rivers and plague outbreak. Our results showed that 95.5% of plague happened within 10 km proximity of navigable rivers. Besides, the count of plague outbreak was positively correlated with the width of river and negatively correlated with the distance between city and river. This association remained robust in different regression model specifications. An increase of 100 m in the width of river and a shortening of 1 km distance between city and river resulted in 9 and 0.96 more plague outbreaks in our study period, respectively. Such relationship shows a declining trend over our study period due to the expansion of city and technological advancement in overland transportation. This study elucidates the key role of navigable river in the dissemination of plague in historical Europe. PMID:27721393

  3. Navigable rivers facilitated the spread and recurrence of plague in pre-industrial Europe

    NASA Astrophysics Data System (ADS)

    Yue, Ricci P. H.; Lee, Harry F.; Wu, Connor Y. H.

    2016-10-01

    Infectious diseases have become a rising challenge to mankind in a globalizing world. Yet, little is known about the inland transmission of infectious diseases in history. In this study, we based on the spatio-temporal information of 5559 plague (Yersinia pestis) outbreaks in Europe and its neighboring regions in AD1347-1760 to statistically examine the connection between navigable rivers and plague outbreak. Our results showed that 95.5% of plague happened within 10 km proximity of navigable rivers. Besides, the count of plague outbreak was positively correlated with the width of river and negatively correlated with the distance between city and river. This association remained robust in different regression model specifications. An increase of 100 m in the width of river and a shortening of 1 km distance between city and river resulted in 9 and 0.96 more plague outbreaks in our study period, respectively. Such relationship shows a declining trend over our study period due to the expansion of city and technological advancement in overland transportation. This study elucidates the key role of navigable river in the dissemination of plague in historical Europe.

  4. 40Ar/(39)Ar dating of Chemeron Formation strata encompassing the site of hominid KNM-BC 1, Tugen Hills, Kenya.

    PubMed

    Deino, Alan L; Hill, Andrew

    2002-01-01

    A fossil hominid temporal bone (KNM-BC 1) from surface exposures at Baringo Paleontological Research Project site BPRP#2 in the Chemeron Formation outcropping in a tributary drainage of the Kapthurin River west of Lake Baringo, Kenya has been attributed to Homo sp. indet. K-feldspar phenocrysts from lapilli tuffs bracketing the inferred fossiliferous horizon yield single-crystal(40)Ar/(39)Ar ages of 2.456+/-0.006 and 2.393+/-0.013 Ma. These age determinations are supported by stratigraphically consistent ages on higher tuff horizons and from nearby sections. In addition, new(40)Ar/(39)Ar ages on tuffaceous units near the base and top of the formation along the Kapthurin River yield 3.19+/-0.03 and 1.60+/-0.05 Ma respectively. The base of the formation along the Kapthurin River is thus approximately 0.5 Ma younger than the uppermost Chemeron Formation strata exposed at Tabarin, 23 km to the north-northwest. The upper half of the formation along the Kapthurin River was deposited at an average rate of approximately 11 cm/ka, compared to 21-23 cm/ka at Tabarin. Copyright 2002 Academic Press.

  5. Rainfall-Runoff Parameters Uncertainity

    NASA Astrophysics Data System (ADS)

    Heidari, A.; Saghafian, B.; Maknoon, R.

    2003-04-01

    Karkheh river basin, located in southwest of Iran, drains an area of over 40000 km2 and is considered a flood active basin. A flood forecasting system is under development for the basin, which consists of a rainfall-runoff model, a river routing model, a reservior simulation model, and a real time data gathering and processing module. SCS, Clark synthetic unit hydrograph, and Modclark methods are the main subbasin rainfall-runoff transformation options included in the rainfall-runoff model. Infiltration schemes, such as exponentioal and SCS-CN methods, account for infiltration losses. Simulation of snow melt is based on degree day approach. River flood routing is performed by FLDWAV model based on one-dimensional full dynamic equation. Calibration and validation of the rainfall-runoff model on Karkheh subbasins are ongoing while the river routing model awaits cross section surveys.Real time hydrometeological data are collected by a telemetry network. The telemetry network is equipped with automatic sensors and INMARSAT-C comunication system. A geographic information system (GIS) stores and manages the spatial data while a database holds the hydroclimatological historical and updated time series. Rainfall runoff parameters uncertainty is analyzed by Monte Carlo and GLUE approaches.

  6. The ~ 2500 yr B.P. Chicoral non-cohesive debris flow from Cerro Machín Volcano, Colombia

    NASA Astrophysics Data System (ADS)

    Murcia, H. F.; Hurtado, B. O.; Cortés, G. P.; Macías, J. L.; Cepeda, H.

    2008-04-01

    Cerro Machín Volcano (CMV) is located in the central part of the Colombian Andes (2750 m asl), 150 km southwest of Bogotá. It is considered the most dangerous active volcano of Colombia. CMV has experienced at least six major explosive eruptions during the last 5000 years. These eruptions have emplaced many types of pyroclastic deposits with associated lahars that have traveled more than 100 km. One of these lahars is called Chicoral Debris Flow Deposit (DFD2). This deposit is exposed as discontinuous terraces (3-20 m thick) along the Coello and Magdalena rivers up to 109 km from the source. The DFD2 covers a minimum area of 62 km 2 and has a minimum volume of 0.57 km 3. It comprises two dacite-rich volcaniclastic units. Grain-size analysis reveals that the matrix content and sorting increase with distance while the average grain size decreases. The clay content of the DFD2 matrix is approximately 1%, thus categorizing it as a non-cohesive debris flow. Radiocarbon dates obtained from underlying and overlying paleosols yielded ages of 2505 + 65 and 1640 + 45 yr B.P., respectively. These dates suggest that DFD2 is related to the ~ 2600 yr B.P. El Guaico eruption of CMV. This eruption produced a block-and-ash flow that filled and blocked the Toche River up to 5 km from the volcano. Subsequent remobilization of this loose material by runoff water generated a massive debris flow that traveled 91 km along the Toche and Coello rivers and continued across the Espinal Alluvial Fan debouching into the Magdalena River where it continued another 18 km prior to its transformation into a sediment-laden flow. Because the last eruption of the volcano occurred ca. 900 years ago, no historic activity of CMV is known among inhabitants of the region. Hence the region has developed without awareness of volcanic hazards. Therefore an assessment of volcanic hazards is essential for understanding and evaluating the vulnerability and risk to which people are exposed in case of a future eruption. Such assessment is critical for urban planning, development, contingency, emergency and education planning.

  7. Simulation of 1998-Big Flood in Changjiang River Catchment, China

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Watanabe, M.

    2006-05-01

    Almost every year, China is affected by severe flooding, which causes considerable economic loss and serious damage to towns and farms. Big floods are mainly concentrated in the middle and lower reaches of the "seven big rivers", which include the Changjiang (Yangtze) River, the Yellow (Huanghe) River, and the Huaihe River. The Changjiang River is the fourth largest water resource to the oceans after the Amazon, Zaire, and Orinoco Rivers. In addition to abnormal weather, artificial effects were considered as main causes of the big flood disaster in the Changjiang River catchment by the previous researches; (i) extreme deforestation and soil erosion in the upper reaches, (ii) shrinking of lake water volumes and their reduced connection with the Changjiang River due to reclamation of lakes that retarded water in the middle reaches, and (iii) restriction of channel capacity following levee construction. Because there is an urgent need to quantify these relations on the spatial scale of the whole catchment in order to prevent flood damage as small as possible, it is very important to evaluate the complicated phenomena of water/heat dynamics in the Changjiang River catchment by using process-based models. The present research focuses on simulating the water/heat dynamics for 1998 big-flood with 60-year recurrent period in the Changjiang River catchment. We compared the flood period of 1998 with the normal period of 1987-1988. We expanded the NIES Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama and Watanabe, 2004; Nakayama et al., 2006) for the application to broader catchments in order to evaluate large- scale flooding in the Changjiang River (NICE-FLD). We simulated the water/heat dynamics in the entire catchment (3,000 km wide by 1,000 km long) with a resolution of 10 km mesh by using the NICE-FLD. The model reproduced excellently the river discharge, soil moisture, evapotranspiration, groundwater level, et al. Furthermore, we evaluated the role of flood storage capacity in the lakes and farms in relation to the water/heat budgets, and simulated the change of water/heat dynamics by human activity in order to help decision-making on sustainable development in the catchment.

  8. Investigating Typhoon Induced River-Surge Interactions in the Tamsui Estuary, Taiwan.

    NASA Astrophysics Data System (ADS)

    Maskell; J. H.; Grieser, J.; Rodney, J.; Howe, N. J.

    2016-02-01

    It is increasingly important to understand the combined influence of the main drivers of coastal risk due to sea level rise and the potential increase in extreme weather events. An Asian Basin stochastic typhoon set was used to force a storm surge model of Taiwan to investigate the interaction between storm surge and high river discharges (50, 100 and 200 year return period discharges) in the Tamsui River. Taiwan is a mountainous country leading to the combined risk of surge and high river discharge occurring simultaneously in estuary regions. The typhoon tracks were selected using a Hurricane Surge Index (Kantha, 2006) and cross the northern tip of Taiwan with maximum sustained winds (Vmax) between 51 m/s and 75 m/s (Cat 3-5). Peak surge elevations in the Tamsui River range from 5.7 m to 10.3 m. The surge interacts with the river flow to induce changes in the water elevation between -8 m and 4 m depending on the surge elevation and river discharge and increases the inundated area in the range 37 km to 204 km. Significant positive interactions occur in the Tamsui Estuary (Fig. 1a) but do not have implications for increased inundation and occur at the start of the flood phase and the end of the ebb phase as previously shown in idealized test cases (Maskell et al., 2013). Current vectors in the estuary show that at the time leading up to high water the river outflow starts to become dominant in the mid-channel reducing maximum water levels by up to 10% in the combined surge and river solution. However, surge inhibits downstream propagation of the flood wave in the upper river channels increasing water levels by up to 2 m. The maximum inundated area (1330 km2) is caused by the combination of defence overflow due to the maximum surge (10.27 m) and increased river levels (RP100) in the upper channels leading to significant inundation either side of the Keelung River (Fig. 1b). The Erchung floodway is effective in diverting some of the flow (up to 10,443 m3/s) reducing inundation elsewhere in the river network.

  9. Knickpoint retreat and transient bedrock channel morphology triggered by base-level fall in small bedrock river catchments: The case of the Isle of Jura, Scotland

    NASA Astrophysics Data System (ADS)

    Castillo, Miguel; Bishop, Paul; Jansen, John D.

    2013-01-01

    A sudden drop in river base-level can trigger a knickpoint that propagates throughout the fluvial network causing a transient state in the landscape. Knickpoint retreat has been confirmed in large fluvial settings (drainage areas > 100 km2) and field data suggest that the same applies to the case of small bedrock river catchments (drainage areas < 100 km2). Nevertheless, knickpoint recession on resistant lithologies with structure that potentially affects the retreat rate needs to be confirmed with field-based data. Moreover, it remains unclear whether small bedrock rivers can absorb base-level fall via knickpoint retreat. Here we evaluate the response of small bedrock rivers to base-level fall on the isle of Jura in western Scotland (UK), where rivers incise into dipping quartzite. The mapping of raised beach deposits and strath terraces, and the analysis of stream long profiles, were used to identify knickpoints that had been triggered by base-level fall. Our results indicate that the distance of knickpoint retreat scales to the drainage area in a power law function irrespective of structural setting. On the other hand, local channel slope and basin size influence the vertical distribution of knickpoints. As well, at low drainage areas (~ 4 km2) rivers are unable to absorb the full amount of base-level fall and channel reach morphology downstream of the knickpoint tends towards convexity. The results obtained here confirm that knickpoint retreat is mostly controlled by stream discharge, as has been observed for other transient landscapes. Local controls, reflecting basin size and channel slope, have an effect on the vertical distribution of knickpoints; such controls are also related to the ability of rivers to absorb the base-level fall.

  10. DEVELOPMENT OF A MULTIMETRIC INDEX FOR ASSESSING THE BIOLOGICAL CONDITION OF THE OHIO RIVER

    EPA Science Inventory

    The use of fish communities to assess environmental quality is common for streams, but a standard methodology for large rivers is largely undeveloped. We developed an index to assess the condition of fish assemblages along 1580 km of the Ohio River. Representative samples of th...

  11. Understanding Sediment Processes of Los Laureles Canyon in the Binational Tijuana River watershed

    EPA Science Inventory

    Tijuana River Basin originates in Mexico and drains 4465 km2 into the Tijuana River Estuary National Research Reserve, a protected coastal wetland in California that supports 400 species of birds. During storms, excessive erosion in Tijuana produces sediment loads that bury nativ...

  12. THE EFFECT OF VARYING ELECTROFISHING DESIGNS AND DISTANCES ON METRIC SCORES IN LARGE RIVERS

    EPA Science Inventory

    To study the effects of electrofishing design and distance on metric scores, we electrofished almost 180 km across four rivers of the Ohio River basin and collected data on more than 28,000 fish. We compared three electrofishing designs using four fish assemblage composition met...

  13. The significance of mid-latitude rivers for weathering rates and chemical fluxes: Evidence from northern Xinjiang rivers

    NASA Astrophysics Data System (ADS)

    Zhu, Bingqi; Yu, Jingjie; Qin, Xiaoguang; Rioual, Patrick; Liu, Ziting; Zhang, YiChi; Jiang, Fengqing; Mu, Yan; Li, Hongwei; Ren, Xiaozong; Xiong, Heigang

    2013-04-01

    SummaryRivers draining the sedimentary platform of northern Xinjiang (the center of Asian continent) are characterized by low discharge under a temperate and arid climate. The influence of rock mineralogy, climate, relief and human activity on natural water composition and export as a result of weathering is a major scientific concern both at the local and the global scale. While comprehensive work on the controlling mechanism of chemical weathering has been less carried out in the sedimentary platform of northern Xinjiang. Thus, the effects of climate and rock weathering on the inorganic hydrogeochemical processes are not well quantified at this climatic extreme. To remedy this lack a comprehensive survey has been carried out of the geochemistry of the large, pristine rivers in northern Xinjiang, the Erlqis, Yili, Wulungu, Jingou and numerous lesser streams which has not experienced the pervasive effects of glaciation and subsequent anthropogenic impacts. The scale of the terrain sampled, in terms of area, is comparable to that of the Huanghe and includes a diverse range of geologic and climatic environments. In this paper the chemical fluxes from the stable sedimentary basin of the northern Xinjiang platform will be presented and compared to published results from analogous terrains in the monsoon basins of China and world. Overall, the fluvial geochemistry of northern Xinjiang in westerly climate is similar to that of the Chinese rivers (Huanghe and Yangtze) in the East-Asian monsoon Climate, both in property-property relationships and concentration magnitudes. The range in the chemical signatures of the various tributaries is large; this reflects that lithology exerts the dominant influence in determining the weathering yield from the sedimentary terrains rather than the weathering environment. The effect of different rock weathering ranges from rivers dominated by aluminosilicate weathering, mainly of granites, sandstones and shales, to those bearing the signatures of dissolution of carbonates and evaporites and of continental playa deposits. Carbonates are the general predominant lithology undergoing dissolution particularly within the lesser arid areas. The pCO2 in the study rivers is out of equilibrium with respect to atmospheric pCO2, about up to ˜20 times supersaturated relative to the atmosphere but not to such an extent as the Amazon in the floodplain. A roughly positive relationship is observed between solute concentrations and the drought index (DI) for natural waters in the region, indicating a coupled mountain-basin climate has a direct effect. The relative contributions of end-member solute sources to the total dissolved cations from each watershed have been quantitatively estimated using dissolved load balance models, showing the results as evaporite dissolution > carbonate weathering > silicate weathering > atmospheric input for the whole catchment. The areal total dissolved fluxes range from 0.05 to 2.53 × 106 mol/km2/yr, 0.02-2.09 × 106 mol/km2/yr and 0.01-1.04 × 106 mol/km2/yr in the Yili, Zhungarer and Erlqis, respectively, comparable to those of Chinese and Siberia rivers draining sedimentary platforms, even though they are in drastically different climatic regimes. In general, the fluxes from rivers in sedimentary basins are comparable to those from orogenic zones, but are much higher than in the shield regions. The CO2 consumption by aluminosilicate weathering (0.2-284 × 103 mol/km2/yr) is much smaller than in active orogenic belts (19-1750 × 103 mol/km2/yr in similar latitudes and 143-1000 × 103 mol/km2/yr in the tropical basins), but comparable to those of the Chinese (7-106 × 103 mol/km2/yr) and Siberia (16-112 × 103 mol/km2/yr) rivers.

  14. Mapping the Riverscape of the Middle Fork John Day River with Structure-from-Motion

    NASA Astrophysics Data System (ADS)

    Dietrich, J. T.

    2014-12-01

    Aerial photography has proven an efficient method to collect a wide range of continuous variables for large sections of rivers. These data include variables such as the planimetric shape, low-flow and bank-full widths, bathymetry, and sediment sizes. Mapping these variables in a continuous manner allows us to explore the heterogeneity of the river and build a more complete picture of the holistic riverscape. To explore a low-cost option for aerial photography and riverscape mapping, I used the combination of a piloted helicopter and an off-the-shelf digital SLR camera to collect aerial imagery for a 32 km segment of the Middle Fork John Day River in eastern Oregon. This imagery was processed with Structure-from-Motion (SfM) photogrammetry to produce high-resolution 10 cm orthophotos and digital surface models that were used to extract riverscape variables. The Middle Fork John Day River is an important spawning river for anadromous Chinnook and Steelhead and has been the focus of widespread restoration and conservation activities in response to the legacies of extensive grazing and mining activity. By mapping the riverscape of the Middle Fork John Day, I explored downstream relationships between several geomorphic variables with hyperscale analysis. These riverscape data also provided an opportunity to make a continuous map of habitat suitability for migrating adult Chinook. Both the geomorphic and habitat suitability analysis provide an important assessment of the natural variation in the river and the impact of human modification, both positive and negative.

  15. Sediment discharge of the rivers of Catalonia, NE Spain, and the influence of human impacts

    NASA Astrophysics Data System (ADS)

    Liquete, Camino; Canals, Miquel; Ludwig, Wolfgang; Arnau, Pedro

    2009-03-01

    SummaryThe environmental and anthropogenic factors controlling sediment delivery to the sea are numerous, intricate and usually difficult to quantify. Mediterranean watersheds are historically amongst the most heavily impacted by human activities in the world. This study analyzes some of these factors for nine river systems from Catalonia, NE Spain, that open into the Northwestern Mediterranean Sea, and discusses the results obtained from sediment yield models and sediment concentration data series. General models indicate that the natural suspended sediment yield by individual Catalan rivers ranged within a fork from 94 to 621 t km -2 yr -1. Such a sediment yield would be noticeably reduced (moving the fork to 7-148 t km -2 yr -1) because of lithological factors and direct anthropogenic and, possibly, climatic impacts. Damming, water extraction and urbanization appear as the most important direct anthropogenic impacts in Catalonia. Water discharge and sediment concentration measurements by basin authorities provide much lower sediment yield estimations, from 0.4 to 19.8 t km -2 yr -1, which is probably due to the lack of measured sediment loads during flood events, as it is the case in many other Mediterranean rivers. The Catalan watersheds have some of the smallest runoff values amongst Mediterranean rivers. Of the nine river systems studied, water discharge tends to decrease in two and to increase in one. The other six river systems do not show any clear tendency. Related to climatic parameters, temperature raised in all the watersheds between 1961 and 1990, while precipitation did not show significant trends.

  16. Historical Human Footprint on Modern Tree Species Composition in the Purus-Madeira Interfluve, Central Amazonia

    PubMed Central

    Levis, Carolina; de Souza, Priscila Figueira; Schietti, Juliana; Emilio, Thaise; Pinto, José Luiz Purri da Veiga; Clement, Charles R.; Costa, Flavia R. C.

    2012-01-01

    Background Native Amazonian populations managed forest resources in numerous ways, often creating oligarchic forests dominated by useful trees. The scale and spatial distribution of forest modification beyond pre-Columbian settlements is still unknown, although recent studies propose that human impact away from rivers was minimal. We tested the hypothesis that past human management of the useful tree community decreases with distance from rivers. Methodology/Principal Findings In six sites, we inventoried trees and palms with DBH≥10 cm and collected soil for charcoal analysis; we also mapped archaeological evidence around the sites. To quantify forest manipulation, we measured the relative abundance, richness and basal area of useful trees and palms. We found a strong negative exponential relationship between forest manipulation and distance to large rivers. Plots located from 10 to 20 km from a main river had 20–40% useful arboreal species, plots between 20 and 40 km had 12–23%, plots more than 40 km had less than 15%. Soil charcoal abundance was high in the two sites closest to secondary rivers, suggesting past agricultural practices. The shortest distance between archaeological evidence and plots was found in sites near rivers. Conclusions/Significance These results strongly suggest that past forest manipulation was not limited to the pre-Columbian settlements along major rivers, but extended over interfluvial areas considered to be primary forest today. The sustainable use of Amazonian forests will be most effective if it considers the degree of past landscape domestication, as human-modified landscapes concentrate useful plants for human sustainable use and management today. PMID:23185264

  17. Estimation of weathering rates and CO2 drawdown based on solute load: Significance of granulites and gneisses dominated weathering in the Kaveri River basin, Southern India

    NASA Astrophysics Data System (ADS)

    Pattanaik, J. K.; Balakrishnan, S.; Bhutani, R.; Singh, P.

    2013-11-01

    The solute load of the Kaveri River (South India) and its tributaries draining diverse Precambrian terrains during pre-monsoon and monsoon periods was determined. Using average annual flow, total drainage area and atmospheric input corrected major ion concentrations of these rivers chemical weathering rates, annual fluxes of different ionic species to the ocean and CO2 consumption rates were estimated. Bicarbonate is the most dominant ion (27-79% of anion budget) in all the river samples collected during monsoon period followed by Ca2+, whereas, in case of pre-monsoon water samples Na+ is the most dominant ion (in meq/l). Two approaches were adopted to estimate silicate and carbonate weathering rates in the drainage basin. At Musuri silicate weathering rate (SWR) is 9.44 ± 0.29 tons/km2/a and carbonate weathering rate (CWR) is 1.46 ± 0.16 tons/km2/a. More than 90% of the total ionic budget is derived from weathering of silicates in the Kaveri basin. CO2 consumption rate in the basin for silicate weathering FCO2sil is 3.83 ± 0.12 × 105 mol/km2/a (upper limit), which is comparable with the Himalayan rivers at upper reaches. For carbonate weathering (FCO2carb) CO2 consumption rate is 0.15 ± 0.03 × 105 mol/km2/a in the Kaveri basin. The lower limit of CO2 consumption rate corrected for H2SO4 during silicate and carbonate weathering is FCO2sil is 3.24 × 1005 mol/km2/a and FCO2carb 0.13 × 105 mol/km2/a respectively. CO2 sequestered due to silicate weathering in the Kaveri basin is 25.41 (±0.82) × 109 mol/a which represents 0.21 (±0.01)% of global CO2 drawdown. This may be due to tropical climatic condition, high rainfall during both SW and NE monsoon and predominance of silicate rocks in the Kaveri basin.

  18. First Assessment of Itaipu Dam Ensemble Inflow Forecasting System

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Machado Vieira Lisboa, Auder; Gomes Villa Trinidad, Giovanni; Rógenes Monteiro Pontes, Paulo; Collischonn, Walter; Tucci, Carlos; Costa Buarque, Diogo

    2017-04-01

    Inflow forecasting for Hydropower Plants (HPP) Dams is one of the prominent uses for hydrological forecasts. A very important HPP in terms of energy generation for South America is the Itaipu Dam, located in the Paraná River, between Brazil and Paraguay countries, with a drainage area of 820.000km2. In this work, we present the development of an ensemble forecasting system for Itaipu, operational since November 2015. The system is based in the MGB-IPH hydrological model, includes hydrodynamics simulations of the main river, and is run every day morning forced by seven different rainfall forecasts: (i) CPTEC-ETA 15km; (ii) CPTEC-BRAMS 5km; (iii) SIMEPAR WRF Ferrier; (iv) SIMEPAR WRF Lin; (v) SIMEPAR WRF Morrison; (vi) SIMEPAR WRF WDM6; (vii) SIMEPAR MEDIAN. The last one (vii) corresponds to the median value of SIMEPAR WRF model versions (iii to vi) rainfall forecasts. Besides the developed system, the "traditional" method for inflow forecasting generation for the Itaipu Dam is also run every day. This traditional method consists in the approximation of the future inflow based on the discharge tendency of upstream telemetric gauges. Nowadays, after all the forecasts are run, the hydrology team of Itaipu develop a consensus forecast, based on all obtained results, which is the one used for the Itaipu HPP Dam operation. After one year of operation a first evaluation of the Ensemble Forecasting System was conducted. Results show that the system performs satisfactory for rising flows up to five days lead time. However, some false alarms were also issued by most ensemble members in some cases. And not in all cases the system performed better than the traditional method, especially during hydrograph recessions. In terms of meteorological forecasts, some members usage are being discontinued. In terms of the hydrodynamics representation, it seems that a better information of rivers cross section could improve hydrographs recession curves forecasts. Those opportunities for improvements are currently being addressed in the system next update.

  19. Lead-rich sediments, Coeur d'Alene River Valley, Idaho: area, volume, tonnage, and lead content

    USGS Publications Warehouse

    Bookstrom, Arthur A.; Box, Stephen E.; Campbell, Julie K.; Foster, Kathryn I.; Jackson, Berne L.

    2001-01-01

    In north Idaho, downstream from the Coeur d?Alene (CdA) silver-lead-zinc mining district, lead-rich sediments, containing at least 1,000 ppm of lead, cover approximately 61 km2 (or 73 percent) of the 84-km2 floor of the CdA River valley, from the confluence of its North and South Forks to the top of its delta-front slope, in CdA Lake. Concentrations of lead (Pb) in surface sediments range from 15 to about 38,500 ppm, and average 3,370 ppm, which is 112 times the mean background concentration (30 ppm) of Pb in uncontaminated sediments of the CdA and St. Joe River valleys. Most of the highest concentrations of Pb are in sediments within or near the river channel, or near the base of the stratigraphic section of Pb-rich sediments. Ranges of Pb concentration in Pb-rich sediments gradually decrease with increasing distance from the river and its distributaries. Ranges of thickness of Pb-rich sediments generally decrease abruptly with increasing distance from the river, from about 3 + 3 m in the river channel to about 1 + 1m on upland riverbanks, levees and sand splays, to about 0.3 + 0.3 m in back-levee marshes and lateral lakes. Thickness of Pb-rich dredge spoils (removed from the river and deposited on Cataldo-Mission Flats) is mostly in the range 4 + 4 m, thinning away from an outfall zone north and west of the river, near the formerly dredged channel reach near Cataldo Landing. We attribute lateral variation in ranges of thickness and Pb content of Pb-rich sediments to the dynamic balance between decreasing floodwater flow velocity with increasing distance from the river and the quantity, size, density, and Pb content of particles mobilized, transported, and deposited. We present alternative median- and mean-based estimates of the volume of Pbrich sediments, their wet and dry tonnage, and their tonnage of contained Pb. We calculate separate pairs of estimates for 23 Estimation Units, each of which corresponds to a major depositional environment, divided into down-valley segments. We favor median-based estimates of the thickness and thickness-interval weighted-average Pb concentration, because uncommonly thick and Pb-rich sections may excessively influence mean estimates. Nevertheless, data from partial sections of Pb-rich sediments are included in most estimates, and these tend to reduce both median- and mean-based estimates. Median-based estimates indicate a volume of 32 M m3 of Pb-rich sediments in the CdA River valley, with a dry tonnage of 47 + 4 M t, containing 250 + 75 kt of Pb (considering analytical uncertainties only). An equivalent tonnage of dry CdA River valley sediments of the pre-mining era, with the mean background concentration of 30 ppm of Pb, would contain about 1.4 kt of Pb. Thus, the amount of Pb added to CdA River valley sediments deposited since the onset of mining is estimated as 249 + 75 kt of Pb, or about 99.5 percent of the estimated Pb contained. Of an estimated 850 + 10 kt of Pb lost to streams as a result of mining-related activities, an estimated total of 739 + 319 kt of Pb has been deposited in sediments of the South Fork drainage basin, the CdA River valley, and the bottom of CdA Lake (combined). Based on mid-range values from a set of preferred estimates with uncertainty ranges up to + 50 percent, roughly 24 percent of the 850 + 10 kt of mining-derived Pb lost to streams has been added to sediments of the South Fork drainage basin, 29 percent to sediments of the CdA River valley floor, and 34 percent to sediments on the bottom of CdA Lake. This amounts to roughly 87 percent of the Pb lost to streams, not including Pb contained in sediments of the North Fork drainage basin and the Spokane River valley, the tonnages of which have not yet estimated.

  20. Hydrochemistry of inland rivers in the north Tibetan Plateau: Constraints and weathering rate estimation.

    PubMed

    Wu, Weihua

    2016-01-15

    The geographic region around the northern and northeastern Tibetan Plateau is the source of several inland rivers (e.g. Tarim River) of worldwide importance that are generated in the surrounding mountains systems of Tianshan, Pamir, Karakorum, and Qilian. To characterize chemical weathering and atmospheric CO2 consumption in these regions, water samples from the Tarim, Yili, Heihe, Shule, and Shiyang Rivers were collected and analyzed for major ion concentrations. The hydrochemical characteristics of these inland rivers pronouncedly distinguish them from large exorheic rivers (e.g., the Yangtze River and the Yellow River), as reflected in very high total dissolution solids (TDS) values. TDS was 115-4345 mg l(-1) with an average of 732 mg l(-1), which is an order of magnitude higher than the mean value for world rivers (65 mg l(-1)). The Cheerchen River, Niya River, Keliya River and the terminal lakes of the Tarim River and the Heihe River have TDS values higher than 1 gl(-1), indicating saline water that cannot be directly consumed. Therefore, the problem of sufficient and safe drinking water has become increasingly prominent in the northwestern China arid zone. According to an inversion model, the contribution from evaporite dissolution to the dissolved loads in these rivers is 12.5%-99% with an average of 54%. The calculated silicate and carbonate weathering rates are 0.02-4.62 t km(-2)y(-1) and 0.01-11.7 t km(-2)y(-1) for these rivers. To reduce the influence of lithology, only the silicate weathering rates in different parts of the Tibetan Plateau are compared. A rough variation tendency can be seen in the rates: northern regional (0.15-1.73 t km(-2)y(-1))

  1. Exploring SWOT discharge algorithm accuracy on the Sacramento River

    NASA Astrophysics Data System (ADS)

    Durand, M. T.; Yoon, Y.; Rodriguez, E.; Minear, J. T.; Andreadis, K.; Pavelsky, T. M.; Alsdorf, D. E.; Smith, L. C.; Bales, J. D.

    2012-12-01

    Scheduled for launch in 2019, the Surface Water and Ocean Topography (SWOT) satellite mission will utilize a Ka-band radar interferometer to measure river heights, widths, and slopes, globally, as well as characterize storage change in lakes and ocean surface dynamics with a spatial resolution ranging from 10 - 70 m, with temporal revisits on the order of a week. A discharge algorithm has been formulated to solve the inverse problem of characterizing river bathymetry and the roughness coefficient from SWOT observations. The algorithm uses a Bayesian Markov Chain estimation approach, treats rivers as sets of interconnected reaches (typically 5 km - 10 km in length), and produces best estimates of river bathymetry, roughness coefficient, and discharge, given SWOT observables. AirSWOT (the airborne version of SWOT) consists of a radar interferometer similar to SWOT, but mounted aboard an aircraft. AirSWOT spatial resolution will range from 1 - 35 m. In early 2013, AirSWOT will perform several flights over the Sacramento River, capturing river height, width, and slope at several different flow conditions. The Sacramento River presents an excellent target given that the river includes some stretches heavily affected by management (diversions, bypasses, etc.). AirSWOT measurements will be used to validate SWOT observation performance, but are also a unique opportunity for testing and demonstrating the capabilities and limitations of the discharge algorithm. This study uses HEC-RAS simulations of the Sacramento River to first, characterize expected discharge algorithm accuracy on the Sacramento River, and second to explore the required AirSWOT measurements needed to perform a successful inverse with the discharge algorithm. We focus on several specific research questions affecting algorithm performance: 1) To what extent do lateral inflows confound algorithm performance? We examine the ~100 km stretch of river from Colusa, CA to the Yolo Bypass, and investigate how the varying degrees of lateral flows affect algorithm performance. 2) To what extent does a simple slope-area method (i.e. Manning's equation) applied to river reaches accurately describe river discharge? 3) How accurately does the algorithm perform an inversion to accurately describe the river bathymetry and roughness coefficient? Finally, we explore the sensitivity of the algorithm to the number of AirSWOT flights and AirSWOT measurement precision for various river flow scenarios.

  2. A Hot Knife Through Ice-Cream: Earthflow Response to Channel Incision (Or Channel Response to Earthflows?), Eel River Canyon, California

    NASA Astrophysics Data System (ADS)

    Mackey, B. H.; Roering, J. J.; McKean, J. A.

    2007-12-01

    Abundant glacier-like earthflow features are recognized as a primary erosional process in the highly erodable Franciscan Melange of the Eel River Basin, CA. Despite their prominence in this "melting ice-cream" topography, many questions regarding their effects on the long term sediment flux from this rapidly eroding basin remain unresolved. For example, does an earthflow's basal shear zone propagate vertically downwards with vertical river incision? What controls the upslope and lateral extent of individual earthflows? How does the erosive power of a river influence the rate of earthflow movement, or conversely do earthflow toe deposits regulate the rate of river incision? Here we present preliminary findings derived from study of 200km2 of lidar data (1m resolution) covering hillslopes adjacent to 30km of the Eel River. Lidar allows detailed analysis of the interaction between earthflows and the drainage network, and we document how inferred changes in local base level are propagated throughout adjacent hillslopes via earthflow movement. The most active earthflows (determined by field surveying and analysis of aerial photos rectified using lidar- generated digital topography) coincide with locally steep sections of channel, while downstream of the most active flows we frequently observe less-active or dormant earthflows. This observation supports the idea that the locations of the most active earthflows coincide with headward propagating knickpoints in the channel. The rate of earthflow movement appears to slow when an earthflow exhausts the upslope area of easily mobilized sediment. Earthflow toes can protrude directly into the channel, causing the channel to narrow and steepen, and even undercut the opposite bank. Large resistant boulders (>2m diameter) transported by the earthflow accumulate in the streambed and appear to both act as a check on further channel incision and earthflow movement. In contrast, areas adjacent to active earthflows exhibit smooth hillslopes, which show little or no evidence for recent instability. Such unfailed hillslopes preferentially occur near ridges or adjacent to strath terraces, and appear to be largely isolated from the effects of channel incision.

  3. Factors influencing bank geomorphology and erosion of the Haw River, a high order river in North Carolina, since European settlement.

    PubMed

    Macfall, Janet; Robinette, Paul; Welch, David

    2014-01-01

    The Haw River, a high order river in the southeastern United States, is characterized by severe bank erosion and geomorphic change from historical conditions of clear waters and connected floodplains. In 2014 it was named one of the 10 most threatened rivers in the United States by American Rivers. Like many developed areas, the region has a history of disturbance including extensive upland soil loss from agriculture, dams, and upstream urbanization. The primary objective of this study was to identify the mechanisms controlling channel form and erosion of the Haw River. Field measurements including bank height, bankfull height, bank angle, root depth and density, riparian land cover and slope, surface protection, river width, and bank retreat were collected at 87 sites along 43.5 km of river. A Bank Erosion Hazard Index (BEHI) was calculated for each study site. Mean bank height was 11.8 m, mean width was 84.3 m, and bank retreat for 2005/2007-2011/2013 was 2.3 m. The greatest bank heights, BEHI values, and bank retreat were adjacent to riparian areas with low slope (<2). This is in contrast to previous studies which identify high slope as a risk factor for erosion. Most of the soils in low slope riparian areas were alluvial, suggesting sediment deposition from upland row crop agriculture and/or flooding. Bank retreat was not correlated to bank heights or BEHI values. Historical dams (1.2-3 m height) were not a significant factor. Erosion of the Haw River in the study section of the river (25% of the river length) contributed 205,320 m3 of sediment and 3759 kg of P annually. Concentration of suspended solids in the river increased with discharge. In conclusion, the Haw River is an unstable system, with river bank erosion and geomodification potential influenced by riparian slope and varied flows.

  4. Factors Influencing Bank Geomorphology and Erosion of the Haw River, a High Order River in North Carolina, since European Settlement

    PubMed Central

    Macfall, Janet; Robinette, Paul; Welch, David

    2014-01-01

    The Haw River, a high order river in the southeastern United States, is characterized by severe bank erosion and geomorphic change from historical conditions of clear waters and connected floodplains. In 2014 it was named one of the 10 most threatened rivers in the United States by American Rivers. Like many developed areas, the region has a history of disturbance including extensive upland soil loss from agriculture, dams, and upstream urbanization. The primary objective of this study was to identify the mechanisms controlling channel form and erosion of the Haw River. Field measurements including bank height, bankfull height, bank angle, root depth and density, riparian land cover and slope, surface protection, river width, and bank retreat were collected at 87 sites along 43.5 km of river. A Bank Erosion Hazard Index (BEHI) was calculated for each study site. Mean bank height was 11.8 m, mean width was 84.3 m, and bank retreat for 2005/2007-2011/2013 was 2.3 m. The greatest bank heights, BEHI values, and bank retreat were adjacent to riparian areas with low slope (<2). This is in contrast to previous studies which identify high slope as a risk factor for erosion. Most of the soils in low slope riparian areas were alluvial, suggesting sediment deposition from upland row crop agriculture and/or flooding. Bank retreat was not correlated to bank heights or BEHI values. Historical dams (1.2–3 m height) were not a significant factor. Erosion of the Haw River in the study section of the river (25% of the river length) contributed 205,320 m3 of sediment and 3759 kg of P annually. Concentration of suspended solids in the river increased with discharge. In conclusion, the Haw River is an unstable system, with river bank erosion and geomodification potential influenced by riparian slope and varied flows. PMID:25302956

  5. Geomorphic response of rivers to glacial retreat and increasing peak flows downstream from Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; Barnas, C. R.; Magirl, C. S.; Voss, F. D.

    2010-12-01

    On Mount Rainier, Washington, the National Park Service has documented widespread aggradation of as much as 10 m since the early 20th century, of rivers draining the glaciated stratovolcano. This rapid sedimentation appears to be related to glacial retreat and also may be a function of the increased magnitude and timing of peak flows that mobilize and transport sediment. We are conducting an assessment of the Puget Lowland rivers that drain Mount Rainier, 25-100 km downstream from the park boundary, to document the geomorphic response of the downstream reaches given the widespread aggradation upstream. These downstream reaches provide critical aquatic habitat for spawning and rearing of several species of salmonids, including endangered Chinook salmon and steelhead. Fluvial sedimentation can have both deleterious and beneficial effects on aquatic habitat depending on sediment particle size, river slope and width, and river management. To date, our work shows sedimentation of as much as 2 m between 1984 and 2009 in these lowland rivers. Aggradation rates that were calculated by comparing channel change at 156 cross sections, ranged between 4.8 and 9.1 cm/yr in reaches where rivers exit the mountain front and enter the lowland. Analysis of streamflow-gaging station data from throughout the watersheds draining Mount Rainier show rapid incision and aggradation, suggesting pulses of coarse-grained bedload may be moving down the mountainous rivers as kinetic waves. Preliminary results, however, seem to indicate that the rivers in the Puget Lowland have not yet experienced significant widespread sedimentation directly related to glacial retreat. Estimating the time of arrival of mobilized alluvium is a critical need for resource managers given the potential effects of sedimentation on river flood-conveyance capacity, fish habitat, and estuarine wetlands.

  6. Extreme Seasonality During Early Eocene Hyperthermals

    NASA Astrophysics Data System (ADS)

    Plink-Bjorklund, P.; Birgenheier, L.

    2012-12-01

    An outcrop multi-proxy dataset from the Uinta Basin, Utah, US indicates that extreme seasonality occurred repeatedly during the Early Eocene transient global warming events (hyperthermals), during the Palaeocene-Eocene Thermal Maximum (PETM) as well as during the six consequent younger hyperthermals. In this multi-proxy analysis we have investigated the precipitation distribution and peakedness changes during Early Eocene hyperthermals. This dataset is different from previously published terrestrial climate proxy analyses, in that we fully utilize the sedimentary record itself, and especially the hydrodynamic indicators within the river strata. We combine these high-resolution sedimentologic-stratigraphic analyses, with analyses of terrestrial burrowing traces, and the conventional palaeosol and stable carbon isotope analyses. With this approach, we are able to better document hydroclimatologic changes, and identify climate seasonality changes, rather than just long-term mean humidity/aridity and temperature trends. For this study we analyzed over 1000 m of Palaeocene and Early Eocene river and lake strata in the Uinta Basin, Utah, US (Figs. 1 and 2). The sedimentologic-stratigraphic analyses of outcrops included measuring detailed stratigraphic sections, analyzing photopanels, a spatial GPS survey, and lateral walk-out of stratigraphic packages across an area of 300 km2, with additional data across an area of ca 6000 km2 (Fig. 2). Continental burrowing traces and palaeosols were analyzed along the measured sections. For geochemical analysis 196 samples of mudrock facies were collected along the measured sections and analyzed for total organic carbon (Corg), total nitrogen (Ntot), and δ13C values of bulk organic matter. Biostratigraphy (25), radiometric dates, and carbon isotope stratigraphy, using bulk δ13C of organic matter in floodplain siltstones confirm the position of the PETM and the 6-8 post-PETM hyperthermals in the studied strata The seasonality intensification is seen as short intense rain seasons alternating with prolonged droughts. Such seasonality intensification had a profound effect on landscape morphology as well as on vegetation. River systems changed from braided streams to highly seasonal fluvial megafans with tens of meters deep channels. River channels staid dry through most of the prolonged droughts, as witnessed by intra-channel insect burrows and paleosols. The intense wet seasons caused extremely high water discharge in channels, resulting in high rates of erosion, sediment transport and deposition. As a result, the channels were filled locally by up to 10s of meters of sediment, causing rapid river course changes and terrestrial flooding. Particulate organic matter content is extremely low in these sediments. This is in contrast to river sediments that were deposited during less intense seasonality. The dataset was compared to other datasets from intermontane basins in the Western Interior and also Europe (Spain), where similar seasonality changes are indicated to have occurred during the PETM. This is in great contrast to intermontane Early Eocene river systems documented in Norwegian Arctic (e.g. Spitsbergen) and in tropics (e.g. Venezuela), where no seasonality intensification has been documented. Thus the seasonality intensification seems to have been confined to (northern) mid-latitudes and subtropics.

  7. Movement patterns of armado, Pterodoras granulosus, in the Paraná River Basin

    USGS Publications Warehouse

    Makrakis, M.C.; Miranda, L.E.; Makrakis, S.; Fernandez, D.R.; Garcia, J.O.; Dias, J.H.P.

    2007-01-01

    We studied the migratory behaviour of armado, Pterodoras granulosus, in the Paraná River Basin of Brazil, Paraguay and Argentina, during 1997–2005. This species invaded the Upper Paraná River after upstream dispersal was facilitated when Itaipu Reservoir inundated a natural barrier. Fish were tagged (N = 8051) in the mainstems of the Yacyreta and Itaipu reservoirs, bays of major tributaries, the Paraná River floodplain above Itaipu Reservoir, and below dams. In all, 420 fish were recaptured of which 61% moved away from the release area. Fish moved a maximum of 215 km (mean 42), and at a maximum rate of 9.4 km·day−1 (mean 0.6). Of the 256 armados that moved away from the release site, 145 moved upstream towards unimpounded stretches of the Paraná River and 111 moved downstream into the reservoir and bays of its tributaries (maximum 150 km). Based on the observed migratory movements, we suspect that most of the reproductive output originates in tributaries to the reservoirs. The ability of this species to expand its range presents a conundrum by pitting fishery management interests against conservation needs. Maintenance of the important armado fisheries depends on the ability of the species to migrate freely to use spawning and nursery areas in reservoir tributaries and floodplains. However, its ability to migrate long distances can allow this non-native species the opportunity to invade most of the Upper Paraná River.

  8. Temperature constraints on the Ginkgo flow of the Columbia River Basalt Group

    NASA Astrophysics Data System (ADS)

    Ho, Anita M.; Cashman, Katharine V.

    1997-05-01

    This study provides the first quantitative estimate of heat loss for a Columbia River Basalt Group flow. A glass composition-based geothermometer was experimentally calibrated for a composition representative of the 500-km-long Ginkgo flow of the Columbia River Basalt Group to measure temperature change during transport. Melting experiments were conducted on a bulk sample at 1 atm between 1200 and 1050 °C. Natural glass was sampled from the margin of a feeder dike near Kahlotus, Washington, and from pillow basalt at distances of 120 km (Vantage, Washington), 350 km (Molalla, Oregon), and 370 km (Portland, Oregon). Ginkgo basalt was also sampled at its distal end at Yaquina Head, Oregon (500 km). Comparison of the glass MgO content, K2O in plagioclase, and measured crystallinities in the experimental charges and natural samples tightly constrains the minimum flow temperature to 1085 ± 5 °C. Glass and plagioclase compositions indicate an upper temperature of 1095 ± 5 °C; thus the maximum temperature decrease along the flow axis of the Ginkgo is 20 °C, suggesting cooling rates of 0.02 0.04 °C/km. These cooling rates, substantially lower than rates observed in active and historic flows, are inconsistent with turbulent flow models. Calculated melt temperatures and viscosities of 240 750 Pa · s allow emplacement either as a fast laminar flow under an insulating crust or as a slower, inflated flow.

  9. The effect of flow reduction on microphytobenthos development in an alpine river stretch using novel fluorescence techniques

    NASA Astrophysics Data System (ADS)

    Ganglbauer, A.; Bondar-Kunze, E.; Hein, T.; Zeiringer, B.

    2009-04-01

    Many European river systems are affected by flow alterations leading to significant differences of the pristine discharge regime at different temporal scales. Flow regulation measures and water abstraction are changing the extent and frequency of water level changes. In concert with river bed regulation this could affect the hydromorphological situation of river systems and key ecosystem functions. Microphytobenthos is a major component in the physical, chemical and biochemical processes, which occur in river systems and the associated riparian zones. They are significant primary producers in rivers, because of their high turnover rate, rapid colonization along the aquatic-terrestrial boundary, transform nutrients and support via their biomass the food webs in the river and adjacent ecosystems. The developed structure and composition of microphytobenthos is controlled by the hydromorphological conditions and thus, indicates environmental changes. The guiding question for the presented research was to what extent changes in the variability of flow affect microphytobenthos development in a river stretch and to what extent the structure and composition of microphytobenthos changed at the micro scale. To investigate these effects under natural conditions we compared a residual flow section impacted by a hydropower plant with one unaffected section of the River Ybbs, a tributary to the Danube River. The river stretch investigated was a 33 km long stretch between the villages Göstling and Opponitz in Lower Austria. The River Ybbs is draining a catchment of 1,300 km2 and has a mean discharge of 20 m3 s-1.The main benthic algal group are diatoms, which are typical for low order rivers in the Alpine area, characterized by low temperatures throughout the year. We expected that flow velocity explain the extent of microphytobenthos development at the river stretch scale and especially low flow conditions affect the structure and composition of algal biomass at the micro scale. The measurements included field surveys and two experimental settings. During May 2008 we conducted an in-situ experiment with artificial substrata to investigate the effect of flow velocity changes. We exposed glass slides in baskets along two transects in the River Ybbs at two sampling sites and eight different positions. After a period of about four weeks with weekly recurrent measurements including flow velocity, water depth, chlorophyll a content and electron transport rate (ETR) we started our experiment. Glass slides were taken from each position and were exposed in a flow reduced impounded area in the river Ybbs near Göstling. There low flow velocity was used to test the effect on microphytobenthos development. The next ten days daily measurements of flow velocity, water depth, chlorophyll-a content and electron transport rate (ETR) with the pulse amplitude modulated fluorescence method and microscopic analysis were undertaken. Based on these daily measurements under almost stable environmental conditions we could ascertain a shift in the benthic algae community. To assess the distribution along a river stretch we measured 70 sampling points at each sampling side. To characterize the biomass and activity of the microphytobenthos we used Pulse Amplitude Modulated Fluorescence (PAM-Fluorescence). Using this technique allow to measure the biomass (Chlorophyll a) and the ETR (electron transport rate) simultaneously without destroying the structure. With this technique it is possible to The PAM technique measure directly the fluorescence of chlorophyll a in the photosystem two. The quantum yield you get is the probability that a photon can be used photochemically. The quantum yield offers the possibility to illustrate the fitness of algae. Based on these measurements short term responses can be measured and combined with the results of field surveys. These analytical results were used for a habitat modelling approach to describe the microphytobenthos development at 2 scales. First results of the research will be presented.

  10. Salton Sea, California

    NASA Image and Video Library

    2015-09-23

    The Salton Sea in south California was created in 1905 when spring flooding on the Colorado River breached a canal. For 18 months the entire volume of the river rushed into the Salton Trough, creating a lake 32 km wide and 72 km long. In the 1950s, resorts sprang up along the shores. However, shrinking of the lake and increased salinity led to the abandonment of the resorts. The two images show the shrinking lake on May 31, 1984 (Landsat) and June 14, 2015 (ASTER). The images cover an area of 37.5 x 27 km, and are located at 33.2 degrees north, 115.7 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19786

  11. Geologic map of the Topock 7.5’ quadrangle, Arizona and California

    USGS Publications Warehouse

    Howard, Keith A.; John, Barbara E.; Nielson, Jane E.; Miller, Julia M.G.; Wooden, Joseph L.

    2013-01-01

    The Topock quadrangle exposes a structurally complex part of the Colorado River extensional corridor and also exposes deposits that record landscape evolution during the history of the Colorado River. Paleoproterozoic gneisses and Mesoproterozoic granitoids and intrusive sheets are exposed through tilted cross-sectional thicknesses of many kilometers. Intruding them are a series of Mesozoic to Tertiary igneous rocks including dismembered parts of the Late Cretaceous Chemehuevi Mountains Plutonic Suite. Plutons of this suite in Arizona, if structurally restored for Miocene extension, formed cupolas capping the Chemehuevi Mountains batholith in California. Thick (1–3 km) Miocene sections of volcanic rocks, sedimentary breccias, conglomerate, and sandstone rest nonconformably on the Proterozoic rocks and record the structural and depositional evolution of the Colorado River extensional corridor. Four major Miocene low-angle normal faults and a steep block-bounding fault that developed during this episode divide the deformed rocks of the quadrangle into major structural plates and tilted blocks in and east of the Chemehuevi Mountains core complex. The low-angle faults attenuate crustal section, superposing supracrustal and upper crustal rocks against gneisses and granitoids originally from deeper crustal levels. The transverse block-bounding Gold Dome Fault Zone juxtaposes two large hanging-wall blocks, each tilted 90°, and the fault zone splays at its tip into folds in layered Miocene rocks. A synfaulting intrusion occupies the triangular zone where the folded strata detached from an inside corner along this fault between the tilt blocks. Post-extensional upper Miocene to Quaternary strata, locally deformed, record post-extensional landscape evolution, including several Pliocene and younger aggradational episodes in the Colorado River valley and intervening degradation episodes. The aggradational sequences include (1) the Bouse Formation, (2) fluvial deposits correlated with the alluvium of Bullhead City, (3) the younger fluvial boulder conglomerate of Bat Cave Wash, (4) the fluvial Chemehuevi Formation and related valley-margin deposits, and (5) fluvial Holocene deposits under the river and the valley floor. These fluvial records of Colorado River deposition are interspersed with piedmont alluvial fan deposits of several ages.

  12. Modeling the influence of river rehabilitation scenarios on bed material sediment flux in a large river over decadal timescales

    USGS Publications Warehouse

    Singer, Michael B.; Dunne, Thomas

    2006-01-01

    A stochastic flood generator and calibrated sediment transport formulae were used to assess the decadal impact of major river rehabilitation strategies on two fraction bed material sediment flux and net storage, first‐order indicators of aquatic riverine habitat, in a large river system. Model boundary conditions were modified to reflect the implementation of three major river rehabilitation strategies being considered in the Sacramento River Valley: gravel augmentation, setting back of levees, and flow alteration. Fifty 30‐year model simulations were used to compute probabilities of the response in sediment flux and net storage to these strategies. Total annual average bed material sediment flux estimates were made at six gauged river cross sections, and ∼60 km reach‐scale sediment budgets were evaluated between them. Gravel augmentation to improve spawning habitat induced gravel accumulation locally and/or downstream, depending on the added mixture. Levee setbacks to recreate the river corridor reduced flow stages for most flows and hence lowered sediment flux. Flow alteration to mimic natural flow regimes systematically decreased total annual average flux, suggesting that high‐magnitude low‐frequency transport events do not affect long‐term trends in bed material flux. The results indicate that each rehabilitation strategy reduces sediment transport in its target reaches and modulates imbalances in total annual bed material sediment budgets at the reach scale. Additional risk analysis is necessary to identify extreme conditions associated with variable hydrology that could affect rehabilitation over decades. Sensitivity analysis suggests that sorting of bed material sediment is the most important determinant of modeled transport and storage patterns.

  13. Diversity, abundance, and possible sources of fecal bacteria in the Yangtze River.

    PubMed

    Sun, Haohao; He, Xiwei; Ye, Lin; Zhang, Xu-Xiang; Wu, Bing; Ren, Hongqiang

    2017-03-01

    The fecal bacteria in natural waters may pose serious risks on human health. Although many source tracking methods have been developed and used to determine the possible sources of the fecal pollution, little is known about the overall diversity and abundance of fecal bacterial community in natural waters. In this study, a method based on fecal bacterial sequence library was introduced to evaluate the fecal bacterial profile in the Yangtze River (Nanjing section). Our results suggested that the Yangtze River water harbors diverse fecal bacteria. Fifty-eight fecal operational taxonomic units (97% identity level) were detected in the Yangtze River water samples and the relative abundance of fecal bacteria in these samples ranged from 0.1 to 8%. It was also found that the relative abundances of the fecal bacteria in locations near to the downstream of wastewater treatment plants were obviously higher than those in other locations. However, the high abundance of fecal bacteria could decrease to the normal level in 2~4 km in the river due to degradation or dilution, and the overall fecal bacteria level changed little when the Yangtze River flew through the Nanjing City. Moreover, the fecal bacteria in the Yangtze River water were found to be highly associated (Spearman rho = 0.804, P < 0.001) with the potential pathogenic bacteria. Collectively, the findings in this study reveal the diversity, abundance, and possible sources of fecal bacteria in the Yangtze River and advance our understandings of the fecal bacteria community in the natural waters.

  14. Complex Channel Avulsion in the Meghna River Foodplain During the Mid to Late Holocene: The Potential Effect of Tectonic and Co-Seismic Uplift

    NASA Astrophysics Data System (ADS)

    Dunham, A.; Grall, C.; Mondal, D. R.; Steckler, M. S.; Rajapara, H.; Kumar, B.; Philibosian, B.; Akhter, S. H.; Singhvi, A. K.

    2016-12-01

    Channel migrations and river avulsions in deltaic river systems are mainly driven by differential changes of surface topography, such as the superelevation of channels due to sedimentation. In addition to such autocyclic processes, tectonic events, such as earthquakes, may also lead to avulsions from sudden uplift. The eastern part of the Ganges-Brahmaputra-Meghna Delta (GBMD) is underlain by the blind megathrust of the IndoBurma subduction zone. In this region we investigate a 100 km long sinuous abandoned channel of the Meghna River. Immediately south of the channel, it has been previously shown that the topography is slightly higher than on the rest of the Delta and there is an oxidized Holocene exposure surface. Part of the Titas River flows northward from this area into the abandoned channel belt, opposite of the southward flowing rivers of the delta. We provide results from a detailed investigation of this abandoned channel of the Meghna River using stratigraphic logs of hand-drilled wells, resistivity profiles, sediment analyses and OSL and C14 dating, The OSL ages to be presented constrain the possible date of the event. We employ numerical modeling to evaluate the hypothesis that the co-seismic uplift associated to an earthquake can trigger the channel migration. Our modeling approach aims to estimate the co-seismic uplift associated with potential seismic events using an elastic Coulomb's dislocation model. The geometry fault in our model is estimated using geologic and GPS constraints with standard elastic parameters (Young's modulus = 80 GPa; Poisson's ratio = 0.3). We explored different potential earthquakes geometries that involve the megathrust, a splay fault, or the megathrust terminating in the splay. The magnitude and distribution of co-seismic slip are also varied between a rupture length of 112.5km and 180km along a 225km long fault. We show that any class of models can produce the amount of uplift (1-2 m) necessary for triggering the river avulsion. Thus the avulsion could be due to a >M8 megathrust earthquake or a M7 splay fault rupture. In either case, the rupture cannot extend west of the abandoned channel to the current Meghna River, and thus did not rupture to the deformation front, where the megacity of Dhaka now lies.

  15. Proglacial River Reveals Substantial Greenland Ice Sheet Climate Sensitivity and Meltwater Routing Delays

    NASA Astrophysics Data System (ADS)

    van As, D.; Mikkelsen, A. B.; Holtegaard Nielsen, M.; Claesson Liljedahl, L.; Lindback, K.; Pitcher, L. H.; Hasholt, B.

    2016-12-01

    A 12.000 km2 area of the Greenland ice sheet discharges meltwater via the proglacial Watson River in west Greenland. In a ten-year time span of continuous monitoring (2006-2015), the river discharged 3.8 km3 to 11.2 km3 yr-1. The large interannual variability is for an important part explained by hypsometric amplification: the flattening of the ice sheet with elevation adds 70% meltwater discharge sensitivity to atmospheric temperature. Comparing river discharge with ice sheet surface meltwater production from an observation-based surface mass balance model we quantify multiple-day routing delays for meltwater transit through the supra-, en-, sub- and proglacial system. This delay increases with ice sheet surface elevation: on average five days for surface water at the previous-known equilibrium line altitude (ELA) of ca. 1550 m, and seven days at the 2009-2015 ELA of ca. 1800 m above sea level. A flooding of the Kangerlussuaq bridge as in July 2012 thus requires a multi-day high-melt episode and can therefore be anticipated by in-situ monitoring of ice sheet melt. No evidence of significant en- or subglacial meltwater retention is found.

  16. Changes to channel sediments resulting from complex human impacts in a gravel-bed river, Polish Carpathians

    NASA Astrophysics Data System (ADS)

    Zawiejska, Joanna; Wyżga, Bartłomiej; Hajdukiewicz, Hanna; Radecki-Pawlik, Artur; Mikuś, Paweł

    2016-04-01

    During the second half of the twentieth century, many sections of the Czarny Dunajec River, Polish Carpathians, were considerably modified by channelization as well as gravel-mining and the resultant channel incision (up to 3.5 m). This paper examines changes to the longitudinal pattern of grain size and sorting of bed material in an 18-km-long river reach. Surface bed-material grain size was established on 47 gravel bars and compared with a reference downstream fining trend of bar sediments derived from the sites with average river width and a vertically stable channel. Contrary to expectations, the extraction of cobbles from the channel bed in the upper part of the study reach, conducted in the past decades, has resulted in the marked coarsening of bed material in this river section. The extraction facilitated entrainment of exposed finer grains and has led to rapid bed degradation, whereas the concentration of flood flows in the increasingly deep and narrow channel has increased their competence and enabled a delivery of the coarse particles previously typical of the upstream reach. The middle section of the study reach, channelized to prevent sediment delivery to a downstream reservoir, now transfers the bed material flushed out from the incising upstream section. With considerably increased transport capacity of the river and with sediment delivery from bank erosion eliminated by bank reinforcements, bar sediments in the channelized section are typified by increased size of the finer fraction and better-than-average sorting. In the wide, multi-thread channel in the lower part of the reach, low unit stream power and high channel-form roughness facilitate sediment deposition and are reflected in relatively fine grades of bar gravels. The study showed that selective extraction of larger particles from the channel bed leads to channel incision at and upstream of the mining site. However, unlike bulk gravel mining, selective extraction does not result in sediment deficit downstream as large volumes of finer bed material are flushed out from the incising channel section. Grain-size analyses of bulk gravels and measurements of 100 coarsest particles within the channel sediment ranging in age from 5200 years BP to the present, performed in this deeply incised section, indicated that grain size of channel sediments changed relatively little since mid-Holocene to the 1960s, but has increased rapidly over the last half-century as a result of human interventions and rapidly progressing channel incision. This study was performed within the scope of the Research Project DEC-2013/09/B/ST10/00056 financed by the National Science Centre of Poland.

  17. Impacts of rainfall spatial variability on hydrogeological response

    NASA Astrophysics Data System (ADS)

    Sapriza-Azuri, Gonzalo; Jódar, Jorge; Navarro, Vicente; Slooten, Luit Jan; Carrera, Jesús; Gupta, Hoshin V.

    2015-02-01

    There is currently no general consensus on how the spatial variability of rainfall impacts and propagates through complex hydrogeological systems. Most studies to date have focused on the effects of rainfall spatial variability (RSV) on river discharge, while paying little attention to other important aspects of system response. Here, we study the impacts of RSV on several responses of a hydrological model of an overexploited system. To this end, we drive a spatially distributed hydrogeological model for the semiarid Upper Guadiana basin in central Spain with stochastic daily rainfall fields defined at three different spatial resolutions (fine → 2.5 km × 2.5 km, medium → 50 km × 50 km, large → lumped). This enables us to investigate how (i) RSV at different spatial resolutions, and (ii) rainfall uncertainty, are propagated through the hydrogeological model of the system. Our results demonstrate that RSV has a significant impact on the modeled response of the system, by specifically affecting groundwater recharge and runoff generation, and thereby propagating through to various other related hydrological responses (river discharge, river-aquifer exchange, groundwater levels). These results call into question the validity of management decisions made using hydrological models calibrated or forced with spatially lumped rainfall.

  18. Textural characteristics and sedimentary environment of sediment at eroded and deposited regions in the severely eroded coastline of Batu Pahat, Malaysia.

    PubMed

    Wan Mohtar, Wan Hanna Melini; Nawang, Siti Aminah Bassa; Abdul Maulud, Khairul Nizam; Benson, Yannie Anak; Azhary, Wan Ahmad Hafiz Wan Mohamed

    2017-11-15

    This study investigates the textural characteristics of sediments collected at eroded and deposited areas of highly severed eroded coastline of Batu Pahat, Malaysia. Samples were taken from systematically selected 23 locations along the 67km stretch of coastline and are extended to the fluvial sediments of the main river of Batu Pahat. Grain size distribution analysis was conducted to identify its textural characteristics and associated sedimentary transport behaviours. Sediments obtained along the coastline were fine-grained material with averaged mean size of 7.25 ϕ, poorly sorted, positively skewed and has wide distributions. Samples from eroded and deposition regions displayed no distinctive characteristics and exhibited similar profiles. The high energy condition transported the sediments as suspension, mostly as pelagic and the sediments were deposited as shallow marine and agitated deposits. The fluvial sediments of up to 3km into the river have particularly similar profile of textural characteristics with the neighbouring marine sediments from the river mouth. Profiles were similar with marine sediments about 3km opposite the main current and can go up to 10km along the current of Malacca Straits. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Factors controlling the abundance of rainbow trout in the Colorado River in Grand Canyon in a reach utilized by endangered humpback chub

    USGS Publications Warehouse

    Korman, Josh; Yard, Michael D.; Yackulic, Charles B.

    2015-01-01

    We estimated the abundance, survival, movement, and recruitment of non-native rainbow trout in the Colorado River in Grand Canyon to determine what controls their abundance near the Little Colorado River (LCR) confluence where endangered humpback chub rear. Over a 3-year period, we tagged more than 70,000 trout and recovered over 8,200 tagged fish. Trout density was highest (10,000-25,000 fish/km) in the reach closest to Glen Canyon Dam where the majority of trout recruitment occurs, and was 30-50-fold lower (200-800 fish/km) in reaches near the LCR confluence ~100 km downstream. The extent of rainbow trout movement was limited with less than 1% of recaptures making movements greater than 20 km. However, due to high trout densities in upstream source areas, this small dispersal rate was sufficient to explain the 3-fold increase in the relatively small population near the LCR. Reducing dispersal rates of trout from upstream sources is the most feasible solution to maintain low densities near the LCR to minimize negative effects of competition and predation on humpback chub.

  20. Relating stream microbial ecology to land-use in the Choptank River Watershed

    USDA-ARS?s Scientific Manuscript database

    The Choptank River is an estuary and tributary on the Eastern Shore of the Chesapeake Bay whose mouth is a tidal embayment that spans 2057 km2. Approximately 60% of land use in the Choptank River Watershed is agricultural, with large acreages of corn (Zea mays), soybean (Glycine max), wheat (Tritic...

  1. GROUNDWATER-SURFACE WATER EXCHANGE AND IMPLICATIONS FOR LARGE RIVER RESTORATION

    EPA Science Inventory

    Movement of river water into and out of high-porosity alluvial deposits can have an important influence on surface water quality and aquatic habitat. In our study of a 60-km reach of the Willamette River in Oregon, USA, we: 1) used tracers to estimate the rate of exchange betw...

  2. Brittle extension of the continental crust along a rooted system of low-angle normal faults: Colorado River extensional corridor

    NASA Technical Reports Server (NTRS)

    John, B. E.; Howard, K. A.

    1985-01-01

    A transect across the 100 km wide Colorado River extensional corridor of mid-Tertiary age shows that the upper 10 to 15 km of crystalline crust extended along an imbricate system of brittle low-angle normal faults. The faults cut gently down a section in the NE-direction of tectonic transport from a headwall breakaway in the Old Woman Mountains, California. Successively higher allochthons above a basal detachment fault are futher displaced from the headwall, some as much as tens of kilometers. Allochthonous blocks are tilted toward the headwall as evidenced by the dip of the cappoing Tertiary strata and originally horizontal Proterozoic diabase sheets. On the down-dip side of the corridor in Arizona, the faults root under the unbroken Hualapai Mountains and the Colorado Plateau. Slip on faults at all exposed levels of the crust was unidirectional. Brittle thinning above these faults affected the entire upper crust, and wholly removed it locally along the central corridor or core complex region. Isostatic uplift exposed metamorphic core complexes in the domed footwall. These data support a model that the crust in California moved out from under Arizona along an asymmetric, rooted normal-slip shear system. Ductile deformation must have accompanied mid-Tertiary crustal extension at deeper structural levels in Arizona.

  3. The effects of river run-off on water clarity across the central Great Barrier Reef.

    PubMed

    Fabricius, K E; Logan, M; Weeks, S; Brodie, J

    2014-07-15

    Changes in water clarity across the shallow continental shelf of the central Great Barrier Reef were investigated from ten years of daily river load, oceanographic and MODIS-Aqua data. Mean photic depth (i.e., the depth of 10% of surface irradiance) was related to river loads after statistical removal of wave and tidal effects. Across the ∼25,000 km(2) area, photic depth was strongly related to river freshwater and phosphorus loads (R(2)=0.65 and 0.51, respectively). In the six wetter years, photic depth was reduced by 19.8% and below water quality guidelines for 156 days, compared to 9 days in the drier years. After onset of the seasonal river floods, photic depth was reduced for on average 6-8 months, gradually returning to clearer baseline values. Relationships were strongest inshore and midshelf (∼12-80 km from the coast), and weaker near the chronically turbid coast. The data show that reductions in river loads would measurably improve shelf water clarity, with significant ecosystem health benefits. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  4. Output improvement of Sg. Piah run-off river hydro-electric station with a new computed river flow-based control system

    NASA Astrophysics Data System (ADS)

    Jidin, Razali; Othman, Bahari

    2013-06-01

    The lower Sg. Piah hydro-electric station is a river run-off hydro scheme with generators capable of generating 55MW of electricity. It is located 30km away from Sg. Siput, a small town in the state of Perak, Malaysia. The station has two turbines (Pelton) to harness energy from water that flow through a 7km tunnel from a small intake dam. The trait of a run-off river hydro station is small-reservoir that cannot store water for a long duration; therefore potential energy carried by the spillage will be wasted if the dam level is not appropriately regulated. To improve the station annual energy output, a new controller based on the computed river flow has been installed. The controller regulates the dam level with an algorithm based on the river flow derived indirectly from the intake-dam water level and other plant parameters. The controller has been able to maintain the dam at optimum water level and regulate the turbines to maximize the total generation output.

  5. Modeling suspended sediment sources and transport in the Ishikari River Basin, Japan using SPARROW

    NASA Astrophysics Data System (ADS)

    Duan, W.; He, B.; Takara, K.; Luo, P.; Nover, D.; Hu, M.

    2014-10-01

    It is important to understand the mechanisms that control suspended sediment (SS) fate and transport in rivers as high suspended sediment loads have significant impacts on riverine hydroecology. In this study, the watershed model SPARROW (SPAtially Referenced Regression on Watershed Attributes) was applied to estimate the sources and transport of SS in surface waters of the Ishikari River Basin (14 330 km2), the largest watershed on Hokkaido Island, Japan. The final developed SPARROW model has four source variables (developing lands, forest lands, agricultural lands, and stream channels), three landscape delivery variables (slope, soil permeability, and precipitation), two in-stream loss coefficients including small stream (streams with drainage area < 200 km2), large stream, and reservoir attenuation. The model was calibrated using measurements of SS from 31 monitoring sites of mixed spatial data on topography, soils and stream hydrography. Calibration results explain approximately 95.96% (R2) of the spatial variability in the natural logarithm mean annual SS flux (kg km-2 yr-1) and display relatively small prediction errors at the 31 monitoring stations. Results show that developing-land is associated with the largest sediment yield at around 1006.27 kg km-2 yr-1, followed by agricultural-land (234.21 kg km-2 yr-1). Estimation of incremental yields shows that 35.11% comes from agricultural lands, 23.42% from forested lands, 22.91% from developing lands, and 18.56% from stream channels. The results of this study improve our understanding of sediments production and transportation in the Ishikari River Basin in general, which will benefit both the scientific and the management community in safeguarding water resources.

  6. Nutrient (N, P) budgets for the Red River basin (Vietnam and China)

    NASA Astrophysics Data System (ADS)

    Quynh, Le Thi Phuong; Billen, Gilles; Garnier, Josette; ThéRy, Sylvain; FéZard, CéDric; Minh, Chau Van

    2005-06-01

    In order to examine the degree of human-induced alteration of the nitrogen and phosphorus cycles at the scale of a tropical watershed of regional dimension, the budgets of these two elements were estimated in the four main sub-basins (Da, Lo, Thao, and Delta) of the Red River system (156 448 km2, Vietnam and China). The four sub-basins differ widely in population density (from 101 inhabitants km-2 in the upstream basins to more than 1000 inhabitants km-2 in the delta), land use, and agricultural practices. In terms of agricultural production, on the one hand, and consumption of food and feed on the other, the upstream sub-basins are autotrophic systems, exporting agricultural goods, while the delta is a heterotrophic system, depending on agricultural goods imports. The budget of the agricultural soils reveals great losses of nitrogen, mostly attributable to denitrification in rice paddy fields and of phosphorus, mostly caused by erosion. The budget of the drainage network shows high retention/elimination of nitrogen (from 62 to 77% in the upstream basins and 59% in the delta), and of phosphorus, with retention rates as high as 80% in the Da and Lo sub-basins which have large reservoirs in their downstream course (Hoa Binh on the Da and Thac Ba on the Lo). The total specific delivery estimated at the outlet of the whole Red River System is 855 kg km-2 yr-1 total N and 325 kg km-2 yr-1 total P. Nitrogen rather than phosphorus seems to be the potential limiting factor of algal growth in the plume of the Red River in Tonkin Bay.

  7. Field-trip guide to the vents, dikes, stratigraphy, and structure of the Columbia River Basalt Group, eastern Oregon and southeastern Washington

    USGS Publications Warehouse

    Camp, Victor E; Reidel, Stephen P.; Ross, Martin E.; Brown, Richard J.; Self, Stephen

    2017-06-22

    The Columbia River Basalt Group covers an area of more than 210,000 km2 with an estimated volume of 210,000 km3. As the youngest continental flood-basalt province on Earth (16.7–5.5 Ma), it is well preserved, with a coherent and detailed stratigraphy exposed in the deep canyonlands of eastern Oregon and southeastern Washington. The Columbia River flood-basalt province is often cited as a model for the study of similar provinces worldwide.This field-trip guide explores the main source region of the Columbia River Basalt Group and is written for trip participants attending the 2017 International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly in Portland, Oregon, USA. The first part of the guide provides an overview of the geologic features common in the Columbia River flood-basalt province and the stratigraphic terminology used in the Columbia River Basalt Group. The accompanying road log examines the stratigraphic evolution, eruption history, and structure of the province through a field examination of the lavas, dikes, and pyroclastic rocks of the Columbia River Basalt Group.

  8. Beaver herbivory and its effect on cottonwood trees: Influence of flooding along matched regulated and unregulated rivers

    USGS Publications Warehouse

    Breck, S.W.; Wilson, K.R.; Andersen, D.C.

    2003-01-01

    We compared beaver (Castor canadensis) foraging patterns on Fremont cottonwood (Populus deltoides subsp. wislizenii) saplings and the probability of saplings being cut on a 10 km reach of the flow-regulated Green River and a 8.6 km reach of the free-flowing Yampa River in northwestern Colorado. We measured the abundance and density of cottonwood on each reach and followed the fates of individually marked saplings in three patches of cottonwood on the Yampa River and two patches on the Green River. Two natural floods on the Yampa River and one controlled flood on the Green River between May 1998 and November 1999 allowed us to assess the effect of flooding on beaver herbivory. Independent of beaver herbivory, flow regulation on the Green River has caused a decrease in number of cottonwood patches per kilometre of river, area of patches per kilometre, and average stem density within cottonwood patches. The number of saplings cut per beaver colony was three times lower on the Green River than on the Yampa River but the probability of a sapling being cut by a beaver was still higher on the Green River because of lower sapling density there. Controlled flooding appeared to increase the rate of foraging on the Green River by inundating patches of cottonwood, which enhanced access by beaver. Our results suggest regulation can magnify the impact of beaver on cottonwood through interrelated effects on plant spatial distribution and cottonwood density, with the result that beaver herbivory will need to be considered in plans to enhance cottonwood populations along regulated rivers.

  9. New Insights Into Valley Formation and Preservation: Geophysical Imaging of the Offshore Trinity River Paleovalley

    NASA Astrophysics Data System (ADS)

    Speed, C. M.; Swartz, J. M.; Gulick, S. P. S.; Goff, J.

    2017-12-01

    The Trinity River paleovalley is an offshore stratigraphic structure located on the inner continental shelf of the Gulf of Mexico offshore Galveston, Texas. Its formation is linked to the paleo-Trinity system as it existed across the continental shelf during the last glacial period. Newly acquired high-resolution geophysical data have imaged more complexity to the valley morphology and shelf stratigraphy than was previously captured. Significantly, the paleo-Trinity River valley appears to change in the degree of confinement and relief relative to the surrounding strata. Proximal to the modern shoreline, the interpreted time-transgressive erosive surface formed by the paleo-river system is broad and rugose with no single valley, but just 5 km farther offshore the system appears to become confined to a 10 km wide valley structure before again becoming unconfined once again 30 km offshore. Fluvial stratigraphy in this region has a similar degree of complexity in morphology and preservation. A dense geophysical survey of several hundred km is planned for Fall 2017, which will provide unprecedented imaging of the paleovalley morphology and associated stratigraphy. Our analysis leverages robust chirp processing techniques that allow for imaging of strata on the decimeter scale. We will integrate our geophysical results with a wide array of both newly collected and previously published sediment cores. This approach will allow us to address several key questions regarding incised valley formation and preservation on glacial-interglacial timescales including: to what extent do paleo-rivers remain confined within a single broad valley structure, what is the fluvial systems response to transgression, and what stratigraphy is created and preserved at the transition from fluvial to estuarine environments? Our work illustrates that traditional models of incised valley formation and subsequent infilling potentially fail to capture the full breadth of dynamics of past river systems.

  10. C, N, P export regimes from headwater catchments to downstream reaches

    NASA Astrophysics Data System (ADS)

    Dupas, R.; Musolff, A.; Jawitz, J. W.; Rao, P. S.; Jaeger, C. G.; Fleckenstein, J. H.; Rode, M.; Borchardt, D.

    2017-12-01

    Excessive amounts of nutrients and dissolved organic matter in freshwater bodies affect aquatic ecosystems. In this study, the spatial and temporal variability in nitrate (NO3), dissolved organic carbon (DOC) and soluble reactive phosphorus (SRP) was analyzed in the Selke river continuum from headwaters draining 1 - 3 km² catchments to downstream reaches representing spatially integrated signals from 184 - 456 km² catchments (part of TERENO - Terrestrial Environmental Observatories, in Germany). Three headwater catchments were selected as archetypes of the main landscape units (land use x lithology) present in the Selke catchment. Export regimes in headwater catchments were interpreted in terms of NO3, DOC and SRP land-to-stream transfer processes. Headwater signals were subtracted from downstream signals, with the differences interpreted in terms of in-stream processes and contribution of point-source emissions. The seasonal dynamics for NO3 were opposite those of DOC and SRP in all three headwater catchments, and spatial differences also showed NO3 contrasting with DOC and SRP. These dynamics were interpreted as the result of the interplay of hydrological and biogeochemical processes, for which riparian zones were hypothesized to play a determining role. In the two downstream reaches, NO3 was transported almost conservatively, whereas DOC was consumed and produced in the upper and lower river sections, respectively. The natural export regime of SRP in the three headwater catchments mimicked a point-source signal, which may lead to overestimation of domestic contributions in the downstream reaches. Monitoring the river continuum from headwaters to downstream reaches proved effective to investigate jointly land-to-stream and in-stream transport and transformation processes.

  11. Investigating the ancient landscape and Cenozoic drainage development of southern Yukon (Canada), through restoration modeling of the Cordilleran-scale Tintina Fault.

    NASA Astrophysics Data System (ADS)

    Hayward, N.; Jackson, L. E.; Ryan, J. J.

    2017-12-01

    This study of southern Yukon (Canada) challenges the notion that the landscape in the long-lived, tectonically active, northern Canadian Cordillera is implicitly young. The impact of Cenozoic displacement along the continental- scale Tintina Fault on the development of the Yukon River and drainage basins of central Yukon is investigated through geophysical and hydrological modeling of digital terrain model data. Regional geological evidence suggests that the age of the planation of the Yukon plateaus is at least Late Cretaceous, rather than Neogene as previously concluded, and that there has been little penetrative deformation or net incision in the region since the late Mesozoic. The Tintina Fault has been interpreted as having experienced 430 km of dextral displacement, primarily during the Eocene. However, the alignment of river channels across the fault at specific displacements, coupled with recent seismic events and related fault activity, indicate that the fault may have moved in stages over a longer time span. Topographic restoration and hydrological models show that the drainage of the Yukon River northwestward into Alaska via the ancestral Kwikhpak River was only possible at restored displacements of up to 50-55 km on the Tintina Fault. We interpret the published drainage reversals convincingly attributed to the effects of Pliocene glaciation as an overprint on earlier Yukon River reversals or diversions attributed to tectonic displacements along the Tintina Fault. At restored fault displacements of between 230 and 430 km, our models illustrate that paleo Yukon River drainage conceivably may have flowed eastward into the Atlantic Ocean via an ancestral Liard River, which was a tributary of the paleo Bell River system. The revised drainage evolution if correct requires wide-reaching reconsideration of surficial geology deposits, the flow direction and channel geometries of the region's ancient rivers, and importantly, exploration strategies of placer gold deposits.

  12. Spatio-temporal variation of water flow and sediment discharge in the Mahanadi River, India

    NASA Astrophysics Data System (ADS)

    Bastia, Fakira; Equeenuddin, Sk. Md.

    2016-09-01

    The transport of sediments by rivers to the oceans represents an important link between the terrestrial and marine ecosystem. Therefore, this work aims to study spatio-temporal variation of the sediment discharge and erosion rate in the Mahanadi river, one of the biggest rivers in India, over past three decades vis-à-vis their controlling factors. To understand the sediment load variation, the trend analysis in the time series data of rainfall, water and sediment discharge of the Mahanadi river were also attempted. The non-parametric Mann-Kendall and Sen's methods were used to determine whether there was a positive or negative trend in the time series data with their statistical significance. The occurrence of abrupt changes was detected using Pettitt test. The trend test result represents that sediment load delivered from the Mahanadi river to the global ocean has decreased sharply at the rate of 0.515 × 106 tons/year between 1980 and 2010. Water discharge and rainfall in the basin showed no significant decreasing trend except at only one tributary. The decline in sediment discharge from the basin to the Bay of Bengal is mainly due to the increase in the number of dams, which has recorded the increase from 70 to 253 during the period of 1980 to 2010. Over the past 30 years the Mahanadi river has discharged about 49.0 ± 20.5 km3 of water and 17.4 ± 12.7 × 106 tons of sediment annually to the Bay of Bengal whereas the mean erosional rate is 265 ± 125 tons/km2/year over the period of 30 years in the basin. Based on the current data (2000-2001 to 2009-2010), sediment flux and water discharge to the ocean are 12 ± 5 × 106 tons/year and 49 ± 16 km3/year respectively; and ranking Mahanadi river second in terms of water discharge and sediment flux to the ocean among the peninsular rivers in India.

  13. Winter raptor use of the Platte and North Platte River Valleys in south central Nebraska

    USGS Publications Warehouse

    Lingle, G.R.

    1989-01-01

    Winter distribution and abundance of raptors were monitored within the Platte and North Platte river valleys. Data were collected along 265 km of census routes along the Platte and North Platte rivers during the winters of 1978-1979 and 1979-1980. Observations recorded during the second winter involved less observation time and were at somewhat different periods. There were 1574 sightings of 15 species representing 3 raptor families. Number of raptors observed on 54 days from 15 November to 13 February 1978-1979 was 48.3 per 100 km. In 20 days of observation from 5 December to 6 March 1979-1980, 39.7 raptors were observed per 100 km. Small mammal indices were 21 and 12 captures per 1000 trap nights during November 1978 and 1979, respectively. Raptors were sighted most frequently in riverine habitat and least in pasture and tilled fields. American kestrels (Falco sparverius) (11.1 individuals/100 km), red-tailed hawks (Buteo jamaicensis) (9.9), and bald eagles (Haliaeetus leucocephalus) (9.6) were the most frequently sighted raptors. Northern harrier (Circus cyaneus), rough-legged hawk (B. lagopus), and prairie falcon (P. mexicanus) sightings were 3.4, 3.4, and 1.7, respectively. Nine species were seen at a frequency of less than 1.0 individuals/100 km. Improved foraging conditions throughout the region resulted in fewer raptors sighted in 1979-1980.

  14. Factors influencing poststocking dispersal of razorback sucker

    USGS Publications Warehouse

    Mueller, G.A.; Marsh, P.C.; Foster, D.; Ulibarri, M.; Burke, T.

    2003-01-01

    Efforts to reintroduce razorback suckers Xyrauchen texanus to specific river reaches have been plagued by downstream drift and poor survival, which have been attributed to stress, disorientation, predation, and poor conditioning. Poststocking dispersal of eight test groups (15 fish each) of razorback suckers was examined for 28 d with telemetry equipment. Fish were released in three different locations in the Colorado River basin of Utah, Arizona, and Nevada: (1) a 65,000-ha reservoir, (2) a small (<1-ha) backwater, and (3) a large (30-ha) backwater on the mainstem river. At each location, subgroups were released immediately (reference) or held to acclimate them to the site (3–7 d) before release. Two of four subgroups for the large-backwater test were preconditioned to flow. Dispersal from the stocking sites was rapid and declined with time for all tests, as fish appeared to seek and find cover. Downstream drift was most pronounced (x = 69.5 km) from the small backwater and significantly (Kruskal–Wallis test, P < 0.01) greater than either the reservoir (x = 3.7 km) or large-backwater sites (x = 7.7 km). Site-acclimation tests were inconclusive, but downstream movement was significantly (Wilcoxon two-sample test, Z = −2.298, P < 0.01) less for fish preconditioned to flow (x = 1.9 km) compared with pond-reared fish (x = 7.7 km). We concluded that poststocking dispersal may decrease if razorback suckers are preconditioned to flow.

  15. Variational Data Assimilation of AirSWOT Data into the 2D Shallow Water Model DassFlow. Method and Test Case on the Garonne River (France)

    NASA Astrophysics Data System (ADS)

    Garambois, Pierre-Andre; Biancamaria, Sylvian; Monnier, Jerome; Roux, Helene; Dartus, Denis

    2013-09-01

    For continental water bodies and river hydraulic studies, water level measurements are fundamental information, yet they are currently mostly provided by punctual gauging stations located on the main river channel. That is why they are sparsely distributed in space and can have gaps in their time series (e.g. sensors failures). These issues can be compensated by remote sensing data, which have considerably contributed to improve the observation and understanding of physical processes in hydrology and hydraulics in general. Satellites such as SWOT (Surface Water and Ocean Topography) would give spatially distributed information on water elevations at an unprecedented resolution. Gathering pre-mission data over specific and varied science targets is the purpose of the AirSWOT airborne campaign in order to implement and test SWOT products retrieval algorithms. A reach of the Garonne River, downstream of Toulouse (FRANCE), is a proposed study area for AirSWOT flights. This choice is motivated by previous studies already performed on this section of 100km reach of the river. Moreover, on this highly instrumented and studied portion of river many typical free surface flow modelling issue has been encountered, and this river reach represents the limit of SWOT observation capability. The 2D hydrodynamic model DassFlow especially designed for variational data assimilation will be used on this portion of the Garonne River with cartographic sensitivity analysis. An identification strategy would allow retrieving spatial roughness along the main channel, variation of the local topographic slope or else temporal evolution of the streamflow. Addressing such problems and studying horizontal and vertical river sinuosity would improve fine scale hydraulics representation and understanding, which could additionally help to improve global discharge algorithms with different scales and complexity levels.

  16. Interplay between river dynamics and international borders: the Hirmand River between Iran and Afghanistan

    NASA Astrophysics Data System (ADS)

    Yousefi, Saleh; Keesstra, Saskia; Pourghasemi, Hamid Reza; Surian, Nicola; Mirzaee, Somayeh

    2017-04-01

    Fluvial dynamics in riverine borders can play an important role in political relationships between countries. Rivers move and evolve under the influence of natural processes and external drivers (e.g. land use change in river catchments). The Hirmand River is an important riverine border between Iran and Afghanistan. The present study shows the evolution and lateral shifting of the Hirmand River along the common international border (25.6 km) over a period of 6 decades (1955-2015). Seven data series of aerial photos, topographic maps and Landsat images were used to identify the land cover and morphological changes in the study reach. The land cover has changed dramatically on both sides of the border during the last 6 decades, especially in the Afghan part. Overall, 49% of all land surface changed its cover type, especially the area of agriculture and residential land contributed to that, with an increase in surface area of about 4931 ha and 561 ha, respectively. On the other hand, the natural cover and water bodies decreased to 38 % and 63 %, respectively. The impact of these land use changes on the morphological evolution of Hirmand River was investigated in 5 sub-reaches. We found an average decrease of the active channel width of 53% during 60 years and the average River Network Change Index for the whole study reach during 60 years was -1.25 m/yr. Deposition and narrowing turned out to be the main processes occurring within the study reach. Furthermore, due to natural riverine processes the Hirmand River has moved towards Afghanistan (37 m on average) and lateral shifting was found to be up to 1900 m in some sections.

  17. How much suspended particulate matter enters long-term in-channel storage?

    NASA Astrophysics Data System (ADS)

    Dietrich, Stephan; Kleisinger, Carmen; Kehl, Nora; Schubert, Birgit; Hillebrand, Gudrun

    2017-04-01

    The route of suspended particulate matter (SPM) downstream rivers strongly depends on discharge conditions and involves transport times and periods with resting times in deposits e.g. at areas with low-flow conditions near the channel bed. It is, however, difficult to estimate the contribution of SPM on the bed load. In this study, particle-bound polychlorinated biphenyls (PCB), which were released by an incident in the Elbe river (Central Europe) in spring 2015, could be used as unique tracer for transport pathways of SPM along the whole river stretch (over 700 km length), including low mountain ranges, lowlands, and the estuary. In 2015 the Elbe River was characterized by low-discharge conditions. Thus, the export of SPM on flood plains was strongly limited. The incident was monitored by concentration measurements of seven indicator PCB congeners along the inland part of the Elbe River as well as in the Elbe estuary. Data from ten monitoring stations (settling tanks) are considered. The total PCB load is calculated for all stations on the basis of monthly contaminant concentrations and daily suspended sediment concentrations. Monte-Carlo simulations assess the uncertainties of the calculated load. It is shown that the ratio of high versus low chlorinated PCB congeners is a suitable tracer to distinguish the PCB load of the incident from the long-term background signal (hereafter PCB6 ratio). We demonstrate that both the load of PCB as well as its chemical fingerprint allows the estimation of transport durations for the transport processes involved. Only a little part of the suspension has been transported via wash load. The PCB6 ratio is used to estimate mean transport velocities of the wash load fraction. A direct transport of wash load via the mean flow velocity of the water was not observed. Shortly after the incident, the PCB6 ratio was monitored 257 km downstream of the incident site in April 2015, in May first occurrence was monitored 514 km downstream of the incident site and in July it reaches the tidal weir 626 km downstream and enters the estuary. Here the transport velocity strongly decreases and the PCB6 ratio was not detected 25 km downstream the tidal weir before December 2015. The major part of the PCB-marked suspension is transported via suspended load. Interestingly, the reduction of total PCB tagged SPM load within the first 514 km downstream of the incident site indicates that roughly 75% of the annual SPM load (of the most upstream monitoring station located 43 km downstream of the incident site) is stored in the sediments of the Elbe River, suggesting that suspended sediment in transport enters storage after a relatively short distance. Once SPM settles, significant storage can occur over decadal time scales.

  18. Human-induced hydrologic and geomorphic changes in the crisscross river network of the Pearl River Delta, South China

    NASA Astrophysics Data System (ADS)

    Chen, Y. D.; Chen, X. H.

    2003-04-01

    The West River, the North River and the East River, collectively called the Pearl River, have a total drainage area of 453,690 km2 in southern and southwestern China and flow into the South China Sea. The three rivers join together and form the Pearl River Delta (PRD) with an area of 26,820 km2. The crisscross river network (density: 0.68-1.07 km/km2) in the PRD is one of the most complicated deltaic drainage systems in the world. As the region experiencing the most rapid economic growth in China over the past two decades, the PRD has witnessed massive changes in both the social and the natural environment, leading to an urgent need of studying regional environmental changes caused by intensive human activities. This paper aims to summarize and illustrate a variety of human-induced hydrologic and geomorphic changes in the PRD river network and to present an analysis of the causes and effects of these changes. Findings of this study will help decision-makers to formulate river management and mitigation strategies and policies in the region. The hydrologic characteristics of the PRD river network have been altered to varying degrees in the following three main aspects. First and most importantly, stage has become higher or lower over the past several decades in an uneven manner in different parts of the delta. From the early 1950s to the 1980s, scattered and small embankments were enlarged and combined to expand land mass and reduce flood hazards in the PRD. However, reduction of water surface area and concentration of flow into major channels generally caused stage to go up slightly. Since the early 1990s, stage in the upper part of the PRD has significantly dropped down while the opposite situation has become more and more common in the central PRD where enormous flood damages have occurred. Secondly, corresponding to the stage changes, the stage-discharge relationship has been substantially modified, as evidenced by over 2 m drop of stage for the same amount of discharge. Thirdly, the ratio of flow partition into two channels at several river bifurcation points has continuously changed over the past decade. This is an excellent indication of an increasingly larger portion of river flow discharging from the West River channels into the North River delta, which was found to be a major reason making the middle part of the PRD more and more vulnerable to flooding in recent years. Closely associated with the hydrologic changes are alterations of river channel and estuarine morphologies. Such geomorphic changes primarily include noticeable or even alarmingly severe modification of river channel bed, extension of river mouth and contraction of estuary in the study region. It was found that the hydrologic and geomorphic changes that have occurred within a relatively short period of time are mainly consequences of a wide variety of human activities, coupled with influences of natural events, including (a) channel dredging of sand for construction usage, (b) combination of embankments and construction of dams, (c) channel constriction and reduction or complete loss of floodplain, (d) sea level rise, and (e) channel bed erosion by record floods. Finally, an analysis is presented to examine the effects of these changes on various issues such as flood prevention and control, river channel management and navigation, low-flow regimes and water supply, water quality and aquatic ecosystem protection in the PRD region.

  19. Quantifying hyporheic exchange dynamics in a highly regulated large river reach

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Bao, J.; Huang, M.; Hou, Z.; Arntzen, E.; Mackley, R.; Harding, S.; Crump, A.; Xu, Y.; Song, X.; Chen, X.; Stegen, J.; Hammond, G. E.; Thorne, P. D.; Zachara, J. M.

    2016-12-01

    Hyporheic exchange is an important mechanism taking place in riverbanks and riverbed sediments, where the river water and shallow groundwater mix and interact with each other. The direction and magnitude of hyporheic flux that penetrates the river bed and residence time of river water in the hyporheic zone are critical for biogeochemical processes such as carbon and nitrogen cycling, and biodegradation of organic contaminants. Hyporheic flux can be quantified using many direct and indirect measurements as well as analytical and numerical modeling tools. However, in a relatively large river, these methods can be limited by the accessibility, spatial constraints, complexity of geomorphologic features and subsurface properties, and computational power. In rivers regulated by hydroelectric dams, quantifying hyporheic fluxes becomes more challenging due to frequent hydropeaking events created by dam operations. In this study, we developed and validated methods that combined field measurements and numerical modeling for estimating hyporheic fluxes across the river bed in a 7-km long reach of the highly regulated Columbia River. The reach has a minimum width of about 800 meters and variations in river stage within a day could be up to two meters due to the upstream dam operations. In shallow water along the shoreline, vertical thermal profiles measured by self-recording thermistors were combined with time series of hydraulic gradient derived from river stage and water level at in-land wells to estimate the hyporheic flux rate. For the deep section, a high resolution computational fluid dynamics (CFD) modeling framework was developed to characterize the spatial distribution of flux rates at the river bed and the residence time of hyporheic flow at different river flow conditions. Our modeling results show that the rates of hyporheic exchange and residence time are controlled by (1) hydrostatic pressure induced by river stage fluctuations, and (2) hydrodynamic drivers associated with flow velocity variations, which also to certain extent dependent on flow conditions.

  20. Abundance and reproduction of toads (Bufo) along a regulated river in the southwestern United States: Importance of flooding in riparian ecosystems

    Treesearch

    H. L. Bateman; M. J. Harner; A. Chung-MacCoubrey

    2008-01-01

    Abundance and size of toads (Bufo woodhousii and B. cognatus) were related to precipitation, river flow, and groundwater over 7 years along the Middle Rio Grande, a regulated river in the semi-arid southwestern United States. Toads were monitored in riparian areas at 12 sites spanning 140 km of river during summers 2000­2006....

  1. Mercury Methylation at Mercury Mines In The Humboldt River Basin, Nevada, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, John E.; Crock, James G.; Lasorsa, Brenda K.

    2002-12-01

    Total Hg and methylmercury concentrations were measured in mine-waste calcines (retorted ore), sediment, and water samples collected in and around abandoned mercury mines in western Nevada to evaluate Hg methylation at the mines and in the Humboldt River basin. Mine-waste calcines contain total Hg concentrations as high as 14 000?g/g. Stream-sediment samples collected within 1 km of the mercury mines contain total Hg concentrations as high as 170?g/g, whereas stream sediments collected>5 km from the mines, and those collected from the Humboldt River and regional baseline sites, contain total Hg concentrations<0.5?g/g. Similarly, methylmercury concentrations in mine-waste calcines are locally asmore » high as 96 ng/g, but methylmercury contents in stream-sediments collected downstream from the mines and from the Humboldt River are lower, ranging from<0.05 to 0.95 ng/g. Stream-water samples collected below two mines studied contain total Hg concentrations ranging from 6 to 2000 ng/L, whereas total Hg in Humboldt River water was generally lower ranging from 2.1 to 9.0 ng/L. Methylmercury concentrations in the Humboldt River water were the lowest in this study (<0.02-0.27 ng/L). Although total Hg and methylmercury concentrations are locally high in mine-waste calcines, there is significant dilution of Hg and lower Hg methylation down gradient from the mines, especially in the sediments and water collected from the Humboldt River, which is> 8 km from any mercury mines. Our data indicate little transference of Hg and methylmercury from the sediment to the water column due to the lack of mine runoff in this desert climate.« less

  2. Erosion of organic carbon from the Andes and its effects on ecosystem carbon dioxide balance

    NASA Astrophysics Data System (ADS)

    Clark, K. E.; Hilton, R. G.; West, A. J.; Robles Caceres, A.; Gröcke, D. R.; Marthews, T. R.; Ferguson, R. I.; Asner, G. P.; New, M.; Malhi, Y.

    2017-03-01

    Productive forests of the Andes are subject to high erosion rates that supply to the Amazon River sediment and carbon from both recently photosynthesized biomass and geological sources. Despite this recognition, the source and discharge of particulate organic carbon (POC) in Andean Rivers remain poorly constrained. We collected suspended sediments from the Kosñipata River, Peru, over 1 year at two river gauging stations. Carbon isotopes (14C, 13C, and 12C) and nitrogen to organic carbon ratios of the suspended sediments suggest a mixture of POC from sedimentary rocks (POCpetro) and from the terrestrial biosphere (POCbiosphere). The majority of the POCbiosphere has a composition similar to surface soil horizons, and we estimate that it is mostly younger than 850 14C years. The suspended sediment yield in 2010 was 3500 ± 210 t km-2 yr-1, >10 times the yield from the Amazon Basin. The POCbiosphere yield was 12.6 ± 0.4 t C km-2 yr-1 and the POCpetro yield was 16.1 ± 1.4 t C km-2 yr-1, mostly discharged in the wet season (December to March) during flood events. The river POCbiosphere discharge is large enough to play a role in determining whether Andean forests are a source or sink of carbon dioxide. The estimated erosional discharge of POCpetro from the Andes is much larger ( 1 Mt C yr-1) than the POCpetro discharge by the Madeira River downstream in the Amazon Basin, suggesting that oxidation of POCpetro counters CO2 drawdown by silicate weathering. The flux and fate of Andean POCbiosphere and POCpetro need to be better constrained to fully understand the carbon budget of the Amazon River basin.

  3. Transport Distance of Invertebrate Environmental DNA in a Natural River

    PubMed Central

    Deiner, Kristy; Altermatt, Florian

    2014-01-01

    Environmental DNA (eDNA) monitoring is a novel molecular technique to detect species in natural habitats. Many eDNA studies in aquatic systems have focused on lake or ponds, and/or on large vertebrate species, but applications to invertebrates in river systems are emerging. A challenge in applying eDNA monitoring in flowing waters is that a species' DNA can be transported downstream. Whether and how far eDNA can be detected due to downstream transport remains largely unknown. In this study we tested for downstream detection of eDNA for two invertebrate species, Daphnia longispina and Unio tumidus, which are lake dwelling species in our study area. The goal was to determine how far away from the source population in a lake their eDNA could be detected in an outflowing river. We sampled water from eleven river sites in regular intervals up to 12.3 km downstream of the lake, developed new eDNA probes for both species, and used a standard PCR and Sanger sequencing detection method to confirm presence of each species' eDNA in the river. We detected D. longispina at all locations and across two time points (July and October); whereas with U. tumidus, we observed a decreased detection rate and did not detect its eDNA after 9.1 km. We also observed a difference in detection for this species at different times of year. The observed movement of eDNA from the source amounting to nearly 10 km for these species indicates that the resolution of an eDNA sample can be large in river systems. Our results indicate that there may be species' specific transport distances for eDNA and demonstrate for the first time that invertebrate eDNA can persist over relatively large distances in a natural river system. PMID:24523940

  4. Threatened fishes of the world: Moapa coriacea Hubbs and Miller, 1948 (cyprinidae)

    USGS Publications Warehouse

    Scoppettone, G.G.; Goodchild, S.

    2009-01-01

    Moapa dace. Conservation status: Endangered (U.S. Department of the Interior 1967), Critically Endangered, IUCN (Gimenez 1996). Identification: Small embedded scales, narrow caudal peduncle and a bright black spot at the base of deeply forked tail. Pharyngeal teeth (0,5–4,0) hooked but with a grinding surface. Adults 50 to 120 mm total length. Drawing adapted from La Rivers (1962). Distribution: Endemic to the upper Muddy River system, Clark County, Nevada where the river originates from over 20 thermal springs. Prior to 1995 Moapa dace occupied 9.5 stream km including the upper Muddy River and spring-fed tributaries (U.S. Fish and Wildlife Service 1995). Distribution has contracted to 2 km (unpublished data) since the 1995 invasion of blue tilapia, Oreochromis aurea. Abundance: In 1994 the population was about 3,800, but after tilapia invasion dropped below 1,600 (Scoppettone et al. 1998) where it has remained (unpublished data). Habitat and ecology: Omnivorous but tends toward carnivory. Feed primarily on drift in areas adjacent to fast water 26–32°C. Reproduction: Occurs year round in spring-fed tributaries to the Muddy River in water temperature of 30–32°C (Scoppettone et al. 1992). Threats: Nonnative species (Scoppettone 1993; Scoppettone et al. 1998) and ground-water pumping (Mayer and Congdon 2008). Conservation actions: Moapa Valley National Wildlife Refuge was established in the upper Muddy River for the protection and perpetuation of Moapa dace. Barrier installation and chemical removal of blue tilapia downstream of refuge habitat provides 2 km of stream without tilapia. Conservation recommendations: Eliminate tilapia from the Muddy River system and control or eliminate other nonnative species. Protect spring discharge from excessive water withdrawal. Remarks: Given a high priority for recovery by the U.S. Government.

  5. Stormwater input of pyrethroid insecticides to an urban river.

    PubMed

    Weston, Donald P; Lydy, Michael J

    2012-07-01

    The American River flows for nearly 50 km through highly urbanized lands surrounding Sacramento, California, USA. Twenty-three streams, drainage canals, or pumping stations discharge urban runoff to the river, with the cumulative effect of nearly doubling the river's flow during rain events. During winter storms, the water column in the most downstream 13-km reach of the river exhibited toxicity to the standard testing species, Hyalella azteca, in 52% of samples, likely because of the pyrethroid insecticide bifenthrin. The compound is heavily used by professional pest controllers, either as a liquid perimeter treatment around homes or as granules broadcast over landscaped areas. It was found in 11 of 12 runoff sources examined, at concentrations averaging five times the H. azteca 96-h EC50. Quantified inputs of bifenthrin should have been sufficient to attain peak concentrations in the river twice those actually observed, suggesting loss by sedimentation of particulates and pesticide adsorption to the substrate and/or vegetation. Nevertheless, observed bifenthrin concentrations in the river were sufficient to cause water column toxicity, demonstrated during six storms studied over three successive winters. Toxicity and bifenthrin concentrations were greatest when river flow was low (<23 m(3) /s) but persisted even at atypically high flows (585 m(3) /s). Copyright © 2012 SETAC.

  6. Seasonal and inter-annual dynamics of suspended sediment at the mouth of the Amazon river: The role of continental and oceanic forcing, and implications for coastal geomorphology and mud bank formation

    NASA Astrophysics Data System (ADS)

    Gensac, Erwan; Martinez, Jean-Michel; Vantrepotte, Vincent; Anthony, Edward J.

    2016-04-01

    Fine-grained sediments supplied to the Ocean by the Amazon River and their transport under the influence of continental and oceanic forcing drives the geomorphic change along the 1500 km-long coast northward to the Orinoco River delta. The aim of this study is to give an encompassing view of the sediment dynamics in the shallow coastal waters from the Amazon River mouth to the Capes region (northern part of the Amapa region of Brazil and eastern part of French Guiana), where large mud banks are formed. Mud banks are the overarching features in the dynamics of the Amazon-Orinoco coast. They start migrating northward in the Capes region. Suspended Particulate Matter (SPM) concentrations were calculated from satellite products (MODIS Aqua and Terra) acquired over the period 2000-2013. The Census-X11 decomposition method used to discriminate short-term, seasonal and long-term time components of the SPM variability has rendered possible a robust analysis of the impact of continental and oceanic forcing. Continental forcing agents considered are the Amazon River water discharge, SPM concentration and sediment discharge. Oceanic forcing comprises modelled data of wind speed and direction, wave height and direction, and currents. A 150 km-long area of accretion is detected at Cabo Norte that may be linked with a reported increase in the river's sediment discharge concurrent with the satellite data study period. We also assess the rate of mud bank migration north of Cabo Norte, and highlight its variability. Although we confirm a 2 km y-1 migration rate, in agreement with other authors, we show that this velocity may be up to 5 km y-1 along the Cabo Orange region, and we highlight the effect of water discharge by major rivers debouching on this coastal mud belt in modulating such rates. Finally, we propose a refined sediment transport pattern map of the region based on our results and of previous studies in the area such as the AMASSEDS programme, and discuss the relationship between sediment transport and accumulation patterns and the coastal geomorphology of this region.

  7. Spatial Analysis of Large Woody Debris Arrangement in a Midwestern U.S. River System: Geomorphic Implications and Influences

    NASA Astrophysics Data System (ADS)

    Martin, D. J.

    2013-12-01

    Large woody debris (LWD) is universally recognized as a key component of the geomorphological and ecological function of fluvial systems and has been increasingly incorporated into stream restoration and watershed management projects. However, 'natural' processes of recruitment and the subsequent arrangement of LWD within the river network are poorly understood and are thus, rarely a management consideration. Additionally, LWD research tends to be regionally biased toward mountainous regions, and scale biased toward the micro-scale. In many locations, the lack of understanding has led to the failure of restoration/rehabilitation projects that involved the use of LWD. This research uses geographic information systems and spatial analysis techniques to investigate longitudinal arrangement patterns of LWD in a low-gradient, Midwestern river. A large-scale GPS inventory of LWD was performed on the Big River, located in the eastern Missouri Ozarks resulting in over 5,000 logged positions of LWD along seven river segments covering nearly 100 km of the 237 km river system. A time series analysis framework was used to statistically identify longitudinal spatial patterns of LWD arrangement along the main stem of the river, and correlation analyses were performed to help identify physical controls of those patterns. Results indicate that upstream segments have slightly lower densities than downstream segments, with the exception of the farthest upstream segment. Results also show lack of an overall longitudinal trend in LWD density; however, periodogram analysis revealed an inherent periodicity in LWD arrangement. Periodicities were most evident in the downstream segments with frequencies ranging from 3 km to 7 km. Additionally, Pearson correlation analysis, performed within the segment displaying the strongest periodic behavior, show that LWD densities are correlated with channel sinuosity (r=0.25). Ongoing research is investigating further relationships between arrangement patterns and geomorphic and riparian variables. Understanding these spatial patterns and relationships will provide valuable insight into the application of LWD-related stream and watershed management practices, and fill a necessary regional knowledge gap in our understanding of LWD's role in fluvial processes.

  8. The Effect of Reduced Water Availability in the Great Ruaha River on the Vulnerable Common Hippopotamus in the Ruaha National Park, Tanzania.

    PubMed

    Stommel, Claudia; Hofer, Heribert; East, Marion L

    2016-01-01

    In semi-arid environments, 'permanent' rivers are essential sources of surface water for wildlife during 'dry' seasons when rainfall is limited or absent, particularly for species whose resilience to water scarcity is low. The hippopotamus (Hippopotamus amphibius) requires submersion in water to aid thermoregulation and prevent skin damage by solar radiation; the largest threat to its viability are human alterations of aquatic habitats. In the Ruaha National Park (NP), Tanzania, the Great Ruaha River (GRR) is the main source of surface water for wildlife during the dry season. Recent, large-scale water extraction from the GRR by people upstream of Ruaha NP is thought to be responsible for a profound decrease in dry season water-flow and the absence of surface water along large sections of the river inside the NP. We investigated the impact of decreased water flow on daytime hippo distribution using regular censuses at monitoring locations, transects and camera trap records along a 104km section of the GRR within the Ruaha NP during two dry seasons. The minimum number of hippos per monitoring location increased with the expanse of surface water as the dry seasons progressed, and was not affected by water quality. Hippo distribution significantly changed throughout the dry season, leading to the accumulation of large numbers in very few locations. If surface water loss from the GRR continues to increase in future years, this will have serious implications for the hippo population and other water dependent species in Ruaha NP.

  9. Spring geochemistry in an active volcanic environment (São Miguel, Azores): source and fluxes of inorganic solutes.

    PubMed

    Freire, P; Andrade, C; Coutinho, R; Cruz, J V

    2014-01-01

    Mineral waters were monthly sampled in selected springs from Furnas and Fogo trachytic central volcanoes (São Miguel, Azores, Portugal). Water temperatures between 15.1 °C and 90.2 °C, characterize poorly mineralized waters of Na-HCO₃ and Na-HCO₃-Cl types. According to the spring location, two watersheds were selected in each volcano to evaluate solute fluxes and chemical weathering rates (Fogo volcano: Ribeira Grande river - RRG; Furnas volcano: Ribeira Quente river - RRQ). Na, Mg, K and Ca fluxes in groundwater represented 43%, 60%, 46% and 57% of the total (subsurface plus surface fluxes) in RRG, and respectively 43%, 53%, 46% and 49% in RRQ. Average HCO₃ flux is ten times higher in RRQ (130.1 × 10(6) mol/yr) compared to RRG (13.8 × 10(6) mol/yr), reflecting the volcano degassing and the lower ratio between groundwater and river water fluxes. Based on these values, total CO₂-consumption by weathering ranged from 1.5 × 10(6)mol/km(2)/yr (RRG) to 4 × 10(6)mol/km(2)/yr (RRQ). TDS load varied between 3772 t/yr (RRG) and 15388 t/yr (RRQ), and the ratio between values in groundwater and in surface water is respectively equal to 0.72 and 2.04. The associated chemical weathering rates in groundwater were 206 t/km(2)/yr (RRG) and 399 t/km(2)/yr (RRQ). Coupled to river water, these values indicate that total chemical weathering rates are respectively equal to 493 t/km(2)/yr and 594 t/km(2)/yr. A similar approach developed for the entire archipelago showed that the chemical weathering rates due to groundwater are in the range from 33 to 321 t/km(2)/yr, being partially controlled by the age of the islands. Results of the present study point out to the need to consider groundwater solute fluxes due to weathering when establishing geochemical budgets. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Bed Degradation and Sediment Export from the Missouri River after Dam Construction and River Training: Significance to Lower Mississippi River Sediment Loads

    NASA Astrophysics Data System (ADS)

    Blum, M. D.; Viparelli, E.; Sulaiman, Z. A.; Pettit, B. S.

    2016-12-01

    More than 40,000 dams have been constructed in the Mississippi River drainage basin, which has had a dramatic impact on suspended sediment load for the Mississippi delta. The most significant dams were constructed in the 1950s on the Missouri River in South Dakota, after which total suspended loads for the lower Mississippi River, some 2500 km downstream, were cut in half: gauging station data from the Missouri-Mississippi system show significant load reductions immediately after dam closure, followed by a continued downward trend since that time. The delta region is experiencing tremendous land loss in response to acceleration of global sea-level rise, and load reductions of this magnitude may place severe limits on mitigation efforts. Here we examine sediment export from the Missouri system due to bed scour. The US Army Corps of Engineers has compiled changes in river stage at constant discharge for 8 stations between the lowermost dam at Yankton, South Dakota and the Missouri-Mississippi confluence at St. Louis (a distance of 1250 river km), for the period 1930-2010, which we have updated to 2015. These data show two general reaches of significant bed degradation. The first extends from the last major dam at Yankton, South Dakota downstream 300 km to Omaha, Nebraska, where degradation in response to the dam exceeds 3 m. The second reach, with >2.5 m of degradation, occurs in and around Kansas City, Missouri, and has been attributed to river training activities. The reach between Omaha and Kansas City, as well as the lower Missouri below Kansas City, show <1 m of net bed elevation change over the entire 75-year period of record. Integrating bed elevation changes over the period of record, we estimate a total of 1.1-1.2 billion tons of sediment have been exported from the Missouri River due to bed scour following dam construction and river training. This number equates to 20-25 million tons per year, which is sufficient to account for 30% of the total Missouri River load, and 15% of the total post-dam annual sediment load for the lower Mississippi River. For perspective, the quantity of sediment exported from the Missouri River due to bed scour is greater than the total load for all rivers in the US lower 48 states, except the Mississippi and Colorado Rivers, and would rank in the top 50 of all rivers in the modern world.

  11. Sources and routing of the Amazon River Flood Wave

    NASA Astrophysics Data System (ADS)

    Richey, Jeffrey E.; Mertes, Leal A. K.; Dunne, Thomas; Victoria, Reynaldo L.; Forsberg, Bruce R.; Tancredi, AntôNio C. N. S.; Oliveira, Eurides

    1989-09-01

    We describe the sources and routing of the Amazon River flood wave through a 2000-km reach of the main channel, between São Paulo de Olivença and Obidos, Brazil. The damped hydrograph of the main stem reflects the large drainage basin area, the 3-month phase lag in peak flows between the north and south draining tributaries due to seasonal differences in precipitation, and the large volume of water stored on the floodplain. We examined several aspects of the valley floor hydrology that are important for biogeochemistry. These include volumes of water storage in the channel and the floodplain and the rates of transfer between these two storage elements at various seasons and in each segment of the valley. We estimate that up to 30% of the water in the main stem is derived from water that has passed through the floodplain. To predict the discharge at any cross section within the study reach, we used the Muskingum formula to predict the hydrograph at downriver cross sections from a known hydrograph at upstream cross-sections and inputs and outputs along each reach. The model was calibrated using three years of data and was successfully tested against an additional six years of data. With this model it is possible to interpolate discharges for unsampled times and sites.

  12. Persistent organic pollutants in fish tissue in the mid-continental great rivers of the United States

    USGS Publications Warehouse

    Blacksom, Karen A.; Walters, David M.; Jicha, Terri M.; Lazorchak, James M.; Angradi, Theodore R.; Bolgrien, David W.

    2010-01-01

    Great rivers of the central United States (Upper Mississippi, Missouri, and Ohio rivers) are valuable economic and cultural resources, yet until recently their ecological condition has not been well quantified. In 2004–2005, as part of the Environmental Monitoring and Assessment Program for Great River Ecosystems (EMAP-GRE), we measured legacy organochlorines (OCs) (pesticides and polychlorinated biphenyls, PCBs) and emerging compounds (polybrominated diphenyl ethers, PBDEs) in whole fish to estimate human and wildlife exposure risks from fish consumption. PCBs, PBDEs, chlordane, dieldrin and dichlorodiphenyltrichloroethane (DDT) were detected in most samples across all rivers, and hexachlorobenzene was detected in most Ohio River samples. Concentrations were highest in the Ohio River, followed by the Mississippi and Missouri Rivers, respectively. Dieldrin and PCBs posed the greatest risk to humans. Their concentrations exceeded human screening values for cancer risk in 27–54% and 16–98% of river km, respectively. Chlordane exceeded wildlife risk values for kingfisher in 11–96% of river km. PBDE concentrations were highest in large fish in the Missouri and Ohio Rivers (mean > 1000 ng g−1 lipid), with congener 47 most prevalent. OC and PBDE concentrations were positively related to fish size, lipid content, trophic guild, and proximity to urban areas. Contamination of fishes by OCs is widespread among great rivers, although exposure risks appear to be more localized and limited in scope. As an indicator of ecological condition, fish tissue contamination contributes to the overall assessment of great river ecosystems in the U.S.

  13. Wild, scenic, and transcendental rivers

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    “A more lovely stream than this has never flowed on Earth,” 19th century American author Nathaniel Hawthorne wrote about the confluence of the Assabet and Concord Rivers, streams that meander about 40 km west of Boston, Massachusetts.Segments of these streams as well as the Assabet River became the newest additions to the U.S. National Wild and Scenic Rivers System, when President Bill Clinton signed into law the “Sudbury, Assabet, and Concord Wild and Scenic River Act” on April 9.

  14. Variation in flow and suspended sediment transport in a montane river affected by hydropeaking and instream mining

    NASA Astrophysics Data System (ADS)

    Béjar, M.; Vericat, D.; Batalla, R. J.; Gibbins, C. N.

    2018-06-01

    The temporal and spatial variability of water and sediment loads of rivers is controlled by a suite of factors whose individual effects are often difficult to disentangle. While land use changes and localised human activities such as instream mining and hydropeaking alter water and sediment transfer, tributaries naturally contribute to discharge and sediment load of mainstem rivers, and so may help compensate upstream anthropogenic factors. The work presented here aimed to assess water and the sediment transfer in a river reach affected by gravel extraction and hydropeaking, set against a backdrop of changes to the supply of water and sediment from tributaries. Discharge and suspended sediment transport were monitored during two average hydrological years at three cross-sections along a 10-km reach of the upper River Cinca, in the Southern Pyrenees. Water and sediment loads differed substantially between the reaches. The upper reach showed a largely torrential discharge regime, controlled mainly by floods, and had high but variable water and sediment loads. The middle reach was influenced markedly by hydropeaking and tributary inflows, which increased its annual water yield four-fold. Suspended sediment load in this reach increased by only 25% compared to upstream, indicating that dilution predominated. In the lowermost section, while discharge remained largely unaltered, sediment load increased appreciably as a result of changes to sediment availability from instream mining and inputs from tributaries. At the reach scale, snowmelt and summer and autumn thunderstorms were responsible for most of the water yield, while flood flows determined the magnitude and transport of the sediment load. The study highlights that a combination of natural and human factors control the spatial and temporal transfer of water and sediment in river channels and that, depending on their geographic location and effect-size, can result in marked variability even over short downstream distances.

  15. Simulation-based assessment of the impact of fertiliser and herbicide application on freshwater ecosystems at the Three Gorges Reservoir in China.

    PubMed

    Scholz-Starke, Björn; Bo, Li; Holbach, Andreas; Norra, Stefan; Floehr, Tilman; Hollert, Henner; Roß-Nickoll, Martina; Schäffer, Andreas; Ottermanns, Richard

    2018-05-20

    Dams have profound impacts on river ecosystems, amongst them inundation of land, altered dynamics of the water body or uprising reservoir backwaters influencing tributary or upstream river sections. Along the outstandingly ecologically important Yangtze River in China, the Three Gorges Reservoir (TGR) is the largest project, covering an area of 1080 km 2 . From the beginning, the dam-project came in for criticism on increasing environmental risks due to sub-merging former industrial and urban areas. We simulated dynamics of biotic and abiotic components of the TGR ecosystem (trophic guilds of aquatic organisms, hydrodynamics, nutrients), as well as the behaviour of the herbicidal substance propanil and its metabolites 3,4-Dichloroaniline (DCA) and 3,3',4,4'-tetrachloroazoxybenzene (TCAB). A modelling environment, provided by the AQUATOX software, was adapted to the specific situation at a tributary reach to the Yangtze river 'Daning River'. As the simulated food web contained several interconnected trophic levels, a significant biomagnification of metabolites was demonstrated by our simulation studies. In particular, newly emerging stagnant downstream sections of tributaries exhibited high probabilities due to accumulating pesticides from upstream sources. The common problem of algal blooms in the TGR-region was addressed by dose-response simulation experiments with essential nutrients. Impacts on structure and abundance of populations of aquatic organisms were shown. However, even high nutrient loads resulted in only slight changes of densities of organisms of all trophic levels. Nevertheless, the probabilities for large-scale algal blooms affecting drinking water quality were considered low because of high flow velocities and discharge rates towards the Yangtze River. We see high potential of simulation-based assessments that provide information for risk managers dealing with whole catchment areas. They are put in the position to differentiate the magnitude of impacts of various factors and decide about the most effective remediation measures. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Beatty, Nevada: A section in U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1983, 1984, and 1985 (WRI 87-4009)

    USGS Publications Warehouse

    Fischer, Jeffrey M.; Nichols, William D.; Dinwiddie, G.A.; Trask, N.J.

    1986-01-01

    A commercial low-level radioactive-waste disposal site has been operating near Beatty, Nevada, about 150 km northwest of Las Vegas, since 1962. The 32-ha site is situated in a desolate region of the Amargosa River Valley, sometimes referred to as the Amargosa Desert. Average annual precipitation is only about 114 mm. The site is underlain by 175 m of unconsolidated, generally coarse-grained, alluvial-fan and flood-plain deposits. The water table is at a depth of 90 m.

  17. Pleistocene lake level changes in Western Mongolia

    NASA Astrophysics Data System (ADS)

    Borodavko, P. S.

    2009-04-01

    Global cooling in the Early Pleistocene caused extensive continental glaciation in the northern hemisphere including the arid areas of Central Asia. The reduction of temperatures (particularly summer temperatures) reduced evaporation and strengthened the importance of precipitation. The simultaneity of "lakes periods" (pluvials) and stages of glaciation is established experience confirmed by investigations in the west of North America and Russia. In the Mongolian Great Lakes Depression new evidence for similar conditions is found. The Great Lakes Depression is one of the largest in Central Asia, and is divided into 2 main Lakes basins: Hyargas Lake Basin and Uvs Lake Basin. The basin is 600-650 km in length with a width of 200-250 km in the north and 60-100 km in the south. Total catchment area is about 186600 km2. The elevation of the basin floor is from 1700 m a.s.l. to 760 m a.s.l., decreasing to the north and south-east. The depression extends south-north and is bounded by mountains: Tannu-Ola to the north, Hangai to the east; Gobi Altai to the south and Mongolian Altay to the west. The maximum elevation of the mountains is 4000 m a.s.l. There are some mountains with an elevation between 2000 and 3000 m a.s.l in the lake catchment. These mountains are not glaciated today. The geological record [1] suggests the Great Lakes Depression already existed in the Mesozoic, but assumed its modern form only during the Pliocene-Quaternary when tectonic movements caused the uplift of the surrounding mountains. A phase of tectonic stability occurred during the Late Quaternary. The depression is filled by Quaternary fluvial, aeolian and lacustrine deposits (e.g. sand, pebbles). The Neogene deposits are represented by coloured clay, marl, sand and sandstone [1]. Hyargas Lake is the end base level of erosion of the lake group consisting of the Hara-Us Nur, Dorgon, Hara Nur and Airag lakes. Hyargas is one of the largest lakes in Mongolia, with a water surface of 1,407 km2. The lake is 75 km long and 31 km wide. Its mean depth is 47 m, with the deepest point reaching 80 m, and its total water volume is 66,034 km3 and drainage basin 115,500 km2. The only water flowing into it is Galbiyn Hooloi. Hara-Us Nur Lake is a fresh-water (mineralization ca 107-348 mg/l, pH -7.8) basin situated in the Mongolian Great Lakes Depression [2]. Hara-Us Nur is fed by the Kobdo and Buyant rivers, which start in the Mongolian Altay, and outflows via the Chano-Hairkhan River into Hara-Us Nur Lake. Hara-Us Nur is divided by the Ak-Bashi Island into two subbasins. It has a water area of 1857 km2 with a length of 72.2 km and a maximum width of 27 km [4]. The maximum depth is 4 m and the average depth is ca 2 m [5,6]. The terraced lake shores are covered by steppe and desert vegetation. Pharagmites is abundant in the river deltas and close to the shore-line and the shallow-water littoral is covered by rich aquatic vegetation, including Myriophyllum verticulatum, Zannichelia pedunculata, Utricularia vulgaris [3]. Hara-Nur Lake is situated in the desert steppe subzone of the Mongolian Great Lakes Depression. The fresh-water Hara-Nur Lake receives inflow from Hara-Us Nur Lake via the Chano-Hairkhan River. There are two outflows from the lake one outflow is via a 10 km-long channel which flows to the Dzabhan River, which in turn flows into the closed Hyargas Lake. The other outflow is a small semi-permanent stream with flows southward into the closed brackish-water Dorgon Lake. Hara-Nur has a water area of 57,500 ha, with a length of 37 km and a maximum width of ca 24 km. The maximum depth is 7 m and the average depth is ca 4 m. The mean water mineralization is 260 mg/l and the pH is 8.0 [5]. The catchment area is ca 7,200,000 ha. Lake Ureg located in the Mongolian Altay at an altitude of 1425 m.a.s.1., this lake has an area 237.6 km2 and maximum depth of 48 m. Secchi disk transparency is to 8 m. Macrophyte beds cover up to 20 per cent of the lake area, with the common cane sedges and horsetails dominant. The benthic fauna is poor, and only single pecimens of molluscs and amphipods are met. The ichtyofauna is represented by Oreoleuciscus Pewzowi. Previous and modern investigations of these lakes, their morphologies and deposits, allow to specify periods of extension of the lakes and palaeogeographical conditions. Two clear extension periods can be determined in the Mongolian Great Lakes Basin, corresponding to Mid-and Late Pleistocene transgressions. During the Mid-Pleistocene transgression the current Lakes Har-Us Nur, Dorgon Nur, Hara Nur, Airag Nur and Hyargas were integrated to a united lake, with a maximal level at 1265 m. and total water area about 23 158 km2 . The maximal thickness of Mid-Pleistocene lake deposits is 70 m. Late Pleistocene lake sediments are investigated in sections near Dzabhan River and Hyargas Nuur shorelines. They consist of laminated sand, clay and gravel with cryogenic structures at the base and upper part of sections. The mean thickness of Late Pleistocene lake deposits is 20-35 m. The main characteristics of Late Pleistocene lake features are represented by a very bright "lake relief" — obvious steps of shorelines, gravel bands, bars and spits. The specific structure of Late Pleistocene lake cross-sections allows to separate two transgressions within this period. In the first half of the Holocene a minor regression of several meters occurred. Elements of the modern time aeolian relief were still inundated on the north shore of Lake Har-Us Nur. Researches funded by RFBR (Grant 08-05-00037-a) References 1. Geomorfologiya Mongol'skoi Narodnoi Respubliki (Geomorphology of the Mongolian People Republic). M.: Nauka, pp. 135-148. 2. Ozera MNR i ikh mineral'nye resursy (Lakes of MPR and their mineral resources), 1991. Moscow, Nauka, 136 p. 3. Sevastyanov, D.V., Shuvalov, V.F. and Neustrueva, I. Yu. (Eds.), 1994. Limnologiya i paleolimnologiya Mongolii (Limnology and Palaeolimnology of Mongolia). St.Petersburg, Nauka, 304 p. 4. Tarasov, P.E., Harrison, S.P., Saarse, L., Pushenko, M.Ya., Andreev, A.A., Aleshinskaya, Z.V., Davydova, N.N., Dorofeyuk, N.I., Efremov, Yu.V., Khomutova, V.I., Sevastyanov, D.V., Tamosaitis, J., Dorofeyuk, N.I., Efremov, Yu.V., Khomutova, V.I., Sevastyanov, D.V., Tamosaitis, J.,Uspenskaya, O.N., Yakushko, O.F. and Tarasova, I.V., 1994. Lake status records from the Former Soviet Union and Mongolia: Data Base Documentation, World Data Center -A for Paleoclimatology NOAA Paleoclimatology Program, Paleoclimatology Publications Series Report No 2, Boulder, Colorado USA, 274 p. 5. Tserensodnom, Zh., 1971. Mongol orny Nuur. Ulaanbaatar, TUAH, 202 p. 6. Vipper, P., Dorofeyuk, N., Liiva, A., Meteltseva, E., and Sokolovskaya, V., 1981. Palaeogeography of the Central Mongolia during the upper Pleistocene and Holocene. Izv. Akad. Nauk ESSR, Ser. Biol., vol. 30, no. 1, pp. 74-82.

  18. Application of remote sensing to land and water resource planning: The Pocomoke River Basin, Maryland

    NASA Technical Reports Server (NTRS)

    Wildesen, S. E.; Phillips, E. P.

    1981-01-01

    Because of the size of the Pocomoke River Basin, the inaccessibility of certain areas, and study time constraints, several remote sensing techniques were used to collect base information on the river corridor, (a 23.2 km channel) and on a 1.2 km wooded floodplain. This information provided an adequate understanding of the environment and its resources, thus enabling effective management options to be designed. The remote sensing techniques used for assessment included manual analysis of high altitude color-infrared photography, computer-assisted analysis of LANDSAT-2 imagery, and the application of airborne oceanographic Lidar for topographic mapping. Results show that each techniques was valuable in providing the needed base data necessary for resource planning.

  19. White sturgeon spawning areas in the lower Snake River

    USGS Publications Warehouse

    Parsley, M.J.; Kappenman, K.M.

    2000-01-01

    We documented 17 white sturgeon Acipenser transmontanus spawning locations in the Snake River from the mouth to Lower Granite Dam (river km 0 to 173). Spawning locations were determined by the collection of fertilized eggs on artificial substrates or in plankton nets. We collected 245 eggs at seven locations in McNary Reservoir, 22 eggs at three locations in Ice Harbor Reservoir, 30 eggs from two locations in Lower Monumental Reservoir, and 464 eggs at five locations in Little Goose Reservoir. All 17 locations were in high water velocity areas and between 1.0 and 7.0 km downstream from a hydroelectric dam. The documentation of spawning areas is important because this habitat is necessary to maintain natural and viable populations.

  20. Assessing remediation of contaminated sediments using multiple biological endpoints: sediment toxicity, food web tissue contamination, biotic condition and DNA damage.

    EPA Science Inventory

    The Ottawa River is a component of the Maumee River Area of Concern (AOC) as defined by the International Joint Commission’s Great Lakes Water Quality Agreement. A sediment remediation project took place in the lower 14.2 km of the river where urban and industrial activitie...

  1. Using Side-scan Sonar to Characterize and Map Physical Habitat and Anthropogenic Underwater Features in the St. Louis River. (poster)

    EPA Science Inventory

    Characterizing underwater habitat and other features is difficult and costly, especially in large river systems. The St. Louis River is the largest US tributary to Lake Superior and the lower portion consists of a 48.5 km2 complex of wetlands, tributaries, and bays. We surveyed 8...

  2. Changes in fish assemblage structure in the main-stem Willamette River, Oregon

    EPA Science Inventory

    The Willamette River if Oregon’s largest river, with a basin area of 29,800 km² and a mean annual discharge of 680 m³/3. Beginning in the 1890s, the channel was greatly simplified for navigation. By the 1940s, it was polluted by organic wastes, which resulted in low dissolved o...

  3. Three Rivers: Protecting the Yukon's Great Boreal Wilderness

    Treesearch

    Juri Peepre

    2007-01-01

    The Three Rivers Project in the Yukon, Canada, aims to protect a magnificent but little known 30,000 km2 (11,583 miles2) wilderness in the Peel watershed, using the tools of science, visual art, literature, and community engagement. After completing ecological inventories, conservation values maps, and community trips on the Wind, Snake, and Bonnet Plume rivers, the...

  4. Statistical Survey of Persistent Organic Pollutants: Risk Estimations to Humans and Wildlife through Consumption of Fish from U.S. Rivers

    EPA Science Inventory

    U.S. EPA conducted a national statistical survey of fish tissue contamination at 540 river sites (representing 82 954 river km) in 2008–2009, and analyzed samples for 50 persistent organic pollutants (POPs), including 21 PCB congeners, 8 PBDE congeners, and 21 organoc...

  5. Illustration of a fingerprinting method to isolate Gold King Release Metals from Background Concentrations in the San Juan River

    EPA Science Inventory

    Detecting the Gold King Mine metals as the release plume passed was difficult once it entered the San Juan River on August 8, 2015. Plume metals concentrations were relatively low after 200 km of travel and deposition in the Animas River while background concentrations of the sa...

  6. Isolation and Analysis of Bacteria in Recreational Waters of the Chattahoochee River, Helen, GA

    USDA-ARS?s Scientific Manuscript database

    Helen is a tourism destination in the Appalachian Mountains. A popular activity during warm weather is tubing in the Chattahoochee River. This study was to determine the variety of bacteria in the Chattahoochee River in Helen, GA. Eight samples were collected during a 5km tubing trip down the Chatta...

  7. What is the minimum number of sites needed for precisely assessing the ecological status of mainstem rivers?

    EPA Science Inventory

    We evaluated the number of sites that would yield relatively precise estimates of physical, chemical, and biological condition for six raftable rivers 100-200 km long and 20-120 m wide. We used a probability design to select 20 sites on each of two rivers in Washington and four ...

  8. Longitudinal patterns of metabolism in a southern Appalachian river

    Treesearch

    M. E. McTammany; J. R. Webster; E. F. Benfield; M. A. Neatrour

    2003-01-01

    We investigated longitudinal patterns of ecosystem metabolism (primary production and respiration) at 4 sites along a 37-km segment of the Little tennessee River (LTR), North Carolina. These sites corresponded to 4th- to 6th- order reaches in the LTR in an attempt to identify thr transition from heterotrophic to autotrophic conditions in this river ecosystem. In...

  9. Using side-scan sonar to characterize and map physical habitat and anthropogenic underwater features in the St. Louis River

    EPA Science Inventory

    Characterizing underwater habitat and other features is difficult and costly, especially in large river systems. The St. Louis River is the largest US tributary to Lake Superior and the lower portion consists of a 48.5 km2 complex of wetlands, tributaries, and bays. We surveyed 8...

  10. Diversity and genetic distance in populations of Steindachnerina in the upper Paraná river floodplain of Brazil.

    PubMed

    Oliveira, A V; Prioli, A J; Prioli, S M A P; Pavanelli, C S; Júlio, H F; Panarari, R S

    2002-08-01

    Whereas four species of the genus Steindachnerina occur in the Paraná river basin, S. insculpta was the only endemic species of the region under analysis, which is the third lower section of the upper Paraná river. Among other factors, this species has been characterised by the absence of spots in the basal region of the dorsal fin. However, various specimens with this characteristic appeared in the region after the construction of the Itaipu Hydroelectric Plant in 1982. An analysis of the genetic variability of Steindachnerina populations with or without spots is provided. Specimens were collected in different sites of the floodplain of the upper Paraná river and samples were compared by random amplified polymorphic DNA (RAPD) technique and morphological analyses. Ninety-eight amplified loci with nine random primers were analysed in 19 specimens of each phenotype. Data for genetic distance showed great divergences between the two phenotypes and indicate two different species. Spotted specimens may be identified as S. brevipinna, found in the region downstream Sete Quedas Falls. The species must have overcome the geographical barrier during the building of the Itaipu hydroelectric dam that submerged the waterfalls and which became an obstacle between the upper and middle Paraná river some 150 km downstream. Since phenotypes do not share dominant alleles, absence of gene flow has been suggested.

  11. Variations in organic carbon fluxes from Long Island Sound to the Continental Shelf

    NASA Astrophysics Data System (ADS)

    Vlahos, P.; Whitney, M. M.

    2017-12-01

    Organic carbon balances for the Long Island Sound estuary over the years 2009-2012 are presented to assess the particulate and dissolved organic carbon contributions of the estuary to the adjacent shelf waters with respect to the Delaware and Chesapeake. Observations were coupled to a hydrodynamic model (ROMS) for both seasonal and annual estimates. During stratified summer periods, LIS was consistently a net exporter of OC to the continental shelf. LIS annual net carbon export however, varied with river flow. The heterotrophic or autotrophic nature of LIS also shifted seasonally and inter-annually. During the mass balance analysis period LIS ranged between net OC import from the continental shelf and heterotrophy in the lowest river flow year (2012) and net export of OC and autotrophy in the highest flow year (2011). Analysis suggests that LIS switches from net OC import to export when the annual river inputs exceed 19 km3 yr-1. Applying these thresholds to the annual river flow record suggests that net import occurred in 15% of the last 20 years and that LIS usually is a net exporter of OC (85%). Annually averaged LIS carbon export values based on river flow conditions over the last 20 yr are estimated at 56 ± 64 x 106 km3 yr-1. Analysis also suggests that LIS shifts from net heterotrophic to net autotrophic when annual river flow exceeds 26 km3 yr-1 (35% of the last 20 yr). Net heterotrophic conditions are most common, representing 65% of the last 20 yr.

  12. Effects of Subbasin Size on Topographic Characteristics and Simulated Flow Paths in Sleepers River Watershed, Vermont

    NASA Astrophysics Data System (ADS)

    Wolock, David M.

    1995-08-01

    The effects of subbasin size on topographic characteristics and simulated flow paths were determined for the 111.5-km2 Sleepers River Research Watershed in Vermont using the watershed model TOPMODEL. Topography is parameterized in TOPMODEL as the spatial and statistical distribution of the index ln (a/tan B), where In is the Napierian logarithm, a is the upslope area per unit contour length, and tan B is the slope gradient. The mean, variance, and skew of the ln (a/tan B) distribution were computed for several sets of nested subbasins (0.05 to 111.5 km2)) along streams in the watershed and used as input to TOPMODEL. In general, the statistics of the ln (a/tan B) distribution and the simulated percentage of overland flow in total streamflow increased rapidly for some nested subbasins and decreased rapidly for others as subbasin size increased from 0.05 to 1 km2, generally increased up to a subbasin size of 5 km2, and remained relatively constant at a subbasin size greater than 5 km2. Differences in simulated flow paths among subbasins of all sizes (0.05 to 111.5 km2) were caused by differences in the statistics of the ln (a/tan B) distribution, not by differences in the explicit spatial arrangement of ln (a/tan B) values within the subbasins. Analysis of streamflow chemistry data from the Neversink River watershed in southeastern New York supports the hypothesis that subbasin size affects flow-path characteristics.

  13. Use of Infrasound for evaluating potentially hazardous conditions for barge transit on the Mississippi River at Vicksburg, Mississippi

    NASA Astrophysics Data System (ADS)

    McKenna, M. H.; Simpson, C. P.; Jordan, A. M.

    2017-12-01

    Navigating the Mississippi River in Vicksburg, MS is known to be difficult for barge traffic in even the best of conditions due to the river's sharp bend 2 km north of the Highway 80 Bridge. When river levels rise, the level of difficulty in piloting barges under the bridge rises. Ongoing studies by the U.S. Army Engineer Research and Development Center (ERDC) are investigating infrasound as a means to correlate the low frequency acoustics generated by the river with the presence of hazardous conditions observed during flood stage, i.e., rough waters and high currents, which may lead to barge-bridge impacts. The Denied Area Monitoring and Exploitation of Structures (DAMES) Array at the ERDC Vicksburg, MS campus is a persistent seismic-acoustic array used for structural monitoring and explosive event detection. The DAMES Array is located 4.3 km from the Mississippi River/Highway 80 Bridge junction and recorded impulsive sub-audible acoustic signals, similar to an explosive event, from barge-bridge collisions that occurred between 2011 and 2017. This study focuses on five collisions that occurred during January 2016, which resulted in closing the river for barge transit and the Highway 80 Bridge for rail transit for multiple days until safety inspections were completed. The Highway 80 Bridge in Vicksburg, MS is the only freight-crossing over the Mississippi River between Baton Rouge, LA and Memphis, TN, meaning delays from these closings have significant impacts on all transit of goods throughout the Southeastern United States. River basin data and regional meteorological data have been analyzed to find correlations between the river conditions in January 2016, and recorded infrasound data with the aim of determining the likelihood that hazardous conditions are present on the river. Frequency-wavenumber analysis was used to identify the transient signals associated with the barge-bridge impacts and calculate the backazimuth to their source. Then, with the use of Sandia National Laboratory's Infratool, the collected infrasound data were analyzed before, during, and after each collision to identify patterns in the continuous-wave acoustics associated with the river's turbulence at the bend in the river 2 km north of the bridge. Permission to publish was granted by Director, Geotechnical and Structures Laboratory.

  14. Gravel Bars Can Be Critical for Biodiversity Conservation: A Case Study on Scaly-Sided Merganser in South China

    PubMed Central

    Zeng, Qing; Shi, Linlu; Wen, Li; Chen, Junzhu; Duo, Hairui; Lei, Guangchun

    2015-01-01

    Gravel bars are characteristic components of river landscapes and are increasingly recognized as key sites for many waterbirds, though detailed studies on the ecological function of gravel bars for waterbirds are rare. In this study, we surveyed the endangered Scaly-sided Merganser Mergus squamatus along a 40 km river section of Yuan River, in Central China, for three consecutive winters. We derived the landscape metrics of river gravel bars from geo-rectified fine resolution (0.6 m) aerial image data. We then built habitat suitability models (Generalized Linear Models—GLMs) to study the effects of landscape metrics and human disturbance on Scaly-sided Merganser presence probability. We found that 1) the Scaly-sided Merganser tended to congregate at river segments with more gravel patches; 2) the Scaly-sided Merganser preferred areas with larger and more contiguous gravel patches; and 3) the number of houses along the river bank (a proxy for anthropogenic disturbance) had significantly negative impacts on the occurrence of the Scaly-sided Merganser. Our results suggest that gravel bars are vital to the Scaly-sided Merganser as shelters from disturbance, as well as sites for feeding and roosting. Therefore, maintaining the exposure of gravel bars in regulated rivers during the low water period in winter might be the key for the conservation of the endangered species. These findings have important implications for understanding behavioral evolution and distribution of the species and for delineating between habitats of different quality for conservation and management. PMID:25996671

  15. Organic carbon and nitrogen export from a tropical dam-impacted floodplain system

    NASA Astrophysics Data System (ADS)

    Zurbrügg, R.; Suter, S.; Lehmann, M. F.; Wehrli, B.; Senn, D. B.

    2013-01-01

    Tropical floodplains play an important role in organic matter transport, storage, and transformation between headwaters and oceans. However, the fluxes and quality of organic carbon (OC) and organic nitrogen (ON) in tropical river-floodplain systems are not well constrained. We explored the quantity and characteristics of dissolved and particulate organic matter (DOM and POM, respectively) in the Kafue River flowing through the Kafue Flats (Zambia), a tropical river-floodplain system in the Zambezi River basin. During the flooding season, > 80% of the Kafue River water passed through the floodplain, mobilizing large quantities of OC and ON, which resulted in a net export of 69-119 kg OC km-2 d-1 and 3.8-4.7 kg ON km-2 d-1, 80% of which was in the dissolved form. The elemental C : N ratio of ~ 20, the comparatively high δ13C values of -25‰ to -21‰, and its spectroscopic properties (excitation-emission matrices) showed that DOM in the river was mainly of terrestrial origin. Despite a threefold increase in OC loads due to inputs from the floodplain, the characteristics of the riverine DOM remained relatively constant along the sampled 410-km river reach. This suggests that floodplain DOM displayed properties similar to those of DOM leaving the upstream reservoir and implied that the DOM produced in the reservoir was relatively short-lived. In contrast, the particulate fraction was 13C-depleted (-29‰) and had a C : N ratio of ~ 8, which indicated that POM originated from phytoplankton production in the reservoir and in the floodplain, rather than from plant debris or resuspended sediments. While the upstream dam had little effect on the DOM pool, terrestrial particles were retained, and POM from algal and microbial sources was released to the river. A nitrogen mass balance over the 2200 km2 flooded area revealed an annual deficit of 15 500-22 100 t N in the Kafue Flats. The N isotope budget suggests that these N losses are balanced by intense N-fixation. Our study shows that the Kafue Flats are a significant local source of OC and ON to downstream ecosystems and illustrates how the composition of riverine OM can be altered by dams and floodplains in tropical catchments.

  16. Water quality and ground-water/surface-water interactions along the John River near Anaktuvuk Pass, Alaska, 2002-2003

    USGS Publications Warehouse

    Moran, Edward H.; Brabets, Timothy P.

    2005-01-01

    The headwaters of the John River are located near the village ofAnaktuvuk Pass in the central Brooks Range of interior Alaska. With the recent construction of a water-supply system and a wastewater-treatment plant, most homes in Anaktuvuk Pass now have modern water and wastewater systems. The effluent from the treatment plant discharges into a settling pond near a tributary of the John River. The headwaters of the John River are adjacent to Gates of the Arctic National Park and Preserve, and the John River is a designated Wild River. Due to the concern about possible water-quality effects from the wastewater effluent, the hydrology of the John River near Anaktuvuk Pass was studied from 2002 through 2003. Three streams form the John River atAnaktuvuk Pass: Contact Creek, Giant Creek, and the John RiverTributary. These streams drain areas of 90.3 km (super 2) , 120 km (super 2) , and 4.6 km (super 2) , respectively. Water-qualitydata collected from these streams from 2002-03 indicate that the waters are a calcium-bicarbonate type and that Giant Creek adds a sulfate component to the John River. The highest concentrations of bicarbonate, calcium, sodium, sulfate, and nitrate were found at the John River Tributary below the wastewater-treatment lagoon. These concentrations have little effect on the water quality of the John River because the flow of the John River Tributary is only about 2 percent of the John River flow. To better understand the ground-water/surface-water interactions of the upper John River, a numerical groundwater-flow model of the headwater area of the John River was constructed. Processes that occur during spring break-up, such as thawing of the active layer and the frost table and the resulting changes of storage capacity of the aquifer, were difficult to measure and simulate. Application and accuracy of the model is limited by the lack of specific hydrogeologic data both spatially and temporally. However, during the mid-winter and open-water periods, the model provided acceptable results and was coupled with a particle-movement model to simulate the movement and possible extent of conservative particles from the wastewater-treatment-plant lagoon.

  17. Intracontinental subduction and hinged unroofing along the Salmon River Suture Zone, west central Idaho

    NASA Astrophysics Data System (ADS)

    Selverstone, Jane; Wernicke, Brian P.; Aliberti, Elaine A.

    1992-02-01

    The Salmon River suture zone in west central Idaho juxtaposes volcanic arc rocks of the Wallowa terrane directly against cratonic North America. Detailed metamorphic studies along a 10 km traverse perpendicular to the suture indicate that the arc and two crystalline fragments thrust upon it each record different pressure-temperature (P-T) histories. From lowest to highest structural level: the Wallowa terrane shows only subgreenschist metamorphism, the Rapid River plate (RRP) records unroofing and cooling from ˜8 kbar and 550°C to 6 kbar and 475°-500°C, and the Pollock Mountain plate (PMP) shows evidence for polymetamorphism and records burial and heating paths to final equilibration conditions of 9-11 kbar and 600°-625° C. Ar-Ar hornblende ages combined with the P-T data suggest that currently exposed levels of the RRP and PMP were juxtaposed against one another at 15-20 km depth at or prior to 118 Ma, indicating that 10-20 km of uplift, and hence also the onset of collision-related metamorphism, occurred before ˜118 Ma. Correlation of the metamorphic and age data with geometric constraints from the initial Sr 0.706 line and the dimensions of the RRP and PMP permit construction of large-scale retrodeformable sections of the west side of the suture from Late Jurassic through Late Cretaceous time. The abrupt nature of the Sr 0.706 line implies that the arc-continent boundary extends vertically through most of the crust, which requires sharp downwarping of the arc lithosphere in order to account for the PMP metamorphic data. Narrow zoned overgrowths on PMP garnets record this burial event and require initially rapid (≥3 km/m.y.) uplift rates in order to be preserved. We suggest that the onset of rapid uplift resulted from the separation of the negatively buoyant lithospheric root from the downwarped arc, allowing buoyant rise of fragments of thickened crust. Detachment of the root is suggested to change the environment of crustal shortening from one in which footwalls of thrusts or shear zones sink to one in which hanging walls rise. This mechanism represents an alternative to cessation of shortening or onset of tectonic denudation as an explanation for the transition from burial to uplift of high-pressure metamorphic terrains. Subsequent uplift appears to have been slow and to have occurred in a hinged fashion such that mineral and whole rock ages decrease systematically towards the suture zone. The consumption of lithosphere during ≥40 km of shortening between two crustal blocks implies that the Salmon River suture is the trace of an intracontinental subduction zone. Burial and collision apparently began before about 130 Ma, and thus any precollision strike-slip faulting or tectonic escape of intervening terranes was likely accomplished in Jurassic and earliest Cretaceous time.

  18. PAHs and PCBs deposited in surficial sediments along a rural to urban transect in a mid-Atlantic coastal river basin (USA).

    PubMed

    Foster, Gregory D; Cui, Vickie

    2008-10-01

    PAHs and PCBs were measured in river sediments along a 226 km longitudinal transect that spanned rural to urban land use settings through Valley and Ridge, Piedmont Plateau and Coastal Plain physiographic provinces in the Potomac River basin (mid-Atlantic USA). A gradient in PAH concentrations was found in river bed sediments along the upstream transect in the Potomac and Shenandoah Rivers that correlated with population densities in the nearby sub-basins. Sediment PAH concentrations halved per each approximately 40 km of transect distance upstream (i.e., the half-concentration distance) from the urban center (Washington, DC) of the Potomac River basin in direct proportion to population density. The PAH molecular composition was consistent across all geologic provinces, revealing a dominant pyrogenic source. Fluoranthene to perylene ratios served as useful markers for urban inputs, with a ratio > 2.4 observed in sediments near urban structures such as roadways, bridges and sewer outfalls. PCBs in sediments were not well correlated with population densities along the river basin transect, but the highest concentrations were found in the urban Coastal Plain region near Washington, DC and in the Shenandoah River near a known industrial Superfund site. PAHs were moderately correlated with sediment total organic carbon (TOC) in the Shenandoah River and Coastal Plain Potomac River regions, but TOC was poorly correlated with PCB concentrations throughout the entire basin. Although both PAHs and PCBs are widely recognized as urban-derived contaminants, their concentration profiles and geochemistry in river sediments were uniquely different throughout the upper Potomac River basin.

  19. The Importance of Bank Storage in Supplying Baseflow to Rivers Flowing Through Compartmentalized, Alluvial Aquifers

    NASA Astrophysics Data System (ADS)

    Rhodes, Kimberly A.; Proffitt, Tiffany; Rowley, Taylor; Knappett, Peter S. K.; Montiel, Daniel; Dimova, Natasha; Tebo, Daniel; Miller, Gretchen R.

    2017-12-01

    As water grows scarcer in semiarid and arid regions around the world, new tools are needed to quantify fluxes of water and chemicals between aquifers and rivers. In this study, we quantify the volumetric flux of subsurface water to a 24 km reach of the Brazos River, a lowland river that meanders through the Brazos River Alluvium Aquifer (BRAA), with 8 months of high-frequency differential gaging measurements using fixed gaging stations. Subsurface discharge sources were determined using natural tracers and End-Member Mixing Analysis (EMMA). During a 4 month river stage recession following a high stage event, subsurface discharge decreased from 50 m3/s to 0, releasing a total of 1.0 × 108 m3 of water. Subsurface discharge dried up even as the groundwater table at two locations in the BRAA located 300-500 m from the river remained ˜4 m higher than the river stage. Less than 4% of the water discharged from the subsurface during the prolonged recession period resembled the chemical fingerprint of the alluvial aquifer. Instead, the chemistry of this discharged water closely resembled high stage "event" river water. Together, these findings suggest that the river is well connected to rechargeable bank storage reservoirs but disconnected from the broader alluvial aquifer. The average width of discrete bank storage zones on each side of the river, identified with Electrical Resistivity Tomography (ERT), was approximately 1.5 km. In such highly compartmentalized aquifers, groundwater pumping is unlikely to impact the exchange between the river and the alluvium.

  20. Mapping the temporary and perennial character of whole river networks

    NASA Astrophysics Data System (ADS)

    González-Ferreras, A. M.; Barquín, J.

    2017-08-01

    Knowledge of the spatial distribution of temporary and perennial river channels in a whole catchment is important for effective integrated basin management and river biodiversity conservation. However, this information is usually not available or is incomplete. In this study, we present a statistically based methodology to classify river segments from a whole river network (Deva-Cares catchment, Northern Spain) as temporary or perennial. This method is based on an a priori classification of a subset of river segments as temporary or perennial, using field surveys and aerial images, and then running Random Forest models to predict classification membership for the rest of the river network. The independent variables and the river network were derived following a computer-based geospatial simulation of riverine landscapes. The model results show high values of overall accuracy, sensitivity, and specificity for the evaluation of the fitted model to the training and testing data set (≥0.9). The most important independent variables were catchment area, area occupied by broadleaf forest, minimum monthly precipitation in August, and average catchment elevation. The final map shows 7525 temporary river segments (1012.5 km) and 3731 perennial river segments (662.5 km). A subsequent validation of the mapping results using River Habitat Survey data and expert knowledge supported the validity of the proposed maps. We conclude that the proposed methodology is a valid method for mapping the limits of flow permanence that could substantially increase our understanding of the spatial links between terrestrial and aquatic interfaces, improving the research, management, and conservation of river biodiversity and functioning.

  1. Purus River suspended sediment variability and contributions to the Amazon River from satellite data (2000-2015)

    NASA Astrophysics Data System (ADS)

    Santos, Andre Luis Martinelli Real dos; Martinez, Jean Michel; Filizola, Naziano Pantoja; Armijos, Elisa; Alves, Luna Gripp Simões

    2018-01-01

    The Purus River is one of the major tributaries of Solimões River in Brazil, draining an area of 370,091 km2 and stretching over 2765 km. Unlike those of the other main tributaries of the Amazon River, the Purus River's sediment discharge is poorly characterized. In this study, as an alternative to the logistic difficulties and considering high monitoring costs, we report an experiment where field measurement data and 2700 satellite (MODIS) images are combined to retrieve both seasonal and interannual dynamics in terms of the Purus river sediment discharge near its confluence with the Solimões River. Field radiometric and hydrologic measurements were acquired during 18 sampling trips, including 115 surface water samples and 61 river discharge measurements. Remote sensing reflectance gave important results in the red and infrared levels. They were very well correlated with suspended sediment concentration. The values of R2 are greater than 0.8 (red band) and 0.9 (NIR band). A retrieval algorithm based on the reflectance in both the red and the infrared was calibrated using the water samples collected for the determination of the surface-suspended sediment concentration (SSS). The algorithm was used to calculate 16 years of SSS time series with MODIS images at the Purus River near its confluence with the Solimões River. Results from satellite data correlated with in situ SSS values validate the use of satellite data to be used as a tool to monitor SSS in the Purus River. We evidenced a very short and intense sediment discharge pulse with 55% of the annual sediment budget discharged during the months of January and February. Using river discharge records, we calculated the mean annual sediment discharge of the Purus River at about of 17 Mt·yr-1.

  2. Global hydrodynamic modelling of flood inundation in continental rivers: How can we achieve it?

    NASA Astrophysics Data System (ADS)

    Yamazaki, D.

    2016-12-01

    Global-scale modelling of river hydrodynamics is essential for understanding global hydrological cycle, and is also required in interdisciplinary research fields . Global river models have been developed continuously for more than two decades, but modelling river flow at a global scale is still a challenging topic because surface water movement in continental rivers is a multi-spatial-scale phenomena. We have to consider the basin-wide water balance (>1000km scale), while hydrodynamics in river channels and floodplains is regulated by much smaller-scale topography (<100m scale). For example, heavy precipitation in upstream regions may later cause flooding in farthest downstream reaches. In order to realistically simulate the timing and amplitude of flood wave propagation for a long distance, consideration of detailed local topography is unavoidable. I have developed the global hydrodynamic model CaMa-Flood to overcome this scale-discrepancy of continental river flow. The CaMa-Flood divides river basins into multiple "unit-catchments", and assumes the water level is uniform within each unit-catchment. One unit-catchment is assigned to each grid-box defined at the typical spatial resolution of global climate models (10 100 km scale). Adopting a uniform water level in a >10km river segment seems to be a big assumption, but it is actually a good approximation for hydrodynamic modelling of continental rivers. The number of grid points required for global hydrodynamic simulations is largely reduced by this "unit-catchment assumption". Alternative to calculating 2-dimensional floodplain flows as in regional flood models, the CaMa-Flood treats floodplain inundation in a unit-catchment as a sub-grid physics. The water level and inundated area in each unit-catchment are diagnosed from water volume using topography parameters derived from high-resolution digital elevation models. Thus, the CaMa-Flood is at least 1000 times computationally more efficient compared to regional flood inundation models while the reality of simulated flood dynamics is kept. I will explain in detail how the CaMa-Flood model has been constructed from high-resolution topography datasets, and how the model can be used for various interdisciplinary applications.

  3. Lateral carbon export in the Mississippi River Basin, integrating fluxes from the headwaters to the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Stackpoole, S. M.; Crawford, J.; Santi, L. M.; Stets, E.; Sebestyen, S. D.; Wilson, S.; Striegl, R. G.

    2017-12-01

    Large-scale river studies have documented that lateral fluxes are an important component of the global carbon cycle. This study focuses on river lateral C fluxes for the Mississippi River Basin (MRB), the largest river in North America. Our lateral river C fluxes are based on data from 23 nested watersheds within the Upper MRB, for water years 2015 and 2016. The study area covers 170,000 km2 and is comprised of both catchment <10 km2 and intermediate-scale watersheds (20,000 to 40,000 km2) in Wisconsin and Minnesota, USA. Total alkalinity yields (flux derived by drainage area) ranged from 0 to 16 g C m2 yr-1 and dissolved organic C (DOC) yields ranged from 1 to 13 g C m2 yr-1. In comparison, published estimates for Mississippi River export to the Gulf of Mexico, estimated at St. Francisville, LA, were 16 g C m-2 yr-1 for alkalinity and 0.6 g m2 yr-1 for DOC. In the Upper MRB, alkalinity yields had a significant negative relationship with DOC yields (R2 = 0.53, p-value<0.0001), and alkalinity yields were significantly higher in basins where the lithology was dominated by carbonates and the land-use was >50% agriculture. There was significant inter-annual variability in the total C fluxes, and the increase in discharge in 2016 relative to 2015 increased the proportion of DOC:alkalinity for watersheds with higher forest and wetland coverage. The integration of these recent C flux estimates for the Upper MRB integrated with the fluxes estimated from the USGS long-term monitoring program dataset provide a comprehensive analysis of alkalinity and DOC fluxes for the entire basin. These results, which represent C fluxes across a gradient of lithology, soil type, and land use, will be used to address questions related to our understanding of carbon sources, transport, and loss that can be applied to other river systems.

  4. What Controls the Hydrodynamics of the Central Congo River?

    NASA Astrophysics Data System (ADS)

    O'Loughlin, F.; Bates, P. D.

    2014-12-01

    Despite being the second largest river basin in the world, with a drainage area greater than 3.7 million square kilometres, little is known about the hydraulics of the Congo River. This lack of knowledge is mainly due to a mixture of conflicts and the difficulty of accessing existing data. We present results of studies which have focused primarily on the middle reach of the Congo River, located between Kisangani and Kinshasa, and its six main tributaries (Kasai, Ubangai, Sangha, Ruki, Lulonga and Lomami rivers). Through a combination of remotely sensed datasets and a hydrodynamic model we investigated what factors control the hydrodynamics of the middle reach. From the analysis of the remotely sensed datasets, we discover that variability in river width of the middle reach of the Congo is large and cannot be represented by empirical equations which relate channel geometry to basin area and discharge. Water surface slopes vary from 3.5 cm/km to 9 cm/km, which is far more than previous studies suggest. The remote datasets indicate that there exist 5 large constrictions in the river width which may result in backwater affecting between 11 and 33 percent of middle reach at low and high water respectively. These results were corroborated by the hydrodynamic model. In fact, when all constrictions caused by a narrowing in width of 1 km or more are considered, water levels along 43 percent of the middle reach change by at least 0.5 m. Using the hydrodynamic model we also investigated the importance of the wetlands to the attenuation of the flood wave through the system. Initial results suggest that for the Congo River, floodplains have far more impact on the peak magnitude than the timing of the flood wave. When the model was run with no floodplain interactions an increase in the magnitude of flood peak was observed, with the timing of the waves being consistent with observed measurements.

  5. Organic carbon and nitrogen export from a tropical dam-impacted floodplain system

    NASA Astrophysics Data System (ADS)

    Zurbrügg, R.; Suter, S.; Lehmann, M. F.; Wehrli, B.; Senn, D. B.

    2012-06-01

    Tropical floodplains play an important role in organic matter transport, storage, and transformation between headwaters and oceans. However, the fluxes and quality of organic carbon (OC) and organic nitrogen (ON) in tropical river-floodplain systems are not well constrained. We explored the quantity and characteristics of dissolved and particulate organic matter (DOM and POM) in the Kafue River flowing through the Kafue Flats (Zambia). The Kafue Flats are a tropical dam-impacted river-floodplain system in the Zambezi River basin. During the flooding season, >80% of the Kafue River water passed through the floodplain, mobilizing large quantities of OC and ON, which resulted in a net export of 75 kg OC km-2 d-1 and 2.9 kg ON km-2 d-1, 80% of which was in the dissolved form. Mass budget estimates showed that ON export, denitrification, and burial caused an annual deficit of ~21 000 t N yr-1 in the Kafue Flats. A N isotope balance and the δ15N of DON and PON suggest that N-fixation must level out the large N losses. The elemental C:N ratio of ~20, the δ13C values of higher than -24‰, and spectroscopic properties (excitation-emission matrices) showed that DOM in the river was mainly of terrestrial origin. Despite a threefold increase in OC loads due to inputs from the floodplain, the river DOM characteristics remained relatively constant along the sampled 400-km river reach. This suggested that floodplain DOM had similar properties than DOM from the upstream reservoir. In contrast, based on its low δ13C of -29‰ and the C:N ratio of ~8, POM originated from phytoplankton production in the upstream reservoir and in the floodplain. While the reservoir had little impact on DOM properties, terrestrial POM was efficiently trapped and, instead, phytoplankton-derived POM was discharged to the downstream Kafue Flats.

  6. AmeriFlux CA-Gro Ontario - Groundhog River, Boreal Mixedwood Forest.

    DOE Data Explorer

    McCaughey, Harry [Queen's University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Gro Ontario - Groundhog River, Boreal Mixedwood Forest.. Site Description - Groundhog River (FCRN or CCP site "ON-OMW") is situated in a typical boreal mixedwood forest in northeastern Ontario (48.217 degrees north and 82.156 degrees west) about 80 km southwest of Timmins in Reeves Twp. near the Groundhog River. Rowe (1972) places the site in the Missinaibi-Cabonga Section of the Boreal Forest Region. In terms of ecoregion and ecozone, the site is in the Lake Timiskaming Lowlands of the Boreal Shield. The forest developed after high-grade logging in the 1930's. The average age in 2013 is estimated at beteen 75 and 80 years. The forest is dominated by five species characteristic of Ontario boreal mixedwoods: trembling aspen (Populus tremuloides Michx.), black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench.) Voss.), white birch (Betula papyrifera Marsh.), and balsam fir (Abies balsamea (L.) Mill.). The surficial geology is a lacustrine deposit of varved or massive clays, silts and silty sands. The soil is an orthic gleysol with a soil moisture regime classified as fresh to very fresh. Plonski (1974) rates it as a site class 1. The topography is simple and flat with an overall elevation of 340 m ASL.

  7. Pertinent spatio-temporal scale of observation to understand suspended sediment yield control factors in the Andean region: the case of the Santa River (Peru)

    NASA Astrophysics Data System (ADS)

    Morera, S. B.; Condom, T.; Vauchel, P.; Guyot, J.-L.; Galvez, C.; Crave, A.

    2013-11-01

    Hydro-sedimentology development is a great challenge in Peru due to limited data as well as sparse and confidential information. This study aimed to quantify and to understand the suspended sediment yield from the west-central Andes Mountains and to identify the main erosion-control factors and their relevance. The Tablachaca River (3132 km2) and the Santa River (6815 km2), located in two adjacent Andes catchments, showed similar statistical daily rainfall and discharge variability but large differences in specific suspended-sediment yield (SSY). In order to investigate the main erosion factors, daily water discharge and suspended sediment concentration (SSC) datasets of the Santa and Tablachaca rivers were analysed. Mining activity in specific lithologies was identified as the major factor that controls the high SSY of the Tablachaca (2204 t km2 yr-1), which is four times greater than the Santa's SSY. These results show that the analysis of control factors of regional SSY at the Andes scale should be done carefully. Indeed, spatial data at kilometric scale and also daily water discharge and SSC time series are needed to define the main erosion factors along the entire Andean range.

  8. A lithospheric instability origin for Columbia River flood basalts and Wallowa Mountains uplift in northeast Oregon.

    PubMed

    Hales, T C; Abt, D L; Humphreys, E D; Roering, J J

    2005-12-08

    Flood basalts appear to form during the initiation of hotspot magmatism. The Columbia River basalts (CRB) represent the largest volume of flood basalts associated with the Yellowstone hotspot, yet their source appears to be in the vicinity of the Wallowa Mountains, about 500 km north of the projected hotspot track. These mountains are composed of a large granitic pluton intruded into a region of oceanic lithosphere affinity. The elevation of the interface between Columbia River basalts and other geological formations indicates that mild pre-eruptive subsidence took place in the Wallowa Mountains, followed by syn-eruptive uplift of several hundred metres and a long-term uplift of about 2 km. The mapped surface uplift mimics regional topography, with the Wallowa Mountains in the centre of a 'bull's eye' pattern of valleys and low-elevation mountains. Here we present the seismic velocity structure of the mantle underlying this region and erosion-corrected elevation maps of lava flows, and show that an area of reduced mantle melt content coincides with the 200-km-wide topographic uplift. We conclude that convective downwelling and detachment of a compositionally dense plutonic root can explain the timing and magnitude of Columbia River basalt magmatism, as well as the surface uplift and existence of the observed melt-depleted mantle.

  9. Annual glacier dammed lake drainage in Zackenberg, Northeast Greenland

    NASA Astrophysics Data System (ADS)

    Lane, Timothy; Adamson, Kathryn; Matthews, Tom

    2016-04-01

    A.P. Olsen is a 295 km2 ice cap in the Zackenberg region of Northeast Greenland (74.6° N, 21.5° W), 35 km from the ZERO Zackenberg Research Station. The ice cap lies on a gneissic plateau, covering an elevation of 200 to 1450 m a.s.l. A.P. Olsen mass balance has been monitored since 2008 and reconstructed for the period 1995-2007. Meltwater from this ice cap drains into the Zackenberg River, and into Young Sund via the Zackenberg Delta. One outlet dams a c. 0.8 km2 lake fed by the northern part of the ice cap. Observational data suggests this lake drains annually, flooding subglacially into the Zackenberg River. But the impacts of these flood events on the hydrology, sediment transfer, and geomorphology of the proglacial zone downstream have not been examined in detail. Understanding the impacts of glacial lake outburst flood events is important in the sensitive Arctic environment, where glacial change is rapid. We use Landsat scenes to reconstruct lake extent from 1999-2015. This is compared to Zackenberg River discharge measurements, available from the ZERO Zackenberg monitoring programme. These datasets are used to examine the nature and timing of flood events, and assess the impacts on the Zackenberg river downstream.

  10. Mesoscale variability of the Upper Colorado River snowpack

    USGS Publications Warehouse

    Ling, C.-H.; Josberger, E.G.; Thorndike, A.S.

    1996-01-01

    In the mountainous regions of the Upper Colorado River Basin, snow course observations give local measurements of snow water equivalent, which can be used to estimate regional averages of snow conditions. We develop a statistical technique to estimate the mesoscale average snow accumulation, using 8 years of snow course observations. For each of three major snow accumulation regions in the Upper Colorado River Basin - the Colorado Rocky Mountains, Colorado, the Uinta Mountains, Utah, and the Wind River Range, Wyoming - the snow course observations yield a correlation length scale of 38 km, 46 km, and 116 km respectively. This is the scale for which the snow course data at different sites are correlated with 70 per cent correlation. This correlation of snow accumulation over large distances allows for the estimation of the snow water equivalent on a mesoscale basis. With the snow course data binned into 1/4?? latitude by 1/4?? longitude pixels, an error analysis shows the following: for no snow course data in a given pixel, the uncertainty in the water equivalent estimate reaches 50 cm; that is, the climatological variability. However, as the number of snow courses in a pixel increases the uncertainty decreases, and approaches 5-10 cm when there are five snow courses in a pixel.

  11. Phase I of the Kissimmee River restoration project, Florida, USA: impacts of construction on water quality.

    PubMed

    Colangelo, David J; Jones, Bradley L

    2005-03-01

    Phase I of the Kissimmee River restoration project included backfilling of 12 km of canal and restoring flow through 24 km of continuous river channel. We quantified the effects of construction activities on four water quality parameters (turbidity, total phosphorus flow-weighted concentration, total phosphorus load and dissolved oxygen concentration). Data were collected at stations upstream and downstream of the construction and at four stations within the construction zone to determine if canal backfilling and construction of 2.4 km of new river channel would negatively impact local and downstream water quality. Turbidity levels at the downstream station were elevated for approximately 2 weeks during the one and a half year construction period, but never exceeded the Florida Department of Environmental Protection construction permit criteria. Turbidity levels at stations within the construction zone were high at certain times. Flow-weighted concentration of total phosphorus at the downstream station was slightly higher than the upstream station during construction, but low discharge limited downstream transport of phosphorus. Total phosphorus loads at the upstream and downstream stations were similar and loading to Lake Okeechobee was not significantly affected by construction. Mean water column dissolved oxygen concentrations at all sampling stations were similar during construction.

  12. Fishes of the big muddy river drainage with emphasis on historical changes

    Treesearch

    Brooks M. Burr; Melvin L. Warren

    1999-01-01

    The Big Muddy River, a lowland stream located in southwestern Illinois and draining an area of about 6,182 km2, contains a moderately diverse fish fauna of 106 species. The river is properly named, as the mainstem carried historically and continues to transport great quantities of silt. Historically, a large portion of the watershed was wooded,...

  13. Fluvial terraces of the Little River Valley, Atlantic Coastal Plain, North Carolina

    Treesearch

    Bradley Suther; David Leigh; George Brook

    2011-01-01

    An optically-stimulated luminescence (OSL) and radiocarbon chronology is presented for fluvial terraces of the Little River, a tributary to the Cape Fear River that drains 880 km2 of the Sandhills Province of the upper Coastal Plain of North Carolina. This study differs from previous work in the southeastern Atlantic Coastal Plain in that numerical age estimates are...

  14. A 500-year history of floods in the semi arid basins of south-eastern Spain

    NASA Astrophysics Data System (ADS)

    Sánchez García, Carlos; Schulte, Lothar; Peña, Juan Carlos; Carvalho, Filpe; Brembilla, Carla

    2016-04-01

    Floods are one of the natural hazards with higher incidence in the south-eastern Spain, the driest region in Europe, causing fatalities, damage of infrastructure and economic losses. Flash-floods in semi arid environments are related to intensive rainfall which can last from few hours to days. These floods are violent and destructive because of their high discharges, sediment transport and aggradation processes in the flood plain. Also during historical times floods affected the population in the south-eastern Spain causing sever damage or in some cases the complete destruction of towns. Our studies focus on the flood reconstruction from historical sources of the Almanzora, Aguas and Antas river basins, which have a surface between 260-2600 km2. We have also compiled information from the Andarax river and compared the flood series with the Guadalentín and Segura basins from previous studies (Benito et. al., 2010 y Machado et al., 2011). Flood intensities have been classified in four levels according to the type of damage: 1) ordinary floods that only affect agriculture plots; 2) extraordinary floods which produce some damage to buildings and hydraulic infrastructure; 3) catastrophic floods which caused sever damage, fatalities and partial or complete destruction of towns. A higher damage intensity of +1 magnitude was assigned when the event is recorded from more than one major sub-basin (stretches and tributaries such as Huércal-Overa basin) or catchment (e.g. Antas River). In total 102 incidences of damages and 89 floods were reconstructed in the Almanzora (2.611 km2), Aguas (539 km2), Antas (261 km2) and Andarax (2.100 km2) catchments. The Almanzora River was affected by 36 floods (1550-2012). The highest events for the Almanzora River were in 1580, 1879, 1973 and 2012 producing many fatalities and destruction of several towns. In addition, we identified four flood-clusters 1750-1780, 1870-1900, 1960-1977 and 1989-2012 which coincides with the periods of increased flood frequencies in the Andarax catchment. However, only the 1870-1900 flood-cluster is synchronic with the Guadalentín and Segura flood-periods, whereas the rest of flood-episodes are non-synchronic. The 2012 event, the largest flood in the Almanzora river since the 1973 event, produced in the lower stretch less damage than in the middle stretch because of structural mitigation measures such as reservoir and artificial river channelling. However, in the lower Antas and Aguas rivers the situation is different. The damages increased in 2012 as a result from the increased exposure of tourism infrastructure in the floodplain near the coastline during the last two decades. Traditional settlements of rural societies were located also in the lower river stretches at a higher elevation (e.g. fluvial terraces, glacis, slopes) like today in the higher and middle catchments.

  15. Atmospheric River Characteristics under Decadal Climate Variability

    NASA Astrophysics Data System (ADS)

    Done, J.; Ge, M.

    2017-12-01

    How does decadal climate variability change the nature and predictability of atmospheric river events? Decadal swings in atmospheric river frequency, or shifts in the proportion of precipitation falling as rain, could challenge current water resource and flood risk management practice. Physical multi-scale processes operating between Pacific sea surface temperatures (SSTs) and atmospheric rivers over the Western U.S. are explored using the global Model for Prediction Across Scales (MPAS). A 45km global mesh is refined over the Western U.S. to 12km to capture the major terrain effects on precipitation. The performance of the MPAS is first evaluated for a case study atmospheric river event over California. Atmospheric river characteristics are then compared in a pair of idealized simulations, each driven by Pacific SST patterns characteristic of opposite phases of the Interdecadal Pacific Oscillation (IPO). Given recent evidence that we have entered a positive phase of the IPO, implications for current reservoir management practice over the next decade will be discussed. This work contributes to the NSF-funded project UDECIDE (Understanding Decision-Climate Interactions on Decadal Scales). UDECIDE brings together practitioners, engineers, statisticians, and climate scientists to understand the role of decadal climate information for water management and decisions.

  16. Occurrence, fate, and ecosystem implications of endocrine active compounds in select rivers of Minnesota

    NASA Astrophysics Data System (ADS)

    Writer, J.; Keefe, S.; Barber, L. B.; Brown, G.; Schoenfuss, H.; Kiesling, R.; Gray, J. L.

    2009-12-01

    Select endocrine active compounds (EACs) were measured in four rivers in southern Minnesota. Additionally, caged and wild fish were assessed for indication of endocrine disruption using plasma vitellogenin and histopathology. Low concentrations of EACs were identified in all rivers, as was elevated plasma vitellogenin in caged and wild fish, indicating potential endocrine disruption. To evaluate the persistence of these compounds in small rivers, a tracer study was performed on one of the rivers (Redwood River) using Lagrangian sampling coupled with hydrologic modeling incorporating transient storage. Mass exchange (transient storage, sorption) and degradation were approximated as pseudo first order processes, and in-stream removal rates were then computed by comparing conservative tracer concentrations to organic compound concentrations. Production of estrone and 4-nonylphenol in the studied reach as a result of biochemical transformation from their parent compounds (17β-estradiol and alkylphenolpolyethoxylates, respectively) was quantified. The distance required for 17β-estradiol and nonylphenol to undergo a 50% reduction in concentration was >2 km and >10 km, respectively. These results indicate that EACs are transported several kilometers downstream from discharge sources and therefore have the potential of adversely impacting the lotic ecosystem over these distances.

  17. Nutrient Status and Criteria Development for the Saint John River, Canada, Using a Weight of Evidence Approach

    NASA Astrophysics Data System (ADS)

    Culp, J. M.; Luiker, E. A.; Noel, L.; Curry, A. R.; Hryn, D.; Heard, K.

    2005-05-01

    The Saint John River is the largest in Maine/New Brunswick (673 km in length, draining 55,000 km2) with a history of natural resource use and nutrient effluent release to the watershed since the late 17th century. Our objective was to obtain a basic understanding of the contemporary nutrient conditions of the non-tidal portion of the river in relation to historical conditions, and to consider how the contemporary river is affected by point and non-point source nutrient loadings. The study included review of historical provincial and federal water quality databases dating back to the 1960s. Current water quality monitoring programs have focused on nitrogen (nitrite, nitrate, ammonia, TKN), phosphorus (total, dissolved, and soluble reactive phosphorus), DIC/DOC, and biomass of periphyton and phytoplankton. To determine nutrient limitation, nutrient diffusing substrate studies were conducted in river reaches of known nutrient enrichment. Oxygen stable isotopes were also used to provide information on the photosynthesis to respiration ratio. A weight of evidence approach combining the results of these studies was used to determine trophic status of river reaches and to highlight areas of eutrophication. From this information nutrient criteria for the Saint John River will be proposed.

  18. The Effects of Landuse Changes on Osse-Ossiomo River Basin Hydrology: a Nigerian example

    NASA Astrophysics Data System (ADS)

    Ikhile, C. I.

    2006-05-01

    The Osse-Ossiomo River Basin of Edo State, Nigeria was investigated in terms of landuse changes from 1970 to 2000 using Geographic Information System (GIS). The landuse classes investigated included built-up areas, other settlements, vegetation, agriculture, transportation network and water bodies. The topography map of 1965, Landsat ETM images of 1987 and 2000 were used to investigate these changes. The AutoCAD 2000 and Arcview GIS 3.2 softwares were also used. Results obtained show that landuse in Osse-Ossiomo River Basin has changed between 1970 and 2000. The built-up area is principally Benin City. As at 1965, the areal extent was about 25 km2 or 2,500 hectares, which increased to 645 km2 or 64,500 hectares in 1987 and 804 km2 or 80,400 hectares by 2000. The other settlements, which included very many villages of different sizes (ranging from 5km to 10km) have merged with Benin City metropolis. The number of roads has increased and the original tropical rainforest vegetation has changed to a more open guinea savanna vegetation type. The very many rubber plantations that existed in the 1960's have been drastically converted to built-up areas and farm lands. These changes are occasioned by rapid population growth and have impacted seriously on the basin hydrology leading to turbid water and increased flood magnitudes. Appropriate landuse laws are recommended to check the eventual destruction of the natural ecosystem and the dynamic modification of the basin hydrology.

  19. The Evoluation Impact of the Geological Environment in Expansion of Ancient Civilization at Butrint - Foenike Region, Southern Albania.

    NASA Astrophysics Data System (ADS)

    Kavaja, V. S.; Durmishi, S.; Vincani, F. N.

    2003-12-01

    The rise, creation and decline of the ancient civilization depended on paleo-geographic development changing at the geological environmental.This region is a worldknown archaeological site protected by UNESCO. The area under investigation occupies about 80 km2 and encompassing a large expanse of land at southern and northern side of the Butrinti lake, which is with oval shape and 21.5 depth. Throughout its long history, Butrint had an interactive relationship with its hinterland and the even-changing coastline. Preliminary research suggests that in the Holocene the Lake of Butrint was a sea inlet that stretched 20 km to north of Butrint, as far as the city of Foenike, later Epirot capital. Today the Butrint Lake is just 7.5 km long, being the result of gradual silting up this inlet with soils brought down by Bistrica River in the north side and Pavllo River in the South from surrounding mountain ranges. The goal of this study is investigation of the link between the evolution of Butrinti lake and hydrologicacal systems of the lake, its silting history and how this has impacted and interacted with land and human activity. Histories of terrestrial erosion, near-shore sediment redistribution, times, subsidence and compaction, land-sea interaction are obvious now. Geophysical observation consist of vertical electric soundings (V.E.S.) and magnetic measurements inside a layout of 80 km2. The soundings data, particularly resistivity variations are the base for sedimentologic studies due to the lack of boreholes. For a gravel deposition, in addition to the usual parameter maps as resistivity and thickness maps, combined multiparametric characterization maps have been plotted. Based on the sedimentologic and structural factors studied and geophysical maps and cross-sections, plenty of geomorphic problems are resolve. The evaluations of the regional water bearing are estimated, separating salty waters area.

  20. Seismicity of the St. Lawrence paleorift faults overprinted by a meteorite impact crater: Implications for crustal strength based on new earthquake relocations in the Charlevoix Seismic Zone, Eastern Canada

    NASA Astrophysics Data System (ADS)

    Yu, H.; Harrington, R. M.; Liu, Y.; Lamontagne, M.; Pang, M.

    2015-12-01

    The Charlevoix Seismic Zone (CSZ), located along the St. Lawrence River (SLR) ~100 km downstream from Quebec City, is the most active seismic zone in eastern Canada with five historic earthquakes of M 6-7 and ~ 200 events/year reported by the Canadian National Seismograph Network. Cataloged earthquake epicenters outline two broad linear zones along the SLR with little shallow seismicity in between. Earthquakes form diffuse clusters between major dipping faults rather than concentrating on fault planes. Detailed fault geometry in the CSZ is uncertain and the effect on local seismicity of a meteorite impact structure that overprints the paleorift faults remains ambiguous. Here we relocate 1639 earthquakes occurring in the CSZ between 01/1988 - 10/2010 using the double-difference relocation method HypoDD and waveforms primarily from 7 local permanent stations. We use the layered SLR north shore velocity model from Lamontagne (1999), and travel time differences based on both catalog and cross-correlated P and S-phase picks. Of the 1639 relocated earthquakes, 1236 (75.4%) satisfied selection criteria of horizontal and vertical errors less than 2 km and 1 km respectively. Cross-sections of relocated seismicity show hypocenters along distinct active fault segments. Earthquakes located beneath the north shore of the SLR are likely correlated with the NW Gouffre fault, forming a ~10 km wide seismic zone parallel to the river, with dip angle changing to near vertical at the northern edge of the impact zone. In contrast, seismicity beneath the SLR forms a diffuse cloud within the impact structure, likely representing a highly fractured volume. It further implies that faults could be locally weak and subject to high pore-fluid pressures. Seismicity outside the impact structure defines linear structures aligning with the Charlevoix fault. Relocated events of M > 4 all locate outside the impact structure, indicating they nucleated on the NE-SW-oriented paleorift faults.

  1. Modeling suspended sediment sources and transport in the Ishikari River basin, Japan, using SPARROW

    NASA Astrophysics Data System (ADS)

    Duan, W. L.; He, B.; Takara, K.; Luo, P. P.; Nover, D.; Hu, M. C.

    2015-03-01

    It is important to understand the mechanisms that control the fate and transport of suspended sediment (SS) in rivers, because high suspended sediment loads have significant impacts on riverine hydroecology. In this study, the SPARROW (SPAtially Referenced Regression on Watershed Attributes) watershed model was applied to estimate the sources and transport of SS in surface waters of the Ishikari River basin (14 330 km2), the largest watershed in Hokkaido, Japan. The final developed SPARROW model has four source variables (developing lands, forest lands, agricultural lands, and stream channels), three landscape delivery variables (slope, soil permeability, and precipitation), two in-stream loss coefficients, including small streams (streams with drainage area < 200 km2) and large streams, and reservoir attenuation. The model was calibrated using measurements of SS from 31 monitoring sites of mixed spatial data on topography, soils and stream hydrography. Calibration results explain approximately 96% (R2) of the spatial variability in the natural logarithm mean annual SS flux (kg yr-1) and display relatively small prediction errors at the 31 monitoring stations. Results show that developing land is associated with the largest sediment yield at around 1006 kg km-2 yr-1, followed by agricultural land (234 kg km-2 yr-1). Estimation of incremental yields shows that 35% comes from agricultural lands, 23% from forested lands, 23% from developing lands, and 19% from stream channels. The results of this study improve our understanding of sediment production and transportation in the Ishikari River basin in general, which will benefit both the scientific and management communities in safeguarding water resources.

  2. Examining the Effects of Anthropogenic Landscape Transformation on Wetland Habitats within the Grand Kankakee Watershed

    NASA Astrophysics Data System (ADS)

    Hanson, Z.; Patterson, T. A.; Grundel, R.; Bolster, D.; Hamlet, A. F.

    2017-12-01

    The Kankakee River watershed spans areas of southern Michigan, northern Indiana (IN), and eastern Illinois (IL), and was once home to one of the largest and most ecologically productive freshwater wetland complexes in North America, the 2400 km2 Grand Kankakee Marsh. The organically-rich marsh bottom land in the Kankakee basin also yielded productive farmland, but required extensive drainage. By 1919, more than 145 km of the 240-km-long river in IN were channelized and most of the wetlands in IN were drained. On the IL side, the river's channel system remained more intact, but the river was negatively affected by loss of wetland habitat upstream and increasing high flows, erosion and sediment transport arising from the hydrologic changes in the upstream areas. This study integrates surface water and groundwater modeling to explore the potential to recover a portion of the Kankakee's historic wetland ecosystem by removing agricultural drainage infrastructure within the basin. Results of wetland area and habitat metrics across the entire basin at coarse (500 m) resolution for several wetland restoration configurations and climate scenarios are presented, exhibiting the ability to successfully capture much of the watershed's historic features and traits as well as to respond to changes in model forcing to predict future wetland dynamics. Additionally, preliminary methods and results relating to a study site at finer (30 m) resolution over a moderate sized wetland restoration area ( 30 km2) are presented, helping to incorporate and address the fundamental interactions and limitations between agricultural practices and wetland restoration efforts within the entire Grand Kankakee Watershed.

  3. Long term numerical investigations of measures to increase the structural variability and the fish passability of the river Iller

    NASA Astrophysics Data System (ADS)

    Seitz, Lydia; Haun, Stefan; Wieprecht, Silke

    2017-04-01

    The river Iller origins at Oberstdorf in the Allgäu Alps and drains after 147 km into the river Danube. During the past decades the river Iller was considerable modified due to hydropower development and due to the construction of weirs and ramps to avoid ongoing river bed deepening. As consequence between km 52.9 - 39.3 almost equilibrium conditions of the river bed were reached. The aim of this study is to investigate with a 1D - 2D coupled numerical sediment transport model the long term effects (50 years) of different measures, which will be implemented to improve structural variability of the river Iller and to improve the passability for fishes. In a first step long term morphological trends will be investigated for replacing weirs by ramps. This will enable and improve the passability for fishes and sediments. In a second step the remobilization of already deposited sediments is investigated. Therefore the weir downstream of a gravel bar will be lowered stepwise (between 1.0 and 2.5 m) to see under which conditions the sediments can be remobilized. In a third step artificial sediment feeding will be simulated to find adequate spots for the sediment supply and to investigate the amount of sediments which have to be added to the river to improve structural variability of the river Iller. The numerical model framework BASEMENT, developed at the ETH Zürich, is used for the investigations. In the model fractional sediment transport is implemented with 9 grain sizes between 0.5 mm and 128 mm. Two layers are implemented to simulate the armouring of the river bed. Due to absence of very fine sediments and the fact that bed load transport is the governing sediment transport mode the Meyer-Peter and Müller bed load transport formula, with an extension by Hunziker for multiple grain classes, is used for the simulations. The critical Shields parameter, used to obtain the critical shear stress in BASEMENT, is evaluated as a function of the dimensionless grain diameter accordingly to van Rijn. The results show that the passability can be increased by replacing weirs by ramps (three in total) without negative morphological effects on this section. Furthermore, the simulated results show that the deposited sediments can be remobilized by lowering the weir, resulting in ongoing dynamic morphological bed changes and so a structural variability of the river. However, it can be seen that this dynamic processes fade away over time due to the large number of hydraulic structures along the river. The results of the artificial sediment supply (one time supply with an amount between 5,000 to 12,500 m3) shows a similar trend as the lowering of the weir over time, where right at the beginning morphological bed changes can be seen, these processes decrease and even stop within a couple of years.

  4. Fate and transport of metam spill in Sacramento river

    USGS Publications Warehouse

    Wang, P.-F.; Mill, T.; Martin, J.L.; Wool, T.A.

    1997-01-01

    A mass balance model was developed and applied to the Sacramento River in northern California during the July 1991 Sacramento River metam-sodium spill. The transport and reactions of metam-sodium, a soil fumigant, and the volatile and toxic methyl isothiocyanate (MITC) were simulated during the two-and-a-half days of movement along a 68-km stretch of river. Results from modeling were compared with field data for MITC, which is the only product measured downriver after the spill. Agreement between the simulated and measured values of MITC concentrations were found at Doney Creek (65.9 km downstream). Results illuminated the complexities and unique characteristics associated with the multiple kinetic processes of the chemical plume in the river. In particular, the photolysis of metam-sodium followed zero-order kinetics for high concentrations and first-order kinetics for low concentrations, a unique phenomenon consistent with the finding reported in a laboratory study. Concentrations of metam-sodium for transition from zero- to first-order, obtained by calibration and model sensitivity analyses, were in the same range as those in the reported laboratory results. ??ASCE.

  5. Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: I. Along-channel Water Level Variations, Pacific Ocean to Bonneville Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jay, D. A.; Leffler, K.; Diefenderfer, Heida L.

    This two-part paper provides comprehensive time and frequency domain analyses and models of along-channel water level variations in the 234km-long Lower Columbia River and Estuary (LCRE) and documents the response of floodplain wetlands thereto. In Part I, power spectra, continuous wavelet transforms, and harmonic analyses are used to understand the influences of tides, river flow, upwelling and downwelling, and hydropower operations ("power-peaking") on the water level regime. Estuarine water levels are influenced primarily by astronomical tides and coastal processes, and secondarily by river flow. The importance of coastal and tidal influences decreases in the landward direction, and water levels aremore » increasingly controlled by river flow variations at periods from ≤1 day to years. Water level records are only slightly non-stationary near the ocean, but become increasingly irregular upriver. Although astronomically forced tidal constituents decrease above the estuary, tidal fortnightly and overtide variations increase for 80-200km landward, both relative to major tidal constituents and in absolute terms.« less

  6. Interactive Mapping of Inundation Metrics Using Cloud Computing for Improved Floodplain Conservation and Management

    NASA Astrophysics Data System (ADS)

    Bulliner, E. A., IV; Lindner, G. A.; Bouska, K.; Paukert, C.; Jacobson, R. B.

    2017-12-01

    Within large-river ecosystems, floodplains serve a variety of important ecological functions. A recent survey of 80 managers of floodplain conservation lands along the Upper and Middle Mississippi and Lower Missouri Rivers in the central United States found that the most critical information needed to improve floodplain management centered on metrics for characterizing depth, extent, frequency, duration, and timing of inundation. These metrics can be delivered to managers efficiently through cloud-based interactive maps. To calculate these metrics, we interpolated an existing one-dimensional hydraulic model for the Lower Missouri River, which simulated water surface elevations at cross sections spaced (<1 km) to sufficiently characterize water surface profiles along an approximately 800 km stretch upstream from the confluence with the Mississippi River over an 80-year record at a daily time step. To translate these water surface elevations to inundation depths, we subtracted a merged terrain model consisting of floodplain LIDAR and bathymetric surveys of the river channel. This approach resulted in a 29000+ day time series of inundation depths across the floodplain using grid cells with 30 m spatial resolution. Initially, we used these data on a local workstation to calculate a suite of nine spatially distributed inundation metrics for the entire model domain. These metrics are calculated on a per pixel basis and encompass a variety of temporal criteria generally relevant to flora and fauna of interest to floodplain managers, including, for example, the average number of days inundated per year within a growing season. Using a local workstation, calculating these metrics for the entire model domain requires several hours. However, for the needs of individual floodplain managers working at site scales, these metrics may be too general and inflexible. Instead of creating a priori a suite of inundation metrics able to satisfy all user needs, we present the usage of Google's cloud-based Earth Engine API to allow users to define and query their own inundation metrics from our dataset and produce maps nearly instantaneously. This approach allows users to select the time periods and inundation depths germane to managing local species, potentially facilitating conservation of floodplain ecosystems.

  7. Status of the dirty darter, Etheostoma olivaceum, and bluemask darter, Etheostoma (Doration)sp. , with notes on fishes of the Caney Fork River system, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layman, S.R.; Simons, A.M.; Wood, R.M.

    1993-04-01

    Seventy-six localities were sampled in the Caney Fork River system and adjacent Cumberland River tributaries. Etheostoma olivaceum was found in small creeks from nine tributaries of lower Caney Fork River and three tributaries of the Cumberland River in the Nashville Basin physiographic province. The species was most abundant around slab rocks and rubble over bedrock in slow to moderate current. Etheostoma olivaceum was common throughout its small range; however, given widespread habitat degradation from agriculture, the species should retain its [open quotes]deemed in need of management[close quotes] status in Tennessee. The bluemask darter, Etheostoma (Doration) sp., was collected in slowmore » to moderate current over sand and gravel in Collins River, Rocky River, Cane Creek, and Caney Fork River. All four populations were isolated upstream of Great Falls Reservoir in the Highland Rim physiographic province. The species was found in a 37-km reach of Collins River but was restricted to reaches of 0.2 to 4.3 km in the other three streams. Threats to the species include pesticides from plant nurseries, siltation, gravel dredging, and acid mine drainage. The authors recommend that the bluemask darter be listed as state and federally protected. Two new records were established for the rare Barrens darter, Etheostoma forbesi, in lower Collins River and Barren Fork River, and eight previously unknown records of the species were identified from older museum collections. 21 refs., 1 fig., 1 tab.« less

  8. Association of sea turtles with petroleum platforms in the north-central Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohoefener, R.; Hoggard, W.; Mullin, K.

    1990-06-01

    There are over 4,500 petroleum platforms in the north-central Gulf of Mexico. Explosives are commonly used to remove platforms and have the potential to kill nearby sea turtles. From June 1988-June 1990, the authors used aerial surveys to study turtle density and the spatial relationship between turtles and platforms offshore of Louisiana. They sighted 316 turtles most of which (92%) were loggerheads. Seventy-eight percent were sighted just east of the Mississippi River offshore of the Chandeleur Islands. East of the river, turtle densities ranged from 0.92 (winter) to 4.83 turtles/100 sq km (spring). West of the river, annual densities rangedmore » from 0.11-0.50 turtles/100 sq km. East of the river, three statistical tests indicated that turtles were generally closer to platforms than expected by chance alone. West of the river, turtles were randomly located with respect to platform locations. Before explosives are used, current mitigation measures require that no turtle can be sighted within 1,000 m of the platform. East of the river, the probability of a turtle being within 1,000 m of any platform selected at random was about 60%; west of the river, 2-7%. West of the river to about 92 W, the mitigation measures should protect turtles but offshore of the Chandeleur Islands, special precautions should be taken.« less

  9. Mark-release-recapture studies with Aedes dorsalis (Diptera: Culicidae) in coastal northern California.

    PubMed

    Kramer, V L; Carper, E R; Beesley, C; Reisen, W K

    1995-05-01

    Two mark-release-recapture studies were conducted along the Sacramento-San Joaquin River Delta in northern California to describe the population ecology and dispersal pattern of Aedes dorsalis (Meigen). Immature Ae. dorsalis were collected from saline tidal marshes, reared to adults, marked, and released. Recapture grids during the July and September studies were within 8.0 and 2.4 km of the release sites, and recapture rates were 0.1 and 1.2%, respectively. The longest recorded flight was 5.8 km, and mosquitoes were recaptured up to 15 d after release. In September, 84% of the marked mosquitoes were recaptured within 2.0 km of the release site, and the mean dispersal distance was 1.9 km. Marked mosquitoes flew predominantly downwind to the east. There was no evidence that Ae. dorsalis traversed the 1.6-km-wide river from Contra Costa to Solano County. Temporal and spatial recapture patterns indicated a possible short-range migration pattern from oviposition sites to upland host-seeking areas. Changes in the recapture rate with cohort age delineated a 7-d gonotrophic cycle during September.

  10. Probabilistic Prediction of Riverine Bathymetry

    DTIC Science & Technology

    2011-09-30

    planned a substantial data field collection effort on the Hanford Reach of the Columbia River near Richland, WA, which represents an ideal testing...4 Figure 2. 82-km Hanford Reach of the Columbia River (WA) IMPACT/APPLICATIONS The developed methods are directly applicable to video

  11. Middle Pleistocene infill of Hinkley Valley by Mojave River sediment and associated lake sediment: Depositional architecture and deformation by strike-slip faults

    USGS Publications Warehouse

    Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.

    2018-01-01

    Hinkley Valley in the Mojave Desert, near Barstow about 140 km northeast of Los Angeles and midway between Victorville Valley and the Lake Manix basin, contains a thick sedimentary sequence delivered by the Mojave River. Our study of sediment cores drilled in the valley indicates that Hinkley Valley was probably a closed playa basin with stream inflow from four directions prior to Mojave River inflow. The Mojave River deposited thick and laterally extensive clastic wedges originating from the southern valley that rapidly filled much of Hinkley Valley. Sedimentary facies representing braided stream, wetland, delta, and lacustrine depositional environments all are found in the basin fill; in some places, the sequence is greater than 74 m (245 ft) thick. The sediment is dated in part by the presence of the ~631 ka Lava Creek B ash bed low in the section, and thus represents sediment deposition after Victorville basin was overtopped by sediment and before the Manix basin began to be filled. Evidently, upstream Victorville basin filled with sediment by about 650 ka, causing the ancestral Mojave River to spill to the Harper and Hinkley basins, and later to Manix basin.Initial river sediment overran wetland deposits in many places in southern Hinkley Valley, indicating a rapidly encroaching river system. These sediments were succeeded by a widespread lake (“blue” clay) that includes the Lava Creek B ash bed. Above the lake sediment lies a thick section of interlayered stream sediment, delta and nearshore lake sediment, mudflat and/or playa sediment, and minor lake sediment. This stratigraphic architecture is found throughout the valley, and positions of lake sediment layers indicate a successive northward progression in the closed basin. A thin overlapping sequence at the north end of the valley contains evidence for a younger late Pleistocene lake episode. This late lake episode, and bracketing braided stream deposits of the Mojave River, indicate that the river avulsed through the valley, rather than continuing toward Lake Manix, during the late Pleistocene. Two dextral strike-slip fault zones, the Lockhart and the Mt. General, fold and displace the distinctive stratigraphic units, as well as surficial late Pleistocene and Holocene deposits. The sedimentary architecture and the two fault zones provide a framework for evaluating groundwater flow in Hinkley Valley.

  12. Integrating Satellite Image Identification and River Routing Simulation into the Groundwater Simulation of Chou-Shui Basin

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Yang, S.; Chen, Y.; Chang, L.; Chiang, C.; Huang, C.; Chen, J.

    2012-12-01

    Many groundwater simulation models have been developed for Chou-Shui River alluvial fan which is one of the most important groundwater areas in Taiwan. However, the exchange quantity between Chou-Shui River, the major river in this area, and the groundwater system itself is seldom studied. In this study, the exchange is evaluated using a river package (RIV) in the groundwater simulation model, MODFLOW 2000. Several critical parameters and variables used in RIV such as wet area and river level for each cell below the Chou-Shui River are respectively determined by satellite image identification and HEC-RAS simulation. The monthly average of river levels obtained from four stations include Chang-Yun Bridge, Xi-Bin Bridge, Chi-Chiang Bridge and Si-Jou Bridge during 2008 and the river cross-section measured on December 2007 are used in the construction of HEC-RAS model. Four FORMOSAT multispectral satellite images respectively obtained on January 2008, April 2008, July 2008, and November 2008 are used to identify the wet area of Chou-Shui River during different seasons. Integrating the simulation level provided by HEC-RAS and the identification result are used as the assignment of RIV. First, based on the simulation results of HEC-RAS, the water level differences between flooding period and draught period are 1.4 (m) and 2.0 (m) for Xi-Bin Bridge station (downstream) and Chang-Yun Bridge station (upstream) respectively. Second, based on the identified results, the wet areas for four seasons are 24, 24, 40 and 12 (km2) respectively. The variation range of areas in 2008 is huge that the area for winter is just 30% of the area for summer. Third, based on the simulation of MODFLOW 2000 and RIV, the exchange between the river and the groundwater system is 414 million cubic meters which contains 526 for recharge to river and 112 for discharging from river during 2008. The total recharge includes river exchange and recharge from non-river area is 2023 million cubic meters. The pumping quantity is 1930 million cubic meters.

  13. Late Holocene environmental changes in a mesotidal estuary from Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Espinosa, Marcela; Escandell, Alejandra; Velez Agudelo, Camilo

    2016-04-01

    Two sediment records from the lower valley of Negro River, Patagonia, Argentina (41°01´S; 62°47'W) spanning for the last 2000 cal yrs BP were analyzed according to diatoms and sediments contents. The river originates at the junction of the Neuquén and the Limay Rivers, Northern Patagonia, and discharges more than 1000 m3/s to the South Atlantic Ocean. Mesotidal conditions dominate at the inlet (2.95 m) affecting the lower valley (about 20 km) where salinity decreases drastically in the last 2 km. Fossil diatom assemblages and grain size were studied from two cores located at 1.5 km (Villarino site) and 12 km (Criadero site) from the inlet. Samples for modern diatom analyses were collected from the littoral zone at eleven sites along the river. Physical and chemical variables were quantified representing the maximum heterogeneity along the aquatic environment. Turbidity, salinity, conductivity, pH and temperature data were obtained in situ during summer and winter. In addition, a surface sediment sample was taken for grain size analysis and organic matter content, and water samples were taken to analyze nutrients and major ions following standard methods. The diatom content of modern sediment samples were studied in order to achieve ecological information useful as modern analogous for Patagonian rivers. Diatom zones were characterized by constrained incremental sum of squares cluster analysis (single linkage, Euclidean distance) in the fossil sequences. Fossil and modern diatom assemblages were compared with Detrended Correspondence Analysis (DCA). A total of 77 samples (modern and fossils) were analyzed and more than 200 taxa were identified. Diatom assemblages showed distinct abundance patterns in relation to salinity with a shift from communities dominated by marine/brackish taxa in lower sites to communities dominated by freshwater taxa in the middle and upper course of the river. The record of Criadero core (12 km from the inlet) began 2000 cal yrs BP with a shallow vegetated brackish/freshwater environment represented by Surirella brebissonii, Epithemia adnata and Rhopalodia gibba. The environment evolved gradually into marine conditions with dominance of Paralia sulcata, Delphineis surirella, Raphoneis amphiceros and Cymatosira belgica (tidal channel). Finally, marine brackish aerophilous taxa indicate the development of a saltmarsh. Villarino core (1.5 km from the inlet) represents the infilling of the estuary during the last 1300 cal yrs BP with the dominance of the marine/brackish tychoplankton taxa Paralia sulcata. The fossil assemblages of the two studied sequences showed similarity with modern assemblages of the lower valley of the river. Considering the strong influence of salinity changes on diatom assemblages, tidal effects are the main controlling factor for the composition and distribution of diatoms along mesotidal estuaries from Patagonia. The knowledge of palaeoenvironmental conditions derived from fossil diatom assemblages is very important to infer man-made changes in coastal areas and can be used as reference for the assessment of recent coastal changes (dredging, harbour construction, flood control improvements, pollution).

  14. Runoff simulation in the Ferghana Valley (Central Asia) using conceptual hydrological HBV-light model

    NASA Astrophysics Data System (ADS)

    Radchenko, Iuliia; Breuer, Lutz; Forkutsa, Irina; Frede, Hans-Georg

    2013-04-01

    Glaciers and permafrost on the ranges of the Tien Shan mountain system are primary sources of water in the Ferghana Valley. The water artery of the valley is the Syr Darya River that is formed by confluence of the Naryn and Kara Darya rivers, which originate from the mountain glaciers of the Ak-Shyrak and the Ferghana ranges accordingly. The Ferghana Valley is densely populated and main activity of population is agriculture that heavily depends on irrigation especially in such arid region. The runoff reduction is projected in future due to global temperature rise and glacier shrinkage as a consequence. Therefore, it is essential to study climate change impact on water resources in the area both for ecological and economic aspects. The evaluation of comparative contribution of small upper catchments (n=24) with precipitation predominance in discharge and the large Naryn and Karadarya River basins, which are fed by glacial melt water, to the Fergana Valley water balance under current and future climatic conditions is general aim of the study. Appropriate understanding of the hydrological cycle under current climatic conditions is significant for prognosis of water resource availability in the future. Thus, conceptual hydrological HBV-light model was used for analysing of the water balance of the small upper catchments that surround the Ferghana Valley. Three trial catchments (the Kugart River basin, 1010 km²; the Kurshab River basin, 2010 km2; the Akbura River basin, 2260 km²) with relatively good temporal quality data were chosen to setup the model. Due to limitation of daily temperature data the MODAWEC weather generator, which converts monthly temperature data into daily based on correlation with rainfall, was tested and applied for the HBV-light model.

  15. Evaluating turbidity and suspended-sediment concentration relations from the North Fork Toutle River basin near Mount St. Helens, Washington; annual, seasonal, event, and particle size variations - a preliminary analysis.

    USGS Publications Warehouse

    Uhrich, Mark A.; Spicer, Kurt R.; Mosbrucker, Adam; Christianson, Tami

    2015-01-01

    Regression of in-stream turbidity with concurrent sample-based suspended-sediment concentration (SSC) has become an accepted method for producing unit-value time series of inferred SSC (Rasmussen et al., 2009). Turbidity-SSC regression models are increasingly used to generate suspended-sediment records for Pacific Northwest rivers (e.g., Curran et al., 2014; Schenk and Bragg, 2014; Uhrich and Bragg, 2003). Recent work developing turbidity-SSC models for the North Fork Toutle River in Southwest Washington (Uhrich et al., 2014), as well as other studies (Landers and Sturm, 2013, Merten et al., 2014), suggests that models derived from annual or greater datasets may not adequately reflect shorter term changes in turbidity-SSC relations, warranting closer inspection of such relations. In-stream turbidity measurements and suspended-sediment samples have been collected from the North Fork Toutle River since 2010. The study site, U.S. Geological Survey (USGS) streamgage 14240525 near Kid Valley, Washington, is 13 river km downstream of the debris avalanche emplaced by the 1980 eruption of Mount St. Helens (Lipman and Mullineaux, 1981), and 2 river km downstream of the large sediment retention structure (SRS) built from 1987–1989 to mitigate the associated sediment hazard. The debris avalanche extends roughly 25 km down valley from the edifice of the volcano and is the primary source of suspended sediment moving past the streamgage (NF Toutle-SRS). Other significant sources are debris flow events and sand deposits upstream of the SRS, which are periodically remobilized and transported downstream. Also, finer material often is derived from the clay-rich original debris avalanche deposit, while coarser material can derive from areas such as fluvially reworked terraces.

  16. Air-water oxygen exchange in a large whitewater river

    USGS Publications Warehouse

    Hall, Robert O.; Kennedy, Theodore A.; Rosi-Marshall, Emma J.

    2012-01-01

    Air-water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O2) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O2 saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O2 saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (k600) increased with slope of the immediate reach. k600 was -1 in flat reaches, while k600 for the steepest rapid ranged 3600-7700 cm h-1, an extremely high value of k600. Using the rate of gas exchange per unit length of water surface elevation (Kdrop, m-1), segment-integrated k600 varied between 74 and 101 cm h-1. Using Kdrop we scaled k600 to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O2 exchanged with the atmosphere (mean length = 26.1 km), k600 varied 4.5-fold between 56 and 272 cm h-1 with a mean of 113 cm h-1. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling k600 based on Kdrop allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.

  17. Characterizing worldwide patterns of fluvial geomorphology and hydrology with the Global River Widths from Landsat (GRWL) database

    NASA Astrophysics Data System (ADS)

    Allen, G. H.; Pavelsky, T.

    2015-12-01

    The width of a river reflects complex interactions between river water hydraulics and other physical factors like bank erosional resistance, sediment supply, and human-made structures. A broad range of fluvial process studies use spatially distributed river width data to understand and quantify flood hazards, river water flux, or fluvial greenhouse gas efflux. Ongoing technological advances in remote sensing, computing power, and model sophistication are moving river system science towards global-scale studies that aim to understand the Earth's fluvial system as a whole. As such, a global spatially distributed database of river location and width is necessary to better constrain these studies. Here we present the Global River Width from Landsat (GRWL) Database, the first global-scale database of river planform at mean discharge. With a resolution of 30 m, GRWL consists of 58 million measurements of river centerline location, width, and braiding index. In total, GRWL measures 2.1 million km of rivers wider than 30 m, corresponding to 602 thousand km2 of river water surface area, a metric used to calculate global greenhouse gas emissions from rivers to the atmosphere. Using data from GRWL, we find that ~20% of the world's rivers are located above 60ºN where little high quality information exists about rivers of any kind. Further, we find that ~10% of the world's large rivers are multichannel, which may impact the development of the new generation of regional and global hydrodynamic models. We also investigate the spatial controls of global fluvial geomorphology and river hydrology by comparing climate, topography, geology, and human population density to GRWL measurements. The GRWL Database will be made publically available upon publication to facilitate improved understanding of Earth's fluvial system. Finally, GRWL will be used as an a priori data for the joint NASA/CNES Surface Water and Ocean Topography (SWOT) Satellite Mission, planned for launch in 2020.

  18. A method of estimating in-stream residence time of water in rivers

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Howden, N. J. K.; Burt, T. P.

    2014-05-01

    This study develops a method for estimating the average in-stream residence time of water in a river channel and across large catchments, i.e. the time between water entering a river and reaching a downstream monitoring point. The methodology uses river flow gauging data to integrate Manning's equation along a length of channel for different percentile flows. The method was developed and tested for the River Tees in northern England and then applied across the United Kingdom (UK). The study developed methods to predict channel width and main channel length from catchment area. For an 818 km2 catchment with a channel length of 79 km, the in-stream residence time at the 50% exceedence flow was 13.8 h. The method was applied to nine UK river basins and the results showed that in-stream residence time was related to the average slope of a basin and its average annual rainfall. For the UK as a whole, the discharge-weighted in-stream residence time was 26.7 h for the median flow. At median flow, 50% of the discharge-weighted in-stream residence time was due to only 6 out of the 323 catchments considered. Since only a few large rivers dominate the in-stream residence time, these rivers will dominate key biogeochemical processes controlling export at the national scale. The implications of the results for biogeochemistry, especially the turnover of carbon in rivers, are discussed.

  19. The gravel sand transition in a disturbed catchment

    NASA Astrophysics Data System (ADS)

    Knighton, A. David

    1999-03-01

    More than 40 million cubic metres of mining waste were supplied to the Ringarooma River between 1875 and 1984, leading to successive phases of aggradation and degradation. The natural bed material is gravel but, given the volume of introduced load and the fact that much of the input was less than 5 mm in diameter, the size composition of the bed changed from gravel to sand during the phase of downstream progressive aggradation. A very sharp gravel-sand transition developed in which median grain size decreased from over 30 mm to under 3 mm in less than 500 m. With upstream supplies of mining debris becoming depleted first, degradation followed the same downstream progressive pattern as aggradation, causing the transition to migrate downstream. By 1984, the river could be regarded as a series of zones, each characterized by a particular bed condition: a natural cobble-gravel bed, unaffected by mining inputs (0-32 km); pre-disturbance bed re-exposed by degradation over 35-40 years (32-53 km); sandy substrate with a gravel armour produced by differential transport during degradation (53-65 km); sand dominated but with developing surface patches of coarser material (65-75 km); sandy bed reflecting the size composition of the original mining input (75-118 km). Although the gravel-sand transition itself is sharp, the transitional zone is lengthy (53-75 km). As degradation continues, the gravel-sand transition is expected to progress downstream but it has remained in a stable position for 12 years. Indeed, two major floods during the period released large quantities of sand from the sub-armour layer and newly-formed banks of mine tailings, causing fining both above and below the transition. Surface grain size is an adjustable component in the transitional zone as the river strives to recover from a major anthropogenic disturbance.

  20. A history of the 2014 Minute 319 environmental pulse flow asdocumented by field measurements and satellite imagery

    USGS Publications Warehouse

    Nelson, Steven M.; Ramirez-Hernandez, Jorge; Rodriguez-Burgeueno, J. Eliana; Milliken, Jeff; Kennedy, Jeffrey R.; Zamora-Arroyo, Francisco; Schlatter, Karen; Santiago-Serrano, Edith; Carrera-Villa, Edgar

    2017-01-01

    As provided in Minute 319 of the U.S.-Mexico Water Treaty of 1944, a pulse flow of approximately 132 million cubic meters (mcm) was released to the riparian corridor of the Colorado River Delta over an eight-week period that began March 23, 2014 and ended May 18, 2014. Peak flows were released in the early part of the pulse to simulate a spring flood, with approximately 101.7 mcm released at Morelos Dam on the U.S.-Mexico border. The remainder of the pulse flow water was released to the riparian corridor via Mexicali Valley irrigation spillway canals, with 20.9 mcm released at Km 27 Spillway (41 km below Morelos Dam) and 9.3 mcm released at Km 18 Spillway (78 km below Morelos Dam). We used sequential satellite images, overflights, ground observations, water discharge measurements, and automated temperature, river stage and water quality loggers to document and describe the progression of pulse flow water through the study area. The rate of advance of the wetted front was slowed by infiltration and high channel roughness as the pulse flow crossed more than 40 km of dry channel which was disconnected from underlying groundwater and partially overgrown with salt cedar. High lag time and significant attenuation of flow resulted in a changing hydrograph as the pulse flow progressed to the downstream delivery points; two peak flows occurred in some lower reaches. The pulse flow advanced more than 120 km downstream from Morelos Dam to reach the Colorado River estuary at the northern end of the Gulf of California.

  1. Optics of the Offshore Columbia River Plume from Glider Observations and Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Saldias, G.; Shearman, R. K.; Barth, J. A.; Tufillaro, N.

    2016-02-01

    The Columbia River (CR) is the largest source of freshwater along the U.S. Pacific coast. The resultant plume is often transported southward and offshore forming a large buoyant feature off Oregon and northern California in spring-summer - the offshore CR plume. Observations from autonomous underwater gliders and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery are used to characterize the optics of the offshore CR plume off Newport, Oregon. Vertical sections, under contrasting river flow conditions, reveal a low-salinity and warm surface layer of 20-25 m (fresher in spring and warmer in summer), high Colored Dissolved Organic Matter (CDOM) concentration and backscatter, and associated with the base of the plume high chlorophyll fluorescence. Plume characteristics vary in the offshore direction as the warm and fresh surface layer thickens progressively to an average 30-40 m of depth 270-310 km offshore; CDOM, backscatter, and chlorophyll fluorescence decrease in the upper 20 m and increase at subsurface levels (30-50 m depth). MODIS normalized water-leaving radiance (nLw(λ)) spectra for CR plume cases show enhanced water-leaving radiance at green bands (as compared to no-CR plume cases) up to 154 km from shore. Farther offshore, the spectral shapes for both cases are very similar, and consequently, a contrasting color signature of low-salinity plume water is practically imperceptible from ocean color remote sensing. Empirical algorithms based on multivariate regression analyses of nLw(λ) plus Sea Surface Temperature (SST) data produce more accurate results detecting offshore plume waters than previous studies using single visible bands (e.g. adg(412) or nLw(555)).

  2. Temporal variability and spatial distribution of suspended matter and organic C pool in the Zambezi River

    NASA Astrophysics Data System (ADS)

    Teodoru, Cristian R.; Bouillon, Steven; Borges, Alberto V.; Darchambeau, François; Nyoni, Frank C.; Nyambe, Imasiku

    2014-05-01

    It is increasingly recognized that rivers are active components of global carbon (C) cycling, able of processing, emitting into atmosphere, and transporting to the oceans large quantities of both organic and inorganic carbon derived from the surrounding terrestrial landscape. Although tropical rivers contribute with more than half to the global freshwater discharge to the oceans, there is surprisingly little information on biogeochemistry and C cycling of those systems, especially for Africa. As part of a broader study on the biogeochemistry of large African river basins, we present here data on temporal and spatial variability of total suspended matter (TSM), particulate (POC) and dissolved organic C (DOC) in the Zambezi River (length = 2900 km, catchment area > 1.4 million km2, annual discharge ~ 4150 m3/s) in relation to physico-chemical proprieties (conductivity, oxygen, pH, total alkalinity), bacterial respiration, primary production and net aquatic metabolism. Data were collected along the entire river stretch during 2012 and 2013, and over 2 climatic (dry and wet) seasons to constrain the interannual variability, seasonality and spatial heterogeneity of the investigated parameters, and at two monitoring stations: one on the Zambezi mainstream, and one on the Kafue River (major tributary of the Zambezi; total length ~ 1900 km, catchment ~ 156, 000 km2, annual discharge = 350 m3/s), both located several km upstream their confluence. During the two sampled years, TSM concentrations varied from 1.6 mg/L to 110 mg/L (mean 17 in 2012 and 29 mg/L in 2013) and were systematically higher in the river mainstream (mean 21 mg/L and 36 mg/L in 2012 and 2013, respectively) compared to both reservoirs (the Kariba and the Cahora Bassa) where TSM concentrations average 2.5 mg/L. Despite the disturbance along the aquatic continuum caused by the presence of the two man-made reservoirs, a distinct longitudinal pattern was observed during both years, with TSM increasing downstream, and pH, conductivity and total alkalinity decreasing gradually. A good and negative correlation exists between the relative contribution of both POC and particulate nitrogen (PN) and the total suspended load (higher organic fraction in low suspended load) accounting for approximately 13% and 1.5%, respectively, of the TSM. Higher contribution of both POC and PN was observed systematically in reservoirs (30% and 4%, respectively), which together with the isotopic signature (δ13C-POC of -28.3 o and δ15N-P of 0.8) suggests the dominance of aquatic produced organic matter in reservoirs compared to the river mainstream (8% and 1%, respectively) of mostly terrestrial origin (δ13C-POC: -25o and δ15N-PN: 2.8). Less clear distinction between mainstream river (3.2 mg/L) and reservoir (2.5 mg/L) was observed for DOC (mean 3.1 mg/L) which showed generally an increasing trend downstream. The comparison between the two monitoring stations indicate an overall higher sediment load in the Kafue River (21 mg/L) compared to the Zambezi (7 mg/L), but lower contribution of particulate organic fraction (9% POC and 1% PN, respectively) and higher DOC (4.2 mg/L) versus 17% POC, 2.5% PN and 2.5mg/L DOC in the Zambezi.

  3. Variability of pesticides and nitrates concentrations along a river transect: chemical and isotopic evidence of groundwater - surface water interconnections

    NASA Astrophysics Data System (ADS)

    Baran, Nicole; Petelet-Giraud, Emmanuelle; Saplairoles, Maritxu

    2015-04-01

    Groundwater quality is increasingly monitored in Europe where various levels of nitrate and pesticide and/or metabolite contamination have been demonstrated (Loos et al., 2010, Stuart et al., 2012). The Groundwater Daughter Directive (2006/118/EC) to Water Framework Directive (WFD) particularly requires measures to prevent or limit inputs of pollutants into groundwater and compliance with good chemical status criteria (based on EU standards of nitrate and pesticides). The WFD mentioned the need to protect groundwater but also to have a particular regard to its impact and interrelationship with associated surface waters and directly dependent terrestrial Ecosystems. The Ariège river basin (SW France - 538 km²) is an alluvial plain under high agricultural pressure leading to a contamination of the aquifer by several pesticides and metabolites (Amalric et al., 2013). The Crieu is an allochtone river, crossing the plain (~ 10 km length) before joining the Ariège River. The Crieu is often dry in its middle section suggesting water leakage from surface water towards groundwater. At the opposite, the permanent flow observed downstream suggests an input of groundwater into surface water. In May 2014, while the Crieu flow was continuous through the plain, 7 river samples were collected and analyzed for pesticides, major ions, strontium concentration and isotopes. In situ measurements of electric conductivity were also performed as well as flow gauging. Two groundwaters close to the river were also sampled. The flow gauging measurements show a decreasing river discharge in the central area of the Crieu River, suggesting surface water leakage towards groundwater. Nevertheless, the electric conductivity increases along the river flow as well as some pesticides and nitrates concentrations. This chemical evolution of the river water is thus inconsistent with a simple water infiltration and another source of dissolved solutes is required to explain the increased of concentration. Finally, downstream the quantified pesticides were different from those observed in the upper part of the Crieu but similar to those observed in groundwater. Sr isotopes together with major elements and Sr concentrations allow to identify 3 distinct end-members to explain the river quality evolution : 1) surface water, 2) groundwater and 3) sub-surface water. On this basis, we first demonstrate that the contribution of the different end-members to the river flow is highly variable from upstream to downstream. Secondly, we evidence water exchanges between the river and the groundwater compartment and vice-versa. The combination of the isotopic and geochemical approaches was essential to understand the complex relations and exchanges between surface and ground-waters occurring in few kilometers along the Crieu River. This understanding allows the comprehension of spatial variability of surface water quality. This is of primary importance when to help water managers to select relevant sampling points to be monitored in the framework of the WFD. Amalric L., et al. (2013). International Journal of Environmental Analytical Chemistry, 93: 1660-1675 Loos R. et al. (2010). Water Research, 44: 4115-4126 Stuart M. et al. (2012). Science of the Total Environment, 416: 1-21.

  4. Development and implications of a sediment budget for the upper Elk River watershed, Humboldt County

    Treesearch

    Lee H. MacDonald; Michael W. Miles; Shane Beach; Nicolas M. Harrison; Matthew R. House; Patrick Belmont; Ken L. Ferrier

    2017-01-01

    A number of watersheds on the North Coast of California have been designated as sediment impaired under the Clean Water Act, including the 112 km2 upper Elk River watershed that flows into Humboldt Bay just south of Eureka. The objectives of this paper are to: 1) briefly explain the geomorphic context and anthropogenic uses of the Elk River...

  5. Large-scale dam removal on the Elwha River, Washington, USA: river channel and floodplain geomorphic change

    USGS Publications Warehouse

    East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.

    2015-01-01

    As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of ~ 1 m (greater where pools filled), changed the river from pool–riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, ~ 1.2 million t of new sediment (~ 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along the Elwha River have important ecological implications, affecting aquatic habitat structure, benthic fauna, salmonid fish spawning and rearing potential, and riparian vegetation. The response of the river to dam removal represents a unique opportunity to observe and quantify fundamental geomorphic processes associated with a massive sediment influx, and also provides important lessons for future river-restoration endeavors.

  6. Synoptic estimates of diffuse groundwater seepage to a spring-fed karst river at high spatial resolution using an automated radon measurement technique

    NASA Astrophysics Data System (ADS)

    Khadka, Mitra B.; Martin, Jonathan B.; Kurz, Marie J.

    2017-01-01

    Groundwater (GW) seepage can provide a major source of water, solutes, and contaminants to rivers, but identifying magnitudes, directions and locations of seepage is complicated by its diffuse and heterogeneous distributions. However, such information is necessary to develop programs and policies for protecting ecosystems and managing water resources. Here, we assess GW seepage to the Ichetucknee River, a spring-fed, low gradient, gaining stream in north-central Florida, through automated longitudinal surveys of radon (222Rn) activities at three different flow conditions. A 222Rn mass balance model, which integrates groundwater and spring water end member 222Rn activities and longitudinal 222Rn distributions in river water, shows that diffuse groundwater seepage represents about 16% of the total river baseflow, consistent with previous results obtained from ion (Ca2+, Cl-, SRP and Fe) mass balances and dye tracer methods. During high river stage, the contribution from seepage increases to 18-23% of the river flow. The spatial distribution of GW seepage is more variable in the upper 2.2-km reach of the river than the lower 2.8-km reach, regardless of river flow conditions. The upper reach has a narrower flood plain than the lower reach, which limits evapotranspiration and increases hydraulic gradients toward the river following storm events. Seepage in the lower reach is also limited by hydrologic damming by the receiving river, which inundates the floodplain during high flow conditions, and reduces the hydraulic head gradient. These results demonstrate the variable nature of seepage to a gaining river in both time and space and indicate that multiple synoptic analyses of GW seepage are required to assess seepage rates, determine time-averaged solute fluxes, and develop optimal management policies for riverine ecosystems.

  7. Geomorphic change and sediment transport during a small artificial flood in a transformed post-dam delta: The Colorado River delta, United States and Mexico

    USGS Publications Warehouse

    Mueller, Erich R.; Schmidt, John C.; Topping, David J.; Shafroth, Patrick B.; Rodríguez-Burgueño, Jesús Eliana; Ramírez-Hernández, Jorge; Grams, Paul E.

    2017-01-01

    The Colorado River delta is a dramatically transformed landscape. Major changes to river hydrology and morpho-dynamics began following completion of Hoover Dam in 1936. Today, the Colorado River has an intermittent and/or ephemeral channel in much of its former delta. Initial incision of the river channel in the upstream ∼50 km of the delta occurred in the early 1940s in response to spillway releases from Hoover Dam under conditions of drastically reduced sediment supply. A period of relative quiescence followed, until the filling of upstream reservoirs precipitated a resurgence of flows to the delta in the 1980s and 1990s. Flow releases during extreme upper basin snowmelt in the 1980s, flood flows from the Gila River basin in 1993, and a series of ever-decreasing peak flows in the late 1990s and early 2000s further incised the upstream channel and caused considerable channel migration throughout the river corridor. These variable magnitude post-dam floods shaped the modern river geomorphology. In 2014, an experimental pulse-flow release aimed at rejuvenating the riparian ecosystem and understanding hydrologic dynamics flowed more than 100 km through the length of the delta’s river corridor. This small artificial flood caused localized meter-scale scour and fill of the streambed, but did not cause further incision or significant bank erosion because of its small magnitude. Suspended-sand-transport rates were initially relatively high immediately downstream from the Morelos Dam release point, but decreasing discharge from infiltration losses combined with channel widening downstream caused a rapid downstream reduction in suspended-sand-transport rates. A zone of enhanced transport occurred downstream from the southern U.S.-Mexico border where gradient increased, but effectively no geomorphic change occurred beyond a point 65 km downstream from Morelos Dam. Thus, while the pulse flow connected with the modern estuary, deltaic sedimentary processes were not restored, and relatively few new open surfaces were created for establishment of native riparian vegetation. Because water in the Colorado River basin is completely allocated, exceptional floods from the Gila River basin are the most likely mechanism for major changes to delta geomorphology for the foreseeable future.

  8. Estimating Error in SRTM Derived Planform of a River in Data-poor Region and Subsequent Impact on Inundation Modeling

    NASA Astrophysics Data System (ADS)

    Bhuyian, M. N. M.; Kalyanapu, A. J.

    2017-12-01

    Accurate representation of river planform is critical for hydrodynamic modeling. Digital elevation models (DEM) often falls short in accurately representing river planform because they show the ground as it was during data acquisition. But, water bodies (i.e. rivers) change their size and shape over time. River planforms are more dynamic in undisturbed riverine systems (mostly located in data-poor regions) where remote sensing is the most convenient source of data. For many of such regions, Shuttle Radar Topographic Mission (SRTM) is the best available source of DEM. Therefore, the objective of this study is to estimate the error in SRTM derived planform of a river in a data-poor region and estimate the subsequent impact on inundation modeling. Analysis of Landsat image, SRTM DEM and remotely sensed soil data was used to classify the planform activity in an 185 km stretch of the Kushiyara River in Bangladesh. In last 15 years, the river eroded about 4.65 square km and deposited 7.55 square km area. Therefore, current (the year 2017) river planform is significantly different than the SRTM water body data which represents the time of SRTM data acquisition (the year 2000). The rate of planform shifting significantly increased as the river traveled to downstream. Therefore, the study area was divided into three reaches (R1, R2, and R3) from upstream to downstream. Channel slope and meandering ratio changed from 2x10-7 and 1.64 in R1 to 1x10-4 and 1.45 in R3. However, more than 60% erosion-deposition occurred in R3 where a high percentage of Fluvisols (98%) and coarse particles (21%) were present in the vicinity of the river. It indicates errors in SRTM water body data (due to planform shifting) could be correlated with the physical properties (i.e. slope, soil type, meandering ratio etc.) of the riverine system. The correlations would help in zoning activity of a riverine system and determine a timeline to update DEM for a given region. Additionally, to estimate the impact of planform shifting on inundation modeling, a hydrodynamic model using an SRTM DEM and a modified SRTM DEM (representing most recent planform) for R3 would be set up. This research would highlight the need for considering planform dynamics in DEM based hydrodynamic modeling.

  9. Reaction and relaxation in a coarse-grained fluvial system following catchment-wide disturbance

    NASA Astrophysics Data System (ADS)

    Tunnicliffe, Jon; Brierley, Gary; Fuller, Ian C.; Leenman, Anya; Marden, Mike; Peacock, Dave

    2018-04-01

    The Waiapu River catchment (drainage area of 1734-km2) is one of the most prolific conveyors of sediment in the world, annually delivering roughly 35 Mt of fine material to the ocean from eroding gullies, hillslopes, and reworked sediment on valley floors. Tectonic and geologic influences, in combination with a dynamic climate influenced by tropical cyclones and clearance of vegetation from steep hillslopes, predisposes this region to high rates of erosion. The bedload sediment regime of the river is strongly influenced by several exceptionally large gullies and gully complexes that produce a coarse-grained, poorly sorted sediment mixture. Rapid abrasion and breakdown leads to high rates of suspended sediment yield. A wave of bedload material, manifesting as elevated bed levels and significant widening of active alluvial fills, has been triggered by large inputs of hillslope material from a few key tributary catchments following Cyclone Bola in 1988. We review the evidence for the relaxation process of the sedimentary system in the subsequent 29 years, appraising some of the legacy effects that may endure, as associated with reworking of the considerable alluvial stores within the Waiapu system. We use Structure-from-Motion (SfM) techniques and archival aerial photos to quantify changes in sediment storage at the base of two major gully systems in recent decades. A record of over 850 cross section surveys at 62 sites on 10 rivers throughout the catchment (1958-2017) indicates recent transition from a trend of continuous accumulation to downcutting and remobilisation of valley-bottom deposits. The channel cross sections provide a minimum estimate of sediment flux from source areas to the lower reaches of the river, giving a rudimentary but spatially extensive picture of the wave of material cascading through the drainage network. The largest impacts occur in the upper steepland rivers, closest to the landslide-derived sediment supply. Transport rates here, as inferred from cross section change, are at a maximum during an aggradational phase following Cyclone Bola then taper off, despite the large sediment accumulations remaining in the system. As of 2017, the river is in the process of incising the upper extents of this deposit on a trajectory of recovery toward pre-Bola conditions. The compilation of cross section data provides us with new insights into the sensitivity of particular sites in the landscape, as well as the changing relationship between reach sediment storage and transport rates during the response and relaxation phase of a major disturbance in a large catchment.

  10. Distribution and Larval Habitats of Anopheles Species in Northern Gyeonggi Province, Republic of Korea

    DTIC Science & Technology

    2011-06-01

    War , the lack of both vector- borne disease detection...1953, Hankey et al. 1953, Pruitt 1954). Following the Korean War , malaria continued to pose a serious health threat and impacted military...of Korea (DPRK, North Korea), and is 1.5 km east of Tongilchon, 1 km north of the Imjin River, and 10 km north of Munsan. The area

  11. The Water Level and Transport Regimes of the Lower Columbia River

    NASA Astrophysics Data System (ADS)

    Jay, D. A.

    2011-12-01

    Tidal rivers are vital, spatially extensive conduits of material from land to sea. Yet the tidal-fluvial regime remains poorly understood relative to the bordering fluvial and estuarine/coastal regimes with which it interacts. The 235km-long Lower Columbia River (LCR) consists of five zones defined by topographic constrictions: a 5km-long ocean-entrance, the lower estuary (15km), an energy-minimum (67km), the tidal river (142km), and a landslide zone (5km). Buoyant plume lift-off occurs within the entrance zone, which is dominated by tidal and wave energy. The lower estuary is strongly tidally, amplifies the semidiurnal tide, and has highly variable salinity intrusion. Tidal and fluvial influences are balanced in the wide energy-minimum, into which salinity intrudes during low-flow periods. It has a turbidity maximum and a dissipation minimum at its lower end, but a water-level variance minimum at its landward end. The tidal river shows a large increase in the ratio of fluvial-to-tidal energy in the landward direction and strong seasonal variations in tidal properties. Because tidal monthly water level variations are large, low waters are higher on spring than neap tides. The steep landslide zone has only weak tides and is the site of the most seaward hydropower dam. Like many dammed systems, the LCR has pseudo-tides: daily and weakly hydropower peaking waves that propagate seaward. Tidal constituent ratios vary in the alongchannel direction due to frictional non-linearities, the changing balance of dissipation vs. propagation, and power peaking. Long-term changes to the system have occurred due to climate change and direct human manipulation. Flood control, hydropower regulation, and diversion have reduced peak flows, total load and sand transport by ~45, 50 and 80%, respectively, causing a blue-shift in the flow and water level power spectra. Overbank flows have been largely eliminated through a redundant combination of diking and flow regulation. Export of sand to the ocean now occurs mainly through dredging, though fine sediment export may be higher than natural levels. Reduced sediment input and navigational development have reduced water levels in the upper tidal river by ~0.4/1.5m during low/high flow periods, impacting both navigation and shallow-water habitat availability. Tidal amplitudes have increased due both to increased coastal tides and reduced friction. This exacerbates difficulties with low-waters during fall neap tides. Climate-induced changes have so far had much less influence on system properties than human modifications. At present, regional sea level (RSL) rise and tectonic change are in balance, yielding no net sea level rise.

  12. Mississippi and Atchafalaya River Influence on Sediment Porewater Chemistry

    EPA Science Inventory

    The Louisiana continental shelf (LCS) receives 380 km3 of freshwater per year from the Mississippi and Atchafalaya Rivers. Sources and transport of nutrients and organic matter (OM) delivered to the LCS may result in spatial variation in sediment biogeochemistry important for un...

  13. Pre-restoration Assessment, Big Sunflower River, Mississippi: Where to Begin?

    USDA-ARS?s Scientific Manuscript database

    The Big Sunflower River in northwestern Mississippi drains about 8,000 km2, is a low-gradient slowly-moving stream, and has historically provided a valuable ecological, navigational and recreational resource. However, present conditions are characterized by depauperate physical habitat, depressed b...

  14. Detection of Flooding Responses at the River Basin Scale Enhanced by Land use Change

    NASA Technical Reports Server (NTRS)

    McCormick, Brian C.; Eshleman, Keith N.; Griffith, Jeff L.; Townsend, Philip A.

    2009-01-01

    The Georges Creek watershed (area 187.5 sq km) in western Maryland (United States) has experienced land use changes (>17% of area) associated with surface mining of coal. The adjacent Savage River watershed (area 127.2 sq km) is unmined. Moments of flood frequency distributions indicated that climatic variability affected both watersheds similarly. Normalizing annual maximum flows by antecedent streamflow and causative precipitation helped identify trends in flooding response. Analysis of contemporary storm events using Next Generation Weather Radar (NEXRAD) stage III precipitation data showed that Georges Creek floods are characterized by higher peak runoff and a shorter centroid lag than Savage River floods, likely attributable to differences in current land use. Interestingly, Georges Creek produces only two thirds of the storm-flow volume as Savage River, apparently because of infiltration into abandoned deep mine workings and an associated transbasin diversion constructed circa 1900. Empirical trend analysis is thus complicated by both hydroclimatic variability and the legacy of deep mining in the basin.

  15. Characterizing the influence of atmospheric river orientation and intensity on precipitation distributions over North Coastal California

    NASA Astrophysics Data System (ADS)

    Hecht, Chad W.; Cordeira, Jason M.

    2017-09-01

    Atmospheric rivers (ARs) are long (>2000 km) and narrow (500-1000 km) corridors of enhanced vertically integrated water vapor and enhanced integrated water vapor transport (IVT) that are responsible for a majority of global poleward moisture transport and can result in extreme orographic precipitation. Observational evidence suggests that ARs within different synoptic-scale flow regimes may contain different water vapor source regions, orientations, and intensities and may result in different precipitation distributions. This study uses k-means clustering to objectively identify different orientations and intensities of ARs that make landfall over the California Russian River watershed. The ARs with different orientations and intensities occur within different synoptic-scale flow patterns in association with variability in IVT direction and quasi-geostrophic forcing for ascent and lead to different precipitation distributions over the Russian River watershed. These differences suggest that both mesoscale upslope moisture flux and synoptic-scale forcing for ascent are important factors in modulating precipitation distributions during landfalling ARs.

  16. Anomalous Near-Surface Low-Salinity Pulses off the Central Oregon Coast

    PubMed Central

    Mazzini, Piero L. F.; Risien, Craig M.; Barth, John A.; Pierce, Stephen D.; Erofeev, Anatoli; Dever, Edward P.; Kosro, P. Michael; Levine, Murray D.; Shearman, R. Kipp; Vardaro, Michael F.

    2015-01-01

    From mid-May to August 2011, extreme runoff in the Columbia River ranged from 14,000 to over 17,000 m3/s, more than two standard deviations above the mean for this period. The extreme runoff was the direct result of both melting of anomalously high snowpack and rainfall associated with the 2010–2011 La Niña. The effects of this increased freshwater discharge were observed off Newport, Oregon, 180 km south of the Columbia River mouth. Salinity values as low as 22, nine standard deviations below the climatological value for this period, were registered at the mid-shelf. Using a network of ocean observing sensors and platforms, it was possible to capture the onshore advection of the Columbia River plume from the mid-shelf, 20 km offshore, to the coast and eventually into Yaquina Bay (Newport) during a sustained wind reversal event. Increased freshwater delivery can influence coastal ocean ecosystems and delivery of offshore, river-influenced water may influence estuarine biogeochemistry. PMID:26607750

  17. California State Waters Map Series—Monterey Canyon and vicinity, California

    USGS Publications Warehouse

    Dartnell, Peter; Maier, Katherine L.; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Johnson, Samuel Y.; Hartwell, Stephen R.; Cochrane, Guy R.; Ritchie, Andrew C.; Finlayson, David P.; Kvitek, Rikk G.; Sliter, Ray W.; Greene, H. Gary; Davenport, Clifton W.; Endris, Charles A.; Krigsman, Lisa M.; Dartnell, Peter; Cochran, Susan A.

    2016-06-10

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath bathymetry data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Monterey Canyon and Vicinity map area lies within Monterey Bay in central California. Monterey Bay is one of the largest embayments along the west coast of the United States, spanning 36 km from its northern to southern tips (in Santa Cruz and Monterey, respectively) and 20 km along its central axis. Not only does it contain one of the broadest sections of continental shelf along California’s coast, it also contains Monterey Canyon, one of the largest and deepest submarine canyons in the world. Note that the California’s State Waters limit extends farther offshore between Santa Cruz and Monterey so that it encompasses all of Monterey Bay.The coastal area within the map area is lightly populated. The community of Moss Landing (population, 204) hosts the largest commercial fishing fleet in Monterey Bay in its harbor. The map area also includes parts of the cities of Marina (population, about 20,000) and Castroville (population, about 6,500). Fertile lowlands of the Salinas River and Pajaro River valleys largely occupy the inland part of the map area, and land use is primarily agricultural.The offshore part of the map area lies completely within the Monterey Bay National Marine Sanctuary. The map area also includes Portuguese Ledge and Soquel Canyon State Marine Conservation Areas. Designated conservation and (or) recreation areas in the onshore part of the map area include Salinas River National Wildlife Refuge, Elkhorn Slough State Marine Conservation Area, Elkhorn Slough State Marine Reserve, Moss Landing Wildlife Area, Zmudowski and Salinas River State Beaches, and Marina Dunes Preserve.Monterey Bay, a geologically complex area within a tectonically active continental margin, lies between two major, converging strike-slip faults. The northwest-striking San Andreas Fault lies about 34 km east of Monterey Bay; this section of the fault ruptured in both the 1989 M6.9 Loma Prieta earthquake and the 1906 M7.8 great California earthquake. The northwest-striking San Gregorio Fault crosses Monterey Canyon west of Monterey Bay. Between these two regional faults, strain is accommodated by the northwest-striking Monterey Bay Fault Zone. Deformation associated with these major regional faults and related structures has resulted in uplift of the Santa Cruz Mountains, as well as the granitic highlands of the Monterey peninsula.Monterey Canyon begins in the nearshore area directly offshore of Moss Landing and Elkhorn Slough, and it can be traced for more than 400 km seaward, out to water depths of more than 4,000 m. Within the map area, the canyon can be traced for about 42 km to a water depth of about 1,520 m. The head of the canyon consists of three branches that begin about 150 m offshore of Moss Landing Harbor. At 500 m offshore, the canyon is already 70 m deep and 750 m wide. Large sand waves, which have heights from 1 to 3 m and wavelengths of about 50 m, are present along the channel axis in the upper 4 km of the canyon.Soquel Canyon is the most prominent tributary of Monterey Canyon within the map area. The head of Soquel Canyon is isolated from coastal watersheds and, thus, is considered inactive as a conduit for coarse sediment transport.North and south of Monterey and Soquel Canyons, the relatively flat continental shelf contains only a few rocky outcrop exposures. Bedrock is covered largely by sediment derived from the Salinas and Pajaro Rivers. North of Monterey Canyon, the broad and flat continental shelf dips gently seaward, to water depths of about 95 m. To the south, the shelf also dips slightly, to water depths of as much as 150 m along the canyon edge.In the map area, Monterey Canyon splits the Santa Cruz littoral cell (north of the canyon) and the southern Monterey littoral cell (south of the canyon). It is estimated that about 400,000 m3/yr of sand on average enters Monterey Canyon from both of these littoral cells.In the Santa Cruz littoral cell, sand generally travels east and south. Sand is supplied through sea cliff erosion, as well as from the San Lorenzo River, the Pajaro River, and several other smaller coastal watersheds. About 152,911 m3/yr of sand is dredged from the entrance channel of the Santa Cruz Small Craft Harbor north of the map area and then placed on beaches to the east (downdrift) of it. This sand feeds the beaches in the southeastern reach of the Santa Cruz littoral cell and (or) is eventually trapped and lost by Monterey Canyon.The southern Monterey Bay littoral cell in the map area consists of two subcells. From the head of Monterey Canyon to the Salinas River, littoral drift is dominantly to the north; sand entering the ocean from the Salinas River either is deposited offshore or travels north in the littoral zone, nourishing the beaches until it is transported down Monterey Canyon. From south of the Salinas River to the southern extent of the map area, coastal sediment is moved mainly to the south; dune erosion is the only significant source of sand in this subcell.

  18. The effect of dam construction on the movement of dwarf caimans, Paleosuchus trigonatus and Paleosuchus palpebrosus, in Brazilian Amazonia.

    PubMed

    Campos, Zilca; Mourão, Guilherme; Magnusson, William E

    2017-01-01

    Run-of-the-river hydroelectric dams cause changes in seasonal inundation of the floodplains, and this may cause displacement of semi-aquatic vertebrates present before dam construction. This study evaluated the movement of crocodilians before and after the filling of the Santo Antônio hydroelectric reservoir on the Madeira River in the Brazilian Amazon, which occurred in November 2011. We radio-tracked four adult male Paleosuchus palpebrosus and four adult male Paleosuchus trigonatus before and after the formation of the reservoir between 2011 and 2013. The home ranges of the P. palpebrosus varied from < 1 km2 to 91 km2 and the home ranges of the P. trigonatus varied from < 1km2 to 5 km2. The species responded differently to time since filling and water level in weekly movement and home range. However, overall the dam appears to have had little effect on the use of space by the individuals that were present before dam construction.

  19. Managing Floodplain Expectations on the Lower Missouri River, USA.

    NASA Astrophysics Data System (ADS)

    Bulliner, E. A., IV; Jacobson, R. B.; Lindner, G. A.; Paukert, C.; Bouska, K.

    2017-12-01

    The Missouri River is an archetype of the challenges of managing large rivers and their floodplains for multiple objectives. At 1.3 million km2 drainage area, the Missouri boasts the largest reservoir system in North America with 91 km3 of total storage; in an average year the system generates 10 billion kilowatt hours of electricity. The Lower Missouri River floodplain extends 1,300 km downstream from the reservoir system and encompasses approximately 9,200 km2. For the past 150 years, the floodplain has been predominantly used for agriculture much of which is protected from flooding by private and Federal levees. Reservoir system operating policies prioritize flood-hazard reduction but in recent years, large, damaging floods have demonstrated system limitations. These large floods and changing societal values have created new expectations about how conversion of floodplain agricultural lands to conservation lands might increase ecosystem services, in particular decreasing flood risk and mitigating fluxes of nutrients to the Gulf of Mexico. Our research addresses these expectations at multiple spatial scales by starting with hydrologic and hydraulic models to understand controls on floodplain hydrodynamics. The results document the substantial regional spatial variability in floodplain connectivity that exists because of multi-decadal channel adjustments to channelization and sediment budgets. Exploration of levee setback scenarios with 1- and 2-dimensional hydrodynamic models indicates modest and spatially variable gains in flood-hazard reduction are possible if substantial land areas (50% or more) are converted from agricultural production. Estimates of potential denitrification benefits of connecting floodplains indicate that the floodplain has the capacity to remove 100's to 1,000's of metric tons of N each year, but amounts to a maximum of about 5% the existing load of 200,000 ton*y-1. The results indicate that in this river-floodplain system, the ecosystem services associated with floodplain conversion can be substantial, but the sum of benefits needed to justify land conversion over broad areas remains uncertain.

  20. Phosphorus budget in the water-agro-food system at nested scales in two contrasted regions of the world (ASEAN-8 and EU-27)

    NASA Astrophysics Data System (ADS)

    Garnier, Josette; Lassaletta, Luis; Billen, Gilles; Romero, Estela; Grizzetti, Bruna; Némery, Julien; Le, Thi Phuong Quynh; Pistocchi, Chiara; Aissa-Grouz, Najla; Luu, Thi Nguyet Minh; Vilmin, Lauriane; Dorioz, Jean-Marcel

    2015-09-01

    Phosphorus (P) plays a strategic role in agricultural production as well as in the occurrence of freshwater and marine eutrophication episodes throughout the world. Moreover, the scarcity and uneven distribution of minable P resources is raising concerns about the sustainability of long-term exploitation. In this paper we analyze the P cycle in anthropic systems with an original multiscale approach (world region, country, and large basin scales) in two contrasting world regions representative of different trajectories in socioeconomic development for the 1961-2009 period: Europe (EU-27)/France and the Seine River Basin, and Asia (ASEAN-8)/Vietnam and the Red River Basin. Our approach highlights different trends in the agricultural and food production systems of the two regions. Whereas crop production increased until the 1980s in Europe and France and has stabilized thereafter, in ASEAN-8 and Vietnam it began to increase in the 1980s and it is still rising today. These trends are related to the increasing use of fertilizers, although in European countries the amount of fertilizers sharply decreased after the 1980s. On average, the total P delivered from rivers to the sea is 3 times higher for ASEAN-8 (300 kg P km-2 yr-1) than for EU-27 countries (100 kg P km-2 yr-1) and is twice as high in the Red River (200 kg P km-2 yr-1) than in the Seine River (110 kg P km-2 yr-1), with agricultural losses to water in ASEAN-8 3 times higher than in EU-27. Based on the P flux budgets, this study discusses early warnings and management options according to the particularities of the two world regions, newly integrating the perspective of surface water quality with agricultural issues (fertilizers, crop production, and surplus), food/feed exchanges, and diet, defining the so-called water-agro-food system.

  1. Lateral Erosion Encourages Vertical Incision in a Bimodal Alluvial River

    NASA Astrophysics Data System (ADS)

    Gran, K. B.

    2015-12-01

    Sand can have a strong impact on gravel transport, increasing gravel transport rates by orders of magnitude as sand content increases. Recent experimental work by others indicates that adding sand to an armored bed can even cause armor to break-up and mobilize. These two elements together help explain observations from a bimodal sand and gravel-bedded river, where lateral migration into sand-rich alluvium breaks up the armor layer, encouraging further incision into the bed. Detailed bedload measurements were coupled with surface and subsurface grain size analyses and cross-sectional surveys in a seasonally-incised channel carved into the upper alluvial fan of the Pasig-Potrero River at Mount Pinatubo, Philippines. Pinatubo erupted in 1991, filling valleys draining the flanks of the volcano with primarily sand-sized pyroclastic flow debris. Twenty years after the eruption, sand-rich sediment inputs are strongly seasonal, with most sediment input to the channel during the rainy season. During the dry season, flow condenses from a wide braided planform to a single-thread channel in most of the upper basin, extending several km onto the alluvial fan. This change in planform creates similar unit discharge ranges in summer and winter. Lower sediment loads in the dry season drive vertical incision until the bed is sufficiently armored. Incision proceeds downstream in a wave, with increasing sediment transport rates and decreasing grain size with distance downstream, eventually reaching a gravel-sand transition and return to a braided planform. Incision depths in the gravel-bedded section exceeded 3 meters in parts of a 4 km-long study reach, a depth too great to be explained by predictions from simple winnowing during incision. Instead, lateral migration into sand-rich alluvium provides sufficient fine sediment to break up the armor surface, allowing incision to start anew and increasing the total depth of the seasonally-incised valley. Lateral migration is recorded in a series of inset terraces within the valley. The importance of sand on channel behavior thus extends beyond transport rates, affecting the depth of incision and volume of material excavated during a rainy to dry season transition.

  2. Multimillion-Year Evolution of a Sublacustrine Fan System: Source-to-Sink History of the South Rukuru and Ruhuhu River Drainages, Lake Malawi (Nyasa) Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.; Shillington, D. J.; McCartney, T.

    2017-12-01

    The development of long-lived continental rifts can be markedly influenced by surface processes, including sediment input and footwall erosion. This occurs through modifying crustal thickness and loading, as well as by influencing behaviors of individual faults. Here we report on the evolution of a long-lived system of sublacustrine fans in the Central Basin of the Lake Malawi (Nyasa) rift, East Africa. An extensive suite of crustal-scale seismic reflection data was acquired in 2015 as part of the SEGMeNT project, which resulted superb images of the syn-rift section. These data are augmented by legacy single-channel high resolution reflection data that provide detailed information on facies geometries and stacking architecture of the deep-water fan systems. The ages and lithologic character of the stratal surfaces observed in the reflection seismic data are constrained by ties to the 2005 scientific drill cores acquired during the Lake Malawi Scientific Drilling Project. The South Rukuru River is an eastward flowing regional drainage (11,900 km2) that enters Lake Malawi through an incision in the western border fault of the rift's Central Basin. The Rukuru River drainage (17,230 km2) enters the eastern side of the lake at an accommodation zone margin between the North and Central Basins. Both are antecedent drainages that prior to rifting may have delivered sediments to the Indian Ocean continental margin. Both systems now deliver sediment to a highly confined and focused depocenter in the Central Basin. The complex interplay of extension, mainly on the border fault systems, and high-frequency and high-amplitude lake levels shifts, has led to unique coarse sediment facies stacking architectures, with vertical stacking controlled by hydroclimate, and lateral positioning localized by fault behavior. Focused deep-water (700 m) deposition has resulted in overpressure within the sedimentary section in the localized depocenter, producing dramatic mud diapirs. Long-lived channel-levee systems observed in the seismic data demonstrate that both drainages systems have been operative for the past several million years.

  3. Human impacts on fluvial systems - A small-catchment case study

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald E.; Glade, Thomas; Keiler, Margreth

    2010-05-01

    Regulations of nearly two-thirds of the rivers worldwide have considerable influences on fluvial systems. In Austria, nearly any river (or) catchment is affected by humans, e.g. due to changing land-use conditions and river engineering structures. Recent studies of human impacts on rivers show that morphologic channel changes play a major role regarding channelization and leveeing, land-use conversions, dams, mining, urbanization and alterations of natural habitats (ecomorphology). Thus 'natural (fluvial) systems' are scarce and humans are almost always inseparably interwoven with them playing a major role in altering them coincidentally. The main objective of this study is to identify human effects (i.e. different land use conditions and river engineering structures) on river bed sediment composition and to delineate its possible implications for limnic habitats. The study area watersheds of the 'Fugnitz' River (~ 140km²) and the 'Kaja' River (~ 20km²) are located in the Eastern part of the Bohemian Massif in Austria (Europe) and drain into the 'Thaya' River which is the border river to the Czech Republic in the north of Lower Austria. Furthermore the 'Thaya' River is eponymous for the local National Park 'Nationalpark Thayatal'. In order to survey river bed sediment composition and river engineering structures facies mapping techniques, i.e. river bed surface mapping and ecomorphological mapping have been applied. Additionally aerial photograph and airborne laserscan interpretation has been used to create land use maps. These maps have been integrated to a numerical DEM-based spatial model in order to get an impression of the variability of sediment input rates to the river system. It is hypothesized that this variability is primarily caused by different land use conditions. Finally river bed sites affected by river engineering structures have been probed and grain size distributions have been analyzed. With these data sedimentological and ecological/ecomorphological effects of various river engineering structures (i.e. dams, weirs, river bank- and river bed protection works) on river bed sediment composition and on limnic habitats are evaluated. First results reveal that 'land use' is a dominant factor concerning river bed sediment composition and limnic habitat conditions. Further outcomes will be presented on European Geosciences Union General Assembly, 2010.

  4. River-groundwater connectivity and nutrient dynamics in a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Fleckenstein, Jan H.; Musolff, Andreas; Gilfedder, Benjamin; Frei, Sven; Wankmüller, Fabian; Trauth, Nico

    2017-04-01

    Diffuse solute exports from catchments are governed by many interrelated factors such as land use, climate, geological-/ hydrogeological setup and morphology. Those factors create spatial variations in solute concentrations and turnover rates in the subsurface as well as in the stream network. River-groundwater connectivity is a crucial control in this context: On the one hand groundwater is a main pathway for nitrate inputs to the stream. On the other hand, groundwater connectivity with the stream affects the magnitude of hyporheic exchange of stream water with the stream bed. We present results of a longitudinal sampling campaign along the Selke river, a 67 km long third-order stream in the Harz mountains in central Germany. Water quality at the catchment outlet is strongly impacted by agriculture with high concentrations of nitrate and a chemostatic nitrate export regime. However, the specific nitrate pathways to the stream are not fully understood as there is arable land distributed throughout the catchment. While the sparsely distributed arable land in the mountainous upper catchment receives much higher amounts of precipitation, the downstream alluvial plains are drier, but more intensively used. The three-day campaign was conducted in June 2016 under constant low flow conditions. Stream water samples were taken every 2 km along the main stem of the river and at its major tributaries. Samples were analyzed for field parameters, major cations and anions, N-O isotopes, nutrients and Radon-222 (Rn) concentrations. Additionally, at each sampling location, river discharge was manually measured using current meters. Groundwater influxes to each sampled river section were quantified from the Rn measurements using the code FINIFLUX, (Frei and Gilfedder 2015). Rn and ion concentrations showed an increase from the spring to the mouth, indicating a growing impact of groundwater flux to the river. However, increases in groundwater gains were not gradual. The strongest gains were observed downstream of where the Selke River leaves the Harz Mountains and enters the alluvial plains. At this location, land use, hydrogeological setup and river slope as well as average slope of the contributing catchment area change significantly. Downstream of this point 15N isotope values were also significantly higher, suggesting higher denitrification activity in the deeper aquifers of lower catchment. While specific discharge (discharge per catchment area) was 3 times higher in the upper catchment, nitrate mass flux per area was more than 3 times higher in lower catchment compared to the respective other part of the catchment. We conclude that catchment morphology, (hydro)geology and hydrology control river-groundwater connectivity while the interplay with land use controls in stream nitrate concentrations. Repeated sampling campaigns will allow assessing seasonal changes in solute inputs and turnover. References Frei, S. & Gilfedder, B.S. (2015): FINIFLUX: An implicit finite element model for quantification of groundwater fluxes and hyporheic exchange in streams and rivers using radon. Water Resources Research, DOI: 10.1002/2015WR017212.

  5. Lithospheric structure of the Eastern Iranian plateau from integrated geophysical modeling: A transect from Makran to the Turan platform

    NASA Astrophysics Data System (ADS)

    Entezar-Saadat, Vahid; Motavalli-Anbaran, Seyed-Hani; Zeyen, Hermann

    2017-05-01

    We present a 2D profile of density and temperature distribution in the lithosphere across Iran along a more than 1600 km long profile extending from the Oman Gulf in the South to the Kopeh-Dagh and the Turan platform in the North. Gravity, geoid, topography and surface heat flow data were used for modeling, assuming local isostatic equilibrium. As much as possible, crustal structure has been constrained by seismic data. Crustal thickening is found under the Taftan-Bazman volcanic-arc (up to 47 km), under the Binalud foreland (∼54 km) and beneath the Kopeh-Dagh mountains (up to 50 km) whereas thin crust has been obtained under the Oman Gulf (20 km). Moho depth under the Lut block and the Turan platform is about 40 km. The lithospheric thickness is ∼90 km under the Oman Gulf and increases slightly until the Jazmourian depression. Then the lithospheric-asthenospheric boundary (LAB) bends significantly and sinks to ∼260 km under the Taftan-Bazman volcanic-arc. The LAB depth is about 190 km beneath the Lut block. A slight increase of LAB depth under the Binalud foreland towards the North may indicate a suture zone. Under the Turan platform, the LAB depth reaches ∼210 km. We also modeled two possible positions of the deep suture zone in NE Iran (along the main Kopeh-Dagh fault or along the Atrak River) and concluded that, when the suture zone is along the Atrak River, we obtained the better fit between calculated and measured data.

  6. Spatial consistency of chinook salmon redd distribution within and among years in the Cowlitz River, Washington

    USGS Publications Warehouse

    Klett, Katherine J.C.; Torgersen, Christian E.; Henning, Julie A.; Murray, Christopher J.

    2013-01-01

    We investigated the spawning patterns of Chinook Salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington, using a unique set of fine- and coarse-scale temporal and spatial data collected during biweekly aerial surveys conducted in 1991–2009 (500 m to 28 km resolution) and 2008–2009 (100–500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held GPS synchronized with in-flight audio recordings. We examined spatial patterns of Chinook Salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook Salmon spawned in the same sections each year with little variation among years. On a coarse scale, 5 years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years. Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations. On a finer temporal scale, we observed that Chinook Salmon spawned in the same sections during the first and last week. Redds were clustered in both 2008 and 2009. Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook Salmon spawning surveys.

  7. Pb-Zn-Cd-Hg multi isotopic characterization of the Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Millot, R.; Widory, D.; Innocent, C.; Guerrot, C.; Bourrain, X.; Johnson, T. M.

    2012-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition (major ions and pollutants such as metals) of the dissolved load of rivers. Furthermore, this influence can also be evidenced in the suspended solid matter known to play an important role in the transport of heavy metals through river systems. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. Initially, the Loire upstream flows in a south to north direction originating in the Massif Central, and continues up to the city of Orléans, 650 km from the source. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The Loire River then follows a general east to west direction to the Atlantic Ocean. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for heavy metals Zn-Cd-Pb-Hg in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for these metals for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. The main objective of this study is to characterize the sources and the behavior of these heavy metals in the aquatic environment, and their spatial distribution using a multi-isotope approach. Each of these isotope systematics on their own reveals important information about their geogenic or anthropogenic origin but, considered together, provide a more integrated understanding of the budgets of these pollutants within the Loire River Basin.

  8. Using Aerial Photography to Estimate Riparian Zone Impacts in a Rapidly Developing River Corridor

    NASA Astrophysics Data System (ADS)

    Owers, Katharine A.; Albanese, Brett; Litts, Thomas

    2012-03-01

    Riparian zones are critical for protecting water quality and wildlife, but are often impacted by human activities. Ongoing threats and uncertainty about the effectiveness of buffer regulations emphasize the importance of monitoring riparian buffers through time. We developed a method to rapidly categorize buffer width and landuse attributes using 2007 leaf-on aerial photography and applied it to a 65 km section of the Toccoa River in north Georgia. We repeated our protocol using 1999 leaf-off aerial photographs to assess the utility of our approach for monitoring. Almost half (45%) of the length of the Toccoa River was bordered by buffers less than 50 ft wide in 2007, with agricultural and built-up lands having the smallest buffers. The percentage of river length in each buffer width category changed little between 1999 and 2007, but we did detect a 5% decrease in agricultural land use, a corresponding increase in built-up land use, and an additional 149 buildings within 100 ft of the river. Field verification indicated that our method overestimated buffer widths and forested land use and underestimated built-up land use and the number of buildings within 100 ft of the river. Our methodology can be used to rapidly assess the status of riparian buffers. Including supplemental data (e.g., leaf-off imagery, road layers) will allow detection of the fine-scale impacts underestimated in our study. Our results on the Toccoa River reflect historic impacts, exemptions and variances to regulations, and the ongoing threat of vacation home development. We recommend additional monitoring, improvements in policy, and efforts to increase voluntary protection and restoration of stream buffers.

  9. Evaluation of CryoSat-2 Measurements for the Monitoring of Large River Water Levels

    NASA Astrophysics Data System (ADS)

    Bercher, Nicolas; Calmant, Stephane; Picot, Nicolas; Seyler, Frederique; Fleury, Sara

    2013-09-01

    In this study, and maybe for the first time, we explore the ability of CryoSat-2 satellite to monitor the water level of large rivers. We focus on a section of 500 km of the Madeira river (Amazon basin), around the town of Manicore, cf. Fig.1.Due to the drifting orbit of the mission, the usual concept of "virtual station" vanishes and data are to be extracted within polygons that delineate the riverbeds. This results in spatio-temporal time series of the river water level, expressed as a function of both space (distance to the ocean) and time.We use Cryosat-2 low resolution mode (LRM) data processed with an Ice2 retracker, i.e., the content of the upcoming IOP/GOP ocean product from ESA [1]. For this study, we use demonstration samples (year 2011 on our validation area), processed by the so-called Cryosat Processing Prototype developed by CNES in the framework of the Sentinel-3 Project from ESA [5] [4]. At the time of this study, the product came with no corrections ("solid earth tide", atmosphere, etc.), .Validation is performed on (1) river water level pseudo time series and (2) river pseudo profile. An overview of the spatio-temporal time series is also given in 2D and 3D plots. Despite the lack of geophysical corrections, results are really promising (Std 0.51 m) and are challenging those obtained by Envisat (Std 0.43 m) and Jason-2 (Std 0.47 m) on nearby virtual stations.We also demonstrate the potential of the CryoSat-2 and the appropriateness of its drifting orbit to map rivers topography and derive water levels "at anytime and anywhere" , a major topic of interest regarding hydrological propagation models and the preparation of the SWOT mission.

  10. Using aerial photography to estimate riparian zone impacts in a rapidly developing river corridor.

    PubMed

    Owers, Katharine A; Albanese, Brett; Litts, Thomas

    2012-03-01

    Riparian zones are critical for protecting water quality and wildlife, but are often impacted by human activities. Ongoing threats and uncertainty about the effectiveness of buffer regulations emphasize the importance of monitoring riparian buffers through time. We developed a method to rapidly categorize buffer width and landuse attributes using 2007 leaf-on aerial photography and applied it to a 65 km section of the Toccoa River in north Georgia. We repeated our protocol using 1999 leaf-off aerial photographs to assess the utility of our approach for monitoring. Almost half (45%) of the length of the Toccoa River was bordered by buffers less than 50 ft wide in 2007, with agricultural and built-up lands having the smallest buffers. The percentage of river length in each buffer width category changed little between 1999 and 2007, but we did detect a 5% decrease in agricultural land use, a corresponding increase in built-up land use, and an additional 149 buildings within 100 ft of the river. Field verification indicated that our method overestimated buffer widths and forested land use and underestimated built-up land use and the number of buildings within 100 ft of the river. Our methodology can be used to rapidly assess the status of riparian buffers. Including supplemental data (e.g., leaf-off imagery, road layers) will allow detection of the fine-scale impacts underestimated in our study. Our results on the Toccoa River reflect historic impacts, exemptions and variances to regulations, and the ongoing threat of vacation home development. We recommend additional monitoring, improvements in policy, and efforts to increase voluntary protection and restoration of stream buffers.

  11. Channel dynamics and geomorphic resilience in an ephemeral Mediterranean river affected by gravel mining

    NASA Astrophysics Data System (ADS)

    Calle, Mikel; Alho, Petteri; Benito, Gerardo

    2017-05-01

    Gravel mining has been a widespread activity in ephemeral rivers worldwide whose long-lasting hydrogeomorphological impacts preclude effective implementation of water and environmental policies. This paper presents a GIS-based method for temporal assessment of morphosedimentary changes in relation to in-channel gravel mining in a typical ephemeral Mediterranean stream, namely the Rambla de la Viuda (eastern Spain). The aims of this work were to identify morphosedimentary changes and responses to human activities and floods, quantify river degradations and analyze factors favoring fluvial recovery for further applications in other rivers. Aerial photographs and LiDAR topography data were studied to analyze geomorphic evolution over the past 70 years along a 7.5-km reach of an ephemeral gravel stream that has been mined intensively since the 1970s. To evaluate changes in the riverbed, we mapped comparable units applying morphological, hydraulic, and stability (based on vegetation density and elevation) criteria to 13 sets of aerial photographs taken from 1946 to 2012. A detailed spatiotemporal analysis of comparable units revealed a 50% reduction in the active section and a 20% increase in stable areas, compared to the conditions observed prior to gravel mining. Instream mining was first observed in 1976 aerial photograph covering already up to 50% of the 1956 riverbed area. River degradation since then was quantified by means of a LiDAR DTM and RTK-GPS measurements, which revealed a 3.5-m incision that had started simultaneously with gravel mining. Climate and land use changes were present but the effects were completely masked by changes produced by instream gravel mining. Therefore, river incision/degradation was triggered by scarcity of sediment and lack of longitudinal sedimentary connection, creating an unbalanced river system that is still adjusting to the present hydrosedimentary conditions.

  12. Pearl mussels (Margaritifera marocana) in Morocco: Conservation status of the rarest bivalve in African fresh waters.

    PubMed

    Sousa, Ronaldo; Varandas, Simone; Teixeira, Amílcar; Ghamizi, Mohamed; Froufe, Elsa; Lopes-Lima, Manuel

    2016-03-15

    Margaritifera marocana is one of the rarest freshwater mussel species (listed as critically endangered), and is endemic to Morocco. Despite its constrained distribution and low abundance, to date there are no quantitative studies addressing the conservation status of this species. Surveys were conducted in 36 sites along the Oum Er Rbia river basin (Rivers Derna, Laabid and Oum Er Rbia) to assess the distribution, abundance, population structure and genetic diversity of M. marocana. Just one specimen was found on River Oum Er Rbia and none on River Derna; however, a high abundance was found in the lower section of River Laabid (e.g., site Laabid 6 reached a mean density of 11.0 ± 6.8 ind.m(-2)). Contrary to earlier information, which reported an overall population size fewer than 250 individuals in a restricted area and no juvenile presence, this study showed that a much higher abundance exists in River Laabid alone. In addition, the species is present in more than 50 km of this river and is still recruiting since small specimens were found. Regarding genetic diversity, six of nine loci previously used in Margaritifera margaritifera were polymorphic and suitable in M. marocana. The spatial range contraction of this species is likely to be very recent, since no strong signature was detected by the molecular diversity indices. Information gathered in this study can be used as a reference to the present conservation status of M. marocana, and guide future research and management initiatives to better conserve it. We conclude discussing the potential major threats for the future survival of M. marocana and suggest some management measures (and research needs) that should be urgently applied. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Remote sensing of tamarisk beetle (Diorhabda carinulata) impacts along 412 km of the Colorado River in the Grand Canyon, Arizona, USA

    USGS Publications Warehouse

    Bedford, Ashton; Sankey, Temuulen T.; Sankey, Joel B.; Durning, Laura E.C.; Ralston, Barbara

    2018-01-01

    Tamarisk (Tamarix spp.) is an invasive plant species that is rapidly expanding along arid and semi-arid rivers in the western United States. A biocontrol agent, tamarisk beetle (Diorhabda carinulata), was released in 2001 in California, Colorado, Utah, and Texas. In 2009, the tamarisk beetle was found further south than anticipated in the Colorado River ecosystem within the Grand Canyon National Park and Glen Canyon National Recreation Area. Our objectives were to classify tamarisk stands along 412 km of the Colorado River from the Glen Canyon Dam through the Grand Canyon National Park using 2009 aerial, high spatial resolution multispectral imagery, and then quantify tamarisk beetle impacts by comparing the pre-beetle images from 2009 with 2013 post-beetle images. We classified tamarisk presence in 2009 using the Mahalanobis Distance method with a total of 2500 training samples, and assessed the classification accuracy with an independent set of 7858 samples across 49 image quads. A total of 214 ha of tamarisk were detected in 2009 along the Colorado River, where each image quad, on average, included an 8.4 km segment of the river. Tamarisk detection accuracies varied across the 49 image quads, but the combined overall accuracy across the entire study region was 74%. Using the Normalized Difference Vegetation Index (NDVI) from 2009 and 2013 with a region-specific ratio of >1.5 decline between the two image dates (2009NDVI/2013NDVI), we detected tamarisk defoliation due to beetle herbivory. The total beetle-impacted tamarisk area was 32 ha across the study region, where tamarisk defoliation ranged 1–86% at the local levels. Our tamarisk classification can aid long-term efforts to monitor the spread and impact of the beetle along the river and the eventual mortality of tamarisk due to beetle impacts. Identifying areas of tamarisk defoliation is a useful ecological indicator for managers to plan restoration and tamarisk removal efforts.

  14. Probabilistic Evaluation of Anthropogenic Regulations In a Vegetated River Channel Using a Vegetation Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Miyamoto, Hitoshi

    2015-04-01

    Vegetation overgrowth in fluvial floodplains, gravel beds, and sand bars has been a serious engineering problem for riparian management in Japan. From the viewpoints of flood control and ecological conservation, it would be necessary to predict the vegetation dynamics accurately for long-term duration. In this research, we have developed a stochastic model for predicting the vegetation dynamics in fluvial floodplains with emphasis on the interaction with flood impacts. The model consists of the following four components: (i) long-term stochastic behavior of flow discharge, (ii) hydrodynamics in a channel with floodplain vegetation, (iii) variation of riverbed topography, and (iv) vegetation dynamics on floodplains. In the vegetation dynamics model, the flood discharge (i) is stochastically simulated using a filtered Poisson process, one of the conventional approaches in hydrological time-series generation. The component for vegetation dynamics (iv) includes the effects of tree growth, mortality by floods, and infant tree recruitment. Vegetation condition has been observed mainly before and after floods since 2008 at a field site located between 23-24 km from the river mouth in Kako River, Japan. The Kako River has the catchment area of 1,730 km2 and the main channel length of 96 km. This site is one of the vegetation overgrowth sites in the Kako River floodplains. The predominant tree species are willows and bamboos. In the field survey, the position, trunk diameter and height of each tree as well as the riverbed materials were measured after several flood events to investigate their impacts on the floodplain vegetation community. This presentation tries to examine effects of anthropogenic river regulations, i.e., thinning and cutting-down, in the vegetated channel in Kako River by using the vegetation dynamics model. Sensitivity of both the flood water level and the vegetation status in the channel is statistically evaluated in terms of the different cutting-down levels, timings and scales of the thinning, etc., by the Monte Carlo simulation of the model.

  15. Migratory Patterns of Wild Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-Flowing River Basin

    PubMed Central

    Eiler, John H.; Evans, Allison N.; Schreck, Carl B.

    2015-01-01

    Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002–2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28–40 km d-1) compared to upper basin stocks (52–62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between “hares” (faster fish becoming slower) and “tortoises” (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation exhibited among individual fish within a stock can complicate these efforts. PMID:25919286

  16. Coastal aquifer groundwater dynamics and salt intrusion: Monitoring system of river Neretva delta

    NASA Astrophysics Data System (ADS)

    Srzić, Veljko; Vranješ, Mijo; Deković, Jure; Romić, Davor; Zovko, Monika; Milin, Marin

    2017-04-01

    River Neretva delta is located in southern part of Croatia and creates a complex surface- groundwater system influenced by tidal forces characteristic for Adriatic Sea and river Neretva whose discharge varies from 70 - 2700 m3/s over the year. From agricultural point of view, area is used widely for fruit production which implies existence and functionality of complex drainage system consisted of a net of lateral channels and pumping station plants with the capacity of app. 25 m3/s. Area of interest covers app 3500 ha and is bounded by river Neretva from North and Adriatic sea from West. Southern and eastern boundaries are dominantly karstic hills. Lover aquifer is confined with app depth of 65 m, made of fine gravel. Aquitard is a 15 m height layer of clay. Upper aquifer in unconfined with depth of app 10-20 m. Inside the area of interest there are 8 wells installed (each aquifer 4) measuring piezometric head on hourly/daily temporal scale. Sea level measurements are also made capturing for long term tidal oscillations. Discharge measurements are made few km downstream from hydropower plant Mostar (Bosnia and Herzegovina), while three meteorological stations for rainfall measurements are located at the area boundaries. Salt water concentration, pH and resistivity values have been measured locally, app 6 times per year for last 10 years. Results imply confined aquifer is dominantly influenced by the sea level while tidal effects are noticed 9 km upstream the river Neretva with delay of 9-12 minutes compared to sea level. Salt water cline inside the river is related to tidal effects and river discharge, with potential presence at distances of more than 15 km upstream from the sea. Salt water intrusion dominantly occurs through confined aquifer while vertical transport of salt is supposed to be enhanced by the effects of drainage system.

  17. [Shifting path of industrial pollution gravity centers and its driving mechanism in Pan-Yangtze River Delta].

    PubMed

    Zhao, Hai-Xia; Jiang, Xiao-Wei; Cui, Jian-Xin

    2014-11-01

    Shifting path of industrial pollution gravity centers is the response of environmental special formation during the industry transfer process, in order to prove the responding of industrial pollution gravity centers to industry transfer in economically developed areas, this paper calculates the gravity centers of industrial wastewater, gas and solid patterns and reveals the shifting path and its driving mechanism, using the data of industrial pollution in the Pan-Yangtze River Delta from 2000 to 2010. The results show that the gravity center of the industrial waste in Pan-Yangtze River Delta shifts for sure in the last 10 years, and gravity center of solid waste shifts the maximum distance within the three wastes, which was 180.18 km, and shifting distances for waste gas and waste water were 109.51 km and 85.92 km respectively. Moreover, the gravity center of the industrial waste in Pan-Yangtze River Delta shifts westwards, and gravity centers of waste water, gas and solid shift for 0.40 degrees, 0.17 degrees and 0.03 degrees respectively. The shifting of industrial pollution gravity centers is driven by many factors. The rapid development of the heavy industry in Anhui and Jiangxi provinces results in the westward shifting of the pollutions. The optimization and adjustment of industrial structures in Yangtze River Delta region benefit to alleviating industrial pollution, and high-polluting industries shifted to Anhui and Jiangxi provinces promotes pollution gravity center shifting to west. While the development of massive clean enterprise, strong environmental management efforts and better environmental monitoring system slow the shifting trend of industrial pollution to the east in Yangtze River Delta. The study of industrial pollution gravity shift and its driving mechanism provides a new angle of view to analyze the relationship between economic development and environmental pollution, and also provides academic basis for synthetical management and control of environmental pollution in Pan-Yangtze River Delta, especially in the transition period.

  18. Migratory Patterns of Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-flowing River Basin

    USGS Publications Warehouse

    Eiler, John H.; Evans, Allison N.; Schreck, Carl B.

    2015-01-01

    Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002–2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28–40 km d-1) compared to upper basin stocks (52–62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between “hares” (faster fish becoming slower) and “tortoises” (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation exhibited among individual fish within a stock can complicate these efforts.

  19. Geologic map of the Winslow 30’ × 60’ quadrangle, Coconino and Navajo Counties, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Block, Debra L.; Redsteer, Margaret Hiza

    2013-01-01

    The Winslow 30’ × 60’ quadrangle encompasses approximately 5,018 km2 (1,960 mi2) within Coconino and Navajo Counties of northern Arizona. It is characterized by gently dipping Paleozoic and Mesozoic strata that dip 1° to 2° northeastward in the southwestern part of the quadrangle and become nearly flat-lying in the northeastern part of the quadrangle. In the northeastern part, a shallow Cenozoic erosional basin developed about 20 million years ago, which subsequently was filled with flat-lying Miocene and Pliocene lacustrine sediments of the Bidahochi Formation, as well as associated volcanic rocks of the Hopi Buttes Volcanic Field. The lacustrine sediments and volcanic rocks unconformably overlie Triassic, Jurassic, and Cretaceous strata. Beginning about early Pliocene time, the Little Colorado River and its tributaries began to remove large volumes of Paleozoic and Mesozoic bedrock from the map area. This erosional development has continued through Pleistocene and Holocene time. Fluvial sediments accumulated episodically throughout this erosional cycle, as indicated by isolated Pliocene(?) and Pleistocene Little Colorado River terrace-gravel deposits on Tucker Mesa and Toltec Divide west of Winslow and younger terrace-gravel deposits along the margins of the Little Colorado River Valley. These gravel deposits suggest that the ancestral Little Colorado River and its valley has eroded and migrated northeastward toward its present location and largely parallels the strike of the Chinle Formation. Today, the Little Colorado River meanders within a 5-km (3-mi) wide valley between Winslow and Leupp, where soft strata of the Chinle Formation is mostly covered by an unknown thickness of Holocene flood-plain deposits. In modern times, the Little Colorado River channel has changed its position as much as a 1.5 km (1 mi) during flood events, but for much of the year the channel is a dry river bed. Surficial alluvial and eolian deposits cover extensive parts of the bedrock outcrops over the entire Winslow quadrangle.

  20. Catchment controls on water temperature and the development of simple metrics to inform riparian zone management

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew; Wilby, Robert

    2015-04-01

    Water temperature is a key water quality parameter and is critical to aquatic life Therefore, rising temperatures due to climate and environmental change will have major consequences for river biota. As such, it is important to understand the environmental controls of the thermal regime of rivers. The Loughborough University TEmperature Network (LUTEN) consists of a distributed network of 25 sites along 40 km of two rivers in the English Peak District, from their source to confluence. As a result, the network covers a range of hydrological, sedimentary, geomorphic and land-use conditions. At each site, air and water temperature have been recorded at a 15-minute resolution for over 4 years. Water temperature is spatially patchy and temporally variable in the monitored rivers. For example, the annual temperature range at Beresford Dale is over 18° C, whereas 8 km downstream it is less than 8° C. This heterogeneity leads to some sites being more vulnerable to future warming than others. The sensitivity of sites to climate was quantified by comparing the parameters of logistic regression models, constructed at each site, that relate water temperature to air temperature. These analyses, coupled with catchment modelling suggest that reaches that are surface-water dominated with minimal shade and relatively low water volumes are most susceptible to warming. Such reaches tended to occur at intermediate distances from rivers source in the monitored catchments. Reaches that were groundwater dominated had relatively stable thermal regimes, which were relatively unaffected by inter-annual changes in climatic conditions. Such areas could provide important thermal refuge to many organisms, which is supported by monitoring of the invertebrate community in the catchment. The phenology (i.e. timing of life events) of some species remained consistent between years in a river reach with a stable thermal regime, but changed markedly in other areas of the river. Consequently, areas of thermal refuge could be important in the context of future climate change, potentially maintaining populations of animals excluded from other parts of the river during hot summer months. International management strategies to mitigate rising temperatures tend to focus on the protection, enhancement or creation of riparian shade. Simple metrics derived from catchment landscape models, the heat capacity of water, and modelled solar radiation receipt, suggest that approximately 1 km of deep riparian shading is necessary to offset a 1° C rise in temperature in the monitored catchments. A similar value is likely to be obtained for similar sized rivers at similar latitudes. Trees would take 20 years to attain sufficient height to shade the necessary solar angles. However, 1 km of deep riparian shade will have substantial impacts on the hydrological and geomorphological functioning of the river, beyond simply altering the thermal regime. Consequently, successful management of rising water temperature in rivers will require catchment scale consideration, as part of an integrated management plan.

  1. Estimation of the long-term slip, surface uplift and block rotation along the northern strand of the North Anatolian Fault Zone: Inferences from geomorphology of the Almacık Block

    NASA Astrophysics Data System (ADS)

    Yıldırım, Cengiz; Tüysüz, Okan

    2017-11-01

    The Almacık Block is one of the key morphotectonic units in the eastern Marmara Region associated with the long-term slip partitioning within the North Anatolian Fault Zone (NAFZ). In this study, we provide new geomorphic reconstructions of offset drainage basins, morphometric analysis of topography, and longitudinal profiles of the rivers crossing different flanks of the Almacık Block. Our geomorphic reconstructions of offset drainage basins along the Hendek and Karadere faults imply mean offsets of 2.3 ± 0.4 km and 8.4 ± 0.7 km, respectively, during the Quaternary. Our dataset also imply that slip partitioning occurs in a broader zone than previously proposed, and that the total 10.7 ± 0.6 km offset along the Hendek and Karadere faults of the northern strand must be taken into account for long-term slip partitioning in the Eastern Marmara Region. Together with previously suggested 10 km offset along the southern strand (Yaltırak, 2002), 16 ± 1.0 km offset along the middle strand (Özalp et al., 2013) and the 52 ± 1.0 km offset along the Mudurnu Segment of the northern strand (Akbayram et al., 2016) our newly proposed geomorphic markers raise the cumulative offset in the eastern Marmara region associated with the NAF to 89 ± 1.0 km since the Latest Pliocene - Quaternary. In addition to these lateral displacements, our morphometric analysis and longitudinal profiles of the rivers imply up to 1130 ± 130 m surface uplift of the Almacık Block as a combined result of vertical displacement within the deformation zone of the northern strand of the NAFZ. Finally, by assuming that river basins act as passive deformation markers, our basin azimuth analyses imply 20° ± 2° clockwise rotation of the Almacık Block associated with the NAFZ.

  2. Assessing the evolution of oases in arid regions by reconstructing their historic spatio-temporal distribution: a case study of the Heihe River Basin, China

    NASA Astrophysics Data System (ADS)

    Xie, Yaowen; Wang, Guisheng; Wang, Xueqiang; Fan, Peilei

    2017-12-01

    Oasis evolution, one of the most obvious surface processes in arid regions, affects various aspects of the regional environment, such as hydrological processes, ecological conditions, and microclimates. In this paper, the historical spatio-temporal evolution of the cultivated oases in the Heihe River Basin, the second largest inland watershed in the northwest of China, was assessed using multidisciplinary methods and data from multiple sources, including historical literature, ancient sites, maps and remotely sensed images. The findings show that cultivated oases were first developed on a large scale during the Han Dynasty (121 BC-220) and then gradually decreased in extent from the Six Dynasties period (220-581) to the Sui-Tang period (581-907), reaching a minimum in the Song-Yuan period (960-1368). An abrupt revival occurred during the Ming Dynasty (1368-1644) and continued through the Qing Dynasty (1644-1911), and during the period of the Republic of China (1912-1949), oasis development reached its greatest peak of the entire historical period. The oasis areas during seven major historical periods, i.e., Han, Six Dynasties, Sui-Tang, Song-Yuan, Ming, Qing, and Republic of China, are estimated to have been 1703 km2, 1115 km2, 629 km2, 614 km2, 964 km2, 1205 km2, and 1917 km2, respectively. The spatial distribution generally exhibited a continuous sprawl process, with the center of the oases moving gradually from the downstream region to the middle and even upstream regions. The oases along the main river remained stable during most periods, whereas those close to the terminal reaches were subject to frequent variations and even abandonment. Socio-economic factors were the main forces driving the evolution of cultivated oases in the area; among them, political and societal stability, national defense, agricultural policy, population, and technological progress were the most important.

  3. Assessment Approach for Identifying Compatibility of Restoration Projects with Geomorphic and Flooding Processes in Gravel Bed Rivers

    NASA Astrophysics Data System (ADS)

    DeVries, Paul; Aldrich, Robert

    2015-08-01

    A critical requirement for a successful river restoration project in a dynamic gravel bed river is that it be compatible with natural hydraulic and sediment transport processes operating at the reach scale. The potential for failure is greater at locations where the influence of natural processes is inconsistent with intended project function and performance. We present an approach using practical GIS, hydrologic, hydraulic, and sediment transport analyses to identify locations where specific restoration project types have the greatest likelihood of working as intended because their function and design are matched with flooding and morphologic processes. The key premise is to identify whether a specific river analysis segment (length ~1-10 bankfull widths) within a longer reach is geomorphically active or inactive in the context of vertical and lateral stabilities, and hydrologically active for floodplain connectivity. Analyses involve empirical channel geometry relations, aerial photographic time series, LiDAR data, HEC-RAS hydraulic modeling, and a time-integrated sediment transport budget to evaluate trapping efficiency within each segment. The analysis segments are defined by HEC-RAS model cross sections. The results have been used effectively to identify feasible projects in a variety of alluvial gravel bed river reaches with lengths between 11 and 80 km and 2-year flood magnitudes between ~350 and 1330 m3/s. Projects constructed based on the results have all performed as planned. In addition, the results provide key criteria for formulating erosion and flood management plans.

  4. Assessment Approach for Identifying Compatibility of Restoration Projects with Geomorphic and Flooding Processes in Gravel Bed Rivers.

    PubMed

    DeVries, Paul; Aldrich, Robert

    2015-08-01

    A critical requirement for a successful river restoration project in a dynamic gravel bed river is that it be compatible with natural hydraulic and sediment transport processes operating at the reach scale. The potential for failure is greater at locations where the influence of natural processes is inconsistent with intended project function and performance. We present an approach using practical GIS, hydrologic, hydraulic, and sediment transport analyses to identify locations where specific restoration project types have the greatest likelihood of working as intended because their function and design are matched with flooding and morphologic processes. The key premise is to identify whether a specific river analysis segment (length ~1-10 bankfull widths) within a longer reach is geomorphically active or inactive in the context of vertical and lateral stabilities, and hydrologically active for floodplain connectivity. Analyses involve empirical channel geometry relations, aerial photographic time series, LiDAR data, HEC-RAS hydraulic modeling, and a time-integrated sediment transport budget to evaluate trapping efficiency within each segment. The analysis segments are defined by HEC-RAS model cross sections. The results have been used effectively to identify feasible projects in a variety of alluvial gravel bed river reaches with lengths between 11 and 80 km and 2-year flood magnitudes between ~350 and 1330 m(3)/s. Projects constructed based on the results have all performed as planned. In addition, the results provide key criteria for formulating erosion and flood management plans.

  5. Seasonal and spatial patterns of growth of rainbow trout in the Colorado River in Grand Canyon, AZ

    USGS Publications Warehouse

    Yard, Micheal D.; Korman, Josh; Walters, Carl J.; Kennedy, T.A.

    2016-01-01

    Rainbow trout (Oncorhynchus mykiss) have been purposely introduced in many regulated rivers, with inadvertent consequences on native fishes. We describe how trout growth rates and condition could be influencing trout population dynamics in a 130 km section of the Colorado River below Glen Canyon Dam based on a large-scale mark–recapture program where ∼8000 rainbow trout were recaptured over a 3-year period (2012–2014). There were strong temporal and spatial variations in growth in both length and weight as predicted from von Bertalanffy and bioenergetic models, respectively. There was more evidence for seasonal variation in the growth coefficient and annual variation in the asymptotic length. Bioenergetic models showed more variability for growth in weight across seasons and years than across reaches. These patterns were consistent with strong seasonal variation in invertebrate drift and effects of turbidity on foraging efficiency. Highest growth rates and relative condition occurred in downstream reaches with lower trout densities. Results indicate that reduction in rainbow trout abundance in Glen Canyon will likely increase trout size in the tailwater fishery and may reduce downstream dispersal into Grand Canyon.

  6. A Sediment Transport Based Geomorphic Analysis of the Skykomish River Braided Reach to Identify "Restoration" Opportunities

    NASA Astrophysics Data System (ADS)

    Devries, P.; Aldrich, R.; Brunzell, S.; Purser, M.

    2004-12-01

    A study is underway to assess the driving sediment transport and hydraulic processes influencing channel changes in a braided reach of the Skykomish River, Washington. The reach is located below a steeper, confined section of the river and has likely been geomorphically active since the last glaciation. Bankfull widths range between roughly 100-350 m within, and drainage area is 1,500 km2 above, the study reach. Analyses have been conducted at the reach scale, and include development of a sediment transport model, historical photograph and survey overlays, and an accounting of where sediment deposition, channel shifts and avulsions, and side channel connection are most and least likely to occur over reasonable design life spans (e.g., between 10 and 50 years). The ultimate goal of the analysis is to identify suitable locations for projects that will enhance, restore, or protect fish habitat as well as protect infrastructure, while considering constraints posed by channel hydraulic, sediment transport/deposition, and stability characteristics. Our strategy is to determine what types of projects are best suited for different locations in the reach based on the analysis results. The results can then be used to prioritize and estimate costs for project alternatives.

  7. Impacts of anthropogenic pressures on the water quality of the Gironde Estuary (SW France) from the Urban Agglomeration of Bordeaux: spatial characterization and inputs of trace metal elements (Ag, As, Cd, Cu, Pb and Zn)

    NASA Astrophysics Data System (ADS)

    Kessaci, Kahina; Coynel, Alexandra; Blanc, Gérard; Deycard, Victoria N.; Derriennic, Hervé; Schäfer, Jörg

    2014-05-01

    Recent European legislation (2000/60/CE) has listed eight trace metal elements as priority toxic substances for water quality. Urban metal inputs into hydrosystems are of increasing interest to both scientists and managers facing restrictive environmental protection policies, population increase and changing metal applications. The Gironde Estuary (SW France; 625 km2) is known for its metal/metalloid pollution originating from industrial (e.g. Cd, Zn, Cu, As, Ag, Hg) or agricultural sources (e.g. Cu) in the main fluvial tributaries (Garonne and Dordogne Rivers). However, little peer-reviewed scientific work has addressed the impact of urban sources on the Gironde Estuary, especially the Urban Agglomeration of Bordeaux (~1 million inhabitants) located on the downstream branch of the Garonne River. In this study, a snapshot sampling campaign was performed in 2011 for characterizing the spatial distribution of dissolved and particulate metal/metalloid (As, Ag, Cd, Pb, Zn, Cu) concentrations in three suburban watersheds: the Jalle of Blanquefort (330 km2), Eau Bourde (140 km2), and Peugue (112 km2). Furthermore, particulate metal Enrichment Factors (EF) were calculated using local geochemical background measured at the bottom of a sediment core (492 cm). Results indicated that metal concentrations displayed a high spatial variability depending on the suburban watershed and the studied element. Local concentrations anomalies were observed for: (i) As in the Eau Bourde River in dissolved (4.2 μg/l) and particulate phases (246 mg/kg; EF= 20) and attributed to a nearby industrial incinerator; (ii) Zn in the Peugue River with maximum dissolved and particulate concentrations of 87 μg/l and 1580 mg/kg (EF=17), respectively, probably due to urban habitation runoff; (iii) Ag in the Jalle of Blanquefort River with high dissolved (74 ng/l) and particulate concentrations (33.7 mg/kg; EF=117) due to industrial activities in the downstream part. Based on hydro-geochemical monitoring of both suburban rivers and local wastewater treatment plants (WWTPs), we present a first estimate of metal/metalloid fluxes and compare them to the respective loads in the Garonne River. Our results suggest that suburban metal inputs may significantly increase metal concentrations and fluxes in the fluvial Gironde Estuary, especially for Ag due to inputs exported by WWTPS and the Jalle of Blanquefort River.

  8. The ‘Grand Canyon’ of the Da'an River, Taiwan - Influences on Ultra-Rapid Incision and Knickpoint Propagation

    NASA Astrophysics Data System (ADS)

    Cook, K. L.; Suppe, J.

    2009-12-01

    The 1999 magnitude 7.6 Chi-Chi earthquake resulted in significant surface uplift along the rupture zone in western Taiwan. At northeastern-most end of the rupture zone, near the town of Cholan, motion on the Chelungpu fault was accommodated by growth of the Tungshi Anticline, resulting in up to 10m of surface uplift in the channel of the Da’an River. Where the river crosses the anticline, the zone of uplift is approximately 1 km wide, with a gently sloping downstream (western) limb about 400 m long and an abrupt upstream (eastern) limb less than 50 m long. The bedrock consists of the Pliocene Cholan Formation, composed of alternating sandstone, siltstone, and mudstone beds. The bedrock is quite weak and is also pervasively fractured, making it extremely easy to erode. In response to the 1999 uplift, the Da’an River has cut a dramatic gorge, with more than 20 m of incision over a very short period. The rapid pace of incision allows us to directly observe how factors such as lithology, structure, and discharge influence the evolution of an actively incising gorge. We use a series of aerial photographs to map out the development of the gorge since 1999. We monitor the more recent evolution of the system with RTK GPS surveys to measure channel profiles, laser rangefinder measurements of channel width, and terrestrial LIDAR surveys to quantify changes in the gorge walls. The channel can currently be divided into four segments: 1) A broad network of braided alluvial channels upstream of the gorge with an average slope of 1.5 cm/km, 2) A steep knickzone about 600 m long with an average slope of 2.7 cm/km, about 8 meters of ‘excess’ incision, and abundant bedrock in the channel, 3) A lower gorge zone with low slopes, averaging between 0.6 and 1.1 cm/km, a significant amount of aggradation, and relatively narrow width, as flow is confined to the incised gorge, and 4) A broad network of braided alluvial channels downstream of the gorge with an average slope of 1.5 cm/km. The morphology of the gorge is heavily influenced by structure and lithology. Individual waterfalls within the knickzone are localized on thick beds of the more resistant sandstone, and the propagation and morphology of knickpoints have been influenced by lithologic variations and by changes in the dip of the bedding across the anticline. Steep fractures within the bedrock play a significant role in channel widening, which occurs primarily by wall collapse, particularly where the fractures dip toward the channel wall. The extremely rapid erosion rates in the gorge also provide an excellent opportunity to examine the co-evolution of channel slope and channel width in the lower section of the gorge. The presence of large amounts of bedload in the channel allow for rapid adjustment of channel slope in the wake of the knickpoint; however, the slope within the lower part of the gorge remains shallower than the reaches above and below the gorge by 0.4 to 0.9 cm/km, illustrating the influence of channel width on streampower and equilibrium slope. We expect that as the gorge continues to widen, the slopes in this segment of the gorge will steepen.

  9. The contribution of total suspended solids to the Bay of Biscay by Cantabrian Rivers (northern coast of the Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Prego, Ricardo; Boi, Paola; Cobelo-García, Antonio

    2008-07-01

    Information of suspended sediments fluxes of small rivers to the coastal zone is sparse, and this is particularly so for the Iberian Rivers. To help address this shortage of information, the relationship between fluvial discharge and total suspended solids (TSS) for the main 28 Cantabrian Rivers using data from 22 years monitoring by the COCA network has been analysed, and their particulate material fluxes to the Bay of Biscay coasts have been quantified. The Cantabrian Fluvial System (drainage basin area of 20,333 km 2) may be considered as a quasi-homogeneous fluvial system with an average discharge of 561 m - 3 s - 1 and average loads of 35 kg TSS s - 1 with rivers showing similar average yields of 56 t km - 2 a - 1 . The average TSS contribution is 1.2 ± 0.2 10 9 kg a - 1 . This seaward flux of sediment is dispersed along the entire North Iberian coast and is rather modest (25% of the total supply) in comparison with the output from the French Rivers to the Bay of Biscay. The TSS loads of Cantabrian Rivers indicate they are similar to world upland rivers and those of other parts of Northern Europe according to Milliman and Syvistki [Milliman and Syvistki, 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Journal of Geology, 100: 525-544] and Milliman [Milliman, 2001. Delivery and fate of fluvial water and sediment to the sea: a marine geologist's view of European rivers. Scientia Marina, 65: 121-132]. Although their TSS flux is practically negligible (13,000 times lower) when compared to the world average flux, they provide a good example of the role of small Atlantic temperate rivers.

  10. Impacts of reforestation and gravel mining on the Malnant River, Haute-Savoie, French Alps

    NASA Astrophysics Data System (ADS)

    Marston, Richard A.; Bravard, Jean-Paul; Green, Tim

    2003-09-01

    The Malnant River is a rapidly incising river with a French name that translates as "bad creek," reflecting local opinion of the hazards from dramatic channel changes that have occurred in the last few centuries. Downcutting in the last three decades has created severe problems for farmers in this small watershed (16 km 2) as bridges are undermined, streamside roads are threatened, and irrigation diversion structures are rendered unusable. The purpose of our study was to determine the extent and causes of downcutting. A detailed landcover map dated 1732 revealed that forest cover had been reduced by that time to 10% of the present-day cover. The Malnant was strongly affected by floods and debris torrents during the 18th and 19th centuries that delivered massive amounts of sediment. During the 20th century, reforestation reduced the sediment delivery from hillslopes. In addition, gravel extraction in the Malnant and in the Fier River (of which the Malnant is a tributary) has lowered the base level for the river. This initiated a knickpoint that moved upstream. Weirs placed in the Malnant in 1968 were used to measure rates of bed incision in the field. With a mean width of 4.0 m and degradation up to 36 cubic meters per meter channel length, the lower 4.5 km of the Malnant has experienced a net loss of approximately 163,000 m 3 of bed material. Above the 4.5-km point on the Malnant, bedrock controls exist that have arrested the upstream-progressing degradation.

  11. Sharing the rivers: Balancing the needs of people and fish against the backdrop of heavy sediment loads downstream from Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Magirl, C. S.; Czuba, J. A.; Czuba, C. R.; Curran, C. A.

    2012-12-01

    Despite heavy sediment loads, large winter floods, and floodplain development, the rivers draining Mount Rainier, a 4,392-m glaciated stratovolcano within 85 km of sea level at Puget Sound, Washington, support important populations of anadromous salmonids, including Chinook salmon and steelhead trout, both listed as threatened under the Endangered Species Act. Aggressive river-management approaches of the early 20th century, such as bank armoring and gravel dredging, are being replaced by more ecologically sensitive approaches including setback levees. However, ongoing aggradation rates of up to 8 cm/yr in lowland reaches present acute challenges for resource managers tasked with ensuring flood protection without deleterious impacts to aquatic ecology. Using historical sediment-load data and a recent reservoir survey of sediment accumulation, rivers draining Mount Rainer were found to carry total sediment yields of 350 to 2,000 tonnes/km2/yr, notably larger than sediment yields of 50 to 200 tonnes/km2/yr typical for other Cascade Range rivers. An estimated 70 to 94% of the total sediment load in lowland reaches originates from the volcano. Looking toward the future, transport-capacity analyses and sediment-transport modeling suggest that large increases in bedload and associated aggradation will result from modest increases in rainfall and runoff that are predicted under future climate conditions. If large sediment loads and associated aggradation continue, creative solutions and long-term management strategies are required to protect people and structures in the floodplain downstream of Mount Rainier while preserving aquatic ecosystems.

  12. Mississippi River delta plain, Louisiana coast, and inner shelf Holocene geologic framework, processes, and resources

    USGS Publications Warehouse

    Williams, S. Jeffress; Kulp, Mark; Penland, Shea; Kindinger, Jack L.; Flocks, James G.; Buster, Noreen A.; Holmes, Charles W.

    2009-01-01

    Extending nearly 400 km from Sabine Pass on the Texas-Louisiana border east to the Chandeleur Islands, the Louisiana coastal zone (Fig. 11.1) along the north-central Gulf of Mexico is the southern terminus of the largest drainage basin in North America (>3.3 million km2), which includes the Mississippi River delta plain where approximately 6.2 million kilograms per year of sediment is delivered to the Gulf of Mexico (Coleman 1988). The Mississippi River, active since at least Late Jurassic time (Mann and Thomas 1968), is the main distributary channel of this drainage system and during the Holocene has constructed one of the largest delta plains in the world, larger than 30,000 km2 (Coleman and Prior 1980; Coleman 1981; Coleman et al. 1998). The subsurface geology and geomorphology of the Louisiana coastal zone reffects a complex history of regional tectonic events and fluvial, deltaic, and marine sedimentary processes affected by large sea-level fluctuations. Despite the complex geology of the north-central Gulf basin, a long history of engineering studies and Scientific research investigations (see table 11.1) has led to substantial knowledge of the geologic framework and evolution of the delta plain region (see also Bird et al., chapter 1 in this volume). Mississippi River delta plain, Louisiana coast, and inner shelf Holocene geologic framework, processes, and resources. Available from: https://www.researchgate.net/publication/262802561_Mississippi_River_delta_plain_Louisiana_coast_and_inner_shelf_Holocene_geologic_framework_processes_and_resources [accessed Sep 13, 2017].

  13. Faunal assemblages and multi-scale habitat patterns in headwater tributaries of the South Fork Trinity River - an unregulated river embedded within a multiple-use landscape

    Treesearch

    H. H. Jr. Welsh; J. J. G. R. Hodgson; J. M. Emlen Duda

    2010-01-01

    Headwaters can represent 80% of stream kilometers in a watershed, and they also have unique physical and biological properties that have only recently been recognized for their importance in sustaining healthy functioning stream networks and their ecological services. We sampled 60 headwater tributaries in the South Fork Trinity River, a 2,430 km2...

  14. Diet of juvenile and adult American Shad in the Columbia River

    USGS Publications Warehouse

    Sauter, Sally T.; Blubaugh, J; Parsley, Michael J.

    2011-01-01

    The diet of juvenile and adult American shad Alosa sapidissima captured from various locations in the Columbia River was investigated during 2007 and 2008. Collection efforts in 2007 were restricted to fish collected from existing adult and juvenile fish collection facilities located at Bonneville Dam and to adult shad captured by angling downstream from Bonneville Dam. In 2008, we used gillnets, electrofishing, beach seining, or cast nets to collect juvenile and adult shad from the saline estuary near Astoria (approximately river km 24) to just upstream from McNary Dam (approximately river km 472). We examined the stomach contents of 436 American shad captured in 2007 and 1,272 captured in 2008. Fish caught within the river were much more likely to contain food items than fish removed from fish collection facilities.


    The diet of age-0 American shad varied spatially and temporally, but was comprised primarily of crustaceans and insects. Prey diversity of age-0 American shad, as assessed by the Shannon Diversity Index, increased with decreasing distance to the estuary. Pre- and partial-spawn American shad primarily consumed Corophium spp. throughout the Columbia River; however, post-spawn adults primarily consumed gastropods upstream of McNary Dam

  15. Mass balances of dissolved gases at river network scales across biomes.

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Stewart, R. J.; Sheehan, K.

    2016-12-01

    Estimating aquatic metabolism and gas fluxes at broad spatial scales is needed to evaluate the role of aquatic ecosystems in continental carbon cycles. We applied a river network model, FrAMES, to quantify the mass balances of dissolved oxygen at river network scales across five river networks in different biomes. The model accounts for hydrology; spatially varying re-aeration rates due to flow, slope, and water temperature; gas inputs via terrestrial runoff; variation in light due to canopy cover and water depth; benthic gross primary production; and benthic respiration. The model was parameterized using existing groundwater information and empirical relationships of GPP, R, and re-aeration, and was tested using dissolved oxygen patterns measured throughout river networks. We found that during summers, internal aquatic production dominates the river network mass balance of Kings Cr., Konza Prairie, KS (16.3 km2), whereas terrestrial inputs and aeration dominate the network mass balance at Coweeta Cr., Coweeta Forest, NC (15.7 km2). At network scales, both river networks are net heterotrophic, with Coweeta more so than Kings Cr. (P:R 0.6 vs. 0.7, respectively). The river network of Kings Creek showed higher network-scale GPP and R compared to Coweeta, despite having a lower drainage density because streams are on average wider so cumulative benthic surface areas are similar. Our findings suggest that the role of aquatic systems in watershed carbon balances will depend on interactions of drainage density, channel hydraulics, terrestrial vegetation, and biological activity.

  16. Modulation of the Ganges-Brahmaputra River Plume by the Indian Ocean Dipole and Eddies Inferred From Satellite Observations

    NASA Astrophysics Data System (ADS)

    Fournier, S.; Vialard, J.; Lengaigne, M.; Lee, T.; Gierach, M. M.; Chaitanya, A. V. S.

    2017-12-01

    The Bay of Bengal receives large amounts of freshwater from the Ganga-Brahmaputra (GB) river during the summer monsoon. The resulting upper-ocean freshening influences seasonal rainfall, cyclones, and biological productivity. Sparse in situ observations and previous modeling studies suggest that the East India Coastal Current (EICC) transports these freshwaters southward after the monsoon as an approximately 200 km wide, 2,000 km long "river in the sea" along the East Indian coast. Sea surface salinity (SSS) from the Soil Moisture Active Passive (SMAP) satellite provides unprecedented views of this peculiar feature from intraseasonal to interannual timescales. SMAP SSS has a 0.83 correlation and 0.49 rms-difference to 0-5 m in situ measurements. SMAP and in stu data both indicate a SSS standard deviation of ˜0.7 to 1 away from the coast, that rises to 2 pss within 100 km of the coast, providing a very favorable signal-to-noise ratio in coastal areas. SMAP also captures the strong northern BoB, postmonsoon cross-shore SSS contrasts (˜10 pss) measured along ship transects. SMAP data are also consistent with previous modeling results that suggested a modulation of the EICC/GB plume southward extent by the Indian Ocean Dipole (IOD). Remote forcing associated with the negative Indian Ocean Dipole in the fall of 2016 indeed caused a stronger EICC and "river in the sea" that extended by approximately 800 km further south than that in 2015 (positive IOD year). The combination of SMAP and altimeter data shows eddies stirring the freshwater plume away from the coast.Plain Language SummaryThe Bay of Bengal receives large quantity of freshwater from the Ganges-Brahmaputra river during the monsoon. The resulting low-salinity sea surface has strong implications for the regional climate and living marine resources. In situ observations are too sparse to provide salinity maps in this basin, even every 3 months. In contrast, the SMAP satellite provides maps at 40 km resolution, every 8 days, opening great perspectives for studying salinity in the Bay of Bengal. In this article, we show that SMAP compares well with in situ data, even close to the coast. The Ganges Brahmaputra freshwater plume is transported over 2000 km by the East Indian Coastal Current. We further show that climate variability and mesoscale variability induce strong year-to-year variations in the way this freshwater plume expands along the east coast of India.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12826418','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12826418"><span>Regional variation in the chemical composition of winter snow pack and terricolous lichens in relation to sources of acid emissions in the Usa river basin, northeast European Russia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Walker, T R; Crittenden, P D; Young, S D</p> <p>2003-01-01</p> <p>The chemical composition of snow and terricolous lichens was determined along transects through the Subarctic towns of Vorkuta (130 km west-east), Inta (240 km south-north) and Usinsk (140 km, southwest-northeast) in the Usa river basin, northeast European Russia. Evidence of pollution gradients was found on two spatial scales. First, on the Inta transect, northward decreases in concentrations of N in the lichen Cladonia stellaris (from 0.57 mmol N g(-1) at 90 km south to 0.43 mmol N g(-1) at 130 km north of Inta) and winter deposition of non-sea salt sulphate (from 29.3 to 12.8 mol ha(-1) at 90 km south and 110 km north of Inta, respectively) were attributed to long range transport of N and S from lower latitudes. Second, increased ionic content (SO42-, Ca2+, K+) and pH of snow, and modified N concentration and the concentration ratios K+:Mg2+ and K+: (Mg2++Ca2+) in lichens (Cladonia arbuscula and Flavocetraria cucullata) within ca. 25-40 km of Vorkuta and Inta were largely attributed to local deposition of alkaline coal ash. Total sulphate concentrations in snow varied from ca. 5 micromol l(-1) at remote sites to ca. 19 micromol l(-1) near Vorkuta. Nitrate concentration in snow (typically ca. 9 micromol l(-1)) did not vary with proximity to perceived pollution sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=59558&keyword=diversity+AND+surface&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=59558&keyword=diversity+AND+surface&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>COMPONENTS OF SURFACE AND SUBSURFACE CONNECTIVITY IN A LARGE OREGON (USA) RIVER--WHAT CAN BE RESTORED?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>We conducted research on the Willamette River in western Oregon (USA) to determine the ecological functions of off-channel habitats (OCH). OCHs have declined in our 70 km study reach of the active floodplain since European settlement. Surface and subsurface connectivity between...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=150565&Lab=NHEERL&keyword=alien&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=150565&Lab=NHEERL&keyword=alien&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>ALIEN SPECIES IMPORTANTANCE IN NATIVE VEGETATION ALONG WADEABLE STREAMS, JOHN DAY RIVER BASIN, OREGON, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>We evaluated the importance of alien species in existing vegetation along wadeable streams of a large, topographically diverse river basin in eastern Oregon, USA; sampling 165 plots (30 × 30 m) across 29 randomly selected 1-km stream reaches. Plots represented eight streamside co...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=59998&keyword=river+AND+urban+AND+city&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=59998&keyword=river+AND+urban+AND+city&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>HYPERSPECTRAL CHANNEL SELECTION FOR WATER QUALITY MONITORING ON THE GREAT MIAMI RIVER, OHIO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>During the summer of 1999, spectral data were collected with a hand-held spectroradiometer, a laboratory spectrometer and airborne hyperspectral sensors from the Great Miami River (GMR), Ohio. Approximately 80 km of the GMR were imaged during a flyover with a Compact Airborne Sp...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=87560&keyword=budget+AND+management&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=87560&keyword=budget+AND+management&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>IMPORTANCE OF GROUNDWATER SULFATE TO ACIDIFICATION IN THE GOOSE RIVER WATERSHED, MAINE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The role of groundwater sulfate discharge to ponds and streams within the Goose River basin (33.3 km<sup>2</SUP>) is examined. While airborne sulfate disposition has declined, acidity in surface waters locally remains elevated. Monthly SO<SUP>2-</SUP><SUB>4</SUB> analyses (1999-2...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=140664&Lab=NERL&keyword=temperature+AND+oxygen+AND+consumption&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=140664&Lab=NERL&keyword=temperature+AND+oxygen+AND+consumption&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>NUTRIENT CONCENTRATIONS IN FLOWING WATERS OF THE SOUTH FORK BROAD RIVER, GEORGIA WATERSHED</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The South Fork Broad River (SFBR) drains about 635 km2 of the Georgia Piedmont. The SFBR watershed is primarily rural and undeveloped although the human population increased by about 25% between 1990 and 2000. Forestry and agriculture are the main land uses. Agriculture consis...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5017948-analysis-river-planforms-new-madrid-region-possible-relations-tectonic-warping-across-loess-bluffs-within-meander-belt-mississippi-river','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5017948-analysis-river-planforms-new-madrid-region-possible-relations-tectonic-warping-across-loess-bluffs-within-meander-belt-mississippi-river"><span>Analysis of river planforms in the New Madrid region and possible relations to tectonic warping across the loess bluffs and within the meander belt of the Mississippi River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Johnson, K.A.; Mayer, L.</p> <p>1993-03-01</p> <p>Stream channel planforms measured from such streams as the Hatchie (H), L'Anguille (LA), St. Francis, White (W) and Little Red (LR) rivers provide a way to study influences of topographic warping between the loess bluffs that bound the Mississippi river valley. Planforms are analyzed using sinuosity, Richardson analysis, and pattern. Pattern changes include transitions from braided to meandering and meandering to straight. Sinuosities of the W and LR rivers show a transition from low sinuosity, [1.3, 1.4] to higher sinuosity [2.6, 2.8], over a short distance, as they cross the bluffs from the uplands to the Western Lowlands. On themore » east, the Hatchie changes from a braided to meandering pattern upon crossing the bluffs. Its sinuosity varies from a low of about 1.4 to a high of 2.2, coincident with a marsh area. The LA river flows on the west side of Crowley's Ridge and is paralleled by the St. Francis river on the east. These rivers, with very different drainage areas and sinuosities, show matching meander bends at similar wavelengths along Crowley's Ridge. The bends are about 10 km in 1/2 wavelength suggesting some extraordinary influence on pattern perpendicular to the ridge. Richardson analysis indicates that features with a 1/2 wavelength of 2 km may control several rivers' bending patterns. These features are analyzed to determine their spatial relations with one another.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007HESS...11..863R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007HESS...11..863R"><span>Uncertainties in selected river water quality data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rode, M.; Suhr, U.</p> <p>2007-02-01</p> <p>Monitoring of surface waters is primarily done to detect the status and trends in water quality and to identify whether observed trends arise from natural or anthropogenic causes. Empirical quality of river water quality data is rarely certain and knowledge of their uncertainties is essential to assess the reliability of water quality models and their predictions. The objective of this paper is to assess the uncertainties in selected river water quality data, i.e. suspended sediment, nitrogen fraction, phosphorus fraction, heavy metals and biological compounds. The methodology used to structure the uncertainty is based on the empirical quality of data and the sources of uncertainty in data (van Loon et al., 2005). A literature review was carried out including additional experimental data of the Elbe river. All data of compounds associated with suspended particulate matter have considerable higher sampling uncertainties than soluble concentrations. This is due to high variability within the cross section of a given river. This variability is positively correlated with total suspended particulate matter concentrations. Sampling location has also considerable effect on the representativeness of a water sample. These sampling uncertainties are highly site specific. The estimation of uncertainty in sampling can only be achieved by taking at least a proportion of samples in duplicates. Compared to sampling uncertainties, measurement and analytical uncertainties are much lower. Instrument quality can be stated well suited for field and laboratory situations for all considered constituents. Analytical errors can contribute considerably to the overall uncertainty of river water quality data. Temporal autocorrelation of river water quality data is present but literature on general behaviour of water quality compounds is rare. For meso scale river catchments (500-3000 km2) reasonable yearly dissolved load calculations can be achieved using biweekly sample frequencies. For suspended sediments none of the methods investigated produced very reliable load estimates when weekly concentrations data were used. Uncertainties associated with loads estimates based on infrequent samples will decrease with increasing size of rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H53F1713B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H53F1713B"><span>Hydraulic visibility and effective cross sections based on hydrodynamical modeling of flow lines gained by satellite altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biancamaria, S.; Garambois, P. A.; Calmant, S.; Roux, H.; Paris, A.; Monnier, J.; Santos da Silva, J.</p> <p>2015-12-01</p> <p>Hydrodynamic laws predict that irregularities in a river bed geometry produce spatial and temporal variations in the water level, hence in its slope. Conversely, observation of these changes is a goal of the SWOT mission with the determination of the discharge as a final objective. In this study, we analyse the relationship between river bed undulations and water surface for an ungauged reach of the Xingu river, a first order tributary of the Amazon river. It is crosscut more than 10 times by a single ENVISAT track over a hundred of km. We have determined time series of water levelsat each of these crossings, called virtual stations (VS), hence slopes of the flow line. Using the discharge series computed by Paiva et al. (2013) between 1998 and 2009, Paris et al. (submitted) determined at each VS a rating curve relating these simulated discharge with the ENVISAT height series. One parameter of these rating curves is the zero-flow depth Z 0 . We show that it is possible to explain the spatial and temporal variations of the water surface slope in terms of hydrodynamical response of the longitudinal changes of the river bed geometry given by the successive values of Z 0 . Our experiment is based on an effective, single thread representation of a braided river, realistic values for the Manning coefficient and river widths picked up on JERS images. This study confirms that simulated flow lines are consistent with water surface elevations (WSE) and slopes gained by satellite altimetry. Hydrodynamical signatures are more visible where the river bed geometry varies significantly, and for reaches with a strong downstream control. Therefore, this study suggests that the longitudinal variations of the slope might be an interesting criteria for the question of river segmentation into elementary reaches for the SWOT mission which will provide continuous measurements of the water surface elevation, the slope and the reach width.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.jstor.org/stable/41717163','USGSPUBS'); return false;" href="http://www.jstor.org/stable/41717163"><span>Razorback sucker movements and habitat use in the San Juan River inflow, Lake Powell, Utah, 1995-1997</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Karp, C.A.; Mueller, G.</p> <p>2002-01-01</p> <p>Seventeen subadult, hatchery-reared razorback suckers (Xyrauchen texanus; (x̄ = 456 mm total length) were implanted with sonic transmitters and tracked for 23 months in the lower 89.6 km of the San Juan River (San Juan arm of Lake Powell, Utah). Fish were released at 2 sites, and 9 made extensive up-and downstream movements (x = 47.8 km; contact was lost with 4, and 4 others presumably died or lost their transmitters). The San Juan arm is primarily inundated canyon; however, most fish contacts occurred in shallow coves and shoreline with thick stands of flooded salt cedar in the upper inflow area. Eight fish frequented the Piute Farms river/lake mixing zone, and at least 4 moved upstream into the San Juan River. Seven fish were found in 2 aggregations in spring (3 fish in Neskahi Bay in 1996 and 4 fish just downstream of Piute Farms in 1997), and these may have been associated with spawning activity. Continued presence of razorback suckers in the Piute Farms area and lower San Juan River suggests the San Juan inflow to Lake Powell could be used as an alternate stocking site for reintroduction efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.bioone.org/toc/amid/154/2','USGSPUBS'); return false;" href="http://www.bioone.org/toc/amid/154/2"><span>Lack of significant changes in the herpetofauna of Theodore Roosevelt National Park, North Dakota, since the 1920s</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hossack, B.R.; Corn, P.S.; Pilliod, D.S.</p> <p>2005-01-01</p> <p>We surveyed 88 upland wetlands and 12 1-km river sections for amphibians in Theodore Roosevelt National Park, North Dakota, during 2001–2002 to gather baseline data for future monitoring efforts and to evaluate changes in the distribution of species. We compared our results to collections of herpetofauna made during 1920–1922, 1954 and 1978–1979. The boreal chorus frog (Pseudacris maculata) was the most common amphibian in upland wetlands, followed by the tiger salamander (Ambystoma tigrinum), Woodhouse's toad (Bufo woodhousii), northern leopard frog (Rana pipiens), plains spadefoot (Spea bombifrons) and the Great Plains toad (B. cognatus). Bufo woodhousii was the only species that bred in the river. Our records for reptiles are less complete than for amphibians but no losses from the community are evident. The herpetofauna in Theodore Roosevelt National Park seems unchanged during at least the last half-century and likely since 1920–1922.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019769','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019769"><span>Effects of basin size on low-flow stream chemistry and subsurface contact time in the neversink river watershed, New York</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wolock, D.M.; Fan, J.; Lawrence, G.B.</p> <p>1997-01-01</p> <p>The effects of basin size on low-flow stream chemistry and subsurface contact time were examined for a part of the Neversink River watershed in southern New York State. Acid neutralizing capacity (ANC), the sum of base cation concentrations (SBC), pH and concentrations of total aluminum (Al), dissolved organic carbon (DOC) and silicon (Si) were measured during low stream flow at the outlets of nested basins ranging in size from 0.2 to 166.3 km2. ANC, SBC, pH, Al and DOC showed pronounced changes as basin size increased from 0.2 to 3 km2, but relatively small variations were observed as basin size increased beyond 3 km2. An index of subsurface contact time computed from basin topography and soil hydraulic conductivity also showed pronounced changes as basin size increased from 0.2 to 3 km2 and smaller changes as basin size increased beyond 3 km2. These results suggest that basin size affects low-flow stream chemistry because of the effects of basin size on subsurface contact time. ?? 1997 by John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMEP51B0584D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMEP51B0584D"><span>Interpreting the suspended sediment dynamics in a mesoscale river basin of Central Mexico using a nested watershed approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duvert, C.; Némery, J.; Gratiot, N.; Prat, C.; Collet, L.; Esteves, M.</p> <p>2009-12-01</p> <p>The Cointzio river basin is located within the Mexican Transvolcanic Belt, in the Michoacán state. Land-use changes undergone over last decades lead to significant erosion processes, though affecting limited areas of the basin. Apart from generating a minor depletion of arable land by incising small headwater areas, this important sediment delivery contributed to siltation in the reservoir of Cointzio, situated right downstream of the basin. During 2009 rainy season, a detailed monitoring of water and sediment fluxes was undertaken in three headwater catchments located within the Cointzio basin (Huertitas, Potrerillos and La Cortina, respectively 2.5, 9.3 and 12.0 km2), as well as at the outlet of the main river basin (station of Santiago Undameo, 627 km2). Preliminary tests realized in 2008 underlined the necessity of carrying out a high-frequency monitoring strategy to assess the sediment dynamics in the basins of this region. In each site, water discharge time-series were obtained from continuous water-level measurements (5-min time-step), and stage-discharge rating curves. At the river basin outlet, Suspended Sediment Concentration (SSC) was estimated every 10 minutes through turbidity measurements calibrated with data from automatic sampling. In the three sub-catchments, SSC time-series were calculated using stage-triggered automatic water samplers. The three upland areas monitored in our study present distinct landforms, morphology and soil types. La Cortina is underlain by andisols, rich in organic matter and with an excellent microstructure under wet conditions. Huertitas and Potrerillos both present a severely gullied landscape, bare and highly susceptible to water erosion in degraded areas. As a result, suspended sediment yields in 2009 were expectedly much higher in these two sub-catchments (≈320 t.km-2 in Huertitas and ≈270 t.km-2 in Potrerillos) than in La Cortina (≈40 t.km-2). The total suspended sediment export was approximately of 30 t.km-2 at the outlet, with a dominance of cohesive sediments (mainly silt and clay). Sediment delivery dynamics was found to be seasonally dependent and principally driven by the river network transport capacity. With the exception of events associated with a very high discharge peak, sub-catchments delivered very little sediment to the basin’s outlet during first events of the rainy season (corresponding to May-June period). Later on (from July until the end of the season), even low headwater sediment peaks were coupled with significant sediment fluxes at the outlet. An analysis of SSC-Q hysteresis patterns was also conducted for major flood events at each site. Anti-clockwise SSC-Q hysteresis loops were recorded most frequently at the three upland sub-catchments, while at the outlet a double-peaked SSC signal was repeatedly detected, outlining the variety in sediment contributions. The findings of this nested watershed approach suggest that during the first part of the rainy season, fine sediment loads exported from active hillslopes deposit as fluid mud layers in the lowland river channels. Once the in-channel storage capacity is loaded, the river transport potential guarantees a direct transit between headwater areas and delivery zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Geomo.253..353H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Geomo.253..353H"><span>Satellite-based remote sensing of running water habitats at large riverscape scales: Tools to analyze habitat heterogeneity for river ecosystem management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hugue, F.; Lapointe, M.; Eaton, B. C.; Lepoutre, A.</p> <p>2016-01-01</p> <p>We illustrate an approach to quantify patterns in hydraulic habitat composition and local heterogeneity applicable at low cost over very large river extents, with selectable reach window scales. Ongoing developments in remote sensing and geographical information science massively improve efficiencies in analyzing earth surface features. With the development of new satellite sensors and drone platforms and with the lowered cost of high resolution multispectral imagery, fluvial geomorphology is experiencing a revolution in mapping streams at high resolution. Exploiting the power of aerial or satellite imagery is particularly useful in a riverscape research framework (Fausch et al., 2002), where high resolution sampling of fluvial features and very large coverage extents are needed. This study presents a satellite remote sensing method that requires very limited field calibration data to estimate over various scales ranging from 1 m to many tens or river kilometers (i) spatial composition metrics for key hydraulic mesohabitat types and (ii) reach-scale wetted habitat heterogeneity indices such as the hydromorphological index of diversity (HMID). When the purpose is hydraulic habitat characterization applied over long river networks, the proposed method (although less accurate) is much less computationally expensive and less data demanding than two dimensional computational fluid dynamics (CFD). Here, we illustrate the tools based on a Worldview 2 satellite image of the Kiamika River, near Mont Laurier, Quebec, Canada, specifically over a 17-km river reach below the Kiamika dam. In the first step, a high resolution water depth (D) map is produced from a spectral band ratio (calculated from the multispectral image), calibrated with limited field measurements. Next, based only on known river discharge and estimated cross section depths at time of image capture, empirical-based pseudo-2D hydraulic rules are used to rapidly generate a two-dimensional map of flow velocity (V) over the 17-km Kiamika reach. The joint distribution of D and V variables over wetted zones then is used to reveal structural patterns in hydraulic habitat availability at patch, reach, and segment scales. Here we analyze 156 bivariate (D, V) density function plots estimated over moving reach windows along the satellite scene extent to extract 14 physical habitat metrics (such as river width, mean and modal depths and velocity, variances and covariance in D and V over 1-m pixels, HMID, entropy). A principal component analysis on the set of metrics is then used to cluster river reaches in regard to similarity in their hydraulic habitat composition and heterogeneity. Applications of this approach can include (i) specific fish habitat detection at riverscape scales (e.g., large areas of riffle spawning beds, deeper pools) for regional management, (ii) studying how river habitat heterogeneity is correlated to fish distribution and (iii) guidance for site location for restoration of key habitats or for post regulation monitoring of representative reaches of various types.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930033017&hterms=solar+radiation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsolar%2Bradiation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930033017&hterms=solar+radiation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsolar%2Bradiation"><span>The topographic distribution of annual incoming solar radiation in the Rio Grande River basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dubayah, R.; Van Katwijk, V.</p> <p>1992-01-01</p> <p>We model the annual incoming solar radiation topoclimatology for the Rio Grande River basin in Colorado, U.S.A. Hourly pyranometer measurements are combined with satellite reflectance data and 30-m digital elevation models within a topographic solar radiation algorithm. Our results show that there is large spatial variability within the basin, even at an annual integration length, but the annual, basin-wide mean is close to that measured by the pyranometers. The variance within 16 sq km and 100 sq km regions is a linear function of the average slope in the region, suggesting a possible parameterization for sub-grid-cell variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JApMe..37..232H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JApMe..37..232H"><span>Observations in Nonurban Heat Islands.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hogan, A. W.; Ferrick, M. G.</p> <p>1998-02-01</p> <p>The urban heat island is a well-known and well-described temperature anomaly, but other types of heat islands are also infrequently reported. A 10 km × 30 km data field containing more than 100 individual winter morning air temperature measurement points was examined for areas characteristically warmer than surrounding areas. The very small `downtown' of Hanover, New Hampshire, was found to be 1°-2°C warmer than nearby open areas at the same elevation. The same technique was applied to examine the morning air temperature within a nearby hamlet consisting of about 60 wooden buildings within an area less than 0.3 km2. The bulk of observations and observations stratified by snow and sky cover showed no systematic difference between hamlet air temperatures and those obtained in surrounding terrain. Morning air temperatures along a freezing river were measured and found to be systematically warmer than nearby air temperatures for several days, until a significant snowfall diminished the ice growth rate. A thorough examination of temperature profiles near the river showed that the increase in air temperature beneath the overnight inversion during this freezing period was proportional to the heat release resulting from river ice growth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP52A..05W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP52A..05W"><span>The development of the Ganges-Brahmaputra tidal delta plain: construction to maintenance phase changes in platform and channel morphology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilson, C.; Goodbred, S. L., Jr.; Hale, R. P.; Bain, R. L.</p> <p>2016-12-01</p> <p>The lower Ganges-Brahmaputra (G-B) delta can be divided into the fluvial-tidal river mouth and distributaries under active construction by the G-B rivers, and the distal tidally maintained deltaplain. In the active river-mouth, distributaries have constructed 5,000 km2 of large, coalescing islands that define the prograding coastline and subaerial-delta front. Although seasonal riverbank erosion is common, the area as a whole has gained land, primarily via horizontal and vertical accretion of intertidal mudflats and seaward progradation of emergent, tidally-elongated sandy channel-mouth bars. An analysis of historical imagery within the active river mouth shows larger and higher order channels form as merging bars and shoal-islands constrict distributary channels, while lower order creeks emerge secondarily, presumably as flow on shoaling intertidal mudflats becomes channelized and mangrove vegetation takes hold. With waning fluvial input (occurring from major distributary migration or avulsion), tidal and marine processes exhibit a stronger control on sediment transport and distribution, as is happening in the downdrift areas of the G-B tidal delta plain. The relatively pristine Sundarbans mangrove forest covers 4,100 km2 along the coast, while 11,200 km2 of the lower tidal delta plain is densely inhabited (population density up to 1,000/km2) and embanked for agricultural purposes. Although considered moribund or abandoned from direct fluvial sediment input, distal portions of the tidal delta are connected to the sediment transport system by its dense network of tidal channels. The subaerial landscape that was initially constructed by the point-sourced input of coarser-grained fluvial sediment from the mainstem rivers is thereafter maintained predominantly by onshore tidal sediment transport of finer-grained silt, and we observe accretion rates as high as 2-4 cm/y supported on the mangrove platform during the monsoon season. The tidal channels show evidence of some migration since the mid-1800s (Allison, 1998); however, there appears to be little evidence of net infilling or widening in coastal areas (<50 km from the Bay of Bengal). In contrast, we show interior areas have chronic siltation over the past 50 years due to anthropogenically modified changes in the tidal prism from poldering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H52D..02C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H52D..02C"><span>Quantifying Km-scale Hydrological Exchange Flows under Dynamic Flows and Their Influences on River Corridor Biogeochemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, X.; Song, X.; Shuai, P.; Hammond, G. E.; Ren, H.; Zachara, J. M.</p> <p>2017-12-01</p> <p>Hydrologic exchange flows (HEFs) in rivers play vital roles in watershed ecological and biogeochemical functions due to their strong capacity to attenuate contaminants and process significant quantities of carbon and nutrients. While most of existing HEF studies focus on headwater systems with the assumption of steady-state flow, there is lack of understanding of large-scale HEFs in high-order regulated rivers that experience high-frequency stage fluctuations. The large variability of HEFs is a result of interactions between spatial heterogeneity in hydrogeologic properties and temporal variation in river discharge induced by natural or anthropogenic perturbations. Our 9-year spatially distributed dataset (water elevation, specific conductance, and temperature) combined with mechanistic hydrobiogeochemical simulations have revealed complex spatial and temporal dynamics in km-scale HEFs and their significant impacts on contaminant plume mobility and hyporheic biogeochemical processes along the Hanford Reach. Extended multidirectional flow behaviors of unconfined, river corridor groundwater were observed hundreds of meters inland from the river shore resulting from discharge-dependent HEFs. An appropriately sized modeling domain to capture the impact of regional groundwater flow as well as knowledge of subsurface structures controlling intra-aquifer hydrologic connectivity were essential to realistically model transient storage in this large-scale river corridor. This work showed that both river water and mobile groundwater contaminants could serve as effective tracers of HEFs, thus providing valuable information for evaluating and validating the HEF models. Multimodal residence time distributions with long tails were resulted from the mixture of long and short exchange pathways, which consequently impact the carbon and nutrient cycling within the river corridor. Improved understanding of HEFs using integrated observational and modeling approaches sheds light on developing fundamental understanding of the influences of HEFs on water quality, nutrient dynamics, and ecosystem health in dynamic river corridor systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035364','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035364"><span>Regulation leads to increases in riparian vegetation, but not direct allochthonous inputs, along the Colorado River in Grand Canyon, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kennedy, T.A.; Ralston, B.E.</p> <p>2012-01-01</p> <p>Dams and associated river regulation have led to the expansion of riparian vegetation, especially nonnative species, along downstream ecosystems. Nonnative saltcedar is one of the dominant riparian plants along virtually every major river system in the arid western United States, but allochthonous inputs have never been quantified along a segment of a large river that is dominated by saltcedar. We developed a novel method for estimating direct allochthonous inputs along the 387km-long reach of the Colorado River downstream of Glen Canyon Dam that utilized a GIS vegetation map developed from aerial photographs, empirical and literature-derived litter production data for the dominant vegetation types, and virtual shorelines of annual peak discharge (566m 3s -1 stage elevation). Using this method, we estimate that direct allochthonous inputs from riparian vegetation for the entire reach studied total 186metric tonsyear -1, which represents mean inputs of 470gAFDMm -1year -1 of shoreline or 5.17gAFDMm -2year -1 of river surface. These values are comparable to allochthonous inputs for other large rivers and systems that also have sparse riparian vegetation. Nonnative saltcedar represents a significant component of annual allochthonous inputs (36% of total direct inputs) in the Colorado River. We also estimated direct allochthonous inputs for 46.8km of the Colorado River prior to closure of Glen Canyon Dam using a vegetation map that was developed from historical photographs. Regulation has led to significant increases in riparian vegetation (270-319% increase in cover, depending on stage elevation), but annual allochthonous inputs appear unaffected by regulation because of the lower flood peaks on the post-dam river. Published in 2010 by John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/1003506','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/1003506"><span>Relationship among side channels, fish assemblages, and environmental gradients in the unimpounded Upper Mississippi River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barko, V.A.; Herzog, D.P.</p> <p>2003-01-01</p> <p>We analyzed fish abundance and environmental data collected over nine years from six side channels of the unimpounded upper Mississippi River between river km 46.7 and 128.7. A partial canonical correspondence analysis revealed differences in fish assemblages and environmental factors correlated with the six side channels. Fishes correlated with open side channels represented large river species tolerant of current and/or turbidity. Fishes correlated with closed side channels represented assemblages preferring either moderate to low turbidity/current or pools.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17633425','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17633425"><span>Impact of environmental manipulation for Anopheles pseudopunctipennis Theobald control on aquatic insect communities in southern Mexico.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bond, J G; Quiroz-Martínez, H; Rojas, J C; Valle, J; Ulloa, A; Williams, T</p> <p>2007-06-01</p> <p>Extraction of filamentous algae from river pools is highly effective for the control of Anophelespseudopunctipennis in southern Mexico. We determined the magnitude of changes to the aquatic insect community following single annual perturbations performed over two years. In 2001, algae were manually removed from all the pools in a 3 km long section of the River Coatán, Mexico, while an adjacent section was left as an untreated control. In 2002, the treatments of both zones were switched and algal extraction was repeated. The abundance of An. pseudopunctipennis larvae + pupae was dramatically reduced by this treatment and remained depressed for two to three months. A total of 11,922 aquatic insects from ten orders, 40 families, and 95 genera were collected in monthly samples taken over five months of each year. Algal extraction did not reduce the overall abundance of aquatic insects in river pools, but a greater abundance and a greater richness of taxa were observed in 2002 compared to the previous year. This was associated with reduced precipitation and river discharge in 2002 compared to 2001. Shannon diversity index values were significantly depressed following algal extraction for a period of three months, in both years, before returning to values similar to those of the control zone. However, differences between years were greater than differences between treatments within a particular year. When insects were classified by functional feeding group (FFG), no significant differences were detected in FFG densities between extraction and control zones over time in either year of the study. Similarly, percent model affinity index values were classified as "not impacted" by the extraction process. Discriminant function analysis identified two orders of insects (Diptera and Odonata), water temperature, dissolved oxygen and conductivity, and river volume (depth, width, and discharge) as being of significant value in defining control and treatment groups in both years. We conclude that habitat manipulation represents an effective and environmentally benign strategy for control of An. pseduopunctipennis. Variation in precipitation and river discharge between years was much more important in determining aquatic insect community composition than variation generated by the filamentous algal extraction treatment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/32129','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/32129"><span>Resource management planning efforts on the Bureau of Land Management's Snake River birds of prey national conservation area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>John Sullivan</p> <p>2005-01-01</p> <p>In 1993, Congress passed Public Law 103-64, which established the Snake River Birds of Prey National Conservation Area (NCA) for the purpose of conserving, protecting, and enhancing raptor populations and habitats. The NCA encompasses over 485,000 acres of public land along 130 km of the Snake River in southwest Idaho, and is located within a 30-minute drive of Boise...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007SedG..202..174N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007SedG..202..174N"><span>Fluvial responses to tectonics and climate change during the Late Weichselian in the eastern part of the Pannonian Basin (Hungary)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nádor, Annamária; Thamó-Bozsó, Edit; Magyari, Árpád; Babinszki, Edit</p> <p>2007-11-01</p> <p>Fine-grained sandy-silty channel-belt and floodplain deposits of the Berettyó-Körös Rivers, a main eastern transverse tributary system of the modern Tisza River in the eastern part of the Pannonian Basin, were deposited during the Late Pleistocene under net subsiding conditions. The palaeo-drainage network pattern of a 2500 km 2 large part of the alluvial plain was reconstructed based on interpretation of airborne photographs and analysis of 18th century topographic maps, which show the natural river patterns that predate the introduction of river regulation schemes. The investigation showed that a large meandering river system, with two main channel belts surrounding a floodbasin, entered the alluvial plain from the northeast, and a braided river entered the alluvial plain from the southeast. Detailed sedimentary logs of seven continuous corings and several sand and clay-pit sections were used to characterize different alluvial units. Optical luminescence dating (OSL) of 25 quartz samples and four 14C datings showed that the sediments are of Late Pleniglacial to Late Glacial age. Transport directions inferred from heavy mineral analyses combined with the OSL ages strongly suggest that the large meandering system represents the palaeo-Tisza River, which supposedly flowed along the northeast-southwest striking Érmellék depression during the Late Pleniglacial. The braided river can be regarded as a precursor to the Fekete and Fehér-Körös Rivers, which entered the alluvial plain from the southeast during the Late Glacial. The interpretation of seismic profiles, field measurements of neotectonic activity, and variations in thickness of sediments along the studied profile revealed that river development was largely controlled by subsidence along the Érmellék depression until 14 to 16 ky, and by uplift of the southeastern part of the catchment area. The studied fluvial successions also document the response of the palaeo-Tisza and Körös system to the climate changes of the Weichselian Late Pleniglacial-Late Glacial period. Much of the sand from the meandering zones was deposited during the Bølling-Allerød and Ságvár-Lascaux interstadials, whereas some dated sand units from the braided zone represent the Older and Younger Dryas. The error ranges of OSL dates, which often exceed the duration of Weichselian substages and subdivisions, prevented an unambiguous correlation of the studied sections with the millennial-scale climate changes of the last 25 ky. Meandering and braided river activity coexisted under different climate conditions, whereas locations of the main channel belts are related to subsidence anomalies. The results of our study thus clearly indicate that tectonics was the primary control on river development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26393628','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26393628"><span>Assessment of River Habitat Quality in the Hai River Basin, Northern China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ding, Yuekui; Shan, Baoqing; Zhao, Yu</p> <p>2015-09-17</p> <p>We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 10⁴ km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 10⁴ km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m³); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08-16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4586701','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4586701"><span>Assessment of River Habitat Quality in the Hai River Basin, Northern China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ding, Yuekui; Shan, Baoqing; Zhao, Yu</p> <p>2015-01-01</p> <p>We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated. PMID:26393628</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7519W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7519W"><span>Tidal River Elbe - a sediment budget for the grain size fraction of medium sand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winterscheid, Axel</p> <p>2016-04-01</p> <p>Human interventions have a historic and ongoing impact on estuarine sediment budgets across many estuaries worldwide. An early inference was the construction of embankments resulting in a constant loss of intertidal flats. Additionally, settlement activities and large scale land use changes in the upstream catchment areas had also an effect on sediment inflow rates. Today, the navigation channels in estuaries have been deepened for larger and more efficient vessels to reach a well-developed infrastructure of harbors and industrial areas often located far inland. In the past few years and just within the North-East Atlantic, the total annual amount of dredged sediments dumped at sea varied from 80 to 130 million tons (OSPAR Commission). In most estuaries across Europe the resulting human impact on the sediment fluxes and morphodynamics is significant. A good understanding of estuarine processes is essential for determining useful and meaningful measures to mitigate negative effects and to improve the current situation. Maintenance dredging and its environmental effects are therefore in the focus of public attention. Against this background, it is the aim of the presentation to identify and therefore to separate the particular effect that maintenance dredging has on sediment fluxes and budgets in the estuarine environment. Case study is the Tidal River Elbe in Germany, and here we set the focus on the grain size fraction of medium sand. In the past, river engineering measures forced the natural dynamics to form a concentrated stream flow along a fixed channel, except at a number of locations where side channels still exist. In addition to that, the main channel was deepened several times. The last deepening was in 1999/2000. The most significant deepening, however, took place from 1957 to 1962. Until then, an erosion-stable layer of marine clay (in German called "Klei") formed a flat bottom along most sections of the main channel. After removal of this layer of marine clay by capital dredging, Weichselion sandy deposits, which formed the geological layer underneath, now became part of the sediment transport regime. Nowadays, most sections of the main channel are morphologically characterized by a medium sandy river bed and subaquatic dunes of several meters height followed by sections of a poorly structured river bed caused by the sedimentation of silty sediments. By setting up the sediment balance for medium sand, the fluxes entering the estuary from the inland Elbe is one source term in the equation. The average annual load for the medium sand is estimated to be 110,000 m³/year (1996 - 2008, measurement station Neu Darchau). Further downstream in the tidal part of the river there are no further measurement stations located, but the analysis of a time series of multibeam sonar data (2000 to 2014) shows that large amounts of medium sand episodically pass the tidal weir at Geesthacht only in the event of extreme flood. This is due to a significant increase in bed volume between Geesthacht and the Port of Hamburg in the aftermath of a singular extreme event. Until the next extreme event the bed volume (functions as temporary storage for medium sand) is eroding again, which is the second source term. By comparing the information on bed load fluxes, the evolution of bed volumes over time and the dredging statistics we can conclude for the longer term that the total amount of medium sand that has been dredged and taken out of the system for constructional purposes is the same order of magnitude compared to the sum of both source terms. Hence, there is no or very limited net transport of medium sand passing the port area and entering the downstream river section. From the subsequent analysis of multibeam sonar data (2008 - 2014) we know for the river section from Hamburg to Brunsbuettel (total distance of 40 km) that there has been a continuous loss of about 1 Mio. m³/a in bed volumes, which means a deficit situation for medium sand. Currently, the Weichselion deposit is the active source for medium sand, but due to the lack of medium sand fluxes from upstream this at the cost of having an ongoing deepening of the main channel. The presumed cause for this deficit situation is the current management of the sandy dredged material. First of all, dredging and subsequent extraction of the dredged material is strongly affecting the longitudinal transport of medium sandy sediments from upstream through the Port of Hamburg in seaward direction. Further downstream in the river section in deficit, all dredged material, which is about 1 Mio m³/a solely for the fraction of medium sand, is transported by hopper dredgers over a long distance up to 40 km in seaward direction and disposed on a single site near Brunsbuettel. This 1 Mio m³/a is a similar volume in comparison to the loss in bed volume. From an analysis of the geometry of the subaquatic dunes we know for sandy sediments a seaward net transport that exists for large parts of this river section. All in one, there is an irretrievable and ongoing loss of medium sandy sediments. Vice versa for the river section next to Brunsbuettel, which is the location of the disposal site, the data show an increase of bed volumes and dredging amounts at the same time. For the Elbe case study we could demonstrate that maintenance dredging (and the subsequent disposal) could have a significant impact on the large scale sediment budget. Appropriate measures to stabilize the sediment budget in the inner part of the Tidal River Elbe for medium sand is (a) to dispose all medium sandy dredged material as close as possible to the location of dredging and (b) to reduce the extraction of medium sand in the Hamburg Port area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC11C1013M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC11C1013M"><span>Climatological Impact of Atmospheric River Based on NARCCAP and DRI-RCM Datasets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mejia, J. F.; Perryman, N. M.</p> <p>2012-12-01</p> <p>This study evaluates spatial responses of extreme precipitation environments, typically associated with Atmospheric River events, using Regional Climate Model (RCM) output from NARCCAP dataset (50km grid size) and the Desert Research Institute-RCM simulations (36 and 12 km grid size). For this study, a pattern-detection algorithm was developed to characterize Atmospheric Rivers (ARs)-like features from climate models. Topological analysis of the enhanced elongated moisture flux (500-300hPa; daily means) cores is used to objectively characterize such AR features in two distinct groups: (i) zonal, north Pacific ARs, and (ii) subtropical ARs, also known as "Pineapple Express" events. We computed the climatological responses of the different RCMs upon these two AR groups, from which intricate differences among RCMs stand out. This study presents these climatological responses from historical and scenario driven simulations, as well as implications for precipitation extreme-value analyses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V13C2605S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V13C2605S"><span>Geologic Mapping and Paired Geochemical-Paleomagnetic Sampling of Reference Sections in the Grande Ronde Basalt: An Example from the Bingen Section, Columbia River Gorge, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sawlan, M.; Hagstrum, J. T.; Wells, R. E.</p> <p>2011-12-01</p> <p>We have completed comprehensive geochemical (GC) and paleomagnetic (PM) sampling of individual lava flows from eight reference stratigraphic sections in the Grande Ronde Basalt (GRB), Columbia River Basalt Group [Hagstrum et al., 2009, GSA Ann. Mtg, Portland (abst); Hagstrum et al., 2010, AGU Fall Mtg, San Francisco (abst)]. These sections, distributed across the Columbia Plateau and eastern Columbia River Gorge, contain as many as 30 flows, are up to 670 m thick, span upper magneto-stratigraphic zones R2 and N2, and, in some locations, also contain one or more N1 flows. In concert with GC and PM sampling, we have carried out detailed geologic mapping of these sections, typically at a scale of 1:3,000 to 1:5,000, using GPS, digital imagery from the National Aerial Imagery Program (NAIP), and compilation in GIS. GRB member and informal unit names of Reidel et al. [1989, GSA Sp. Paper 239] generally have been adopted, although two new units are identified and named within the N2 zone. Notably, a distinctive PM direction for intercalated lavas of several lower N2 units indicates coeval eruption of compositionally distinct units; this result contrasts with the scenario of serial stratigraphic succession of GRB units proposed by Reidel et al. [1989]. Our objectives in the mapping include: Confirming the integrity of the stratigraphic sequences by documenting flow contacts and intraflow horizons (changes in joint patterns or vesicularity); assessing fault displacements; and, establishing precisely located samples in geologic context such that selected sites can be unambiguously reoccupied. A geologic map and GC-PM data for the Bingen section, along the north side of the Columbia River, are presented as an example of our GRB reference section mapping and sampling. One of our thicker sections (670 m) along which 30 flows are mapped, the Bingen section spans 7 km along WA State Hwy 14, from near the Hood River Bridge ESE to Locke Lake. This section cuts obliquely through a broad, NE-trending anticline of the Yakima Fold Belt, with the section base (N1) beneath the fold crest and R2 and N2 flows exposed in the fold's SE limb. In addition to addressing our main mapping objectives, observations made in the course of mapping at Bingen and other sections have led to insights into the cooling, fracturing and emplacement of GRB lavas. A distinctive set of fractures, termed quench fractures, comprise subvertical, curviplanar fractures and flanking mini-columnar joints, and are attributed to ascent of steam, generated by conduction heating of groundwater, through recently emplaced flows [Sawlan and Moore, 2011, GSA Rocky Mtn-Cord. Sec. Mtg, Logan (abst)]. Quench fractures are widespread across the GRB extent and occur in flows at Bingen. We have identified small lava tubes (<2 m wide) in several sections, in both high-Mg and low-Mg flows. In relation to the large volumes of GRB flows, the lava tubes are notably diminutive. At Bingen and in the Buttermilk Canyon section (near Lone Rock, OR), pahoehoe toes are recognized in flows also containing lava tubes. While observations of lava tubes and pahoehoe toes are few to date, ropy pahoehoe and layered upper flow crusts are common in high-Mg flows. These characteristics - tubes, toes, ropes and crusts - indicate emplacement as pahoehoe flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.2764Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.2764Z"><span>The 87Sr/86Sr aquatic isoscape of the Danube catchment from the source to the mouth as tool for studying fish migrations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zitek, Andreas; Tchaikovsky, Anastassiya; Irrgeher, Johanna; Waidbacher, Herwig; Prohaska, Thomas</p> <p>2014-05-01</p> <p>Isoscapes - spatially distributed isotope patterns across landscapes - are increasingly used as important basis for ecological studies. The natural variation of the isotopic abundances in a studied area bears the potential to be used as natural tracer for studying e.g. migrations of animals or prey-predator relations. The 87Sr/86Sr ratio is one important tracer, since it is known to provide a direct relation of biological samples to geologically distinct regions, as Sr isotopes are incorporated into living tissues as a proxy for calcium and taken up from the environment without any significant fractionation. Although until now the focus has been mainly set on terrestrial systems, maps for aquatic systems are increasingly being established. Here we present the first 87Sr/86Sr aquatic isoscape of the Danube catchment, the second largest river catchment in Europe, from near its source starting at river km 2581 in Germany down to its mouth to river km 107 in Romania. The total length of the river Danube is 2780 km draining a catchment area 801 463 km2 (10 % of the European continent). The major purpose of this study was to assess the potential of the 87Sr/86Sr isotope ratio to be used as tool for studying fish migrations at different scales in the entire Danube catchment. Within the Joint Danube Research 3 (JDS 3), the biggest scientific multi-disciplinary river expedition of the World in 2013 aiming at the assessment of the ecological status and degree of human alterations along the river Danube, water samples were taken at 68 pre-defined sites along the course of the river Danube including the major tributaries as a basis to create the so called 'Isoscape of the Danube catchment'. The determination of 87Sr/86Sr isotope ratio in river water was performed by multicollector-sector field-inductively coupled plasma-mass spectrometry (MC-SF-ICP-MS). The JDS 3 data were combined with existing data from prior studies conducted within the Austrian part of the Danube catchment. Finally, the dominating geological formations in the catchment upstream of the sampling site were determined using ArcGIS. Analyses of water samples yielded several 'Isozones' along the course of the Danube, indicating diverse geological conditions. Studying migration phenomena of fish using natural isotopic marks in hard parts is especially possible between these 'Isozones'. In geologically similar regions with little differences in the 87Sr/86Sr isotope ratio, element distributions or artificial marking methods (tagging, spiking) can be used complementarily. A significant positive relationship between the 87Sr/86Sr ratio in river water and the proportion of siliceous geological formations in the catchment was found. Moreover, the 87Sr/86Sr isotope ratio along the Austrian part of the Danube and its tributaries proved to be stable between seasons. The strong relation of the geology of a catchment to the 87Sr/86Sr isotope ratios in river water provides the possibility to predict the 87Sr/86Sr ratios in river water by the dominating geology in river catchments, for an estimation of the general applicability of the 87Sr/86Sr ratio in European rivers to fish ecological questions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/47049','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/47049"><span>Relationships between water table and model simulated ET</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Prem B. Parajuli; Gretchen F. Sassenrath; Ying Ouyang</p> <p>2013-01-01</p> <p>This research was conducted to develop relationships among evapotranspiration (ET), percolation (PERC), groundwater discharge to the stream (GWQ), and water table fluctuations through a modeling approach. The Soil and Water Assessment Tool (SWAT) hydrologic and crop models were applied in the Big Sunflower River watershed (BSRW; 7660 km2) within the Yazoo River Basin...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=233242&keyword=Health+AND+public+AND+Brazil&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=233242&keyword=Health+AND+public+AND+Brazil&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Effects of landscape and riparian condition on a fish index of biotic integrity in a large southeastern Brazil river</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Environmental conditions of a large river in southeastern Brazil were assessed by evaluating fish assemblage structure (index of biotic integrity, IBI), landscape use (forest, pasture, urban area, and tributary water) and riparian condition. A survey of the 338 km-long middle rea...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=205230&keyword=ssp&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=205230&keyword=ssp&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Plant succession after hydrologic disturbance: Inferences from contemporary vegetation on a chronosequence of bars, Willamette River, Oregon, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Historic unconstrained, unregulated streamflow along the upper mainstem of the Willamette River, Oregon, produced a floodplain of coalescent bars supporting a mosaic of vegetation patches. We sampled the contemporary vegetation of 42 bars formed 3 to 64 + years ago in four, 1 km...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=65112&keyword=statistic&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=65112&keyword=statistic&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>A QUANTITATIVE ASSESSMENT OF A COMBINED SPECTRAL AND GIS RULE-BASED LAND-COVER CLASSIFICATION IN THE NEUSE RIVER BASIN OF NORTH CAROLINA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The 14,582 km2 Neuse River Basin in North Carolina was characterized based on a user defined land-cover (LC) classification system developed specifically to support spatially explicit, non-point source nitrogen allocation modeling studies. Data processing incorporated both spect...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7086','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7086"><span>Collaborative Research and Watershed Management for Optimization of Forest Road Best Management Practices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Mark S. Riedel; James M. Vose</p> <p>2003-01-01</p> <p>The Coweeta Hydrologic Laboratory, USFS Southern Research Station, worked with state and local agencies and various organizations to provide guidance and tools to reduce sedimentation and facilitate restoration of the 1900km2 Conasauga River watershed in northern Georgia and southern Tennessee. The Conasauga River has the most diverse aquatic...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=60988&Lab=NRMRL&keyword=water+AND+hydraulics&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=60988&Lab=NRMRL&keyword=water+AND+hydraulics&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>ISOTOPIC COMPOSITIONS OF SULFATE ASSOCIATED WITH THE OXIDATION OF ARSENIAN SULFIDE MINERALOGY IN THE GOOSE RIVER GROUNDWATERSHED, MAINE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Geogenic arsenic occurs in groundwater within the polymethamorphic amphibolite-grade Waldoboro Pluton Complex in mid-coastal Maine. A few As water samples exceeded 10 ug l(-1). Part of the fractured hydrogeologic "aquifer" is exposed in the Goose River groundwatershed (33 km(2))....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23823548','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23823548"><span>Estimating the GIS-based soil loss and sediment delivery ratio to the sea for four major basins in South Korea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, S E; Kang, S H</p> <p>2013-01-01</p> <p>This paper describes a sediment delivery ratio (SDR) using the Geographic Information System (GIS)-based Revised Universal Soil Loss Equation (RUSLE), to calculate the soil loss and sediment rating curve (SRC) basis of measured data in the six basins of Four Rivers, South Korea. The data set for calculating SDR was prepared during 3 years from 2008 to 2010. Mean soil loss in the six basins of Four Rivers was 515-869 t km(-2) yr(-1) and mean specific sediment yield (SSY) was 20-208 t km(-2) yr(-1) with basin size. The SDR ranged from 0.03 to 0.33 in the six rivers. Most sediment flows in the monsoon period from June to September (mean Max.: >97%; mean Min.: >84%), but SDR is lower than those of similar continental river basins. This is due to environmental factors, for example rainfall characteristics and associated run-off, soil characteristics and cultivated patterns with increasing basin size. This research provides the first application of SDR based on the observed field data in South Korea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760018528','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760018528"><span>Dynamics of turbidity plumes in Lake Ontario. [Welland Canal and Niagara, Genesee, and Oswego Rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pluhowski, E. J. (Principal Investigator)</p> <p>1975-01-01</p> <p>The author has identified the following significant results. Large turbidity features along the 275 km south shore of Lake Ontario were analyzed using LANDSAT-1 images. The Niagara River plume, ranging from 30 to 500 sq km in area is, by far, the largest turbidity feature in the lake. Based on image tonal comparisons, turbidity in the Welland Canal is usually higher than that in any other water course discharging into the lake during the shipping season. Less turbid water enters the lake from the Port Dalhousie diversion channel and the Genesee River. Relatively clear water resulting from the deposition of suspended matter in numerous upstream lakes is discharged by the Niagara and Oswego Rivers. Plume analysis corroborates the presence of a prevailing eastward flowing longshore current along the entire south shore. Plumes resulting from beach erosion were detected in the images. Extensive areas of the south shore are subject to erosion but the most severely affected beaches are situated between Fifty Mile Point, Ontario and Thirty Mile Point, New York along the Rochester embayment, and between Sodus Bay and Nine Mile Point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711931A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711931A"><span>Coupled prediction of flash flood response and debris flow occurrence in an alpine basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amponsah, William</p> <p>2015-04-01</p> <p>Coupled prediction of flash flood response and debris flow occurrence in an alpine basin Author(s): William Amponsah1, E.I. Nikolopoulos2, Lorenzo Marchi1, Roberto Dinale4, Francesco Marra3,Davide Zoccatelli2 , Marco Borga2 Affiliation(s): 1CNR - IRPI, Corso Stati Uniti 4, 35127, Padova, ITALY, 2Department of Land, Environment, Agriculture and Forestry, University of Padova,VialeDell'Università 16, 35020, Legnaro PD, ITALY 3Department of Geography, Hebrew University of Jerusalem, ISRAEL 4Ufficio Idrografico, Provincia Autonoma di Bolzano, Bolzano, Italy This contribution examines the main hydrologic and morphologic metrics responsible for widespread triggering of debris-flows associated with flash flood occurrences in headwater alpine catchments.To achieve this objective, we investigate the precipitation forcing, hydrologic responses and landslides and debris-flow occurrences that prevailed during the August 4-5, 2012 extreme flash flood on the 140 km2 Vizze basin in the Eastern Alps of Italy. An intensive post-event survey was carried out a few days after the flood. This included the surveys of cross-sectional geometry and flood marks for the estimation of the peak discharges at multiple river sections and of the initiation and deposition areas of several debris flows. Rainfall estimates are based on careful analysis of weather radar observations and raingauge data. These data and observations permitted the implementation and calibration of a spatially distributed hydrological model, which was used to derive simulated flood hydrographs in 58 tributaries of the Vizze basin. Of these, 33 generated debris-flows, with area ranging from 0.02 km2 to 10 km2, with an average of 1.5 km2. With 130 mm peak event rainfall and a duration of 4 hours (with a max intensity of 90 mm h-1 for 10 min), model-simulated unit peak discharges range from 4 m3 s-1 km-2for elementary catchments up to 10 km2 to 2 m3 s-1 km-2 for catchments in the range of 50 - 100 km2. These are very high values when considering the local runoff regime. We used a threshold criterion based on past works (Tognaccaet al., 2000; Berti and Simoni, 2005; Gregoretti and Dalla Fontana, 2008) to identify tributaries associated to debris flow events. The threshold is defined for each channel grid as a function of the simulated unit width peak flow, of the local channel bed slope and of the mean grain size. Based on assumptions concerning the mean grain size and given the distribution of the threshold values over the river network, we derive a catchment scale threshold index for the tributaries. The results show that the index has considerable skill in identifying the catchments where the studied rainstorm caused debris-flows. Berti, M. andA.Simoni, 2005: Experimental evidences and numerical modelling of debris flow initiated by channel runoff. Landslides, 2 (3), 171-182. Gregoretti, C. and G. Dalla Fontana, 2008:The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: analyses of critical runoff. Hydrol. Process. 22, 2248-2263. Tognacca C., G.R. Bezzola andH.E.Minor, 2000: Threshold criterion fodebrisflow initiation due to channel bed failure. In Proceedings of the Second International Conference on Debris Flow Hazards Mitigation Taipei,August, Wiezczorek, Naeser (eds): 89-97.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T11B2439R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T11B2439R"><span>Crustal shortening followed by extensional collapse of the Cordilleran orogenic belt in northwestern Montana: Evidence from vintage seismic reflection profiles acquired in the Swan Range and Swan Valley</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rutherford, B. S.; Speece, M. A.; Stickney, M. C.; Mosolf, J. G.</p> <p>2013-12-01</p> <p>Reprocessing of one 24-fold (96 channel) and four 30-fold (120 channel) 2D seismic reflection profiles have revealed crustal scale reflections in the Swan Range and adjacent Swan River Valley of northwestern Montana. The five reprocessed profiles constitute 142.6 of the 303.3 linear km acquired in 1983-84 by Techo of Denver, Colorado. The four 30-fold profiles used helicopter-assisted dynamite shooting (Poulter method) and the 24-fold profile used the Vibroseis method. Acquisition parameters were state of the art for the time. The Swan Range lies east of the Rocky Mountain Trench and is part of the Cordilleran foreland thrust belt where the Lewis thrust system emplaced a thick slab of Proterozoic Belt Supergroup strata eastward and over Paleozoic and Mesozoic rocks during the Late Cretaceous to early Paleocene Laramide orogeny. Deeply drilled borehole data are absent within the study area; however, we generated a synthetic seismogram from the Arco-Marathon 1 Paul Gibbs well (total depth=5418 m), located approximately 70 km west of the reprocessed profiles, and correlated the well data to surface seismic profiles. Large impedance contrasts in the log data are interpreted to be tholeiitic Moyie sills within the Prichard Formation argillite (Lower Belt), which produce strong reflection events in regional seismic sections and result in highly reflective, east-dipping events in the reprocessed profiles. We estimate a depth of 10 km (3 to 3.5 seconds) to the basal detachment of the Lewis thrust sheet. The décollement lies within Belt Supergroup strata to the west of the Swan River Valley before contacting unreflective, west-dipping crystalline basement beneath the Swan Range--a geometry that results in a wedge of eastward-thinning, autochthonous Belt rocks. Distinct fault-plane signatures from the west-dipping, range-bounding Swan fault--produced by extensional collapse of the over-thickened Cordillera--are not successfully imaged. However, reflections from Cenozoic half-graben fill suggest up to 1.5 km of Cenozoic basin filling sediments are present. Refraction tomography velocity modeling of distinct refracted arrivals, prevalent in the gathers, constrain a half-graben geometry for the Swan Valley. Signal attenuation within the low-velocity valley fill make correlation of reflectors at the depth of the décollement impossible underneath the Swan Valley. Prestack depth migration of the sections is anticipated to improve geometric constraints on major structural features of the Swan Range and Swan Valley.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=344550','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=344550"><span>Insights into mountain precipitation and snowpack from a basin-scale wireless-sensor network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>A spatially distributed wireless-sensor network, installed across the 2154 km2 portion of the 5311 km2 American River basin above 1500 m elevation, provided spatial measurements of temperature, relative humidity and snow depth. The network consisted of 10 sensor clusters, each with 10 measurement no...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028516','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028516"><span>Longitudinal hydraulic analysis of river‐aquifer exchanges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Konrad, C.P.</p> <p>2006-01-01</p> <p>A longitudinal analysis of transient flow between a river and an underlying aquifer is developed to calculate flow rates between the river and the aquifer and the location of groundwater seepage into the river as it changes over time. Two flow domains are defined in the analysis: an upstream domain of fluvial recharge, where water flows vertically from the river into the unsaturated portion of the aquifer and horizontally in saturated parts of the aquifer, and a downstream domain of groundwater seepage to the river, where groundwater flows parallel to the underlying impermeable base. The river does not necessarily penetrate completely through the aquifer. A one‐dimensional, unsteady flow equation is derived from mass conservation, Darcy's law, and the geometry of the river‐aquifer system to calculate the water table position and the groundwater seepage rate into the river. Models based on numerical and analytical solutions of the flow equation were applied to a reach of the Methow River in north central Washington. The calibrated models simulated groundwater seepage with a root‐mean‐square error less than 5% of the mean groundwater seepage rates for three low‐flow evaluation periods. The analytical model provides a theoretical basis for a nonlinear exponential base flow recession generated by a draining aquifer, but not an explicit functional form for the recession. Unlike cross‐sectional approaches, the longitudinal approach allows the analysis of the length and location of groundwater seepage to a river, which have important ecological implications in many rivers. In the numerical simulations, the length of the groundwater seepage varied seasonally by about 4 km and the upstream boundary of groundwater seepage was within 689 m of its location at a stream gage on 9 September 2001 and within 91 m of its location on 6 October 2002. To demonstrate its utility in ecological applications, the numerical model was used to calculate differences in length of groundwater seepage to the Methow River under an early runoff scenario and the timing of those differences with respect to life stages of chinook salmon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.tandfonline.com/doi/abs/10.1577/M04-045.1','USGSPUBS'); return false;" href="http://www.tandfonline.com/doi/abs/10.1577/M04-045.1"><span>Seasonal movement and habitat use by sub-adult bull trout in the upper Flathead River system, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Muhlfeld, Clint C.; Marotz, Brian</p> <p>2005-01-01</p> <p>Despite the importance of large-scale habitat connectivity to the threatened bull trout Salvelinus confluentus, little is known about the life history characteristics and processes influencing natural dispersal of migratory populations. We used radiotelemetry to investigate the seasonal movements and habitat use by subadult bull trout (i.e., fish that emigrated from natal streams to the river system) tracked for varying durations from 1999 to 2002 in the upper Flathead River system in northwestern Montana. Telemetry data revealed migratory (N = 32 fish) and nonmigratory (N = 35 fish) behavior, indicating variable movement patterns in the subadult phase of bull trout life history. Most migrating subadults (84%) made rapid or incremental downriver movements (mean distance, 33 km; range, 6–129 km) to lower portions of the river system and to Flathead Lake during high spring flows and as temperatures declined in the fall and winter. Bull trout subadults used complex daytime habitat throughout the upper river system, including deep runs that contained unembedded boulder and cobble substrates, pools with large woody debris, and deep lake-influenced areas of the lower river system. Our results elucidate the importance of maintaining natural connections and a diversity of complex habitats over a large spatial scale to conserve the full expression of life history traits and processes influencing the natural dispersal of bull trout populations. Managers should seek to restore and enhance critical river corridor habitat and remove migration barriers, where possible, for recovery and management programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4245836','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4245836"><span>Applicability of Fluorescence and Absorbance Spectroscopy to Estimate Organic Pollution in Rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Knapik, Heloise Garcia; Fernandes, Cristovão Vicente Scapulatempo; de Azevedo, Júlio Cesar Rodrigues; do Amaral Porto, Monica Ferreira</p> <p>2014-01-01</p> <p>Abstract This article explores the applicability of fluorescence and absorbance spectroscopy for estimating organic pollution in polluted rivers. The relationship between absorbance, fluorescence intensity, dissolved organic carbon, biochemical oxygen demand (BOD), chemical oxygen demand (COD), and other water quality parameters were used to characterize and identify the origin and the spatial variability of the organic pollution in a highly polluted watershed. Analyses were performed for the Iguassu River, located in southern Brazil, with area about 2,700 km2 and ∼3 million inhabitants. Samples were collect at six monitoring sites covering 107 km of the main river. BOD, COD, nitrogen, and phosphorus concentration indicates a high input of sewage to the river. Specific absorbance at 254 and 285 nm (SUVA254 and A285/COD) did not show significant variation between sites monitored, indicating the presence of both dissolved compounds found in domestic effluents and humic and fulvic compounds derived from allochthonous organic matter. Correlations between BOD and tryptophan-like fluorescence peak (peak T2, r=0.7560, and peak T1, r=0.6949) and tyrosine-like fluorescence peak (peak B, r=0.7321) indicated the presence of labile organic matter and thus confirmed the presence of sewage in the river. Results showed that fluorescence and absorbance spectroscopy provide useful information on pollution in rivers from critical watersheds and together are a robust method that is simpler and more rapid than traditional methods employed by regulatory agencies. PMID:25469076</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..561..622X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..561..622X"><span>Modelling of hyperconcentrated flood and channel evolution in a braided reach using a dynamically coupled one-dimensional approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xia, Junqiang; Zhang, Xiaolei; Wang, Zenghui; Li, Jie; Zhou, Meirong</p> <p>2018-06-01</p> <p>Hyperconcentrated sediment-laden floods often occur in a braided reach of the Lower Yellow River, usually leading to significant channel evolution. A one-dimensional (1D) morphodynamic model using a dynamically coupled solution approach is developed to simulate hyperconcentrated flood and channel evolution in the braided reach with an extremely irregular cross-sectional geometry. In the model, the improved equations for hydrodynamics account for the effects of sediment concentration and bed evolution, which are coupled with the equations of non-equilibrium sediment transport and bed evolution. The model was validated using measurements from the 1977 and 2004 hyperconcentrated floods. Furthermore, the effects were investigated of different cross-sectional spacings and allocation modes of channel deformation area on the model results. It was found that a suitable cross-sectional distance of less than 3 km should be adopted when simulating hyperconcentrated floods, and the results using the uniform allocation mode can agree better with measurements than other two allocation modes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H13J1545M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H13J1545M"><span>Statistical and Hydrological evaluation of precipitation forecasts from IMD MME and ECMWF numerical weather forecasts for Indian River basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohite, A. R.; Beria, H.; Behera, A. K.; Chatterjee, C.; Singh, R.</p> <p>2016-12-01</p> <p>Flood forecasting using hydrological models is an important and cost-effective non-structural flood management measure. For forecasting at short lead times, empirical models using real-time precipitation estimates have proven to be reliable. However, their skill depreciates with increasing lead time. Coupling a hydrologic model with real-time rainfall forecasts issued from numerical weather prediction (NWP) systems could increase the lead time substantially. In this study, we compared 1-5 days precipitation forecasts from India Meteorological Department (IMD) Multi-Model Ensemble (MME) with European Center for Medium Weather forecast (ECMWF) NWP forecasts for over 86 major river basins in India. We then evaluated the hydrologic utility of these forecasts over Basantpur catchment (approx. 59,000 km2) of the Mahanadi River basin. Coupled MIKE 11 RR (NAM) and MIKE 11 hydrodynamic (HD) models were used for the development of flood forecast system (FFS). RR model was calibrated using IMD station rainfall data. Cross-sections extracted from SRTM 30 were used as input to the MIKE 11 HD model. IMD started issuing operational MME forecasts from the year 2008, and hence, both the statistical and hydrologic evaluation were carried out from 2008-2014. The performance of FFS was evaluated using both the NWP datasets separately for the year 2011, which was a large flood year in Mahanadi River basin. We will present figures and metrics for statistical (threshold based statistics, skill in terms of correlation and bias) and hydrologic (Nash Sutcliffe efficiency, mean and peak error statistics) evaluation. The statistical evaluation will be at pan-India scale for all the major river basins and the hydrologic evaluation will be for the Basantpur catchment of the Mahanadi River basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006Geomo..76..122V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006Geomo..76..122V"><span>Breakup and reestablishment of the armour layer in a large gravel-bed river below dams: The lower Ebro</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vericat, Damia; Batalla, Ramon J.; Garcia, Celso</p> <p>2006-06-01</p> <p>Changes in armour layer during floods under supply limited conditions are little known. This paper describes the breakup and the reestablishment of the bed armour layer in the regulated gravel-bed Ebro River during a flooding period. The study was conducted over a 28-km study reach from 2002 to 2004. The surface, subsurface and bed load grain size distribution constitute the bases for the analysis of bed-armouring dynamics. The results indicate that the magnitude of floods controlled the degree of armouring of the river bed. The initial mean armouring ratio was 2.3, with maximum values reaching 4.4. Floods in the winter of 2002-2003 ( Q8) caused the breakup of the armour layer in several sections. This resulted in the erratic bed load pattern observed during the December 2002 flushing flow and in the increase in bed load transport during successive events. Most grain size classes were entrained and transported, causing river bed incision. The mean armouring ratio decreased to 1.9. In contrast, during low magnitude floods in 2003-2004 ( Q2), the coarsest fractions (64 mm) did not take part in the bed load while finer particles were winnowed, thus surface deposits coarsened. As a result, the armour layer was reestablished (i.e., the mean armouring ratio increased to 2.3), and the supply of subsurface sediment decreased. The supply and transport of bed material appear to be in balance in the river reach immediately below the dam. In contrast, the transport of medium and finer size classes in the downstream reaches was higher than their supply from upstream, a phenomenon that progressively reduced their availability in the river bed surface, hence the armour layer reworking.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.7979M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.7979M"><span>Application of the Newtonian nudging data assimilation method for the Biebrza River flow model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miroslaw-Swiatek, Dorota</p> <p>2010-05-01</p> <p>Data assimilation provides a tool for integrating observations of spatially distributed environmental variables with model predictions. In this paper a simple data assimilation technique, the Newtonian nudging to individual observations method, has been implemented in the 1D St. Venant equations. The method involves adding a term to the prognostic equation. This term is proportional to the difference between the value calculated in the model at a given point in time and space and the one resulted from observations. Improving the model with available measurement observations is accomplished by adequate weighting functions, that can incorporate prior knowledge about the spatial and temporal variability of the state variables being assimilated. The article contains a description of the numerical model, which employs the finite element method (FEM) to solve the 1D St. Venant equations modified by the ‘nudging' method. The developed model was applied to the Biebrza River, situated in the north-eastern part of Poland, flowing through the last extensive, fairly undisturbed river-marginal peatland in Europe. A 41 km long reach of the Lower Biebrza River described by 68 cross-sections was selected for the study. The observed water stage collected by automatic sensors was the subject of the data assimilation in the Newtonian nudging to individual observations method. The water level observation data were collected in four observation points along a river with time interval 6 hours for one year. The obtained results show a prediction with no nudging and influence of the nudging term on water stages forecast. The developed model enables integrating water stage observation with an unsteady river flow model for improved water level prediction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70178158','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70178158"><span>Chemical characterization of sediments and pore water from the upper Clark Fork River and Milltown Reservoir, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brumbaugh, W. G.; Ingersoll, C.G.; Kemble, N.E.; May, T.W.; Zajicek, J.L.</p> <p>1994-01-01</p> <p>The upper Clark Fork River basin in western Montana is widely contaminated by metals from past mining, milling, and smelting activities As part of a comprehensive ecological risk assessment for the upper Clark Fork River, we measured physical and chemical characteristics of surficial sediment samples that were collected from depositional zones for subsequent toxicity evaluations Sampling stations included five locations along the upper 200 km of the river, six locations in or near Milltown Reservoir (about 205 km from the river origin), and two tributary reference sites Concentrations of As, Cd, Cu, Mn, Pb, and Zn decreased from the upper stations to the downstream stations in the Clark Fork River but then increased in all Milltown Reservoir stations to levels similar to uppermost river stations Large percentages (50 to 90%) of the total Cd, Cu, Pb, and Zn were extractable by dilute (3 n) HCl for all samples Copper and zinc accounted for greater than 95% of extractable metals on a molar basis Acid-volatile sulfide (AVS) concentrations were typically moderate (0 6 to 23 μmol/g) in grab sediment samples and appeared to regulate dissolved (filterable) concentrations of Cd, Cu, and Zn in sediment pore waters Acid volatile sulfide is important in controlling metal solubility in the depositional areas of the Clark Fork River and should be monitored in any future studies Spatial variability within a sampling station was high for Cu, Zn, and AVS, therefore, the potential for toxicity to sediment dwelling organisms may be highly localized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70180722','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70180722"><span>Preface; Water quality of large U.S. rivers; results from the U.S. Geological Survey's National Stream Quality Accounting Network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hirsch, Robert M.; Hooper, Richard P.; Kelly, Valerie J.</p> <p>2001-01-01</p> <p>The mission of the US Geological Survey (USGS) is to assess the quantity and quality of the earth resources of the USA and to provide information that will assist resource managers and policymakers at federal, state and local levels in making sound decisions. Characterizing the water quality of the largest rivers of the USA is a daunting prospect, especially given the resources available for the task. The most effective approach is uncertain and is legitimately a research topic. The National Stream Quality Accounting Network (NASQAN) was redesigned in 1995 to estimate the annual mass flux of constituents at a network of fixed stations in the Mississippi, Rio Grande, Colorado, and Columbia River basins. This special volume of Hydrological Processes contains a series of papers evaluating the data collected by NASQAN during its first 3 years of operation under this design. The NASQAN network complements other USGS national programs that are designed to address water quality at different scales. The National Water-Quality Assessment Program (Hirsch et al., 1988) is designed around river basins of 10 000 to 100 000 km2 (versus these NASQAN basins, which are 650 000 to 3 100 000 km2 at their most downstream stations). The USGS also operates the Hydrologic Benchmark Network that is focused on relatively pristine basins of only 10 to 100 km2 (Mast and Turk, 1999a,b; Clark et al., 2000; Mast et al., 2000).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Geomo.184...98H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Geomo.184...98H"><span>A case of rapid rock riverbed incision in a coseismic uplift reach and its implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Ming-Wan; Pan, Yii-Wen; Liao, Jyh-Jong</p> <p>2013-02-01</p> <p>During the 1999 Chi-Chi earthquake (Mw = 7.6) in Taiwan, the coseismic displacement induced fault scarps and a pop-up structure in the Taan River. The fault scarps across the river experienced maximum vertical slip of 10 m, which disturbed the dynamic equilibrium of the fluvial system. As a result, rapid incision in the weak bedrock, with a maximum depth of 20 m, was activated within a decade after its armor layer was removed. This case provides an excellent opportunity for closely tracking and recording the progressive evolution of river morphology that is subjected to coseismic uplift. Based on multistaged orthophotographs and digital elevation model (DEM) data, the process of morphology evolution in the uplift reach was divided into four consecutive stages. Plucking is the dominant mechanism of bedrock erosion associated with channel incision and knickpoint migration. The astonishingly high rate of knickpoint retreat (KPR), as rapid as a few hundred meters per year, may be responsible for the rapid incision in the main channel. The reasons for the high rate of KPR are discussed in depth. The total length of the river affected by the coseismic uplift is 5 km: 1 km in the uplift reach and 4 km in the downstream reach. The downstream reach was affected by a reduction in sediment supply and increase in stream power. The KPR cut through the uplift reach within roughly a decade; further significant flooding in the future will mainly cause widening instead of deepening of the channel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP23D3626M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP23D3626M"><span>Zinc and Its Isotopes in the Loire River Basin, France</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Millot, R.; Desaulty, A. M.; Bourrain, X.</p> <p>2014-12-01</p> <p>The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for Zn in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. Zinc isotopic compositions are rather homogeneous in river waters with δ66Zn values ranging from 0.21 to 0.39‰. This range of variation is very different from anthropogenic signature (industrial and/or agriculture release) that displays δ66Zn values between 0.02 to 0.14‰. This result is in agreement with a geogenic origin and the low Zn concentrations in the Loire River Basin (from 0.8 to 6 µg/L).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014DSRII.107...85Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014DSRII.107...85Z"><span>Marine bird aggregations associated with the tidally-driven plume and plume fronts of the Columbia River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zamon, Jeannette E.; Phillips, Elizabeth M.; Guy, Troy J.</p> <p>2014-09-01</p> <p>Freshwater discharge from large rivers into the coastal ocean creates tidally-driven frontal systems known to enhance mixing, primary production, and secondary production. Many authors suggest that tidal plume fronts increase energy flow to fish-eating predators by attracting planktivorous fishes to feed on plankton aggregated by the fronts. However, few studies of plume fronts directly examine piscivorous predator response to plume fronts. Our work examined densities of piscivorous seabirds relative to the plume region and plume fronts of the Columbia River, USA. Common murres (Uria aalge) and sooty shearwaters (Puffinus griseus) composed 83% of all birds detected on mesoscale surveys of the Washington and Oregon coasts (June 2003-2006), and 91.3% of all birds detected on fine scale surveys of the plume region less than 40 km from the river mouth (May 2003 and 2006). Mesoscale comparisons showed consistently more predators in the central plume area compared to the surrounding marine area (murres: 10.1-21.5 vs. 3.4-8.2 birds km-2; shearwaters: 24.2-75.1 vs. 11.8-25.9 birds km-2). Fine scale comparisons showed that murre density in 2003 and shearwater density in both 2003 and 2006 were significantly elevated in the tidal plume region composed of the most recently discharged river water. Murres tended to be more abundant on the north face of the plume. In May 2003, more murres and shearwaters were found within 3 km of the front on any given transect, although maximum bird density was not necessarily found in the same location as the front itself. Predator density on a given transect was not correlated with frontal strength in either year. The high bird densities we observed associated with the tidal plume demonstrate that the turbid Columbia River plume does not necessarily provide fish with refuge from visual predators. Bird predation in the plume region may therefore impact early marine survival of Pacific salmon (Oncorhynchus spp.), which must migrate through the tidal plume and plume front to enter the ocean. Because murres and shearwaters eat primarily planktivorous fish such as the northern anchovy (Engraulis mordax), aggregation of these birds in the plume supports the hypothesis that it is the plume region as a whole, and not just the plume fronts, which enhances trophic transfer to piscivorous predators via planktivorous fishes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA452260','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA452260"><span>Sampling Design and Procedures for Fixed Surface-Water Sites in the Georgia-Florida Coastal Plain Study Unit, 1993</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1995-01-01</p> <p>Station number Station drainage area (km2) Land resource province Land-use description Fixed-site type Altamaha River near Everett City, Ga . 02226160...Creek near Tallahassee, Fla. 02326838 27 SCP suburban indicator Little River near Ty Ty, Ga . 02317797 334 SCP agriculture (mixed row crops) indicator...Middle Prong St. Marys River near Taylor, Fla. 02229000 324 CFW silviculture indicator Tucsawhatchee Creek near Hawkinsville, Ga . 02215100 422 SCP</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JSAES..16..759B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JSAES..16..759B"><span>Crustal seismicity in central Chile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barrientos, S.; Vera, E.; Alvarado, P.; Monfret, T.</p> <p>2004-06-01</p> <p>Both the genesis and rates of activity of shallow intraplate seismic activity in central Chile are poorly understood, mainly because of the lack of association of seismicity with recognizable fault features at the surface and a poor record of seismic activity. The goal of this work is to detail the characteristics of seismicity that takes place in the western flank of the Andes in central Chile. This region, located less than 100 km from Santiago, has been the site of earthquakes with magnitudes up to 6.9, including several 5+ magnitude shocks in recent years. Because most of the events lie outside the Central Chile Seismic Network, at distances up to 60 km to the east, it is essential to have adequate knowledge of the velocity structure in the Andean region to produce the highest possible quality of epicentral locations. For this, a N-S refraction line, using mining blasts of the Disputada de Las Condes open pit mine, has been acquired. These blasts were detected and recorded as far as 180 km south of the mine. Interpretation of the travel times indicates an upper crustal model consisting of three layers: 2.2-, 6.7-, and 6.1-km thick, overlying a half space; their associated P wave velocities are 4.75-5.0 (gradient), 5.8-6.0 (gradient), 6.2, and 6.6 km/s, respectively. Hypocentral relocation of earthquakes in 1986-2001, using the newly developed velocity model, reveals several regions of concentrated seismicity. One clearly delineates the fault zone and extensions of the strike-slip earthquake that took place in September 1987 at the source of the Cachapoal River. Other regions of activity are near the San José volcano, the source of the Maipo River, and two previously recognized lineaments that correspond to the southern extension of the Pocuro fault and Olivares River. A temporary array of seismographs, installed in the high Maipo River (1996) and San José volcano (1997) regions, established the hypocentral location of events with errors of less than 1 km. These events are clustered along no particular lineament approximately 25 km away from the San José and Maipo volcanoes. Recurrence intervals, based on a frequency magnitude relationship for lower magnitude events, indicate that earthquakes with magnitudes of 4.7 and 7 have a repeat time of 1 and 1200 years, respectively. Focal mechanisms of the two largest events indicate horizontal maximum and minimum compressive stresses with σ1 varying from a NW-SE orientation in the north to E-W at the southern extreme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC14E1049S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC14E1049S"><span>Characterization of the 3-Dimensional Mississippi River Plume Using a High Resolution Circulation Model Coupled with Ocean Color Imagery and Field Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soto Ramos, I. M.; Arnone, R.; Cambazoglu, M. K.; Jacobs, G. A.; Vandermeulen, R. A.; Howden, S. D.</p> <p>2016-02-01</p> <p>The Mississippi River Plume (MRP) is responsible for creating a highly dynamic environment in the northern Gulf of Mexico (nGoM). It is also responsible for the transport of rich-nutrient waters, physical and biological connectivity between the nGoM coastal waters to the deep ocean and other regions within the Gulf, and in cases of unfortunate events such as the Deep Horizon Oil Spill it may contribute to the transport and fate of hydrocarbons. The main objective of this work is to characterize the 3-Dimensional MRP using modeled salinity data from the 1 km resolution Navy Coastal Ocean Model (NCOM) and ocean color data (e.g., Chlorophyll-a) from the Visible Infrared Imaging Radiometer Suite (VIIRS). Field data from ships and gliders were used to validate the model and satellite data. An initial step for this study was to determine how to define a "river plume". We selected several study cases of 7 to 10 days in which the river plume was visible in the satellite imagery and examined the vertical salinity distribution at selected cross sections along the river plume. Different salinity thresholds were used to define a river plume and characterize the 3-D dilution and dispersion of the MRP during the study cases. The surface response as means of chlorophyll and light availability in relationship to the depth of the river plume was investigated. Our results improved understanding of the formation of the mixed layer depth in the MRP and how we can integrate model and satellite data to delineate the 3D structure of the river plume and better understand the biological surface response observed in the satellite imagery. The output of this study highlights how circulation models and satellite data can be integrated to better understand the connectivity, transport and fate of sediments, nutrients, and pollutants in the Gulf of Mexico.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28230353','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28230353"><span>Statistical Survey of Persistent Organic Pollutants: Risk Estimations to Humans and Wildlife through Consumption of Fish from U.S. Rivers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Batt, Angela L; Wathen, John B; Lazorchak, James M; Olsen, Anthony R; Kincaid, Thomas M</p> <p>2017-03-07</p> <p>U.S. EPA conducted a national statistical survey of fish tissue contamination at 540 river sites (representing 82 954 river km) in 2008-2009, and analyzed samples for 50 persistent organic pollutants (POPs), including 21 PCB congeners, 8 PBDE congeners, and 21 organochlorine pesticides. The survey results were used to provide national estimates of contamination for these POPs. PCBs were the most abundant, being measured in 93.5% of samples. Summed concentrations of the 21 PCB congeners had a national weighted mean of 32.7 μg/kg and a maximum concentration of 857 μg/kg, and exceeded the human health cancer screening value of 12 μg/kg in 48% of the national sampled population of river km, and in 70% of the urban sampled population. PBDEs (92.0%), chlordane (88.5%) and DDT (98.7%) were also detected frequently, although at lower concentrations. Results were examined by subpopulations of rivers, including urban or nonurban and three defined ecoregions. PCBs, PBDEs, and DDT occur at significantly higher concentrations in fish from urban rivers versus nonurban; however, the distribution varied more among the ecoregions. Wildlife screening values previously published for bird and mammalian species were converted from whole fish to fillet screening values, and used to estimate risk for wildlife through fish consumption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H44H..07O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H44H..07O"><span>Discharge estimation in ungauged basins through variational data assimilation : The potential of the SWOT mission.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oubanas, H.; Gejadze, I.; Malaterre, P. O.; Durand, M. T.; Wei, R.; Frasson, R. P. M.; Domeneghetti, A.</p> <p>2017-12-01</p> <p>This work investigates the estimation of river discharge from simulated observations of the forthcoming Surface Water and Ocean Topography (SWOT) mission, to be launched in 2021, using a variant of the standard variational data assimilation method `4D-Var'. The hydrology SWOT simulator, developed at the Jet Propulsion Laboratory (JPL) has been used to simulate the expected performance of the KaRIn instrument onboard the satellite, producing synthetic SWOT observations of height and width, at each satellite overpass. SWOT data products were synthesized at the spatial scale of 200 m along the river centerline. Using a 1.5D full Saint-Venant hydraulic model, variational data assimilation simultaneously estimates the inflow discharge, river bathymetry and bed roughness. The proposed method has been designed for an application to fully ungauged basins; therefore, the prior information is derived from the SWOT observations only and the globally available ancillary information. Two reaches of the Po and Sacramento Rivers of about 130 km and 150 km, respectively, have been considered in this study. Discharge was successfully recovered at the overpass time with a relative-root-mean-square error of 16% and 12.3% for the Po and Sacramento Rivers, respectively. The estimates of the bed level and the roughness coefficient demonstrate a local improvement; however they may not provide reliable global information of the river bathymetry and roughness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=336668','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=336668"><span>Statistical Survey of Persistent Organic Pollutants: Risk ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>U.S. EPA conducted a national statistical survey of fish tissue contamination at 540 river sites (representing 82 954 river km) in 2008–2009, and analyzed samples for 50 persistent organic pollutants (POPs), including 21 PCB congeners, 8 PBDE congeners, and 21 organochlorine pesticides. The survey results were used to provide national estimates of contamination for these POPs. PCBs were the most abundant, being measured in 93.5% of samples. Summed concentrations of the 21 PCB congeners had a national weighted mean of 32.7 μg/kg and a maximum concentration of 857 μg/kg, and exceeded the human health cancer screening value of 12 μg/kg in 48% of the national sampled population of river km, and in 70% of the urban sampled population. PBDEs (92.0%), chlordane (88.5%) and DDT (98.7%) were also detected frequently, although at lower concentrations. Results were examined by subpopulations of rivers, including urban or nonurban and three defined ecoregions. PCBs, PBDEs, and DDT occur at significantly higher concentrations in fish from urban rivers versus nonurban; however, the distribution varied more among the ecoregions. Wildlife screening values previously published for bird and mammalian species were converted from whole fish to fillet screening values, and used to estimate risk for wildlife through fish consumption. This work presents the results of the 2008-2009 National Rivers and Streams Assessment Survey (NRSA) where 50 persistent organic pollutants (POPs</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...48a2018K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...48a2018K"><span>Major anion and cation fluxes from the Central SiberianPlateau watersheds with underlying permafrost</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kolosov, Roman R.; Prokushkin, Anatoly S.; Pokrovsky, Oleg S.</p> <p>2016-11-01</p> <p>The subarctic rivers of the Central Siberian Plateau have specific fed-characteristics due to the permafrost distribution and the active layer thawing dynamics. Two watersheds with different types of permafrost (from insular to continuous) are studied. Different data sources (Roshydromet and our own observations) are used for receiving anions’ (HCO3-, SO4 2-, Cl-) and cations’ (Ca2+, Mg2+) fluxes from the Nizhnyaya Tunguska river (1960-2011) and the Tembenchi river (1970-2011). The annual discharge of N. Tunguska for 1939-2011 is characterized by an increase of 0.3 km3/year/year, and for Tembenchi, 0.04 km3/year/year. The major part of the increase (about 60%) is due to spring flooding (May - June). The volume-weighted mean concentrations of major anions and cations in the N. Tunguska river water increased three times in the spring period (40.7 - 116.8 mg/l) and in the summer-fall period (74-212.9 mg/l). On the contrary, such concentrations decreased sharply during the winter mean water period. Due to these results, the total export of main anions and cations from the N. Tunguska river basin rose more than 4,5 times. Two possible reasons can be identified: 1) a water discharge increase of the Subarctic rivers (Peterson et al., 2002); 2) permafrost degradation induced by global climate warming (Frey and McClelland 2009).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70048649','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70048649"><span>Rapid dispersal of saltcedar (Tamarix spp.) biocontrol beetles (Diorhabda carinulata) on a desert river detected by phenocams, MODIS imagery and ground observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nagler, Pamela L.; Pearlstein, Susanna; Glenn, Edward P.; Brown, Tim B.; Bateman, Heather L.; Bean, Dan W.; Hultine, Kevin R.</p> <p>2013-01-01</p> <p>We measured the rate of dispersal of saltcedar leaf beetles (Diorhabda carinulata), a defoliating insect released on western rivers to control saltcedar shrubs (Tamarix spp.), on a 63 km reach of the Virgin River, U.S. Dispersal was measured by satellite imagery, ground surveys and phenocams. Pixels from the Moderate Resolution Imaging Spectrometer (MODIS) sensors on the Terra satellite showed a sharp drop in NDVI in midsummer followed by recovery, correlated with defoliation events as revealed in networked digital camera images and ground surveys. Ground surveys and MODIS imagery showed that beetle damage progressed downstream at a rate of about 25 km yr−1 in 2010 and 2011, producing a 50% reduction in saltcedar leaf area index and evapotranspiration by 2012, as estimated by algorithms based on MODIS Enhanced Vegetation Index values and local meteorological data for Mesquite, Nevada. This reduction is the equivalent of 10.4% of mean annual river flows on this river reach. Our results confirm other observations that saltcedar beetles are dispersing much faster than originally predicted in pre-release biological assessments, presenting new challenges and opportunities for land, water and wildlife managers on western rivers. Despite relatively coarse resolution (250 m) and gridding artifacts, single MODIS pixels can be useful in tracking the effects of defoliating insects in riparian corridors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25920677','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25920677"><span>The effect of river damming on vegetation: is it always unfavourable? A case study from the River Tiber (Italy).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ceschin, Simona; Tombolini, Ilaria; Abati, Silverio; Zuccarello, Vincenzo</p> <p>2015-05-01</p> <p>River damming leads to strong hydromorphological alterations of the watercourse, consequently affecting river vegetation pattern. A multitemporal and spatial analysis of the dam effect on composition, structure and dynamic of the upstream vegetation was performed on Tiber River at Nazzano-dam (Rome). The main research questions were as follows: How does plant landscape vary over time and along the river? Where does the dam effect on vegetation end? How does naturalistic importance of the vegetation affected by damming change over time? Data collection was performed mapping the vegetation in aerial photos related to the period before (1944), during (1954) and after dam construction (1984, 2000). The plant landscape has significantly changed over time and along the river, particularly as a result of the dam construction (1953). The major vegetation changes have involved riparian forests and macrophytes. Dam effect on vegetation is evident up to 3 km, and gradually decreases along an attenuation zone for about another 3 km. Despite the fact that the damming has caused strong local hydromorphological modification of the river ecosystem transforming it into a sub-lacustrine habitat, it has also led to the formation of wetlands of considerable naturalistic importance. Indeed, in these man-made wetlands, optimal hydrological conditions have been created by favouring both the expansion of pre-existing riparian communities and the rooting of new aquatic communities, albeit typical of lacustrine ecosystems. Some of these plant communities have become an important food resource, refuge or nesting habitats for aquatic fauna, while others fall into category of Natura 2000 habitats. Therefore, river damming seems to have indirectly had a "favourable" effect for habitat conservation and local biodiversity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H43Q..05J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H43Q..05J"><span>Evaluating Investment in Missouri River Restoration: The Missouri River Effects Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jacobson, R. B.; Fischenich, C. J.; Buenau, K. E.</p> <p>2014-12-01</p> <p>In excess of $700 million has been spent over the last 10 years on restoration of the Missouri River. During this time, restoration efforts have focused progressively on avoidance of jeopardy for three threatened or endangered species: interior least tern (Sternula antillarum), piping plover (Charadrius melodus), and the pallid sturgeon (Scaphirhynchus albus). In 2013, the US Army Corps of Engineers, the US Fish and Wildlife Service, and Missouri River stakeholders (through the Missouri River Recovery Implementation Committee) commissioned an Effects Analysis (EA; Murphy and Weiland, 2011) to evaluate the effects of this effort on the three species' populations and to project effects of future restoration. The EA includes synthesis of existing abiotic and biotic scientific information relating to species population processes, distributions, and habitat needs, as well as development of conceptual and quantitative models linking river context to its management and to species' responses. The EA also includes design of the next generation of hypothesis-driven science to support adaptive management of the species and the river. The Missouri River EA faces the challenge of evaluating how management of North America's largest reservoir storage system, 600 km of non-channelized mainstem, and nearly 1,200 km of channelized mainstem contribute to species' population dynamics. To support EA needs, the US Army Corps of Engineers is developing a new generation of reservoir simulation and routing models for the Missouri River basin, coupled with components to evaluate ecological and socio-economic metrics. The EA teams are developing coordinated models relating management to functional habitats and species' responses. A particular challenge faced by the EA is communicating the very different uncertainties in population dynamics between well-documented birds and the enigmatic fish, and the implications of this disparity in decision making, implementation, and adaptive management strategies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JHyd..334..199L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JHyd..334..199L"><span>The changing flow regime and sediment load of the Red River, Viet Nam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le, Thi Phuong Quynh; Garnier, Josette; Gilles, Billen; Sylvain, Théry; Van Minh, Chau</p> <p>2007-02-01</p> <p>SummarySouth-East Asian Rivers contribute very significantly to the global sediment load to the ocean, hence to global biogeochemical cycles, and are subject to rapid changes owing to recent population and economic growth. The Red River system (Viet Nam and China) offers a good example of these changes. Previous estimates (before the year 1980) of the suspended matter loading of the Red River ranged from 100 to 170 × 10 6 t yr -1, i.e. from 640 to 1060 t km -2 yr -1. The strong dependence of suspended solid transport on hydrology results in a large year-to-year variability. Based on the available hydrological data from the period 1997-2004, and on a one-year survey of daily suspended matter of the three main tributaries of the Red River system in 2003, a simplified modeling approach, distinguishing between surface runoff and base flow, is established to estimate the mean suspended loading of the Red River under present conditions. The obtained value is 40 × 10 6 t yr -1, corresponding to a specific load of 280 t km -2 yr -1. It reflects a 70% decrease of the total suspended load since the impoundment of the Hoa Binh and Thac Ba reservoirs in the 1980s. Following the planned construction of two additional reservoirs, the model predicts a further reduction by 20% of the suspended load of the Red River, which might be compensated by an expected increase in suspended loading due to enhanced rainfall induced by climate change. Using measurements of the total phosphorus content of the suspended material in the different Red River tributaries, the present phosphorus delivery by the Red River can be estimated as 36 × 10 6 kgP yr -1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA111903','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA111903"><span>Research into Surface Wave Phenomena in Sedimentary Basins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-12-31</p> <p>150 km of the southerly extension of the Overthrust Belt, 350 km of the Green River Basin paralleling the Uinta Mountains and 150 km across the Front...WEIDLINGER ASSOCIATES O300 SAND HiLL ROAD BUILDING 4, SUITE 245 MENLO PARK, CALIFORNIA 9462 RESEARCH INTO SURFACE WAVE PHENOMENA IN SEDIMENTARY BASINS BY...PARK, CALIFORNIA 94025 ! I RESEARCH INTO SURFACE WAVE PHENOMENA IN SEDIMENTARY BASINS I Dy G.L. Wojcik J. Isenberg F. Ma E. Richardson Prepared for</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>