Sample records for sections error estimates

  1. Error estimates for ice discharge calculated using the flux gate approach

    NASA Astrophysics Data System (ADS)

    Navarro, F. J.; Sánchez Gámez, P.

    2017-12-01

    Ice discharge to the ocean is usually estimated using the flux gate approach, in which ice flux is calculated through predefined flux gates close to the marine glacier front. However, published results usually lack a proper error estimate. In the flux calculation, both errors in cross-sectional area and errors in velocity are relevant. While for estimating the errors in velocity there are well-established procedures, the calculation of the error in the cross-sectional area requires the availability of ground penetrating radar (GPR) profiles transverse to the ice-flow direction. In this contribution, we use IceBridge operation GPR profiles collected in Ellesmere and Devon Islands, Nunavut, Canada, to compare the cross-sectional areas estimated using various approaches with the cross-sections estimated from GPR ice-thickness data. These error estimates are combined with those for ice-velocities calculated from Sentinel-1 SAR data, to get the error in ice discharge. Our preliminary results suggest, regarding area, that the parabolic cross-section approaches perform better than the quartic ones, which tend to overestimate the cross-sectional area for flight lines close to the central flowline. Furthermore, the results show that regional ice-discharge estimates made using parabolic approaches provide reasonable results, but estimates for individual glaciers can have large errors, up to 20% in cross-sectional area.

  2. Estimating pore and cement volumes in thin section

    USGS Publications Warehouse

    Halley, R.B.

    1978-01-01

    Point count estimates of pore, grain and cement volumes from thin sections are inaccurate, often by more than 100 percent, even though they may be surprisingly precise (reproducibility + or - 3 percent). Errors are produced by: 1) inclusion of submicroscopic pore space within solid volume and 2) edge effects caused by grain curvature within a 30-micron thick thin section. Submicroscopic porosity may be measured by various physical tests or may be visually estimated from scanning electron micrographs. Edge error takes the form of an envelope around grains and increases with decreasing grain size and sorting, increasing grain irregularity and tighter grain packing. Cements are greatly involved in edge error because of their position at grain peripheries and their generally small grain size. Edge error is minimized by methods which reduce the thickness of the sample viewed during point counting. Methods which effectively reduce thickness include use of ultra-thin thin sections or acetate peels, point counting in reflected light, or carefully focusing and counting on the upper surface of the thin section.

  3. GPS/DR Error Estimation for Autonomous Vehicle Localization.

    PubMed

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-08-21

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level.

  4. GPS/DR Error Estimation for Autonomous Vehicle Localization

    PubMed Central

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-01-01

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level. PMID:26307997

  5. Cross Section Sensitivity and Propagated Errors in HZE Exposures

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Wilson, John W.; Blatnig, Steve R.; Qualls, Garry D.; Badavi, Francis F.; Cucinotta, Francis A.

    2005-01-01

    It has long been recognized that galactic cosmic rays are of such high energy that they tend to pass through available shielding materials resulting in exposure of astronauts and equipment within space vehicles and habitats. Any protection provided by shielding materials result not so much from stopping such particles but by changing their physical character in interaction with shielding material nuclei forming, hopefully, less dangerous species. Clearly, the fidelity of the nuclear cross-sections is essential to correct specification of shield design and sensitivity to cross-section error is important in guiding experimental validation of cross-section models and database. We examine the Boltzmann transport equation which is used to calculate dose equivalent during solar minimum, with units (cSv/yr), associated with various depths of shielding materials. The dose equivalent is a weighted sum of contributions from neutrons, protons, light ions, medium ions and heavy ions. We investigate the sensitivity of dose equivalent calculations due to errors in nuclear fragmentation cross-sections. We do this error analysis for all possible projectile-fragment combinations (14,365 such combinations) to estimate the sensitivity of the shielding calculations to errors in the nuclear fragmentation cross-sections. Numerical differentiation with respect to the cross-sections will be evaluated in a broad class of materials including polyethylene, aluminum and copper. We will identify the most important cross-sections for further experimental study and evaluate their impact on propagated errors in shielding estimates.

  6. Estimation of the sea surface's two-scale backscatter parameters

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.

    1978-01-01

    The relationship between the sea-surface normalized radar cross section and the friction velocity vector is determined using a parametric two-scale scattering model. The model parameters are found from a nonlinear maximum likelihood estimation. The estimation is based on aircraft scatterometer measurements and the sea-surface anemometer measurements collected during the JONSWAP '75 experiment. The estimates of the ten model parameters converge to realistic values that are in good agreement with the available oceanographic data. The rms discrepancy between the model and the cross section measurements is 0.7 db, which is the rms sum of a 0.3 db average measurement error and a 0.6 db modeling error.

  7. Cross sections for H(-) and Cl(-) production from HCl by dissociative electron attachment

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Srivastava, S. K.

    1985-01-01

    A crossed target beam-electron beam collision geometry and a quadrupole mass spectrometer have been used to conduct dissociative electron attachment cross section measurements for the case of H(-) and Cl(-) production from HCl. The relative flow technique is used to determine the absolute values of cross sections. A tabulation is given of the attachment energies corresponding to various cross section maxima. Error sources contributing to total errors are also estimated.

  8. The effects of non-stationary noise on electromagnetic response estimates

    NASA Astrophysics Data System (ADS)

    Banks, R. J.

    1998-11-01

    The noise in natural electromagnetic time series is typically non-stationary. Sections of data with high magnetic noise levels bias impedances and generate unreliable error estimates. Sections containing noise that is coherent between electric and magnetic channels also produce inappropriate impedances and errors. The answer is to compute response values for data sections which are as short as is feasible, i.e. which are compatible both with the chosen bandwidth and with the need to over-determine the least-squares estimation of the impedance and coherence. Only those values that are reliable are selected, and the best single measure of the reliability of Earth impedance estimates is their temporal invariance, which is tested by the coherence between the measured and predicted electric fields. Complex demodulation is the method used here to explore the temporal structure of electromagnetic fields in the period range 20-6000 s. For periods above 300 s, noisy sections are readily identified in time series of impedance values. The corresponding estimates deviate strongly from the normal value, are biased towards low impedance values, and are associated with low coherences. Plots of the impedance against coherence are particularly valuable diagnostic aids. For periods below 300 s, impedance bias increases systematically as the coherence falls, identifying input channel noise as the cause. By selecting sections with high coherence (equivalent to the impedance being invariant over the section) unbiased impedances and realistic errors can be determined. The scatter in impedance values among high-coherence sections is due to noise that is coherent between input and output channels, implying the presence of two or more systems for which a consistent response can be defined. Where the Earth and noise responses are significantly different, it may be possible to improve estimates of the former by rejecting sections that do not generate satisfactory values for all the response elements.

  9. The estimation of pointing angle and normalized surface scattering cross section from GEOS-3 radar altimeter measurements

    NASA Technical Reports Server (NTRS)

    Brown, G. S.; Curry, W. J.

    1977-01-01

    The statistical error of the pointing angle estimation technique is determined as a function of the effective receiver signal to noise ratio. Other sources of error are addressed and evaluated with inadequate calibration being of major concern. The impact of pointing error on the computation of normalized surface scattering cross section (sigma) from radar and the waveform attitude induced altitude bias is considered and quantitative results are presented. Pointing angle and sigma processing algorithms are presented along with some initial data. The intensive mode clean vs. clutter AGC calibration problem is analytically resolved. The use clutter AGC data in the intensive mode is confirmed as the correct calibration set for the sigma computations.

  10. Estimation of uncertainty for contour method residual stress measurements

    DOE PAGES

    Olson, Mitchell D.; DeWald, Adrian T.; Prime, Michael B.; ...

    2014-12-03

    This paper describes a methodology for the estimation of measurement uncertainty for the contour method, where the contour method is an experimental technique for measuring a two-dimensional map of residual stress over a plane. Random error sources including the error arising from noise in displacement measurements and the smoothing of the displacement surfaces are accounted for in the uncertainty analysis. The output is a two-dimensional, spatially varying uncertainty estimate such that every point on the cross-section where residual stress is determined has a corresponding uncertainty value. Both numerical and physical experiments are reported, which are used to support the usefulnessmore » of the proposed uncertainty estimator. The uncertainty estimator shows the contour method to have larger uncertainty near the perimeter of the measurement plane. For the experiments, which were performed on a quenched aluminum bar with a cross section of 51 × 76 mm, the estimated uncertainty was approximately 5 MPa (σ/E = 7 · 10⁻⁵) over the majority of the cross-section, with localized areas of higher uncertainty, up to 10 MPa (σ/E = 14 · 10⁻⁵).« less

  11. Accuracy and sampling error of two age estimation techniques using rib histomorphometry on a modern sample.

    PubMed

    García-Donas, Julieta G; Dyke, Jeffrey; Paine, Robert R; Nathena, Despoina; Kranioti, Elena F

    2016-02-01

    Most age estimation methods are proven problematic when applied in highly fragmented skeletal remains. Rib histomorphometry is advantageous in such cases; yet it is vital to test and revise existing techniques particularly when used in legal settings (Crowder and Rosella, 2007). This study tested Stout & Paine (1992) and Stout et al. (1994) histological age estimation methods on a Modern Greek sample using different sampling sites. Six left 4th ribs of known age and sex were selected from a modern skeletal collection. Each rib was cut into three equal segments. Two thin sections were acquired from each segment. A total of 36 thin sections were prepared and analysed. Four variables (cortical area, intact and fragmented osteon density and osteon population density) were calculated for each section and age was estimated according to Stout & Paine (1992) and Stout et al. (1994). The results showed that both methods produced a systemic underestimation of the individuals (to a maximum of 43 years) although a general improvement in accuracy levels was observed when applying the Stout et al. (1994) formula. There is an increase of error rates with increasing age with the oldest individual showing extreme differences between real age and estimated age. Comparison of the different sampling sites showed small differences between the estimated ages suggesting that any fragment of the rib could be used without introducing significant error. Yet, a larger sample should be used to confirm these results. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  12. Best estimate of luminal cross-sectional area of coronary arteries from angiograms

    NASA Technical Reports Server (NTRS)

    Lee, P. L.; Selzer, R. H.

    1988-01-01

    We have reexamined the problem of estimating the luminal area of an elliptically-shaped coronary artery cross section from two or more radiographic diameter measurements. The expected error is found to be much smaller than the maximum potential error. In the cae of two orthogonal views, closed form expressions have been derived for calculating the area and the uncertainty. Assuming that the underlying ellipse has limited ellipticity (major/minor axis ratio less than five), it is shown that the average uncertainty in the area is less than 14 percent. When more than two views are available, we suggest using a least-squares fit method to extract all available information from the data.

  13. Response Error in Reporting Dental Coverage by Older Americans in the Health and Retirement Study

    PubMed Central

    Manski, Richard J.; Mathiowetz, Nancy A.; Campbell, Nancy; Pepper, John V.

    2014-01-01

    The aim of this research was to analyze the inconsistency in responses to survey questions within the Health and Retirement Study (HRS) regarding insurance coverage of dental services. Self-reports of dental coverage in the dental services section were compared with those in the insurance section of the 2002 HRS to identify inconsistent responses. Logistic regression identified characteristics of persons reporting discrepancies and assessed the effect of measurement error on dental coverage coefficient estimates in dental utilization models. In 18% of cases, data reported in the insurance section contradicted data reported in the dental use section of the HRS by those who said insurance at least partially covered (or would have covered) their (hypothetical) dental use. Additional findings included distinct characteristics of persons with potential reporting errors and a downward bias to the regression coefficient for coverage in a dental use model without controls for inconsistent self-reports of coverage. This study offers evidence for the need to validate self-reports of dental insurance coverage among a survey population of older Americans to obtain more accurate estimates of coverage and its impact on dental utilization. PMID:25428430

  14. Development of Biological Acoustic Impedance Microscope and its Error Estimation

    NASA Astrophysics Data System (ADS)

    Hozumi, Naohiro; Nakano, Aiko; Terauchi, Satoshi; Nagao, Masayuki; Yoshida, Sachiko; Kobayashi, Kazuto; Yamamoto, Seiji; Saijo, Yoshifumi

    This report deals with the scanning acoustic microscope for imaging cross sectional acoustic impedance of biological soft tissues. A focused acoustic beam was transmitted to the tissue object mounted on the "rear surface" of plastic substrate. A cerebellum tissue of rat and a reference material were observed at the same time under the same condition. As the incidence is not vertical, not only longitudinal wave but also transversal wave is generated in the substrate. The error in acoustic impedance assuming vertical incidence was estimated. It was proved that the error can precisely be compensated, if the beam pattern and acoustic parameters of coupling medium and substrate had been known.

  15. Relationship between body mass, lean mass, fat mass, and limb bone cross-sectional geometry: Implications for estimating body mass and physique from the skeleton.

    PubMed

    Pomeroy, Emma; Macintosh, Alison; Wells, Jonathan C K; Cole, Tim J; Stock, Jay T

    2018-05-01

    Estimating body mass from skeletal dimensions is widely practiced, but methods for estimating its components (lean and fat mass) are poorly developed. The ability to estimate these characteristics would offer new insights into the evolution of body composition and its variation relative to past and present health. This study investigates the potential of long bone cross-sectional properties as predictors of body, lean, and fat mass. Humerus, femur and tibia midshaft cross-sectional properties were measured by peripheral quantitative computed tomography in sample of young adult women (n = 105) characterized by a range of activity levels. Body composition was estimated from bioimpedance analysis. Lean mass correlated most strongly with both upper and lower limb bone properties (r values up to 0.74), while fat mass showed weak correlations (r ≤ 0.29). Estimation equations generated from tibial midshaft properties indicated that lean mass could be estimated relatively reliably, with some improvement using logged data and including bone length in the models (minimum standard error of estimate = 8.9%). Body mass prediction was less reliable and fat mass only poorly predicted (standard errors of estimate ≥11.9% and >33%, respectively). Lean mass can be predicted more reliably than body mass from limb bone cross-sectional properties. The results highlight the potential for studying evolutionary trends in lean mass from skeletal remains, and have implications for understanding the relationship between bone morphology and body mass or composition. © 2018 The Authors. American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.

  16. Vector velocity volume flow estimation: Sources of error and corrections applied for arteriovenous fistulas.

    PubMed

    Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo; Hansen, Peter Møller; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-08-01

    A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo. This paper investigates errors from estimating volumetric flow using a commercial ultrasound scanner and the common assumptions made in the literature. The theoretical model shows, e.g. that volume flow is underestimated by 15%, when the scan plane is off-axis with the vessel center by 28% of the vessel radius. The error sources were also studied in vivo under realistic clinical conditions, and the theoretical results were applied for correcting the volume flow errors. Twenty dialysis patients with arteriovenous fistulas were scanned to obtain vector flow maps of fistulas. When fitting an ellipsis to cross-sectional scans of the fistulas, the major axis was on average 10.2mm, which is 8.6% larger than the minor axis. The ultrasound beam was on average 1.5mm from the vessel center, corresponding to 28% of the semi-major axis in an average fistula. Estimating volume flow with an elliptical, rather than circular, vessel area and correcting the ultrasound beam for being off-axis, gave a significant (p=0.008) reduction in error from 31.2% to 24.3%. The error is relative to the Ultrasound Dilution Technique, which is considered the gold standard for volume flow estimation for dialysis patients. The study shows the importance of correcting for volume flow errors, which are often made in clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Quantifying uncertainty in carbon and nutrient pools of coarse woody debris

    NASA Astrophysics Data System (ADS)

    See, C. R.; Campbell, J. L.; Fraver, S.; Domke, G. M.; Harmon, M. E.; Knoepp, J. D.; Woodall, C. W.

    2016-12-01

    Woody detritus constitutes a major pool of both carbon and nutrients in forested ecosystems. Estimating coarse wood stocks relies on many assumptions, even when full surveys are conducted. Researchers rarely report error in coarse wood pool estimates, despite the importance to ecosystem budgets and modelling efforts. To date, no study has attempted a comprehensive assessment of error rates and uncertainty inherent in the estimation of this pool. Here, we use Monte Carlo analysis to propagate the error associated with the major sources of uncertainty present in the calculation of coarse wood carbon and nutrient (i.e., N, P, K, Ca, Mg, Na) pools. We also evaluate individual sources of error to identify the importance of each source of uncertainty in our estimates. We quantify sampling error by comparing the three most common field methods used to survey coarse wood (two transect methods and a whole-plot survey). We quantify the measurement error associated with length and diameter measurement, and technician error in species identification and decay class using plots surveyed by multiple technicians. We use previously published values of model error for the four most common methods of volume estimation: Smalian's, conical frustum, conic paraboloid, and average-of-ends. We also use previously published values for error in the collapse ratio (cross-sectional height/width) of decayed logs that serves as a surrogate for the volume remaining. We consider sampling error in chemical concentration and density for all decay classes, using distributions from both published and unpublished studies. Analytical uncertainty is calculated using standard reference plant material from the National Institute of Standards. Our results suggest that technician error in decay classification can have a large effect on uncertainty, since many of the error distributions included in the calculation (e.g. density, chemical concentration, volume-model selection, collapse ratio) are decay-class specific.

  18. Toward On-line Parameter Estimation of Concentric Tube Robots Using a Mechanics-based Kinematic Model

    PubMed Central

    Jang, Cheongjae; Ha, Junhyoung; Dupont, Pierre E.; Park, Frank Chongwoo

    2017-01-01

    Although existing mechanics-based models of concentric tube robots have been experimentally demonstrated to approximate the actual kinematics, determining accurate estimates of model parameters remains difficult due to the complex relationship between the parameters and available measurements. Further, because the mechanics-based models neglect some phenomena like friction, nonlinear elasticity, and cross section deformation, it is also not clear if model error is due to model simplification or to parameter estimation errors. The parameters of the superelastic materials used in these robots can be slowly time-varying, necessitating periodic re-estimation. This paper proposes a method for estimating the mechanics-based model parameters using an extended Kalman filter as a step toward on-line parameter estimation. Our methodology is validated through both simulation and experiments. PMID:28717554

  19. Human Error Analysis in a Permit to Work System: A Case Study in a Chemical Plant

    PubMed Central

    Jahangiri, Mehdi; Hoboubi, Naser; Rostamabadi, Akbar; Keshavarzi, Sareh; Hosseini, Ali Akbar

    2015-01-01

    Background A permit to work (PTW) is a formal written system to control certain types of work which are identified as potentially hazardous. However, human error in PTW processes can lead to an accident. Methods This cross-sectional, descriptive study was conducted to estimate the probability of human errors in PTW processes in a chemical plant in Iran. In the first stage, through interviewing the personnel and studying the procedure in the plant, the PTW process was analyzed using the hierarchical task analysis technique. In doing so, PTW was considered as a goal and detailed tasks to achieve the goal were analyzed. In the next step, the standardized plant analysis risk-human (SPAR-H) reliability analysis method was applied for estimation of human error probability. Results The mean probability of human error in the PTW system was estimated to be 0.11. The highest probability of human error in the PTW process was related to flammable gas testing (50.7%). Conclusion The SPAR-H method applied in this study could analyze and quantify the potential human errors and extract the required measures for reducing the error probabilities in PTW system. Some suggestions to reduce the likelihood of errors, especially in the field of modifying the performance shaping factors and dependencies among tasks are provided. PMID:27014485

  20. A new automated method for the determination of cross-section limits in ephemeral gullies

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Ángel Campo-Bescós, Miguel; Casalí, Javier; Giménez, Rafael

    2017-04-01

    The assessment of gully erosion relies on the estimation of the soil volume enclosed by cross sections limits. Both 3D and 2D methods require the application of a methodology for the determination of the cross-section limits what has been traditionally carried out in two ways: a) by visual inspection of the cross-section by a certain expert operator; b) by the automated identification of thresholds for different geometrical variables such as elevation, slope or plan curvature obtained from the cross-section profile. However, for these last methods, typically, the thresholds are not of general application because they depend on absolute values valid only for the local gully conditions where they were derived. In this communication we evaluate an automated method for cross-section delimitation of ephemeral gullies and compare its performance with the visual assessment provided by five scientists experienced in gully erosion assessment, defining gully width, depth and area for a total of 60 ephemeral gullies cross-sections obtained from field surveys conducted on agricultural plots in Navarra (Spain). The automated method only depends on the calculation of a simple geometrical measurement, which is the bank trapezoid area for every point of each gully bank. This rectangle trapezoid (right-angled trapezoid) is defined by the elevation of a given point, the minimum elevation and the extremes of the cross-section. The gully limit for each bank is determined by the point in the bank with the maximum trapezoid area. The comparison of the estimates among the different expert operators showed large variation coefficients (up to 70%) in a number of cross-sections, larger for cross sections width and area and smaller for cross sections depth. The automated method produced comparable results to those obtained by the experts and was the procedure with the highest average correlation with the rest of the methods for the three dimensional parameters. The errors of the automated method when compared with the average estimate of the experts were occasionally high (up to 40%), in line with the variability found among experts. The automated method showed no apparent systematic errors which approximately followed a normal distribution, although these errors were slightly biased towards overestimation for the depth and area parameters. In conclusion, this study shows that there is not a single definition of gully limits even among gully experts where a large variability was found. The bank trapezoid method was found to be an automated, easy-to-use (readily implementable in a basic excel spread-sheet or programming scripts), threshold-independent procedure to determine consistently gully limits similar to expert-derived estimates. Gully width and area calculations were more prone to errors than gully depth, which was the least sensitive parameter.

  1. 48 CFR 36.214 - Special procedures for price negotiation in construction contracting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... price negotiation in construction contracting. 36.214 Section 36.214 Federal Acquisition Regulations... negotiation in construction contracting. (a) Agencies shall follow the policies and procedures in part 15 when... scope of the work. If negotiations reveal errors in the Government estimate, the estimate shall be...

  2. 48 CFR 36.214 - Special procedures for price negotiation in construction contracting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... price negotiation in construction contracting. 36.214 Section 36.214 Federal Acquisition Regulations... negotiation in construction contracting. (a) Agencies shall follow the policies and procedures in part 15 when... scope of the work. If negotiations reveal errors in the Government estimate, the estimate shall be...

  3. 48 CFR 36.214 - Special procedures for price negotiation in construction contracting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... price negotiation in construction contracting. 36.214 Section 36.214 Federal Acquisition Regulations... negotiation in construction contracting. (a) Agencies shall follow the policies and procedures in part 15 when... scope of the work. If negotiations reveal errors in the Government estimate, the estimate shall be...

  4. 48 CFR 36.214 - Special procedures for price negotiation in construction contracting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... price negotiation in construction contracting. 36.214 Section 36.214 Federal Acquisition Regulations... negotiation in construction contracting. (a) Agencies shall follow the policies and procedures in part 15 when... scope of the work. If negotiations reveal errors in the Government estimate, the estimate shall be...

  5. 48 CFR 36.214 - Special procedures for price negotiation in construction contracting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... price negotiation in construction contracting. 36.214 Section 36.214 Federal Acquisition Regulations... negotiation in construction contracting. (a) Agencies shall follow the policies and procedures in part 15 when... scope of the work. If negotiations reveal errors in the Government estimate, the estimate shall be...

  6. Risk of error estimated from Palestine pharmacists' knowledge and certainty on the adverse effects and contraindications of active pharmaceutical ingredients and excipients.

    PubMed

    Shawahna, Ramzi; Al-Rjoub, Mohammed; Al-Horoub, Mohammed M; Al-Hroub, Wasif; Al-Rjoub, Bisan; Al-Nabi, Bashaaer Abd

    2016-01-01

    This study aimed to investigate community pharmacists' knowledge and certainty of adverse effects and contraindications of pharmaceutical products to estimate the risk of error. Factors influencing their knowledge and certainty were also investigated. The knowledge of community pharmacists was assessed in a cross-sectional design using a multiple-choice questions test on the adverse effects and contraindications of active pharmaceutical ingredients and excipients from May 2014 to March 2015. Self-rated certainty scores were also recorded for each question. Knowledge and certainty scores were combined to estimate the risk of error. Out of 315 subjects, 129 community pharmacists (41.0%) completed the 30 multiple-choice questions test on active ingredients and excipients. Knowledge on active ingredients was associated with the year of graduation and obtaining a licence to practice pharmacy. Knowledge on excipients was associated with the degree obtained. There was higher risk of error in items on excipients than those on ingredients (P<0.01). The knowledge of community pharmacists in Palestine was insufficient with high risk of errors. Knowledge of community pharmacists on the safety issues of active ingredients and excipients need to be improved.

  7. Optimizing hidden layer node number of BP network to estimate fetal weight

    NASA Astrophysics Data System (ADS)

    Su, Juan; Zou, Yuanwen; Lin, Jiangli; Wang, Tianfu; Li, Deyu; Xie, Tao

    2007-12-01

    The ultrasonic estimation of fetal weigh before delivery is of most significance for obstetrical clinic. Estimating fetal weight more accurately is crucial for prenatal care, obstetrical treatment, choosing appropriate delivery methods, monitoring fetal growth and reducing the risk of newborn complications. In this paper, we introduce a method which combines golden section and artificial neural network (ANN) to estimate the fetal weight. The golden section is employed to optimize the hidden layer node number of the back propagation (BP) neural network. The method greatly improves the accuracy of fetal weight estimation, and simultaneously avoids choosing the hidden layer node number with subjective experience. The estimation coincidence rate achieves 74.19%, and the mean absolute error is 185.83g.

  8. Prevalence of refractive error in Europe: the European Eye Epidemiology (E(3)) Consortium.

    PubMed

    Williams, Katie M; Verhoeven, Virginie J M; Cumberland, Phillippa; Bertelsen, Geir; Wolfram, Christian; Buitendijk, Gabriëlle H S; Hofman, Albert; van Duijn, Cornelia M; Vingerling, Johannes R; Kuijpers, Robert W A M; Höhn, René; Mirshahi, Alireza; Khawaja, Anthony P; Luben, Robert N; Erke, Maja Gran; von Hanno, Therese; Mahroo, Omar; Hogg, Ruth; Gieger, Christian; Cougnard-Grégoire, Audrey; Anastasopoulos, Eleftherios; Bron, Alain; Dartigues, Jean-François; Korobelnik, Jean-François; Creuzot-Garcher, Catherine; Topouzis, Fotis; Delcourt, Cécile; Rahi, Jugnoo; Meitinger, Thomas; Fletcher, Astrid; Foster, Paul J; Pfeiffer, Norbert; Klaver, Caroline C W; Hammond, Christopher J

    2015-04-01

    To estimate the prevalence of refractive error in adults across Europe. Refractive data (mean spherical equivalent) collected between 1990 and 2013 from fifteen population-based cohort and cross-sectional studies of the European Eye Epidemiology (E(3)) Consortium were combined in a random effects meta-analysis stratified by 5-year age intervals and gender. Participants were excluded if they were identified as having had cataract surgery, retinal detachment, refractive surgery or other factors that might influence refraction. Estimates of refractive error prevalence were obtained including the following classifications: myopia ≤-0.75 diopters (D), high myopia ≤-6D, hyperopia ≥1D and astigmatism ≥1D. Meta-analysis of refractive error was performed for 61,946 individuals from fifteen studies with median age ranging from 44 to 81 and minimal ethnic variation (98 % European ancestry). The age-standardised prevalences (using the 2010 European Standard Population, limited to those ≥25 and <90 years old) were: myopia 30.6 % [95 % confidence interval (CI) 30.4-30.9], high myopia 2.7 % (95 % CI 2.69-2.73), hyperopia 25.2 % (95 % CI 25.0-25.4) and astigmatism 23.9 % (95 % CI 23.7-24.1). Age-specific estimates revealed a high prevalence of myopia in younger participants [47.2 % (CI 41.8-52.5) in 25-29 years-olds]. Refractive error affects just over a half of European adults. The greatest burden of refractive error is due to myopia, with high prevalence rates in young adults. Using the 2010 European population estimates, we estimate there are 227.2 million people with myopia across Europe.

  9. Estimating age of sea otters with cementum layers in the first premolar

    USGS Publications Warehouse

    Bodkin, James L.; Ames, J.A.; Jameson, R.J.; Johnson, A.M.; Matson, G.M.

    1997-01-01

    We assessed sources of variation in the use of tooth cementum layers to determine age by comparing counts in premolar tooth sections to known ages of 20 sea otters (Enhydra lutris). Three readers examined each sample 3 times, and the 3 readings of each sample were averaged by reader to provide the mean estimated age. The mean (SE) of known age sample was 5.2 years (1.0) and the 3 mean estimated ages were 7.0 (1.0), 5.9 (1.1) and, 4.4 (0.8). The proportion of estimates accurate to within +/- 1 year were 0.25, 0.55, and 0.65 and to within +/- 2 years 0.65, 0.80, and 0.70, by reader. The proportions of samples estimated with >3 years error were 0.20, 0.10, and 0.05. Errors as large as 7, 6, and 5 years were made among readers. In few instances did all readers uniformly provide either accurate (error 1 yr) counts. In most cases (0.85), 1 or 2 of the readers provided accurate counts. Coefficients of determination (R2) between known ages and mean estimated ages were 0.81, 0.87, and 0.87, by reader. The results of this study suggest that cementum layers within sea otter premolar teeth likely are deposited annually and can be used for age estimation. However, criteria used in interpreting layers apparently varied by reader, occasionally resulting in large errors, which were not consistent among readers. While large errors were evident for some individual otters, there were no differences between the known and estimated age-class distribution generated by each reader. Until accuracy can be improved, application of this ageing technique should be limited to sample sizes of at least 6-7 individuals within age classes of >/=1 year.

  10. On the Mean Squared Error of Nonparametric Quantile Estimators under Random Right-Censorship.

    DTIC Science & Technology

    1986-09-01

    SECURITY CI.ASSIFICATION lb. RESTRICTIVE MARKINGS UNCLASSIFIED 2a, SECURITY CLASSIFICATION AUTHORITY 3 . OISTRIBUTIONIAVAILASIL.ITY OF REPORT P16e 2b...UNCLASSIPIEO/UNLIMITEO 3 SAME AS RPT". 0 OTIC USERS 1 UNCLASSIFIED p." " 22. NAME OP RESPONSIBLE INOIVIOUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL...in Section 3 , and the result for the kernel estimator Qn is derived in Section 4. It should be k. mentioned that the order statistic methods used by

  11. Estimating the magnitude of peak flows for streams in Kentucky for selected recurrence intervals

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Martin, Gary R.

    2003-01-01

    This report gives estimates of, and presents techniques for estimating, the magnitude of peak flows for streams in Kentucky for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years. A flowchart in this report guides the user to the appropriate estimates and (or) estimating techniques for a site on a specific stream. Estimates of peak flows are given for 222 U.S. Geological Survey streamflow-gaging stations in Kentucky. In the development of the peak-flow estimates at gaging stations, a new generalized skew coefficient was calculated for the State. This single statewide value of 0.011 (with a standard error of prediction of 0.520) is more appropriate for Kentucky than the national skew isoline map in Bulletin 17B of the Interagency Advisory Committee on Water Data. Regression equations are presented for estimating the peak flows on ungaged, unregulated streams in rural drainage basins. The equations were developed by use of generalized-least-squares regression procedures at 187 U.S. Geological Survey gaging stations in Kentucky and 51 stations in surrounding States. Kentucky was divided into seven flood regions. Total drainage area is used in the final regression equations as the sole explanatory variable, except in Regions 1 and 4 where main-channel slope also was used. The smallest average standard errors of prediction were in Region 3 (from -13.1 to +15.0 percent) and the largest average standard errors of prediction were in Region 5 (from -37.6 to +60.3 percent). One section of this report describes techniques for estimating peak flows for ungaged sites on gaged, unregulated streams in rural drainage basins. Another section references two previous U.S. Geological Survey reports for peak-flow estimates on ungaged, unregulated, urban streams. Estimating peak flows at ungaged sites on regulated streams is beyond the scope of this report, because peak flows on regulated streams are dependent upon variable human activities.

  12. Nonparametric Signal Extraction and Measurement Error in the Analysis of Electroencephalographic Activity During Sleep

    PubMed Central

    Crainiceanu, Ciprian M.; Caffo, Brian S.; Di, Chong-Zhi; Punjabi, Naresh M.

    2009-01-01

    We introduce methods for signal and associated variability estimation based on hierarchical nonparametric smoothing with application to the Sleep Heart Health Study (SHHS). SHHS is the largest electroencephalographic (EEG) collection of sleep-related data, which contains, at each visit, two quasi-continuous EEG signals for each subject. The signal features extracted from EEG data are then used in second level analyses to investigate the relation between health, behavioral, or biometric outcomes and sleep. Using subject specific signals estimated with known variability in a second level regression becomes a nonstandard measurement error problem. We propose and implement methods that take into account cross-sectional and longitudinal measurement error. The research presented here forms the basis for EEG signal processing for the SHHS. PMID:20057925

  13. Improved quantitation and reproducibility in multi-PET/CT lung studies by combining CT information.

    PubMed

    Holman, Beverley F; Cuplov, Vesna; Millner, Lynn; Endozo, Raymond; Maher, Toby M; Groves, Ashley M; Hutton, Brian F; Thielemans, Kris

    2018-06-05

    Matched attenuation maps are vital for obtaining accurate and reproducible kinetic and static parameter estimates from PET data. With increased interest in PET/CT imaging of diffuse lung diseases for assessing disease progression and treatment effectiveness, understanding the extent of the effect of respiratory motion and establishing methods for correction are becoming more important. In a previous study, we have shown that using the wrong attenuation map leads to large errors due to density mismatches in the lung, especially in dynamic PET scans. Here, we extend this work to the case where the study is sub-divided into several scans, e.g. for patient comfort, each with its own CT (cine-CT and 'snap shot' CT). A method to combine multi-CT information into a combined-CT has then been developed, which averages the CT information from each study section to produce composite CT images with the lung density more representative of that in the PET data. This combined-CT was applied to nine patients with idiopathic pulmonary fibrosis, imaged with dynamic 18 F-FDG PET/CT to determine the improvement in the precision of the parameter estimates. Using XCAT simulations, errors in the influx rate constant were found to be as high as 60% in multi-PET/CT studies. Analysis of patient data identified displacements between study sections in the time activity curves, which led to an average standard error in the estimates of the influx rate constant of 53% with conventional methods. This reduced to within 5% after use of combined-CTs for attenuation correction of the study sections. Use of combined-CTs to reconstruct the sections of a multi-PET/CT study, as opposed to using the individually acquired CTs at each study stage, produces more precise parameter estimates and may improve discrimination between diseased and normal lung.

  14. Calculation of photoionization cross section near auto-ionizing lines and magnesium photoionization cross section near threshold

    NASA Technical Reports Server (NTRS)

    Moore, E. N.; Altick, P. L.

    1972-01-01

    The research performed is briefly reviewed. A simple method was developed for the calculation of continuum states of atoms when autoionization is present. The method was employed to give the first theoretical cross section for beryllium and magnesium; the results indicate that the values used previously at threshold were sometimes seriously in error. These threshold values have potential applications in astrophysical abundance estimates.

  15. Experimental determination of single CdSe nanowire absorption cross sections through photothermal imaging.

    PubMed

    Giblin, Jay; Syed, Muhammad; Banning, Michael T; Kuno, Masaru; Hartland, Greg

    2010-01-26

    Absorption cross sections ((sigma)abs) of single branched CdSe nanowires (NWs) have been measured by photothermal heterodyne imaging (PHI). Specifically, PHI signals from isolated gold nanoparticles (NPs) with known cross sections were compared to those of individual CdSe NWs excited at 532 nm. This allowed us to determine average NW absorption cross sections at 532 nm of (sigma)abs = (3.17 +/- 0.44) x 10(-11) cm2/microm (standard error reported). This agrees well with a theoretical value obtained using a classical electromagnetic analysis ((sigma)abs = 5.00 x 10(-11) cm2/microm) and also with prior ensemble estimates. Furthermore, NWs exhibit significant absorption polarization sensitivities consistent with prior NW excitation polarization anisotropy measurements. This has enabled additional estimates of the absorption cross section parallel ((sigma)abs) and perpendicular ((sigma)abs(perpendicular) to the NW growth axis, as well as the corresponding NW absorption anisotropy ((rho)abs). Resulting values of (sigma)abs = (5.6 +/- 1.1) x 10(-11) cm2/microm, (sigma)abs(perpendicular) = (1.26 +/- 0.21) x 10(-11) cm2/microm, and (rho)abs = 0.63+/- 0.04 (standard errors reported) are again in good agreement with theoretical predictions. These measurements all indicate sizable NW absorption cross sections and ultimately suggest the possibility of future direct single NW absorption studies.

  16. Reduced backscattering cross section (Sigma degree) data from the Skylab S-193 radar altimeter

    NASA Technical Reports Server (NTRS)

    Brown, G. S.

    1975-01-01

    Backscattering cross section per unit scattering area data, reduced from measurements made by the Skylab S-193 radar altimeter over the ocean surface are presented. Descriptions of the altimeter are given where applicable to the measurement process. Analytical solutions are obtained for the flat surface impulse response for the case of a nonsymmetrical antenna pattern. Formulations are developed for converting altimeter AGC outputs into values for the backscattering cross section. Reduced data are presented for Missions SL-2, 3 and 4 for all modes of the altimeter where sufficient calibration existed. The problem of interpreting land scatter data is also discussed. Finally, a comprehensive error analysis of the measurement is presented and worst case random and bias errors are estimated.

  17. Charged-pion cross sections and double-helicity asymmetries in polarized p + p collisions at √s = 200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adare, A.; Aidala, C.; Ajitanand, N. N.

    2015-02-02

    We present midrapidity charged-pion invariant cross sections, the ratio of the π⁻ to π⁺ cross sections and the charge-separated double-spin asymmetries in polarized p+p collisions at √s = 200 GeV. While the cross section measurements are consistent within the errors of next-to-leadingorder (NLO) perturbative quantum chromodynamics predictions (pQCD), the same calculations over estimate the ratio of the charged-pion cross sections. This discrepancy arises from the cancellation of the substantial systematic errors associated with the NLO-pQCD predictions in the ratio and highlights the constraints these data will place on flavor dependent pion fragmentation functions. Thus, the charge-separated pion asymmetries presented heremore » sample an x range of ~0.03–0.16 and provide unique information on the sign of the gluon-helicity distribution.« less

  18. A contribution to the calculation of measurement uncertainty and optimization of measuring strategies in coordinate measurement

    NASA Astrophysics Data System (ADS)

    Waeldele, F.

    1983-01-01

    The influence of sample shape deviations on the measurement uncertainties and the optimization of computer aided coordinate measurement were investigated for a circle and a cylinder. Using the complete error propagation law in matrix form the parameter uncertainties are calculated, taking the correlation between the measurement points into account. Theoretical investigations show that the measuring points have to be equidistantly distributed and that for a cylindrical body a measuring point distribution along a cross section is better than along a helical line. The theoretically obtained expressions to calculate the uncertainties prove to be a good estimation basis. The simple error theory is not satisfactory for estimation. The complete statistical data analysis theory helps to avoid aggravating measurement errors and to adjust the number of measuring points to the required measuring uncertainty.

  19. Healthcare Coinsurance Elasticity Coefficient Estimation Using Monthly Cross-sectional, Time-series Claims Data.

    PubMed

    Scoggins, John F; Weinberg, Daniel A

    2017-06-01

    Published estimates of the healthcare coinsurance elasticity coefficient have typically relied on annual observations of individual healthcare expenditures even though health plan membership and expenditures are traditionally reported in monthly units and several studies have stressed the need for demand models to recognize the episodic nature of healthcare. Summing individual healthcare expenditures into annual observations complicates two common challenges of statistical inference, heteroscedasticity, and regressor endogeneity. This paper estimates the elasticity coefficient using a monthly panel data model that addresses the heteroscedasticity and endogeneity problems with relative ease. Healthcare claims data from employees of King County, Washington, during 2005 to 2011 were used to estimate the mean point elasticity coefficient: -0.314 (0.015 standard error) to -0.145 (0.015 standard error) depending on model specification. These estimates bracket the -0.2 point estimate (range: -0.22 to -0.17) derived from the famous Rand Health Insurance Experiment. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Monitoring surface currents and transport variability in Drake Passage using altimetry and hydrography

    NASA Astrophysics Data System (ADS)

    Pavic, M.; Cunningham, S. A.; Challenor, P.; Duncan, L.

    2003-04-01

    Between 1993 and 2001 the UK has completed seven occupations of WOCE section SR1b from Burdwood Bank to Elephant Island across Drake Passage. The section consists of a minimum of 31 full depth CTD stations, shipboard ADCP measurements of currents in the upper 300m, and in three of the years full depth lowered ADCP measurements at each station. The section lies under the satellite track of ERS2. The satellite altimeter can determine the along track slope of the sea surface relative to a reference satellite pass once every 35 days. From this we can calculate the relative SSH slope or geostrophic surface current anomalies. If we measure simultaneously with any satellite pass, we can estimate the absolute surface geostrophic current for any subsequent pass. This says that by combining in situ absolute velocity measurements - the reference velocities with altimetry at one time the absolute geostrophic current can be estimated on any subsequent (or previous) altimeter pass. This is the method of Challenor et al. 1996, though they did not have the data to test this relationship. We have seven estimates of the surface reference velocity: one for each of the seven occupations of the WOCE line. The difference in any pair of reference velocities is predicted by the difference of the corresponding altimeter measurements. Errors in combining the satellite and hydrographic data are estimated by comparing pairs of these differences: errors arise from the in situ observations and from the altimetric measurements. Finally we produce our best estimates of eight years of absolute surface geostrophic currents and transport variability along WOCE section SR1 in Drake Passage.

  1. Approximation of state variables for discrete-time stochastic genetic regulatory networks with leakage, distributed, and probabilistic measurement delays: a robust stability problem.

    PubMed

    Pandiselvi, S; Raja, R; Cao, Jinde; Rajchakit, G; Ahmad, Bashir

    2018-01-01

    This work predominantly labels the problem of approximation of state variables for discrete-time stochastic genetic regulatory networks with leakage, distributed, and probabilistic measurement delays. Here we design a linear estimator in such a way that the absorption of mRNA and protein can be approximated via known measurement outputs. By utilizing a Lyapunov-Krasovskii functional and some stochastic analysis execution, we obtain the stability formula of the estimation error systems in the structure of linear matrix inequalities under which the estimation error dynamics is robustly exponentially stable. Further, the obtained conditions (in the form of LMIs) can be effortlessly solved by some available software packages. Moreover, the specific expression of the desired estimator is also shown in the main section. Finally, two mathematical illustrative examples are accorded to show the advantage of the proposed conceptual results.

  2. Swath-altimetry measurements of the main stem Amazon River: measurement errors and hydraulic implications

    NASA Astrophysics Data System (ADS)

    Wilson, M. D.; Durand, M.; Jung, H. C.; Alsdorf, D.

    2015-04-01

    The Surface Water and Ocean Topography (SWOT) mission, scheduled for launch in 2020, will provide a step-change improvement in the measurement of terrestrial surface-water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water-surface elevations. In this paper, we aimed to (i) characterise and illustrate in two dimensions the errors which may be found in SWOT swath measurements of terrestrial surface water, (ii) simulate the spatio-temporal sampling scheme of SWOT for the Amazon, and (iii) assess the impact of each of these on estimates of water-surface slope and river discharge which may be obtained from SWOT imagery. We based our analysis on a virtual mission for a ~260 km reach of the central Amazon (Solimões) River, using a hydraulic model to provide water-surface elevations according to SWOT spatio-temporal sampling to which errors were added based on a two-dimensional height error spectrum derived from the SWOT design requirements. We thereby obtained water-surface elevation measurements for the Amazon main stem as may be observed by SWOT. Using these measurements, we derived estimates of river slope and discharge and compared them to those obtained directly from the hydraulic model. We found that cross-channel and along-reach averaging of SWOT measurements using reach lengths greater than 4 km for the Solimões and 7.5 km for Purus reduced the effect of systematic height errors, enabling discharge to be reproduced accurately from the water height, assuming known bathymetry and friction. Using cross-sectional averaging and 20 km reach lengths, results show Nash-Sutcliffe model efficiency values of 0.99 for the Solimões and 0.88 for the Purus, with 2.6 and 19.1 % average overall error in discharge, respectively. We extend the results to other rivers worldwide and infer that SWOT-derived discharge estimates may be more accurate for rivers with larger channel widths (permitting a greater level of cross-sectional averaging and the use of shorter reach lengths) and higher water-surface slopes (reducing the proportional impact of slope errors on discharge calculation).

  3. Estimating Single-Event Logic Cross Sections in Advanced Technologies

    NASA Astrophysics Data System (ADS)

    Harrington, R. C.; Kauppila, J. S.; Warren, K. M.; Chen, Y. P.; Maharrey, J. A.; Haeffner, T. D.; Loveless, T. D.; Bhuva, B. L.; Bounasser, M.; Lilja, K.; Massengill, L. W.

    2017-08-01

    Reliable estimation of logic single-event upset (SEU) cross section is becoming increasingly important for predicting the overall soft error rate. As technology scales and single-event transient (SET) pulse widths shrink to widths on the order of the setup-and-hold time of flip-flops, the probability of latching an SET as an SEU must be reevaluated. In this paper, previous assumptions about the relationship of SET pulsewidth to the probability of latching an SET are reconsidered and a model for transient latching probability has been developed for advanced technologies. A method using the improved transient latching probability and SET data is used to predict logic SEU cross section. The presented model has been used to estimate combinational logic SEU cross sections in 32-nm partially depleted silicon-on-insulator (SOI) technology given experimental heavy-ion SET data. Experimental SEU data show good agreement with the model presented in this paper.

  4. Application of acoustic velocity meters for gaging discharge of three low-velocity tidal streams in the St. Johns River basin, northeast Florida

    USGS Publications Warehouse

    Sloat, J.V.; Gain, W.S.

    1995-01-01

    Index-velocity data collected with acoustic velocity meters, stage data, and cross-sectional area data were used to calculate discharge at three low-velocity, tidal streamflow stations in north-east Florida. Discharge at three streamflow stations was computed as the product of the channel cross-sectional area and the mean velocity as determined from an index velocity measured in the stream using an acoustic velocity meter. The tidal streamlflow stations used in the study were: Six Mile Creek near Picolata, Fla.; Dunns Creek near Satsuma, Fla.; and the St. Johns River at Buffalo Bluff. Cross-sectional areas at the measurement sections ranged from about 3,000 square feet at Six Mile Creek to about 18,500 square feet at St. Johns River at Buffalo Bluff. Physical characteristics for all three streams were similar except for drainage area. The topography primarily is low-relief, swampy terrain; stream velocities ranged from about -2 to 2 feet per second; and the average change in stage was about 1 foot. Instantaneous discharge was measured using a portable acoustic current meter at each of the three streams to develop a relation between the mean velocity in the stream and the index velocity measured by the acoustic velocity meter. Using least-squares linear regression, a simple linear relation between mean velocity and index velocity was determined. Index velocity was the only significant linear predictor of mean velocity for Six Mile Creek and St. Johns River at Buffalo Bluff. For Dunns Creek, both index velocity and stage were used to develop a multiple-linear predictor of mean velocity. Stage-area curves for each stream were developed from bathymetric data. Instantaneous discharge was computed by multiplying results of relations developed for cross-sectional area and mean velocity. Principal sources of error in the estimated discharge are identified as: (1) instrument errors associated with measurement of stage and index velocity, (2) errors in the representation of mean daily stage and index velocity due to natural variability over time and space, and (3) errors in cross-sectional area and mean-velocity ratings based on stage and index velocity. Standard errors for instantaneous discharge for the median cross-sectional area for Six Mile Creek, Dunns Creek, and St. Johns River at Buffalo Bluff were 94,360, and 1,980 cubic feet per second, respectively. Standard errors for mean daily discharge for the median cross-sectional area for Six Mile Creek, Dunns Creek, and St. Johns River at Buffalo Bluff were 25, 65, and 455 cubic feet per second, respectively. Mean daily discharge at the three sites ranged from about -500 to 1,500 cubic feet per second at Six Mile Creek and Dunns Creek and from about -500 to 15,000 cubic feet per second on the St. Johns River at Buffalo Bluff. For periods of high discharge, the AVM index-velocity method tended to produce estimates accurate with 2 to 6 percent. For periods of moderate discharge, errors in discharge may increase to more than 50 percent. At low flows, errors as a percentage of discharge increase toward infinity.

  5. As-built design specification for proportion estimate software subsystem

    NASA Technical Reports Server (NTRS)

    Obrien, S. (Principal Investigator)

    1980-01-01

    The Proportion Estimate Processor evaluates four estimation techniques in order to get an improved estimate of the proportion of a scene that is planted in a selected crop. The four techniques to be evaluated were provided by the techniques development section and are: (1) random sampling; (2) proportional allocation, relative count estimate; (3) proportional allocation, Bayesian estimate; and (4) sequential Bayesian allocation. The user is given two options for computation of the estimated mean square error. These are referred to as the cluster calculation option and the segment calculation option. The software for the Proportion Estimate Processor is operational on the IBM 3031 computer.

  6. Peak flow estimation in ungauged basins by means of water level data analysis

    NASA Astrophysics Data System (ADS)

    Corato, G.; Moramarco, T.; Tucciarelli, T.

    2009-04-01

    Discharge hydrograph estimation in rivers is usually carried out by means of water level measurements and the use of a water depth - discharge relationship. The water depth - discharge curve is obtained by integrating local velocities measured in a given section at specified water depth values. To build up such curve is very expensive and very often the highest points, used for the peak flow estimation, are the result of rough extrapolation of points corresponding to much lower water depths. Recently, discharge estimation methodologies based only on the analysis of synchronous water level data recorded in two different river sections far some kilometers from each other have been developed. These methodologies are based only on the analysis of the water levels, the knowledge of the river bed elevations within the two sections, and the use of a diffusive flow routing numerical model. The bed roughness estimation, in terms of average Manning coefficient, is carried out along with the discharge hydrograph estimation. The 1D flow routing model is given by the following Saint Venant equations, simplified according to the diffusive hypothesis: ‚-+ ‚q-= 0 ‚t ‚x (1) ‚h+ (Sf - S0) = 0 ‚x (2) where q(x,t) is the discharge, h(x,t) is the water depth, Sf is the energy slope and S0 is the bed slope. The energy slope is related to the average n Manning coefficient by the Chezy relationship: -q2n2- Sf = 2ℜ4•3 (3) whereℜ is the hydraulic radius and gs the river section. The upstream boundary condition of the flow routing model is given by the measured upstream water level hydrograph. The computational domain is extended some kilometers downstream the second measurement section and the downstream boundary condition is properly approximated. This avoids the use of the downstream measured data for the solution of the system (1)-(3) and limits the model error even in the case of subcritical flow. The optimal average Manning coefficient is obtained by fitting the water level data available in the downstream measurement section with the computed ones. The optimal discharge hydrograph estimated in the upstream measurement section is given by the function q(0,t) computed in the first section (where x = 0) using the optimal Manning coefficient. Two different fitting quality criteria are compared and their practical implications are discussed; the first one is the equality of the computed and the measured time peak lag between the first and the second measurement section; the second one is the minimization of the total square error between the measured and the computed downstream water level hydrographs. The uniqueness and identifiability properties of the associated inverse problem are analyzed, and a model error analysis is carried out addressing the most relevant sources of error arising from the adopted approximations. Three case studies previously used for the validation of the proposed methodology are reviewed. The first two are water level hydrographs collected in two sections of the Arno river (Tuscany, Italy) and the Tiber river (Umbria, Italy). Water level and discharge hydrographs recorded during many storm events were available in both cases. The optimal average Manning coefficient has been estimated in both cases using the data of a single event, properly selected among all the available ones. In the third case, concerning hystorical data collected in a small tributary of the Tanagro river (Campania, Italy), three water level hydrographs were measured in three different sections of the channel. This allowed to carry on the discharge estimation using the data collected in only two of the three sections, using the data of the third one for validation. The results obtained in the three test cases highlight the advantages and the limits of the adopted analysis. The advantage is the simplicity of the hardware required for the data acquisition, that can be easily performed continuously in time, also during very bad weather conditions and using a long distance control. A first limit is the assumption of negligible inflow between the two measurement sections. Because the distance between the two sections must be large enough to measure the time lag between the two hydrographs, this limit can result in a difficult selection of the measurement sections. A second limit is the real heterogeneity of the bed roughness, that provides a shape of the water level hydrograph different from the computed one. Preliminary results of a new, multiparametric data analysis, are finally presented.

  7. A three-microphone acoustic reflection technique using transmitted acoustic waves in the airway.

    PubMed

    Fujimoto, Yuki; Huang, Jyongsu; Fukunaga, Toshiharu; Kato, Ryo; Higashino, Mari; Shinomiya, Shohei; Kitadate, Shoko; Takahara, Yutaka; Yamaya, Atsuyo; Saito, Masatoshi; Kobayashi, Makoto; Kojima, Koji; Oikawa, Taku; Nakagawa, Ken; Tsuchihara, Katsuma; Iguchi, Masaharu; Takahashi, Masakatsu; Mizuno, Shiro; Osanai, Kazuhiro; Toga, Hirohisa

    2013-10-15

    The acoustic reflection technique noninvasively measures airway cross-sectional area vs. distance functions and uses a wave tube with a constant cross-sectional area to separate incidental and reflected waves introduced into the mouth or nostril. The accuracy of estimated cross-sectional areas gets worse in the deeper distances due to the nature of marching algorithms, i.e., errors of the estimated areas in the closer distances accumulate to those in the further distances. Here we present a new technique of acoustic reflection from measuring transmitted acoustic waves in the airway with three microphones and without employing a wave tube. Using miniaturized microphones mounted on a catheter, we estimated reflection coefficients among the microphones and separated incidental and reflected waves. A model study showed that the estimated cross-sectional area vs. distance function was coincident with the conventional two-microphone method, and it did not change with altered cross-sectional areas at the microphone position, although the estimated cross-sectional areas are relative values to that at the microphone position. The pharyngeal cross-sectional areas including retropalatal and retroglossal regions and the closing site during sleep was visualized in patients with obstructive sleep apnea. The method can be applicable to larger or smaller bronchi to evaluate the airspace and function in these localized airways.

  8. Self-calibration method without joint iteration for distributed small satellite SAR systems

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Liao, Guisheng; Liu, Aifei; Zhang, Juan

    2013-12-01

    The performance of distributed small satellite synthetic aperture radar systems degrades significantly due to the unavoidable array errors, including gain, phase, and position errors, in real operating scenarios. In the conventional method proposed in (IEEE T Aero. Elec. Sys. 42:436-451, 2006), the spectrum components within one Doppler bin are considered as calibration sources. However, it is found in this article that the gain error estimation and the position error estimation in the conventional method can interact with each other. The conventional method may converge to suboptimal solutions in large position errors since it requires the joint iteration between gain-phase error estimation and position error estimation. In addition, it is also found that phase errors can be estimated well regardless of position errors when the zero Doppler bin is chosen. In this article, we propose a method obtained by modifying the conventional one, based on these two observations. In this modified method, gain errors are firstly estimated and compensated, which eliminates the interaction between gain error estimation and position error estimation. Then, by using the zero Doppler bin data, the phase error estimation can be performed well independent of position errors. Finally, position errors are estimated based on the Taylor-series expansion. Meanwhile, the joint iteration between gain-phase error estimation and position error estimation is not required. Therefore, the problem of suboptimal convergence, which occurs in the conventional method, can be avoided with low computational method. The modified method has merits of faster convergence and lower estimation error compared to the conventional one. Theoretical analysis and computer simulation results verified the effectiveness of the modified method.

  9. Total absorption and photoionization cross sections of water vapor between 100 and 1000 A

    NASA Technical Reports Server (NTRS)

    Haddad, G. N.; Samson, J. A. R.

    1986-01-01

    Absolute photoabsorption and photoionization cross sections of water vapor are reported at a large number of discrete wavelengths between 100 and 1000 A with an estimate error of + or - 3 percent in regions free from any discrete structure. The double ionization chamber technique utilized is described. Recent calculations are shown to be in reasonable agreement with the present data.

  10. Forensic dental age estimation by measuring root dentin translucency area using a new digital technique.

    PubMed

    Acharya, Ashith B

    2014-05-01

    Dentin translucency measurement is an easy yet relatively accurate approach to postmortem age estimation. Translucency area represents a two-dimensional change and may reflect age variations better than length. Manually measuring area is challenging and this paper proposes a new digital method using commercially available computer hardware and software. Area and length were measured on 100 tooth sections (age range, 19-82 years) of 250 μm thickness. Regression analysis revealed lower standard error of estimate and higher correlation with age for length than for area (R = 0.62 vs. 0.60). However, test of regression formulae on a control sample (n = 33, 21-85 years) showed smaller mean absolute difference (8.3 vs. 8.8 years) and greater frequency of smaller errors (73% vs. 67% age estimates ≤ ± 10 years) for area than for length. These suggest that digital area measurements of root translucency may be used as an alternative to length in forensic age estimation. © 2014 American Academy of Forensic Sciences.

  11. Estimation of Fetal Weight during Labor: Still a Challenge.

    PubMed

    Barros, Joana Goulão; Reis, Inês; Pereira, Isabel; Clode, Nuno; Graça, Luís M

    2016-01-01

    To evaluate the accuracy of fetal weight prediction by ultrasonography labor employing a formula including the linear measurements of femur length (FL) and mid-thigh soft-tissue thickness (STT). We conducted a prospective study involving singleton uncomplicated term pregnancies within 48 hours of delivery. Only pregnancies with a cephalic fetus admitted in the labor ward for elective cesarean section, induction of labor or spontaneous labor were included. We excluded all non-Caucasian women, the ones previously diagnosed with gestational diabetes and the ones with evidence of ruptured membranes. Fetal weight estimates were calculated using a previously proposed formula [estimated fetal weight = 1687.47 + (54.1 x FL) + (76.68 x STT). The relationship between actual birth weight and estimated fetal weight was analyzed using Pearson's correlation. The formula's performance was assessed by calculating the signed and absolute errors. Mean weight difference and signed percentage error were calculated for birth weight divided into three subgroups: < 3000 g; 3000-4000 g; and > 4000 g. We included for analysis 145 cases and found a significant, yet low, linear relationship between birth weight and estimated fetal weight (p < 0.001; R2 = 0.197) with an absolute mean error of 10.6%. The lowest mean percentage error (0.3%) corresponded to the subgroup with birth weight between 3000 g and 4000 g. This study demonstrates a poor correlation between actual birth weight and the estimated fetal weight using a formula based on femur length and mid-thigh soft-tissue thickness, both linear parameters. Although avoidance of circumferential ultrasound measurements might prove to be beneficial, it is still yet to be found a fetal estimation formula that can be both accurate and simple to perform.

  12. Field evaluation of distance-estimation error during wetland-dependent bird surveys

    USGS Publications Warehouse

    Nadeau, Christopher P.; Conway, Courtney J.

    2012-01-01

    Context: The most common methods to estimate detection probability during avian point-count surveys involve recording a distance between the survey point and individual birds detected during the survey period. Accurately measuring or estimating distance is an important assumption of these methods; however, this assumption is rarely tested in the context of aural avian point-count surveys. Aims: We expand on recent bird-simulation studies to document the error associated with estimating distance to calling birds in a wetland ecosystem. Methods: We used two approaches to estimate the error associated with five surveyor's distance estimates between the survey point and calling birds, and to determine the factors that affect a surveyor's ability to estimate distance. Key results: We observed biased and imprecise distance estimates when estimating distance to simulated birds in a point-count scenario (x̄error = -9 m, s.d.error = 47 m) and when estimating distances to real birds during field trials (x̄error = 39 m, s.d.error = 79 m). The amount of bias and precision in distance estimates differed among surveyors; surveyors with more training and experience were less biased and more precise when estimating distance to both real and simulated birds. Three environmental factors were important in explaining the error associated with distance estimates, including the measured distance from the bird to the surveyor, the volume of the call and the species of bird. Surveyors tended to make large overestimations to birds close to the survey point, which is an especially serious error in distance sampling. Conclusions: Our results suggest that distance-estimation error is prevalent, but surveyor training may be the easiest way to reduce distance-estimation error. Implications: The present study has demonstrated how relatively simple field trials can be used to estimate the error associated with distance estimates used to estimate detection probability during avian point-count surveys. Evaluating distance-estimation errors will allow investigators to better evaluate the accuracy of avian density and trend estimates. Moreover, investigators who evaluate distance-estimation errors could employ recently developed models to incorporate distance-estimation error into analyses. We encourage further development of such models, including the inclusion of such models into distance-analysis software.

  13. 48 CFR 342.7101-2 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 342.7101-2 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES CONTRACT MANAGEMENT... for the increase (e.g., error in estimate, changed conditions). (6) The latest date by which funds... data received; (2) Request audit or cost advisory services, and technical support, as necessary, for...

  14. Bias in the Wagner-Nelson estimate of the fraction of drug absorbed.

    PubMed

    Wang, Yibin; Nedelman, Jerry

    2002-04-01

    To examine and quantify bias in the Wagner-Nelson estimate of the fraction of drug absorbed resulting from the estimation error of the elimination rate constant (k), measurement error of the drug concentration, and the truncation error in the area under the curve. Bias in the Wagner-Nelson estimate was derived as a function of post-dosing time (t), k, ratio of absorption rate constant to k (r), and the coefficient of variation for estimates of k (CVk), or CV% for the observed concentration, by assuming a one-compartment model and using an independent estimate of k. The derived functions were used for evaluating the bias with r = 0.5, 3, or 6; k = 0.1 or 0.2; CV, = 0.2 or 0.4; and CV, =0.2 or 0.4; for t = 0 to 30 or 60. Estimation error of k resulted in an upward bias in the Wagner-Nelson estimate that could lead to the estimate of the fraction absorbed being greater than unity. The bias resulting from the estimation error of k inflates the fraction of absorption vs. time profiles mainly in the early post-dosing period. The magnitude of the bias in the Wagner-Nelson estimate resulting from estimation error of k was mainly determined by CV,. The bias in the Wagner-Nelson estimate resulting from to estimation error in k can be dramatically reduced by use of the mean of several independent estimates of k, as in studies for development of an in vivo-in vitro correlation. The truncation error in the area under the curve can introduce a negative bias in the Wagner-Nelson estimate. This can partially offset the bias resulting from estimation error of k in the early post-dosing period. Measurement error of concentration does not introduce bias in the Wagner-Nelson estimate. Estimation error of k results in an upward bias in the Wagner-Nelson estimate, mainly in the early drug absorption phase. The truncation error in AUC can result in a downward bias, which may partially offset the upward bias due to estimation error of k in the early absorption phase. Measurement error of concentration does not introduce bias. The joint effect of estimation error of k and truncation error in AUC can result in a non-monotonic fraction-of-drug-absorbed-vs-time profile. However, only estimation error of k can lead to the Wagner-Nelson estimate of fraction of drug absorbed greater than unity.

  15. Prediction of error rates in dose-imprinted memories on board CRRES by two different methods. [Combined Release and Radiation Effects Satellite

    NASA Technical Reports Server (NTRS)

    Brucker, G. J.; Stassinopoulos, E. G.

    1991-01-01

    An analysis of the expected space radiation effects on the single event upset (SEU) properties of CMOS/bulk memories onboard the Combined Release and Radiation Effects Satellite (CRRES) is presented. Dose-imprint data from ground test irradiations of identical devices are applied to the predictions of cosmic-ray-induced space upset rates in the memories onboard the spacecraft. The calculations take into account the effect of total dose on the SEU sensitivity of the devices as the dose accumulates in orbit. Estimates of error rates, which involved an arbitrary selection of a single pair of threshold linear energy transfer (LET) and asymptotic cross-section values, were compared to the results of an integration over the cross-section curves versus LET. The integration gave lower upset rates than the use of the selected values of the SEU parameters. Since the integration approach is more accurate and eliminates the need for an arbitrary definition of threshold LET and asymptotic cross section, it is recommended for all error rate predictions where experimental sigma-versus-LET curves are available.

  16. Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Gu, Guojun; Huffman, George

    2012-01-01

    A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a different number of input products. For the globe the calculated relative error estimate from this study is about 9%, which is also probably a slight overestimate. These tropical and global estimated bias errors provide one estimate of the current state of knowledge of the planet's mean precipitation.

  17. Feasibility of Coherent and Incoherent Backscatter Experiments from the AMPS Laboratory. Technical Section

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.

    1976-01-01

    A computer program simulated the spectrum which resulted when a radar signal was transmitted into the ionosphere for a finite time and received for an equal finite interval. The spectrum derived from this signal is statistical in nature because the signal is scattered from the ionosphere, which is statistical in nature. Many estimates of any property of the ionosphere can be made. Their average value will approach the average property of the ionosphere which is being measured. Due to the statistical nature of the spectrum itself, the estimators will vary about this average. The square root of the variance about this average is called the standard deviation, an estimate of the error which exists in any particular radar measurement. In order to determine the feasibility of the space shuttle radar, the magnitude of these errors for measurements of physical interest must be understood.

  18. Correcting the Standard Errors of 2-Stage Residual Inclusion Estimators for Mendelian Randomization Studies

    PubMed Central

    Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A

    2017-01-01

    Abstract Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. PMID:29106476

  19. Corrigendum to "Extra-terrestrial construction processes - Advancements, opportunities and challenges" [Adv. Space Res. 60 (2017) 1413-1429

    NASA Astrophysics Data System (ADS)

    Lim, Sungwoo; Prabhu, Vibha Levin; Anand, Mahesh; Taylor, Lawrence A.

    2018-05-01

    The authors regret that because of an oversight, the published manuscript contained following errors (i) the estimated energy consumption for laser sintering was ten times larger than the real value as a result of incorrect unit conversion from J/mm2 ∗ thickness (μm) to kW h/m3; (ii) an inappropriate comparison with Benaroya (2010) as the estimation for energy consumption in Benaroya (2010) was based on a conventional furnace and NOT microwave heating. The revised text pertaining to paragraph 2 of Section 2.2.1, the last paragraph of Section 3.3 and Table 1 are provided below.

  20. Load estimator (LOADEST): a FORTRAN program for estimating constituent loads in streams and rivers

    USGS Publications Warehouse

    Runkel, Robert L.; Crawford, Charles G.; Cohn, Timothy A.

    2004-01-01

    LOAD ESTimator (LOADEST) is a FORTRAN program for estimating constituent loads in streams and rivers. Given a time series of streamflow, additional data variables, and constituent concentration, LOADEST assists the user in developing a regression model for the estimation of constituent load (calibration). Explanatory variables within the regression model include various functions of streamflow, decimal time, and additional user-specified data variables. The formulated regression model then is used to estimate loads over a user-specified time interval (estimation). Mean load estimates, standard errors, and 95 percent confidence intervals are developed on a monthly and(or) seasonal basis. The calibration and estimation procedures within LOADEST are based on three statistical estimation methods. The first two methods, Adjusted Maximum Likelihood Estimation (AMLE) and Maximum Likelihood Estimation (MLE), are appropriate when the calibration model errors (residuals) are normally distributed. Of the two, AMLE is the method of choice when the calibration data set (time series of streamflow, additional data variables, and concentration) contains censored data. The third method, Least Absolute Deviation (LAD), is an alternative to maximum likelihood estimation when the residuals are not normally distributed. LOADEST output includes diagnostic tests and warnings to assist the user in determining the appropriate estimation method and in interpreting the estimated loads. This report describes the development and application of LOADEST. Sections of the report describe estimation theory, input/output specifications, sample applications, and installation instructions.

  1. A function space approach to smoothing with applications to model error estimation for flexible spacecraft control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1981-01-01

    A function space approach to smoothing is used to obtain a set of model error estimates inherent in a reduced-order model. By establishing knowledge of inevitable deficiencies in the truncated model, the error estimates provide a foundation for updating the model and thereby improving system performance. The function space smoothing solution leads to a specification of a method for computation of the model error estimates and development of model error analysis techniques for comparison between actual and estimated errors. The paper summarizes the model error estimation approach as well as an application arising in the area of modeling for spacecraft attitude control.

  2. Model error estimation for distributed systems described by elliptic equations

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1983-01-01

    A function space approach is used to develop a theory for estimation of the errors inherent in an elliptic partial differential equation model for a distributed parameter system. By establishing knowledge of the inevitable deficiencies in the model, the error estimates provide a foundation for updating the model. The function space solution leads to a specification of a method for computation of the model error estimates and development of model error analysis techniques for comparison between actual and estimated errors. The paper summarizes the model error estimation approach as well as an application arising in the area of modeling for static shape determination of large flexible systems.

  3. Single Platform Geolocation of Radio Frequency Emitters

    DTIC Science & Technology

    2015-03-26

    Error SNR Signal to Noise Ratio SOI Signal of Interest STK Systems Tool Kit UCA Uniform Circular Array WGS World Geodetic System xv SINGLE PLATFORM...Section 2.6 describes a method to visualize the confidence of estimated parameters. 2.1 Coordinate Systems and Reference Frames The following...be used to visualize the confidence surface using the method developed in Section 2.6. The NLO method will be shown to be the minimization of the

  4. Modeling and analysis of caves using voxelization

    NASA Astrophysics Data System (ADS)

    Szeifert, Gábor; Szabó, Tivadar; Székely, Balázs

    2014-05-01

    Although there are many ways to create three dimensional representations of caves using modern information technology methods, modeling of caves has been challenging for researchers for a long time. One of these promising new alternative modeling methods is using voxels. We are using geodetic measurements as an input for our voxelization project. These geodetic underground surveys recorded the azimuth, altitude and distance of corner points of cave systems relative to each other. The diameter of each cave section is estimated from separate databases originating from different surveys. We have developed a simple but efficient method (it covers more than 99.9 % of the volume of the input model on the average) to convert these vector-type datasets to voxels. We have also developed software components to make visualization of the voxel and vector models easier. Since each cornerpoint position is measured relative to another cornerpoints positions, propagation of uncertainties is an important issue in case of long caves with many separate sections. We are using Monte Carlo simulations to analyze the effect of the error of each geodetic instrument possibly involved in a survey. Cross-sections of the simulated three dimensional distributions show, that even tiny uncertainties of individual measurements can result in high variation of positions that could be reduced by distributing the closing errors if such data are available. Using the results of our simulations, we can estimate cave volume and the error of the calculated cave volume depending on the complexity of the cave. Acknowledgements: the authors are grateful to Ariadne Karst and Cave Exploring Association and State Department of Environmental and Nature Protection of the Hungarian Ministry of Rural Development, Department of National Parks and Landscape Protection, Section Landscape and Cave Protection and Ecotourism for providing the cave measurement data. BS contributed as an Alexander von Humboldt Research Fellow.

  5. Age estimation from dental cementum incremental lines and periodontal disease.

    PubMed

    Dias, P E M; Beaini, T L; Melani, R F H

    2010-12-01

    Age estimation by counting incremental lines in cementum added to the average age of tooth eruption is considered an accurate method by some authors, while others reject it stating weak correlation between estimated and actual age. The aim of this study was to evaluate this technique and check the influence of periodontal disease on age estimates by analyzing both the number of cementum lines and the correlation between cementum thickness and actual age on freshly extracted teeth. Thirty one undecalcified ground cross sections of approximately 30 µm, from 25 teeth were prepared, observed, photographed and measured. Images were enhanced by software and counts were made by one observer, and the results compared with two control-observers. There was moderate correlation ((r)=0.58) for the entire sample, with mean error of 9.7 years. For teeth with periodontal pathologies, correlation was 0.03 with a mean error of 22.6 years. For teeth without periodontal pathologies, correlation was 0.74 with mean error of 1.6 years. There was correlation of 0.69 between cementum thickness and known age for the entire sample, 0.25 for teeth with periodontal problems and 0.75 for teeth without periodontal pathologies. The technique was reliable for periodontally sound teeth, but not for periodontally diseased teeth.

  6. The NICROSIL versus NISIL Type N Thermocouple: A Commercial Reality,

    DTIC Science & Technology

    1983-10-01

    2. foda where Ae, the component of the total thermal emf e, due to inhomogeneity, Ae = e - eO , where e0 is the ’ideal’ emf, S a is the ’ideal’ Seebeck...are moderately stable and not greatly elevated. Appendix VI presents an analysis of the estimated errors that are to be expected when nicrosil versus...section 5.4.1, page 23, para. 1. Title: ANALYSIS OF ERRORS INTRODUCED BY THE USE OF CONVENTIONAL (ANSI TYPES J, K, R, S, or T) LEADWIRES WITH

  7. Bias in error estimation when using cross-validation for model selection.

    PubMed

    Varma, Sudhir; Simon, Richard

    2006-02-23

    Cross-validation (CV) is an effective method for estimating the prediction error of a classifier. Some recent articles have proposed methods for optimizing classifiers by choosing classifier parameter values that minimize the CV error estimate. We have evaluated the validity of using the CV error estimate of the optimized classifier as an estimate of the true error expected on independent data. We used CV to optimize the classification parameters for two kinds of classifiers; Shrunken Centroids and Support Vector Machines (SVM). Random training datasets were created, with no difference in the distribution of the features between the two classes. Using these "null" datasets, we selected classifier parameter values that minimized the CV error estimate. 10-fold CV was used for Shrunken Centroids while Leave-One-Out-CV (LOOCV) was used for the SVM. Independent test data was created to estimate the true error. With "null" and "non null" (with differential expression between the classes) data, we also tested a nested CV procedure, where an inner CV loop is used to perform the tuning of the parameters while an outer CV is used to compute an estimate of the error. The CV error estimate for the classifier with the optimal parameters was found to be a substantially biased estimate of the true error that the classifier would incur on independent data. Even though there is no real difference between the two classes for the "null" datasets, the CV error estimate for the Shrunken Centroid with the optimal parameters was less than 30% on 18.5% of simulated training data-sets. For SVM with optimal parameters the estimated error rate was less than 30% on 38% of "null" data-sets. Performance of the optimized classifiers on the independent test set was no better than chance. The nested CV procedure reduces the bias considerably and gives an estimate of the error that is very close to that obtained on the independent testing set for both Shrunken Centroids and SVM classifiers for "null" and "non-null" data distributions. We show that using CV to compute an error estimate for a classifier that has itself been tuned using CV gives a significantly biased estimate of the true error. Proper use of CV for estimating true error of a classifier developed using a well defined algorithm requires that all steps of the algorithm, including classifier parameter tuning, be repeated in each CV loop. A nested CV procedure provides an almost unbiased estimate of the true error.

  8. Parallel computers - Estimate errors caused by imprecise data

    NASA Technical Reports Server (NTRS)

    Kreinovich, Vladik; Bernat, Andrew; Villa, Elsa; Mariscal, Yvonne

    1991-01-01

    A new approach to the problem of estimating errors caused by imprecise data is proposed in the context of software engineering. A software device is used to produce an ideal solution to the problem, when the computer is capable of computing errors of arbitrary programs. The software engineering aspect of this problem is to describe a device for computing the error estimates in software terms and then to provide precise numbers with error estimates to the user. The feasibility of the program capable of computing both some quantity and its error estimate in the range of possible measurement errors is demonstrated.

  9. Correcting the Standard Errors of 2-Stage Residual Inclusion Estimators for Mendelian Randomization Studies.

    PubMed

    Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A

    2017-11-01

    Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  10. Moments and Root-Mean-Square Error of the Bayesian MMSE Estimator of Classification Error in the Gaussian Model.

    PubMed

    Zollanvari, Amin; Dougherty, Edward R

    2014-06-01

    The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.

  11. A comparison of two estimates of standard error for a ratio-of-means estimator for a mapped-plot sample design in southeast Alaska.

    Treesearch

    Willem W.S. van Hees

    2002-01-01

    Comparisons of estimated standard error for a ratio-of-means (ROM) estimator are presented for forest resource inventories conducted in southeast Alaska between 1995 and 2000. Estimated standard errors for the ROM were generated by using a traditional variance estimator and also approximated by bootstrap methods. Estimates of standard error generated by both...

  12. Estimating Dense Cardiac 3D Motion Using Sparse 2D Tagged MRI Cross-sections*

    PubMed Central

    Ardekani, Siamak; Gunter, Geoffrey; Jain, Saurabh; Weiss, Robert G.; Miller, Michael I.; Younes, Laurent

    2015-01-01

    In this work, we describe a new method, an extension of the Large Deformation Diffeomorphic Metric Mapping to estimate three-dimensional deformation of tagged Magnetic Resonance Imaging Data. Our approach relies on performing non-rigid registration of tag planes that were constructed from set of initial reference short axis tag grids to a set of deformed tag curves. We validated our algorithm using in-vivo tagged images of normal mice. The mapping allows us to compute root mean square distance error between simulated tag curves in a set of long axis image planes and the acquired tag curves in the same plane. Average RMS error was 0.31±0.36(SD) mm, which is approximately 2.5 voxels, indicating good matching accuracy. PMID:25571140

  13. Estimating Gestational Age With Sonography: Regression-Derived Formula Versus the Fetal Biometric Average.

    PubMed

    Cawyer, Chase R; Anderson, Sarah B; Szychowski, Jeff M; Neely, Cherry; Owen, John

    2018-03-01

    To compare the accuracy of a new regression-derived formula developed from the National Fetal Growth Studies data to the common alternative method that uses the average of the gestational ages (GAs) calculated for each fetal biometric measurement (biparietal diameter, head circumference, abdominal circumference, and femur length). This retrospective cross-sectional study identified nonanomalous singleton pregnancies that had a crown-rump length plus at least 1 additional sonographic examination with complete fetal biometric measurements. With the use of the crown-rump length to establish the referent estimated date of delivery, each method's (National Institute of Child Health and Human Development regression versus Hadlock average [Radiology 1984; 152:497-501]), error at every examination was computed. Error, defined as the difference between the crown-rump length-derived GA and each method's predicted GA (weeks), was compared in 3 GA intervals: 1 (14 weeks-20 weeks 6 days), 2 (21 weeks-28 weeks 6 days), and 3 (≥29 weeks). In addition, the proportion of each method's examinations that had errors outside prespecified (±) day ranges was computed by using odds ratios. A total of 16,904 sonograms were identified. The overall and prespecified GA range subset mean errors were significantly smaller for the regression compared to the average (P < .01), and the regression had significantly lower odds of observing examinations outside the specified range of error in GA intervals 2 (odds ratio, 1.15; 95% confidence interval, 1.01-1.31) and 3 (odds ratio, 1.24; 95% confidence interval, 1.17-1.32) than the average method. In a contemporary unselected population of women dated by a crown-rump length-derived GA, the National Institute of Child Health and Human Development regression formula produced fewer estimates outside a prespecified margin of error than the commonly used Hadlock average; the differences were most pronounced for GA estimates at 29 weeks and later. © 2017 by the American Institute of Ultrasound in Medicine.

  14. A comparison between a new model and current models for estimating trunk segment inertial parameters.

    PubMed

    Wicke, Jason; Dumas, Genevieve A; Costigan, Patrick A

    2009-01-05

    Modeling of the body segments to estimate segment inertial parameters is required in the kinetic analysis of human motion. A new geometric model for the trunk has been developed that uses various cross-sectional shapes to estimate segment volume and adopts a non-uniform density function that is gender-specific. The goal of this study was to test the accuracy of the new model for estimating the trunk's inertial parameters by comparing it to the more current models used in biomechanical research. Trunk inertial parameters estimated from dual X-ray absorptiometry (DXA) were used as the standard. Twenty-five female and 24 male college-aged participants were recruited for the study. Comparisons of the new model to the accepted models were accomplished by determining the error between the models' trunk inertial estimates and that from DXA. Results showed that the new model was more accurate across all inertial estimates than the other models. The new model had errors within 6.0% for both genders, whereas the other models had higher average errors ranging from 10% to over 50% and were much more inconsistent between the genders. In addition, there was little consistency in the level of accuracy for the other models when estimating the different inertial parameters. These results suggest that the new model provides more accurate and consistent trunk inertial estimates than the other models for both female and male college-aged individuals. However, similar studies need to be performed using other populations, such as elderly or individuals from a distinct morphology (e.g. obese). In addition, the effect of using different models on the outcome of kinetic parameters, such as joint moments and forces needs to be assessed.

  15. A-posteriori error estimation for second order mechanical systems

    NASA Astrophysics Data System (ADS)

    Ruiner, Thomas; Fehr, Jörg; Haasdonk, Bernard; Eberhard, Peter

    2012-06-01

    One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies degrees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of mechanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advantage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demonstrated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.

  16. Optimal estimation of large structure model errors. [in Space Shuttle controller design

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1979-01-01

    In-flight estimation of large structure model errors is usually required as a means of detecting inevitable deficiencies in large structure controller/estimator models. The present paper deals with a least-squares formulation which seeks to minimize a quadratic functional of the model errors. The properties of these error estimates are analyzed. It is shown that an arbitrary model error can be decomposed as the sum of two components that are orthogonal in a suitably defined function space. Relations between true and estimated errors are defined. The estimates are found to be approximations that retain many of the significant dynamics of the true model errors. Current efforts are directed toward application of the analytical results to a reference large structure model.

  17. Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks.

    PubMed

    Eppenhof, Koen A J; Pluim, Josien P W

    2018-04-01

    Error estimation in nonlinear medical image registration is a nontrivial problem that is important for validation of registration methods. We propose a supervised method for estimation of registration errors in nonlinear registration of three-dimensional (3-D) images. The method is based on a 3-D convolutional neural network that learns to estimate registration errors from a pair of image patches. By applying the network to patches centered around every voxel, we construct registration error maps. The network is trained using a set of representative images that have been synthetically transformed to construct a set of image pairs with known deformations. The method is evaluated on deformable registrations of inhale-exhale pairs of thoracic CT scans. Using ground truth target registration errors on manually annotated landmarks, we evaluate the method's ability to estimate local registration errors. Estimation of full domain error maps is evaluated using a gold standard approach. The two evaluation approaches show that we can train the network to robustly estimate registration errors in a predetermined range, with subvoxel accuracy. We achieved a root-mean-square deviation of 0.51 mm from gold standard registration errors and of 0.66 mm from ground truth landmark registration errors.

  18. A software sensor model based on hybrid fuzzy neural network for rapid estimation water quality in Guangzhou section of Pearl River, China.

    PubMed

    Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao

    2018-01-02

    In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.

  19. How can we better capture food away from Home? Lessons from India's linking person-level meal and household-level food data.

    PubMed

    Fiedler, John L; Yadav, Suryakant

    2017-10-01

    Despite acknowledged shortcomings, household consumption and expenditure surveys (HCES) are increasingly being used to proxy food consumption because they are relatively more available and affordable than surveys using more precise dietary assessment methods. One of the most common, significant sources of HCES measurement error is their under-estimation of food away from home (FAFH). In 2011, India's National Survey Sample Organization introduced revisions in its HCES questionnaire that included replacing "cooked meals"-the single item in the food consumption module designed to capture FAFH at the household level-with five more detailed and explicitly FAFH sub-categories. The survey also contained a section with seven, household member-specific questions about meal patterns during the reference period and included three sources of meals away from home (MAFH) that overlapped three of the new FAFH categories. By providing a conceptual framework with which to organize and consider each household member's meal pattern throughout the reference period, and breaking down the recalling (or estimating) process into household member-specific responses, we assume the MAFH approach makes the key respondent's task less memory- and arithmetically-demanding, and thus more accurate than the FAFH household level approach. We use the MAFH estimates as a reference point, and approximate one portion of FAFH measurement error as the differences in MAFH and FAFH estimates. The MAFH estimates reveal marked heterogeneity in intra-household meal patterns, reflecting the complexity of the HCES's key informant task of reporting household level data, and underscoring its importance as a source of measurement error. We find the household level-based estimates of FAFH increase from just 60.4% of the individual-based estimates in the round prior to the questionnaire modifications to 96.7% after the changes. We conclude that the MFAH-FAFH linked approach substantially reduced FAFH measurement error in India. The approach has wider applicability in global efforts to improve HCES.

  20. Assessment of induced SAR in children exposed to electromagnetic plane waves between 10 MHz and 5.6 GHz

    NASA Astrophysics Data System (ADS)

    Bakker, J. F.; Paulides, M. M.; Christ, A.; Kuster, N.; van Rhoon, G. C.

    2011-05-01

    In this corrigendum, the authors would like to report typographic errors in figures 3 and 4 and to suggest a brief amendment to section 3.1 to avoid further misunderstandings. Figures 3 and 4: the y-axis tick should read 0.1 instead of 1 in both figure 3 (top) and figure 4 (top). In figure 3 (top), the title should be changed to 'SARwb' instead of 'SARwb,max'. Section 3.1. Numerical uncertainty: the following note should be added at the end of the paragraph or as a footnote: 'In order to obtain a worst-case estimate of the numerical uncertainty (table 4), all components were considered as correlated'. The authors would like to express their sincere apologies for the errors in the manuscript.

  1. Design considerations for a suboptimal Kalman filter

    NASA Astrophysics Data System (ADS)

    Difilippo, D. J.

    1995-06-01

    In designing a suboptimal Kalman filter, the designer must decide how to simplify the system error model without causing the filter estimation errors to increase to unacceptable levels. Deletion of certain error states and decoupling of error state dynamics are the two principal model simplifications that are commonly used in suboptimal filter design. For the most part, the decisions as to which error states can be deleted or decoupled are based on the designer's understanding of the physics of the particular system. Consequently, the details of a suboptimal design are usually unique to the specific application. In this paper, the process of designing a suboptimal Kalman filter is illustrated for the case of an airborne transfer-of-alignment (TOA) system used for synthetic aperture radar (SAR) motion compensation. In this application, the filter must continuously transfer the alignment of an onboard Doppler-damped master inertial navigation system (INS) to a strapdown navigator that processes information from a less accurate inertial measurement unit (IMU) mounted on the radar antenna. The IMU is used to measure spurious antenna motion during the SAR imaging interval, so that compensating phase corrections can be computed and applied to the radar returns, thereby presenting image degradation that would otherwise result from such motions. The principles of SAR are described in many references, for instance. The primary function of the TOA Kalman filter in a SAR motion compensation system is to control strapdown navigator attitude errors, and to a less degree, velocity and heading errors. Unlike a classical navigation application, absolute positional accuracy is not important. The motion compensation requirements for SAR imaging are discussed in some detail. This TOA application is particularly appropriate as a vehicle for discussing suboptimal filter design, because the system contains features that can be exploited to allow both deletion and decoupling of error states. In Section 2, a high-level background description of a SAR motion compensation system that incorporates a TOA Kalman filter is given. The optimal TOA filter design is presented in Section 3 with some simulation results to indicate potential filter performance. In Section 4, the suboptimal Kalman filter configuration is derived. Simulation results are also shown in this section to allow comparision between suboptimal and optimal filter performances. Conclusions are contained in Section 5.

  2. Statistical models for estimating daily streamflow in Michigan

    USGS Publications Warehouse

    Holtschlag, D.J.; Salehi, Habib

    1992-01-01

    Statistical models for estimating daily streamflow were analyzed for 25 pairs of streamflow-gaging stations in Michigan. Stations were paired by randomly choosing a station operated in 1989 at which 10 or more years of continuous flow data had been collected and at which flow is virtually unregulated; a nearby station was chosen where flow characteristics are similar. Streamflow data from the 25 randomly selected stations were used as the response variables; streamflow data at the nearby stations were used to generate a set of explanatory variables. Ordinary-least squares regression (OLSR) equations, autoregressive integrated moving-average (ARIMA) equations, and transfer function-noise (TFN) equations were developed to estimate the log transform of flow for the 25 randomly selected stations. The precision of each type of equation was evaluated on the basis of the standard deviation of the estimation errors. OLSR equations produce one set of estimation errors; ARIMA and TFN models each produce l sets of estimation errors corresponding to the forecast lead. The lead-l forecast is the estimate of flow l days ahead of the most recent streamflow used as a response variable in the estimation. In this analysis, the standard deviation of lead l ARIMA and TFN forecast errors were generally lower than the standard deviation of OLSR errors for l < 2 days and l < 9 days, respectively. Composite estimates were computed as a weighted average of forecasts based on TFN equations and backcasts (forecasts of the reverse-ordered series) based on ARIMA equations. The standard deviation of composite errors varied throughout the length of the estimation interval and generally was at maximum near the center of the interval. For comparison with OLSR errors, the mean standard deviation of composite errors were computed for intervals of length 1 to 40 days. The mean standard deviation of length-l composite errors were generally less than the standard deviation of the OLSR errors for l < 32 days. In addition, the composite estimates ensure a gradual transition between periods of estimated and measured flows. Model performance among stations of differing model error magnitudes were compared by computing ratios of the mean standard deviation of the length l composite errors to the standard deviation of OLSR errors. The mean error ratio for the set of 25 selected stations was less than 1 for intervals l < 32 days. Considering the frequency characteristics of the length of intervals of estimated record in Michigan, the effective mean error ratio for intervals < 30 days was 0.52. Thus, for intervals of estimation of 1 month or less, the error of the composite estimate is substantially lower than error of the OLSR estimate.

  3. Comparing Parameter Estimation Techniques for an Electrical Power Transformer Oil Temperature Prediction Model

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1999-01-01

    This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.

  4. Stochastic goal-oriented error estimation with memory

    NASA Astrophysics Data System (ADS)

    Ackmann, Jan; Marotzke, Jochem; Korn, Peter

    2017-11-01

    We propose a stochastic dual-weighted error estimator for the viscous shallow-water equation with boundaries. For this purpose, previous work on memory-less stochastic dual-weighted error estimation is extended by incorporating memory effects. The memory is introduced by describing the local truncation error as a sum of time-correlated random variables. The random variables itself represent the temporal fluctuations in local truncation errors and are estimated from high-resolution information at near-initial times. The resulting error estimator is evaluated experimentally in two classical ocean-type experiments, the Munk gyre and the flow around an island. In these experiments, the stochastic process is adapted locally to the respective dynamical flow regime. Our stochastic dual-weighted error estimator is shown to provide meaningful error bounds for a range of physically relevant goals. We prove, as well as show numerically, that our approach can be interpreted as a linearized stochastic-physics ensemble.

  5. Wind power error estimation in resource assessments.

    PubMed

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  6. Wind Power Error Estimation in Resource Assessments

    PubMed Central

    Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444

  7. Decorrelation of the true and estimated classifier errors in high-dimensional settings.

    PubMed

    Hanczar, Blaise; Hua, Jianping; Dougherty, Edward R

    2007-01-01

    The aim of many microarray experiments is to build discriminatory diagnosis and prognosis models. Given the huge number of features and the small number of examples, model validity which refers to the precision of error estimation is a critical issue. Previous studies have addressed this issue via the deviation distribution (estimated error minus true error), in particular, the deterioration of cross-validation precision in high-dimensional settings where feature selection is used to mitigate the peaking phenomenon (overfitting). Because classifier design is based upon random samples, both the true and estimated errors are sample-dependent random variables, and one would expect a loss of precision if the estimated and true errors are not well correlated, so that natural questions arise as to the degree of correlation and the manner in which lack of correlation impacts error estimation. We demonstrate the effect of correlation on error precision via a decomposition of the variance of the deviation distribution, observe that the correlation is often severely decreased in high-dimensional settings, and show that the effect of high dimensionality on error estimation tends to result more from its decorrelating effects than from its impact on the variance of the estimated error. We consider the correlation between the true and estimated errors under different experimental conditions using both synthetic and real data, several feature-selection methods, different classification rules, and three error estimators commonly used (leave-one-out cross-validation, k-fold cross-validation, and .632 bootstrap). Moreover, three scenarios are considered: (1) feature selection, (2) known-feature set, and (3) all features. Only the first is of practical interest; however, the other two are needed for comparison purposes. We will observe that the true and estimated errors tend to be much more correlated in the case of a known feature set than with either feature selection or using all features, with the better correlation between the latter two showing no general trend, but differing for different models.

  8. Finite Element A Posteriori Error Estimation for Heat Conduction. Degree awarded by George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Lang, Christapher G.; Bey, Kim S. (Technical Monitor)

    2002-01-01

    This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.

  9. Investigation of error sources in regional inverse estimates of greenhouse gas emissions in Canada

    NASA Astrophysics Data System (ADS)

    Chan, E.; Chan, D.; Ishizawa, M.; Vogel, F.; Brioude, J.; Delcloo, A.; Wu, Y.; Jin, B.

    2015-08-01

    Inversion models can use atmospheric concentration measurements to estimate surface fluxes. This study is an evaluation of the errors in a regional flux inversion model for different provinces of Canada, Alberta (AB), Saskatchewan (SK) and Ontario (ON). Using CarbonTracker model results as the target, the synthetic data experiment analyses examined the impacts of the errors from the Bayesian optimisation method, prior flux distribution and the atmospheric transport model, as well as their interactions. The scaling factors for different sub-regions were estimated by the Markov chain Monte Carlo (MCMC) simulation and cost function minimization (CFM) methods. The CFM method results are sensitive to the relative size of the assumed model-observation mismatch and prior flux error variances. Experiment results show that the estimation error increases with the number of sub-regions using the CFM method. For the region definitions that lead to realistic flux estimates, the numbers of sub-regions for the western region of AB/SK combined and the eastern region of ON are 11 and 4 respectively. The corresponding annual flux estimation errors for the western and eastern regions using the MCMC (CFM) method are -7 and -3 % (0 and 8 %) respectively, when there is only prior flux error. The estimation errors increase to 36 and 94 % (40 and 232 %) resulting from transport model error alone. When prior and transport model errors co-exist in the inversions, the estimation errors become 5 and 85 % (29 and 201 %). This result indicates that estimation errors are dominated by the transport model error and can in fact cancel each other and propagate to the flux estimates non-linearly. In addition, it is possible for the posterior flux estimates having larger differences than the prior compared to the target fluxes, and the posterior uncertainty estimates could be unrealistically small that do not cover the target. The systematic evaluation of the different components of the inversion model can help in the understanding of the posterior estimates and percentage errors. Stable and realistic sub-regional and monthly flux estimates for western region of AB/SK can be obtained, but not for the eastern region of ON. This indicates that it is likely a real observation-based inversion for the annual provincial emissions will work for the western region whereas; improvements are needed with the current inversion setup before real inversion is performed for the eastern region.

  10. Perceptions of portion size and energy content: implications for strategies to affect behaviour change.

    PubMed

    Brindal, Emily; Wilson, Carlene; Mohr, Philip; Wittert, Gary

    2012-02-01

    To assess Australian consumers' perception of portion size of fast-food items and their ability to estimate energy content. Cross-sectional computer-based survey. Australia. Fast-food consumers (168 male, 324 female) were asked to recall the items eaten at the most recent visit to a fast-food restaurant, rate the prospective satiety and estimate the energy content of seven fast-food or 'standard' meals relative to a 9000 kJ Guideline Daily Amount. Nine dietitians also completed the energy estimation task. Ratings of prospective satiety generally aligned with the actual size of the meals and indicated that consumers perceived all meals to provide an adequate amount of food, although this differed by gender. The magnitude of the error in energy estimation by consumers was three to ten times that of the dietitians. In both males and females, the average error in energy estimation for the fast-food meals (females: mean 3911 (sd 1998) kJ; males: mean 3382 (sd 1957) kJ) was significantly (P < 0·001) larger than for the standard meals (females: mean 2607 (sd 1623) kJ; males: mean 2754 (sd 1652) kJ). In women, error in energy estimation for fast-food items predicted actual energy intake from fast-food items (β = 0·16, P < 0·01). Knowledge of the energy content of standard and fast-food meals in fast-food consumers in Australia is poor. Awareness of dietary energy should be a focus of health promotion if nutrition information, in its current format, is going to alter behaviour.

  11. Simultaneous treatment of unspecified heteroskedastic model error distribution and mismeasured covariates for restricted moment models.

    PubMed

    Garcia, Tanya P; Ma, Yanyuan

    2017-10-01

    We develop consistent and efficient estimation of parameters in general regression models with mismeasured covariates. We assume the model error and covariate distributions are unspecified, and the measurement error distribution is a general parametric distribution with unknown variance-covariance. We construct root- n consistent, asymptotically normal and locally efficient estimators using the semiparametric efficient score. We do not estimate any unknown distribution or model error heteroskedasticity. Instead, we form the estimator under possibly incorrect working distribution models for the model error, error-prone covariate, or both. Empirical results demonstrate robustness to different incorrect working models in homoscedastic and heteroskedastic models with error-prone covariates.

  12. An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers.

    PubMed

    Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan

    2017-11-18

    Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration-which are the basis of tracking error estimation-are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (-0.25 cycle, 0.25 cycle) to (-0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz.

  13. Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters

    PubMed Central

    Park, Chan Gook

    2018-01-01

    An enhanced pedestrian dead reckoning (PDR) based navigation algorithm, which uses two cascaded Kalman filters (TCKF) for the estimation of course angle and navigation errors, is proposed. The proposed algorithm uses a foot-mounted inertial measurement unit (IMU), waist-mounted magnetic sensors, and a zero velocity update (ZUPT) based inertial navigation technique with TCKF. The first stage filter estimates the course angle error of a human, which is closely related to the heading error of the IMU. In order to obtain the course measurements, the filter uses magnetic sensors and a position-trace based course angle. For preventing magnetic disturbance from contaminating the estimation, the magnetic sensors are attached to the waistband. Because the course angle error is mainly due to the heading error of the IMU, and the characteristic error of the heading angle is highly dependent on that of the course angle, the estimated course angle error is used as a measurement for estimating the heading error in the second stage filter. At the second stage, an inertial navigation system-extended Kalman filter-ZUPT (INS-EKF-ZUPT) method is adopted. As the heading error is estimated directly by using course-angle error measurements, the estimation accuracy for the heading and yaw gyro bias can be enhanced, compared with the ZUPT-only case, which eventually enhances the position accuracy more efficiently. The performance enhancements are verified via experiments, and the way-point position error for the proposed method is compared with those for the ZUPT-only case and with other cases that use ZUPT and various types of magnetic heading measurements. The results show that the position errors are reduced by a maximum of 90% compared with the conventional ZUPT based PDR algorithms. PMID:29690539

  14. Physical Validation of TRMM TMI and PR Monthly Rain Products Over Oklahoma

    NASA Technical Reports Server (NTRS)

    Fisher, Brad L.

    2004-01-01

    The Tropical Rainfall Measuring Mission (TRMM) provides monthly rainfall estimates using data collected by the TRMM satellite. These estimates cover a substantial fraction of the earth's surface. The physical validation of TRMM estimates involves corroborating the accuracy of spaceborne estimates of areal rainfall by inferring errors and biases from ground-based rain estimates. The TRMM error budget consists of two major sources of error: retrieval and sampling. Sampling errors are intrinsic to the process of estimating monthly rainfall and occur because the satellite extrapolates monthly rainfall from a small subset of measurements collected only during satellite overpasses. Retrieval errors, on the other hand, are related to the process of collecting measurements while the satellite is overhead. One of the big challenges confronting the TRMM validation effort is how to best estimate these two main components of the TRMM error budget, which are not easily decoupled. This four-year study computed bulk sampling and retrieval errors for the TRMM microwave imager (TMI) and the precipitation radar (PR) by applying a technique that sub-samples gauge data at TRMM overpass times. Gridded monthly rain estimates are then computed from the monthly bulk statistics of the collected samples, providing a sensor-dependent gauge rain estimate that is assumed to include a TRMM equivalent sampling error. The sub-sampled gauge rain estimates are then used in conjunction with the monthly satellite and gauge (without sub- sampling) estimates to decouple retrieval and sampling errors. The computed mean sampling errors for the TMI and PR were 5.9% and 7.796, respectively, in good agreement with theoretical predictions. The PR year-to-year retrieval biases exceeded corresponding TMI biases, but it was found that these differences were partially due to negative TMI biases during cold months and positive TMI biases during warm months.

  15. Smooth empirical Bayes estimation of observation error variances in linear systems

    NASA Technical Reports Server (NTRS)

    Martz, H. F., Jr.; Lian, M. W.

    1972-01-01

    A smooth empirical Bayes estimator was developed for estimating the unknown random scale component of each of a set of observation error variances. It is shown that the estimator possesses a smaller average squared error loss than other estimators for a discrete time linear system.

  16. Elimination of Emergency Department Medication Errors Due To Estimated Weights.

    PubMed

    Greenwalt, Mary; Griffen, David; Wilkerson, Jim

    2017-01-01

    From 7/2014 through 6/2015, 10 emergency department (ED) medication dosing errors were reported through the electronic incident reporting system of an urban academic medical center. Analysis of these medication errors identified inaccurate estimated weight on patients as the root cause. The goal of this project was to reduce weight-based dosing medication errors due to inaccurate estimated weights on patients presenting to the ED. Chart review revealed that 13.8% of estimated weights documented on admitted ED patients varied more than 10% from subsequent actual admission weights recorded. A random sample of 100 charts containing estimated weights revealed 2 previously unreported significant medication dosage errors (.02 significant error rate). Key improvements included removing barriers to weighing ED patients, storytelling to engage staff and change culture, and removal of the estimated weight documentation field from the ED electronic health record (EHR) forms. With these improvements estimated weights on ED patients, and the resulting medication errors, were eliminated.

  17. An error-based micro-sensor capture system for real-time motion estimation

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Ye, Shiwei; Wang, Zhibo; Huang, Zhipei; Wu, Jiankang; Kong, Yongmei; Zhang, Li

    2017-10-01

    A wearable micro-sensor motion capture system with 16 IMUs and an error-compensatory complementary filter algorithm for real-time motion estimation has been developed to acquire accurate 3D orientation and displacement in real life activities. In the proposed filter algorithm, the gyroscope bias error, orientation error and magnetic disturbance error are estimated and compensated, significantly reducing the orientation estimation error due to sensor noise and drift. Displacement estimation, especially for activities such as jumping, has been the challenge in micro-sensor motion capture. An adaptive gait phase detection algorithm has been developed to accommodate accurate displacement estimation in different types of activities. The performance of this system is benchmarked with respect to the results of VICON optical capture system. The experimental results have demonstrated effectiveness of the system in daily activities tracking, with estimation error 0.16 ± 0.06 m for normal walking and 0.13 ± 0.11 m for jumping motions. Research supported by the National Natural Science Foundation of China (Nos. 61431017, 81272166).

  18. Accurate prediction of cardiorespiratory fitness using cycle ergometry in minimally disabled persons with relapsing-remitting multiple sclerosis.

    PubMed

    Motl, Robert W; Fernhall, Bo

    2012-03-01

    To examine the accuracy of predicting peak oxygen consumption (VO(2peak)) primarily from peak work rate (WR(peak)) recorded during a maximal, incremental exercise test on a cycle ergometer among persons with relapsing-remitting multiple sclerosis (RRMS) who had minimal disability. Cross-sectional study. Clinical research laboratory. Women with RRMS (n=32) and sex-, age-, height-, and weight-matched healthy controls (n=16) completed an incremental exercise test on a cycle ergometer to volitional termination. Not applicable. Measured and predicted VO(2peak) and WR(peak). There were strong, statistically significant associations between measured and predicted VO(2peak) in the overall sample (R(2)=.89, standard error of the estimate=127.4 mL/min) and subsamples with (R(2)=.89, standard error of the estimate=131.3 mL/min) and without (R(2)=.85, standard error of the estimate=126.8 mL/min) multiple sclerosis (MS) based on the linear regression analyses. Based on the 95% confidence limits for worst-case errors, the equation predicted VO(2peak) within 10% of its true value in 95 of every 100 subjects with MS. Peak VO(2) can be accurately predicted in persons with RRMS who have minimal disability as it is in controls by using established equations and WR(peak) recorded from a maximal, incremental exercise test on a cycle ergometer. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. An Empirical State Error Covariance Matrix Orbit Determination Example

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2015-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance is suspect. In its most straight forward form, the technique only requires supplemental calculations to be added to existing batch estimation algorithms. In the current problem being studied a truth model making use of gravity with spherical, J2 and J4 terms plus a standard exponential type atmosphere with simple diurnal and random walk components is used. The ability of the empirical state error covariance matrix to account for errors is investigated under four scenarios during orbit estimation. These scenarios are: exact modeling under known measurement errors, exact modeling under corrupted measurement errors, inexact modeling under known measurement errors, and inexact modeling under corrupted measurement errors. For this problem a simple analog of a distributed space surveillance network is used. The sensors in this network make only range measurements and with simple normally distributed measurement errors. The sensors are assumed to have full horizon to horizon viewing at any azimuth. For definiteness, an orbit at the approximate altitude and inclination of the International Space Station is used for the study. The comparison analyses of the data involve only total vectors. No investigation of specific orbital elements is undertaken. The total vector analyses will look at the chisquare values of the error in the difference between the estimated state and the true modeled state using both the empirical and theoretical error covariance matrices for each of scenario.

  20. Error analysis of finite element method for Poisson–Nernst–Planck equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yuzhou; Sun, Pengtao; Zheng, Bin

    A priori error estimates of finite element method for time-dependent Poisson-Nernst-Planck equations are studied in this work. We obtain the optimal error estimates in L∞(H1) and L2(H1) norms, and suboptimal error estimates in L∞(L2) norm, with linear element, and optimal error estimates in L∞(L2) norm with quadratic or higher-order element, for both semi- and fully discrete finite element approximations. Numerical experiments are also given to validate the theoretical results.

  1. Learning time-dependent noise to reduce logical errors: real time error rate estimation in quantum error correction

    NASA Astrophysics Data System (ADS)

    Huo, Ming-Xia; Li, Ying

    2017-12-01

    Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.

  2. Improvement in error propagation in the Shack-Hartmann-type zonal wavefront sensors.

    PubMed

    Pathak, Biswajit; Boruah, Bosanta R

    2017-12-01

    Estimation of the wavefront from measured slope values is an essential step in a Shack-Hartmann-type wavefront sensor. Using an appropriate estimation algorithm, these measured slopes are converted into wavefront phase values. Hence, accuracy in wavefront estimation lies in proper interpretation of these measured slope values using the chosen estimation algorithm. There are two important sources of errors associated with the wavefront estimation process, namely, the slope measurement error and the algorithm discretization error. The former type is due to the noise in the slope measurements or to the detector centroiding error, and the latter is a consequence of solving equations of a basic estimation algorithm adopted onto a discrete geometry. These errors deserve particular attention, because they decide the preference of a specific estimation algorithm for wavefront estimation. In this paper, we investigate these two important sources of errors associated with the wavefront estimation algorithms of Shack-Hartmann-type wavefront sensors. We consider the widely used Southwell algorithm and the recently proposed Pathak-Boruah algorithm [J. Opt.16, 055403 (2014)JOOPDB0150-536X10.1088/2040-8978/16/5/055403] and perform a comparative study between the two. We find that the latter algorithm is inherently superior to the Southwell algorithm in terms of the error propagation performance. We also conduct experiments that further establish the correctness of the comparative study between the said two estimation algorithms.

  3. Fuel Burn Estimation Model

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano

    2011-01-01

    Conclusions: Validated the fuel estimation procedure using flight test data. A good fuel model can be created if weight and fuel data are available. Error in assumed takeoff weight results in similar amount of error in the fuel estimate. Fuel estimation error bounds can be determined.

  4. An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers

    PubMed Central

    Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan

    2017-01-01

    Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration—which are the basis of tracking error estimation—are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (−0.25 cycle, 0.25 cycle) to (−0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz. PMID:29156581

  5. A simulation test of the effectiveness of several methods for error-checking non-invasive genetic data

    USGS Publications Warehouse

    Roon, David A.; Waits, L.P.; Kendall, K.C.

    2005-01-01

    Non-invasive genetic sampling (NGS) is becoming a popular tool for population estimation. However, multiple NGS studies have demonstrated that polymerase chain reaction (PCR) genotyping errors can bias demographic estimates. These errors can be detected by comprehensive data filters such as the multiple-tubes approach, but this approach is expensive and time consuming as it requires three to eight PCR replicates per locus. Thus, researchers have attempted to correct PCR errors in NGS datasets using non-comprehensive error checking methods, but these approaches have not been evaluated for reliability. We simulated NGS studies with and without PCR error and 'filtered' datasets using non-comprehensive approaches derived from published studies and calculated mark-recapture estimates using CAPTURE. In the absence of data-filtering, simulated error resulted in serious inflations in CAPTURE estimates; some estimates exceeded N by ??? 200%. When data filters were used, CAPTURE estimate reliability varied with per-locus error (E??). At E?? = 0.01, CAPTURE estimates from filtered data displayed < 5% deviance from error-free estimates. When E?? was 0.05 or 0.09, some CAPTURE estimates from filtered data displayed biases in excess of 10%. Biases were positive at high sampling intensities; negative biases were observed at low sampling intensities. We caution researchers against using non-comprehensive data filters in NGS studies, unless they can achieve baseline per-locus error rates below 0.05 and, ideally, near 0.01. However, we suggest that data filters can be combined with careful technique and thoughtful NGS study design to yield accurate demographic information. ?? 2005 The Zoological Society of London.

  6. Adjusting for radiotelemetry error to improve estimates of habitat use.

    Treesearch

    Scott L. Findholt; Bruce K. Johnson; Lyman L. McDonald; John W. Kern; Alan Ager; Rosemary J. Stussy; Larry D. Bryant

    2002-01-01

    Animal locations estimated from radiotelemetry have traditionally been treated as error-free when analyzed in relation to habitat variables. Location error lowers the power of statistical tests of habitat selection. We describe a method that incorporates the error surrounding point estimates into measures of environmental variables determined from a geographic...

  7. An Empirical State Error Covariance Matrix for the Weighted Least Squares Estimation Method

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the un-certainty in the estimated states. By a reinterpretation of the equations involved in the weighted least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. This proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. Results based on the proposed technique will be presented for a simple, two observer, measurement error only problem.

  8. Empirical State Error Covariance Matrix for Batch Estimation

    NASA Technical Reports Server (NTRS)

    Frisbee, Joe

    2015-01-01

    State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the uncertainty in the estimated states. By a reinterpretation of the equations involved in the weighted batch least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. The proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. This empirical error covariance matrix may be calculated as a side computation for each unique batch solution. Results based on the proposed technique will be presented for a simple, two observer and measurement error only problem.

  9. Assessment of Demirjian's 8-teeth technique of age estimation and Indian-specific formulas in an East Indian population: A cross-sectional study.

    PubMed

    Rath, Hemamalini; Rath, Rachna; Mahapatra, Sandeep; Debta, Tribikram

    2017-01-01

    The age of an individual can be assessed by a plethora of widely available tooth-based techniques, among which radiological methods prevail. The Demirjian's technique of age assessment based on tooth development stages has been extensively investigated in different populations of the world. The present study is to assess the applicability of Demirjian's modified 8-teeth technique in age estimation of population of East India (Odisha), utilizing Acharya's Indian-specific cubic functions. One hundred and six pretreatment orthodontic radiographs of patients in an age group of 7-23 years with representation from both genders were assessed for eight left mandibular teeth and scored as per the Demirjian's 9-stage criteria for teeth development stages. Age was calculated on the basis of Acharya's Indian formula. Statistical analysis was performed to compare the estimated and actual age. All data were analyzed using SPSS 20.0 (SPSS Inc., Chicago, Illinois, USA) and MS Excel Package. The results revealed that the mean absolute error (MAE) in age estimation of the entire sample was 1.3 years with 50% of the cases having an error rate within ± 1 year. The MAE in males and females (7-16 years) was 1.8 and 1.5, respectively. Likewise, the MAE in males and females (16.1-23 years) was 1.1 and 1.3, respectively. The low error rate in estimating age justifies the application of this modified technique and Acharya's Indian formulas in the present East Indian population.

  10. Lower limb muscle volume estimation from maximum cross-sectional area and muscle length in cerebral palsy and typically developing individuals.

    PubMed

    Vanmechelen, Inti M; Shortland, Adam P; Noble, Jonathan J

    2018-01-01

    Deficits in muscle volume may be a significant contributor to physical disability in young people with cerebral palsy. However, 3D measurements of muscle volume using MRI or 3D ultrasound may be difficult to make routinely in the clinic. We wished to establish whether accurate estimates of muscle volume could be made from a combination of anatomical cross-sectional area and length measurements in samples of typically developing young people and young people with bilateral cerebral palsy. Lower limb MRI scans were obtained from the lower limbs of 21 individuals with cerebral palsy (14.7±3years, 17 male) and 23 typically developing individuals (16.8±3.3years, 16 male). The volume, length and anatomical cross-sectional area were estimated from six muscles of the left lower limb. Analysis of Covariance demonstrated that the relationship between the length*cross-sectional area and volume was not significantly different depending on the subject group. Linear regression analysis demonstrated that the product of anatomical cross-sectional area and length bore a strong and significant relationship to the measured muscle volume (R 2 values between 0.955 and 0.988) with low standard error of the estimates of 4.8 to 8.9%. This study demonstrates that muscle volume may be estimated accurately in typically developing individuals and individuals with cerebral palsy by a combination of anatomical cross-sectional area and muscle length. 2D ultrasound may be a convenient method of making these measurements routinely in the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Software for Quantifying and Simulating Microsatellite Genotyping Error

    PubMed Central

    Johnson, Paul C.D.; Haydon, Daniel T.

    2007-01-01

    Microsatellite genetic marker data are exploited in a variety of fields, including forensics, gene mapping, kinship inference and population genetics. In all of these fields, inference can be thwarted by failure to quantify and account for data errors, and kinship inference in particular can benefit from separating errors into two distinct classes: allelic dropout and false alleles. Pedant is MS Windows software for estimating locus-specific maximum likelihood rates of these two classes of error. Estimation is based on comparison of duplicate error-prone genotypes: neither reference genotypes nor pedigree data are required. Other functions include: plotting of error rate estimates and confidence intervals; simulations for performing power analysis and for testing the robustness of error rate estimates to violation of the underlying assumptions; and estimation of expected heterozygosity, which is a required input. The program, documentation and source code are available from http://www.stats.gla.ac.uk/~paulj/pedant.html. PMID:20066126

  12. Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.

    2002-01-01

    Engineering computational fluid dynamics (CFD) analysis and design applications focus on output functions (e.g., lift, drag). Errors in these output functions are generally unknown and conservatively accurate solutions may be computed. Computable error estimates can offer the possibility to minimize computational work for a prescribed error tolerance. Such an estimate can be computed by solving the flow equations and the linear adjoint problem for the functional of interest. The computational mesh can be modified to minimize the uncertainty of a computed error estimate. This robust mesh-adaptation procedure automatically terminates when the simulation is within a user specified error tolerance. This procedure for estimating and adapting to error in a functional is demonstrated for three-dimensional Euler problems. An adaptive mesh procedure that links to a Computer Aided Design (CAD) surface representation is demonstrated for wing, wing-body, and extruded high lift airfoil configurations. The error estimation and adaptation procedure yielded corrected functions that are as accurate as functions calculated on uniformly refined grids with ten times as many grid points.

  13. An hp-adaptivity and error estimation for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.

    1995-01-01

    This paper presents an hp-adaptive discontinuous Galerkin method for linear hyperbolic conservation laws. A priori and a posteriori error estimates are derived in mesh-dependent norms which reflect the dependence of the approximate solution on the element size (h) and the degree (p) of the local polynomial approximation. The a posteriori error estimate, based on the element residual method, provides bounds on the actual global error in the approximate solution. The adaptive strategy is designed to deliver an approximate solution with the specified level of error in three steps. The a posteriori estimate is used to assess the accuracy of a given approximate solution and the a priori estimate is used to predict the mesh refinements and polynomial enrichment needed to deliver the desired solution. Numerical examples demonstrate the reliability of the a posteriori error estimates and the effectiveness of the hp-adaptive strategy.

  14. Online machining error estimation method of numerical control gear grinding machine tool based on data analysis of internal sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin

    2016-12-01

    This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.

  15. Medication knowledge, certainty, and risk of errors in health care: a cross-sectional study

    PubMed Central

    2011-01-01

    Background Medication errors are often involved in reported adverse events. Drug therapy, prescribed by physicians, is mostly carried out by nurses, who are expected to master all aspects of medication. Research has revealed the need for improved knowledge in drug dose calculation, and medication knowledge as a whole is poorly investigated. The purpose of this survey was to study registered nurses' medication knowledge, certainty and estimated risk of errors, and to explore factors associated with good results. Methods Nurses from hospitals and primary health care establishments were invited to carry out a multiple-choice test in pharmacology, drug management and drug dose calculations (score range 0-14). Self-estimated certainty in each answer was recorded, graded from 0 = very uncertain to 3 = very certain. Background characteristics and sense of coping were recorded. Risk of error was estimated by combining knowledge and certainty scores. The results are presented as mean (±SD). Results Two-hundred and three registered nurses participated (including 16 males), aged 42.0 (9.3) years with a working experience of 12.4 (9.2) years. Knowledge scores in pharmacology, drug management and drug dose calculations were 10.3 (1.6), 7.5 (1.6), and 11.2 (2.0), respectively, and certainty scores were 1.8 (0.4), 1.9 (0.5), and 2.0 (0.6), respectively. Fifteen percent of the total answers showed a high risk of error, with 25% in drug management. Independent factors associated with high medication knowledge were working in hospitals (p < 0.001), postgraduate specialization (p = 0.01) and completion of courses in drug management (p < 0.01). Conclusions Medication knowledge was found to be unsatisfactory among practicing nurses, with a significant risk for medication errors. The study revealed a need to improve the nurses' basic knowledge, especially when referring to drug management. PMID:21791106

  16. An Application of Semi-parametric Estimator with Weighted Matrix of Data Depth in Variance Component Estimation

    NASA Astrophysics Data System (ADS)

    Pan, X. G.; Wang, J. Q.; Zhou, H. Y.

    2013-05-01

    The variance component estimation (VCE) based on semi-parametric estimator with weighted matrix of data depth has been proposed, because the coupling system model error and gross error exist in the multi-source heterogeneous measurement data of space and ground combined TT&C (Telemetry, Tracking and Command) technology. The uncertain model error has been estimated with the semi-parametric estimator model, and the outlier has been restrained with the weighted matrix of data depth. On the basis of the restriction of the model error and outlier, the VCE can be improved and used to estimate weighted matrix for the observation data with uncertain model error or outlier. Simulation experiment has been carried out under the circumstance of space and ground combined TT&C. The results show that the new VCE based on the model error compensation can determine the rational weight of the multi-source heterogeneous data, and restrain the outlier data.

  17. Bootstrap Standard Errors for Maximum Likelihood Ability Estimates When Item Parameters Are Unknown

    ERIC Educational Resources Information Center

    Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi

    2014-01-01

    When item parameter estimates are used to estimate the ability parameter in item response models, the standard error (SE) of the ability estimate must be corrected to reflect the error carried over from item calibration. For maximum likelihood (ML) ability estimates, a corrected asymptotic SE is available, but it requires a long test and the…

  18. Mapping from disease-specific measures to health-state utility values in individuals with migraine.

    PubMed

    Gillard, Patrick J; Devine, Beth; Varon, Sepideh F; Liu, Lei; Sullivan, Sean D

    2012-05-01

    The objective of this study was to develop empirical algorithms that estimate health-state utility values from disease-specific quality-of-life scores in individuals with migraine. Data from a cross-sectional, multicountry study were used. Individuals with episodic and chronic migraine were randomly assigned to training or validation samples. Spearman's correlation coefficients between paired EuroQol five-dimensional (EQ-5D) questionnaire utility values and both Headache Impact Test (HIT-6) scores and Migraine-Specific Quality-of-Life Questionnaire version 2.1 (MSQ) domain scores (role restrictive, role preventive, and emotional function) were examined. Regression models were constructed to estimate EQ-5D questionnaire utility values from the HIT-6 score or the MSQ domain scores. Preferred algorithms were confirmed in the validation samples. In episodic migraine, the preferred HIT-6 and MSQ algorithms explained 22% and 25% of the variance (R(2)) in the training samples, respectively, and had similar prediction errors (root mean square errors of 0.30). In chronic migraine, the preferred HIT-6 and MSQ algorithms explained 36% and 45% of the variance in the training samples, respectively, and had similar prediction errors (root mean square errors 0.31 and 0.29). In episodic and chronic migraine, no statistically significant differences were observed between the mean observed and the mean estimated EQ-5D questionnaire utility values for the preferred HIT-6 and MSQ algorithms in the validation samples. The relationship between the EQ-5D questionnaire and the HIT-6 or the MSQ is adequate to use regression equations to estimate EQ-5D questionnaire utility values. The preferred HIT-6 and MSQ algorithms will be useful in estimating health-state utilities in migraine trials in which no preference-based measure is present. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  19. Walleye age estimation using otoliths and dorsal spines: Preparation techniques and sampling guidelines based on sex and total length

    USGS Publications Warehouse

    Dembkowski, Daniel J.; Isermann, Daniel A.; Koenigs, Ryan P.

    2017-01-01

    We used dorsal spines and otoliths from 735 Walleye Sander vitreus collected from 35 Wisconsin water bodies to evaluate whether 1) otolith and dorsal spine cross sections provided age estimates similar to simpler methods of preparation (e.g., whole otoliths and dorsal spines, cracked otoliths); and 2) between-reader precision and differences between spine and otolith ages varied in relation to total length (TL), sex, and growth rate. Ages estimated from structures prepared using simpler techniques were generally similar to ages estimated using thin sections of dorsal spines and otoliths, suggesting that, in some instances, much of the additional processing time and specialized equipment associated with thin sectioning could be avoided. Overall, between-reader precision was higher for sectioned otoliths (mean coefficient of variation [CV] = 3.28%; standard error [SE] = 0.33%) than for sectioned dorsal spines (mean CV = 9.20%; SE = 0.56%). When using sectioned otoliths for age assignment, between-reader precision did not vary between sexes or growth categories (i.e., fast, moderate, slow), but between-reader precision was higher for females than males when using sectioned dorsal spines. Dorsal spines were generally effective at replicating otolith ages for male Walleye <450 mm TL and female Walleye <600 mm TL, suggesting that dorsal spines can be used to estimate ages for male Walleye <450 mm TL and female Walleye <600 mm TL. If sex is unknown, we suggest dorsal spines be used to estimate ages for Walleye <450 mm TL, but that otoliths be used for fish >450 mm TL. Our results provide useful guidance on structure and preparation technique selection for Walleye age estimation, thereby allowing biologists to develop sampling guidelines that could be implemented using information that is always (TL) or often (sex) available at the time of fish collection.

  20. Satellite Sampling and Retrieval Errors in Regional Monthly Rain Estimates from TMI AMSR-E, SSM/I, AMSU-B and the TRMM PR

    NASA Technical Reports Server (NTRS)

    Fisher, Brad; Wolff, David B.

    2010-01-01

    Passive and active microwave rain sensors onboard earth-orbiting satellites estimate monthly rainfall from the instantaneous rain statistics collected during satellite overpasses. It is well known that climate-scale rain estimates from meteorological satellites incur sampling errors resulting from the process of discrete temporal sampling and statistical averaging. Sampling and retrieval errors ultimately become entangled in the estimation of the mean monthly rain rate. The sampling component of the error budget effectively introduces statistical noise into climate-scale rain estimates that obscure the error component associated with the instantaneous rain retrieval. Estimating the accuracy of the retrievals on monthly scales therefore necessitates a decomposition of the total error budget into sampling and retrieval error quantities. This paper presents results from a statistical evaluation of the sampling and retrieval errors for five different space-borne rain sensors on board nine orbiting satellites. Using an error decomposition methodology developed by one of the authors, sampling and retrieval errors were estimated at 0.25 resolution within 150 km of ground-based weather radars located at Kwajalein, Marshall Islands and Melbourne, Florida. Error and bias statistics were calculated according to the land, ocean and coast classifications of the surface terrain mask developed for the Goddard Profiling (GPROF) rain algorithm. Variations in the comparative error statistics are attributed to various factors related to differences in the swath geometry of each rain sensor, the orbital and instrument characteristics of the satellite and the regional climatology. The most significant result from this study found that each of the satellites incurred negative longterm oceanic retrieval biases of 10 to 30%.

  1. Calibration of remotely sensed proportion or area estimates for misclassification error

    Treesearch

    Raymond L. Czaplewski; Glenn P. Catts

    1992-01-01

    Classifications of remotely sensed data contain misclassification errors that bias areal estimates. Monte Carlo techniques were used to compare two statistical methods that correct or calibrate remotely sensed areal estimates for misclassification bias using reference data from an error matrix. The inverse calibration estimator was consistently superior to the...

  2. An a-posteriori finite element error estimator for adaptive grid computation of viscous incompressible flows

    NASA Astrophysics Data System (ADS)

    Wu, Heng

    2000-10-01

    In this thesis, an a-posteriori error estimator is presented and employed for solving viscous incompressible flow problems. In an effort to detect local flow features, such as vortices and separation, and to resolve flow details precisely, a velocity angle error estimator e theta which is based on the spatial derivative of velocity direction fields is designed and constructed. The a-posteriori error estimator corresponds to the antisymmetric part of the deformation-rate-tensor, and it is sensitive to the second derivative of the velocity angle field. Rationality discussions reveal that the velocity angle error estimator is a curvature error estimator, and its value reflects the accuracy of streamline curves. It is also found that the velocity angle error estimator contains the nonlinear convective term of the Navier-Stokes equations, and it identifies and computes the direction difference when the convective acceleration direction and the flow velocity direction have a disparity. Through benchmarking computed variables with the analytic solution of Kovasznay flow or the finest grid of cavity flow, it is demonstrated that the velocity angle error estimator has a better performance than the strain error estimator. The benchmarking work also shows that the computed profile obtained by using etheta can achieve the best matching outcome with the true theta field, and that it is asymptotic to the true theta variation field, with a promise of fewer unknowns. Unstructured grids are adapted by employing local cell division as well as unrefinement of transition cells. Using element class and node class can efficiently construct a hierarchical data structure which provides cell and node inter-reference at each adaptive level. Employing element pointers and node pointers can dynamically maintain the connection of adjacent elements and adjacent nodes, and thus avoids time-consuming search processes. The adaptive scheme is applied to viscous incompressible flow at different Reynolds numbers. It is found that the velocity angle error estimator can detect most flow characteristics and produce dense grids in the regions where flow velocity directions have abrupt changes. In addition, the e theta estimator makes the derivative error dilutely distribute in the whole computational domain and also allows the refinement to be conducted at regions of high error. Through comparison of the velocity angle error across the interface with neighbouring cells, it is verified that the adaptive scheme in using etheta provides an optimum mesh which can clearly resolve local flow features in a precise way. The adaptive results justify the applicability of the etheta estimator and prove that this error estimator is a valuable adaptive indicator for the automatic refinement of unstructured grids.

  3. On the Calculation of Uncertainty Statistics with Error Bounds for CFD Calculations Containing Random Parameters and Fields

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2016-01-01

    This chapter discusses the ongoing development of combined uncertainty and error bound estimates for computational fluid dynamics (CFD) calculations subject to imposed random parameters and random fields. An objective of this work is the construction of computable error bound formulas for output uncertainty statistics that guide CFD practitioners in systematically determining how accurately CFD realizations should be approximated and how accurately uncertainty statistics should be approximated for output quantities of interest. Formal error bounds formulas for moment statistics that properly account for the presence of numerical errors in CFD calculations and numerical quadrature errors in the calculation of moment statistics have been previously presented in [8]. In this past work, hierarchical node-nested dense and sparse tensor product quadratures are used to calculate moment statistics integrals. In the present work, a framework has been developed that exploits the hierarchical structure of these quadratures in order to simplify the calculation of an estimate of the quadrature error needed in error bound formulas. When signed estimates of realization error are available, this signed error may also be used to estimate output quantity of interest probability densities as a means to assess the impact of realization error on these density estimates. Numerical results are presented for CFD problems with uncertainty to demonstrate the capabilities of this framework.

  4. Supervised local error estimation for nonlinear image registration using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Eppenhof, Koen A. J.; Pluim, Josien P. W.

    2017-02-01

    Error estimation in medical image registration is valuable when validating, comparing, or combining registration methods. To validate a nonlinear image registration method, ideally the registration error should be known for the entire image domain. We propose a supervised method for the estimation of a registration error map for nonlinear image registration. The method is based on a convolutional neural network that estimates the norm of the residual deformation from patches around each pixel in two registered images. This norm is interpreted as the registration error, and is defined for every pixel in the image domain. The network is trained using a set of artificially deformed images. Each training example is a pair of images: the original image, and a random deformation of that image. No manually labeled ground truth error is required. At test time, only the two registered images are required as input. We train and validate the network on registrations in a set of 2D digital subtraction angiography sequences, such that errors up to eight pixels can be estimated. We show that for this range of errors the convolutional network is able to learn the registration error in pairs of 2D registered images at subpixel precision. Finally, we present a proof of principle for the extension to 3D registration problems in chest CTs, showing that the method has the potential to estimate errors in 3D registration problems.

  5. Goal-oriented explicit residual-type error estimates in XFEM

    NASA Astrophysics Data System (ADS)

    Rüter, Marcus; Gerasimov, Tymofiy; Stein, Erwin

    2013-08-01

    A goal-oriented a posteriori error estimator is derived to control the error obtained while approximately evaluating a quantity of engineering interest, represented in terms of a given linear or nonlinear functional, using extended finite elements of Q1 type. The same approximation method is used to solve the dual problem as required for the a posteriori error analysis. It is shown that for both problems to be solved numerically the same singular enrichment functions can be used. The goal-oriented error estimator presented can be classified as explicit residual type, i.e. the residuals of the approximations are used directly to compute upper bounds on the error of the quantity of interest. This approach therefore extends the explicit residual-type error estimator for classical energy norm error control as recently presented in Gerasimov et al. (Int J Numer Meth Eng 90:1118-1155, 2012a). Without loss of generality, the a posteriori error estimator is applied to the model problem of linear elastic fracture mechanics. Thus, emphasis is placed on the fracture criterion, here the J-integral, as the chosen quantity of interest. Finally, various illustrative numerical examples are presented where, on the one hand, the error estimator is compared to its finite element counterpart and, on the other hand, improved enrichment functions, as introduced in Gerasimov et al. (2012b), are discussed.

  6. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakeman, J.D., E-mail: jdjakem@sandia.gov; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchicalmore » surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  7. Regression-assisted deconvolution.

    PubMed

    McIntyre, Julie; Stefanski, Leonard A

    2011-06-30

    We present a semi-parametric deconvolution estimator for the density function of a random variable biX that is measured with error, a common challenge in many epidemiological studies. Traditional deconvolution estimators rely only on assumptions about the distribution of X and the error in its measurement, and ignore information available in auxiliary variables. Our method assumes the availability of a covariate vector statistically related to X by a mean-variance function regression model, where regression errors are normally distributed and independent of the measurement errors. Simulations suggest that the estimator achieves a much lower integrated squared error than the observed-data kernel density estimator when models are correctly specified and the assumption of normal regression errors is met. We illustrate the method using anthropometric measurements of newborns to estimate the density function of newborn length. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Error analysis and new dual-cosine window for estimating the sensor frequency response function from the step response data

    NASA Astrophysics Data System (ADS)

    Yang, Shuang-Long; Liang, Li-Ping; Liu, Hou-De; Xu, Ke-Jun

    2018-03-01

    Aiming at reducing the estimation error of the sensor frequency response function (FRF) estimated by the commonly used window-based spectral estimation method, the error models of interpolation and transient errors are derived in the form of non-parameter models. Accordingly, window effects on the errors are analyzed and reveal that the commonly used hanning window leads to smaller interpolation error which can also be significantly eliminated by the cubic spline interpolation method when estimating the FRF from the step response data, and window with smaller front-end value can restrain more transient error. Thus, a new dual-cosine window with its non-zero discrete Fourier transform bins at -3, -1, 0, 1, and 3 is constructed for FRF estimation. Compared with the hanning window, the new dual-cosine window has the equivalent interpolation error suppression capability and better transient error suppression capability when estimating the FRF from the step response; specifically, it reduces the asymptotic property of the transient error from O(N-2) of the hanning window method to O(N-4) while only increases the uncertainty slightly (about 0.4 dB). Then, one direction of a wind tunnel strain gauge balance which is a high order, small damping, and non-minimum phase system is employed as the example for verifying the new dual-cosine window-based spectral estimation method. The model simulation result shows that the new dual-cosine window method is better than the hanning window method for FRF estimation, and compared with the Gans method and LPM method, it has the advantages of simple computation, less time consumption, and short data requirement; the actual data calculation result of the balance FRF is consistent to the simulation result. Thus, the new dual-cosine window is effective and practical for FRF estimation.

  9. Sampling Errors of SSM/I and TRMM Rainfall Averages: Comparison with Error Estimates from Surface Data and a Sample Model

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Kundu, Prasun K.; Kummerow, Christian D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Quantitative use of satellite-derived maps of monthly rainfall requires some measure of the accuracy of the satellite estimates. The rainfall estimate for a given map grid box is subject to both remote-sensing error and, in the case of low-orbiting satellites, sampling error due to the limited number of observations of the grid box provided by the satellite. A simple model of rain behavior predicts that Root-mean-square (RMS) random error in grid-box averages should depend in a simple way on the local average rain rate, and the predicted behavior has been seen in simulations using surface rain-gauge and radar data. This relationship was examined using satellite SSM/I data obtained over the western equatorial Pacific during TOGA COARE. RMS error inferred directly from SSM/I rainfall estimates was found to be larger than predicted from surface data, and to depend less on local rain rate than was predicted. Preliminary examination of TRMM microwave estimates shows better agreement with surface data. A simple method of estimating rms error in satellite rainfall estimates is suggested, based on quantities that can be directly computed from the satellite data.

  10. The Sensitivity of Adverse Event Cost Estimates to Diagnostic Coding Error

    PubMed Central

    Wardle, Gavin; Wodchis, Walter P; Laporte, Audrey; Anderson, Geoffrey M; Baker, Ross G

    2012-01-01

    Objective To examine the impact of diagnostic coding error on estimates of hospital costs attributable to adverse events. Data Sources Original and reabstracted medical records of 9,670 complex medical and surgical admissions at 11 hospital corporations in Ontario from 2002 to 2004. Patient specific costs, not including physician payments, were retrieved from the Ontario Case Costing Initiative database. Study Design Adverse events were identified among the original and reabstracted records using ICD10-CA (Canadian adaptation of ICD10) codes flagged as postadmission complications. Propensity score matching and multivariate regression analysis were used to estimate the cost of the adverse events and to determine the sensitivity of cost estimates to diagnostic coding error. Principal Findings Estimates of the cost of the adverse events ranged from $16,008 (metabolic derangement) to $30,176 (upper gastrointestinal bleeding). Coding errors caused the total cost attributable to the adverse events to be underestimated by 16 percent. The impact of coding error on adverse event cost estimates was highly variable at the organizational level. Conclusions Estimates of adverse event costs are highly sensitive to coding error. Adverse event costs may be significantly underestimated if the likelihood of error is ignored. PMID:22091908

  11. Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Zheng, Yuejiu; Ouyang, Minggao; Han, Xuebing; Lu, Languang; Li, Jianqiu

    2018-02-01

    Sate of charge (SOC) estimation is generally acknowledged as one of the most important functions in battery management system for lithium-ion batteries in new energy vehicles. Though every effort is made for various online SOC estimation methods to reliably increase the estimation accuracy as much as possible within the limited on-chip resources, little literature discusses the error sources for those SOC estimation methods. This paper firstly reviews the commonly studied SOC estimation methods from a conventional classification. A novel perspective focusing on the error analysis of the SOC estimation methods is proposed. SOC estimation methods are analyzed from the views of the measured values, models, algorithms and state parameters. Subsequently, the error flow charts are proposed to analyze the error sources from the signal measurement to the models and algorithms for the widely used online SOC estimation methods in new energy vehicles. Finally, with the consideration of the working conditions, choosing more reliable and applicable SOC estimation methods is discussed, and the future development of the promising online SOC estimation methods is suggested.

  12. A posteriori error estimates in voice source recovery

    NASA Astrophysics Data System (ADS)

    Leonov, A. S.; Sorokin, V. N.

    2017-12-01

    The inverse problem of voice source pulse recovery from a segment of a speech signal is under consideration. A special mathematical model is used for the solution that relates these quantities. A variational method of solving inverse problem of voice source recovery for a new parametric class of sources, that is for piecewise-linear sources (PWL-sources), is proposed. Also, a technique for a posteriori numerical error estimation for obtained solutions is presented. A computer study of the adequacy of adopted speech production model with PWL-sources is performed in solving the inverse problems for various types of voice signals, as well as corresponding study of a posteriori error estimates. Numerical experiments for speech signals show satisfactory properties of proposed a posteriori error estimates, which represent the upper bounds of possible errors in solving the inverse problem. The estimate of the most probable error in determining the source-pulse shapes is about 7-8% for the investigated speech material. It is noted that a posteriori error estimates can be used as a criterion of the quality for obtained voice source pulses in application to speaker recognition.

  13. A Complementary Note to 'A Lag-1 Smoother Approach to System-Error Estimation': The Intrinsic Limitations of Residual Diagnostics

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo

    2015-01-01

    Recently, this author studied an approach to the estimation of system error based on combining observation residuals derived from a sequential filter and fixed lag-1 smoother. While extending the methodology to a variational formulation, experimenting with simple models and making sure consistency was found between the sequential and variational formulations, the limitations of the residual-based approach came clearly to the surface. This note uses the sequential assimilation application to simple nonlinear dynamics to highlight the issue. Only when some of the underlying error statistics are assumed known is it possible to estimate the unknown component. In general, when considerable uncertainties exist in the underlying statistics as a whole, attempts to obtain separate estimates of the various error covariances are bound to lead to misrepresentation of errors. The conclusions are particularly relevant to present-day attempts to estimate observation-error correlations from observation residual statistics. A brief illustration of the issue is also provided by comparing estimates of error correlations derived from a quasi-operational assimilation system and a corresponding Observing System Simulation Experiments framework.

  14. Complete Bouguer gravity map of the Medicine Lake Quadrangle, California

    USGS Publications Warehouse

    Finn, C.

    1981-01-01

    A mathematical technique, called kriging, was programmed for a computer to interpolate hydrologic data based on a network of measured values in west-central Kansas. The computer program generated estimated values at the center of each 1-mile section in the Western Kansas Groundwater Management District No. 1 and facilitated contouring of selected values that are needed in the effective management of ground water for irrigation. The kriging technique produced objective and reproducible maps that illustrated hydrologic conditions in the Ogallala aquifer, the principal source of water in west-central Kansas. Maps of the aquifer, which use a 3-year average, included the 1978-80 water-table altitudes, which ranged from about 2,580 to 3,720 feet; the 1978-80 saturated thicknesses, which ranged from about 0 to 250 feet; and the percentage changes in saturated thickness from 1950 to 1978-80, which ranged from about a 50-percent increase to a 100-percent decrease. A map showing errors of estimate also was provided as a measure of reliability for the 1978-80 water-table altitudes. Errors of estimate ranged from 2 to 24 feet. (USGS)

  15. Accurate position estimation methods based on electrical impedance tomography measurements

    NASA Astrophysics Data System (ADS)

    Vergara, Samuel; Sbarbaro, Daniel; Johansen, T. A.

    2017-08-01

    Electrical impedance tomography (EIT) is a technology that estimates the electrical properties of a body or a cross section. Its main advantages are its non-invasiveness, low cost and operation free of radiation. The estimation of the conductivity field leads to low resolution images compared with other technologies, and high computational cost. However, in many applications the target information lies in a low intrinsic dimensionality of the conductivity field. The estimation of this low-dimensional information is addressed in this work. It proposes optimization-based and data-driven approaches for estimating this low-dimensional information. The accuracy of the results obtained with these approaches depends on modelling and experimental conditions. Optimization approaches are sensitive to model discretization, type of cost function and searching algorithms. Data-driven methods are sensitive to the assumed model structure and the data set used for parameter estimation. The system configuration and experimental conditions, such as number of electrodes and signal-to-noise ratio (SNR), also have an impact on the results. In order to illustrate the effects of all these factors, the position estimation of a circular anomaly is addressed. Optimization methods based on weighted error cost functions and derivate-free optimization algorithms provided the best results. Data-driven approaches based on linear models provided, in this case, good estimates, but the use of nonlinear models enhanced the estimation accuracy. The results obtained by optimization-based algorithms were less sensitive to experimental conditions, such as number of electrodes and SNR, than data-driven approaches. Position estimation mean squared errors for simulation and experimental conditions were more than twice for the optimization-based approaches compared with the data-driven ones. The experimental position estimation mean squared error of the data-driven models using a 16-electrode setup was less than 0.05% of the tomograph radius value. These results demonstrate that the proposed approaches can estimate an object’s position accurately based on EIT measurements if enough process information is available for training or modelling. Since they do not require complex calculations it is possible to use them in real-time applications without requiring high-performance computers.

  16. Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks

    NASA Astrophysics Data System (ADS)

    Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.

    2015-03-01

    The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which is to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.

  17. Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks

    NASA Astrophysics Data System (ADS)

    Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.

    2014-11-01

    The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which are to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.

  18. Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations

    NASA Astrophysics Data System (ADS)

    Loseille, A.; Dervieux, A.; Alauzet, F.

    2010-04-01

    This paper studies the coupling between anisotropic mesh adaptation and goal-oriented error estimate. The former is very well suited to the control of the interpolation error. It is generally interpreted as a local geometric error estimate. On the contrary, the latter is preferred when studying approximation errors for PDEs. It generally involves non local error contributions. Consequently, a full and strong coupling between both is hard to achieve due to this apparent incompatibility. This paper shows how to achieve this coupling in three steps. First, a new a priori error estimate is proved in a formal framework adapted to goal-oriented mesh adaptation for output functionals. This estimate is based on a careful analysis of the contributions of the implicit error and of the interpolation error. Second, the error estimate is applied to the set of steady compressible Euler equations which are solved by a stabilized Galerkin finite element discretization. A goal-oriented error estimation is derived. It involves the interpolation error of the Euler fluxes weighted by the gradient of the adjoint state associated with the observed functional. Third, rewritten in the continuous mesh framework, the previous estimate is minimized on the set of continuous meshes thanks to a calculus of variations. The optimal continuous mesh is then derived analytically. Thus, it can be used as a metric tensor field to drive the mesh adaptation. From a numerical point of view, this method is completely automatic, intrinsically anisotropic, and does not depend on any a priori choice of variables to perform the adaptation. 3D examples of steady flows around supersonic and transsonic jets are presented to validate the current approach and to demonstrate its efficiency.

  19. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE PAGES

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  20. Reliable estimation of orbit errors in spaceborne SAR interferometry. The network approach

    NASA Astrophysics Data System (ADS)

    Bähr, Hermann; Hanssen, Ramon F.

    2012-12-01

    An approach to improve orbital state vectors by orbit error estimates derived from residual phase patterns in synthetic aperture radar interferograms is presented. For individual interferograms, an error representation by two parameters is motivated: the baseline error in cross-range and the rate of change of the baseline error in range. For their estimation, two alternatives are proposed: a least squares approach that requires prior unwrapping and a less reliable gridsearch method handling the wrapped phase. In both cases, reliability is enhanced by mutual control of error estimates in an overdetermined network of linearly dependent interferometric combinations of images. Thus, systematic biases, e.g., due to unwrapping errors, can be detected and iteratively eliminated. Regularising the solution by a minimum-norm condition results in quasi-absolute orbit errors that refer to particular images. For the 31 images of a sample ENVISAT dataset, orbit corrections with a mutual consistency on the millimetre level have been inferred from 163 interferograms. The method itself qualifies by reliability and rigorous geometric modelling of the orbital error signal but does not consider interfering large scale deformation effects. However, a separation may be feasible in a combined processing with persistent scatterer approaches or by temporal filtering of the estimates.

  1. An improved estimator for the hydration of fat-free mass from in vivo measurements subject to additive technical errors.

    PubMed

    Kinnamon, Daniel D; Lipsitz, Stuart R; Ludwig, David A; Lipshultz, Steven E; Miller, Tracie L

    2010-04-01

    The hydration of fat-free mass, or hydration fraction (HF), is often defined as a constant body composition parameter in a two-compartment model and then estimated from in vivo measurements. We showed that the widely used estimator for the HF parameter in this model, the mean of the ratios of measured total body water (TBW) to fat-free mass (FFM) in individual subjects, can be inaccurate in the presence of additive technical errors. We then proposed a new instrumental variables estimator that accurately estimates the HF parameter in the presence of such errors. In Monte Carlo simulations, the mean of the ratios of TBW to FFM was an inaccurate estimator of the HF parameter, and inferences based on it had actual type I error rates more than 13 times the nominal 0.05 level under certain conditions. The instrumental variables estimator was accurate and maintained an actual type I error rate close to the nominal level in all simulations. When estimating and performing inference on the HF parameter, the proposed instrumental variables estimator should yield accurate estimates and correct inferences in the presence of additive technical errors, but the mean of the ratios of TBW to FFM in individual subjects may not.

  2. Optimal post-experiment estimation of poorly modeled dynamic systems

    NASA Technical Reports Server (NTRS)

    Mook, D. Joseph

    1988-01-01

    Recently, a novel strategy for post-experiment state estimation of discretely-measured dynamic systems has been developed. The method accounts for errors in the system dynamic model equations in a more general and rigorous manner than do filter-smoother algorithms. The dynamic model error terms do not require the usual process noise assumptions of zero-mean, symmetrically distributed random disturbances. Instead, the model error terms require no prior assumptions other than piecewise continuity. The resulting state estimates are more accurate than filters for applications in which the dynamic model error clearly violates the typical process noise assumptions, and the available measurements are sparse and/or noisy. Estimates of the dynamic model error, in addition to the states, are obtained as part of the solution of a two-point boundary value problem, and may be exploited for numerous reasons. In this paper, the basic technique is explained, and several example applications are given. Included among the examples are both state estimation and exploitation of the model error estimates.

  3. A-posteriori error estimation for the finite point method with applications to compressible flow

    NASA Astrophysics Data System (ADS)

    Ortega, Enrique; Flores, Roberto; Oñate, Eugenio; Idelsohn, Sergio

    2017-08-01

    An a-posteriori error estimate with application to inviscid compressible flow problems is presented. The estimate is a surrogate measure of the discretization error, obtained from an approximation to the truncation terms of the governing equations. This approximation is calculated from the discrete nodal differential residuals using a reconstructed solution field on a modified stencil of points. Both the error estimation methodology and the flow solution scheme are implemented using the Finite Point Method, a meshless technique enabling higher-order approximations and reconstruction procedures on general unstructured discretizations. The performance of the proposed error indicator is studied and applications to adaptive grid refinement are presented.

  4. Frozen section analysis of margins for head and neck tumor resections: reduction of sampling errors with a third histologic level.

    PubMed

    Olson, Stephen M; Hussaini, Mohammad; Lewis, James S

    2011-05-01

    Frozen section analysis is an essential tool for assessing margins intra-operatively to assure complete resection. Many institutions evaluate surgical defect edge tissue provided by the surgeon after the main lesion has been removed. With the increasing use of transoral laser microsurgery, this method is becoming even more prevalent. We sought to evaluate error rates at our large academic institution and to see if sampling errors could be reduced by the simple method change of taking an additional third section on these specimens. All head and neck tumor resection cases from January 2005 through August 2008 with margins evaluated by frozen section were identified by database search. These cases were analyzed by cutting two levels during frozen section and a third permanent section later. All resection cases from August 2008 through July 2009 were identified as well. These were analyzed by cutting three levels during frozen section (the third a 'much deeper' level) and a fourth permanent section later. Error rates for both of these periods were determined. Errors were separated into sampling and interpretation types. There were 4976 total frozen section specimens from 848 patients. The overall error rate was 2.4% for all frozen sections where just two levels were evaluated and was 2.5% when three levels were evaluated (P=0.67). The sampling error rate was 1.6% for two-level sectioning and 1.2% for three-level sectioning (P=0.42). However, when considering only the frozen section cases where tumor was ultimately identified (either at the time of frozen section or on permanent sections) the sampling error rate for two-level sectioning was 15.3 versus 7.4% for three-level sectioning. This difference was statistically significant (P=0.006). Cutting a single additional 'deeper' level at the time of frozen section identifies more tumor-bearing specimens and may reduce the number of sampling errors.

  5. Adjustment of Measurements with Multiplicative Errors: Error Analysis, Estimates of the Variance of Unit Weight, and Effect on Volume Estimation from LiDAR-Type Digital Elevation Models

    PubMed Central

    Shi, Yun; Xu, Peiliang; Peng, Junhuan; Shi, Chuang; Liu, Jingnan

    2014-01-01

    Modern observation technology has verified that measurement errors can be proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. Observational models of this type are called multiplicative error models. This paper is to extend the work of Xu and Shimada published in 2000 on multiplicative error models to analytical error analysis of quantities of practical interest and estimates of the variance of unit weight. We analytically derive the variance-covariance matrices of the three least squares (LS) adjustments, the adjusted measurements and the corrections of measurements in multiplicative error models. For quality evaluation, we construct five estimators for the variance of unit weight in association of the three LS adjustment methods. Although LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based digital elevation models (DEM) have been constructed as if they were of additive random errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and investigate the effect of LiDAR-type multiplicative error measurements on DEM construction and its effect on the estimate of landslide mass volume from the constructed DEM. PMID:24434880

  6. Accounting for response misclassification and covariate measurement error improves power and reduces bias in epidemiologic studies.

    PubMed

    Cheng, Dunlei; Branscum, Adam J; Stamey, James D

    2010-07-01

    To quantify the impact of ignoring misclassification of a response variable and measurement error in a covariate on statistical power, and to develop software for sample size and power analysis that accounts for these flaws in epidemiologic data. A Monte Carlo simulation-based procedure is developed to illustrate the differences in design requirements and inferences between analytic methods that properly account for misclassification and measurement error to those that do not in regression models for cross-sectional and cohort data. We found that failure to account for these flaws in epidemiologic data can lead to a substantial reduction in statistical power, over 25% in some cases. The proposed method substantially reduced bias by up to a ten-fold margin compared to naive estimates obtained by ignoring misclassification and mismeasurement. We recommend as routine practice that researchers account for errors in measurement of both response and covariate data when determining sample size, performing power calculations, or analyzing data from epidemiological studies. 2010 Elsevier Inc. All rights reserved.

  7. Effects of shape, size, and chromaticity of stimuli on estimated size in normally sighted, severely myopic, and visually impaired students.

    PubMed

    Huang, Kuo-Chen; Wang, Hsiu-Feng; Chen, Chun-Ching

    2010-06-01

    Effects of shape, size, and chromaticity of stimuli on participants' errors when estimating the size of simultaneously presented standard and comparison stimuli were examined. 48 Taiwanese college students ages 20 to 24 years old (M = 22.3, SD = 1.3) participated. Analysis showed that the error for estimated size was significantly greater for those in the low-vision group than for those in the normal-vision and severe-myopia groups. The errors were significantly greater with green and blue stimuli than with red stimuli. Circular stimuli produced smaller mean errors than did square stimuli. The actual size of the standard stimulus significantly affected the error for estimated size. Errors for estimations using smaller sizes were significantly higher than when the sizes were larger. Implications of the results for graphics-based interface design, particularly when taking account of visually impaired users, are discussed.

  8. Statistical methods for biodosimetry in the presence of both Berkson and classical measurement error

    NASA Astrophysics Data System (ADS)

    Miller, Austin

    In radiation epidemiology, the true dose received by those exposed cannot be assessed directly. Physical dosimetry uses a deterministic function of the source term, distance and shielding to estimate dose. For the atomic bomb survivors, the physical dosimetry system is well established. The classical measurement errors plaguing the location and shielding inputs to the physical dosimetry system are well known. Adjusting for the associated biases requires an estimate for the classical measurement error variance, for which no data-driven estimate exists. In this case, an instrumental variable solution is the most viable option to overcome the classical measurement error indeterminacy. Biological indicators of dose may serve as instrumental variables. Specification of the biodosimeter dose-response model requires identification of the radiosensitivity variables, for which we develop statistical definitions and variables. More recently, researchers have recognized Berkson error in the dose estimates, introduced by averaging assumptions for many components in the physical dosimetry system. We show that Berkson error induces a bias in the instrumental variable estimate of the dose-response coefficient, and then address the estimation problem. This model is specified by developing an instrumental variable mixed measurement error likelihood function, which is then maximized using a Monte Carlo EM Algorithm. These methods produce dose estimates that incorporate information from both physical and biological indicators of dose, as well as the first instrumental variable based data-driven estimate for the classical measurement error variance.

  9. Optimized tuner selection for engine performance estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L. (Inventor); Garg, Sanjay (Inventor)

    2013-01-01

    A methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. Theoretical Kalman filter estimation error bias and variance values are derived at steady-state operating conditions, and the tuner selection routine is applied to minimize these values. The new methodology yields an improvement in on-line engine performance estimation accuracy.

  10. Characterizing the SWOT discharge error budget on the Sacramento River, CA

    NASA Astrophysics Data System (ADS)

    Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.

    2013-12-01

    The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a significant degradation due to direct error in the discharge estimates. As the width error increases past 20%, the discharge error budget is dominated by the width error. Above two experiments are performed based on AirSWOT scenarios. In addition, we explore the sensitivity of the algorithm to the SWOT scenarios.

  11. Joint estimation over multiple individuals improves behavioural state inference from animal movement data.

    PubMed

    Jonsen, Ian

    2016-02-08

    State-space models provide a powerful way to scale up inference of movement behaviours from individuals to populations when the inference is made across multiple individuals. Here, I show how a joint estimation approach that assumes individuals share identical movement parameters can lead to improved inference of behavioural states associated with different movement processes. I use simulated movement paths with known behavioural states to compare estimation error between nonhierarchical and joint estimation formulations of an otherwise identical state-space model. Behavioural state estimation error was strongly affected by the degree of similarity between movement patterns characterising the behavioural states, with less error when movements were strongly dissimilar between states. The joint estimation model improved behavioural state estimation relative to the nonhierarchical model for simulated data with heavy-tailed Argos location errors. When applied to Argos telemetry datasets from 10 Weddell seals, the nonhierarchical model estimated highly uncertain behavioural state switching probabilities for most individuals whereas the joint estimation model yielded substantially less uncertainty. The joint estimation model better resolved the behavioural state sequences across all seals. Hierarchical or joint estimation models should be the preferred choice for estimating behavioural states from animal movement data, especially when location data are error-prone.

  12. Economic measurement of medical errors using a hospital claims database.

    PubMed

    David, Guy; Gunnarsson, Candace L; Waters, Heidi C; Horblyuk, Ruslan; Kaplan, Harold S

    2013-01-01

    The primary objective of this study was to estimate the occurrence and costs of medical errors from the hospital perspective. Methods from a recent actuarial study of medical errors were used to identify medical injuries. A visit qualified as an injury visit if at least 1 of 97 injury groupings occurred at that visit, and the percentage of injuries caused by medical error was estimated. Visits with more than four injuries were removed from the population to avoid overestimation of cost. Population estimates were extrapolated from the Premier hospital database to all US acute care hospitals. There were an estimated 161,655 medical errors in 2008 and 170,201 medical errors in 2009. Extrapolated to the entire US population, there were more than 4 million unique injury visits containing more than 1 million unique medical errors each year. This analysis estimated that the total annual cost of measurable medical errors in the United States was $985 million in 2008 and just over $1 billion in 2009. The median cost per error to hospitals was $892 for 2008 and rose to $939 in 2009. Nearly one third of all medical injuries were due to error in each year. Medical errors directly impact patient outcomes and hospitals' profitability, especially since 2008 when Medicare stopped reimbursing hospitals for care related to certain preventable medical errors. Hospitals must rigorously analyze causes of medical errors and implement comprehensive preventative programs to reduce their occurrence as the financial burden of medical errors shifts to hospitals. Copyright © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  13. Exploring the link between environmental pollution and economic growth in EU-28 countries: Is there an environmental Kuznets curve?

    PubMed Central

    Armeanu, Daniel; Vintilă, Georgeta; Gherghina, Ştefan Cristian; Drăgoi, Mihaela Cristina; Teodor, Cristian

    2018-01-01

    This study examines the Environmental Kuznets Curve hypothesis (EKC), considering the primary energy consumption among other country-specific variables, for a panel of the EU-28 countries during the period 1990–2014. By estimating pooled OLS regressions with Driscoll-Kraay standard errors in order to account for cross-sectional dependence, the results confirm the EKC hypothesis in the case of emissions of sulfur oxides and emissions of non-methane volatile organic compounds. In addition to pooled estimations, the output of fixed-effects regressions with Driscoll-Kraay standard errors support the EKC hypothesis for greenhouse gas emissions, greenhouse gas emissions intensity of energy consumption, emissions of nitrogen oxides, emissions of non-methane volatile organic compounds and emissions of ammonia. Additionally, the empirical findings from panel vector error correction model reveal a short-run unidirectional causality from GDP per capita growth to greenhouse gas emissions, as well as a bidirectional causal link between primary energy consumption and greenhouse gas emissions. Furthermore, since there occurred no causal link between economic growth and primary energy consumption, the neo-classical view was confirmed, namely the neutrality hypothesis. PMID:29742169

  14. Exploring the link between environmental pollution and economic growth in EU-28 countries: Is there an environmental Kuznets curve?

    PubMed

    Armeanu, Daniel; Vintilă, Georgeta; Andrei, Jean Vasile; Gherghina, Ştefan Cristian; Drăgoi, Mihaela Cristina; Teodor, Cristian

    2018-01-01

    This study examines the Environmental Kuznets Curve hypothesis (EKC), considering the primary energy consumption among other country-specific variables, for a panel of the EU-28 countries during the period 1990-2014. By estimating pooled OLS regressions with Driscoll-Kraay standard errors in order to account for cross-sectional dependence, the results confirm the EKC hypothesis in the case of emissions of sulfur oxides and emissions of non-methane volatile organic compounds. In addition to pooled estimations, the output of fixed-effects regressions with Driscoll-Kraay standard errors support the EKC hypothesis for greenhouse gas emissions, greenhouse gas emissions intensity of energy consumption, emissions of nitrogen oxides, emissions of non-methane volatile organic compounds and emissions of ammonia. Additionally, the empirical findings from panel vector error correction model reveal a short-run unidirectional causality from GDP per capita growth to greenhouse gas emissions, as well as a bidirectional causal link between primary energy consumption and greenhouse gas emissions. Furthermore, since there occurred no causal link between economic growth and primary energy consumption, the neo-classical view was confirmed, namely the neutrality hypothesis.

  15. On-line estimation of error covariance parameters for atmospheric data assimilation

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.

    1995-01-01

    A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Simple-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case that both model error and observation error strongly depend on the actual state of the atmosphere. The single-sample estimation scheme can be incorporated into any four-dimensional statistical data assimilation system that involves explicit calculation of forecast error covariances, including optimal interpolation (OI) and the simplified Kalman filter (SKF). The computational cost of the scheme is high but not prohibitive; on-line estimation of one or two covariance parameters in each analysis box of an operational bozed-OI system is currently feasible. A number of numerical experiments performed with an adaptive SKF and an adaptive version of OI, using a linear two-dimensional shallow-water model and artificially generated model error are described. The performance of the nonadaptive versions of these methods turns out to depend rather strongly on correct specification of model error parameters. These parameters are estimated under a variety of conditions, including uniformly distributed model error and time-dependent model error statistics.

  16. Component Analysis of Errors on PERSIANN Precipitation Estimates over Urmia Lake Basin, IRAN

    NASA Astrophysics Data System (ADS)

    Ghajarnia, N.; Daneshkar Arasteh, P.; Liaghat, A. M.; Araghinejad, S.

    2016-12-01

    In this study, PERSIANN daily dataset is evaluated from 2000 to 2011 in 69 pixels over Urmia Lake basin in northwest of Iran. Different analytical approaches and indexes are used to examine PERSIANN precision in detection and estimation of rainfall rate. The residuals are decomposed into Hit, Miss and FA estimation biases while continues decomposition of systematic and random error components are also analyzed seasonally and categorically. New interpretation of estimation accuracy named "reliability on PERSIANN estimations" is introduced while the changing manners of existing categorical/statistical measures and error components are also seasonally analyzed over different rainfall rate categories. This study yields new insights into the nature of PERSIANN errors over Urmia lake basin as a semi-arid region in the middle-east, including the followings: - The analyzed contingency table indexes indicate better detection precision during spring and fall. - A relatively constant level of error is generally observed among different categories. The range of precipitation estimates at different rainfall rate categories is nearly invariant as a sign for the existence of systematic error. - Low level of reliability is observed on PERSIANN estimations at different categories which are mostly associated with high level of FA error. However, it is observed that as the rate of precipitation increase, the ability and precision of PERSIANN in rainfall detection also increases. - The systematic and random error decomposition in this area shows that PERSIANN has more difficulty in modeling the system and pattern of rainfall rather than to have bias due to rainfall uncertainties. The level of systematic error also considerably increases in heavier rainfalls. It is also important to note that PERSIANN error characteristics at each season varies due to the condition and rainfall patterns of that season which shows the necessity of seasonally different approach for the calibration of this product. Overall, we believe that different error component's analysis performed in this study, can substantially help any further local studies for post-calibration and bias reduction of PERSIANN estimations.

  17. Sampling Errors in Monthly Rainfall Totals for TRMM and SSM/I, Based on Statistics of Retrieved Rain Rates and Simple Models

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Kundu, Prasun K.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Estimates from TRMM satellite data of monthly total rainfall over an area are subject to substantial sampling errors due to the limited number of visits to the area by the satellite during the month. Quantitative comparisons of TRMM averages with data collected by other satellites and by ground-based systems require some estimate of the size of this sampling error. A method of estimating this sampling error based on the actual statistics of the TRMM observations and on some modeling work has been developed. "Sampling error" in TRMM monthly averages is defined here relative to the monthly total a hypothetical satellite permanently stationed above the area would have reported. "Sampling error" therefore includes contributions from the random and systematic errors introduced by the satellite remote sensing system. As part of our long-term goal of providing error estimates for each grid point accessible to the TRMM instruments, sampling error estimates for TRMM based on rain retrievals from TRMM microwave (TMI) data are compared for different times of the year and different oceanic areas (to minimize changes in the statistics due to algorithmic differences over land and ocean). Changes in sampling error estimates due to changes in rain statistics due 1) to evolution of the official algorithms used to process the data, and 2) differences from other remote sensing systems such as the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I), are analyzed.

  18. WE-D-BRF-05: Quantitative Dual-Energy CT Imaging for Proton Stopping Power Computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, D; Williamson, J; Siebers, J

    2014-06-15

    Purpose: To extend the two-parameter separable basis-vector model (BVM) to estimation of proton stopping power from dual-energy CT (DECT) imaging. Methods: BVM assumes that the photon cross sections of any unknown material can be represented as a linear combination of the corresponding quantities for two bracketing basis materials. We show that both the electron density (ρe) and mean excitation energy (Iex) can be modeled by BVM, enabling stopping power to be estimated from the Bethe-Bloch equation. We have implemented an idealized post-processing dual energy imaging (pDECT) simulation consisting of monogenetic 45 keV and 80 keV scanning beams with polystyrene-water andmore » water-CaCl2 solution basis pairs for soft tissues and bony tissues, respectively. The coefficients of 24 standard ICRU tissue compositions were estimated by pDECT. The corresponding ρe, Iex, and stopping power tables were evaluated via BVM and compared to tabulated ICRU 44 reference values. Results: BVM-based pDECT was found to estimate ρe and Iex with average and maximum errors of 0.5% and 2%, respectively, for the 24 tissues. Proton stopping power values at 175 MeV, show average/maximum errors of 0.8%/1.4%. For adipose, muscle and bone, these errors result range prediction accuracies less than 1%. Conclusion: A new two-parameter separable DECT model (BVM) for estimating proton stopping power was developed. Compared to competing parametric fit DECT models, BVM has the comparable prediction accuracy without necessitating iterative solution of nonlinear equations or a sample-dependent empirical relationship between effective atomic number and Iex. Based on the proton BVM, an efficient iterative statistical DECT reconstruction model is under development.« less

  19. An analysis of input errors in precipitation-runoff models using regression with errors in the independent variables

    USGS Publications Warehouse

    Troutman, Brent M.

    1982-01-01

    Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.

  20. Nonparametric Estimation of Standard Errors in Covariance Analysis Using the Infinitesimal Jackknife

    ERIC Educational Resources Information Center

    Jennrich, Robert I.

    2008-01-01

    The infinitesimal jackknife provides a simple general method for estimating standard errors in covariance structure analysis. Beyond its simplicity and generality what makes the infinitesimal jackknife method attractive is that essentially no assumptions are required to produce consistent standard error estimates, not even the requirement that the…

  1. Stress Recovery and Error Estimation for 3-D Shell Structures

    NASA Technical Reports Server (NTRS)

    Riggs, H. R.

    2000-01-01

    The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).

  2. Joint nonparametric correction estimator for excess relative risk regression in survival analysis with exposure measurement error

    PubMed Central

    Wang, Ching-Yun; Cullings, Harry; Song, Xiao; Kopecky, Kenneth J.

    2017-01-01

    SUMMARY Observational epidemiological studies often confront the problem of estimating exposure-disease relationships when the exposure is not measured exactly. In the paper, we investigate exposure measurement error in excess relative risk regression, which is a widely used model in radiation exposure effect research. In the study cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies a generalized version of the classical additive measurement error model, but it may or may not have repeated measurements. In addition, an instrumental variable is available for individuals in a subset of the whole cohort. We develop a nonparametric correction (NPC) estimator using data from the subcohort, and further propose a joint nonparametric correction (JNPC) estimator using all observed data to adjust for exposure measurement error. An optimal linear combination estimator of JNPC and NPC is further developed. The proposed estimators are nonparametric, which are consistent without imposing a covariate or error distribution, and are robust to heteroscedastic errors. Finite sample performance is examined via a simulation study. We apply the developed methods to data from the Radiation Effects Research Foundation, in which chromosome aberration is used to adjust for the effects of radiation dose measurement error on the estimation of radiation dose responses. PMID:29354018

  3. Numerically accurate computational techniques for optimal estimator analyses of multi-parameter models

    NASA Astrophysics Data System (ADS)

    Berger, Lukas; Kleinheinz, Konstantin; Attili, Antonio; Bisetti, Fabrizio; Pitsch, Heinz; Mueller, Michael E.

    2018-05-01

    Modelling unclosed terms in partial differential equations typically involves two steps: First, a set of known quantities needs to be specified as input parameters for a model, and second, a specific functional form needs to be defined to model the unclosed terms by the input parameters. Both steps involve a certain modelling error, with the former known as the irreducible error and the latter referred to as the functional error. Typically, only the total modelling error, which is the sum of functional and irreducible error, is assessed, but the concept of the optimal estimator enables the separate analysis of the total and the irreducible errors, yielding a systematic modelling error decomposition. In this work, attention is paid to the techniques themselves required for the practical computation of irreducible errors. Typically, histograms are used for optimal estimator analyses, but this technique is found to add a non-negligible spurious contribution to the irreducible error if models with multiple input parameters are assessed. Thus, the error decomposition of an optimal estimator analysis becomes inaccurate, and misleading conclusions concerning modelling errors may be drawn. In this work, numerically accurate techniques for optimal estimator analyses are identified and a suitable evaluation of irreducible errors is presented. Four different computational techniques are considered: a histogram technique, artificial neural networks, multivariate adaptive regression splines, and an additive model based on a kernel method. For multiple input parameter models, only artificial neural networks and multivariate adaptive regression splines are found to yield satisfactorily accurate results. Beyond a certain number of input parameters, the assessment of models in an optimal estimator analysis even becomes practically infeasible if histograms are used. The optimal estimator analysis in this paper is applied to modelling the filtered soot intermittency in large eddy simulations using a dataset of a direct numerical simulation of a non-premixed sooting turbulent flame.

  4. Sonographic estimation of fetal weight: comparison of bias, precision and consistency using 12 different formulae.

    PubMed

    Anderson, N G; Jolley, I J; Wells, J E

    2007-08-01

    To determine the major sources of error in ultrasonographic assessment of fetal weight and whether they have changed over the last decade. We performed a prospective observational study in 1991 and again in 2000 of a mixed-risk pregnancy population, estimating fetal weight within 7 days of delivery. In 1991, the Rose and McCallum formula was used for 72 deliveries. Inter- and intraobserver agreement was assessed within this group. Bland-Altman measures of agreement from log data were calculated as ratios. We repeated the study in 2000 in 208 consecutive deliveries, comparing predicted and actual weights for 12 published equations using Bland-Altman and percentage error methods. We compared bias (mean percentage error), precision (SD percentage error), and their consistency across the weight ranges. 95% limits of agreement ranged from - 4.4% to + 3.3% for inter- and intraobserver estimates, but were - 18.0% to 24.0% for estimated and actual birth weight. There was no improvement in accuracy between 1991 and 2000. In 2000 only six of the 12 published formulae had overall bias within 7% and precision within 15%. There was greater bias and poorer precision in nearly all equations if the birth weight was < 1,000 g. Observer error is a relatively minor component of the error in estimating fetal weight; error due to the equation is a larger source of error. Improvements in ultrasound technology have not improved the accuracy of estimating fetal weight. Comparison of methods of estimating fetal weight requires statistical methods that can separate out bias, precision and consistency. Estimating fetal weight in the very low birth weight infant is subject to much greater error than it is in larger babies. Copyright (c) 2007 ISUOG. Published by John Wiley & Sons, Ltd.

  5. Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.

    Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less

  6. A stopping criterion for the iterative solution of partial differential equations

    NASA Astrophysics Data System (ADS)

    Rao, Kaustubh; Malan, Paul; Perot, J. Blair

    2018-01-01

    A stopping criterion for iterative solution methods is presented that accurately estimates the solution error using low computational overhead. The proposed criterion uses information from prior solution changes to estimate the error. When the solution changes are noisy or stagnating it reverts to a less accurate but more robust, low-cost singular value estimate to approximate the error given the residual. This estimator can also be applied to iterative linear matrix solvers such as Krylov subspace or multigrid methods. Examples of the stopping criterion's ability to accurately estimate the non-linear and linear solution error are provided for a number of different test cases in incompressible fluid dynamics.

  7. Consequences of Secondary Calibrations on Divergence Time Estimates.

    PubMed

    Schenk, John J

    2016-01-01

    Secondary calibrations (calibrations based on the results of previous molecular dating studies) are commonly applied in divergence time analyses in groups that lack fossil data; however, the consequences of applying secondary calibrations in a relaxed-clock approach are not fully understood. I tested whether applying the posterior estimate from a primary study as a prior distribution in a secondary study results in consistent age and uncertainty estimates. I compared age estimates from simulations with 100 randomly replicated secondary trees. On average, the 95% credible intervals of node ages for secondary estimates were significantly younger and narrower than primary estimates. The primary and secondary age estimates were significantly different in 97% of the replicates after Bonferroni corrections. Greater error in magnitude was associated with deeper than shallower nodes, but the opposite was found when standardized by median node age, and a significant positive relationship was determined between the number of tips/age of secondary trees and the total amount of error. When two secondary calibrated nodes were analyzed, estimates remained significantly different, and although the minimum and median estimates were associated with less error, maximum age estimates and credible interval widths had greater error. The shape of the prior also influenced error, in which applying a normal, rather than uniform, prior distribution resulted in greater error. Secondary calibrations, in summary, lead to a false impression of precision and the distribution of age estimates shift away from those that would be inferred by the primary analysis. These results suggest that secondary calibrations should not be applied as the only source of calibration in divergence time analyses that test time-dependent hypotheses until the additional error associated with secondary calibrations is more properly modeled to take into account increased uncertainty in age estimates.

  8. Comparing interval estimates for small sample ordinal CFA models

    PubMed Central

    Natesan, Prathiba

    2015-01-01

    Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research. PMID:26579002

  9. Comparing interval estimates for small sample ordinal CFA models.

    PubMed

    Natesan, Prathiba

    2015-01-01

    Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research.

  10. The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod

    NASA Astrophysics Data System (ADS)

    Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.

    1991-07-01

    Measurements of near-surface velocity and concurrent sea level along an ascending Geosat subtrack were used to estimate the mean sea surface height and the Earth's gravitational geoid. Velocity measurements were made on three traverses of a Geosat subtrack within 10 days, using an acoustic Doppler current profiler (ADCP). A small bias in the ADCP velocity was removed by considering a mass balance for two pairs of triangles for which expendable bathythermograph measurements were also made. Because of the large curvature of the Gulf Stream, the gradient wind balance was used to estimate the cross-track component of geostrophic velocity from the ADCP vectors; this component was then integrated to obtain the sea surface height profile. The mean sea surface height was estimated as the difference between the instantaneous sea surface height from ADCP and the Geosat residual sea level, with mesoscale errors reduced by low-pass filtering. The error estimates were divided into a bias, tilt, and mesoscale residual; the bias was ignored because profiles were only determined within a constant of integration. The calculated mean sea surface height estimate agreed with an independent estimate of the mean sea surface height from Geosat, obtained by modeling the Gulf Stream as a Gaussian jet, within the expected errors in the estimates: the tilt error was 0.10 m, and the mesoscale error was 0.044 m. To minimize mesoscale errors in the estimate, the alongtrack geoid estimate was computed as the difference between the mean sea level from the Geosat Exact Repeat Mission and an estimate of the mean sea surface height, rather than as the difference between instantaneous profiles of sea level and sea surface height. In the critical region near the Gulf Stream the estimated error reduction using this method was about 0.07 m. Differences between the geoid estimate and a gravimetric geoid were not within the expected errors: the rms mesoscale difference was 0.24 m rms.

  11. Space-Time Error Representation and Estimation in Navier-Stokes Calculations

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2006-01-01

    The mathematical framework for a-posteriori error estimation of functionals elucidated by Eriksson et al. [7] and Becker and Rannacher [3] is revisited in a space-time context. Using these theories, a hierarchy of exact and approximate error representation formulas are presented for use in error estimation and mesh adaptivity. Numerical space-time results for simple model problems as well as compressible Navier-Stokes flow at Re = 300 over a 2D circular cylinder are then presented to demonstrate elements of the error representation theory for time-dependent problems.

  12. Method of estimating natural recharge to the Edwards Aquifer in the San Antonio area, Texas

    USGS Publications Warehouse

    Puente, Celso

    1978-01-01

    The principal errors in the estimates of annual recharge are related to errors in estimating runoff in ungaged areas, which represent about 30 percent of the infiltration area. The estimated long-term average annual recharge in each basin, however, is probably representative of the actual recharge because the averaging procedure tends to cancel out the major errors.

  13. Adaptive Error Estimation in Linearized Ocean General Circulation Models

    NASA Technical Reports Server (NTRS)

    Chechelnitsky, Michael Y.

    1999-01-01

    Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large representation error, i.e. the dominance of the mesoscale eddies in the T/P signal, which are not part of the 21 by 1" GCM. Therefore, the impact of the observations on the assimilation is very small even after the adjustment of the error statistics. This work demonstrates that simult&neous estimation of the model and measurement error statistics for data assimilation with global ocean data sets and linearized GCMs is possible. However, the error covariance estimation problem is in general highly underdetermined, much more so than the state estimation problem. In other words there exist a very large number of statistical models that can be made consistent with the available data. Therefore, methods for obtaining quantitative error estimates, powerful though they may be, cannot replace physical insight. Used in the right context, as a tool for guiding the choice of a small number of model error parameters, covariance matching can be a useful addition to the repertory of tools available to oceanographers.

  14. Measuring coverage in MNCH: total survey error and the interpretation of intervention coverage estimates from household surveys.

    PubMed

    Eisele, Thomas P; Rhoda, Dale A; Cutts, Felicity T; Keating, Joseph; Ren, Ruilin; Barros, Aluisio J D; Arnold, Fred

    2013-01-01

    Nationally representative household surveys are increasingly relied upon to measure maternal, newborn, and child health (MNCH) intervention coverage at the population level in low- and middle-income countries. Surveys are the best tool we have for this purpose and are central to national and global decision making. However, all survey point estimates have a certain level of error (total survey error) comprising sampling and non-sampling error, both of which must be considered when interpreting survey results for decision making. In this review, we discuss the importance of considering these errors when interpreting MNCH intervention coverage estimates derived from household surveys, using relevant examples from national surveys to provide context. Sampling error is usually thought of as the precision of a point estimate and is represented by 95% confidence intervals, which are measurable. Confidence intervals can inform judgments about whether estimated parameters are likely to be different from the real value of a parameter. We recommend, therefore, that confidence intervals for key coverage indicators should always be provided in survey reports. By contrast, the direction and magnitude of non-sampling error is almost always unmeasurable, and therefore unknown. Information error and bias are the most common sources of non-sampling error in household survey estimates and we recommend that they should always be carefully considered when interpreting MNCH intervention coverage based on survey data. Overall, we recommend that future research on measuring MNCH intervention coverage should focus on refining and improving survey-based coverage estimates to develop a better understanding of how results should be interpreted and used.

  15. Measuring Coverage in MNCH: Total Survey Error and the Interpretation of Intervention Coverage Estimates from Household Surveys

    PubMed Central

    Eisele, Thomas P.; Rhoda, Dale A.; Cutts, Felicity T.; Keating, Joseph; Ren, Ruilin; Barros, Aluisio J. D.; Arnold, Fred

    2013-01-01

    Nationally representative household surveys are increasingly relied upon to measure maternal, newborn, and child health (MNCH) intervention coverage at the population level in low- and middle-income countries. Surveys are the best tool we have for this purpose and are central to national and global decision making. However, all survey point estimates have a certain level of error (total survey error) comprising sampling and non-sampling error, both of which must be considered when interpreting survey results for decision making. In this review, we discuss the importance of considering these errors when interpreting MNCH intervention coverage estimates derived from household surveys, using relevant examples from national surveys to provide context. Sampling error is usually thought of as the precision of a point estimate and is represented by 95% confidence intervals, which are measurable. Confidence intervals can inform judgments about whether estimated parameters are likely to be different from the real value of a parameter. We recommend, therefore, that confidence intervals for key coverage indicators should always be provided in survey reports. By contrast, the direction and magnitude of non-sampling error is almost always unmeasurable, and therefore unknown. Information error and bias are the most common sources of non-sampling error in household survey estimates and we recommend that they should always be carefully considered when interpreting MNCH intervention coverage based on survey data. Overall, we recommend that future research on measuring MNCH intervention coverage should focus on refining and improving survey-based coverage estimates to develop a better understanding of how results should be interpreted and used. PMID:23667331

  16. New dimension analyses with error analysis for quaking aspen and black spruce

    NASA Technical Reports Server (NTRS)

    Woods, K. D.; Botkin, D. B.; Feiveson, A. H.

    1987-01-01

    Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions.

  17. Evaluation of the predicted error of the soil moisture retrieval from C-band SAR by comparison against modelled soil moisture estimates over Australia

    PubMed Central

    Doubková, Marcela; Van Dijk, Albert I.J.M.; Sabel, Daniel; Wagner, Wolfgang; Blöschl, Günter

    2012-01-01

    The Sentinel-1 will carry onboard a C-band radar instrument that will map the European continent once every four days and the global land surface at least once every twelve days with finest 5 × 20 m spatial resolution. The high temporal sampling rate and operational configuration make Sentinel-1 of interest for operational soil moisture monitoring. Currently, updated soil moisture data are made available at 1 km spatial resolution as a demonstration service using Global Mode (GM) measurements from the Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT. The service demonstrates the potential of the C-band observations to monitor variations in soil moisture. Importantly, a retrieval error estimate is also available; these are needed to assimilate observations into models. The retrieval error is estimated by propagating sensor errors through the retrieval model. In this work, the existing ASAR GM retrieval error product is evaluated using independent top soil moisture estimates produced by the grid-based landscape hydrological model (AWRA-L) developed within the Australian Water Resources Assessment system (AWRA). The ASAR GM retrieval error estimate, an assumed prior AWRA-L error estimate and the variance in the respective datasets were used to spatially predict the root mean square error (RMSE) and the Pearson's correlation coefficient R between the two datasets. These were compared with the RMSE calculated directly from the two datasets. The predicted and computed RMSE showed a very high level of agreement in spatial patterns as well as good quantitative agreement; the RMSE was predicted within accuracy of 4% of saturated soil moisture over 89% of the Australian land mass. Predicted and calculated R maps corresponded within accuracy of 10% over 61% of the continent. The strong correspondence between the predicted and calculated RMSE and R builds confidence in the retrieval error model and derived ASAR GM error estimates. The ASAR GM and Sentinel-1 have the same basic physical measurement characteristics, and therefore very similar retrieval error estimation method can be applied. Because of the expected improvements in radiometric resolution of the Sentinel-1 backscatter measurements, soil moisture estimation errors can be expected to be an order of magnitude less than those for ASAR GM. This opens the possibility for operationally available medium resolution soil moisture estimates with very well-specified errors that can be assimilated into hydrological or crop yield models, with potentially large benefits for land-atmosphere fluxes, crop growth, and water balance monitoring and modelling. PMID:23483015

  18. Cardiac conduction velocity estimation from sequential mapping assuming known Gaussian distribution for activation time estimation error.

    PubMed

    Shariat, Mohammad Hassan; Gazor, Saeed; Redfearn, Damian

    2016-08-01

    In this paper, we study the problem of the cardiac conduction velocity (CCV) estimation for the sequential intracardiac mapping. We assume that the intracardiac electrograms of several cardiac sites are sequentially recorded, their activation times (ATs) are extracted, and the corresponding wavefronts are specified. The locations of the mapping catheter's electrodes and the ATs of the wavefronts are used here for the CCV estimation. We assume that the extracted ATs include some estimation errors, which we model with zero-mean white Gaussian noise values with known variances. Assuming stable planar wavefront propagation, we derive the maximum likelihood CCV estimator, when the synchronization times between various recording sites are unknown. We analytically evaluate the performance of the CCV estimator and provide its mean square estimation error. Our simulation results confirm the accuracy of the proposed method and the error analysis of the proposed CCV estimator.

  19. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Improved Method and Uncertainties

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.; hide

    2006-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5 -resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%-80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5deg resolution is relatively small (less than 6% at 5 mm day.1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%-35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%-15% at 5 mm day.1, with proportionate reductions in latent heating sampling errors.

  20. Decay in blood loss estimation skills after web-based didactic training.

    PubMed

    Toledo, Paloma; Eosakul, Stanley T; Goetz, Kristopher; Wong, Cynthia A; Grobman, William A

    2012-02-01

    Accuracy in blood loss estimation has been shown to improve immediately after didactic training. The objective of this study was to evaluate retention of blood loss estimation skills 9 months after a didactic web-based training. Forty-four participants were recruited from a cohort that had undergone web-based training and testing in blood loss estimation. The web-based posttraining test, consisting of pictures of simulated blood loss, was repeated 9 months after the initial training and testing. The primary outcome was the difference in accuracy of estimated blood loss (percent error) at 9 months compared with immediately posttraining. At the 9-month follow-up, the median error in estimation worsened to -34.6%. Although better than the pretraining error of -47.8% (P = 0.003), the 9-month error was significantly less accurate than the immediate posttraining error of -13.5% (P = 0.01). Decay in blood loss estimation skills occurs by 9 months after didactic training.

  1. Evaluation of monthly rainfall estimates derived from the special sensor microwave/imager (SSM/I) over the tropical Pacific

    NASA Technical Reports Server (NTRS)

    Berg, Wesley; Avery, Susan K.

    1995-01-01

    Estimates of monthly rainfall have been computed over the tropical Pacific using passive microwave satellite observations from the special sensor microwave/imager (SSM/I) for the period from July 1987 through December 1990. These monthly estimates are calibrated using data from a network of Pacific atoll rain gauges in order to account for systematic biases and are then compared with several visible and infrared satellite-based rainfall estimation techniques for the purpose of evaluating the performance of the microwave-based estimates. Although several key differences among the various techniques are observed, the general features of the monthly rainfall time series agree very well. Finally, the significant error sources contributing to uncertainties in the monthly estimates are examined and an estimate of the total error is produced. The sampling error characteristics are investigated using data from two SSM/I sensors and a detailed analysis of the characteristics of the diurnal cycle of rainfall over the oceans and its contribution to sampling errors in the monthly SSM/I estimates is made using geosynchronous satellite data. Based on the analysis of the sampling and other error sources the total error was estimated to be of the order of 30 to 50% of the monthly rainfall for estimates averaged over 2.5 deg x 2.5 deg latitude/longitude boxes, with a contribution due to diurnal variability of the order of 10%.

  2. Impact and quantification of the sources of error in DNA pooling designs.

    PubMed

    Jawaid, A; Sham, P

    2009-01-01

    The analysis of genome wide variation offers the possibility of unravelling the genes involved in the pathogenesis of disease. Genome wide association studies are also particularly useful for identifying and validating targets for therapeutic intervention as well as for detecting markers for drug efficacy and side effects. The cost of such large-scale genetic association studies may be reduced substantially by the analysis of pooled DNA from multiple individuals. However, experimental errors inherent in pooling studies lead to a potential increase in the false positive rate and a loss in power compared to individual genotyping. Here we quantify various sources of experimental error using empirical data from typical pooling experiments and corresponding individual genotyping counts using two statistical methods. We provide analytical formulas for calculating these different errors in the absence of complete information, such as replicate pool formation, and for adjusting for the errors in the statistical analysis. We demonstrate that DNA pooling has the potential of estimating allele frequencies accurately, and adjusting the pooled allele frequency estimates for differential allelic amplification considerably improves accuracy. Estimates of the components of error show that differential allelic amplification is the most important contributor to the error variance in absolute allele frequency estimation, followed by allele frequency measurement and pool formation errors. Our results emphasise the importance of minimising experimental errors and obtaining correct error estimates in genetic association studies.

  3. Bayes Error Rate Estimation Using Classifier Ensembles

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Ghosh, Joydeep

    2003-01-01

    The Bayes error rate gives a statistical lower bound on the error achievable for a given classification problem and the associated choice of features. By reliably estimating th is rate, one can assess the usefulness of the feature set that is being used for classification. Moreover, by comparing the accuracy achieved by a given classifier with the Bayes rate, one can quantify how effective that classifier is. Classical approaches for estimating or finding bounds for the Bayes error, in general, yield rather weak results for small sample sizes; unless the problem has some simple characteristics, such as Gaussian class-conditional likelihoods. This article shows how the outputs of a classifier ensemble can be used to provide reliable and easily obtainable estimates of the Bayes error with negligible extra computation. Three methods of varying sophistication are described. First, we present a framework that estimates the Bayes error when multiple classifiers, each providing an estimate of the a posteriori class probabilities, a recombined through averaging. Second, we bolster this approach by adding an information theoretic measure of output correlation to the estimate. Finally, we discuss a more general method that just looks at the class labels indicated by ensem ble members and provides error estimates based on the disagreements among classifiers. The methods are illustrated for artificial data, a difficult four-class problem involving underwater acoustic data, and two problems from the Problem benchmarks. For data sets with known Bayes error, the combiner-based methods introduced in this article outperform existing methods. The estimates obtained by the proposed methods also seem quite reliable for the real-life data sets for which the true Bayes rates are unknown.

  4. Unscented predictive variable structure filter for satellite attitude estimation with model errors when using low precision sensors

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Li, Hengnian

    2016-10-01

    For the satellite attitude estimation problem, the serious model errors always exist and hider the estimation performance of the Attitude Determination and Control System (ACDS), especially for a small satellite with low precision sensors. To deal with this problem, a new algorithm for the attitude estimation, referred to as the unscented predictive variable structure filter (UPVSF) is presented. This strategy is proposed based on the variable structure control concept and unscented transform (UT) sampling method. It can be implemented in real time with an ability to estimate the model errors on-line, in order to improve the state estimation precision. In addition, the model errors in this filter are not restricted only to the Gaussian noises; therefore, it has the advantages to deal with the various kinds of model errors or noises. It is anticipated that the UT sampling strategy can further enhance the robustness and accuracy of the novel UPVSF. Numerical simulations show that the proposed UPVSF is more effective and robustness in dealing with the model errors and low precision sensors compared with the traditional unscented Kalman filter (UKF).

  5. Tissue resistivity estimation in the presence of positional and geometrical uncertainties.

    PubMed

    Baysal, U; Eyüboğlu, B M

    2000-08-01

    Geometrical uncertainties (organ boundary variation and electrode position uncertainties) are the biggest sources of error in estimating electrical resistivity of tissues from body surface measurements. In this study, in order to decrease estimation errors, the statistically constrained minimum mean squared error estimation algorithm (MiMSEE) is constrained with a priori knowledge of the geometrical uncertainties in addition to the constraints based on geometry, resistivity range, linearization and instrumentation errors. The MiMSEE calculates an optimum inverse matrix, which maps the surface measurements to the unknown resistivity distribution. The required data are obtained from four-electrode impedance measurements, similar to injected-current electrical impedance tomography (EIT). In this study, the surface measurements are simulated by using a numerical thorax model. The data are perturbed with additive instrumentation noise. Simulated surface measurements are then used to estimate the tissue resistivities by using the proposed algorithm. The results are compared with the results of conventional least squares error estimator (LSEE). Depending on the region, the MiMSEE yields an estimation error between 0.42% and 31.3% compared with 7.12% to 2010% for the LSEE. It is shown that the MiMSEE is quite robust even in the case of geometrical uncertainties.

  6. New GRACE-Derived Storage Change Estimates Using Empirical Mode Extraction

    NASA Astrophysics Data System (ADS)

    Aierken, A.; Lee, H.; Yu, H.; Ate, P.; Hossain, F.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Shum, C. K.

    2017-12-01

    Estimated mass change from GRACE spherical harmonic solutions have north/south stripes and east/west banded errors due to random noise and modeling errors. Low pass filters like decorrelation and Gaussian smoothing are typically applied to reduce noise and errors. However, these filters introduce leakage errors that need to be addressed. GRACE mascon estimates (JPL and CSR mascon solutions) do not need decorrelation or Gaussian smoothing and offer larger signal magnitudes compared to the GRACE spherical harmonics (SH) filtered results. However, a recent study [Chen et al., JGR, 2017] demonstrated that both JPL and CSR mascon solutions also have leakage errors. We developed a new postprocessing method based on empirical mode decomposition to estimate mass change from GRACE SH solutions without decorrelation and Gaussian smoothing, the two main sources of leakage errors. We found that, without any post processing, the noise and errors in spherical harmonic solutions introduced very clear high frequency components in the spatial domain. By removing these high frequency components and reserve the overall pattern of the signal, we obtained better mass estimates with minimum leakage errors. The new global mass change estimates captured all the signals observed by GRACE without the stripe errors. Results were compared with traditional methods over the Tonle Sap Basin in Cambodia, Northwestern India, Central Valley in California, and the Caspian Sea. Our results provide larger signal magnitudes which are in good agreement with the leakage corrected (forward modeled) SH results.

  7. The Use of Neural Networks in Identifying Error Sources in Satellite-Derived Tropical SST Estimates

    PubMed Central

    Lee, Yung-Hsiang; Ho, Chung-Ru; Su, Feng-Chun; Kuo, Nan-Jung; Cheng, Yu-Hsin

    2011-01-01

    An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model. The root mean square error (RMSE) for the daily SST estimate is reduced from 0.58 K to 0.38 K and mean absolute percentage error (MAPE) is 1.03%. For the hourly mean SST estimate, its RMSE is also reduced from 0.66 K to 0.44 K and the MAPE is 1.3%. PMID:22164030

  8. Noise-induced errors in geophysical parameter estimation from retarding potential analyzers in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Debchoudhury, Shantanab; Earle, Gregory

    2017-04-01

    Retarding Potential Analyzers (RPA) have a rich flight heritage. Standard curve-fitting analysis techniques exist that can infer state variables in the ionospheric plasma environment from RPA data, but the estimation process is prone to errors arising from a number of sources. Previous work has focused on the effects of grid geometry on uncertainties in estimation; however, no prior study has quantified the estimation errors due to additive noise. In this study, we characterize the errors in estimation of thermal plasma parameters by adding noise to the simulated data derived from the existing ionospheric models. We concentrate on low-altitude, mid-inclination orbits since a number of nano-satellite missions are focused on this region of the ionosphere. The errors are quantified and cross-correlated for varying geomagnetic conditions.

  9. Using Audit Information to Adjust Parameter Estimates for Data Errors in Clinical Trials

    PubMed Central

    Shepherd, Bryan E.; Shaw, Pamela A.; Dodd, Lori E.

    2013-01-01

    Background Audits are often performed to assess the quality of clinical trial data, but beyond detecting fraud or sloppiness, the audit data is generally ignored. In earlier work using data from a non-randomized study, Shepherd and Yu (2011) developed statistical methods to incorporate audit results into study estimates, and demonstrated that audit data could be used to eliminate bias. Purpose In this manuscript we examine the usefulness of audit-based error-correction methods in clinical trial settings where a continuous outcome is of primary interest. Methods We demonstrate the bias of multiple linear regression estimates in general settings with an outcome that may have errors and a set of covariates for which some may have errors and others, including treatment assignment, are recorded correctly for all subjects. We study this bias under different assumptions including independence between treatment assignment, covariates, and data errors (conceivable in a double-blinded randomized trial) and independence between treatment assignment and covariates but not data errors (possible in an unblinded randomized trial). We review moment-based estimators to incorporate the audit data and propose new multiple imputation estimators. The performance of estimators is studied in simulations. Results When treatment is randomized and unrelated to data errors, estimates of the treatment effect using the original error-prone data (i.e., ignoring the audit results) are unbiased. In this setting, both moment and multiple imputation estimators incorporating audit data are more variable than standard analyses using the original data. In contrast, in settings where treatment is randomized but correlated with data errors and in settings where treatment is not randomized, standard treatment effect estimates will be biased. And in all settings, parameter estimates for the original, error-prone covariates will be biased. Treatment and covariate effect estimates can be corrected by incorporating audit data using either the multiple imputation or moment-based approaches. Bias, precision, and coverage of confidence intervals improve as the audit size increases. Limitations The extent of bias and the performance of methods depend on the extent and nature of the error as well as the size of the audit. This work only considers methods for the linear model. Settings much different than those considered here need further study. Conclusions In randomized trials with continuous outcomes and treatment assignment independent of data errors, standard analyses of treatment effects will be unbiased and are recommended. However, if treatment assignment is correlated with data errors or other covariates, naive analyses may be biased. In these settings, and when covariate effects are of interest, approaches for incorporating audit results should be considered. PMID:22848072

  10. Estimation of geopotential differences over intercontinental locations using satellite and terrestrial measurements. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Pavlis, Nikolaos K.

    1991-01-01

    An error analysis study was conducted in order to assess the current accuracies and the future anticipated improvements in the estimation of geopotential differences over intercontinental locations. An observation/estimation scheme was proposed and studied, whereby gravity disturbance measurements on the Earth's surface, in caps surrounding the estimation points, are combined with corresponding data in caps directly over these points at the altitude of a low orbiting satellite, for the estimation of the geopotential difference between the terrestrial stations. The mathematical modeling required to relate the primary observables to the parameters to be estimated, was studied for the terrestrial data and the data at altitude. Emphasis was placed on the examination of systematic effects and on the corresponding reductions that need to be applied to the measurements to avoid systematic errors. The error estimation for the geopotential differences was performed using both truncation theory and least squares collocation with ring averages, in case observations on the Earth's surface only are used. The error analysis indicated that with the currently available global geopotential model OSU89B and with gravity disturbance data in 2 deg caps surrounding the estimation points, the error of the geopotential difference arising from errors in the reference model and the cap data is about 23 kgal cm, for 30 deg station separation.

  11. (How) do we learn from errors? A prospective study of the link between the ward's learning practices and medication administration errors.

    PubMed

    Drach-Zahavy, A; Somech, A; Admi, H; Peterfreund, I; Peker, H; Priente, O

    2014-03-01

    Attention in the ward should shift from preventing medication administration errors to managing them. Nevertheless, little is known in regard with the practices nursing wards apply to learn from medication administration errors as a means of limiting them. To test the effectiveness of four types of learning practices, namely, non-integrated, integrated, supervisory and patchy learning practices in limiting medication administration errors. Data were collected from a convenient sample of 4 hospitals in Israel by multiple methods (observations and self-report questionnaires) at two time points. The sample included 76 wards (360 nurses). Medication administration error was defined as any deviation from prescribed medication processes and measured by a validated structured observation sheet. Wards' use of medication administration technologies, location of the medication station, and workload were observed; learning practices and demographics were measured by validated questionnaires. Results of the mixed linear model analysis indicated that the use of technology and quiet location of the medication cabinet were significantly associated with reduced medication administration errors (estimate=.03, p<.05 and estimate=-.17, p<.01 correspondingly), while workload was significantly linked to inflated medication administration errors (estimate=.04, p<.05). Of the learning practices, supervisory learning was the only practice significantly linked to reduced medication administration errors (estimate=-.04, p<.05). Integrated and patchy learning were significantly linked to higher levels of medication administration errors (estimate=-.03, p<.05 and estimate=-.04, p<.01 correspondingly). Non-integrated learning was not associated with it (p>.05). How wards manage errors might have implications for medication administration errors beyond the effects of typical individual, organizational and technology risk factors. Head nurse can facilitate learning from errors by "management by walking around" and monitoring nurses' medication administration behaviors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Sliding mode output feedback control based on tracking error observer with disturbance estimator.

    PubMed

    Xiao, Lingfei; Zhu, Yue

    2014-07-01

    For a class of systems who suffers from disturbances, an original output feedback sliding mode control method is presented based on a novel tracking error observer with disturbance estimator. The mathematical models of the systems are not required to be with high accuracy, and the disturbances can be vanishing or nonvanishing, while the bounds of disturbances are unknown. By constructing a differential sliding surface and employing reaching law approach, a sliding mode controller is obtained. On the basis of an extended disturbance estimator, a creative tracking error observer is produced. By using the observation of tracking error and the estimation of disturbance, the sliding mode controller is implementable. It is proved that the disturbance estimation error and tracking observation error are bounded, the sliding surface is reachable and the closed-loop system is robustly stable. The simulations on a servomotor positioning system and a five-degree-of-freedom active magnetic bearings system verify the effect of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Quantifying acoustic doppler current profiler discharge uncertainty: A Monte Carlo based tool for moving-boat measurements

    USGS Publications Warehouse

    Mueller, David S.

    2017-01-01

    This paper presents a method using Monte Carlo simulations for assessing uncertainty of moving-boat acoustic Doppler current profiler (ADCP) discharge measurements using a software tool known as QUant, which was developed for this purpose. Analysis was performed on 10 data sets from four Water Survey of Canada gauging stations in order to evaluate the relative contribution of a range of error sources to the total estimated uncertainty. The factors that differed among data sets included the fraction of unmeasured discharge relative to the total discharge, flow nonuniformity, and operator decisions about instrument programming and measurement cross section. As anticipated, it was found that the estimated uncertainty is dominated by uncertainty of the discharge in the unmeasured areas, highlighting the importance of appropriate selection of the site, the instrument, and the user inputs required to estimate the unmeasured discharge. The main contributor to uncertainty was invalid data, but spatial inhomogeneity in water velocity and bottom-track velocity also contributed, as did variation in the edge velocity, uncertainty in the edge distances, edge coefficients, and the top and bottom extrapolation methods. To a lesser extent, spatial inhomogeneity in the bottom depth also contributed to the total uncertainty, as did uncertainty in the ADCP draft at shallow sites. The estimated uncertainties from QUant can be used to assess the adequacy of standard operating procedures. They also provide quantitative feedback to the ADCP operators about the quality of their measurements, indicating which parameters are contributing most to uncertainty, and perhaps even highlighting ways in which uncertainty can be reduced. Additionally, QUant can be used to account for self-dependent error sources such as heading errors, which are a function of heading. The results demonstrate the importance of a Monte Carlo method tool such as QUant for quantifying random and bias errors when evaluating the uncertainty of moving-boat ADCP measurements.

  14. Bias correction by use of errors-in-variables regression models in studies with K-X-ray fluorescence bone lead measurements.

    PubMed

    Lamadrid-Figueroa, Héctor; Téllez-Rojo, Martha M; Angeles, Gustavo; Hernández-Ávila, Mauricio; Hu, Howard

    2011-01-01

    In-vivo measurement of bone lead by means of K-X-ray fluorescence (KXRF) is the preferred biological marker of chronic exposure to lead. Unfortunately, considerable measurement error associated with KXRF estimations can introduce bias in estimates of the effect of bone lead when this variable is included as the exposure in a regression model. Estimates of uncertainty reported by the KXRF instrument reflect the variance of the measurement error and, although they can be used to correct the measurement error bias, they are seldom used in epidemiological statistical analyzes. Errors-in-variables regression (EIV) allows for correction of bias caused by measurement error in predictor variables, based on the knowledge of the reliability of such variables. The authors propose a way to obtain reliability coefficients for bone lead measurements from uncertainty data reported by the KXRF instrument and compare, by the use of Monte Carlo simulations, results obtained using EIV regression models vs. those obtained by the standard procedures. Results of the simulations show that Ordinary Least Square (OLS) regression models provide severely biased estimates of effect, and that EIV provides nearly unbiased estimates. Although EIV effect estimates are more imprecise, their mean squared error is much smaller than that of OLS estimates. In conclusion, EIV is a better alternative than OLS to estimate the effect of bone lead when measured by KXRF. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Comparing models of change to estimate the mediated effect in the pretest-posttest control group design

    PubMed Central

    Valente, Matthew J.; MacKinnon, David P.

    2017-01-01

    Models to assess mediation in the pretest-posttest control group design are understudied in the behavioral sciences even though it is the design of choice for evaluating experimental manipulations. The paper provides analytical comparisons of the four most commonly used models used to estimate the mediated effect in this design: Analysis of Covariance (ANCOVA), difference score, residualized change score, and cross-sectional model. Each of these models are fitted using a Latent Change Score specification and a simulation study assessed bias, Type I error, power, and confidence interval coverage of the four models. All but the ANCOVA model make stringent assumptions about the stability and cross-lagged relations of the mediator and outcome that may not be plausible in real-world applications. When these assumptions do not hold, Type I error and statistical power results suggest that only the ANCOVA model has good performance. The four models are applied to an empirical example. PMID:28845097

  16. Comparing models of change to estimate the mediated effect in the pretest-posttest control group design.

    PubMed

    Valente, Matthew J; MacKinnon, David P

    2017-01-01

    Models to assess mediation in the pretest-posttest control group design are understudied in the behavioral sciences even though it is the design of choice for evaluating experimental manipulations. The paper provides analytical comparisons of the four most commonly used models used to estimate the mediated effect in this design: Analysis of Covariance (ANCOVA), difference score, residualized change score, and cross-sectional model. Each of these models are fitted using a Latent Change Score specification and a simulation study assessed bias, Type I error, power, and confidence interval coverage of the four models. All but the ANCOVA model make stringent assumptions about the stability and cross-lagged relations of the mediator and outcome that may not be plausible in real-world applications. When these assumptions do not hold, Type I error and statistical power results suggest that only the ANCOVA model has good performance. The four models are applied to an empirical example.

  17. Types of Possible Survey Errors in Estimates Published in the Weekly Natural Gas Storage Report

    EIA Publications

    2016-01-01

    This document lists types of potential errors in EIA estimates published in the WNGSR. Survey errors are an unavoidable aspect of data collection. Error is inherent in all collected data, regardless of the source of the data and the care and competence of data collectors. The type and extent of error depends on the type and characteristics of the survey.

  18. A national physician survey of diagnostic error in paediatrics.

    PubMed

    Perrem, Lucy M; Fanshawe, Thomas R; Sharif, Farhana; Plüddemann, Annette; O'Neill, Michael B

    2016-10-01

    This cross-sectional survey explored paediatric physician perspectives regarding diagnostic errors. All paediatric consultants and specialist registrars in Ireland were invited to participate in this anonymous online survey. The response rate for the study was 54 % (n = 127). Respondents had a median of 9-year clinical experience (interquartile range (IQR) 4-20 years). A diagnostic error was reported at least monthly by 19 (15.0 %) respondents. Consultants reported significantly less diagnostic errors compared to trainees (p value = 0.01). Cognitive error was the top-ranked contributing factor to diagnostic error, with incomplete history and examination considered to be the principal cognitive error. Seeking a second opinion and close follow-up of patients to ensure that the diagnosis is correct were the highest-ranked, clinician-based solutions to diagnostic error. Inadequate staffing levels and excessive workload were the most highly ranked system-related and situational factors. Increased access to and availability of consultants and experts was the most highly ranked system-based solution to diagnostic error. We found a low level of self-perceived diagnostic error in an experienced group of paediatricians, at variance with the literature and warranting further clarification. The results identify perceptions on the major cognitive, system-related and situational factors contributing to diagnostic error and also key preventative strategies. • Diagnostic errors are an important source of preventable patient harm and have an estimated incidence of 10-15 %. • They are multifactorial in origin and include cognitive, system-related and situational factors. What is New: • We identified a low rate of self-perceived diagnostic error in contrast to the existing literature. • Incomplete history and examination, inadequate staffing levels and excessive workload are cited as the principal contributing factors to diagnostic error in this study.

  19. Fisher classifier and its probability of error estimation

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    Computationally efficient expressions are derived for estimating the probability of error using the leave-one-out method. The optimal threshold for the classification of patterns projected onto Fisher's direction is derived. A simple generalization of the Fisher classifier to multiple classes is presented. Computational expressions are developed for estimating the probability of error of the multiclass Fisher classifier.

  20. Disturbance torque rejection properties of the NASA/JPL 70-meter antenna axis servos

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1989-01-01

    Analytic methods for evaluating pointing errors caused by external disturbance torques are developed and applied to determine the effects of representative values of wind and friction torque. The expressions relating pointing errors to disturbance torques are shown to be strongly dependent upon the state estimator parameters, as well as upon the state feedback gain and the flow versus pressure characteristics of the hydraulic system. Under certain conditions, when control is derived from an uncorrected estimate of integral position error, the desired type 2 servo properties are not realized and finite steady-state position errors result. Methods for reducing these errors to negligible proportions through the proper selection of control gain and estimator correction parameters are demonstrated. The steady-state error produced by a disturbance torque is found to be directly proportional to the hydraulic internal leakage. This property can be exploited to provide a convenient method of determining system leakage from field measurements of estimator error, axis rate, and hydraulic differential pressure.

  1. Estimating tree bole volume using artificial neural network models for four species in Turkey.

    PubMed

    Ozçelik, Ramazan; Diamantopoulou, Maria J; Brooks, John R; Wiant, Harry V

    2010-01-01

    Tree bole volumes of 89 Scots pine (Pinus sylvestris L.), 96 Brutian pine (Pinus brutia Ten.), 107 Cilicica fir (Abies cilicica Carr.) and 67 Cedar of Lebanon (Cedrus libani A. Rich.) trees were estimated using Artificial Neural Network (ANN) models. Neural networks offer a number of advantages including the ability to implicitly detect complex nonlinear relationships between input and output variables, which is very helpful in tree volume modeling. Two different neural network architectures were used and produced the Back propagation (BPANN) and the Cascade Correlation (CCANN) Artificial Neural Network models. In addition, tree bole volume estimates were compared to other established tree bole volume estimation techniques including the centroid method, taper equations, and existing standard volume tables. An overview of the features of ANNs and traditional methods is presented and the advantages and limitations of each one of them are discussed. For validation purposes, actual volumes were determined by aggregating the volumes of measured short sections (average 1 meter) of the tree bole using Smalian's formula. The results reported in this research suggest that the selected cascade correlation artificial neural network (CCANN) models are reliable for estimating the tree bole volume of the four examined tree species since they gave unbiased results and were superior to almost all methods in terms of error (%) expressed as the mean of the percentage errors. 2009 Elsevier Ltd. All rights reserved.

  2. Measurement System Characterization in the Presence of Measurement Errors

    NASA Technical Reports Server (NTRS)

    Commo, Sean A.

    2012-01-01

    In the calibration of a measurement system, data are collected in order to estimate a mathematical model between one or more factors of interest and a response. Ordinary least squares is a method employed to estimate the regression coefficients in the model. The method assumes that the factors are known without error; yet, it is implicitly known that the factors contain some uncertainty. In the literature, this uncertainty is known as measurement error. The measurement error affects both the estimates of the model coefficients and the prediction, or residual, errors. There are some methods, such as orthogonal least squares, that are employed in situations where measurement errors exist, but these methods do not directly incorporate the magnitude of the measurement errors. This research proposes a new method, known as modified least squares, that combines the principles of least squares with knowledge about the measurement errors. This knowledge is expressed in terms of the variance ratio - the ratio of response error variance to measurement error variance.

  3. Quantifying the impact of material-model error on macroscale quantities-of-interest using multiscale a posteriori error-estimation techniques

    DOE PAGES

    Brown, Judith A.; Bishop, Joseph E.

    2016-07-20

    An a posteriori error-estimation framework is introduced to quantify and reduce modeling errors resulting from approximating complex mesoscale material behavior with a simpler macroscale model. Such errors may be prevalent when modeling welds and additively manufactured structures, where spatial variations and material textures may be present in the microstructure. We consider a case where a <100> fiber texture develops in the longitudinal scanning direction of a weld. Transversely isotropic elastic properties are obtained through homogenization of a microstructural model with this texture and are considered the reference weld properties within the error-estimation framework. Conversely, isotropic elastic properties are considered approximatemore » weld properties since they contain no representation of texture. Errors introduced by using isotropic material properties to represent a weld are assessed through a quantified error bound in the elastic regime. Lastly, an adaptive error reduction scheme is used to determine the optimal spatial variation of the isotropic weld properties to reduce the error bound.« less

  4. Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and deposition observations

    NASA Astrophysics Data System (ADS)

    Winiarek, Victor; Bocquet, Marc; Duhanyan, Nora; Roustan, Yelva; Saunier, Olivier; Mathieu, Anne

    2014-01-01

    Inverse modelling techniques can be used to estimate the amount of radionuclides and the temporal profile of the source term released in the atmosphere during the accident of the Fukushima Daiichi nuclear power plant in March 2011. In Winiarek et al. (2012b), the lower bounds of the caesium-137 and iodine-131 source terms were estimated with such techniques, using activity concentration measurements. The importance of an objective assessment of prior errors (the observation errors and the background errors) was emphasised for a reliable inversion. In such critical context where the meteorological conditions can make the source term partly unobservable and where only a few observations are available, such prior estimation techniques are mandatory, the retrieved source term being very sensitive to this estimation. We propose to extend the use of these techniques to the estimation of prior errors when assimilating observations from several data sets. The aim is to compute an estimate of the caesium-137 source term jointly using all available data about this radionuclide, such as activity concentrations in the air, but also daily fallout measurements and total cumulated fallout measurements. It is crucial to properly and simultaneously estimate the background errors and the prior errors relative to each data set. A proper estimation of prior errors is also a necessary condition to reliably estimate the a posteriori uncertainty of the estimated source term. Using such techniques, we retrieve a total released quantity of caesium-137 in the interval 11.6-19.3 PBq with an estimated standard deviation range of 15-20% depending on the method and the data sets. The “blind” time intervals of the source term have also been strongly mitigated compared to the first estimations with only activity concentration data.

  5. An Empirical State Error Covariance Matrix for Batch State Estimation

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty. Also, in its most straight forward form, the technique only requires supplemental calculations to be added to existing batch algorithms. The generation of this direct, empirical form of the state error covariance matrix is independent of the dimensionality of the observations. Mixed degrees of freedom for an observation set are allowed. As is the case with any simple, empirical sample variance problems, the presented approach offers an opportunity (at least in the case of weighted least squares) to investigate confidence interval estimates for the error covariance matrix elements. The diagonal or variance terms of the error covariance matrix have a particularly simple form to associate with either a multiple degree of freedom chi-square distribution (more approximate) or with a gamma distribution (less approximate). The off diagonal or covariance terms of the matrix are less clear in their statistical behavior. However, the off diagonal covariance matrix elements still lend themselves to standard confidence interval error analysis. The distributional forms associated with the off diagonal terms are more varied and, perhaps, more approximate than those associated with the diagonal terms. Using a simple weighted least squares sample problem, results obtained through use of the proposed technique are presented. The example consists of a simple, two observer, triangulation problem with range only measurements. Variations of this problem reflect an ideal case (perfect knowledge of the range errors) and a mismodeled case (incorrect knowledge of the range errors).

  6. An Analysis of a Finite Element Method for Convection-Diffusion Problems. Part II. A Posteriori Error Estimates and Adaptivity.

    DTIC Science & Technology

    1983-03-01

    AN ANALYSIS OF A FINITE ELEMENT METHOD FOR CONVECTION- DIFFUSION PROBLEMS PART II: A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY by W. G. Szymczak Y 6a...PERIOD COVERED AN ANALYSIS OF A FINITE ELEMENT METHOD FOR final life of the contract CONVECTION- DIFFUSION PROBLEM S. Part II: A POSTERIORI ERROR ...Element Method for Convection- Diffusion Problems. Part II: A Posteriori Error Estimates and Adaptivity W. G. Szvmczak and I. Babu~ka# Laboratory for

  7. A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates

    NASA Astrophysics Data System (ADS)

    Huang, Weizhang; Kamenski, Lennard; Lang, Jens

    2010-03-01

    A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß-Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.

  8. Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen

    2016-01-01

    Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.

  9. Effect of correlated observation error on parameters, predictions, and uncertainty

    USGS Publications Warehouse

    Tiedeman, Claire; Green, Christopher T.

    2013-01-01

    Correlations among observation errors are typically omitted when calculating observation weights for model calibration by inverse methods. We explore the effects of omitting these correlations on estimates of parameters, predictions, and uncertainties. First, we develop a new analytical expression for the difference in parameter variance estimated with and without error correlations for a simple one-parameter two-observation inverse model. Results indicate that omitting error correlations from both the weight matrix and the variance calculation can either increase or decrease the parameter variance, depending on the values of error correlation (ρ) and the ratio of dimensionless scaled sensitivities (rdss). For small ρ, the difference in variance is always small, but for large ρ, the difference varies widely depending on the sign and magnitude of rdss. Next, we consider a groundwater reactive transport model of denitrification with four parameters and correlated geochemical observation errors that are computed by an error-propagation approach that is new for hydrogeologic studies. We compare parameter estimates, predictions, and uncertainties obtained with and without the error correlations. Omitting the correlations modestly to substantially changes parameter estimates, and causes both increases and decreases of parameter variances, consistent with the analytical expression. Differences in predictions for the models calibrated with and without error correlations can be greater than parameter differences when both are considered relative to their respective confidence intervals. These results indicate that including observation error correlations in weighting for nonlinear regression can have important effects on parameter estimates, predictions, and their respective uncertainties.

  10. A New Formulation of the Filter-Error Method for Aerodynamic Parameter Estimation in Turbulence

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2015-01-01

    A new formulation of the filter-error method for estimating aerodynamic parameters in nonlinear aircraft dynamic models during turbulence was developed and demonstrated. The approach uses an estimate of the measurement noise covariance to identify the model parameters, their uncertainties, and the process noise covariance, in a relaxation method analogous to the output-error method. Prior information on the model parameters and uncertainties can be supplied, and a post-estimation correction to the uncertainty was included to account for colored residuals not considered in the theory. No tuning parameters, needing adjustment by the analyst, are used in the estimation. The method was demonstrated in simulation using the NASA Generic Transport Model, then applied to the subscale T-2 jet-engine transport aircraft flight. Modeling results in different levels of turbulence were compared with results from time-domain output error and frequency- domain equation error methods to demonstrate the effectiveness of the approach.

  11. Performance analysis of adaptive equalization for coherent acoustic communications in the time-varying ocean environment.

    PubMed

    Preisig, James C

    2005-07-01

    Equations are derived for analyzing the performance of channel estimate based equalizers. The performance is characterized in terms of the mean squared soft decision error (sigma2(s)) of each equalizer. This error is decomposed into two components. These are the minimum achievable error (sigma2(0)) and the excess error (sigma2(e)). The former is the soft decision error that would be realized by the equalizer if the filter coefficient calculation were based upon perfect knowledge of the channel impulse response and statistics of the interfering noise field. The latter is the additional soft decision error that is realized due to errors in the estimates of these channel parameters. These expressions accurately predict the equalizer errors observed in the processing of experimental data by a channel estimate based decision feedback equalizer (DFE) and a passive time-reversal equalizer. Further expressions are presented that allow equalizer performance to be predicted given the scattering function of the acoustic channel. The analysis using these expressions yields insights into the features of surface scattering that most significantly impact equalizer performance in shallow water environments and motivates the implementation of a DFE that is robust with respect to channel estimation errors.

  12. Noise Estimation and Adaptive Encoding for Asymmetric Quantum Error Correcting Codes

    NASA Astrophysics Data System (ADS)

    Florjanczyk, Jan; Brun, Todd; CenterQuantum Information Science; Technology Team

    We present a technique that improves the performance of asymmetric quantum error correcting codes in the presence of biased qubit noise channels. Our study is motivated by considering what useful information can be learned from the statistics of syndrome measurements in stabilizer quantum error correcting codes (QECC). We consider the case of a qubit dephasing channel where the dephasing axis is unknown and time-varying. We are able to estimate the dephasing angle from the statistics of the standard syndrome measurements used in stabilizer QECC's. We use this estimate to rotate the computational basis of the code in such a way that the most likely type of error is covered by the highest distance of the asymmetric code. In particular, we use the [ [ 15 , 1 , 3 ] ] shortened Reed-Muller code which can correct one phase-flip error but up to three bit-flip errors. In our simulations, we tune the computational basis to match the estimated dephasing axis which in turn leads to a decrease in the probability of a phase-flip error. With a sufficiently accurate estimate of the dephasing axis, our memory's effective error is dominated by the much lower probability of four bit-flips. Aro MURI Grant No. W911NF-11-1-0268.

  13. A Monte-Carlo Bayesian framework for urban rainfall error modelling

    NASA Astrophysics Data System (ADS)

    Ochoa Rodriguez, Susana; Wang, Li-Pen; Willems, Patrick; Onof, Christian

    2016-04-01

    Rainfall estimates of the highest possible accuracy and resolution are required for urban hydrological applications, given the small size and fast response which characterise urban catchments. While significant progress has been made in recent years towards meeting rainfall input requirements for urban hydrology -including increasing use of high spatial resolution radar rainfall estimates in combination with point rain gauge records- rainfall estimates will never be perfect and the true rainfall field is, by definition, unknown [1]. Quantifying the residual errors in rainfall estimates is crucial in order to understand their reliability, as well as the impact that their uncertainty may have in subsequent runoff estimates. The quantification of errors in rainfall estimates has been an active topic of research for decades. However, existing rainfall error models have several shortcomings, including the fact that they are limited to describing errors associated to a single data source (i.e. errors associated to rain gauge measurements or radar QPEs alone) and to a single representative error source (e.g. radar-rain gauge differences, spatial temporal resolution). Moreover, rainfall error models have been mostly developed for and tested at large scales. Studies at urban scales are mostly limited to analyses of propagation of errors in rain gauge records-only through urban drainage models and to tests of model sensitivity to uncertainty arising from unmeasured rainfall variability. Only few radar rainfall error models -originally developed for large scales- have been tested at urban scales [2] and have been shown to fail to well capture small-scale storm dynamics, including storm peaks, which are of utmost important for urban runoff simulations. In this work a Monte-Carlo Bayesian framework for rainfall error modelling at urban scales is introduced, which explicitly accounts for relevant errors (arising from insufficient accuracy and/or resolution) in multiple data sources (in this case radar and rain gauge estimates typically available at present), while at the same time enabling dynamic combination of these data sources (thus not only quantifying uncertainty, but also reducing it). This model generates an ensemble of merged rainfall estimates, which can then be used as input to urban drainage models in order to examine how uncertainties in rainfall estimates propagate to urban runoff estimates. The proposed model is tested using as case study a detailed rainfall and flow dataset, and a carefully verified urban drainage model of a small (~9 km2) pilot catchment in North-East London. The model has shown to well characterise residual errors in rainfall data at urban scales (which remain after the merging), leading to improved runoff estimates. In fact, the majority of measured flow peaks are bounded within the uncertainty area produced by the runoff ensembles generated with the ensemble rainfall inputs. REFERENCES: [1] Ciach, G. J. & Krajewski, W. F. (1999). On the estimation of radar rainfall error variance. Advances in Water Resources, 22 (6), 585-595. [2] Rico-Ramirez, M. A., Liguori, S. & Schellart, A. N. A. (2015). Quantifying radar-rainfall uncertainties in urban drainage flow modelling. Journal of Hydrology, 528, 17-28.

  14. Quantitative estimation of localization errors of 3d transition metal pseudopotentials in diffusion Monte Carlo

    DOE PAGES

    Dzubak, Allison L.; Krogel, Jaron T.; Reboredo, Fernando A.

    2017-07-10

    The necessarily approximate evaluation of non-local pseudopotentials in diffusion Monte Carlo (DMC) introduces localization errors. In this paper, we estimate these errors for two families of non-local pseudopotentials for the first-row transition metal atoms Sc–Zn using an extrapolation scheme and multideterminant wavefunctions. Sensitivities of the error in the DMC energies to the Jastrow factor are used to estimate the quality of two sets of pseudopotentials with respect to locality error reduction. The locality approximation and T-moves scheme are also compared for accuracy of total energies. After estimating the removal of the locality and T-moves errors, we present the range ofmore » fixed-node energies between a single determinant description and a full valence multideterminant complete active space expansion. The results for these pseudopotentials agree with previous findings that the locality approximation is less sensitive to changes in the Jastrow than T-moves yielding more accurate total energies, however not necessarily more accurate energy differences. For both the locality approximation and T-moves, we find decreasing Jastrow sensitivity moving left to right across the series Sc–Zn. The recently generated pseudopotentials of Krogel et al. reduce the magnitude of the locality error compared with the pseudopotentials of Burkatzki et al. by an average estimated 40% using the locality approximation. The estimated locality error is equivalent for both sets of pseudopotentials when T-moves is used. Finally, for the Sc–Zn atomic series with these pseudopotentials, and using up to three-body Jastrow factors, our results suggest that the fixed-node error is dominant over the locality error when a single determinant is used.« less

  15. A measurement error model for physical activity level as measured by a questionnaire with application to the 1999-2006 NHANES questionnaire.

    PubMed

    Tooze, Janet A; Troiano, Richard P; Carroll, Raymond J; Moshfegh, Alanna J; Freedman, Laurence S

    2013-06-01

    Systematic investigations into the structure of measurement error of physical activity questionnaires are lacking. We propose a measurement error model for a physical activity questionnaire that uses physical activity level (the ratio of total energy expenditure to basal energy expenditure) to relate questionnaire-based reports of physical activity level to true physical activity levels. The 1999-2006 National Health and Nutrition Examination Survey physical activity questionnaire was administered to 433 participants aged 40-69 years in the Observing Protein and Energy Nutrition (OPEN) Study (Maryland, 1999-2000). Valid estimates of participants' total energy expenditure were also available from doubly labeled water, and basal energy expenditure was estimated from an equation; the ratio of those measures estimated true physical activity level ("truth"). We present a measurement error model that accommodates the mixture of errors that arise from assuming a classical measurement error model for doubly labeled water and a Berkson error model for the equation used to estimate basal energy expenditure. The method was then applied to the OPEN Study. Correlations between the questionnaire-based physical activity level and truth were modest (r = 0.32-0.41); attenuation factors (0.43-0.73) indicate that the use of questionnaire-based physical activity level would lead to attenuated estimates of effect size. Results suggest that sample sizes for estimating relationships between physical activity level and disease should be inflated, and that regression calibration can be used to provide measurement error-adjusted estimates of relationships between physical activity and disease.

  16. Bankfull characteristics of Ohio streams and their relation to peak streamflows

    USGS Publications Warehouse

    Sherwood, James M.; Huitger, Carrie A.

    2005-01-01

    Regional curves, simple-regression equations, and multiple-regression equations were developed to estimate bankfull width, bankfull mean depth, bankfull cross-sectional area, and bankfull discharge of rural, unregulated streams in Ohio. The methods are based on geomorphic, basin, and flood-frequency data collected at 50 study sites on unregulated natural alluvial streams in Ohio, of which 40 sites are near streamflow-gaging stations. The regional curves and simple-regression equations relate the bankfull characteristics to drainage area. The multiple-regression equations relate the bankfull characteristics to drainage area, main-channel slope, main-channel elevation index, median bed-material particle size, bankfull cross-sectional area, and local-channel slope. Average standard errors of prediction for bankfull width equations range from 20.6 to 24.8 percent; for bankfull mean depth, 18.8 to 20.6 percent; for bankfull cross-sectional area, 25.4 to 30.6 percent; and for bankfull discharge, 27.0 to 78.7 percent. The simple-regression (drainage-area only) equations have the highest average standard errors of prediction. The multiple-regression equations in which the explanatory variables included drainage area, main-channel slope, main-channel elevation index, median bed-material particle size, bankfull cross-sectional area, and local-channel slope have the lowest average standard errors of prediction. Field surveys were done at each of the 50 study sites to collect the geomorphic data. Bankfull indicators were identified and evaluated, cross-section and longitudinal profiles were surveyed, and bed- and bank-material were sampled. Field data were analyzed to determine various geomorphic characteristics such as bankfull width, bankfull mean depth, bankfull cross-sectional area, bankfull discharge, streambed slope, and bed- and bank-material particle-size distribution. The various geomorphic characteristics were analyzed by means of a combination of graphical and statistical techniques. The logarithms of the annual peak discharges for the 40 gaged study sites were fit by a Pearson Type III frequency distribution to develop flood-peak discharges associated with recurrence intervals of 2, 5, 10, 25, 50, and 100 years. The peak-frequency data were related to geomorphic, basin, and climatic variables by multiple-regression analysis. Simple-regression equations were developed to estimate 2-, 5-, 10-, 25-, 50-, and 100-year flood-peak discharges of rural, unregulated streams in Ohio from bankfull channel cross-sectional area. The average standard errors of prediction are 31.6, 32.6, 35.9, 41.5, 46.2, and 51.2 percent, respectively. The study and methods developed are intended to improve understanding of the relations between geomorphic, basin, and flood characteristics of streams in Ohio and to aid in the design of hydraulic structures, such as culverts and bridges, where stability of the stream and structure is an important element of the design criteria. The study was done in cooperation with the Ohio Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration.

  17. Partial Deconvolution with Inaccurate Blur Kernel.

    PubMed

    Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei

    2017-10-17

    Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.

  18. Linking Field and Satellite Observations to Reveal Differences in Single vs. Double-Cropped Soybean Yields in Central Brazil

    NASA Astrophysics Data System (ADS)

    Jeffries, G. R.; Cohn, A.

    2016-12-01

    Soy-corn double cropping (DC) has been widely adopted in Central Brazil alongside single cropped (SC) soybean production. DC involves different cropping calendars, soy varieties, and may be associated with different crop yield patterns and volatility than SC. Study of the performance of the region's agriculture in a changing climate depends on tracking differences in the productivity of SC vs. DC, but has been limited by crop yield data that conflate the two systems. We predicted SC and DC yields across Central Brazil, drawing on field observations and remotely sensed data. We first modeled field yield estimates as a function of remotely sensed DC status and vegetation index (VI) metrics, and other management and biophysical factors. We then used the statistical model estimated to predict SC and DC soybean yields at each 500 m2 grid cell of Central Brazil for harvest years 2001 - 2015. The yield estimation model was constructed using 1) a repeated cross-sectional survey of soybean yields and management factors for years 2007-2015, 2) a custom agricultural land cover classification dataset which assimilates earlier datasets for the region, and 3) 500m 8-day MODIS image composites used to calculate the wide dynamic range vegetation index (WDRVI) and derivative metrics such as area under the curve for WDRVI values in critical crop development periods. A statistical yield estimation model which primarily entails WDRVI metrics, DC status, and spatial fixed effects was developed on a subset of the yield dataset. Model validation was conducted by predicting previously withheld yield records, and then assessing error and goodness-of-fit for predicted values with metrics including root mean squared error (RMSE), mean squared error (MSE), and R2. We found a statistical yield estimation model which incorporates WDRVI and DC status to be way to estimate crop yields over the region. Statistical properties of the resulting gridded yield dataset may be valuable for understanding linkages between crop yields, farm management factors, and climate.

  19. Effect of random errors in planar PIV data on pressure estimation in vortex dominated flows

    NASA Astrophysics Data System (ADS)

    McClure, Jeffrey; Yarusevych, Serhiy

    2015-11-01

    The sensitivity of pressure estimation techniques from Particle Image Velocimetry (PIV) measurements to random errors in measured velocity data is investigated using the flow over a circular cylinder as a test case. Direct numerical simulations are performed for ReD = 100, 300 and 1575, spanning laminar, transitional, and turbulent wake regimes, respectively. A range of random errors typical for PIV measurements is applied to synthetic PIV data extracted from numerical results. A parametric study is then performed using a number of common pressure estimation techniques. Optimal temporal and spatial resolutions are derived based on the sensitivity of the estimated pressure fields to the simulated random error in velocity measurements, and the results are compared to an optimization model derived from error propagation theory. It is shown that the reductions in spatial and temporal scales at higher Reynolds numbers leads to notable changes in the optimal pressure evaluation parameters. The effect of smaller scale wake structures is also quantified. The errors in the estimated pressure fields are shown to depend significantly on the pressure estimation technique employed. The results are used to provide recommendations for the use of pressure and force estimation techniques from experimental PIV measurements in vortex dominated laminar and turbulent wake flows.

  20. Do Survey Data Estimate Earnings Inequality Correctly? Measurement Errors among Black and White Male Workers

    ERIC Educational Resources Information Center

    Kim, ChangHwan; Tamborini, Christopher R.

    2012-01-01

    Few studies have considered how earnings inequality estimates may be affected by measurement error in self-reported earnings in surveys. Utilizing restricted-use data that links workers in the Survey of Income and Program Participation with their W-2 earnings records, we examine the effect of measurement error on estimates of racial earnings…

  1. A-Posteriori Error Estimation for Hyperbolic Conservation Laws with Constraint

    NASA Technical Reports Server (NTRS)

    Barth, Timothy

    2004-01-01

    This lecture considers a-posteriori error estimates for the numerical solution of conservation laws with time invariant constraints such as those arising in magnetohydrodynamics (MHD) and gravitational physics. Using standard duality arguments, a-posteriori error estimates for the discontinuous Galerkin finite element method are then presented for MHD with solenoidal constraint. From these estimates, a procedure for adaptive discretization is outlined. A taxonomy of Green's functions for the linearized MHD operator is given which characterizes the domain of dependence for pointwise errors. The extension to other constrained systems such as the Einstein equations of gravitational physics are then considered. Finally, future directions and open problems are discussed.

  2. Dual-energy X-ray absorptiometry: analysis of pediatric fat estimate errors due to tissue hydration effects.

    PubMed

    Testolin, C G; Gore, R; Rivkin, T; Horlick, M; Arbo, J; Wang, Z; Chiumello, G; Heymsfield, S B

    2000-12-01

    Dual-energy X-ray absorptiometry (DXA) percent (%) fat estimates may be inaccurate in young children, who typically have high tissue hydration levels. This study was designed to provide a comprehensive analysis of pediatric tissue hydration effects on DXA %fat estimates. Phase 1 was experimental and included three in vitro studies to establish the physical basis of DXA %fat-estimation models. Phase 2 extended phase 1 models and consisted of theoretical calculations to estimate the %fat errors emanating from previously reported pediatric hydration effects. Phase 1 experiments supported the two-compartment DXA soft tissue model and established that pixel ratio of low to high energy (R values) are a predictable function of tissue elemental content. In phase 2, modeling of reference body composition values from birth to age 120 mo revealed that %fat errors will arise if a "constant" adult lean soft tissue R value is applied to the pediatric population; the maximum %fat error, approximately 0.8%, would be present at birth. High tissue hydration, as observed in infants and young children, leads to errors in DXA %fat estimates. The magnitude of these errors based on theoretical calculations is small and may not be of clinical or research significance.

  3. High dimensional linear regression models under long memory dependence and measurement error

    NASA Astrophysics Data System (ADS)

    Kaul, Abhishek

    This dissertation consists of three chapters. The first chapter introduces the models under consideration and motivates problems of interest. A brief literature review is also provided in this chapter. The second chapter investigates the properties of Lasso under long range dependent model errors. Lasso is a computationally efficient approach to model selection and estimation, and its properties are well studied when the regression errors are independent and identically distributed. We study the case, where the regression errors form a long memory moving average process. We establish a finite sample oracle inequality for the Lasso solution. We then show the asymptotic sign consistency in this setup. These results are established in the high dimensional setup (p> n) where p can be increasing exponentially with n. Finally, we show the consistency, n½ --d-consistency of Lasso, along with the oracle property of adaptive Lasso, in the case where p is fixed. Here d is the memory parameter of the stationary error sequence. The performance of Lasso is also analysed in the present setup with a simulation study. The third chapter proposes and investigates the properties of a penalized quantile based estimator for measurement error models. Standard formulations of prediction problems in high dimension regression models assume the availability of fully observed covariates and sub-Gaussian and homogeneous model errors. This makes these methods inapplicable to measurement errors models where covariates are unobservable and observations are possibly non sub-Gaussian and heterogeneous. We propose weighted penalized corrected quantile estimators for the regression parameter vector in linear regression models with additive measurement errors, where unobservable covariates are nonrandom. The proposed estimators forgo the need for the above mentioned model assumptions. We study these estimators in both the fixed dimension and high dimensional sparse setups, in the latter setup, the dimensionality can grow exponentially with the sample size. In the fixed dimensional setting we provide the oracle properties associated with the proposed estimators. In the high dimensional setting, we provide bounds for the statistical error associated with the estimation, that hold with asymptotic probability 1, thereby providing the ℓ1-consistency of the proposed estimator. We also establish the model selection consistency in terms of the correctly estimated zero components of the parameter vector. A simulation study that investigates the finite sample accuracy of the proposed estimator is also included in this chapter.

  4. Difference-based ridge-type estimator of parameters in restricted partial linear model with correlated errors.

    PubMed

    Wu, Jibo

    2016-01-01

    In this article, a generalized difference-based ridge estimator is proposed for the vector parameter in a partial linear model when the errors are dependent. It is supposed that some additional linear constraints may hold to the whole parameter space. Its mean-squared error matrix is compared with the generalized restricted difference-based estimator. Finally, the performance of the new estimator is explained by a simulation study and a numerical example.

  5. Causal inference with measurement error in outcomes: Bias analysis and estimation methods.

    PubMed

    Shu, Di; Yi, Grace Y

    2017-01-01

    Inverse probability weighting estimation has been popularly used to consistently estimate the average treatment effect. Its validity, however, is challenged by the presence of error-prone variables. In this paper, we explore the inverse probability weighting estimation with mismeasured outcome variables. We study the impact of measurement error for both continuous and discrete outcome variables and reveal interesting consequences of the naive analysis which ignores measurement error. When a continuous outcome variable is mismeasured under an additive measurement error model, the naive analysis may still yield a consistent estimator; when the outcome is binary, we derive the asymptotic bias in a closed-form. Furthermore, we develop consistent estimation procedures for practical scenarios where either validation data or replicates are available. With validation data, we propose an efficient method for estimation of average treatment effect; the efficiency gain is substantial relative to usual methods of using validation data. To provide protection against model misspecification, we further propose a doubly robust estimator which is consistent even when either the treatment model or the outcome model is misspecified. Simulation studies are reported to assess the performance of the proposed methods. An application to a smoking cessation dataset is presented.

  6. Automatic Estimation of Verified Floating-Point Round-Off Errors via Static Analysis

    NASA Technical Reports Server (NTRS)

    Moscato, Mariano; Titolo, Laura; Dutle, Aaron; Munoz, Cesar A.

    2017-01-01

    This paper introduces a static analysis technique for computing formally verified round-off error bounds of floating-point functional expressions. The technique is based on a denotational semantics that computes a symbolic estimation of floating-point round-o errors along with a proof certificate that ensures its correctness. The symbolic estimation can be evaluated on concrete inputs using rigorous enclosure methods to produce formally verified numerical error bounds. The proposed technique is implemented in the prototype research tool PRECiSA (Program Round-o Error Certifier via Static Analysis) and used in the verification of floating-point programs of interest to NASA.

  7. The impact of 3D volume of interest definition on accuracy and precision of activity estimation in quantitative SPECT and planar processing methods

    NASA Astrophysics Data System (ADS)

    He, Bin; Frey, Eric C.

    2010-06-01

    Accurate and precise estimation of organ activities is essential for treatment planning in targeted radionuclide therapy. We have previously evaluated the impact of processing methodology, statistical noise and variability in activity distribution and anatomy on the accuracy and precision of organ activity estimates obtained with quantitative SPECT (QSPECT) and planar (QPlanar) processing. Another important factor impacting the accuracy and precision of organ activity estimates is accuracy of and variability in the definition of organ regions of interest (ROI) or volumes of interest (VOI). The goal of this work was thus to systematically study the effects of VOI definition on the reliability of activity estimates. To this end, we performed Monte Carlo simulation studies using randomly perturbed and shifted VOIs to assess the impact on organ activity estimates. The 3D NCAT phantom was used with activities that modeled clinically observed 111In ibritumomab tiuxetan distributions. In order to study the errors resulting from misdefinitions due to manual segmentation errors, VOIs of the liver and left kidney were first manually defined. Each control point was then randomly perturbed to one of the nearest or next-nearest voxels in three ways: with no, inward or outward directional bias, resulting in random perturbation, erosion or dilation, respectively, of the VOIs. In order to study the errors resulting from the misregistration of VOIs, as would happen, e.g. in the case where the VOIs were defined using a misregistered anatomical image, the reconstructed SPECT images or projections were shifted by amounts ranging from -1 to 1 voxels in increments of with 0.1 voxels in both the transaxial and axial directions. The activity estimates from the shifted reconstructions or projections were compared to those from the originals, and average errors were computed for the QSPECT and QPlanar methods, respectively. For misregistration, errors in organ activity estimations were linear in the shift for both the QSPECT and QPlanar methods. QPlanar was less sensitive to object definition perturbations than QSPECT, especially for dilation and erosion cases. Up to 1 voxel misregistration or misdefinition resulted in up to 8% error in organ activity estimates, with the largest errors for small or low uptake organs. Both types of VOI definition errors produced larger errors in activity estimates for a small and low uptake organs (i.e. -7.5% to 5.3% for the left kidney) than for a large and high uptake organ (i.e. -2.9% to 2.1% for the liver). We observed that misregistration generally had larger effects than misdefinition, with errors ranging from -7.2% to 8.4%. The different imaging methods evaluated responded differently to the errors from misregistration and misdefinition. We found that QSPECT was more sensitive to misdefinition errors, but less sensitive to misregistration errors, as compared to the QPlanar method. Thus, sensitivity to VOI definition errors should be an important criterion in evaluating quantitative imaging methods.

  8. Missing texture reconstruction method based on error reduction algorithm using Fourier transform magnitude estimation scheme.

    PubMed

    Ogawa, Takahiro; Haseyama, Miki

    2013-03-01

    A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.

  9. State estimation bias induced by optimization under uncertainty and error cost asymmetry is likely reflected in perception.

    PubMed

    Shimansky, Y P

    2011-05-01

    It is well known from numerous studies that perception can be significantly affected by intended action in many everyday situations, indicating that perception and related decision-making is not a simple, one-way sequence, but a complex iterative cognitive process. However, the underlying functional mechanisms are yet unclear. Based on an optimality approach, a quantitative computational model of one such mechanism has been developed in this study. It is assumed in the model that significant uncertainty about task-related parameters of the environment results in parameter estimation errors and an optimal control system should minimize the cost of such errors in terms of the optimality criterion. It is demonstrated that, if the cost of a parameter estimation error is significantly asymmetrical with respect to error direction, the tendency to minimize error cost creates a systematic deviation of the optimal parameter estimate from its maximum likelihood value. Consequently, optimization of parameter estimate and optimization of control action cannot be performed separately from each other under parameter uncertainty combined with asymmetry of estimation error cost, thus making the certainty equivalence principle non-applicable under those conditions. A hypothesis that not only the action, but also perception itself is biased by the above deviation of parameter estimate is supported by ample experimental evidence. The results provide important insights into the cognitive mechanisms of interaction between sensory perception and planning an action under realistic conditions. Implications for understanding related functional mechanisms of optimal control in the CNS are discussed.

  10. Estimating population genetic parameters and comparing model goodness-of-fit using DNA sequences with error

    PubMed Central

    Liu, Xiaoming; Fu, Yun-Xin; Maxwell, Taylor J.; Boerwinkle, Eric

    2010-01-01

    It is known that sequencing error can bias estimation of evolutionary or population genetic parameters. This problem is more prominent in deep resequencing studies because of their large sample size n, and a higher probability of error at each nucleotide site. We propose a new method based on the composite likelihood of the observed SNP configurations to infer population mutation rate θ = 4Neμ, population exponential growth rate R, and error rate ɛ, simultaneously. Using simulation, we show the combined effects of the parameters, θ, n, ɛ, and R on the accuracy of parameter estimation. We compared our maximum composite likelihood estimator (MCLE) of θ with other θ estimators that take into account the error. The results show the MCLE performs well when the sample size is large or the error rate is high. Using parametric bootstrap, composite likelihood can also be used as a statistic for testing the model goodness-of-fit of the observed DNA sequences. The MCLE method is applied to sequence data on the ANGPTL4 gene in 1832 African American and 1045 European American individuals. PMID:19952140

  11. A preliminary estimate of geoid-induced variations in repeat orbit satellite altimeter observations

    NASA Technical Reports Server (NTRS)

    Brenner, Anita C.; Beckley, B. D.; Koblinsky, C. J.

    1990-01-01

    Altimeter satellites are often maintained in a repeating orbit to facilitate the separation of sea-height variations from the geoid. However, atmospheric drag and solar radiation pressure cause a satellite orbit to drift. For Geosat this drift causes the ground track to vary by + or - 1 km about the nominal repeat path. This misalignment leads to an error in the estimates of sea surface height variations because of the local slope in the geoid. This error has been estimated globally for the Geosat Exact Repeat Mission using a mean sea surface constructed from Geos 3 and Seasat altimeter data. Over most of the ocean the geoid gradient is small, and the repeat-track misalignment leads to errors of only 1 to 2 cm. However, in the vicinity of trenches, continental shelves, islands, and seamounts, errors can exceed 20 cm. The estimated error is compared with direct estimates from Geosat altimetry, and a strong correlation is found in the vicinity of the Tonga and Aleutian trenches. This correlation increases as the orbit error is reduced because of the increased signal-to-noise ratio.

  12. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    DOE PAGES

    Locatelli, R.; Bousquet, P.; Chevallier, F.; ...

    2013-10-08

    A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10more » synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. Here in our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr -1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr -1 in North America to 7 Tg yr -1 in Boreal Eurasia (from 23 to 48%, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the consistency of transport model errors in current inverse systems.« less

  13. The Hurst Phenomenon in Error Estimates Related to Atmospheric Turbulence

    NASA Astrophysics Data System (ADS)

    Dias, Nelson Luís; Crivellaro, Bianca Luhm; Chamecki, Marcelo

    2018-05-01

    The Hurst phenomenon is a well-known feature of long-range persistence first observed in hydrological and geophysical time series by E. Hurst in the 1950s. It has also been found in several cases in turbulence time series measured in the wind tunnel, the atmosphere, and in rivers. Here, we conduct a systematic investigation of the value of the Hurst coefficient H in atmospheric surface-layer data, and its impact on the estimation of random errors. We show that usually H > 0.5 , which implies the non-existence (in the statistical sense) of the integral time scale. Since the integral time scale is present in the Lumley-Panofsky equation for the estimation of random errors, this has important practical consequences. We estimated H in two principal ways: (1) with an extension of the recently proposed filtering method to estimate the random error (H_p ), and (2) with the classical rescaled range introduced by Hurst (H_R ). Other estimators were tried but were found less able to capture the statistical behaviour of the large scales of turbulence. Using data from three micrometeorological campaigns we found that both first- and second-order turbulence statistics display the Hurst phenomenon. Usually, H_R is larger than H_p for the same dataset, raising the question that one, or even both, of these estimators, may be biased. For the relative error, we found that the errors estimated with the approach adopted by us, that we call the relaxed filtering method, and that takes into account the occurrence of the Hurst phenomenon, are larger than both the filtering method and the classical Lumley-Panofsky estimates. Finally, we found that there is no apparent relationship between H and the Obukhov stability parameter. The relative errors, however, do show stability dependence, particularly in the case of the error of the kinematic momentum flux in unstable conditions, and that of the kinematic sensible heat flux in stable conditions.

  14. HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS.

    PubMed

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2011-01-01

    The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied.

  15. Identification and compensation of the temperature influences in a miniature three-axial accelerometer based on the least squares method

    NASA Astrophysics Data System (ADS)

    Grigorie, Teodor Lucian; Corcau, Ileana Jenica; Tudosie, Alexandru Nicolae

    2017-06-01

    The paper presents a way to obtain an intelligent miniaturized three-axial accelerometric sensor, based on the on-line estimation and compensation of the sensor errors generated by the environmental temperature variation. Taking into account that this error's value is a strongly nonlinear complex function of the values of environmental temperature and of the acceleration exciting the sensor, its correction may not be done off-line and it requires the presence of an additional temperature sensor. The proposed identification methodology for the error model is based on the least square method which process off-line the numerical values obtained from the accelerometer experimental testing for different values of acceleration applied to its axes of sensitivity and for different values of operating temperature. A final analysis of the error level after the compensation highlights the best variant for the matrix in the error model. In the sections of the paper are shown the results of the experimental testing of the accelerometer on all the three sensitivity axes, the identification of the error models on each axis by using the least square method, and the validation of the obtained models with experimental values. For all of the three detection channels was obtained a reduction by almost two orders of magnitude of the acceleration absolute maximum error due to environmental temperature variation.

  16. Indoor-to-outdoor particle concentration ratio model for human exposure analysis

    NASA Astrophysics Data System (ADS)

    Lee, Jae Young; Ryu, Sung Hee; Lee, Gwangjae; Bae, Gwi-Nam

    2016-02-01

    This study presents an indoor-to-outdoor particle concentration ratio (IOR) model for improved estimates of indoor exposure levels. This model is useful in epidemiological studies with large population, because sampling indoor pollutants in all participants' house is often necessary but impractical. As a part of a study examining the association between air pollutants and atopic dermatitis in children, 16 parents agreed to measure the indoor and outdoor PM10 and PM2.5 concentrations at their homes for 48 h. Correlation analysis and multi-step multivariate linear regression analysis was performed to develop the IOR model. Temperature and floor level were found to be powerful predictors of the IOR. Despite the simplicity of the model, it demonstrated high accuracy in terms of the root mean square error (RMSE). Especially for long-term IOR estimations, the RMSE was as low as 0.064 and 0.063 for PM10 and PM2.5, respectively. When using a prediction model in an epidemiological study, understanding the consequence of the modeling error and justifying the use of the model is very important. In the last section, this paper discussed the impact of the modeling error and developed a novel methodology to justify the use of the model.

  17. Measurement error, time lag, unmeasured confounding: Considerations for longitudinal estimation of the effect of a mediator in randomised clinical trials.

    PubMed

    Goldsmith, K A; Chalder, T; White, P D; Sharpe, M; Pickles, A

    2018-06-01

    Clinical trials are expensive and time-consuming and so should also be used to study how treatments work, allowing for the evaluation of theoretical treatment models and refinement and improvement of treatments. These treatment processes can be studied using mediation analysis. Randomised treatment makes some of the assumptions of mediation models plausible, but the mediator-outcome relationship could remain subject to bias. In addition, mediation is assumed to be a temporally ordered longitudinal process, but estimation in most mediation studies to date has been cross-sectional and unable to explore this assumption. This study used longitudinal structural equation modelling of mediator and outcome measurements from the PACE trial of rehabilitative treatments for chronic fatigue syndrome (ISRCTN 54285094) to address these issues. In particular, autoregressive and simplex models were used to study measurement error in the mediator, different time lags in the mediator-outcome relationship, unmeasured confounding of the mediator and outcome, and the assumption of a constant mediator-outcome relationship over time. Results showed that allowing for measurement error and unmeasured confounding were important. Contemporaneous rather than lagged mediator-outcome effects were more consistent with the data, possibly due to the wide spacing of measurements. Assuming a constant mediator-outcome relationship over time increased precision.

  18. Measurement error, time lag, unmeasured confounding: Considerations for longitudinal estimation of the effect of a mediator in randomised clinical trials

    PubMed Central

    Goldsmith, KA; Chalder, T; White, PD; Sharpe, M; Pickles, A

    2016-01-01

    Clinical trials are expensive and time-consuming and so should also be used to study how treatments work, allowing for the evaluation of theoretical treatment models and refinement and improvement of treatments. These treatment processes can be studied using mediation analysis. Randomised treatment makes some of the assumptions of mediation models plausible, but the mediator–outcome relationship could remain subject to bias. In addition, mediation is assumed to be a temporally ordered longitudinal process, but estimation in most mediation studies to date has been cross-sectional and unable to explore this assumption. This study used longitudinal structural equation modelling of mediator and outcome measurements from the PACE trial of rehabilitative treatments for chronic fatigue syndrome (ISRCTN 54285094) to address these issues. In particular, autoregressive and simplex models were used to study measurement error in the mediator, different time lags in the mediator–outcome relationship, unmeasured confounding of the mediator and outcome, and the assumption of a constant mediator–outcome relationship over time. Results showed that allowing for measurement error and unmeasured confounding were important. Contemporaneous rather than lagged mediator–outcome effects were more consistent with the data, possibly due to the wide spacing of measurements. Assuming a constant mediator–outcome relationship over time increased precision. PMID:27647810

  19. Ensemble-type numerical uncertainty information from single model integrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauser, Florian, E-mail: florian.rauser@mpimet.mpg.de; Marotzke, Jochem; Korn, Peter

    2015-07-01

    We suggest an algorithm that quantifies the discretization error of time-dependent physical quantities of interest (goals) for numerical models of geophysical fluid dynamics. The goal discretization error is estimated using a sum of weighted local discretization errors. The key feature of our algorithm is that these local discretization errors are interpreted as realizations of a random process. The random process is determined by the model and the flow state. From a class of local error random processes we select a suitable specific random process by integrating the model over a short time interval at different resolutions. The weights of themore » influences of the local discretization errors on the goal are modeled as goal sensitivities, which are calculated via automatic differentiation. The integration of the weighted realizations of local error random processes yields a posterior ensemble of goal approximations from a single run of the numerical model. From the posterior ensemble we derive the uncertainty information of the goal discretization error. This algorithm bypasses the requirement of detailed knowledge about the models discretization to generate numerical error estimates. The algorithm is evaluated for the spherical shallow-water equations. For two standard test cases we successfully estimate the error of regional potential energy, track its evolution, and compare it to standard ensemble techniques. The posterior ensemble shares linear-error-growth properties with ensembles of multiple model integrations when comparably perturbed. The posterior ensemble numerical error estimates are of comparable size as those of a stochastic physics ensemble.« less

  20. Axioms of adaptivity

    PubMed Central

    Carstensen, C.; Feischl, M.; Page, M.; Praetorius, D.

    2014-01-01

    This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators. Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the R-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions. PMID:25983390

  1. Modified fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra (Inventor)

    1992-01-01

    A method and the associated apparatus for estimating the amplitude, frequency, and phase of a signal of interest are presented. The method comprises the following steps: (1) inputting the signal of interest; (2) generating a reference signal with adjustable amplitude, frequency and phase at an output thereof; (3) mixing the signal of interest with the reference signal and a signal 90 deg out of phase with the reference signal to provide a pair of quadrature sample signals comprising respectively a difference between the signal of interest and the reference signal and a difference between the signal of interest and the signal 90 deg out of phase with the reference signal; (4) using the pair of quadrature sample signals to compute estimates of the amplitude, frequency, and phase of an error signal comprising the difference between the signal of interest and the reference signal employing a least squares estimation; (5) adjusting the amplitude, frequency, and phase of the reference signal from the numerically controlled oscillator in a manner which drives the error signal towards zero; and (6) outputting the estimates of the amplitude, frequency, and phase of the error signal in combination with the reference signal to produce a best estimate of the amplitude, frequency, and phase of the signal of interest. The preferred method includes the step of providing the error signal as a real time confidence measure as to the accuracy of the estimates wherein the closer the error signal is to zero, the higher the probability that the estimates are accurate. A matrix in the estimation algorithm provides an estimate of the variance of the estimation error.

  2. Genotyping-by-sequencing for estimating relatedness in nonmodel organisms: Avoiding the trap of precise bias.

    PubMed

    Attard, Catherine R M; Beheregaray, Luciano B; Möller, Luciana M

    2018-05-01

    There has been remarkably little attention to using the high resolution provided by genotyping-by-sequencing (i.e., RADseq and similar methods) for assessing relatedness in wildlife populations. A major hurdle is the genotyping error, especially allelic dropout, often found in this type of data that could lead to downward-biased, yet precise, estimates of relatedness. Here, we assess the applicability of genotyping-by-sequencing for relatedness inferences given its relatively high genotyping error rate. Individuals of known relatedness were simulated under genotyping error, allelic dropout and missing data scenarios based on an empirical ddRAD data set, and their true relatedness was compared to that estimated by seven relatedness estimators. We found that an estimator chosen through such analyses can circumvent the influence of genotyping error, with the estimator of Ritland (Genetics Research, 67, 175) shown to be unaffected by allelic dropout and to be the most accurate when there is genotyping error. We also found that the choice of estimator should not rely solely on the strength of correlation between estimated and true relatedness as a strong correlation does not necessarily mean estimates are close to true relatedness. We also demonstrated how even a large SNP data set with genotyping error (allelic dropout or otherwise) or missing data still performs better than a perfectly genotyped microsatellite data set of tens of markers. The simulation-based approach used here can be easily implemented by others on their own genotyping-by-sequencing data sets to confirm the most appropriate and powerful estimator for their data. © 2017 John Wiley & Sons Ltd.

  3. Relative-Error-Covariance Algorithms

    NASA Technical Reports Server (NTRS)

    Bierman, Gerald J.; Wolff, Peter J.

    1991-01-01

    Two algorithms compute error covariance of difference between optimal estimates, based on data acquired during overlapping or disjoint intervals, of state of discrete linear system. Provides quantitative measure of mutual consistency or inconsistency of estimates of states. Relative-error-covariance concept applied, to determine degree of correlation between trajectories calculated from two overlapping sets of measurements and construct real-time test of consistency of state estimates based upon recently acquired data.

  4. Effects of Measurement Errors on Individual Tree Stem Volume Estimates for the Austrian National Forest Inventory

    Treesearch

    Ambros Berger; Thomas Gschwantner; Ronald E. McRoberts; Klemens Schadauer

    2014-01-01

    National forest inventories typically estimate individual tree volumes using models that rely on measurements of predictor variables such as tree height and diameter, both of which are subject to measurement error. The aim of this study was to quantify the impacts of these measurement errors on the uncertainty of the model-based tree stem volume estimates. The impacts...

  5. On the Limitations of Variational Bias Correction

    NASA Technical Reports Server (NTRS)

    Moradi, Isaac; Mccarty, Will; Gelaro, Ronald

    2018-01-01

    Satellite radiances are the largest dataset assimilated into Numerical Weather Prediction (NWP) models, however the data are subject to errors and uncertainties that need to be accounted for before assimilating into the NWP models. Variational bias correction uses the time series of observation minus background to estimate the observations bias. This technique does not distinguish between the background error, forward operator error, and observations error so that all these errors are summed up together and counted as observation error. We identify some sources of observations errors (e.g., antenna emissivity, non-linearity in the calibration, and antenna pattern) and show the limitations of variational bias corrections on estimating these errors.

  6. Three-dimensional modeling of the cochlea by use of an arc fitting approach.

    PubMed

    Schurzig, Daniel; Lexow, G Jakob; Majdani, Omid; Lenarz, Thomas; Rau, Thomas S

    2016-12-01

    A cochlea modeling approach is presented allowing for a user defined degree of geometry simplification which automatically adjusts to the patient specific anatomy. Model generation can be performed in a straightforward manner due to error estimation prior to the actual generation, thus minimizing modeling time. Therefore, the presented technique is well suited for a wide range of applications including finite element analyses where geometrical simplifications are often inevitable. The method is presented for n=5 cochleae which were segmented using a custom software for increased accuracy. The linear basilar membrane cross sections are expanded to areas while the scalae contours are reconstructed by a predefined number of arc segments. Prior to model generation, geometrical errors are evaluated locally for each cross section as well as globally for the resulting models and their basal turn profiles. The final combination of all reconditioned features to a 3D volume is performed in Autodesk Inventor using the loft feature. Due to the volume generation based on cubic splines, low errors could be achieved even for low numbers of arc segments and provided cross sections, both of which correspond to a strong degree of model simplification. Model generation could be performed in a time efficient manner. The proposed simplification method was proven to be well suited for the helical cochlea geometry. The generated output data can be imported into commercial software tools for various analyses representing a time efficient way to create cochlea models optimally suited for the desired task.

  7. Modeling Multiplicative Error Variance: An Example Predicting Tree Diameter from Stump Dimensions in Baldcypress

    Treesearch

    Bernard R. Parresol

    1993-01-01

    In the context of forest modeling, it is often reasonable to assume a multiplicative heteroscedastic error structure to the data. Under such circumstances ordinary least squares no longer provides minimum variance estimates of the model parameters. Through study of the error structure, a suitable error variance model can be specified and its parameters estimated. This...

  8. A dual modality optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Herrera-Piad, Luis A.; Haus, Joseph W.; Jauregui-Vazquez, Daniel; Lopez-Dieguez, Yanelis; Estudillo-Ayala, Julian M.; Sierra-Hernandez, Juan M.; Hernandez-Garcia, Juan C.; Rojas-Laguna, Roberto

    2018-02-01

    We propose and demonstrate a fibre optic system based on bi-tapered silica fibre that can simultaneously measure strain and fibre curvature. Both modalities on the signal can be extracted with no measurable crosstalk between them. The experimental signal has a pure phase modulation when strain is applied to the tapered fibre optic section of the sensor and the signal shows only intensity modulation when an un-tapered fibre section is bent. High sensitivity is achieved from the experimental results for strain and bending losses and the estimation of measurement errors is 0.2 and 0.1%, respectively. This system offers low-cost, compactness and it can be adapted for structural health monitoring.

  9. Estimating Aboveground Biomass in Tropical Forests: Field Methods and Error Analysis for the Calibration of Remote Sensing Observations

    DOE PAGES

    Gonçalves, Fabio; Treuhaft, Robert; Law, Beverly; ...

    2017-01-07

    Mapping and monitoring of forest carbon stocks across large areas in the tropics will necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass for calibration and validation purposes. Here, we used field plot data collected in a tropical moist forest in the central Amazon to gain a better understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for the calibration of remote sensing measurements. In addition to accounting for sources of error that would be normally expected in conventional biomass estimates (e.g., measurement and allometric errors), we examined two sources of uncertaintymore » that are specific to the calibration process and should be taken into account in most remote sensing studies: the error resulting from spatial disagreement between field and remote sensing measurements (i.e., co-location error), and the error introduced when accounting for temporal differences in data acquisition. We found that the overall uncertainty in the field biomass was typically 25% for both secondary and primary forests, but ranged from 16 to 53%. Co-location and temporal errors accounted for a large fraction of the total variance (>65%) and were identified as important targets for reducing uncertainty in studies relating tropical forest biomass to remotely sensed data. Although measurement and allometric errors were relatively unimportant when considered alone, combined they accounted for roughly 30% of the total variance on average and should not be ignored. Lastly, our results suggest that a thorough understanding of the sources of error associated with field-measured plot-level biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates of carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote sensing approaches.« less

  10. Radial orbit error reduction and sea surface topography determination using satellite altimetry

    NASA Technical Reports Server (NTRS)

    Engelis, Theodossios

    1987-01-01

    A method is presented in satellite altimetry that attempts to simultaneously determine the geoid and sea surface topography with minimum wavelengths of about 500 km and to reduce the radial orbit error caused by geopotential errors. The modeling of the radial orbit error is made using the linearized Lagrangian perturbation theory. Secular and second order effects are also included. After a rather extensive validation of the linearized equations, alternative expressions of the radial orbit error are derived. Numerical estimates for the radial orbit error and geoid undulation error are computed using the differences of two geopotential models as potential coefficient errors, for a SEASAT orbit. To provide statistical estimates of the radial distances and the geoid, a covariance propagation is made based on the full geopotential covariance. Accuracy estimates for the SEASAT orbits are given which agree quite well with already published results. Observation equations are develped using sea surface heights and crossover discrepancies as observables. A minimum variance solution with prior information provides estimates of parameters representing the sea surface topography and corrections to the gravity field that is used for the orbit generation. The simulation results show that the method can be used to effectively reduce the radial orbit error and recover the sea surface topography.

  11. Matching factorization theorems with an inverse-error weighting

    NASA Astrophysics Data System (ADS)

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; Pisano, Cristian; Signori, Andrea

    2018-06-01

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections to the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H0 boson and Drell-Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins-Soper-Sterman subtraction scheme. It is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.

  12. Matching factorization theorems with an inverse-error weighting

    DOE PAGES

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; ...

    2018-04-03

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections tomore » the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H 0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. In conclusion, it is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.« less

  13. Matching factorization theorems with an inverse-error weighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections tomore » the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H 0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. In conclusion, it is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.« less

  14. Validation of Metrics as Error Predictors

    NASA Astrophysics Data System (ADS)

    Mendling, Jan

    In this chapter, we test the validity of metrics that were defined in the previous chapter for predicting errors in EPC business process models. In Section 5.1, we provide an overview of how the analysis data is generated. Section 5.2 describes the sample of EPCs from practice that we use for the analysis. Here we discuss a disaggregation by the EPC model group and by error as well as a correlation analysis between metrics and error. Based on this sample, we calculate a logistic regression model for predicting error probability with the metrics as input variables in Section 5.3. In Section 5.4, we then test the regression function for an independent sample of EPC models from textbooks as a cross-validation. Section 5.5 summarizes the findings.

  15. Bootstrap Estimates of Standard Errors in Generalizability Theory

    ERIC Educational Resources Information Center

    Tong, Ye; Brennan, Robert L.

    2007-01-01

    Estimating standard errors of estimated variance components has long been a challenging task in generalizability theory. Researchers have speculated about the potential applicability of the bootstrap for obtaining such estimates, but they have identified problems (especially bias) in using the bootstrap. Using Brennan's bias-correcting procedures…

  16. Derivation and Application of a Global Albedo yielding an Optical Brightness To Physical Size Transformation Free of Systematic Errors

    NASA Technical Reports Server (NTRS)

    Mulrooney, Dr. Mark K.; Matney, Dr. Mark J.

    2007-01-01

    Orbital object data acquired via optical telescopes can play a crucial role in accurately defining the space environment. Radar systems probe the characteristics of small debris by measuring the reflected electromagnetic energy from an object of the same order of size as the wavelength of the radiation. This signal is affected by electrical conductivity of the bulk of the debris object, as well as its shape and orientation. Optical measurements use reflected solar radiation with wavelengths much smaller than the size of the objects. Just as with radar, the shape and orientation of an object are important, but we only need to consider the surface electrical properties of the debris material (i.e., the surface albedo), not the bulk electromagnetic properties. As a result, these two methods are complementary in that they measure somewhat independent physical properties to estimate the same thing, debris size. Short arc optical observations such as are typical of NASA's Liquid Mirror Telescope (LMT) give enough information to estimate an Assumed Circular Orbit (ACO) and an associated range. This information, combined with the apparent magnitude, can be used to estimate an "absolute" brightness (scaled to a fixed range and phase angle). This absolute magnitude is what is used to estimate debris size. However, the shape and surface albedo effects make the size estimates subject to systematic and random errors, such that it is impossible to ascertain the size of an individual object with any certainty. However, as has been shown with radar debris measurements, that does not preclude the ability to estimate the size distribution of a number of objects statistically. After systematic errors have been eliminated (range errors, phase function assumptions, photometry) there remains a random geometric albedo distribution that relates object size to absolute magnitude. Measurements by the LMT of a subset of tracked debris objects with sizes estimated from their radar cross sections indicate that the random variations in the albedo follow a log-normal distribution quite well. In addition, this distribution appears to be independent of object size over a considerable range in size. Note that this relation appears to hold for debris only, where the shapes and other properties are not primarily the result of human manufacture, but of random processes. With this information in hand, it now becomes possible to estimate the actual size distribution we are sampling from. We have identified two characteristics of the space debris population that make this process tractable and by extension have developed a methodology for performing the transformation.

  17. Efficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking

    NASA Astrophysics Data System (ADS)

    Magesan, Easwar; Gambetta, Jay M.; Johnson, B. R.; Ryan, Colm A.; Chow, Jerry M.; Merkel, Seth T.; da Silva, Marcus P.; Keefe, George A.; Rothwell, Mary B.; Ohki, Thomas A.; Ketchen, Mark B.; Steffen, M.

    2012-08-01

    We describe a scalable experimental protocol for estimating the average error of individual quantum computational gates. This protocol consists of interleaving random Clifford gates between the gate of interest and provides an estimate as well as theoretical bounds for the average error of the gate under test, so long as the average noise variation over all Clifford gates is small. This technique takes into account both state preparation and measurement errors and is scalable in the number of qubits. We apply this protocol to a superconducting qubit system and find a bounded average error of 0.003 [0,0.016] for the single-qubit gates Xπ/2 and Yπ/2. These bounded values provide better estimates of the average error than those extracted via quantum process tomography.

  18. Combining wrist age and third molars in forensic age estimation: how to calculate the joint age estimate and its error rate in age diagnostics.

    PubMed

    Gelbrich, Bianca; Frerking, Carolin; Weiss, Sandra; Schwerdt, Sebastian; Stellzig-Eisenhauer, Angelika; Tausche, Eve; Gelbrich, Götz

    2015-01-01

    Forensic age estimation in living adolescents is based on several methods, e.g. the assessment of skeletal and dental maturation. Combination of several methods is mandatory, since age estimates from a single method are too imprecise due to biological variability. The correlation of the errors of the methods being combined must be known to calculate the precision of combined age estimates. To examine the correlation of the errors of the hand and the third molar method and to demonstrate how to calculate the combined age estimate. Clinical routine radiographs of the hand and dental panoramic images of 383 patients (aged 7.8-19.1 years, 56% female) were assessed. Lack of correlation (r = -0.024, 95% CI = -0.124 to + 0.076, p = 0.64) allows calculating the combined age estimate as the weighted average of the estimates from hand bones and third molars. Combination improved the standard deviations of errors (hand = 0.97, teeth = 1.35 years) to 0.79 years. Uncorrelated errors of the age estimates obtained from both methods allow straightforward determination of the common estimate and its variance. This is also possible when reference data for the hand and the third molar method are established independently from each other, using different samples.

  19. Adaptive control of theophylline therapy: importance of blood sampling times.

    PubMed

    D'Argenio, D Z; Khakmahd, K

    1983-10-01

    A two-observation protocol for estimating theophylline clearance during a constant-rate intravenous infusion is used to examine the importance of blood sampling schedules with regard to the information content of resulting concentration data. Guided by a theory for calculating maximally informative sample times, population simulations are used to assess the effect of specific sampling times on the precision of resulting clearance estimates and subsequent predictions of theophylline plasma concentrations. The simulations incorporated noise terms for intersubject variability, dosing errors, sample collection errors, and assay error. Clearance was estimated using Chiou's method, least squares, and a Bayesian estimation procedure. The results of these simulations suggest that clinically significant estimation and prediction errors may result when using the above two-point protocol for estimating theophylline clearance if the time separating the two blood samples is less than one population mean elimination half-life.

  20. A posteriori error estimation for multi-stage Runge–Kutta IMEX schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhry, Jehanzeb H.; Collins, J. B.; Shadid, John N.

    Implicit–Explicit (IMEX) schemes are widely used for time integration methods for approximating solutions to a large class of problems. In this work, we develop accurate a posteriori error estimates of a quantity-of-interest for approximations obtained from multi-stage IMEX schemes. This is done by first defining a finite element method that is nodally equivalent to an IMEX scheme, then using typical methods for adjoint-based error estimation. Furthermore, the use of a nodally equivalent finite element method allows a decomposition of the error into multiple components, each describing the effect of a different portion of the method on the total error inmore » a quantity-of-interest.« less

  1. A posteriori error estimation for multi-stage Runge–Kutta IMEX schemes

    DOE PAGES

    Chaudhry, Jehanzeb H.; Collins, J. B.; Shadid, John N.

    2017-02-05

    Implicit–Explicit (IMEX) schemes are widely used for time integration methods for approximating solutions to a large class of problems. In this work, we develop accurate a posteriori error estimates of a quantity-of-interest for approximations obtained from multi-stage IMEX schemes. This is done by first defining a finite element method that is nodally equivalent to an IMEX scheme, then using typical methods for adjoint-based error estimation. Furthermore, the use of a nodally equivalent finite element method allows a decomposition of the error into multiple components, each describing the effect of a different portion of the method on the total error inmore » a quantity-of-interest.« less

  2. National suicide rates a century after Durkheim: do we know enough to estimate error?

    PubMed

    Claassen, Cynthia A; Yip, Paul S; Corcoran, Paul; Bossarte, Robert M; Lawrence, Bruce A; Currier, Glenn W

    2010-06-01

    Durkheim's nineteenth-century analysis of national suicide rates dismissed prior concerns about mortality data fidelity. Over the intervening century, however, evidence documenting various types of error in suicide data has only mounted, and surprising levels of such error continue to be routinely uncovered. Yet the annual suicide rate remains the most widely used population-level suicide metric today. After reviewing the unique sources of bias incurred during stages of suicide data collection and concatenation, we propose a model designed to uniformly estimate error in future studies. A standardized method of error estimation uniformly applied to mortality data could produce data capable of promoting high quality analyses of cross-national research questions.

  3. View Estimation Based on Value System

    NASA Astrophysics Data System (ADS)

    Takahashi, Yasutake; Shimada, Kouki; Asada, Minoru

    Estimation of a caregiver's view is one of the most important capabilities for a child to understand the behavior demonstrated by the caregiver, that is, to infer the intention of behavior and/or to learn the observed behavior efficiently. We hypothesize that the child develops this ability in the same way as behavior learning motivated by an intrinsic reward, that is, he/she updates the model of the estimated view of his/her own during the behavior imitated from the observation of the behavior demonstrated by the caregiver based on minimizing the estimation error of the reward during the behavior. From this view, this paper shows a method for acquiring such a capability based on a value system from which values can be obtained by reinforcement learning. The parameters of the view estimation are updated based on the temporal difference error (hereafter TD error: estimation error of the state value), analogous to the way such that the parameters of the state value of the behavior are updated based on the TD error. Experiments with simple humanoid robots show the validity of the method, and the developmental process parallel to young children's estimation of its own view during the imitation of the observed behavior of the caregiver is discussed.

  4. Reference-free error estimation for multiple measurement methods.

    PubMed

    Madan, Hennadii; Pernuš, Franjo; Špiclin, Žiga

    2018-01-01

    We present a computational framework to select the most accurate and precise method of measurement of a certain quantity, when there is no access to the true value of the measurand. A typical use case is when several image analysis methods are applied to measure the value of a particular quantitative imaging biomarker from the same images. The accuracy of each measurement method is characterized by systematic error (bias), which is modeled as a polynomial in true values of measurand, and the precision as random error modeled with a Gaussian random variable. In contrast to previous works, the random errors are modeled jointly across all methods, thereby enabling the framework to analyze measurement methods based on similar principles, which may have correlated random errors. Furthermore, the posterior distribution of the error model parameters is estimated from samples obtained by Markov chain Monte-Carlo and analyzed to estimate the parameter values and the unknown true values of the measurand. The framework was validated on six synthetic and one clinical dataset containing measurements of total lesion load, a biomarker of neurodegenerative diseases, which was obtained with four automatic methods by analyzing brain magnetic resonance images. The estimates of bias and random error were in a good agreement with the corresponding least squares regression estimates against a reference.

  5. Improving estimation of flight altitude in wildlife telemetry studies

    USGS Publications Warehouse

    Poessel, Sharon; Duerr, Adam E.; Hall, Jonathan C.; Braham, Melissa A.; Katzner, Todd

    2018-01-01

    Altitude measurements from wildlife tracking devices, combined with elevation data, are commonly used to estimate the flight altitude of volant animals. However, these data often include measurement error. Understanding this error may improve estimation of flight altitude and benefit applied ecology.There are a number of different approaches that have been used to address this measurement error. These include filtering based on GPS data, filtering based on behaviour of the study species, and use of state-space models to correct measurement error. The effectiveness of these approaches is highly variable.Recent studies have based inference of flight altitude on misunderstandings about avian natural history and technical or analytical tools. In this Commentary, we discuss these misunderstandings and suggest alternative strategies both to resolve some of these issues and to improve estimation of flight altitude. These strategies also can be applied to other measures derived from telemetry data.Synthesis and applications. Our Commentary is intended to clarify and improve upon some of the assumptions made when estimating flight altitude and, more broadly, when using GPS telemetry data. We also suggest best practices for identifying flight behaviour, addressing GPS error, and using flight altitudes to estimate collision risk with anthropogenic structures. Addressing the issues we describe would help improve estimates of flight altitude and advance understanding of the treatment of error in wildlife telemetry studies.

  6. Comment on Hoffman and Rovine (2007): SPSS MIXED can estimate models with heterogeneous variances.

    PubMed

    Weaver, Bruce; Black, Ryan A

    2015-06-01

    Hoffman and Rovine (Behavior Research Methods, 39:101-117, 2007) have provided a very nice overview of how multilevel models can be useful to experimental psychologists. They included two illustrative examples and provided both SAS and SPSS commands for estimating the models they reported. However, upon examining the SPSS syntax for the models reported in their Table 3, we found no syntax for models 2B and 3B, both of which have heterogeneous error variances. Instead, there is syntax that estimates similar models with homogeneous error variances and a comment stating that SPSS does not allow heterogeneous errors. But that is not correct. We provide SPSS MIXED commands to estimate models 2B and 3B with heterogeneous error variances and obtain results nearly identical to those reported by Hoffman and Rovine in their Table 3. Therefore, contrary to the comment in Hoffman and Rovine's syntax file, SPSS MIXED can estimate models with heterogeneous error variances.

  7. Identification of dynamic systems, theory and formulation

    NASA Technical Reports Server (NTRS)

    Maine, R. E.; Iliff, K. W.

    1985-01-01

    The problem of estimating parameters of dynamic systems is addressed in order to present the theoretical basis of system identification and parameter estimation in a manner that is complete and rigorous, yet understandable with minimal prerequisites. Maximum likelihood and related estimators are highlighted. The approach used requires familiarity with calculus, linear algebra, and probability, but does not require knowledge of stochastic processes or functional analysis. The treatment emphasizes unification of the various areas in estimation in dynamic systems is treated as a direct outgrowth of the static system theory. Topics covered include basic concepts and definitions; numerical optimization methods; probability; statistical estimators; estimation in static systems; stochastic processes; state estimation in dynamic systems; output error, filter error, and equation error methods of parameter estimation in dynamic systems, and the accuracy of the estimates.

  8. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part II: Evaluation of Estimates Using Independent Data

    NASA Technical Reports Server (NTRS)

    Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.

    2006-01-01

    Rainfall rate estimates from spaceborne microwave radiometers are generally accepted as reliable by a majority of the atmospheric science community. One of the Tropical Rainfall Measuring Mission (TRMM) facility rain-rate algorithms is based upon passive microwave observations from the TRMM Microwave Imager (TMI). In Part I of this series, improvements of the TMI algorithm that are required to introduce latent heating as an additional algorithm product are described. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, 0.5 deg. -resolution estimates of surface rain rate over ocean from the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over earlier algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly 2.5 -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data is limited, TMI-estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain-rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with (a) additional contextual information brought to the estimation problem and/or (b) physically consistent and representative databases supporting the algorithm. A model of the random error in instantaneous 0.5 deg. -resolution rain-rate estimates appears to be consistent with the levels of error determined from TMI comparisons with collocated radar. Error model modifications for nonraining situations will be required, however. Sampling error represents only a portion of the total error in monthly 2.5 -resolution TMI estimates; the remaining error is attributed to random and systematic algorithm errors arising from the physical inconsistency and/or nonrepresentativeness of cloud-resolving-model-simulated profiles that support the algorithm.

  9. Assessing the Library Homepages of COPLAC Institutions for Section 508 Accessibility Errors: Who's Accessible, Who's Not, and How the Online WebXACT Assessment Tool Can Help

    ERIC Educational Resources Information Center

    Huprich, Julia; Green, Ravonne

    2007-01-01

    The Council on Public Liberal Arts Colleges (COPLAC) libraries websites were assessed for Section 508 errors using the online WebXACT tool. Only three of the twenty-one institutions (14%) had zero accessibility errors. Eighty-six percent of the COPLAC institutions had an average of 1.24 errors. Section 508 compliance is required for institutions…

  10. Terrestrial Water Mass Load Changes from Gravity Recovery and Climate Experiment (GRACE)

    NASA Technical Reports Server (NTRS)

    Seo, K.-W.; Wilson, C. R.; Famiglietti, J. S.; Chen, J. L.; Rodell M.

    2006-01-01

    Recent studies show that data from the Gravity Recovery and Climate Experiment (GRACE) is promising for basin- to global-scale water cycle research. This study provides varied assessments of errors associated with GRACE water storage estimates. Thirteen monthly GRACE gravity solutions from August 2002 to December 2004 are examined, along with synthesized GRACE gravity fields for the same period that incorporate simulated errors. The synthetic GRACE fields are calculated using numerical climate models and GRACE internal error estimates. We consider the influence of measurement noise, spatial leakage error, and atmospheric and ocean dealiasing (AOD) model error as the major contributors to the error budget. Leakage error arises from the limited range of GRACE spherical harmonics not corrupted by noise. AOD model error is due to imperfect correction for atmosphere and ocean mass redistribution applied during GRACE processing. Four methods of forming water storage estimates from GRACE spherical harmonics (four different basin filters) are applied to both GRACE and synthetic data. Two basin filters use Gaussian smoothing, and the other two are dynamic basin filters which use knowledge of geographical locations where water storage variations are expected. Global maps of measurement noise, leakage error, and AOD model errors are estimated for each basin filter. Dynamic basin filters yield the smallest errors and highest signal-to-noise ratio. Within 12 selected basins, GRACE and synthetic data show similar amplitudes of water storage change. Using 53 river basins, covering most of Earth's land surface excluding Antarctica and Greenland, we document how error changes with basin size, latitude, and shape. Leakage error is most affected by basin size and latitude, and AOD model error is most dependent on basin latitude.

  11. A simulation study to quantify the impacts of exposure measurement error on air pollution health risk estimates in copollutant time-series models.

    PubMed

    Dionisio, Kathie L; Chang, Howard H; Baxter, Lisa K

    2016-11-25

    Exposure measurement error in copollutant epidemiologic models has the potential to introduce bias in relative risk (RR) estimates. A simulation study was conducted using empirical data to quantify the impact of correlated measurement errors in time-series analyses of air pollution and health. ZIP-code level estimates of exposure for six pollutants (CO, NO x , EC, PM 2.5 , SO 4 , O 3 ) from 1999 to 2002 in the Atlanta metropolitan area were used to calculate spatial, population (i.e. ambient versus personal), and total exposure measurement error. Empirically determined covariance of pollutant concentration pairs and the associated measurement errors were used to simulate true exposure (exposure without error) from observed exposure. Daily emergency department visits for respiratory diseases were simulated using a Poisson time-series model with a main pollutant RR = 1.05 per interquartile range, and a null association for the copollutant (RR = 1). Monte Carlo experiments were used to evaluate the impacts of correlated exposure errors of different copollutant pairs. Substantial attenuation of RRs due to exposure error was evident in nearly all copollutant pairs studied, ranging from 10 to 40% attenuation for spatial error, 3-85% for population error, and 31-85% for total error. When CO, NO x or EC is the main pollutant, we demonstrated the possibility of false positives, specifically identifying significant, positive associations for copollutants based on the estimated type I error rate. The impact of exposure error must be considered when interpreting results of copollutant epidemiologic models, due to the possibility of attenuation of main pollutant RRs and the increased probability of false positives when measurement error is present.

  12. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Method and Uncertainties

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.

    2004-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating/drying profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and non-convective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud resolving model simulations, and from the Bayesian formulation itself. Synthetic rain rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in instantaneous rain rate estimates at 0.5 deg resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. These errors represent about 70-90% of the mean random deviation between collocated passive microwave and spaceborne radar rain rate estimates. The cumulative algorithm error in TMI estimates at monthly, 2.5 deg resolution is relatively small (less than 6% at 5 mm/day) compared to the random error due to infrequent satellite temporal sampling (8-35% at the same rain rate).

  13. Use of Earth's magnetic field for mitigating gyroscope errors regardless of magnetic perturbation.

    PubMed

    Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard

    2011-01-01

    Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth's magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth's magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.

  14. Use of Earth’s Magnetic Field for Mitigating Gyroscope Errors Regardless of Magnetic Perturbation

    PubMed Central

    Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard

    2011-01-01

    Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth’s magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth’s magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment. PMID:22247672

  15. Estimation of population mean in the presence of measurement error and non response under stratified random sampling

    PubMed Central

    Shabbir, Javid

    2018-01-01

    In the present paper we propose an improved class of estimators in the presence of measurement error and non-response under stratified random sampling for estimating the finite population mean. The theoretical and numerical studies reveal that the proposed class of estimators performs better than other existing estimators. PMID:29401519

  16. An Investigation of the Standard Errors of Expected A Posteriori Ability Estimates.

    ERIC Educational Resources Information Center

    De Ayala, R. J.; And Others

    Expected a posteriori has a number of advantages over maximum likelihood estimation or maximum a posteriori (MAP) estimation methods. These include ability estimates (thetas) for all response patterns, less regression towards the mean than MAP ability estimates, and a lower average squared error. R. D. Bock and R. J. Mislevy (1982) state that the…

  17. Crop area estimation based on remotely-sensed data with an accurate but costly subsample

    NASA Technical Reports Server (NTRS)

    Gunst, R. F.

    1983-01-01

    Alternatives to sampling-theory stratified and regression estimators of crop production and timber biomass were examined. An alternative estimator which is viewed as especially promising is the errors-in-variable regression estimator. Investigations established the need for caution with this estimator when the ratio of two error variances is not precisely known.

  18. Experimental determination of the navigation error of the 4-D navigation, guidance, and control systems on the NASA B-737 airplane

    NASA Technical Reports Server (NTRS)

    Knox, C. E.

    1978-01-01

    Navigation error data from these flights are presented in a format utilizing three independent axes - horizontal, vertical, and time. The navigation position estimate error term and the autopilot flight technical error term are combined to form the total navigation error in each axis. This method of error presentation allows comparisons to be made between other 2-, 3-, or 4-D navigation systems and allows experimental or theoretical determination of the navigation error terms. Position estimate error data are presented with the navigation system position estimate based on dual DME radio updates that are smoothed with inertial velocities, dual DME radio updates that are smoothed with true airspeed and magnetic heading, and inertial velocity updates only. The normal mode of navigation with dual DME updates that are smoothed with inertial velocities resulted in a mean error of 390 m with a standard deviation of 150 m in the horizontal axis; a mean error of 1.5 m low with a standard deviation of less than 11 m in the vertical axis; and a mean error as low as 252 m with a standard deviation of 123 m in the time axis.

  19. Simulations in site error estimation for direction finders

    NASA Astrophysics Data System (ADS)

    López, Raúl E.; Passi, Ranjit M.

    1991-08-01

    The performance of an algorithm for the recovery of site-specific errors of direction finder (DF) networks is tested under controlled simulated conditions. The simulations show that the algorithm has some inherent shortcomings for the recovery of site errors from the measured azimuth data. These limitations are fundamental to the problem of site error estimation using azimuth information. Several ways for resolving or ameliorating these basic complications are tested by means of simulations. From these it appears that for the effective implementation of the site error determination algorithm, one should design the networks with at least four DFs, improve the alignment of the antennas, and increase the gain of the DFs as much as it is compatible with other operational requirements. The use of a nonzero initial estimate of the site errors when working with data from networks of four or more DFs also improves the accuracy of the site error recovery. Even for networks of three DFs, reasonable site error corrections could be obtained if the antennas could be well aligned.

  20. Virtual tissue alignment and cutting plane definition – a new method to obtain optimal longitudinal histological sections

    PubMed Central

    Danz, J C; Habegger, M; Bosshardt, D D; Katsaros, C; Stavropoulos, A

    2014-01-01

    Histomorphometric evaluation of the buccal aspects of periodontal tissues in rodents requires reproducible alignment of maxillae and highly precise sections containing central sections of buccal roots; this is a cumbersome and technically sensitive process due to the small specimen size. The aim of the present report is to describe and analyze a method to transfer virtual sections of micro-computer tomographic (CT)-generated image stacks to the microtome for undecalcified histological processing and to describe the anatomy of the periodontium in rat molars. A total of 84 undecalcified sections of all buccal roots of seven untreated rats was analyzed. The accuracy of section coordinate transfer from virtual micro-CT slice to the histological slice, right–left side differences and the measurement error for linear and angular measurements on micro-CT and on histological micrographs were calculated using the Bland–Altman method, interclass correlation coefficient and the method of moments estimator. Also, manual alignment of the micro-CT-scanned rat maxilla was compared with multiplanar computer-reconstructed alignment. The supra alveolar rat anatomy is rather similar to human anatomy, whereas the alveolar bone is of compact type and the keratinized gingival epithelium bends apical to join the junctional epithelium. The high methodological standardization presented herein ensures retrieval of histological slices with excellent display of anatomical microstructures, in a reproducible manner, minimizes random errors, and thereby may contribute to the reduction of number of animals needed. PMID:24266502

  1. Sampling theory and automated simulations for vertical sections, applied to human brain.

    PubMed

    Cruz-Orive, L M; Gelšvartas, J; Roberts, N

    2014-02-01

    In recent years, there have been substantial developments in both magnetic resonance imaging techniques and automatic image analysis software. The purpose of this paper is to develop stereological image sampling theory (i.e. unbiased sampling rules) that can be used by image analysts for estimating geometric quantities such as surface area and volume, and to illustrate its implementation. The methods will ideally be applied automatically on segmented, properly sampled 2D images - although convenient manual application is always an option - and they are of wide applicability in many disciplines. In particular, the vertical sections design to estimate surface area is described in detail and applied to estimate the area of the pial surface and of the boundary between cortex and underlying white matter (i.e. subcortical surface area). For completeness, cortical volume and mean cortical thickness are also estimated. The aforementioned surfaces were triangulated in 3D with the aid of FreeSurfer software, which provided accurate surface area measures that served as gold standards. Furthermore, a software was developed to produce digitized trace curves of the triangulated target surfaces automatically from virtual sections. From such traces, a new method (called the 'lambda method') is presented to estimate surface area automatically. In addition, with the new software, intersections could be counted automatically between the relevant surface traces and a cycloid test grid for the classical design. This capability, together with the aforementioned gold standard, enabled us to thoroughly check the performance and the variability of the different estimators by Monte Carlo simulations for studying the human brain. In particular, new methods are offered to split the total error variance into the orientations, sectioning and cycloid components. The latter prediction was hitherto unavailable--one is proposed here and checked by way of simulations on a given set of digitized vertical sections with automatically superimposed cycloid grids of three different sizes. Concrete and detailed recommendations are given to implement the methods. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  2. Comparison of estimated and observed stormwater runoff for fifteen watersheds in west-central Florida, using five common design techniques

    USGS Publications Warehouse

    Trommer, J.T.; Loper, J.E.; Hammett, K.M.; Bowman, Georgia

    1996-01-01

    Hydrologists use several traditional techniques for estimating peak discharges and runoff volumes from ungaged watersheds. However, applying these techniques to watersheds in west-central Florida requires that empirical relationships be extrapolated beyond tested ranges. As a result there is some uncertainty as to their accuracy. Sixty-six storms in 15 west-central Florida watersheds were modeled using (1) the rational method, (2) the U.S. Geological Survey regional regression equations, (3) the Natural Resources Conservation Service (formerly the Soil Conservation Service) TR-20 model, (4) the Army Corps of Engineers HEC-1 model, and (5) the Environmental Protection Agency SWMM model. The watersheds ranged between fully developed urban and undeveloped natural watersheds. Peak discharges and runoff volumes were estimated using standard or recommended methods for determining input parameters. All model runs were uncalibrated and the selection of input parameters was not influenced by observed data. The rational method, only used to calculate peak discharges, overestimated 45 storms, underestimated 20 storms and estimated the same discharge for 1 storm. The mean estimation error for all storms indicates the method overestimates the peak discharges. Estimation errors were generally smaller in the urban watersheds and larger in the natural watersheds. The U.S. Geological Survey regression equations provide peak discharges for storms of specific recurrence intervals. Therefore, direct comparison with observed data was limited to sixteen observed storms that had precipitation equivalent to specific recurrence intervals. The mean estimation error for all storms indicates the method overestimates both peak discharges and runoff volumes. Estimation errors were smallest for the larger natural watersheds in Sarasota County, and largest for the small watersheds located in the eastern part of the study area. The Natural Resources Conservation Service TR-20 model, overestimated peak discharges for 45 storms and underestimated 21 storms, and overestimated runoff volumes for 44 storms and underestimated 22 storms. The mean estimation error for all storms modeled indicates that the model overestimates peak discharges and runoff volumes. The smaller estimation errors in both peak discharges and runoff volumes were for storms occurring in the urban watersheds, and the larger errors were for storms occurring in the natural watersheds. The HEC-1 model overestimated peak discharge rates for 55 storms and underestimated 11 storms. Runoff volumes were overestimated for 44 storms and underestimated for 22 storms using the Army Corps of Engineers HEC-1 model. The mean estimation error for all the storms modeled indicates that the model overestimates peak discharge rates and runoff volumes. Generally, the smaller estimation errors in peak discharges were for storms occurring in the urban watersheds, and the larger errors were for storms occurring in the natural watersheds. Estimation errors in runoff volumes; however, were smallest for the 3 natural watersheds located in the southernmost part of Sarasota County. The Environmental Protection Agency Storm Water Management model produced similar peak discharges and runoff volumes when using both the Green-Ampt and Horton infiltration methods. Estimated peak discharge and runoff volume data calculated with the Horton method was only slightly higher than those calculated with the Green-Ampt method. The mean estimation error for all the storms modeled indicates the model using the Green-Ampt infiltration method overestimates peak discharges and slightly underestimates runoff volumes. Using the Horton infiltration method, the model overestimates both peak discharges and runoff volumes. The smaller estimation errors in both peak discharges and runoff volumes were for storms occurring in the five natural watersheds in Sarasota County with the least amount of impervious cover and the lowest slopes. The largest er

  3. Approximation of Bit Error Rates in Digital Communications

    DTIC Science & Technology

    2007-06-01

    and Technology Organisation DSTO—TN—0761 ABSTRACT This report investigates the estimation of bit error rates in digital communi- cations, motivated by...recent work in [6]. In the latter, bounds are used to construct estimates for bit error rates in the case of differentially coherent quadrature phase

  4. The Infinitesimal Jackknife with Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Preacher, Kristopher J.; Jennrich, Robert I.

    2012-01-01

    The infinitesimal jackknife, a nonparametric method for estimating standard errors, has been used to obtain standard error estimates in covariance structure analysis. In this article, we adapt it for obtaining standard errors for rotated factor loadings and factor correlations in exploratory factor analysis with sample correlation matrices. Both…

  5. Improving the S-Shape Solar Radiation Estimation Method for Supporting Crop Models

    PubMed Central

    Fodor, Nándor

    2012-01-01

    In line with the critical comments formulated in relation to the S-shape global solar radiation estimation method, the original formula was improved via a 5-step procedure. The improved method was compared to four-reference methods on a large North-American database. According to the investigated error indicators, the final 7-parameter S-shape method has the same or even better estimation efficiency than the original formula. The improved formula is able to provide radiation estimates with a particularly low error pattern index (PIdoy) which is especially important concerning the usability of the estimated radiation values in crop models. Using site-specific calibration, the radiation estimates of the improved S-shape method caused an average of 2.72 ± 1.02 (α = 0.05) relative error in the calculated biomass. Using only readily available site specific metadata the radiation estimates caused less than 5% relative error in the crop model calculations when they were used for locations in the middle, plain territories of the USA. PMID:22645451

  6. Model-based tomographic reconstruction

    DOEpatents

    Chambers, David H; Lehman, Sean K; Goodman, Dennis M

    2012-06-26

    A model-based approach to estimating wall positions for a building is developed and tested using simulated data. It borrows two techniques from geophysical inversion problems, layer stripping and stacking, and combines them with a model-based estimation algorithm that minimizes the mean-square error between the predicted signal and the data. The technique is designed to process multiple looks from an ultra wideband radar array. The processed signal is time-gated and each section processed to detect the presence of a wall and estimate its position, thickness, and material parameters. The floor plan of a building is determined by moving the array around the outside of the building. In this paper we describe how the stacking and layer stripping algorithms are combined and show the results from a simple numerical example of three parallel walls.

  7. Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils

    NASA Technical Reports Server (NTRS)

    Kicklighter, David W.; Melillo, Jerry M.; Peterjohn, William T.; Rastetter, Edward B.; Mcguire, A. David; Steudler, Paul A.; Aber, John D.

    1994-01-01

    We examine the influence of aggregation errors on developing estimates of regional soil-CO2 flux from temperate forests. We find daily soil-CO2 fluxes to be more sensitive to changes in soil temperatures (Q(sub 10) = 3.08) than air temperatures (Q(sub 10) = 1.99). The direct use of mean monthly air temperatures with a daily flux model underestimates regional fluxes by approximately 4%. Temporal aggregation error varies with spatial resolution. Overall, our calibrated modeling approach reduces spatial aggregation error by 9.3% and temporal aggregation error by 15.5%. After minimizing spatial and temporal aggregation errors, mature temperate forest soils are estimated to contribute 12.9 Pg C/yr to the atmosphere as carbon dioxide. Georeferenced model estimates agree well with annual soil-CO2 fluxes measured during chamber studies in mature temperate forest stands around the globe.

  8. Adjoints and Low-rank Covariance Representation

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; Cohn, Stephen E.

    2000-01-01

    Quantitative measures of the uncertainty of Earth System estimates can be as important as the estimates themselves. Second moments of estimation errors are described by the covariance matrix, whose direct calculation is impractical when the number of degrees of freedom of the system state is large. Ensemble and reduced-state approaches to prediction and data assimilation replace full estimation error covariance matrices by low-rank approximations. The appropriateness of such approximations depends on the spectrum of the full error covariance matrix, whose calculation is also often impractical. Here we examine the situation where the error covariance is a linear transformation of a forcing error covariance. We use operator norms and adjoints to relate the appropriateness of low-rank representations to the conditioning of this transformation. The analysis is used to investigate low-rank representations of the steady-state response to random forcing of an idealized discrete-time dynamical system.

  9. Filtering Methods for Error Reduction in Spacecraft Attitude Estimation Using Quaternion Star Trackers

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Sedlak, Joseph E.; Superfin, Emil

    2011-01-01

    Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter.

  10. Addressing Angular Single-Event Effects in the Estimation of On-Orbit Error Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, David S.; Swift, Gary M.; Wirthlin, Michael J.

    2015-12-01

    Our study describes complications introduced by angular direct ionization events on space error rate predictions. In particular, prevalence of multiple-cell upsets and a breakdown in the application of effective linear energy transfer in modern-scale devices can skew error rates approximated from currently available estimation models. Moreover, this paper highlights the importance of angular testing and proposes a methodology to extend existing error estimation tools to properly consider angular strikes in modern-scale devices. Finally, these techniques are illustrated with test data provided from a modern 28 nm SRAM-based device.

  11. Monte Carlo errors with less errors

    NASA Astrophysics Data System (ADS)

    Wolff, Ulli; Alpha Collaboration

    2004-01-01

    We explain in detail how to estimate mean values and assess statistical errors for arbitrary functions of elementary observables in Monte Carlo simulations. The method is to estimate and sum the relevant autocorrelation functions, which is argued to produce more certain error estimates than binning techniques and hence to help toward a better exploitation of expensive simulations. An effective integrated autocorrelation time is computed which is suitable to benchmark efficiencies of simulation algorithms with regard to specific observables of interest. A Matlab code is offered for download that implements the method. It can also combine independent runs (replica) allowing to judge their consistency.

  12. Stability and error estimation for Component Adaptive Grid methods

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph; Zhu, Xiaolei

    1994-01-01

    Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.

  13. Estimation of discrimination errors in the technique for determining the geographic origin of onions by mineral composition: interlaboratory study.

    PubMed

    Ariyama, Kaoru; Kadokura, Masashi; Suzuki, Tadanao

    2008-01-01

    Techniques to determine the geographic origin of foods have been developed for various agricultural and fishery products, and they have used various principles. Some of these techniques are already in use for checking the authenticity of the labeling. Many are based on multielement analysis and chemometrics. We have developed such a technique to determine the geographic origin of onions (Allium cepa L.). This technique, which determines whether an onion is from outside Japan, is designed for onions labeled as having a geographic origin of Hokkaido, Hyogo, or Saga, the main onion production areas in Japan. However, estimations of discrimination errors for this technique have not been fully conducted; they have been limited to those for discrimination models and do not include analytical errors. Interlaboratory studies were conducted to estimate the analytical errors of the technique. Four collaborators each determined 11 elements (Na, Mg, P, Mn, Zn, Rb, Sr, Mo, Cd, Cs, and Ba) in 4 test materials of fresh and dried onions. Discrimination errors in this technique were estimated by summing (1) individual differences within lots, (2) variations between lots from the same production area, and (3) analytical errors. The discrimination errors for onions from Hokkaido, Hyogo, and Saga were estimated to be 2.3, 9.5, and 8.0%, respectively. Those for onions from abroad in determinations targeting Hokkaido, Hyogo, and Saga were estimated to be 28.2, 21.6, and 21.9%, respectively.

  14. Signal location using generalized linear constraints

    NASA Astrophysics Data System (ADS)

    Griffiths, Lloyd J.; Feldman, D. D.

    1992-01-01

    This report has presented a two-part method for estimating the directions of arrival of uncorrelated narrowband sources when there are arbitrary phase errors and angle independent gain errors. The signal steering vectors are estimated in the first part of the method; in the second part, the arrival directions are estimated. It should be noted that the second part of the method can be tailored to incorporate additional information about the nature of the phase errors. For example, if the phase errors are known to be caused solely by element misplacement, the element locations can be estimated concurrently with the DOA's by trying to match the theoretical steering vectors to the estimated ones. Simulation results suggest that, for general perturbation, the method can resolve closely spaced sources under conditions for which a standard high-resolution DOA method such as MUSIC fails.

  15. Estimation of 3D reconstruction errors in a stereo-vision system

    NASA Astrophysics Data System (ADS)

    Belhaoua, A.; Kohler, S.; Hirsch, E.

    2009-06-01

    The paper presents an approach for error estimation for the various steps of an automated 3D vision-based reconstruction procedure of manufactured workpieces. The process is based on a priori planning of the task and built around a cognitive intelligent sensory system using so-called Situation Graph Trees (SGT) as a planning tool. Such an automated quality control system requires the coordination of a set of complex processes performing sequentially data acquisition, its quantitative evaluation and the comparison with a reference model (e.g., CAD object model) in order to evaluate quantitatively the object. To ensure efficient quality control, the aim is to be able to state if reconstruction results fulfill tolerance rules or not. Thus, the goal is to evaluate independently the error for each step of the stereo-vision based 3D reconstruction (e.g., for calibration, contour segmentation, matching and reconstruction) and then to estimate the error for the whole system. In this contribution, we analyze particularly the segmentation error due to localization errors for extracted edge points supposed to belong to lines and curves composing the outline of the workpiece under evaluation. The fitting parameters describing these geometric features are used as quality measure to determine confidence intervals and finally to estimate the segmentation errors. These errors are then propagated through the whole reconstruction procedure, enabling to evaluate their effect on the final 3D reconstruction result, specifically on position uncertainties. Lastly, analysis of these error estimates enables to evaluate the quality of the 3D reconstruction, as illustrated by the shown experimental results.

  16. Estimates of fetch-induced errors in Bowen-ratio energy-budget measurements of evapotranspiration from a prairie wetland, Cottonwood Lake Area, North Dakota, USA

    USGS Publications Warehouse

    Stannard, David L.; Rosenberry, Donald O.; Winter, Thomas C.; Parkhurst, Renee S.

    2004-01-01

    Micrometeorological measurements of evapotranspiration (ET) often are affected to some degree by errors arising from limited fetch. A recently developed model was used to estimate fetch-induced errors in Bowen-ratio energy-budget measurements of ET made at a small wetland with fetch-to-height ratios ranging from 34 to 49. Estimated errors were small, averaging −1.90%±0.59%. The small errors are attributed primarily to the near-zero lower sensor height, and the negative bias reflects the greater Bowen ratios of the drier surrounding upland. Some of the variables and parameters affecting the error were not measured, but instead are estimated. A sensitivity analysis indicates that the uncertainty arising from these estimates is small. In general, fetch-induced error in measured wetland ET increases with decreasing fetch-to-height ratio, with increasing aridity and with increasing atmospheric stability over the wetland. Occurrence of standing water at a site is likely to increase the appropriate time step of data integration, for a given level of accuracy. Occurrence of extensive open water can increase accuracy or decrease the required fetch by allowing the lower sensor to be placed at the water surface. If fetch is highly variable and fetch-induced errors are significant, the variables affecting fetch (e.g., wind direction, water level) need to be measured. Fetch-induced error during the non-growing season may be greater or smaller than during the growing season, depending on how seasonal changes affect both the wetland and upland at a site.

  17. Factor Rotation and Standard Errors in Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Preacher, Kristopher J.

    2015-01-01

    In this article, we report a surprising phenomenon: Oblique CF-varimax and oblique CF-quartimax rotation produced similar point estimates for rotated factor loadings and factor correlations but different standard error estimates in an empirical example. Influences of factor rotation on asymptotic standard errors are investigated using a numerical…

  18. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    EPA Science Inventory

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...

  19. Multichannel Singular Spectrum Analysis in the Estimates of Common Environmental Effects Affecting GPS Observations

    NASA Astrophysics Data System (ADS)

    Gruszczynska, Marta; Rosat, Severine; Klos, Anna; Gruszczynski, Maciej; Bogusz, Janusz

    2018-03-01

    We described a spatio-temporal analysis of environmental loading models: atmospheric, continental hydrology, and non-tidal ocean changes, based on multichannel singular spectrum analysis (MSSA). We extracted the common annual signal for 16 different sections related to climate zones: equatorial, arid, warm, snow, polar and continents. We used the loading models estimated for a set of 229 ITRF2014 (International Terrestrial Reference Frame) International GNSS Service (IGS) stations and discussed the amount of variance explained by individual modes, proving that the common annual signal accounts for 16, 24 and 68% of the total variance of non-tidal ocean, atmospheric and hydrological loading models, respectively. Having removed the common environmental MSSA seasonal curve from the corresponding GPS position time series, we found that the residual station-specific annual curve modelled with the least-squares estimation has the amplitude of maximum 2 mm. This means that the environmental loading models underestimate the seasonalities observed by the GPS system. The remaining signal present in the seasonal frequency band arises from the systematic errors which are not of common environmental or geophysical origin. Using common mode error (CME) estimates, we showed that the direct removal of environmental loading models from the GPS series causes an artificial loss in the CME power spectra between 10 and 80 cycles per year. When environmental effect is removed from GPS series with MSSA curves, no influence on the character of spectra of CME estimates was noticed.

  20. Multichannel Singular Spectrum Analysis in the Estimates of Common Environmental Effects Affecting GPS Observations

    NASA Astrophysics Data System (ADS)

    Gruszczynska, Marta; Rosat, Severine; Klos, Anna; Gruszczynski, Maciej; Bogusz, Janusz

    2018-05-01

    We described a spatio-temporal analysis of environmental loading models: atmospheric, continental hydrology, and non-tidal ocean changes, based on multichannel singular spectrum analysis (MSSA). We extracted the common annual signal for 16 different sections related to climate zones: equatorial, arid, warm, snow, polar and continents. We used the loading models estimated for a set of 229 ITRF2014 (International Terrestrial Reference Frame) International GNSS Service (IGS) stations and discussed the amount of variance explained by individual modes, proving that the common annual signal accounts for 16, 24 and 68% of the total variance of non-tidal ocean, atmospheric and hydrological loading models, respectively. Having removed the common environmental MSSA seasonal curve from the corresponding GPS position time series, we found that the residual station-specific annual curve modelled with the least-squares estimation has the amplitude of maximum 2 mm. This means that the environmental loading models underestimate the seasonalities observed by the GPS system. The remaining signal present in the seasonal frequency band arises from the systematic errors which are not of common environmental or geophysical origin. Using common mode error (CME) estimates, we showed that the direct removal of environmental loading models from the GPS series causes an artificial loss in the CME power spectra between 10 and 80 cycles per year. When environmental effect is removed from GPS series with MSSA curves, no influence on the character of spectra of CME estimates was noticed.

  1. Increasing reliability of Gauss-Kronrod quadrature by Eratosthenes' sieve method

    NASA Astrophysics Data System (ADS)

    Adam, Gh.; Adam, S.

    2001-04-01

    The reliability of the local error estimates returned by the Gauss-Kronrod quadrature rules can be raised up to the theoretical 100% rate of success, under error estimate sharpening, provided a number of natural validating conditions are required. The self-validating scheme of the local error estimates, which is easy to implement and adds little supplementary computing effort, strengthens considerably the correctness of the decisions within the automatic adaptive quadrature.

  2. Medication administration error reporting and associated factors among nurses working at the University of Gondar referral hospital, Northwest Ethiopia, 2015.

    PubMed

    Bifftu, Berhanu Boru; Dachew, Berihun Assefa; Tiruneh, Bewket Tadesse; Beshah, Debrework Tesgera

    2016-01-01

    Medication administration is the final step/phase of medication process in which its error directly affects the patient health. Due to the central role of nurses in medication administration, whether they are the source of an error, a contributor, or an observer they have the professional, legal and ethical responsibility to recognize and report. The aim of this study was to assess the prevalence of medication administration error reporting and associated factors among nurses working at The University of Gondar Referral Hospital, Northwest Ethiopia. Institution based quantitative cross - sectional study was conducted among 282 Nurses. Data were collected using semi-structured, self-administered questionnaire of the Medication Administration Errors Reporting (MAERs). Binary logistic regression with 95 % confidence interval was used to identify factors associated with medication administration errors reporting. The estimated medication administration error reporting was found to be 29.1 %. The perceived rates of medication administration errors reporting for non-intravenous related medications were ranged from 16.8 to 28.6 % and for intravenous-related from 20.6 to 33.4 %. Education status (AOR =1.38, 95 % CI: 4.009, 11.128), disagreement over time - error definition (AOR = 0.44, 95 % CI: 0.468, 0.990), administrative reason (AOR = 0.35, 95 % CI: 0.168, 0.710) and fear (AOR = 0.39, 95 % CI: 0.257, 0.838) were factors statistically significant for the refusal of reporting medication administration errors at p-value <0.05. In this study, less than one third of the study participants reported medication administration errors. Educational status, disagreement over time - error definition, administrative reason and fear were factors statistically significant for the refusal of errors reporting at p-value <0.05. Therefore, the results of this study suggest strategies that enhance the cultures of error reporting such as providing a clear definition of reportable errors and strengthen the educational status of nurses by the health care organization.

  3. Validation Relaxation: A Quality Assurance Strategy for Electronic Data Collection

    PubMed Central

    Gordon, Nicholas; Griffiths, Thomas; Kraemer, John D; Siedner, Mark J

    2017-01-01

    Background The use of mobile devices for data collection in developing world settings is becoming increasingly common and may offer advantages in data collection quality and efficiency relative to paper-based methods. However, mobile data collection systems can hamper many standard quality assurance techniques due to the lack of a hardcopy backup of data. Consequently, mobile health data collection platforms have the potential to generate datasets that appear valid, but are susceptible to unidentified database design flaws, areas of miscomprehension by enumerators, and data recording errors. Objective We describe the design and evaluation of a strategy for estimating data error rates and assessing enumerator performance during electronic data collection, which we term “validation relaxation.” Validation relaxation involves the intentional omission of data validation features for select questions to allow for data recording errors to be committed, detected, and monitored. Methods We analyzed data collected during a cluster sample population survey in rural Liberia using an electronic data collection system (Open Data Kit). We first developed a classification scheme for types of detectable errors and validation alterations required to detect them. We then implemented the following validation relaxation techniques to enable data error conduct and detection: intentional redundancy, removal of “required” constraint, and illogical response combinations. This allowed for up to 11 identifiable errors to be made per survey. The error rate was defined as the total number of errors committed divided by the number of potential errors. We summarized crude error rates and estimated changes in error rates over time for both individuals and the entire program using logistic regression. Results The aggregate error rate was 1.60% (125/7817). Error rates did not differ significantly between enumerators (P=.51), but decreased for the cohort with increasing days of application use, from 2.3% at survey start (95% CI 1.8%-2.8%) to 0.6% at day 45 (95% CI 0.3%-0.9%; OR=0.969; P<.001). The highest error rate (84/618, 13.6%) occurred for an intentional redundancy question for a birthdate field, which was repeated in separate sections of the survey. We found low error rates (0.0% to 3.1%) for all other possible errors. Conclusions A strategy of removing validation rules on electronic data capture platforms can be used to create a set of detectable data errors, which can subsequently be used to assess group and individual enumerator error rates, their trends over time, and categories of data collection that require further training or additional quality control measures. This strategy may be particularly useful for identifying individual enumerators or systematic data errors that are responsive to enumerator training and is best applied to questions for which errors cannot be prevented through training or software design alone. Validation relaxation should be considered as a component of a holistic data quality assurance strategy. PMID:28821474

  4. Validation Relaxation: A Quality Assurance Strategy for Electronic Data Collection.

    PubMed

    Kenny, Avi; Gordon, Nicholas; Griffiths, Thomas; Kraemer, John D; Siedner, Mark J

    2017-08-18

    The use of mobile devices for data collection in developing world settings is becoming increasingly common and may offer advantages in data collection quality and efficiency relative to paper-based methods. However, mobile data collection systems can hamper many standard quality assurance techniques due to the lack of a hardcopy backup of data. Consequently, mobile health data collection platforms have the potential to generate datasets that appear valid, but are susceptible to unidentified database design flaws, areas of miscomprehension by enumerators, and data recording errors. We describe the design and evaluation of a strategy for estimating data error rates and assessing enumerator performance during electronic data collection, which we term "validation relaxation." Validation relaxation involves the intentional omission of data validation features for select questions to allow for data recording errors to be committed, detected, and monitored. We analyzed data collected during a cluster sample population survey in rural Liberia using an electronic data collection system (Open Data Kit). We first developed a classification scheme for types of detectable errors and validation alterations required to detect them. We then implemented the following validation relaxation techniques to enable data error conduct and detection: intentional redundancy, removal of "required" constraint, and illogical response combinations. This allowed for up to 11 identifiable errors to be made per survey. The error rate was defined as the total number of errors committed divided by the number of potential errors. We summarized crude error rates and estimated changes in error rates over time for both individuals and the entire program using logistic regression. The aggregate error rate was 1.60% (125/7817). Error rates did not differ significantly between enumerators (P=.51), but decreased for the cohort with increasing days of application use, from 2.3% at survey start (95% CI 1.8%-2.8%) to 0.6% at day 45 (95% CI 0.3%-0.9%; OR=0.969; P<.001). The highest error rate (84/618, 13.6%) occurred for an intentional redundancy question for a birthdate field, which was repeated in separate sections of the survey. We found low error rates (0.0% to 3.1%) for all other possible errors. A strategy of removing validation rules on electronic data capture platforms can be used to create a set of detectable data errors, which can subsequently be used to assess group and individual enumerator error rates, their trends over time, and categories of data collection that require further training or additional quality control measures. This strategy may be particularly useful for identifying individual enumerators or systematic data errors that are responsive to enumerator training and is best applied to questions for which errors cannot be prevented through training or software design alone. Validation relaxation should be considered as a component of a holistic data quality assurance strategy. ©Avi Kenny, Nicholas Gordon, Thomas Griffiths, John D Kraemer, Mark J Siedner. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 18.08.2017.

  5. The estimation error covariance matrix for the ideal state reconstructor with measurement noise

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.

    1988-01-01

    A general expression is derived for the state estimation error covariance matrix for the Ideal State Reconstructor when the input measurements are corrupted by measurement noise. An example is presented which shows that the more measurements used in estimating the state at a given time, the better the estimator.

  6. Estimating Uncertainty in Annual Forest Inventory Estimates

    Treesearch

    Ronald E. McRoberts; Veronica C. Lessard

    1999-01-01

    The precision of annual forest inventory estimates may be negatively affected by uncertainty from a variety of sources including: (1) sampling error; (2) procedures for updating plots not measured in the current year; and (3) measurement errors. The impact of these sources of uncertainty on final inventory estimates is investigated using Monte Carlo simulation...

  7. Nonparametric Item Response Curve Estimation with Correction for Measurement Error

    ERIC Educational Resources Information Center

    Guo, Hongwen; Sinharay, Sandip

    2011-01-01

    Nonparametric or kernel regression estimation of item response curves (IRCs) is often used in item analysis in testing programs. These estimates are biased when the observed scores are used as the regressor because the observed scores are contaminated by measurement error. Accuracy of this estimation is a concern theoretically and operationally.…

  8. Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy

  9. On the Error State Selection for Stationary SINS Alignment and Calibration Kalman Filters—Part II: Observability/Estimability Analysis

    PubMed Central

    Silva, Felipe O.; Hemerly, Elder M.; Leite Filho, Waldemar C.

    2017-01-01

    This paper presents the second part of a study aiming at the error state selection in Kalman filters applied to the stationary self-alignment and calibration (SSAC) problem of strapdown inertial navigation systems (SINS). The observability properties of the system are systematically investigated, and the number of unobservable modes is established. Through the analytical manipulation of the full SINS error model, the unobservable modes of the system are determined, and the SSAC error states (except the velocity errors) are proven to be individually unobservable. The estimability of the system is determined through the examination of the major diagonal terms of the covariance matrix and their eigenvalues/eigenvectors. Filter order reduction based on observability analysis is shown to be inadequate, and several misconceptions regarding SSAC observability and estimability deficiencies are removed. As the main contributions of this paper, we demonstrate that, except for the position errors, all error states can be minimally estimated in the SSAC problem and, hence, should not be removed from the filter. Corroborating the conclusions of the first part of this study, a 12-state Kalman filter is found to be the optimal error state selection for SSAC purposes. Results from simulated and experimental tests support the outlined conclusions. PMID:28241494

  10. Optimal estimation of suspended-sediment concentrations in streams

    USGS Publications Warehouse

    Holtschlag, D.J.

    2001-01-01

    Optimal estimators are developed for computation of suspended-sediment concentrations in streams. The estimators are a function of parameters, computed by use of generalized least squares, which simultaneously account for effects of streamflow, seasonal variations in average sediment concentrations, a dynamic error component, and the uncertainty in concentration measurements. The parameters are used in a Kalman filter for on-line estimation and an associated smoother for off-line estimation of suspended-sediment concentrations. The accuracies of the optimal estimators are compared with alternative time-averaging interpolators and flow-weighting regression estimators by use of long-term daily-mean suspended-sediment concentration and streamflow data from 10 sites within the United States. For sampling intervals from 3 to 48 days, the standard errors of on-line and off-line optimal estimators ranged from 52.7 to 107%, and from 39.5 to 93.0%, respectively. The corresponding standard errors of linear and cubic-spline interpolators ranged from 48.8 to 158%, and from 50.6 to 176%, respectively. The standard errors of simple and multiple regression estimators, which did not vary with the sampling interval, were 124 and 105%, respectively. Thus, the optimal off-line estimator (Kalman smoother) had the lowest error characteristics of those evaluated. Because suspended-sediment concentrations are typically measured at less than 3-day intervals, use of optimal estimators will likely result in significant improvements in the accuracy of continuous suspended-sediment concentration records. Additional research on the integration of direct suspended-sediment concentration measurements and optimal estimators applied at hourly or shorter intervals is needed.

  11. Determination of stability and control parameters of a light airplane from flight data using two estimation methods. [equation error and maximum likelihood methods

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1979-01-01

    Two identification methods, the equation error method and the output error method, are used to estimate stability and control parameter values from flight data for a low-wing, single-engine, general aviation airplane. The estimated parameters from both methods are in very good agreement primarily because of sufficient accuracy of measured data. The estimated static parameters also agree with the results from steady flights. The effect of power different input forms are demonstrated. Examination of all results available gives the best values of estimated parameters and specifies their accuracies.

  12. Gulf stream velocity structure through combined inversion of hydrographic and acoustic Doppler data

    NASA Technical Reports Server (NTRS)

    Pierce, S. D.

    1986-01-01

    Near-surface velocities from an acoustic Doppler instrument are used in conjunction with CTD/O2 data to produce estimates of the absolute flow field off Cape Hatteras. The data set consists of two transects across the Gulf Stream made by the R/V Endeavor cruise EN88 in August 1982. An inverse procedure is applied which makes use of both the acoustic Doppler data and property conservation constraints. Velocity sections at approximately 73 deg. W and 71 deg. W are presented with formal errors of 1-2 cm/s. The net Gulf Stream transports are estimated to be 116 + or - 2 Sv across the south leg and 161 + or - 4 Sv across the north. A Deep Western Boundary Current transport of 4 + or - 1 Sv is also estimated. While these values do not necessarily represent the mean, they are accurate estimates of the synoptic flow field in the region.

  13. HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS

    PubMed Central

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2012-01-01

    The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied. PMID:22661790

  14. State estimation for autopilot control of small unmanned aerial vehicles in windy conditions

    NASA Astrophysics Data System (ADS)

    Poorman, David Paul

    The use of small unmanned aerial vehicles (UAVs) both in the military and civil realms is growing. This is largely due to the proliferation of inexpensive sensors and the increase in capability of small computers that has stemmed from the personal electronic device market. Methods for performing accurate state estimation for large scale aircraft have been well known and understood for decades, which usually involve a complex array of expensive high accuracy sensors. Performing accurate state estimation for small unmanned aircraft is a newer area of study and often involves adapting known state estimation methods to small UAVs. State estimation for small UAVs can be more difficult than state estimation for larger UAVs due to small UAVs employing limited sensor suites due to cost, and the fact that small UAVs are more susceptible to wind than large aircraft. The purpose of this research is to evaluate the ability of existing methods of state estimation for small UAVs to accurately capture the states of the aircraft that are necessary for autopilot control of the aircraft in a Dryden wind field. The research begins by showing which aircraft states are necessary for autopilot control in Dryden wind. Then two state estimation methods that employ only accelerometer, gyro, and GPS measurements are introduced. The first method uses assumptions on aircraft motion to directly solve for attitude information and smooth GPS data, while the second method integrates sensor data to propagate estimates between GPS measurements and then corrects those estimates with GPS information. The performance of both methods is analyzed with and without Dryden wind, in straight and level flight, in a coordinated turn, and in a wings level ascent. It is shown that in zero wind, the first method produces significant steady state attitude errors in both a coordinated turn and in a wings level ascent. In Dryden wind, it produces large noise on the estimates for its attitude states, and has a non-zero mean error that increases when gyro bias is increased. The second method is shown to not exhibit any steady state error in the tested scenarios that is inherent to its design. The second method can correct for attitude errors that arise from both integration error and gyro bias states, but it suffers from lack of attitude error observability. The attitude errors are shown to be more observable in wind, but increased integration error in wind outweighs the increase in attitude corrections that such increased observability brings, resulting in larger attitude errors in wind. Overall, this work highlights many technical deficiencies of both of these methods of state estimation that could be improved upon in the future to enhance state estimation for small UAVs in windy conditions.

  15. Impact of temporal upscaling and chemical transport model horizontal resolution on reducing ozone exposure misclassification

    NASA Astrophysics Data System (ADS)

    Xu, Yadong; Serre, Marc L.; Reyes, Jeanette M.; Vizuete, William

    2017-10-01

    We have developed a Bayesian Maximum Entropy (BME) framework that integrates observations from a surface monitoring network and predictions from a Chemical Transport Model (CTM) to create improved exposure estimates that can be resolved into any spatial and temporal resolution. The flexibility of the framework allows for input of data in any choice of time scales and CTM predictions of any spatial resolution with varying associated degrees of estimation error and cost in terms of implementation and computation. This study quantifies the impact on exposure estimation error due to these choices by first comparing estimations errors when BME relied on ozone concentration data either as an hourly average, the daily maximum 8-h average (DM8A), or the daily 24-h average (D24A). Our analysis found that the use of DM8A and D24A data, although less computationally intensive, reduced estimation error more when compared to the use of hourly data. This was primarily due to the poorer CTM model performance in the hourly average predicted ozone. Our second analysis compared spatial variability and estimation errors when BME relied on CTM predictions with a grid cell resolution of 12 × 12 km2 versus a coarser resolution of 36 × 36 km2. Our analysis found that integrating the finer grid resolution CTM predictions not only reduced estimation error, but also increased the spatial variability in daily ozone estimates by 5 times. This improvement was due to the improved spatial gradients and model performance found in the finer resolved CTM simulation. The integration of observational and model predictions that is permitted in a BME framework continues to be a powerful approach for improving exposure estimates of ambient air pollution. The results of this analysis demonstrate the importance of also understanding model performance variability and its implications on exposure error.

  16. Error estimation in multitemporal InSAR deformation time series, with application to Lanzarote, Canary Islands

    NASA Astrophysics Data System (ADS)

    GonzáLez, Pablo J.; FernáNdez, José

    2011-10-01

    Interferometric Synthetic Aperture Radar (InSAR) is a reliable technique for measuring crustal deformation. However, despite its long application in geophysical problems, its error estimation has been largely overlooked. Currently, the largest problem with InSAR is still the atmospheric propagation errors, which is why multitemporal interferometric techniques have been successfully developed using a series of interferograms. However, none of the standard multitemporal interferometric techniques, namely PS or SB (Persistent Scatterers and Small Baselines, respectively) provide an estimate of their precision. Here, we present a method to compute reliable estimates of the precision of the deformation time series. We implement it for the SB multitemporal interferometric technique (a favorable technique for natural terrains, the most usual target of geophysical applications). We describe the method that uses a properly weighted scheme that allows us to compute estimates for all interferogram pixels, enhanced by a Montecarlo resampling technique that properly propagates the interferogram errors (variance-covariances) into the unknown parameters (estimated errors for the displacements). We apply the multitemporal error estimation method to Lanzarote Island (Canary Islands), where no active magmatic activity has been reported in the last decades. We detect deformation around Timanfaya volcano (lengthening of line-of-sight ˜ subsidence), where the last eruption in 1730-1736 occurred. Deformation closely follows the surface temperature anomalies indicating that magma crystallization (cooling and contraction) of the 300-year shallow magmatic body under Timanfaya volcano is still ongoing.

  17. Estimation of daily interfractional larynx residual setup error after isocentric alignment for head and neck radiotherapy: Quality-assurance implications for target volume and organ-at-risk margination using daily CT-on-rails imaging

    PubMed Central

    Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S. R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R; Kocak-Uzel, Esengul; Fuller, Clifton D.

    2016-01-01

    Larynx may alternatively serve as a target or organ-at-risk (OAR) in head and neck cancer (HNC) image-guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population–based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT-on-rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other 6 points were calculated post-isocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all 6 points for all scans over the course of treatment were calculated. Residual systematic and random error, and the necessary compensatory CTV-to-PTV and OAR-to-PRV margins were calculated, using both observational cohort data and a bootstrap-resampled population estimator. The grand mean displacements for all anatomical points was 5.07mm, with mean systematic error of 1.1mm and mean random setup error of 2.63mm, while bootstrapped POIs grand mean displacement was 5.09mm, with mean systematic error of 1.23mm and mean random setup error of 2.61mm. Required margin for CTV-PTV expansion was 4.6mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9mm. The calculated OAR-to-PRV expansion for the observed residual set-up error was 2.7mm, and bootstrap estimated expansion of 2.9mm. We conclude that the interfractional larynx setup error is a significant source of RT set-up/delivery error in HNC both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5mm to compensate for set up error if the larynx is a target or 3mm if the larynx is an OAR when using a non-laryngeal bony isocenter. PMID:25679151

  18. Estimation of daily interfractional larynx residual setup error after isocentric alignment for head and neck radiotherapy: quality assurance implications for target volume and organs‐at‐risk margination using daily CT on‐rails imaging

    PubMed Central

    Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S.R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R.; Kocak‐Uzel, Esengul

    2014-01-01

    Larynx may alternatively serve as a target or organs at risk (OAR) in head and neck cancer (HNC) image‐guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population‐based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT on‐rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior‐anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other six points were calculated postisocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all six points for all scans over the course of treatment was calculated. Residual systematic and random error and the necessary compensatory CTV‐to‐PTV and OAR‐to‐PRV margins were calculated, using both observational cohort data and a bootstrap‐resampled population estimator. The grand mean displacements for all anatomical points was 5.07 mm, with mean systematic error of 1.1 mm and mean random setup error of 2.63 mm, while bootstrapped POIs grand mean displacement was 5.09 mm, with mean systematic error of 1.23 mm and mean random setup error of 2.61 mm. Required margin for CTV‐PTV expansion was 4.6 mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9 mm. The calculated OAR‐to‐PRV expansion for the observed residual setup error was 2.7 mm and bootstrap estimated expansion of 2.9 mm. We conclude that the interfractional larynx setup error is a significant source of RT setup/delivery error in HNC, both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5 mm to compensate for setup error if the larynx is a target, or 3 mm if the larynx is an OAR, when using a nonlaryngeal bony isocenter. PACS numbers: 87.55.D‐, 87.55.Qr

  19. Measurement error associated with surveys of fish abundance in Lake Michigan

    USGS Publications Warehouse

    Krause, Ann E.; Hayes, Daniel B.; Bence, James R.; Madenjian, Charles P.; Stedman, Ralph M.

    2002-01-01

    In fisheries, imprecise measurements in catch data from surveys adds uncertainty to the results of fishery stock assessments. The USGS Great Lakes Science Center (GLSC) began to survey the fall fish community of Lake Michigan in 1962 with bottom trawls. The measurement error was evaluated at the level of individual tows for nine fish species collected in this survey by applying a measurement-error regression model to replicated trawl data. It was found that the estimates of measurement-error variance ranged from 0.37 (deepwater sculpin, Myoxocephalus thompsoni) to 1.23 (alewife, Alosa pseudoharengus) on a logarithmic scale corresponding to a coefficient of variation = 66% to 156%. The estimates appeared to increase with the range of temperature occupied by the fish species. This association may be a result of the variability in the fall thermal structure of the lake. The estimates may also be influenced by other factors, such as pelagic behavior and schooling. Measurement error might be reduced by surveying the fish community during other seasons and/or by using additional technologies, such as acoustics. Measurement-error estimates should be considered when interpreting results of assessments that use abundance information from USGS-GLSC surveys of Lake Michigan and could be used if the survey design was altered. This study is the first to report estimates of measurement-error variance associated with this survey.

  20. Sulcal set optimization for cortical surface registration.

    PubMed

    Joshi, Anand A; Pantazis, Dimitrios; Li, Quanzheng; Damasio, Hanna; Shattuck, David W; Toga, Arthur W; Leahy, Richard M

    2010-04-15

    Flat mapping based cortical surface registration constrained by manually traced sulcal curves has been widely used for inter subject comparisons of neuroanatomical data. Even for an experienced neuroanatomist, manual sulcal tracing can be quite time consuming, with the cost increasing with the number of sulcal curves used for registration. We present a method for estimation of an optimal subset of size N(C) from N possible candidate sulcal curves that minimizes a mean squared error metric over all combinations of N(C) curves. The resulting procedure allows us to estimate a subset with a reduced number of curves to be traced as part of the registration procedure leading to optimal use of manual labeling effort for registration. To minimize the error metric we analyze the correlation structure of the errors in the sulcal curves by modeling them as a multivariate Gaussian distribution. For a given subset of sulci used as constraints in surface registration, the proposed model estimates registration error based on the correlation structure of the sulcal errors. The optimal subset of constraint curves consists of the N(C) sulci that jointly minimize the estimated error variance for the subset of unconstrained curves conditioned on the N(C) constraint curves. The optimal subsets of sulci are presented and the estimated and actual registration errors for these subsets are computed. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Facial motion parameter estimation and error criteria in model-based image coding

    NASA Astrophysics Data System (ADS)

    Liu, Yunhai; Yu, Lu; Yao, Qingdong

    2000-04-01

    Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.

  2. Minimization of model representativity errors in identification of point source emission from atmospheric concentration measurements

    NASA Astrophysics Data System (ADS)

    Sharan, Maithili; Singh, Amit Kumar; Singh, Sarvesh Kumar

    2017-11-01

    Estimation of an unknown atmospheric release from a finite set of concentration measurements is considered an ill-posed inverse problem. Besides ill-posedness, the estimation process is influenced by the instrumental errors in the measured concentrations and model representativity errors. The study highlights the effect of minimizing model representativity errors on the source estimation. This is described in an adjoint modelling framework and followed in three steps. First, an estimation of point source parameters (location and intensity) is carried out using an inversion technique. Second, a linear regression relationship is established between the measured concentrations and corresponding predicted using the retrieved source parameters. Third, this relationship is utilized to modify the adjoint functions. Further, source estimation is carried out using these modified adjoint functions to analyse the effect of such modifications. The process is tested for two well known inversion techniques, called renormalization and least-square. The proposed methodology and inversion techniques are evaluated for a real scenario by using concentrations measurements from the Idaho diffusion experiment in low wind stable conditions. With both the inversion techniques, a significant improvement is observed in the retrieval of source estimation after minimizing the representativity errors.

  3. Impact of exposure measurement error in air pollution epidemiology: effect of error type in time-series studies.

    PubMed

    Goldman, Gretchen T; Mulholland, James A; Russell, Armistead G; Strickland, Matthew J; Klein, Mitchel; Waller, Lance A; Tolbert, Paige E

    2011-06-22

    Two distinctly different types of measurement error are Berkson and classical. Impacts of measurement error in epidemiologic studies of ambient air pollution are expected to depend on error type. We characterize measurement error due to instrument imprecision and spatial variability as multiplicative (i.e. additive on the log scale) and model it over a range of error types to assess impacts on risk ratio estimates both on a per measurement unit basis and on a per interquartile range (IQR) basis in a time-series study in Atlanta. Daily measures of twelve ambient air pollutants were analyzed: NO2, NOx, O3, SO2, CO, PM10 mass, PM2.5 mass, and PM2.5 components sulfate, nitrate, ammonium, elemental carbon and organic carbon. Semivariogram analysis was applied to assess spatial variability. Error due to this spatial variability was added to a reference pollutant time-series on the log scale using Monte Carlo simulations. Each of these time-series was exponentiated and introduced to a Poisson generalized linear model of cardiovascular disease emergency department visits. Measurement error resulted in reduced statistical significance for the risk ratio estimates for all amounts (corresponding to different pollutants) and types of error. When modelled as classical-type error, risk ratios were attenuated, particularly for primary air pollutants, with average attenuation in risk ratios on a per unit of measurement basis ranging from 18% to 92% and on an IQR basis ranging from 18% to 86%. When modelled as Berkson-type error, risk ratios per unit of measurement were biased away from the null hypothesis by 2% to 31%, whereas risk ratios per IQR were attenuated (i.e. biased toward the null) by 5% to 34%. For CO modelled error amount, a range of error types were simulated and effects on risk ratio bias and significance were observed. For multiplicative error, both the amount and type of measurement error impact health effect estimates in air pollution epidemiology. By modelling instrument imprecision and spatial variability as different error types, we estimate direction and magnitude of the effects of error over a range of error types.

  4. Associations between communication climate and the frequency of medical error reporting among pharmacists within an inpatient setting.

    PubMed

    Patterson, Mark E; Pace, Heather A; Fincham, Jack E

    2013-09-01

    Although error-reporting systems enable hospitals to accurately track safety climate through the identification of adverse events, these systems may be underused within a work climate of poor communication. The objective of this analysis is to identify the extent to which perceived communication climate among hospital pharmacists impacts medical error reporting rates. This cross-sectional study used survey responses from more than 5000 pharmacists responding to the 2010 Hospital Survey on Patient Safety Culture (HSOPSC). Two composite scores were constructed for "communication openness" and "feedback and about error," respectively. Error reporting frequency was defined from the survey question, "In the past 12 months, how many event reports have you filled out and submitted?" Multivariable logistic regressions were used to estimate the likelihood of medical error reporting conditional upon communication openness or feedback levels, controlling for pharmacist years of experience, hospital geographic region, and ownership status. Pharmacists with higher communication openness scores compared with lower scores were 40% more likely to have filed or submitted a medical error report in the past 12 months (OR, 1.4; 95% CI, 1.1-1.7; P = 0.004). In contrast, pharmacists with higher communication feedback scores were not any more likely than those with lower scores to have filed or submitted a medical report in the past 12 months (OR, 1.0; 95% CI, 0.8-1.3; P = 0.97). Hospital work climates that encourage pharmacists to freely communicate about problems related to patient safety is conducive to medical error reporting. The presence of feedback infrastructures about error may not be sufficient to induce error-reporting behavior.

  5. Estimation of distributed Fermat-point location for wireless sensor networking.

    PubMed

    Huang, Po-Hsian; Chen, Jiann-Liang; Larosa, Yanuarius Teofilus; Chiang, Tsui-Lien

    2011-01-01

    This work presents a localization scheme for use in wireless sensor networks (WSNs) that is based on a proposed connectivity-based RF localization strategy called the distributed Fermat-point location estimation algorithm (DFPLE). DFPLE applies triangle area of location estimation formed by intersections of three neighboring beacon nodes. The Fermat point is determined as the shortest path from three vertices of the triangle. The area of estimated location then refined using Fermat point to achieve minimum error in estimating sensor nodes location. DFPLE solves problems of large errors and poor performance encountered by localization schemes that are based on a bounding box algorithm. Performance analysis of a 200-node development environment reveals that, when the number of sensor nodes is below 150, the mean error decreases rapidly as the node density increases, and when the number of sensor nodes exceeds 170, the mean error remains below 1% as the node density increases. Second, when the number of beacon nodes is less than 60, normal nodes lack sufficient beacon nodes to enable their locations to be estimated. However, the mean error changes slightly as the number of beacon nodes increases above 60. Simulation results revealed that the proposed algorithm for estimating sensor positions is more accurate than existing algorithms, and improves upon conventional bounding box strategies.

  6. Asteroid orbital error analysis: Theory and application

    NASA Technical Reports Server (NTRS)

    Muinonen, K.; Bowell, Edward

    1992-01-01

    We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).

  7. Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?

    NASA Technical Reports Server (NTRS)

    Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander

    2016-01-01

    Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.

  8. Systematic Error Modeling and Bias Estimation

    PubMed Central

    Zhang, Feihu; Knoll, Alois

    2016-01-01

    This paper analyzes the statistic properties of the systematic error in terms of range and bearing during the transformation process. Furthermore, we rely on a weighted nonlinear least square method to calculate the biases based on the proposed models. The results show the high performance of the proposed approach for error modeling and bias estimation. PMID:27213386

  9. Estimation of an Occupational Choice Model when Occupations Are Misclassified

    ERIC Educational Resources Information Center

    Sullivan, Paul

    2009-01-01

    This paper develops an empirical occupational choice model that corrects for misclassification in occupational choices and measurement error in occupation-specific work experience. The model is used to estimate the extent of measurement error in occupation data and quantify the bias that results from ignoring measurement error in occupation codes…

  10. A simulation study to quantify the impacts of exposure measurement error on air pollution health risk estimates in copollutant time-series models.

    EPA Science Inventory

    BackgroundExposure measurement error in copollutant epidemiologic models has the potential to introduce bias in relative risk (RR) estimates. A simulation study was conducted using empirical data to quantify the impact of correlated measurement errors in time-series analyses of a...

  11. Application of Consider Covariance to the Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Lundberg, John B.

    1996-01-01

    The extended Kalman filter (EKF) is the basis for many applications of filtering theory to real-time problems where estimates of the state of a dynamical system are to be computed based upon some set of observations. The form of the EKF may vary somewhat from one application to another, but the fundamental principles are typically unchanged among these various applications. As is the case in many filtering applications, models of the dynamical system (differential equations describing the state variables) and models of the relationship between the observations and the state variables are created. These models typically employ a set of constants whose values are established my means of theory or experimental procedure. Since the estimates of the state are formed assuming that the models are perfect, any modeling errors will affect the accuracy of the computed estimates. Note that the modeling errors may be errors of commission (errors in terms included in the model) or omission (errors in terms excluded from the model). Consequently, it becomes imperative when evaluating the performance of real-time filters to evaluate the effect of modeling errors on the estimates of the state.

  12. Unifying error structures in commonly used biotracer mixing models.

    PubMed

    Stock, Brian C; Semmens, Brice X

    2016-10-01

    Mixing models are statistical tools that use biotracers to probabilistically estimate the contribution of multiple sources to a mixture. These biotracers may include contaminants, fatty acids, or stable isotopes, the latter of which are widely used in trophic ecology to estimate the mixed diet of consumers. Bayesian implementations of mixing models using stable isotopes (e.g., MixSIR, SIAR) are regularly used by ecologists for this purpose, but basic questions remain about when each is most appropriate. In this study, we describe the structural differences between common mixing model error formulations in terms of their assumptions about the predation process. We then introduce a new parameterization that unifies these mixing model error structures, as well as implicitly estimates the rate at which consumers sample from source populations (i.e., consumption rate). Using simulations and previously published mixing model datasets, we demonstrate that the new error parameterization outperforms existing models and provides an estimate of consumption. Our results suggest that the error structure introduced here will improve future mixing model estimates of animal diet. © 2016 by the Ecological Society of America.

  13. Alcohol consumption, beverage prices and measurement error.

    PubMed

    Young, Douglas J; Bielinska-Kwapisz, Agnieszka

    2003-03-01

    Alcohol price data collected by the American Chamber of Commerce Researchers Association (ACCRA) have been widely used in studies of alcohol consumption and related behaviors. A number of problems with these data suggest that they contain substantial measurement error, which biases conventional statistical estimators toward a finding of little or no effect of prices on behavior. We test for measurement error, assess the magnitude of the bias and provide an alternative estimator that is likely to be superior. The study utilizes data on per capita alcohol consumption across U.S. states and the years 1982-1997. State and federal alcohol taxes are used as instrumental variables for prices. Formal tests strongly confim the hypothesis of measurement error. Instrumental variable estimates of the price elasticity of demand range from -0.53 to -1.24. These estimates are substantially larger in absolute value than ordinary least squares estimates, which sometimes are not significantly different from zero or even positive. The ACCRA price data are substantially contaminated with measurement error, but using state and federal taxes as instrumental variables mitigates the problem.

  14. A model for the prediction of latent errors using data obtained during the development process

    NASA Technical Reports Server (NTRS)

    Gaffney, J. E., Jr.; Martello, S. J.

    1984-01-01

    A model implemented in a program that runs on the IBM PC for estimating the latent (or post ship) content of a body of software upon its initial release to the user is presented. The model employs the count of errors discovered at one or more of the error discovery processes during development, such as a design inspection, as the input data for a process which provides estimates of the total life-time (injected) error content and of the latent (or post ship) error content--the errors remaining a delivery. The model presented presumes that these activities cover all of the opportunities during the software development process for error discovery (and removal).

  15. Error Analyses of the North Alabama Lightning Mapping Array (LMA)

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Solokiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J. M.; Bailey, J. C.; Krider, E. P.; Bateman, M. G.; Boccippio, D. J.

    2003-01-01

    Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA-MSFC and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results, except that the chi-squared theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.

  16. Spatial and temporal variability of the overall error of National Atmospheric Deposition Program measurements determined by the USGS collocated-sampler program, water years 1989-2001

    USGS Publications Warehouse

    Wetherbee, G.A.; Latysh, N.E.; Gordon, J.D.

    2005-01-01

    Data from the U.S. Geological Survey (USGS) collocated-sampler program for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) are used to estimate the overall error of NADP/NTN measurements. Absolute errors are estimated by comparison of paired measurements from collocated instruments. Spatial and temporal differences in absolute error were identified and are consistent with longitudinal distributions of NADP/NTN measurements and spatial differences in precipitation characteristics. The magnitude of error for calcium, magnesium, ammonium, nitrate, and sulfate concentrations, specific conductance, and sample volume is of minor environmental significance to data users. Data collected after a 1994 sample-handling protocol change are prone to less absolute error than data collected prior to 1994. Absolute errors are smaller during non-winter months than during winter months for selected constituents at sites where frozen precipitation is common. Minimum resolvable differences are estimated for different regions of the USA to aid spatial and temporal watershed analyses.

  17. Estimating tree biomass regressions and their error, proceedings of the workshop on tree biomass regression functions and their contribution to the error

    Treesearch

    Eric H. Wharton; Tiberius Cunia

    1987-01-01

    Proceedings of a workshop co-sponsored by the USDA Forest Service, the State University of New York, and the Society of American Foresters. Presented were papers on the methodology of sample tree selection, tree biomass measurement, construction of biomass tables and estimation of their error, and combining the error of biomass tables with that of the sample plots or...

  18. A numerical procedure for recovering true scattering coefficients from measurements with wide-beam antennas

    NASA Technical Reports Server (NTRS)

    Wang, Qinglin; Gogineni, S. P.

    1991-01-01

    A numerical procedure for estimating the true scattering coefficient, sigma(sup 0), from measurements made using wide-beam antennas. The use of wide-beam antennas results in an inaccurate estimate of sigma(sup 0) if the narrow-beam approximation is used in the retrieval process for sigma(sup 0). To reduce this error, a correction procedure was proposed that estimates the error resulting from the narrow-beam approximation and uses the error to obtain a more accurate estimate of sigma(sup 0). An exponential model was assumed to take into account the variation of sigma(sup 0) with incidence angles, and the model parameters are estimated from measured data. Based on the model and knowledge of the antenna pattern, the procedure calculates the error due to the narrow-beam approximation. The procedure is shown to provide a significant improvement in estimation of sigma(sup 0) obtained with wide-beam antennas. The proposed procedure is also shown insensitive to the assumed sigma(sup 0) model.

  19. On the representation and estimation of spatial uncertainty. [for mobile robot

    NASA Technical Reports Server (NTRS)

    Smith, Randall C.; Cheeseman, Peter

    1987-01-01

    This paper describes a general method for estimating the nominal relationship and expected error (covariance) between coordinate frames representing the relative locations of objects. The frames may be known only indirectly through a series of spatial relationships, each with its associated error, arising from diverse causes, including positioning errors, measurement errors, or tolerances in part dimensions. This estimation method can be used to answer such questions as whether a camera attached to a robot is likely to have a particular reference object in its field of view. The calculated estimates agree well with those from an independent Monte Carlo simulation. The method makes it possible to decide in advance whether an uncertain relationship is known accurately enough for some task and, if not, how much of an improvement in locational knowledge a proposed sensor will provide. The method presented can be generalized to six degrees of freedom and provides a practical means of estimating the relationships (position and orientation) among objects, as well as estimating the uncertainty associated with the relationships.

  20. Ensemble Data Assimilation Without Ensembles: Methodology and Application to Ocean Data Assimilation

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian L.; Rienecker, Michele M.; Kovach, Robin M.; Vernieres, Guillaume

    2013-01-01

    Two methods to estimate background error covariances for data assimilation are introduced. While both share properties with the ensemble Kalman filter (EnKF), they differ from it in that they do not require the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The first method is referred-to as SAFE (Space Adaptive Forecast error Estimation) because it estimates error covariances from the spatial distribution of model variables within a single state vector. It can thus be thought of as sampling an ensemble in space. The second method, named FAST (Flow Adaptive error Statistics from a Time series), constructs an ensemble sampled from a moving window along a model trajectory. The underlying assumption in these methods is that forecast errors in data assimilation are primarily phase errors in space and/or time.

  1. Methods and apparatus for reducing peak wind turbine loads

    DOEpatents

    Moroz, Emilian Mieczyslaw

    2007-02-13

    A method for reducing peak loads of wind turbines in a changing wind environment includes measuring or estimating an instantaneous wind speed and direction at the wind turbine and determining a yaw error of the wind turbine relative to the measured instantaneous wind direction. The method further includes comparing the yaw error to a yaw error trigger that has different values at different wind speeds and shutting down the wind turbine when the yaw error exceeds the yaw error trigger corresponding to the measured or estimated instantaneous wind speed.

  2. The effect of misclassification errors on case mix measurement.

    PubMed

    Sutherland, Jason M; Botz, Chas K

    2006-12-01

    Case mix systems have been implemented for hospital reimbursement and performance measurement across Europe and North America. Case mix categorizes patients into discrete groups based on clinical information obtained from patient charts in an attempt to identify clinical or cost difference amongst these groups. The diagnosis related group (DRG) case mix system is the most common methodology, with variants adopted in many countries. External validation studies of coding quality have confirmed that widespread variability exists between originally recorded diagnoses and re-abstracted clinical information. DRG assignment errors in hospitals that share patient level cost data for the purpose of establishing cost weights affects cost weight accuracy. The purpose of this study is to estimate bias in cost weights due to measurement error of reported clinical information. DRG assignment error rates are simulated based on recent clinical re-abstraction study results. Our simulation study estimates that 47% of cost weights representing the least severe cases are over weight by 10%, while 32% of cost weights representing the most severe cases are under weight by 10%. Applying the simulated weights to a cross-section of hospitals, we find that teaching hospitals tend to be under weight. Since inaccurate cost weights challenges the ability of case mix systems to accurately reflect patient mix and may lead to potential distortions in hospital funding, bias in hospital case mix measurement highlights the role clinical data quality plays in hospital funding in countries that use DRG-type case mix systems. Quality of clinical information should be carefully considered from hospitals that contribute financial data for establishing cost weights.

  3. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles

    PubMed Central

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-01-01

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists. PMID:27548183

  4. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles.

    PubMed

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-08-19

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists.

  5. Worldwide Ocean Optics Database (WOOD)

    DTIC Science & Technology

    2002-09-30

    attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for the computed results. Extensive algorithm...empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for the...properties, including diffuse attenuation, beam attenuation, and scattering. Data from ONR-funded bio-optical cruises will be given priority for loading

  6. Standard Error of Linear Observed-Score Equating for the NEAT Design with Nonnormally Distributed Data

    ERIC Educational Resources Information Center

    Zu, Jiyun; Yuan, Ke-Hai

    2012-01-01

    In the nonequivalent groups with anchor test (NEAT) design, the standard error of linear observed-score equating is commonly estimated by an estimator derived assuming multivariate normality. However, real data are seldom normally distributed, causing this normal estimator to be inconsistent. A general estimator, which does not rely on the…

  7. Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters

    ERIC Educational Resources Information Center

    Hoshino, Takahiro; Shigemasu, Kazuo

    2008-01-01

    The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…

  8. Application of parameter estimation to highly unstable aircraft

    NASA Technical Reports Server (NTRS)

    Maine, R. E.; Murray, J. E.

    1986-01-01

    This paper discusses the application of parameter estimation to highly unstable aircraft. It includes a discussion of the problems in applying the output error method to such aircraft and demonstrates that the filter error method eliminates these problems. The paper shows that the maximum likelihood estimator with no process noise does not reduce to the output error method when the system is unstable. It also proposes and demonstrates an ad hoc method that is similar in form to the filter error method, but applicable to nonlinear problems. Flight data from the X-29 forward-swept-wing demonstrator is used to illustrate the problems and methods discussed.

  9. Application of parameter estimation to highly unstable aircraft

    NASA Technical Reports Server (NTRS)

    Maine, R. E.; Murray, J. E.

    1986-01-01

    The application of parameter estimation to highly unstable aircraft is discussed. Included are a discussion of the problems in applying the output error method to such aircraft and demonstrates that the filter error method eliminates these problems. The paper shows that the maximum likelihood estimator with no process noise does not reduce to the output error method when the system is unstable. It also proposes and demonstrates an ad hoc method that is similar in form to the filter error method, but applicable to nonlinear problems. Flight data from the X-29 forward-swept-wing demonstrator is used to illustrate the problems and methods discussed.

  10. Classification based upon gene expression data: bias and precision of error rates.

    PubMed

    Wood, Ian A; Visscher, Peter M; Mengersen, Kerrie L

    2007-06-01

    Gene expression data offer a large number of potentially useful predictors for the classification of tissue samples into classes, such as diseased and non-diseased. The predictive error rate of classifiers can be estimated using methods such as cross-validation. We have investigated issues of interpretation and potential bias in the reporting of error rate estimates. The issues considered here are optimization and selection biases, sampling effects, measures of misclassification rate, baseline error rates, two-level external cross-validation and a novel proposal for detection of bias using the permutation mean. Reporting an optimal estimated error rate incurs an optimization bias. Downward bias of 3-5% was found in an existing study of classification based on gene expression data and may be endemic in similar studies. Using a simulated non-informative dataset and two example datasets from existing studies, we show how bias can be detected through the use of label permutations and avoided using two-level external cross-validation. Some studies avoid optimization bias by using single-level cross-validation and a test set, but error rates can be more accurately estimated via two-level cross-validation. In addition to estimating the simple overall error rate, we recommend reporting class error rates plus where possible the conditional risk incorporating prior class probabilities and a misclassification cost matrix. We also describe baseline error rates derived from three trivial classifiers which ignore the predictors. R code which implements two-level external cross-validation with the PAMR package, experiment code, dataset details and additional figures are freely available for non-commercial use from http://www.maths.qut.edu.au/profiles/wood/permr.jsp

  11. Adaptive framework to better characterize errors of apriori fluxes and observational residuals in a Bayesian setup for the urban flux inversions.

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Lopez-Coto, I.; Prasad, K.; Karion, A.; Mueller, K.; Gourdji, S.; Martin, C.; Whetstone, J. R.

    2017-12-01

    The National Institute of Standards and Technology (NIST) supports the North-East Corridor Baltimore Washington (NEC-B/W) project and Indianapolis Flux Experiment (INFLUX) aiming to quantify sources of Greenhouse Gas (GHG) emissions as well as their uncertainties. These projects employ different flux estimation methods including top-down inversion approaches. The traditional Bayesian inversion method estimates emission distributions by updating prior information using atmospheric observations of Green House Gases (GHG) coupled to an atmospheric and dispersion model. The magnitude of the update is dependent upon the observed enhancement along with the assumed errors such as those associated with prior information and the atmospheric transport and dispersion model. These errors are specified within the inversion covariance matrices. The assumed structure and magnitude of the specified errors can have large impact on the emission estimates from the inversion. The main objective of this work is to build a data-adaptive model for these covariances matrices. We construct a synthetic data experiment using a Kalman Filter inversion framework (Lopez et al., 2017) employing different configurations of transport and dispersion model and an assumed prior. Unlike previous traditional Bayesian approaches, we estimate posterior emissions using regularized sample covariance matrices associated with prior errors to investigate whether the structure of the matrices help to better recover our hypothetical true emissions. To incorporate transport model error, we use ensemble of transport models combined with space-time analytical covariance to construct a covariance that accounts for errors in space and time. A Kalman Filter is then run using these covariances along with Maximum Likelihood Estimates (MLE) of the involved parameters. Preliminary results indicate that specifying sptio-temporally varying errors in the error covariances can improve the flux estimates and uncertainties. We also demonstrate that differences between the modeled and observed meteorology can be used to predict uncertainties associated with atmospheric transport and dispersion modeling which can help improve the skill of an inversion at urban scales.

  12. Space-time mesh adaptation for solute transport in randomly heterogeneous porous media.

    PubMed

    Dell'Oca, Aronne; Porta, Giovanni Michele; Guadagnini, Alberto; Riva, Monica

    2018-05-01

    We assess the impact of an anisotropic space and time grid adaptation technique on our ability to solve numerically solute transport in heterogeneous porous media. Heterogeneity is characterized in terms of the spatial distribution of hydraulic conductivity, whose natural logarithm, Y, is treated as a second-order stationary random process. We consider nonreactive transport of dissolved chemicals to be governed by an Advection Dispersion Equation at the continuum scale. The flow field, which provides the advective component of transport, is obtained through the numerical solution of Darcy's law. A suitable recovery-based error estimator is analyzed to guide the adaptive discretization. We investigate two diverse strategies guiding the (space-time) anisotropic mesh adaptation. These are respectively grounded on the definition of the guiding error estimator through the spatial gradients of: (i) the concentration field only; (ii) both concentration and velocity components. We test the approach for two-dimensional computational scenarios with moderate and high levels of heterogeneity, the latter being expressed in terms of the variance of Y. As quantities of interest, we key our analysis towards the time evolution of section-averaged and point-wise solute breakthrough curves, second centered spatial moment of concentration, and scalar dissipation rate. As a reference against which we test our results, we consider corresponding solutions associated with uniform space-time grids whose level of refinement is established through a detailed convergence study. We find a satisfactory comparison between results for the adaptive methodologies and such reference solutions, our adaptive technique being associated with a markedly reduced computational cost. Comparison of the two adaptive strategies tested suggests that: (i) defining the error estimator relying solely on concentration fields yields some advantages in grasping the key features of solute transport taking place within low velocity regions, where diffusion-dispersion mechanisms are dominant; and (ii) embedding the velocity field in the error estimator guiding strategy yields an improved characterization of the forward fringe of solute fronts which propagate through high velocity regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Pilot estimates of glidepath and aim point during simulated landing approaches

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    1981-01-01

    Pilot perceptions of glidepath angle and aim point were measured during simulated landings. A fixed-base cockpit simulator was used with video recordings of simulated landing approaches shown on a video projector. Pilots estimated the magnitudes of approach errors during observation without attempting to make corrections. Pilots estimated glidepath angular errors well, but had difficulty estimating aim-point errors. The data make plausible the hypothesis that pilots are little concerned with aim point during most of an approach, concentrating instead on keeping close to the nominal glidepath and trusting this technique to guide them to the proper touchdown point.

  14. Towards a quantitative, measurement-based estimate of the uncertainty in photon mass attenuation coefficients at radiation therapy energies

    NASA Astrophysics Data System (ADS)

    Ali, E. S. M.; Spencer, B.; McEwen, M. R.; Rogers, D. W. O.

    2015-02-01

    In this study, a quantitative estimate is derived for the uncertainty in the XCOM photon mass attenuation coefficients in the energy range of interest to external beam radiation therapy—i.e. 100 keV (orthovoltage) to 25 MeV—using direct comparisons of experimental data against Monte Carlo models and theoretical XCOM data. Two independent datasets are used. The first dataset is from our recent transmission measurements and the corresponding EGSnrc calculations (Ali et al 2012 Med. Phys. 39 5990-6003) for 10-30 MV photon beams from the research linac at the National Research Council Canada. The attenuators are graphite and lead, with a total of 140 data points and an experimental uncertainty of ˜0.5% (k = 1). An optimum energy-independent cross section scaling factor that minimizes the discrepancies between measurements and calculations is used to deduce cross section uncertainty. The second dataset is from the aggregate of cross section measurements in the literature for graphite and lead (49 experiments, 288 data points). The dataset is compared to the sum of the XCOM data plus the IAEA photonuclear data. Again, an optimum energy-independent cross section scaling factor is used to deduce the cross section uncertainty. Using the average result from the two datasets, the energy-independent cross section uncertainty estimate is 0.5% (68% confidence) and 0.7% (95% confidence). The potential for energy-dependent errors is discussed. Photon cross section uncertainty is shown to be smaller than the current qualitative ‘envelope of uncertainty’ of the order of 1-2%, as given by Hubbell (1999 Phys. Med. Biol 44 R1-22).

  15. Estimation of Energy Expenditure for Wheelchair Users Using a Physical Activity Monitoring System.

    PubMed

    Hiremath, Shivayogi V; Intille, Stephen S; Kelleher, Annmarie; Cooper, Rory A; Ding, Dan

    2016-07-01

    To develop and evaluate energy expenditure (EE) estimation models for a physical activity monitoring system (PAMS) in manual wheelchair users with spinal cord injury (SCI). Cross-sectional study. University-based laboratory environment, a semistructured environment at the National Veterans Wheelchair Games, and the participants' home environments. Volunteer sample of manual wheelchair users with SCI (N=45). Participants were asked to perform 10 physical activities (PAs) of various intensities from a list. The PAMS consists of a gyroscope-based wheel rotation monitor (G-WRM) and an accelerometer device worn on the upper arm or on the wrist. Criterion EE using a portable metabolic cart and raw sensor data from PAMS were collected during each of these activities. Estimated EE using custom models for manual wheelchair users based on either the G-WRM and arm accelerometer (PAMS-Arm) or the G-WRM and wrist accelerometer (PAMS-Wrist). EE estimation performance for the PAMS-Arm (average error ± SD: -9.82%±37.03%) and PAMS-Wrist (-5.65%±32.61%) on the validation dataset indicated that both PAMS-Arm and PAMS-Wrist were able to estimate EE for a range of PAs with <10% error. Moderate to high intraclass correlation coefficients (ICCs) indicated that the EE estimated by PAMS-Arm (ICC3,1=.82, P<.05) and PAMS-Wrist (ICC3,1=.89, P<.05) are consistent with the criterion EE. Availability of PA monitors can assist wheelchair users to track PA levels, leading toward a healthier lifestyle. The new models we developed can estimate PA levels in manual wheelchair users with SCI in laboratory and community settings. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Robust estimation of adaptive tensors of curvature by tensor voting.

    PubMed

    Tong, Wai-Shun; Tang, Chi-Keung

    2005-03-01

    Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.

  17. Estimation of clear-sky insolation using satellite and ground meteorological data

    NASA Technical Reports Server (NTRS)

    Staylor, W. F.; Darnell, W. L.; Gupta, S. K.

    1983-01-01

    Ground based pyranometer measurements were combined with meteorological data from the Tiros N satellite in order to estimate clear-sky insolations at five U.S. sites for five weeks during the spring of 1979. The estimates were used to develop a semi-empirical model of clear-sky insolation for the interpretation of input data from the Tiros Operational Vertical Sounder (TOVS). Using only satellite data, the estimated standard errors in the model were about 2 percent. The introduction of ground based data reduced errors to around 1 percent. It is shown that although the errors in the model were reduced by only 1 percent, TOVS data products are still adequate for estimating clear-sky insolation.

  18. ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve☆

    PubMed Central

    Feischl, Michael; Führer, Thomas; Karkulik, Michael; Praetorius, Dirk

    2014-01-01

    In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments. PMID:24748725

  19. Using doppler radar images to estimate aircraft navigational heading error

    DOEpatents

    Doerry, Armin W [Albuquerque, NM; Jordan, Jay D [Albuquerque, NM; Kim, Theodore J [Albuquerque, NM

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  20. An algorithm for management of deep brain stimulation battery replacements: devising a web-based battery estimator and clinical symptom approach.

    PubMed

    Montuno, Michael A; Kohner, Andrew B; Foote, Kelly D; Okun, Michael S

    2013-01-01

    Deep brain stimulation (DBS) is an effective technique that has been utilized to treat advanced and medication-refractory movement and psychiatric disorders. In order to avoid implanted pulse generator (IPG) failure and consequent adverse symptoms, a better understanding of IPG battery longevity and management is necessary. Existing methods for battery estimation lack the specificity required for clinical incorporation. Technical challenges prevent higher accuracy longevity estimations, and a better approach to managing end of DBS battery life is needed. The literature was reviewed and DBS battery estimators were constructed by the authors and made available on the web at http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator. A clinical algorithm for management of DBS battery life was constructed. The algorithm takes into account battery estimations and clinical symptoms. Existing methods of DBS battery life estimation utilize an interpolation of averaged current drains to calculate how long a battery will last. Unfortunately, this technique can only provide general approximations. There are inherent errors in this technique, and these errors compound with each iteration of the battery estimation. Some of these errors cannot be accounted for in the estimation process, and some of the errors stem from device variation, battery voltage dependence, battery usage, battery chemistry, impedance fluctuations, interpolation error, usage patterns, and self-discharge. We present web-based battery estimators along with an algorithm for clinical management. We discuss the perils of using a battery estimator without taking into account the clinical picture. Future work will be needed to provide more reliable management of implanted device batteries; however, implementation of a clinical algorithm that accounts for both estimated battery life and for patient symptoms should improve the care of DBS patients. © 2012 International Neuromodulation Society.

  1. 7Li(p,n)7Be and 12C(p,n)12N reactions at 200, 300, and 400 MeV

    NASA Astrophysics Data System (ADS)

    Watson, J. W.; Pourang, R.; Abegg, R.; Alford, W. P.; Celler, A.; El-Kateb, S.; Frekers, D.; Häusser, O.; Helmer, R.; Henderson, R.; Hicks, K.; Jackson, K. P.; Jeppesen, R. G.; Miller, C. A.; Vetterli, M.; Yen, S.; Zafiratos, C. D.

    1989-07-01

    At 200, 300, and 400 MeV bombarding energies, we measured cross section angular distributions for the 7Li(p,n)7Be(g.s.+0.43 MeV) reaction and 0° cross sections for the 12C(p,n)12N(g.s.) reaction. Systematics of these reactions are presented. The center-of-mass cross section for the 7Li(p,n)7Be(g.s.+0.43 MeV) reaction, when plotted as a function of momentum transfer, is nearly independent of energy. The laboratory cross section for this reaction at 0° in the energy range from 60 to 400 MeV is also independent of energy, having a constant value, to within experimental errors, of 35.5 mb/sr with an estimated uncertainty of +/-1.5 mb/sr.

  2. Impact of electronic chemotherapy order forms on prescribing errors at an urban medical center: results from an interrupted time-series analysis.

    PubMed

    Elsaid, K; Truong, T; Monckeberg, M; McCarthy, H; Butera, J; Collins, C

    2013-12-01

    To evaluate the impact of electronic standardized chemotherapy templates on incidence and types of prescribing errors. A quasi-experimental interrupted time series with segmented regression. A 700-bed multidisciplinary tertiary care hospital with an ambulatory cancer center. A multidisciplinary team including oncology physicians, nurses, pharmacists and information technologists. Standardized, regimen-specific, chemotherapy prescribing forms were developed and implemented over a 32-month period. Trend of monthly prevented prescribing errors per 1000 chemotherapy doses during the pre-implementation phase (30 months), immediate change in the error rate from pre-implementation to implementation and trend of errors during the implementation phase. Errors were analyzed according to their types: errors in communication or transcription, errors in dosing calculation and errors in regimen frequency or treatment duration. Relative risk (RR) of errors in the post-implementation phase (28 months) compared with the pre-implementation phase was computed with 95% confidence interval (CI). Baseline monthly error rate was stable with 16.7 prevented errors per 1000 chemotherapy doses. A 30% reduction in prescribing errors was observed with initiating the intervention. With implementation, a negative change in the slope of prescribing errors was observed (coefficient = -0.338; 95% CI: -0.612 to -0.064). The estimated RR of transcription errors was 0.74; 95% CI (0.59-0.92). The estimated RR of dosing calculation errors was 0.06; 95% CI (0.03-0.10). The estimated RR of chemotherapy frequency/duration errors was 0.51; 95% CI (0.42-0.62). Implementing standardized chemotherapy-prescribing templates significantly reduced all types of prescribing errors and improved chemotherapy safety.

  3. Skylab water balance error analysis

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    Estimates of the precision of the net water balance were obtained for the entire Skylab preflight and inflight phases as well as for the first two weeks of flight. Quantitative estimates of both total sampling errors and instrumentation errors were obtained. It was shown that measurement error is minimal in comparison to biological variability and little can be gained from improvement in analytical accuracy. In addition, a propagation of error analysis demonstrated that total water balance error could be accounted for almost entirely by the errors associated with body mass changes. Errors due to interaction between terms in the water balance equation (covariances) represented less than 10% of the total error. Overall, the analysis provides evidence that daily measurements of body water changes obtained from the indirect balance technique are reasonable, precise, and relaible. The method is not biased toward net retention or loss.

  4. Continuously Deformation Monitoring of Subway Tunnel Based on Terrestrial Point Clouds

    NASA Astrophysics Data System (ADS)

    Kang, Z.; Tuo, L.; Zlatanova, S.

    2012-07-01

    The deformation monitoring of subway tunnel is of extraordinary necessity. Therefore, a method for deformation monitoring based on terrestrial point clouds is proposed in this paper. First, the traditional adjacent stations registration is replaced by sectioncontrolled registration, so that the common control points can be used by each station and thus the error accumulation avoided within a section. Afterwards, the central axis of the subway tunnel is determined through RANSAC (Random Sample Consensus) algorithm and curve fitting. Although with very high resolution, laser points are still discrete and thus the vertical section is computed via the quadric fitting of the vicinity of interest, instead of the fitting of the whole model of a subway tunnel, which is determined by the intersection line rotated about the central axis of tunnel within a vertical plane. The extraction of the vertical section is then optimized using RANSAC for the purpose of filtering out noises. Based on the extracted vertical sections, the volume of tunnel deformation is estimated by the comparison between vertical sections extracted at the same position from different epochs of point clouds. Furthermore, the continuously extracted vertical sections are deployed to evaluate the convergent tendency of the tunnel. The proposed algorithms are verified using real datasets in terms of accuracy and computation efficiency. The experimental result of fitting accuracy analysis shows the maximum deviation between interpolated point and real point is 1.5 mm, and the minimum one is 0.1 mm; the convergent tendency of the tunnel was detected by the comparison of adjacent fitting radius. The maximum error is 6 mm, while the minimum one is 1 mm. The computation cost of vertical section abstraction is within 3 seconds/section, which proves high efficiency..

  5. Considerations for analysis of time-to-event outcomes measured with error: Bias and correction with SIMEX.

    PubMed

    Oh, Eric J; Shepherd, Bryan E; Lumley, Thomas; Shaw, Pamela A

    2018-04-15

    For time-to-event outcomes, a rich literature exists on the bias introduced by covariate measurement error in regression models, such as the Cox model, and methods of analysis to address this bias. By comparison, less attention has been given to understanding the impact or addressing errors in the failure time outcome. For many diseases, the timing of an event of interest (such as progression-free survival or time to AIDS progression) can be difficult to assess or reliant on self-report and therefore prone to measurement error. For linear models, it is well known that random errors in the outcome variable do not bias regression estimates. With nonlinear models, however, even random error or misclassification can introduce bias into estimated parameters. We compare the performance of 2 common regression models, the Cox and Weibull models, in the setting of measurement error in the failure time outcome. We introduce an extension of the SIMEX method to correct for bias in hazard ratio estimates from the Cox model and discuss other analysis options to address measurement error in the response. A formula to estimate the bias induced into the hazard ratio by classical measurement error in the event time for a log-linear survival model is presented. Detailed numerical studies are presented to examine the performance of the proposed SIMEX method under varying levels and parametric forms of the error in the outcome. We further illustrate the method with observational data on HIV outcomes from the Vanderbilt Comprehensive Care Clinic. Copyright © 2017 John Wiley & Sons, Ltd.

  6. A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Larson, Mats G.; Barth, Timothy J.

    1999-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  7. Evaluation of process errors in bed load sampling using a Dune Model

    USGS Publications Warehouse

    Gomez, Basil; Troutman, Brent M.

    1997-01-01

    Reliable estimates of the streamwide bed load discharge obtained using sampling devices are dependent upon good at-a-point knowledge across the full width of the channel. Using field data and information derived from a model that describes the geometric features of a dune train in terms of a spatial process observed at a fixed point in time, we show that sampling errors decrease as the number of samples collected increases, and the number of traverses of the channel over which the samples are collected increases. It also is preferable that bed load sampling be conducted at a pace which allows a number of bed forms to pass through the sampling cross section. The situations we analyze and simulate pertain to moderate transport conditions in small rivers. In such circumstances, bed load sampling schemes typically should involve four or five traverses of a river, and the collection of 20–40 samples at a rate of five or six samples per hour. By ensuring that spatial and temporal variability in the transport process is accounted for, such a sampling design reduces both random and systematic errors and hence minimizes the total error involved in the sampling process.

  8. Evaluating EIV, OLS, and SEM Estimators of Group Slope Differences in the Presence of Measurement Error: The Single-Indicator Case

    ERIC Educational Resources Information Center

    Culpepper, Steven Andrew

    2012-01-01

    Measurement error significantly biases interaction effects and distorts researchers' inferences regarding interactive hypotheses. This article focuses on the single-indicator case and shows how to accurately estimate group slope differences by disattenuating interaction effects with errors-in-variables (EIV) regression. New analytic findings were…

  9. Stochastic stability of sigma-point Unscented Predictive Filter.

    PubMed

    Cao, Lu; Tang, Yu; Chen, Xiaoqian; Zhao, Yong

    2015-07-01

    In this paper, the Unscented Predictive Filter (UPF) is derived based on unscented transformation for nonlinear estimation, which breaks the confine of conventional sigma-point filters by employing Kalman filter as subject investigated merely. In order to facilitate the new method, the algorithm flow of UPF is given firstly. Then, the theoretical analyses demonstrate that the estimate accuracy of the model error and system for the UPF is higher than that of the conventional PF. Moreover, the authors analyze the stochastic boundedness and the error behavior of Unscented Predictive Filter (UPF) for general nonlinear systems in a stochastic framework. In particular, the theoretical results present that the estimation error remains bounded and the covariance keeps stable if the system׳s initial estimation error, disturbing noise terms as well as the model error are small enough, which is the core part of the UPF theory. All of the results have been demonstrated by numerical simulations for a nonlinear example system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Accuracy of patient specific organ-dose estimates obtained using an automated image segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-03-01

    The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.

  11. Improved Margin of Error Estimates for Proportions in Business: An Educational Example

    ERIC Educational Resources Information Center

    Arzumanyan, George; Halcoussis, Dennis; Phillips, G. Michael

    2015-01-01

    This paper presents the Agresti & Coull "Adjusted Wald" method for computing confidence intervals and margins of error for common proportion estimates. The presented method is easily implementable by business students and practitioners and provides more accurate estimates of proportions particularly in extreme samples and small…

  12. Characterizing Air Pollution Exposure Misclassification Errors Using Detailed Cell Phone Location Data

    NASA Astrophysics Data System (ADS)

    Yu, H.; Russell, A. G.; Mulholland, J. A.

    2017-12-01

    In air pollution epidemiologic studies with spatially resolved air pollution data, exposures are often estimated using the home locations of individual subjects. Due primarily to lack of data or logistic difficulties, the spatiotemporal mobility of subjects are mostly neglected, which are expected to result in exposure misclassification errors. In this study, we applied detailed cell phone location data to characterize potential exposure misclassification errors associated with home-based exposure estimation of air pollution. The cell phone data sample consists of 9,886 unique simcard IDs collected on one mid-week day in October, 2013 from Shenzhen, China. The Community Multi-scale Air Quality model was used to simulate hourly ambient concentrations of six chosen pollutants at 3 km spatial resolution, which were then fused with observational data to correct for potential modeling biases and errors. Air pollution exposure for each simcard ID was estimated by matching hourly pollutant concentrations with detailed location data for corresponding IDs. Finally, the results were compared with exposure estimates obtained using the home location method to assess potential exposure misclassification errors. Our results show that the home-based method is likely to have substantial exposure misclassification errors, over-estimating exposures for subjects with higher exposure levels and under-estimating exposures for those with lower exposure levels. This has the potential to lead to a bias-to-the-null in the health effect estimates. Our findings suggest that the use of cell phone data has the potential for improving the characterization of exposure and exposure misclassification in air pollution epidemiology studies.

  13. Evaluation of TRMM Ground-Validation Radar-Rain Errors Using Rain Gauge Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Jianxin; Wolff, David B.

    2009-01-01

    Ground-validation (GV) radar-rain products are often utilized for validation of the Tropical Rainfall Measuring Mission (TRMM) spaced-based rain estimates, and hence, quantitative evaluation of the GV radar-rain product error characteristics is vital. This study uses quality-controlled gauge data to compare with TRMM GV radar rain rates in an effort to provide such error characteristics. The results show that significant differences of concurrent radar-gauge rain rates exist at various time scales ranging from 5 min to 1 day, despite lower overall long-term bias. However, the differences between the radar area-averaged rain rates and gauge point rain rates cannot be explained as due to radar error only. The error variance separation method is adapted to partition the variance of radar-gauge differences into the gauge area-point error variance and radar rain estimation error variance. The results provide relatively reliable quantitative uncertainty evaluation of TRMM GV radar rain estimates at various times scales, and are helpful to better understand the differences between measured radar and gauge rain rates. It is envisaged that this study will contribute to better utilization of GV radar rain products to validate versatile spaced-based rain estimates from TRMM, as well as the proposed Global Precipitation Measurement, and other satellites.

  14. Hedonic price models with omitted variables and measurement errors: a constrained autoregression-structural equation modeling approach with application to urban Indonesia

    NASA Astrophysics Data System (ADS)

    Suparman, Yusep; Folmer, Henk; Oud, Johan H. L.

    2014-01-01

    Omitted variables and measurement errors in explanatory variables frequently occur in hedonic price models. Ignoring these problems leads to biased estimators. In this paper, we develop a constrained autoregression-structural equation model (ASEM) to handle both types of problems. Standard panel data models to handle omitted variables bias are based on the assumption that the omitted variables are time-invariant. ASEM allows handling of both time-varying and time-invariant omitted variables by constrained autoregression. In the case of measurement error, standard approaches require additional external information which is usually difficult to obtain. ASEM exploits the fact that panel data are repeatedly measured which allows decomposing the variance of a variable into the true variance and the variance due to measurement error. We apply ASEM to estimate a hedonic housing model for urban Indonesia. To get insight into the consequences of measurement error and omitted variables, we compare the ASEM estimates with the outcomes of (1) a standard SEM, which does not account for omitted variables, (2) a constrained autoregression model, which does not account for measurement error, and (3) a fixed effects hedonic model, which ignores measurement error and time-varying omitted variables. The differences between the ASEM estimates and the outcomes of the three alternative approaches are substantial.

  15. A general model for attitude determination error analysis

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Seidewitz, ED; Nicholson, Mark

    1988-01-01

    An overview is given of a comprehensive approach to filter and dynamics modeling for attitude determination error analysis. The models presented include both batch least-squares and sequential attitude estimation processes for both spin-stabilized and three-axis stabilized spacecraft. The discussion includes a brief description of a dynamics model of strapdown gyros, but it does not cover other sensor models. Model parameters can be chosen to be solve-for parameters, which are assumed to be estimated as part of the determination process, or consider parameters, which are assumed to have errors but not to be estimated. The only restriction on this choice is that the time evolution of the consider parameters must not depend on any of the solve-for parameters. The result of an error analysis is an indication of the contributions of the various error sources to the uncertainties in the determination of the spacecraft solve-for parameters. The model presented gives the uncertainty due to errors in the a priori estimates of the solve-for parameters, the uncertainty due to measurement noise, the uncertainty due to dynamic noise (also known as process noise or measurement noise), the uncertainty due to the consider parameters, and the overall uncertainty due to all these sources of error.

  16. Estimating water use by sugar maple trees: considerations when using heat-pulse methods in trees with deep functional sapwood.

    PubMed

    Pausch, Roman C.; Grote, Edmund E.; Dawson, Todd E.

    2000-03-01

    Accurate estimates of sapwood properties (including radial depth of functional xylem and wood water content) are critical when using the heat pulse velocity (HPV) technique to estimate tree water use. Errors in estimating the volumetric water content (V(h)) of the sapwood, especially in tree species with a large proportion of sapwood, can cause significant errors in the calculations ofsap velocity and sap flow through tree boles. Scaling to the whole-stand level greatly inflates these errors. We determined the effects of season, tree size and radial wood depth on V(h) of wood cores removed from Acer saccharum Marsh. trees throughout 3 years in upstate New York. We also determined the effects of variation in V(h) on sap velocity and sap flow calculations based on HPV data collected from sap flow gauges inserted at four depths. In addition, we compared two modifications of Hatton's weighted average technique, the zero-step and zero-average methods, for determining sap velocity and sap flow at depths beyond those penetrated by the sap flow gauges. Parameter V(h) varied significantly with time of year (DOY), tree size (S), and radial wood depth (RD), and there were significant DOY x S and DOY x RD interactions. Use of a mean whole-tree V(h) value resulted in differences ranging from -6 to +47% for both sap velocity and sap flow for individual sapwood annuli compared with use of the V(h) value determined at the specific depth where a probe was placed. Whole-tree sap flow was 7% higher when calculated on the basis of the individual V(h) value compared with the mean whole-tree V(h) value. Calculated total sap flow for a tree with a DBH of 48.8 cm was 13 and 19% less using the zero-step and the zero-average velocity techniques, respectively, than the value obtained with Hatton's weighted average technique. Smaller differences among the three methods were observed for a tree with a DBH of 24.4 cm. We conclude that, for Acer saccharum: (1) mean V(h) changes significantly during the year and can range from nearly 50% during winter and early spring, to 20% during the growing season;(2) large trees have a significantly greater V(h) than small trees; (3) overall, V(h) decreases and then increases significantly with radial wood depth, suggesting that radial water movement and storage are highly dynamic; and (4) V(h) estimates can vary greatly and influence subsequent water use calculations depending on whether an average or an individual V(h) value for a wood core is used. For large diameter trees in which sapwood comprises a large fraction of total stem cross-sectional area (where sap flow gauges cannot be inserted across the entire cross-sectional area), the zero-average modification of Hatton's weighted average method reduces the potential for large errors in whole-tree and landscape water balance estimates based on the HPV method.

  17. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 2; Evaluation of Estimates Using Independent Data

    NASA Technical Reports Server (NTRS)

    Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.

    2004-01-01

    Rainfall rate estimates from space-borne k&ents are generally accepted as reliable by a majority of the atmospheric science commu&y. One-of the Tropical Rainfall Measuring Mission (TRh4M) facility rain rate algorithms is based upon passive microwave observations fiom the TRMM Microwave Imager (TMI). Part I of this study describes improvements in the TMI algorithm that are required to introduce cloud latent heating and drying as additional algorithm products. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, OP5resolution estimates of surface rain rate over ocean fiom the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over forerunning algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm, and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly, 2.5 deg. -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data are limited, TMI estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with: (a) additional contextual information brought to the estimation problem, and/or; (b) physically-consistent and representative databases supporting the algorithm. A model of the random error in instantaneous, 0.5 deg-resolution rain rate estimates appears to be consistent with the levels of error determined from TMI comparisons to collocated radar. Error model modifications for non-raining situations will be required, however. Sampling error appears to represent only a fraction of the total error in monthly, 2S0-resolution TMI estimates; the remaining error is attributed to physical inconsistency or non-representativeness of cloud-resolving model simulated profiles supporting the algorithm.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer F.; Clifton, Andrew

    Currently, cup anemometers on meteorological towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability; however, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install meteorological towers at potential sites. As a result, remote-sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. Although lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount ofmore » uncertainty surrounding the measurement of turbulence using these devices. Errors in lidar turbulence estimates are caused by a variety of factors, including instrument noise, volume averaging, and variance contamination, in which the magnitude of these factors is highly dependent on measurement height and atmospheric stability. As turbulence has a large impact on wind power production, errors in turbulence measurements will translate into errors in wind power prediction. The impact of using lidars rather than cup anemometers for wind power prediction must be understood if lidars are to be considered a viable alternative to cup anemometers.In this poster, the sensitivity of power prediction error to typical lidar turbulence measurement errors is assessed. Turbulence estimates from a vertically profiling WINDCUBE v2 lidar are compared to high-resolution sonic anemometer measurements at field sites in Oklahoma and Colorado to determine the degree of lidar turbulence error that can be expected under different atmospheric conditions. These errors are then incorporated into a power prediction model to estimate the sensitivity of power prediction error to turbulence measurement error. Power prediction models, including the standard binning method and a random forest method, were developed using data from the aeroelastic simulator FAST for a 1.5 MW turbine. The impact of lidar turbulence error on the predicted power from these different models is examined to determine the degree of turbulence measurement accuracy needed for accurate power prediction.« less

  19. Trans-dimensional inversion of microtremor array dispersion data with hierarchical autoregressive error models

    NASA Astrophysics Data System (ADS)

    Dettmer, Jan; Molnar, Sheri; Steininger, Gavin; Dosso, Stan E.; Cassidy, John F.

    2012-02-01

    This paper applies a general trans-dimensional Bayesian inference methodology and hierarchical autoregressive data-error models to the inversion of microtremor array dispersion data for shear wave velocity (vs) structure. This approach accounts for the limited knowledge of the optimal earth model parametrization (e.g. the number of layers in the vs profile) and of the data-error statistics in the resulting vs parameter uncertainty estimates. The assumed earth model parametrization influences estimates of parameter values and uncertainties due to different parametrizations leading to different ranges of data predictions. The support of the data for a particular model is often non-unique and several parametrizations may be supported. A trans-dimensional formulation accounts for this non-uniqueness by including a model-indexing parameter as an unknown so that groups of models (identified by the indexing parameter) are considered in the results. The earth model is parametrized in terms of a partition model with interfaces given over a depth-range of interest. In this work, the number of interfaces (layers) in the partition model represents the trans-dimensional model indexing. In addition, serial data-error correlations are addressed by augmenting the geophysical forward model with a hierarchical autoregressive error model that can account for a wide range of error processes with a small number of parameters. Hence, the limited knowledge about the true statistical distribution of data errors is also accounted for in the earth model parameter estimates, resulting in more realistic uncertainties and parameter values. Hierarchical autoregressive error models do not rely on point estimates of the model vector to estimate data-error statistics, and have no requirement for computing the inverse or determinant of a data-error covariance matrix. This approach is particularly useful for trans-dimensional inverse problems, as point estimates may not be representative of the state space that spans multiple subspaces of different dimensionalities. The order of the autoregressive process required to fit the data is determined here by posterior residual-sample examination and statistical tests. Inference for earth model parameters is carried out on the trans-dimensional posterior probability distribution by considering ensembles of parameter vectors. In particular, vs uncertainty estimates are obtained by marginalizing the trans-dimensional posterior distribution in terms of vs-profile marginal distributions. The methodology is applied to microtremor array dispersion data collected at two sites with significantly different geology in British Columbia, Canada. At both sites, results show excellent agreement with estimates from invasive measurements.

  20. Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Moision, Bruce E.

    2010-01-01

    Many optical imaging, ranging, and communications systems rely on the estimation of the arrival time of an optical pulse. Recently, such systems have been increasingly employing photon-counting photodetector technology, which changes the statistics of the observed photocurrent. This requires time-of-arrival estimators to be developed and their performances characterized. The statistics of the output of an ideal photodetector, which are well modeled as a Poisson point process, were considered. An analytical model was developed for the mean-square error of the maximum likelihood (ML) estimator, demonstrating two phenomena that cause deviations from the minimum achievable error at low signal power. An approximation was derived to the threshold at which the ML estimator essentially fails to provide better than a random guess of the pulse arrival time. Comparing the analytic model performance predictions to those obtained via simulations, it was verified that the model accurately predicts the ML performance over all regimes considered. There is little prior art that attempts to understand the fundamental limitations to time-of-arrival estimation from Poisson statistics. This work establishes both a simple mathematical description of the error behavior, and the associated physical processes that yield this behavior. Previous work on mean-square error characterization for ML estimators has predominantly focused on additive Gaussian noise. This work demonstrates that the discrete nature of the Poisson noise process leads to a distinctly different error behavior.

  1. Multiple-rule bias in the comparison of classification rules

    PubMed Central

    Yousefi, Mohammadmahdi R.; Hua, Jianping; Dougherty, Edward R.

    2011-01-01

    Motivation: There is growing discussion in the bioinformatics community concerning overoptimism of reported results. Two approaches contributing to overoptimism in classification are (i) the reporting of results on datasets for which a proposed classification rule performs well and (ii) the comparison of multiple classification rules on a single dataset that purports to show the advantage of a certain rule. Results: This article provides a careful probabilistic analysis of the second issue and the ‘multiple-rule bias’, resulting from choosing a classification rule having minimum estimated error on the dataset. It quantifies this bias corresponding to estimating the expected true error of the classification rule possessing minimum estimated error and it characterizes the bias from estimating the true comparative advantage of the chosen classification rule relative to the others by the estimated comparative advantage on the dataset. The analysis is applied to both synthetic and real data using a number of classification rules and error estimators. Availability: We have implemented in C code the synthetic data distribution model, classification rules, feature selection routines and error estimation methods. The code for multiple-rule analysis is implemented in MATLAB. The source code is available at http://gsp.tamu.edu/Publications/supplementary/yousefi11a/. Supplementary simulation results are also included. Contact: edward@ece.tamu.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21546390

  2. Techniques for estimating monthly mean streamflow at gaged sites and monthly streamflow duration characteristics at ungaged sites in central Nevada

    USGS Publications Warehouse

    Hess, G.W.; Bohman, L.R.

    1996-01-01

    Techniques for estimating monthly mean streamflow at gaged sites and monthly streamflow duration characteristics at ungaged sites in central Nevada were developed using streamflow records at six gaged sites and basin physical and climatic characteristics. Streamflow data at gaged sites were related by regression techniques to concurrent flows at nearby gaging stations so that monthly mean streamflows for periods of missing or no record can be estimated for gaged sites in central Nevada. The standard error of estimate for relations at these sites ranged from 12 to 196 percent. Also, monthly streamflow data for selected percent exceedence levels were used in regression analyses with basin and climatic variables to determine relations for ungaged basins for annual and monthly percent exceedence levels. Analyses indicate that the drainage area and percent of drainage area at altitudes greater than 10,000 feet are the most significant variables. For the annual percent exceedence, the standard error of estimate of the relations for ungaged sites ranged from 51 to 96 percent and standard error of prediction for ungaged sites ranged from 96 to 249 percent. For the monthly percent exceedence values, the standard error of estimate of the relations ranged from 31 to 168 percent, and the standard error of prediction ranged from 115 to 3,124 percent. Reliability and limitations of the estimating methods are described.

  3. Use of an OSSE to Evaluate Background Error Covariances Estimated by the 'NMC Method'

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.; Prive, Nikki C.; Gu, Wei

    2014-01-01

    The NMC method has proven utility for prescribing approximate background-error covariances required by variational data assimilation systems. Here, untunedNMCmethod estimates are compared with explicitly determined error covariances produced within an OSSE context by exploiting availability of the true simulated states. Such a comparison provides insights into what kind of rescaling is required to render the NMC method estimates usable. It is shown that rescaling of variances and directional correlation lengths depends greatly on both pressure and latitude. In particular, some scaling coefficients appropriate in the Tropics are the reciprocal of those in the Extratropics. Also, the degree of dynamic balance is grossly overestimated by the NMC method. These results agree with previous examinations of the NMC method which used ensembles as an alternative for estimating background-error statistics.

  4. A pharmacometric case study regarding the sensitivity of structural model parameter estimation to error in patient reported dosing times.

    PubMed

    Knights, Jonathan; Rohatagi, Shashank

    2015-12-01

    Although there is a body of literature focused on minimizing the effect of dosing inaccuracies on pharmacokinetic (PK) parameter estimation, most of the work centers on missing doses. No attempt has been made to specifically characterize the effect of error in reported dosing times. Additionally, existing work has largely dealt with cases in which the compound of interest is dosed at an interval no less than its terminal half-life. This work provides a case study investigating how error in patient reported dosing times might affect the accuracy of structural model parameter estimation under sparse sampling conditions when the dosing interval is less than the terminal half-life of the compound, and the underlying kinetics are monoexponential. Additional effects due to noncompliance with dosing events are not explored and it is assumed that the structural model and reasonable initial estimates of the model parameters are known. Under the conditions of our simulations, with structural model CV % ranging from ~20 to 60 %, parameter estimation inaccuracy derived from error in reported dosing times was largely controlled around 10 % on average. Given that no observed dosing was included in the design and sparse sampling was utilized, we believe these error results represent a practical ceiling given the variability and parameter estimates for the one-compartment model. The findings suggest additional investigations may be of interest and are noteworthy given the inability of current PK software platforms to accommodate error in dosing times.

  5. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm.

    PubMed

    Schmidt, Taly Gilat; Wang, Adam S; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-10-01

    The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.

  6. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm

    PubMed Central

    Schmidt, Taly Gilat; Wang, Adam S.; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-01-01

    Abstract. The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was −7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors. PMID:27921070

  7. Analysis of variance to assess statistical significance of Laplacian estimation accuracy improvement due to novel variable inter-ring distances concentric ring electrodes.

    PubMed

    Makeyev, Oleksandr; Joe, Cody; Lee, Colin; Besio, Walter G

    2017-07-01

    Concentric ring electrodes have shown promise in non-invasive electrophysiological measurement demonstrating their superiority to conventional disc electrodes, in particular, in accuracy of Laplacian estimation. Recently, we have proposed novel variable inter-ring distances concentric ring electrodes. Analytic and finite element method modeling results for linearly increasing distances electrode configurations suggested they may decrease the truncation error resulting in more accurate Laplacian estimates compared to currently used constant inter-ring distances configurations. This study assesses statistical significance of Laplacian estimation accuracy improvement due to novel variable inter-ring distances concentric ring electrodes. Full factorial design of analysis of variance was used with one categorical and two numerical factors: the inter-ring distances, the electrode diameter, and the number of concentric rings in the electrode. The response variables were the Relative Error and the Maximum Error of Laplacian estimation computed using a finite element method model for each of the combinations of levels of three factors. Effects of the main factors and their interactions on Relative Error and Maximum Error were assessed and the obtained results suggest that all three factors have statistically significant effects in the model confirming the potential of using inter-ring distances as a means of improving accuracy of Laplacian estimation.

  8. Estimates of monthly streamflow characteristics at selected sites in the upper Missouri River basin, Montana, base period water years 1937-86

    USGS Publications Warehouse

    Parrett, Charles; Johnson, D.R.; Hull, J.A.

    1989-01-01

    Estimates of streamflow characteristics (monthly mean flow that is exceeded 90, 80, 50, and 20 percent of the time for all years of record and mean monthly flow) were made and are presented in tabular form for 312 sites in the Missouri River basin in Montana. Short-term gaged records were extended to the base period of water years 1937-86, and were used to estimate monthly streamflow characteristics at 100 sites. Data from 47 gaged sites were used in regression analysis relating the streamflow characteristics to basin characteristics and to active-channel width. The basin-characteristics equations, with standard errors of 35% to 97%, were used to estimate streamflow characteristics at 179 ungaged sites. The channel-width equations, with standard errors of 36% to 103%, were used to estimate characteristics at 138 ungaged sites. Streamflow measurements were correlated with concurrent streamflows at nearby gaged sites to estimate streamflow characteristics at 139 ungaged sites. In a test using 20 pairs of gages, the standard errors ranged from 31% to 111%. At 139 ungaged sites, the estimates from two or more of the methods were weighted and combined in accordance with the variance of individual methods. When estimates from three methods were combined the standard errors ranged from 24% to 63 %. A drainage-area-ratio adjustment method was used to estimate monthly streamflow characteristics at seven ungaged sites. The reliability of the drainage-area-ratio adjustment method was estimated to be about equal to that of the basin-characteristics method. The estimate were checked for reliability. Estimates of monthly streamflow characteristics from gaged records were considered to be most reliable, and estimates at sites with actual flow record from 1937-86 were considered to be completely reliable (zero error). Weighted-average estimates were considered to be the most reliable estimates made at ungaged sites. (USGS)

  9. Sample sizes needed for specified margins of relative error in the estimates of the repeatability and reproducibility standard deviations.

    PubMed

    McClure, Foster D; Lee, Jung K

    2005-01-01

    Sample size formulas are developed to estimate the repeatability and reproducibility standard deviations (Sr and S(R)) such that the actual error in (Sr and S(R)) relative to their respective true values, sigmar and sigmaR, are at predefined levels. The statistical consequences associated with AOAC INTERNATIONAL required sample size to validate an analytical method are discussed. In addition, formulas to estimate the uncertainties of (Sr and S(R)) were derived and are provided as supporting documentation. Formula for the Number of Replicates Required for a Specified Margin of Relative Error in the Estimate of the Repeatability Standard Deviation.

  10. Estimating pixel variances in the scenes of staring sensors

    DOEpatents

    Simonson, Katherine M [Cedar Crest, NM; Ma, Tian J [Albuquerque, NM

    2012-01-24

    A technique for detecting changes in a scene perceived by a staring sensor is disclosed. The technique includes acquiring a reference image frame and a current image frame of a scene with the staring sensor. A raw difference frame is generated based upon differences between the reference image frame and the current image frame. Pixel error estimates are generated for each pixel in the raw difference frame based at least in part upon spatial error estimates related to spatial intensity gradients in the scene. The pixel error estimates are used to mitigate effects of camera jitter in the scene between the current image frame and the reference image frame.

  11. Estimating Rain Rates from Tipping-Bucket Rain Gauge Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Jianxin; Fisher, Brad L.; Wolff, David B.

    2007-01-01

    This paper describes the cubic spline based operational system for the generation of the TRMM one-minute rain rate product 2A-56 from Tipping Bucket (TB) gauge measurements. Methodological issues associated with applying the cubic spline to the TB gauge rain rate estimation are closely examined. A simulated TB gauge from a Joss-Waldvogel (JW) disdrometer is employed to evaluate effects of time scales and rain event definitions on errors of the rain rate estimation. The comparison between rain rates measured from the JW disdrometer and those estimated from the simulated TB gauge shows good overall agreement; however, the TB gauge suffers sampling problems, resulting in errors in the rain rate estimation. These errors are very sensitive to the time scale of rain rates. One-minute rain rates suffer substantial errors, especially at low rain rates. When one minute rain rates are averaged to 4-7 minute or longer time scales, the errors dramatically reduce. The rain event duration is very sensitive to the event definition but the event rain total is rather insensitive, provided that the events with less than 1 millimeter rain totals are excluded. Estimated lower rain rates are sensitive to the event definition whereas the higher rates are not. The median relative absolute errors are about 22% and 32% for 1-minute TB rain rates higher and lower than 3 mm per hour, respectively. These errors decrease to 5% and 14% when TB rain rates are used at 7-minute scale. The radar reflectivity-rainrate (Ze-R) distributions drawn from large amount of 7-minute TB rain rates and radar reflectivity data are mostly insensitive to the event definition.

  12. Improved Uncertainty Quantification in Groundwater Flux Estimation Using GRACE

    NASA Astrophysics Data System (ADS)

    Reager, J. T., II; Rao, P.; Famiglietti, J. S.; Turmon, M.

    2015-12-01

    Groundwater change is difficult to monitor over large scales. One of the most successful approaches is in the remote sensing of time-variable gravity using NASA Gravity Recovery and Climate Experiment (GRACE) mission data, and successful case studies have created the opportunity to move towards a global groundwater monitoring framework for the world's largest aquifers. To achieve these estimates, several approximations are applied, including those in GRACE processing corrections, the formulation of the formal GRACE errors, destriping and signal recovery, and the numerical model estimation of snow water, surface water and soil moisture storage states used to isolate a groundwater component. A major weakness in these approaches is inconsistency: different studies have used different sources of primary and ancillary data, and may achieve different results based on alternative choices in these approximations. In this study, we present two cases of groundwater change estimation in California and the Colorado River basin, selected for their good data availability and varied climates. We achieve a robust numerical estimate of post-processing uncertainties resulting from land-surface model structural shortcomings and model resolution errors. Groundwater variations should demonstrate less variability than the overlying soil moisture state does, as groundwater has a longer memory of past events due to buffering by infiltration and drainage rate limits. We apply a model ensemble approach in a Bayesian framework constrained by the assumption of decreasing signal variability with depth in the soil column. We also discuss time variable errors vs. time constant errors, across-scale errors v. across-model errors, and error spectral content (across scales and across model). More robust uncertainty quantification for GRACE-based groundwater estimates would take all of these issues into account, allowing for more fair use in management applications and for better integration of GRACE-based measurements with observations from other sources.

  13. Analysis of Measurement Error and Estimator Shape in Three-Point Hydraulic Gradient Estimators

    NASA Astrophysics Data System (ADS)

    McKenna, S. A.; Wahi, A. K.

    2003-12-01

    Three spatially separated measurements of head provide a means of estimating the magnitude and orientation of the hydraulic gradient. Previous work with three-point estimators has focused on the effect of the size (area) of the three-point estimator and measurement error on the final estimates of the gradient magnitude and orientation in laboratory and field studies (Mizell, 1980; Silliman and Frost, 1995; Silliman and Mantz, 2000; Ruskauff and Rumbaugh, 1996). However, a systematic analysis of the combined effects of measurement error, estimator shape and estimator orientation relative to the gradient orientation has not previously been conducted. Monte Carlo simulation with an underlying assumption of a homogeneous transmissivity field is used to examine the effects of uncorrelated measurement error on a series of eleven different three-point estimators having the same size but different shapes as a function of the orientation of the true gradient. Results show that the variance in the estimate of both the magnitude and the orientation increase linearly with the increase in measurement error in agreement with the results of stochastic theory for estimators that are small relative to the correlation length of transmissivity (Mizell, 1980). Three-point estimator shapes with base to height ratios between 0.5 and 5.0 provide accurate estimates of magnitude and orientation across all orientations of the true gradient. As an example, these results are applied to data collected from a monitoring network of 25 wells at the WIPP site during two different time periods. The simulation results are used to reduce the set of all possible combinations of three wells to those combinations with acceptable measurement errors relative to the amount of head drop across the estimator and base to height ratios between 0.5 and 5.0. These limitations reduce the set of all possible well combinations by 98 percent and show that size alone as defined by triangle area is not a valid discriminator of whether or not the estimator provides accurate estimates of the gradient magnitude and orientation. This research was funded by WIPP programs administered by the U.S Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Simplified Estimation and Testing in Unbalanced Repeated Measures Designs.

    PubMed

    Spiess, Martin; Jordan, Pascal; Wendt, Mike

    2018-05-07

    In this paper we propose a simple estimator for unbalanced repeated measures design models where each unit is observed at least once in each cell of the experimental design. The estimator does not require a model of the error covariance structure. Thus, circularity of the error covariance matrix and estimation of correlation parameters and variances are not necessary. Together with a weak assumption about the reason for the varying number of observations, the proposed estimator and its variance estimator are unbiased. As an alternative to confidence intervals based on the normality assumption, a bias-corrected and accelerated bootstrap technique is considered. We also propose the naive percentile bootstrap for Wald-type tests where the standard Wald test may break down when the number of observations is small relative to the number of parameters to be estimated. In a simulation study we illustrate the properties of the estimator and the bootstrap techniques to calculate confidence intervals and conduct hypothesis tests in small and large samples under normality and non-normality of the errors. The results imply that the simple estimator is only slightly less efficient than an estimator that correctly assumes a block structure of the error correlation matrix, a special case of which is an equi-correlation matrix. Application of the estimator and the bootstrap technique is illustrated using data from a task switch experiment based on an experimental within design with 32 cells and 33 participants.

  15. Evaluation of ship-based sediment flux measurements by ADCPs in tidal flows

    NASA Astrophysics Data System (ADS)

    Becker, Marius; Maushake, Christian; Grünler, Steffen; Winter, Christian

    2017-04-01

    In the past decades acoustic backscatter calibration developed into a frequently applied technique to measure fluxes of suspended sediments in rivers and estuaries. Data is mainly acquired using single-frequency profiling devices, such as ADCPs. In this case, variations of acoustic particle properties may have a significant impact on the calibration with respect to suspended sediment concentration, but associated effects are rarely considered. Further challenges regarding flux determination arise from incomplete vertical and lateral coverage of the cross-section, and the small ratio of the residual transport to the tidal transport, depending on the tidal prism. We analyzed four sets of 13h cross-sectional ADCP data, collected at different locations in the range of the turbidity zone of the Weser estuary, North Sea, Germany. Vertical LISST, OBS and CTD measurements were taken very hour. During the calibration sediment absorption was taken into account. First, acoustic properties were estimated using LISST particle size distributions. Due to the tidal excursion and displacement of the turbidity zone, acoustic properties of particles changed during the tidal cycle, at all locations. Applying empirical functions, the lowest backscattering cross-section and highest sediment absorption coefficient were found in the center of the turbidity zone. Outside the tidally averaged location of the turbidity zone, changes of acoustic parameters were caused mainly by advection. In the turbidity zone, these properties were also affected by settling and entrainment, inducing vertical differences and systematic errors in concentration. In general, due to the iterative correction of sediment absorption along the acoustic path, local errors in concentration propagate and amplify exponentially. Based on reference concentration obtained from water samples and OBS data, we quantified these errors and their effect on cross-sectional averaged concentration and sediment flux. We found that errors are effectively decreased by applying calibration parameters interpolated in time, and by an optimization of the sediment absorption coefficient. We further discuss practical aspects of residual flux determination in tidal environments and of measuring strategies in relation to site-specific tidal dynamics.

  16. Genetic Algorithm-Based Motion Estimation Method using Orientations and EMGs for Robot Controls

    PubMed Central

    Chae, Jeongsook; Jin, Yong; Sung, Yunsick

    2018-01-01

    Demand for interactive wearable devices is rapidly increasing with the development of smart devices. To accurately utilize wearable devices for remote robot controls, limited data should be analyzed and utilized efficiently. For example, the motions by a wearable device, called Myo device, can be estimated by measuring its orientation, and calculating a Bayesian probability based on these orientation data. Given that Myo device can measure various types of data, the accuracy of its motion estimation can be increased by utilizing these additional types of data. This paper proposes a motion estimation method based on weighted Bayesian probability and concurrently measured data, orientations and electromyograms (EMG). The most probable motion among estimated is treated as a final estimated motion. Thus, recognition accuracy can be improved when compared to the traditional methods that employ only a single type of data. In our experiments, seven subjects perform five predefined motions. When orientation is measured by the traditional methods, the sum of the motion estimation errors is 37.3%; likewise, when only EMG data are used, the error in motion estimation by the proposed method was also 37.3%. The proposed combined method has an error of 25%. Therefore, the proposed method reduces motion estimation errors by 12%. PMID:29324641

  17. The impact of estimation errors on evaluations of timber production opportunities.

    Treesearch

    Dennis L. Schweitzer

    1970-01-01

    Errors in estimating costs and return, the timing of harvests, and the cost of using funds can greatly affect the apparent desirability of investments in timber production. Partial derivatives are used to measure the impact of these errors on the predicted present net worth of potential investments in timber production. Graphs that illustrate the impact of each type...

  18. Effects of structural error on the estimates of parameters of dynamical systems

    NASA Technical Reports Server (NTRS)

    Hadaegh, F. Y.; Bekey, G. A.

    1986-01-01

    In this paper, the notion of 'near-equivalence in probability' is introduced for identifying a system in the presence of several error sources. Following some basic definitions, necessary and sufficient conditions for the identifiability of parameters are given. The effects of structural error on the parameter estimates for both the deterministic and stochastic cases are considered.

  19. Quantifying Errors in TRMM-Based Multi-Sensor QPE Products Over Land in Preparation for GPM

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Tian, Yudong

    2011-01-01

    Determining uncertainties in satellite-based multi-sensor quantitative precipitation estimates over land of fundamental importance to both data producers and hydro climatological applications. ,Evaluating TRMM-era products also lays the groundwork and sets the direction for algorithm and applications development for future missions including GPM. QPE uncertainties result mostly from the interplay of systematic errors and random errors. In this work, we will synthesize our recent results quantifying the error characteristics of satellite-based precipitation estimates. Both systematic errors and total uncertainties have been analyzed for six different TRMM-era precipitation products (3B42, 3B42RT, CMORPH, PERSIANN, NRL and GSMap). For systematic errors, we devised an error decomposition scheme to separate errors in precipitation estimates into three independent components, hit biases, missed precipitation and false precipitation. This decomposition scheme reveals hydroclimatologically-relevant error features and provides a better link to the error sources than conventional analysis, because in the latter these error components tend to cancel one another when aggregated or averaged in space or time. For the random errors, we calculated the measurement spread from the ensemble of these six quasi-independent products, and thus produced a global map of measurement uncertainties. The map yields a global view of the error characteristics and their regional and seasonal variations, reveals many undocumented error features over areas with no validation data available, and provides better guidance to global assimilation of satellite-based precipitation data. Insights gained from these results and how they could help with GPM will be highlighted.

  20. Comparison of structural and least-squares lines for estimating geologic relations

    USGS Publications Warehouse

    Williams, G.P.; Troutman, B.M.

    1990-01-01

    Two different goals in fitting straight lines to data are to estimate a "true" linear relation (physical law) and to predict values of the dependent variable with the smallest possible error. Regarding the first goal, a Monte Carlo study indicated that the structural-analysis (SA) method of fitting straight lines to data is superior to the ordinary least-squares (OLS) method for estimating "true" straight-line relations. Number of data points, slope and intercept of the true relation, and variances of the errors associated with the independent (X) and dependent (Y) variables influence the degree of agreement. For example, differences between the two line-fitting methods decrease as error in X becomes small relative to error in Y. Regarding the second goal-predicting the dependent variable-OLS is better than SA. Again, the difference diminishes as X takes on less error relative to Y. With respect to estimation of slope and intercept and prediction of Y, agreement between Monte Carlo results and large-sample theory was very good for sample sizes of 100, and fair to good for sample sizes of 20. The procedures and error measures are illustrated with two geologic examples. ?? 1990 International Association for Mathematical Geology.

  1. Onorbit IMU alignment error budget

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1980-01-01

    The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.

  2. Error Patterns in Ordering Fractions among At-Risk Fourth-Grade Students

    PubMed Central

    Malone, Amelia S.; Fuchs, Lynn S.

    2016-01-01

    The 3 purposes of this study were to: (a) describe fraction ordering errors among at-risk 4th-grade students; (b) assess the effect of part-whole understanding and accuracy of fraction magnitude estimation on the probability of committing errors; and (c) examine the effect of students' ability to explain comparing problems on the probability of committing errors. Students (n = 227) completed a 9-item ordering test. A high proportion (81%) of problems were completed incorrectly. Most (65% of) errors were due to students misapplying whole number logic to fractions. Fraction-magnitude estimation skill, but not part-whole understanding, significantly predicted the probability of committing this type of error. Implications for practice are discussed. PMID:26966153

  3. Synchronization error estimation and controller design for delayed Lur'e systems with parameter mismatches.

    PubMed

    He, Wangli; Qian, Feng; Han, Qing-Long; Cao, Jinde

    2012-10-01

    This paper investigates the problem of master-slave synchronization of two delayed Lur'e systems in the presence of parameter mismatches. First, by analyzing the corresponding synchronization error system, synchronization with an error level, which is referred to as quasi-synchronization, is established. Some delay-dependent quasi-synchronization criteria are derived. An estimation of the synchronization error bound is given, and an explicit expression of error levels is obtained. Second, sufficient conditions on the existence of feedback controllers under a predetermined error level are provided. The controller gains are obtained by solving a set of linear matrix inequalities. Finally, a delayed Chua's circuit is chosen to illustrate the effectiveness of the derived results.

  4. Analyzing students’ errors on fractions in the number line

    NASA Astrophysics Data System (ADS)

    Widodo, S.; Ikhwanudin, T.

    2018-05-01

    The objectives of this study are to know the type of students’ errors when they deal with fractions on the number line. This study used qualitative with a descriptive method, and involved 31 sixth grade students at one of the primary schools in Purwakarta, Indonesia. The results of this study are as follow, there are four types of student’s errors: unit confusion, tick mark interpretation error, partitioning and un partitioning error, and estimation error. We recommend that teachers should: strengthen unit understanding to the students when studying fractions, make students understand about tick mark interpretation, remind student of the importance of partitioning and un-partitioning strategy and teaches effective estimation strategies.

  5. The ESASSI-08 cruise in the South Scotia Ridge region: An inverse model property-transport analysis over the Ridge

    NASA Astrophysics Data System (ADS)

    Palmer, Margarita; Gomis, Damià; Del Mar Flexas, Maria; Jordà, Gabriel; Naveira-Garabato, Alberto; Jullion, Loic; Tsubouchi, Takamasa

    2010-05-01

    The ESASSI-08 oceanographic cruise carried out in January 2008 was the most significant milestone of the ESASSI project. ESASSI is the Spanish component of the Synoptic Antarctic Shelf-Slope Interactions (SASSI) study, one of the core projects of the International Polar Year. Hydrographical and biochemical (oxygen, CFCs, nutrients, chlorophyll content, alkalinity, pH, DOC) data were obtained along 11 sections in the South Scotia Ridge (SSR) region, between Elephant and South Orkney Islands. One of the aims of the ESASSI project is to determine the northward outflow of cold and ventilated waters from the Weddell Sea into the Scotia Sea. For that purpose, the accurate estimation of mass, heat, salt, and oxygen transport over the Ridge is requested. An initial analysis of transports across the different sections was first obtained from CTD and ADCP data. The following step has been the application of an inverse method, in order to obtain a better estimation of the net flow for the different water masses present in the region. The set of property-conservation equations considered by the inverse model includes mass, heat and salinity fluxes. The "box" is delimited by the sections along the northern flank of the SSR, between Elephant Island and 50°W, the southern flank of the Ridge, between 51.5°W and 50°W, the 50°W meridian and a diagonal line between Elephant Island and 51.5°W, 61.75°S. Results show that the initial calculations of transports suffered of a significant volume imbalance, due to the inherent errors of ship-ADCP data, the complicated topography and the presence of strong tidal currents in some sections. We present the post-inversion property transports across the rim of the box (and their error bars) for the different water masses.

  6. Assumption-free estimation of the genetic contribution to refractive error across childhood.

    PubMed

    Guggenheim, Jeremy A; St Pourcain, Beate; McMahon, George; Timpson, Nicholas J; Evans, David M; Williams, Cathy

    2015-01-01

    Studies in relatives have generally yielded high heritability estimates for refractive error: twins 75-90%, families 15-70%. However, because related individuals often share a common environment, these estimates are inflated (via misallocation of unique/common environment variance). We calculated a lower-bound heritability estimate for refractive error free from such bias. Between the ages 7 and 15 years, participants in the Avon Longitudinal Study of Parents and Children (ALSPAC) underwent non-cycloplegic autorefraction at regular research clinics. At each age, an estimate of the variance in refractive error explained by single nucleotide polymorphism (SNP) genetic variants was calculated using genome-wide complex trait analysis (GCTA) using high-density genome-wide SNP genotype information (minimum N at each age=3,404). The variance in refractive error explained by the SNPs ("SNP heritability") was stable over childhood: Across age 7-15 years, SNP heritability averaged 0.28 (SE=0.08, p<0.001). The genetic correlation for refractive error between visits varied from 0.77 to 1.00 (all p<0.001) demonstrating that a common set of SNPs was responsible for the genetic contribution to refractive error across this period of childhood. Simulations suggested lack of cycloplegia during autorefraction led to a small underestimation of SNP heritability (adjusted SNP heritability=0.35; SE=0.09). To put these results in context, the variance in refractive error explained (or predicted) by the time participants spent outdoors was <0.005 and by the time spent reading was <0.01, based on a parental questionnaire completed when the child was aged 8-9 years old. Genetic variation captured by common SNPs explained approximately 35% of the variation in refractive error between unrelated subjects. This value sets an upper limit for predicting refractive error using existing SNP genotyping arrays, although higher-density genotyping in larger samples and inclusion of interaction effects is expected to raise this figure toward twin- and family-based heritability estimates. The same SNPs influenced refractive error across much of childhood. Notwithstanding the strong evidence of association between time outdoors and myopia, and time reading and myopia, less than 1% of the variance in myopia at age 15 was explained by crude measures of these two risk factors, indicating that their effects may be limited, at least when averaged over the whole population.

  7. Estimation of chromatic errors from broadband images for high contrast imaging

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Belikov, Ruslan

    2015-09-01

    Usage of an internal coronagraph with an adaptive optical system for wavefront correction for direct imaging of exoplanets is currently being considered for many mission concepts, including as an instrument addition to the WFIRST-AFTA mission to follow the James Web Space Telescope. The main technical challenge associated with direct imaging of exoplanets with an internal coronagraph is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, wavefront errors are usually estimated using probes on the DM. To date, most broadband lab demonstrations use narrowband filters to estimate the chromaticity of the wavefront error, but this reduces the photon flux per filter and requires a filter system. Here, we propose a method to estimate the chromaticity of wavefront errors using only a broadband image. This is achieved by using special DM probes that have sufficient chromatic diversity. As a case example, we simulate the retrieval of the spectrum of the central wavelength from broadband images for a simple shaped- pupil coronagraph with a conjugate DM and compute the resulting estimation error.

  8. Revised techniques for estimating peak discharges from channel width in Montana

    USGS Publications Warehouse

    Parrett, Charles; Hull, J.A.; Omang, R.J.

    1987-01-01

    This study was conducted to develop new estimating equations based on channel width and the updated flood frequency curves of previous investigations. Simple regression equations for estimating peak discharges with recurrence intervals of 2, 5, 10 , 25, 50, and 100 years were developed for seven regions in Montana. The standard errors of estimates for the equations that use active channel width as the independent variables ranged from 30% to 87%. The standard errors of estimate for the equations that use bankfull width as the independent variable ranged from 34% to 92%. The smallest standard errors generally occurred in the prediction equations for the 2-yr flood, 5-yr flood, and 10-yr flood, and the largest standard errors occurred in the prediction equations for the 100-yr flood. The equations that use active channel width and the equations that use bankfull width were determined to be about equally reliable in five regions. In the West Region, the equations that use bankfull width were slightly more reliable than those based on active channel width, whereas in the East-Central Region the equations that use active channel width were slightly more reliable than those based on bankfull width. Compared with similar equations previously developed, the standard errors of estimate for the new equations are substantially smaller in three regions and substantially larger in two regions. Limitations on the use of the estimating equations include: (1) The equations are based on stable conditions of channel geometry and prevailing water and sediment discharge; (2) The measurement of channel width requires a site visit, preferably by a person with experience in the method, and involves appreciable measurement errors; (3) Reliability of results from the equations for channel widths beyond the range of definition is unknown. In spite of the limitations, the estimating equations derived in this study are considered to be as reliable as estimating equations based on basin and climatic variables. Because the two types of estimating equations are independent, results from each can be weighted inversely proportional to their variances, and averaged. The weighted average estimate has a variance less than either individual estimate. (Author 's abstract)

  9. North Alabama Lightning Mapping Array (LMA): VHF Source Retrieval Algorithm and Error Analyses

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Solakiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J.; Bailey, J.; Krider, E. P.; Bateman, M. G.; Boccippio, D.

    2003-01-01

    Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA Marshall Space Flight Center (MSFC) and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix Theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50 ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results. However, for many source locations, the Curvature Matrix Theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.

  10. Safety evaluation of driver cognitive failures and driving errors on right-turn filtering movement at signalized road intersections based on Fuzzy Cellular Automata (FCA) model.

    PubMed

    Chai, Chen; Wong, Yiik Diew; Wang, Xuesong

    2017-07-01

    This paper proposes a simulation-based approach to estimate safety impact of driver cognitive failures and driving errors. Fuzzy Logic, which involves linguistic terms and uncertainty, is incorporated with Cellular Automata model to simulate decision-making process of right-turn filtering movement at signalized intersections. Simulation experiments are conducted to estimate the relationships between cognitive failures and driving errors with safety performance. Simulation results show Different types of cognitive failures are found to have varied relationship with driving errors and safety performance. For right-turn filtering movement, cognitive failures are more likely to result in driving errors with denser conflicting traffic stream. Moreover, different driving errors are found to have different safety impacts. The study serves to provide a novel approach to linguistically assess cognitions and replicate decision-making procedures of the individual driver. Compare to crash analysis, the proposed FCA model allows quantitative estimation of particular cognitive failures, and the impact of cognitions on driving errors and safety performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Q-adjusting technique applied to vertical deflections estimation in a single-axis rotation INS/GPS integrated system

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Wang, Xingshu; Wang, Jun; Dai, Dongkai; Xiong, Hao

    2016-10-01

    Former studies have proved that the attitude error in a single-axis rotation INS/GPS integrated system tracks the high frequency component of the deflections of the vertical (DOV) with a fixed delay and tracking error. This paper analyses the influence of the nominal process noise covariance matrix Q on the tracking error as well as the response delay, and proposed a Q-adjusting technique to obtain the attitude error which can track the DOV better. Simulation results show that different settings of Q lead to different response delay and tracking error; there exists optimal Q which leads to a minimum tracking error and a comparatively short response delay; for systems with different accuracy, different Q-adjusting strategy should be adopted. In this way, the DOV estimation accuracy of using the attitude error as the observation can be improved. According to the simulation results, the DOV estimation accuracy after using the Q-adjusting technique is improved by approximate 23% and 33% respectively compared to that of the Earth Model EGM2008 and the direct attitude difference method.

  12. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3.

    PubMed

    Han, Mira V; Thomas, Gregg W C; Lugo-Martinez, Jose; Hahn, Matthew W

    2013-08-01

    Current sequencing methods produce large amounts of data, but genome assemblies constructed from these data are often fragmented and incomplete. Incomplete and error-filled assemblies result in many annotation errors, especially in the number of genes present in a genome. This means that methods attempting to estimate rates of gene duplication and loss often will be misled by such errors and that rates of gene family evolution will be consistently overestimated. Here, we present a method that takes these errors into account, allowing one to accurately infer rates of gene gain and loss among genomes even with low assembly and annotation quality. The method is implemented in the newest version of the software package CAFE, along with several other novel features. We demonstrate the accuracy of the method with extensive simulations and reanalyze several previously published data sets. Our results show that errors in genome annotation do lead to higher inferred rates of gene gain and loss but that CAFE 3 sufficiently accounts for these errors to provide accurate estimates of important evolutionary parameters.

  13. A family of approximate solutions and explicit error estimates for the nonlinear stationary Navier-Stokes problem

    NASA Technical Reports Server (NTRS)

    Gabrielsen, R. E.; Karel, S.

    1975-01-01

    An algorithm for solving the nonlinear stationary Navier-Stokes problem is developed. Explicit error estimates are given. This mathematical technique is potentially adaptable to the separation problem.

  14. Error Estimates for Numerical Integration Rules

    ERIC Educational Resources Information Center

    Mercer, Peter R.

    2005-01-01

    The starting point for this discussion of error estimates is the fact that integrals that arise in Fourier series have properties that can be used to get improved bounds. This idea is extended to more general situations.

  15. HIITE: HIV-1 incidence and infection time estimator.

    PubMed

    Park, Sung Yong; Love, Tanzy M T; Kapoor, Shivankur; Lee, Ha Youn

    2018-06-15

    Around 2.1 million new HIV-1 infections were reported in 2015, alerting that the HIV-1 epidemic remains a significant global health challenge. Precise incidence assessment strengthens epidemic monitoring efforts and guides strategy optimization for prevention programs. Estimating the onset time of HIV-1 infection can facilitate optimal clinical management and identify key populations largely responsible for epidemic spread and thereby infer HIV-1 transmission chains. Our goal is to develop a genomic assay estimating the incidence and infection time in a single cross-sectional survey setting. We created a web-based platform, HIV-1 incidence and infection time estimator (HIITE), which processes envelope gene sequences using hierarchical clustering algorithms and informs the stage of infection, along with time since infection for incident cases. HIITE's performance was evaluated using 585 incident and 305 chronic specimens' envelope gene sequences collected from global cohorts including HIV-1 vaccine trial participants. HIITE precisely identified chronically infected individuals as being chronic with an error less than 1% and correctly classified 94% of recently infected individuals as being incident. Using a mixed-effect model, an incident specimen's time since infection was estimated from its single lineage diversity, showing 14% prediction error for time since infection. HIITE is the first algorithm to inform two key metrics from a single time point sequence sample. HIITE has the capacity for assessing not only population-level epidemic spread but also individual-level transmission events from a single survey, advancing HIV prevention and intervention programs. Web-based HIITE and source code of HIITE are available at http://www.hayounlee.org/software.html. Supplementary data are available at Bioinformatics online.

  16. Error estimation and adaptive mesh refinement for parallel analysis of shell structures

    NASA Technical Reports Server (NTRS)

    Keating, Scott C.; Felippa, Carlos A.; Park, K. C.

    1994-01-01

    The formulation and application of element-level, element-independent error indicators is investigated. This research culminates in the development of an error indicator formulation which is derived based on the projection of element deformation onto the intrinsic element displacement modes. The qualifier 'element-level' means that no information from adjacent elements is used for error estimation. This property is ideally suited for obtaining error values and driving adaptive mesh refinements on parallel computers where access to neighboring elements residing on different processors may incur significant overhead. In addition such estimators are insensitive to the presence of physical interfaces and junctures. An error indicator qualifies as 'element-independent' when only visible quantities such as element stiffness and nodal displacements are used to quantify error. Error evaluation at the element level and element independence for the error indicator are highly desired properties for computing error in production-level finite element codes. Four element-level error indicators have been constructed. Two of the indicators are based on variational formulation of the element stiffness and are element-dependent. Their derivations are retained for developmental purposes. The second two indicators mimic and exceed the first two in performance but require no special formulation of the element stiffness mesh refinement which we demonstrate for two dimensional plane stress problems. The parallelizing of substructures and adaptive mesh refinement is discussed and the final error indicator using two-dimensional plane-stress and three-dimensional shell problems is demonstrated.

  17. Estimating the Autocorrelated Error Model with Trended Data: Further Results,

    DTIC Science & Technology

    1979-11-01

    Perhaps the most serious deficiency of OLS in the presence of autocorrelation is not inefficiency but bias in its estimated standard errors--a bias...k for all t has variance var(b) = o2/ Tk2 2This refutes Maeshiro’s (1976) conjecture that "an estimator utilizing relevant extraneous information

  18. Errors in Representing Regional Acid Deposition with Spatially Sparse Monitoring: Case Studies of the Eastern US Using Model Predictions

    EPA Science Inventory

    The current study uses case studies of model-estimated regional precipitation and wet ion deposition to estimate errors in corresponding regional values derived from the means of site-specific values within regions of interest located in the eastern US. The mean of model-estimate...

  19. Estimation of genetic connectedness diagnostics based on prediction errors without the prediction error variance-covariance matrix.

    PubMed

    Holmes, John B; Dodds, Ken G; Lee, Michael A

    2017-03-02

    An important issue in genetic evaluation is the comparability of random effects (breeding values), particularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connectedness. While various measures of connectedness have been proposed in the literature, there is general agreement that the most appropriate measure is some function of the prediction error variance-covariance matrix. However, obtaining the prediction error variance-covariance matrix is computationally demanding for large-scale genetic evaluations. Many alternative statistics have been proposed that avoid the computational cost of obtaining the prediction error variance-covariance matrix, such as counts of genetic links between contemporary groups, gene flow matrices, and functions of the variance-covariance matrix of estimated contemporary group fixed effects. In this paper, we show that a correction to the variance-covariance matrix of estimated contemporary group fixed effects will produce the exact prediction error variance-covariance matrix averaged by contemporary group for univariate models in the presence of single or multiple fixed effects and one random effect. We demonstrate the correction for a series of models and show that approximations to the prediction error matrix based solely on the variance-covariance matrix of estimated contemporary group fixed effects are inappropriate in certain circumstances. Our method allows for the calculation of a connectedness measure based on the prediction error variance-covariance matrix by calculating only the variance-covariance matrix of estimated fixed effects. Since the number of fixed effects in genetic evaluation is usually orders of magnitudes smaller than the number of random effect levels, the computational requirements for our method should be reduced.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonçalves, Fabio; Treuhaft, Robert; Law, Beverly

    Mapping and monitoring of forest carbon stocks across large areas in the tropics will necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass for calibration and validation purposes. Here, we used field plot data collected in a tropical moist forest in the central Amazon to gain a better understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for the calibration of remote sensing measurements. In addition to accounting for sources of error that would be normally expected in conventional biomass estimates (e.g., measurement and allometric errors), we examined two sources of uncertaintymore » that are specific to the calibration process and should be taken into account in most remote sensing studies: the error resulting from spatial disagreement between field and remote sensing measurements (i.e., co-location error), and the error introduced when accounting for temporal differences in data acquisition. We found that the overall uncertainty in the field biomass was typically 25% for both secondary and primary forests, but ranged from 16 to 53%. Co-location and temporal errors accounted for a large fraction of the total variance (>65%) and were identified as important targets for reducing uncertainty in studies relating tropical forest biomass to remotely sensed data. Although measurement and allometric errors were relatively unimportant when considered alone, combined they accounted for roughly 30% of the total variance on average and should not be ignored. Lastly, our results suggest that a thorough understanding of the sources of error associated with field-measured plot-level biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates of carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote sensing approaches.« less

  1. Merging gauge and satellite rainfall with specification of associated uncertainty across Australia

    NASA Astrophysics Data System (ADS)

    Woldemeskel, Fitsum M.; Sivakumar, Bellie; Sharma, Ashish

    2013-08-01

    Accurate estimation of spatial rainfall is crucial for modelling hydrological systems and planning and management of water resources. While spatial rainfall can be estimated either using rain gauge-based measurements or using satellite-based measurements, such estimates are subject to uncertainties due to various sources of errors in either case, including interpolation and retrieval errors. The purpose of the present study is twofold: (1) to investigate the benefit of merging rain gauge measurements and satellite rainfall data for Australian conditions and (2) to produce a database of retrospective rainfall along with a new uncertainty metric for each grid location at any timestep. The analysis involves four steps: First, a comparison of rain gauge measurements and the Tropical Rainfall Measuring Mission (TRMM) 3B42 data at such rain gauge locations is carried out. Second, gridded monthly rain gauge rainfall is determined using thin plate smoothing splines (TPSS) and modified inverse distance weight (MIDW) method. Third, the gridded rain gauge rainfall is merged with the monthly accumulated TRMM 3B42 using a linearised weighting procedure, the weights at each grid being calculated based on the error variances of each dataset. Finally, cross validation (CV) errors at rain gauge locations and standard errors at gridded locations for each timestep are estimated. The CV error statistics indicate that merging of the two datasets improves the estimation of spatial rainfall, and more so where the rain gauge network is sparse. The provision of spatio-temporal standard errors with the retrospective dataset is particularly useful for subsequent modelling applications where input error knowledge can help reduce the uncertainty associated with modelling outcomes.

  2. Free kick instead of cross-validation in maximum-likelihood refinement of macromolecular crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pražnikar, Jure; University of Primorska,; Turk, Dušan, E-mail: dusan.turk@ijs.si

    2014-12-01

    The maximum-likelihood free-kick target, which calculates model error estimates from the work set and a randomly displaced model, proved superior in the accuracy and consistency of refinement of crystal structures compared with the maximum-likelihood cross-validation target, which calculates error estimates from the test set and the unperturbed model. The refinement of a molecular model is a computational procedure by which the atomic model is fitted to the diffraction data. The commonly used target in the refinement of macromolecular structures is the maximum-likelihood (ML) function, which relies on the assessment of model errors. The current ML functions rely on cross-validation. Theymore » utilize phase-error estimates that are calculated from a small fraction of diffraction data, called the test set, that are not used to fit the model. An approach has been developed that uses the work set to calculate the phase-error estimates in the ML refinement from simulating the model errors via the random displacement of atomic coordinates. It is called ML free-kick refinement as it uses the ML formulation of the target function and is based on the idea of freeing the model from the model bias imposed by the chemical energy restraints used in refinement. This approach for the calculation of error estimates is superior to the cross-validation approach: it reduces the phase error and increases the accuracy of molecular models, is more robust, provides clearer maps and may use a smaller portion of data for the test set for the calculation of R{sub free} or may leave it out completely.« less

  3. Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.

    PubMed

    Samoli, Evangelia; Butland, Barbara K

    2017-12-01

    Outdoor air pollution exposures used in epidemiological studies are commonly predicted from spatiotemporal models incorporating limited measurements, temporal factors, geographic information system variables, and/or satellite data. Measurement error in these exposure estimates leads to imprecise estimation of health effects and their standard errors. We reviewed methods for measurement error correction that have been applied in epidemiological studies that use model-derived air pollution data. We identified seven cohort studies and one panel study that have employed measurement error correction methods. These methods included regression calibration, risk set regression calibration, regression calibration with instrumental variables, the simulation extrapolation approach (SIMEX), and methods under the non-parametric or parameter bootstrap. Corrections resulted in small increases in the absolute magnitude of the health effect estimate and its standard error under most scenarios. Limited application of measurement error correction methods in air pollution studies may be attributed to the absence of exposure validation data and the methodological complexity of the proposed methods. Future epidemiological studies should consider in their design phase the requirements for the measurement error correction method to be later applied, while methodological advances are needed under the multi-pollutants setting.

  4. A New Approach to Estimate Forest Parameters Using Dual-Baseline Pol-InSAR Data

    NASA Astrophysics Data System (ADS)

    Bai, L.; Hong, W.; Cao, F.; Zhou, Y.

    2009-04-01

    In POL-InSAR applications using ESPRIT technique, it is assumed that there exist stable scattering centres in the forest. However, the observations in forest severely suffer from volume and temporal decorrelation. The forest scatters are not stable as assumed. The obtained interferometric information is not accurate as expected. Besides, ESPRIT techniques could not identify the interferometric phases corresponding to the ground and the canopy. It provides multiple estimations for the height between two scattering centers due to phase unwrapping. Therefore, estimation errors are introduced to the forest height results. To suppress the two types of errors, we use the dual-baseline POL-InSAR data to estimate forest height. Dual-baseline coherence optimization is applied to obtain interferometric information of stable scattering centers in the forest. From the interferometric phases for different baselines, estimation errors caused by phase unwrapping is solved. Other estimation errors can be suppressed, too. Experiments are done to the ESAR L band POL-InSAR data. Experimental results show the proposed methods provide more accurate forest height than ESPRIT technique.

  5. Robust estimation of partially linear models for longitudinal data with dropouts and measurement error.

    PubMed

    Qin, Guoyou; Zhang, Jiajia; Zhu, Zhongyi; Fung, Wing

    2016-12-20

    Outliers, measurement error, and missing data are commonly seen in longitudinal data because of its data collection process. However, no method can address all three of these issues simultaneously. This paper focuses on the robust estimation of partially linear models for longitudinal data with dropouts and measurement error. A new robust estimating equation, simultaneously tackling outliers, measurement error, and missingness, is proposed. The asymptotic properties of the proposed estimator are established under some regularity conditions. The proposed method is easy to implement in practice by utilizing the existing standard generalized estimating equations algorithms. The comprehensive simulation studies show the strength of the proposed method in dealing with longitudinal data with all three features. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition study and confirms the effectiveness of the intervention in producing weight loss at month 9. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Ballistic projectile trajectory determining system

    DOEpatents

    Karr, Thomas J.

    1997-01-01

    A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile.

  7. An Anisotropic A posteriori Error Estimator for CFD

    NASA Astrophysics Data System (ADS)

    Feijóo, Raúl A.; Padra, Claudio; Quintana, Fernando

    In this article, a robust anisotropic adaptive algorithm is presented, to solve compressible-flow equations using a stabilized CFD solver and automatic mesh generators. The association includes a mesh generator, a flow solver, and an a posteriori error-estimator code. The estimator was selected among several choices available (Almeida et al. (2000). Comput. Methods Appl. Mech. Engng, 182, 379-400; Borges et al. (1998). "Computational mechanics: new trends and applications". Proceedings of the 4th World Congress on Computational Mechanics, Bs.As., Argentina) giving a powerful computational tool. The main aim is to capture solution discontinuities, in this case, shocks, using the least amount of computational resources, i.e. elements, compatible with a solution of good quality. This leads to high aspect-ratio elements (stretching). To achieve this, a directional error estimator was specifically selected. The numerical results show good behavior of the error estimator, resulting in strongly-adapted meshes in few steps, typically three or four iterations, enough to capture shocks using a moderate and well-distributed amount of elements.

  8. Atmospheric Compensation and Surface Temperature and Emissivity Retrieval with LWIR Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Pieper, Michael

    Accurate estimation or retrieval of surface emissivity spectra from long-wave infrared (LWIR) or Thermal Infrared (TIR) hyperspectral imaging data acquired by airborne or space-borne sensors is necessary for many scientific and defense applications. The at-aperture radiance measured by the sensor is a function of the ground emissivity and temperature, modified by the atmosphere. Thus the emissivity retrieval process consists of two interwoven steps: atmospheric compensation (AC) to retrieve the ground radiance from the measured at-aperture radiance and temperature-emissivity separation (TES) to separate the temperature and emissivity from the ground radiance. In-scene AC (ISAC) algorithms use blackbody-like materials in the scene, which have a linear relationship between their ground radiances and at-aperture radiances determined by the atmospheric transmission and upwelling radiance. Using a clear reference channel to estimate the ground radiance, a linear fitting of the at-aperture radiance and estimated ground radiance is done to estimate the atmospheric parameters. TES algorithms for hyperspectral imaging data assume that the emissivity spectra for solids are smooth compared to the sharp features added by the atmosphere. The ground temperature and emissivity are found by finding the temperature that provides the smoothest emissivity estimate. In this thesis we develop models to investigate the sensitivity of AC and TES to the basic assumptions enabling their performance. ISAC assumes that there are perfect blackbody pixels in a scene and that there is a clear channel, which is never the case. The developed ISAC model explains how the quality of blackbody-like pixels affect the shape of atmospheric estimates and the clear channel assumption affects their magnitude. Emissivity spectra for solids usually have some roughness. The TES model identifies four sources of error: the smoothing error of the emissivity spectrum, the emissivity error from using the incorrect temperature, and the errors caused by sensor noise and wavelength calibration. The ways these errors interact determines the overall TES performance. Since the AC and TES processes are interwoven, any errors in AC are transferred to TES and the final temperature and emissivity estimates. Combining the two models, shape errors caused by the blackbody assumption are transferred to the emissivity estimates, where magnitude errors from the clear channel assumption are compensated by TES temperature induced emissivity errors. The ability for the temperature induced error to compensate for such atmospheric errors makes it difficult to determine the correct atmospheric parameters for a scene. With these models we are able to determine the expected quality of estimated emissivity spectra based on the quality of blackbody-like materials on the ground, the emissivity of the materials being searched for, and the properties of the sensor. The quality of material emissivity spectra is a key factor in determining detection performance for a material in a scene.

  9. The first Australian gravimetric quasigeoid model with location-specific uncertainty estimates

    NASA Astrophysics Data System (ADS)

    Featherstone, W. E.; McCubbine, J. C.; Brown, N. J.; Claessens, S. J.; Filmer, M. S.; Kirby, J. F.

    2018-02-01

    We describe the computation of the first Australian quasigeoid model to include error estimates as a function of location that have been propagated from uncertainties in the EGM2008 global model, land and altimeter-derived gravity anomalies and terrain corrections. The model has been extended to include Australia's offshore territories and maritime boundaries using newer datasets comprising an additional {˜ }280,000 land gravity observations, a newer altimeter-derived marine gravity anomaly grid, and terrain corrections at 1^' ' }× 1^' ' } resolution. The error propagation uses a remove-restore approach, where the EGM2008 quasigeoid and gravity anomaly error grids are augmented by errors propagated through a modified Stokes integral from the errors in the altimeter gravity anomalies, land gravity observations and terrain corrections. The gravimetric quasigeoid errors (one sigma) are 50-60 mm across most of the Australian landmass, increasing to {˜ }100 mm in regions of steep horizontal gravity gradients or the mountains, and are commensurate with external estimates.

  10. Generalized site occupancy models allowing for false positive and false negative errors

    USGS Publications Warehouse

    Royle, J. Andrew; Link, W.A.

    2006-01-01

    Site occupancy models have been developed that allow for imperfect species detection or ?false negative? observations. Such models have become widely adopted in surveys of many taxa. The most fundamental assumption underlying these models is that ?false positive? errors are not possible. That is, one cannot detect a species where it does not occur. However, such errors are possible in many sampling situations for a number of reasons, and even low false positive error rates can induce extreme bias in estimates of site occupancy when they are not accounted for. In this paper, we develop a model for site occupancy that allows for both false negative and false positive error rates. This model can be represented as a two-component finite mixture model and can be easily fitted using freely available software. We provide an analysis of avian survey data using the proposed model and present results of a brief simulation study evaluating the performance of the maximum-likelihood estimator and the naive estimator in the presence of false positive errors.

  11. Computation of Standard Errors

    PubMed Central

    Dowd, Bryan E; Greene, William H; Norton, Edward C

    2014-01-01

    Objectives We discuss the problem of computing the standard errors of functions involving estimated parameters and provide the relevant computer code for three different computational approaches using two popular computer packages. Study Design We show how to compute the standard errors of several functions of interest: the predicted value of the dependent variable for a particular subject, and the effect of a change in an explanatory variable on the predicted value of the dependent variable for an individual subject and average effect for a sample of subjects. Empirical Application Using a publicly available dataset, we explain three different methods of computing standard errors: the delta method, Krinsky–Robb, and bootstrapping. We provide computer code for Stata 12 and LIMDEP 10/NLOGIT 5. Conclusions In most applications, choice of the computational method for standard errors of functions of estimated parameters is a matter of convenience. However, when computing standard errors of the sample average of functions that involve both estimated parameters and nonstochastic explanatory variables, it is important to consider the sources of variation in the function's values. PMID:24800304

  12. An error covariance model for sea surface topography and velocity derived from TOPEX/POSEIDON altimetry

    NASA Technical Reports Server (NTRS)

    Tsaoussi, Lucia S.; Koblinsky, Chester J.

    1994-01-01

    In order to facilitate the use of satellite-derived sea surface topography and velocity oceanographic models, methodology is presented for deriving the total error covariance and its geographic distribution from TOPEX/POSEIDON measurements. The model is formulated using a parametric model fit to the altimeter range observations. The topography and velocity modeled with spherical harmonic expansions whose coefficients are found through optimal adjustment to the altimeter range residuals using Bayesian statistics. All other parameters, including the orbit, geoid, surface models, and range corrections are provided as unadjusted parameters. The maximum likelihood estimates and errors are derived from the probability density function of the altimeter range residuals conditioned with a priori information. Estimates of model errors for the unadjusted parameters are obtained from the TOPEX/POSEIDON postlaunch verification results and the error covariances for the orbit and the geoid, except for the ocean tides. The error in the ocean tides is modeled, first, as the difference between two global tide models and, second, as the correction to the present tide model, the correction derived from the TOPEX/POSEIDON data. A formal error covariance propagation scheme is used to derive the total error. Our global total error estimate for the TOPEX/POSEIDON topography relative to the geoid for one 10-day period is found tio be 11 cm RMS. When the error in the geoid is removed, thereby providing an estimate of the time dependent error, the uncertainty in the topography is 3.5 cm root mean square (RMS). This level of accuracy is consistent with direct comparisons of TOPEX/POSEIDON altimeter heights with tide gauge measurements at 28 stations. In addition, the error correlation length scales are derived globally in both east-west and north-south directions, which should prove useful for data assimilation. The largest error correlation length scales are found in the tropics. Errors in the velocity field are smallest in midlatitude regions. For both variables the largest errors caused by uncertainty in the geoid. More accurate representations of the geoid await a dedicated geopotential satellite mission. Substantial improvements in the accuracy of ocean tide models are expected in the very near future from research with TOPEX/POSEIDON data.

  13. Iterative random vs. Kennard-Stone sampling for IR spectrum-based classification task using PLS2-DA

    NASA Astrophysics Data System (ADS)

    Lee, Loong Chuen; Liong, Choong-Yeun; Jemain, Abdul Aziz

    2018-04-01

    External testing (ET) is preferred over auto-prediction (AP) or k-fold-cross-validation in estimating more realistic predictive ability of a statistical model. With IR spectra, Kennard-stone (KS) sampling algorithm is often used to split the data into training and test sets, i.e. respectively for model construction and for model testing. On the other hand, iterative random sampling (IRS) has not been the favored choice though it is theoretically more likely to produce reliable estimation. The aim of this preliminary work is to compare performances of KS and IRS in sampling a representative training set from an attenuated total reflectance - Fourier transform infrared spectral dataset (of four varieties of blue gel pen inks) for PLS2-DA modeling. The `best' performance achievable from the dataset is estimated with AP on the full dataset (APF, error). Both IRS (n = 200) and KS were used to split the dataset in the ratio of 7:3. The classic decision rule (i.e. maximum value-based) is employed for new sample prediction via partial least squares - discriminant analysis (PLS2-DA). Error rate of each model was estimated repeatedly via: (a) AP on full data (APF, error); (b) AP on training set (APS, error); and (c) ET on the respective test set (ETS, error). A good PLS2-DA model is expected to produce APS, error and EVS, error that is similar to the APF, error. Bearing that in mind, the similarities between (a) APS, error vs. APF, error; (b) ETS, error vs. APF, error and; (c) APS, error vs. ETS, error were evaluated using correlation tests (i.e. Pearson and Spearman's rank test), using series of PLS2-DA models computed from KS-set and IRS-set, respectively. Overall, models constructed from IRS-set exhibits more similarities between the internal and external error rates than the respective KS-set, i.e. less risk of overfitting. In conclusion, IRS is more reliable than KS in sampling representative training set.

  14. Quality assessment and control of finite element solutions

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Babuska, Ivo

    1987-01-01

    Status and some recent developments in the techniques for assessing the reliability of finite element solutions are summarized. Discussion focuses on a number of aspects including: the major types of errors in the finite element solutions; techniques used for a posteriori error estimation and the reliability of these estimators; the feedback and adaptive strategies for improving the finite element solutions; and postprocessing approaches used for improving the accuracy of stresses and other important engineering data. Also, future directions for research needed to make error estimation and adaptive movement practical are identified.

  15. Microwave Photonic Architecture for Direction Finding of LPI Emitters: Post-Processing for Angle of Arrival Estimation

    DTIC Science & Technology

    2016-09-01

    mean- square (RMS) error of 0.29° at ə° resolution. For a P4 coded signal, the RMS error in estimating the AOA is 0.32° at 1° resolution. 14...FMCW signal, it was demonstrated that the system is capable of estimating the AOA with a root-mean- square (RMS) error of 0.29° at ə° resolution. For a...Modulator PCB printed circuit board PD photodetector RF radio frequency RMS root-mean- square xvi THIS PAGE INTENTIONALLY LEFT BLANK xvii

  16. Background Error Covariance Estimation using Information from a Single Model Trajectory with Application to Ocean Data Assimilation into the GEOS-5 Coupled Model

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian L.; Rienecker, Michele M.; Kovach, Robin M.; Vernieres, Guillaume; Koster, Randal D. (Editor)

    2014-01-01

    An attractive property of ensemble data assimilation methods is that they provide flow dependent background error covariance estimates which can be used to update fields of observed variables as well as fields of unobserved model variables. Two methods to estimate background error covariances are introduced which share the above property with ensemble data assimilation methods but do not involve the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The Space Adaptive Forecast error Estimation (SAFE) algorithm estimates error covariances from the spatial distribution of model variables within a single state vector. The Flow Adaptive error Statistics from a Time series (FAST) method constructs an ensemble sampled from a moving window along a model trajectory. SAFE and FAST are applied to the assimilation of Argo temperature profiles into version 4.1 of the Modular Ocean Model (MOM4.1) coupled to the GEOS-5 atmospheric model and to the CICE sea ice model. The results are validated against unassimilated Argo salinity data. They show that SAFE and FAST are competitive with the ensemble optimal interpolation (EnOI) used by the Global Modeling and Assimilation Office (GMAO) to produce its ocean analysis. Because of their reduced cost, SAFE and FAST hold promise for high-resolution data assimilation applications.

  17. Background Error Covariance Estimation Using Information from a Single Model Trajectory with Application to Ocean Data Assimilation

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian L.; Rienecker, Michele; Kovach, Robin M.; Vernieres, Guillaume

    2014-01-01

    An attractive property of ensemble data assimilation methods is that they provide flow dependent background error covariance estimates which can be used to update fields of observed variables as well as fields of unobserved model variables. Two methods to estimate background error covariances are introduced which share the above property with ensemble data assimilation methods but do not involve the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The Space Adaptive Forecast error Estimation (SAFE) algorithm estimates error covariances from the spatial distribution of model variables within a single state vector. The Flow Adaptive error Statistics from a Time series (FAST) method constructs an ensemble sampled from a moving window along a model trajectory.SAFE and FAST are applied to the assimilation of Argo temperature profiles into version 4.1 of the Modular Ocean Model (MOM4.1) coupled to the GEOS-5 atmospheric model and to the CICE sea ice model. The results are validated against unassimilated Argo salinity data. They show that SAFE and FAST are competitive with the ensemble optimal interpolation (EnOI) used by the Global Modeling and Assimilation Office (GMAO) to produce its ocean analysis. Because of their reduced cost, SAFE and FAST hold promise for high-resolution data assimilation applications.

  18. Causal Inference for fMRI Time Series Data with Systematic Errors of Measurement in a Balanced On/Off Study of Social Evaluative Threat.

    PubMed

    Sobel, Michael E; Lindquist, Martin A

    2014-07-01

    Functional magnetic resonance imaging (fMRI) has facilitated major advances in understanding human brain function. Neuroscientists are interested in using fMRI to study the effects of external stimuli on brain activity and causal relationships among brain regions, but have not stated what is meant by causation or defined the effects they purport to estimate. Building on Rubin's causal model, we construct a framework for causal inference using blood oxygenation level dependent (BOLD) fMRI time series data. In the usual statistical literature on causal inference, potential outcomes, assumed to be measured without systematic error, are used to define unit and average causal effects. However, in general the potential BOLD responses are measured with stimulus dependent systematic error. Thus we define unit and average causal effects that are free of systematic error. In contrast to the usual case of a randomized experiment where adjustment for intermediate outcomes leads to biased estimates of treatment effects (Rosenbaum, 1984), here the failure to adjust for task dependent systematic error leads to biased estimates. We therefore adjust for systematic error using measured "noise covariates" , using a linear mixed model to estimate the effects and the systematic error. Our results are important for neuroscientists, who typically do not adjust for systematic error. They should also prove useful to researchers in other areas where responses are measured with error and in fields where large amounts of data are collected on relatively few subjects. To illustrate our approach, we re-analyze data from a social evaluative threat task, comparing the findings with results that ignore systematic error.

  19. Constrained motion estimation-based error resilient coding for HEVC

    NASA Astrophysics Data System (ADS)

    Guo, Weihan; Zhang, Yongfei; Li, Bo

    2018-04-01

    Unreliable communication channels might lead to packet losses and bit errors in the videos transmitted through it, which will cause severe video quality degradation. This is even worse for HEVC since more advanced and powerful motion estimation methods are introduced to further remove the inter-frame dependency and thus improve the coding efficiency. Once a Motion Vector (MV) is lost or corrupted, it will cause distortion in the decoded frame. More importantly, due to motion compensation, the error will propagate along the motion prediction path, accumulate over time, and significantly degrade the overall video presentation quality. To address this problem, we study the problem of encoder-sider error resilient coding for HEVC and propose a constrained motion estimation scheme to mitigate the problem of error propagation to subsequent frames. The approach is achieved by cutting off MV dependencies and limiting the block regions which are predicted by temporal motion vector. The experimental results show that the proposed method can effectively suppress the error propagation caused by bit errors of motion vector and can improve the robustness of the stream in the bit error channels. When the bit error probability is 10-5, an increase of the decoded video quality (PSNR) by up to1.310dB and on average 0.762 dB can be achieved, compared to the reference HEVC.

  20. LS Channel Estimation and Signal Separation for UHF RFID Tag Collision Recovery on the Physical Layer.

    PubMed

    Duan, Hanjun; Wu, Haifeng; Zeng, Yu; Chen, Yuebin

    2016-03-26

    In a passive ultra-high frequency (UHF) radio-frequency identification (RFID) system, tag collision is generally resolved on a medium access control (MAC) layer. However, some of collided tag signals could be recovered on a physical (PHY) layer and, thus, enhance the identification efficiency of the RFID system. For the recovery on the PHY layer, channel estimation is a critical issue. Good channel estimation will help to recover the collided signals. Existing channel estimates work well for two collided tags. When the number of collided tags is beyond two, however, the existing estimates have more estimation errors. In this paper, we propose a novel channel estimate for the UHF RFID system. It adopts an orthogonal matrix based on the information of preambles which is known for a reader and applies a minimum-mean-square-error (MMSE) criterion to estimate channels. From the estimated channel, we could accurately separate the collided signals and recover them. By means of numerical results, we show that the proposed estimate has lower estimation errors and higher separation efficiency than the existing estimates.

  1. A comparative study of shear wave speed estimation techniques in optical coherence elastography applications

    NASA Astrophysics Data System (ADS)

    Zvietcovich, Fernando; Yao, Jianing; Chu, Ying-Ju; Meemon, Panomsak; Rolland, Jannick P.; Parker, Kevin J.

    2016-03-01

    Optical Coherence Elastography (OCE) is a widely investigated noninvasive technique for estimating the mechanical properties of tissue. In particular, vibrational OCE methods aim to estimate the shear wave velocity generated by an external stimulus in order to calculate the elastic modulus of tissue. In this study, we compare the performance of five acquisition and processing techniques for estimating the shear wave speed in simulations and experiments using tissue-mimicking phantoms. Accuracy, contrast-to-noise ratio, and resolution are measured for all cases. The first two techniques make the use of one piezoelectric actuator for generating a continuous shear wave propagation (SWP) and a tone-burst propagation (TBP) of 400 Hz over the gelatin phantom. The other techniques make use of one additional actuator located on the opposite side of the region of interest in order to create an interference pattern. When both actuators have the same frequency, a standing wave (SW) pattern is generated. Otherwise, when there is a frequency difference df between both actuators, a crawling wave (CrW) pattern is generated and propagates with less speed than a shear wave, which makes it suitable for being detected by the 2D cross-sectional OCE imaging. If df is not small compared to the operational frequency, the CrW travels faster and a sampled version of it (SCrW) is acquired by the system. Preliminary results suggest that TBP (error < 4.1%) and SWP (error < 6%) techniques are more accurate when compared to mechanical measurement test results.

  2. Aniseikonia quantification: error rate of rule of thumb estimation.

    PubMed

    Lubkin, V; Shippman, S; Bennett, G; Meininger, D; Kramer, P; Poppinga, P

    1999-01-01

    To find the error rate in quantifying aniseikonia by using "Rule of Thumb" estimation in comparison with proven space eikonometry. Study 1: 24 adult pseudophakic individuals were measured for anisometropia, and astigmatic interocular difference. Rule of Thumb quantification for prescription was calculated and compared with aniseikonia measurement by the classical Essilor Projection Space Eikonometer. Study 2: parallel analysis was performed on 62 consecutive phakic patients from our strabismus clinic group. Frequency of error: For Group 1 (24 cases): 5 ( or 21 %) were equal (i.e., 1% or less difference); 16 (or 67% ) were greater (more than 1% different); and 3 (13%) were less by Rule of Thumb calculation in comparison to aniseikonia determined on the Essilor eikonometer. For Group 2 (62 cases): 45 (or 73%) were equal (1% or less); 10 (or 16%) were greater; and 7 (or 11%) were lower in the Rule of Thumb calculations in comparison to Essilor eikonometry. Magnitude of error: In Group 1, in 10/24 (29%) aniseikonia by Rule of Thumb estimation was 100% or more greater than by space eikonometry, and in 6 of those ten by 200% or more. In Group 2, in 4/62 (6%) aniseikonia by Rule of Thumb estimation was 200% or more greater than by space eikonometry. The frequency and magnitude of apparent clinical errors of Rule of Thumb estimation is disturbingly large. This problem is greatly magnified by the time and effort and cost of prescribing and executing an aniseikonic correction for a patient. The higher the refractive error, the greater the anisometropia, and the worse the errors in Rule of Thumb estimation of aniseikonia. Accurate eikonometric methods and devices should be employed in all cases where such measurements can be made. Rule of thumb estimations should be limited to cases where such subjective testing and measurement cannot be performed, as in infants after unilateral cataract surgery.

  3. Target Uncertainty Mediates Sensorimotor Error Correction

    PubMed Central

    Vijayakumar, Sethu; Wolpert, Daniel M.

    2017-01-01

    Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects’ scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one’s response. By suggesting that subjects’ decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated. PMID:28129323

  4. Target Uncertainty Mediates Sensorimotor Error Correction.

    PubMed

    Acerbi, Luigi; Vijayakumar, Sethu; Wolpert, Daniel M

    2017-01-01

    Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects' scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one's response. By suggesting that subjects' decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated.

  5. Radar targets reveal all to automated tester

    NASA Astrophysics Data System (ADS)

    Hartman, R. E.

    1985-09-01

    Technological developments in the field of automated test equipment for low radar-cross-section (RCS) systems are reviewed. Emphasis is given to an Automated Digital Analysis and Measurement (ADAM) system for measuring, scattering, and evaluating RCS using a minicomputer in combination with a vector network analyzer and a positioner programmer. ADAM incorporates a stepped CW measurement technique to obtain RCS as a function of both range and frequency at a fixed aspect angle. The operating characteristics and calibration procedures of the ADAM system are described and estimates of RCS sensitivity are obtained. The response resolution of the ADAM system is estimated to be 36 cm per measurement bandwidth (in GHz) for a minimum window. A block diagram of the error checking routine of the ADAM system is provided.

  6. Accounting for nonsampling error in estimates of HIV epidemic trends from antenatal clinic sentinel surveillance

    PubMed Central

    Eaton, Jeffrey W.; Bao, Le

    2017-01-01

    Objectives The aim of the study was to propose and demonstrate an approach to allow additional nonsampling uncertainty about HIV prevalence measured at antenatal clinic sentinel surveillance (ANC-SS) in model-based inferences about trends in HIV incidence and prevalence. Design Mathematical model fitted to surveillance data with Bayesian inference. Methods We introduce a variance inflation parameter σinfl2 that accounts for the uncertainty of nonsampling errors in ANC-SS prevalence. It is additive to the sampling error variance. Three approaches are tested for estimating σinfl2 using ANC-SS and household survey data from 40 subnational regions in nine countries in sub-Saharan, as defined in UNAIDS 2016 estimates. Methods were compared using in-sample fit and out-of-sample prediction of ANC-SS data, fit to household survey prevalence data, and the computational implications. Results Introducing the additional variance parameter σinfl2 increased the error variance around ANC-SS prevalence observations by a median of 2.7 times (interquartile range 1.9–3.8). Using only sampling error in ANC-SS prevalence ( σinfl2=0), coverage of 95% prediction intervals was 69% in out-of-sample prediction tests. This increased to 90% after introducing the additional variance parameter σinfl2. The revised probabilistic model improved model fit to household survey prevalence and increased epidemic uncertainty intervals most during the early epidemic period before 2005. Estimating σinfl2 did not increase the computational cost of model fitting. Conclusions: We recommend estimating nonsampling error in ANC-SS as an additional parameter in Bayesian inference using the Estimation and Projection Package model. This approach may prove useful for incorporating other data sources such as routine prevalence from Prevention of mother-to-child transmission testing into future epidemic estimates. PMID:28296801

  7. Fast maximum likelihood estimation using continuous-time neural point process models.

    PubMed

    Lepage, Kyle Q; MacDonald, Christopher J

    2015-06-01

    A recent report estimates that the number of simultaneously recorded neurons is growing exponentially. A commonly employed statistical paradigm using discrete-time point process models of neural activity involves the computation of a maximum-likelihood estimate. The time to computate this estimate, per neuron, is proportional to the number of bins in a finely spaced discretization of time. By using continuous-time models of neural activity and the optimally efficient Gaussian quadrature, memory requirements and computation times are dramatically decreased in the commonly encountered situation where the number of parameters p is much less than the number of time-bins n. In this regime, with q equal to the quadrature order, memory requirements are decreased from O(np) to O(qp), and the number of floating-point operations are decreased from O(np(2)) to O(qp(2)). Accuracy of the proposed estimates is assessed based upon physiological consideration, error bounds, and mathematical results describing the relation between numerical integration error and numerical error affecting both parameter estimates and the observed Fisher information. A check is provided which is used to adapt the order of numerical integration. The procedure is verified in simulation and for hippocampal recordings. It is found that in 95 % of hippocampal recordings a q of 60 yields numerical error negligible with respect to parameter estimate standard error. Statistical inference using the proposed methodology is a fast and convenient alternative to statistical inference performed using a discrete-time point process model of neural activity. It enables the employment of the statistical methodology available with discrete-time inference, but is faster, uses less memory, and avoids any error due to discretization.

  8. Quantification of residual dose estimation error on log file-based patient dose calculation.

    PubMed

    Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Matsunaga, Kenichi; Matsushita, Haruo; Majima, Kazuhiro; Jingu, Keiichi

    2016-05-01

    The log file-based patient dose estimation includes a residual dose estimation error caused by leaf miscalibration, which cannot be reflected on the estimated dose. The purpose of this study is to determine this residual dose estimation error. Modified log files for seven head-and-neck and prostate volumetric modulated arc therapy (VMAT) plans simulating leaf miscalibration were generated by shifting both leaf banks (systematic leaf gap errors: ±2.0, ±1.0, and ±0.5mm in opposite directions and systematic leaf shifts: ±1.0mm in the same direction) using MATLAB-based (MathWorks, Natick, MA) in-house software. The generated modified and non-modified log files were imported back into the treatment planning system and recalculated. Subsequently, the generalized equivalent uniform dose (gEUD) was quantified for the definition of the planning target volume (PTV) and organs at risks. For MLC leaves calibrated within ±0.5mm, the quantified residual dose estimation errors that obtained from the slope of the linear regression of gEUD changes between non- and modified log file doses per leaf gap are in head-and-neck plans 1.32±0.27% and 0.82±0.17Gy for PTV and spinal cord, respectively, and in prostate plans 1.22±0.36%, 0.95±0.14Gy, and 0.45±0.08Gy for PTV, rectum, and bladder, respectively. In this work, we determine the residual dose estimation errors for VMAT delivery using the log file-based patient dose calculation according to the MLC calibration accuracy. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Nonlinear adaptive control system design with asymptotically stable parameter estimation error

    NASA Astrophysics Data System (ADS)

    Mishkov, Rumen; Darmonski, Stanislav

    2018-01-01

    The paper presents a new general method for nonlinear adaptive system design with asymptotic stability of the parameter estimation error. The advantages of the approach include asymptotic unknown parameter estimation without persistent excitation and capability to directly control the estimates transient response time. The method proposed modifies the basic parameter estimation dynamics designed via a known nonlinear adaptive control approach. The modification is based on the generalised prediction error, a priori constraints with a hierarchical parameter projection algorithm, and the stable data accumulation concepts. The data accumulation principle is the main tool for achieving asymptotic unknown parameter estimation. It relies on the parametric identifiability system property introduced. Necessary and sufficient conditions for exponential stability of the data accumulation dynamics are derived. The approach is applied in a nonlinear adaptive speed tracking vector control of a three-phase induction motor.

  10. Application of Parallel Adjoint-Based Error Estimation and Anisotropic Grid Adaptation for Three-Dimensional Aerospace Configurations

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, E. M.; Park, M. A.; Jones, W. T.; Hammond, D. P.; Nielsen, E. J.

    2005-01-01

    This paper demonstrates the extension of error estimation and adaptation methods to parallel computations enabling larger, more realistic aerospace applications and the quantification of discretization errors for complex 3-D solutions. Results were shown for an inviscid sonic-boom prediction about a double-cone configuration and a wing/body segmented leading edge (SLE) configuration where the output function of the adjoint was pressure integrated over a part of the cylinder in the near field. After multiple cycles of error estimation and surface/field adaptation, a significant improvement in the inviscid solution for the sonic boom signature of the double cone was observed. Although the double-cone adaptation was initiated from a very coarse mesh, the near-field pressure signature from the final adapted mesh compared very well with the wind-tunnel data which illustrates that the adjoint-based error estimation and adaptation process requires no a priori refinement of the mesh. Similarly, the near-field pressure signature for the SLE wing/body sonic boom configuration showed a significant improvement from the initial coarse mesh to the final adapted mesh in comparison with the wind tunnel results. Error estimation and field adaptation results were also presented for the viscous transonic drag prediction of the DLR-F6 wing/body configuration, and results were compared to a series of globally refined meshes. Two of these globally refined meshes were used as a starting point for the error estimation and field-adaptation process where the output function for the adjoint was the total drag. The field-adapted results showed an improvement in the prediction of the drag in comparison with the finest globally refined mesh and a reduction in the estimate of the remaining drag error. The adjoint-based adaptation parameter showed a need for increased resolution in the surface of the wing/body as well as a need for wake resolution downstream of the fuselage and wing trailing edge in order to achieve the requested drag tolerance. Although further adaptation was required to meet the requested tolerance, no further cycles were computed in order to avoid large discrepancies between the surface mesh spacing and the refined field spacing.

  11. Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2016-12-01

    Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.

  12. Analytic score distributions for a spatially continuous tridirectional Monte Carol transport problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, T.E.

    1996-01-01

    The interpretation of the statistical error estimates produced by Monte Carlo transport codes is still somewhat of an art. Empirically, there are variance reduction techniques whose error estimates are almost always reliable, and there are variance reduction techniques whose error estimates are often unreliable. Unreliable error estimates usually result from inadequate large-score sampling from the score distribution`s tail. Statisticians believe that more accurate confidence interval statements are possible if the general nature of the score distribution can be characterized. Here, the analytic score distribution for the exponential transform applied to a simple, spatially continuous Monte Carlo transport problem is provided.more » Anisotropic scattering and implicit capture are included in the theory. In large part, the analytic score distributions that are derived provide the basis for the ten new statistical quality checks in MCNP.« less

  13. Adaptive Sparse Representation for Source Localization with Gain/Phase Errors

    PubMed Central

    Sun, Ke; Liu, Yimin; Meng, Huadong; Wang, Xiqin

    2011-01-01

    Sparse representation (SR) algorithms can be implemented for high-resolution direction of arrival (DOA) estimation. Additionally, SR can effectively separate the coherent signal sources because the spectrum estimation is based on the optimization technique, such as the L1 norm minimization, but not on subspace orthogonality. However, in the actual source localization scenario, an unknown gain/phase error between the array sensors is inevitable. Due to this nonideal factor, the predefined overcomplete basis mismatches the actual array manifold so that the estimation performance is degraded in SR. In this paper, an adaptive SR algorithm is proposed to improve the robustness with respect to the gain/phase error, where the overcomplete basis is dynamically adjusted using multiple snapshots and the sparse solution is adaptively acquired to match with the actual scenario. The simulation results demonstrate the estimation robustness to the gain/phase error using the proposed method. PMID:22163875

  14. Total absorption cross sections of several gases of aeronomic interest at 584 A.

    NASA Technical Reports Server (NTRS)

    Starr, W. L.; Loewenstein, M.

    1972-01-01

    Total photoabsorption cross sections have been measured at 584.3 A for N2, O2, Ar, CO2, CO, NO, N2O, NH3, CH4, H2, and H2S. A monochromator was used to isolate the He I 584 line produced in a helium resonance lamp, and thin aluminum filters were used as absorption cell windows, thereby eliminating possible errors associated with the use of undispersed radiation or windowless cells. Sources of error are examined, and limits of uncertainty are given. Previous relevant cross-sectional measurements and possible error sources are reviewed. Wall adsorption as a source of error in cross-sectional measurements has not previously been considered and is discussed briefly.

  15. Uncertainty issues in forest monitoring: All you wanted to know about uncertainties and never dared to ask

    Treesearch

    Michael Köhl; Charles Scott; Daniel Plugge

    2013-01-01

    Uncertainties are a composite of errors arising from observations and the appropriateness of models. An error budget approach can be used to identify and accumulate the sources of errors to estimate change in emissions between two points in time. Various forest monitoring approaches can be used to estimate the changes in emissions due to deforestation and forest...

  16. Using the Sampling Margin of Error to Assess the Interpretative Validity of Student Evaluations of Teaching

    ERIC Educational Resources Information Center

    James, David E.; Schraw, Gregory; Kuch, Fred

    2015-01-01

    We present an equation, derived from standard statistical theory, that can be used to estimate sampling margin of error for student evaluations of teaching (SETs). We use the equation to examine the effect of sample size, response rates and sample variability on the estimated sampling margin of error, and present results in four tables that allow…

  17. Automatic Error Analysis Using Intervals

    ERIC Educational Resources Information Center

    Rothwell, E. J.; Cloud, M. J.

    2012-01-01

    A technique for automatic error analysis using interval mathematics is introduced. A comparison to standard error propagation methods shows that in cases involving complicated formulas, the interval approach gives comparable error estimates with much less effort. Several examples are considered, and numerical errors are computed using the INTLAB…

  18. Per-pixel bias-variance decomposition of continuous errors in data-driven geospatial modeling: A case study in environmental remote sensing

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Burt, James E.

    2017-12-01

    This study investigates the usefulness of a per-pixel bias-variance error decomposition (BVD) for understanding and improving spatially-explicit data-driven models of continuous variables in environmental remote sensing (ERS). BVD is a model evaluation method originated from machine learning and have not been examined for ERS applications. Demonstrated with a showcase regression tree model mapping land imperviousness (0-100%) using Landsat images, our results showed that BVD can reveal sources of estimation errors, map how these sources vary across space, reveal the effects of various model characteristics on estimation accuracy, and enable in-depth comparison of different error metrics. Specifically, BVD bias maps can help analysts identify and delineate model spatial non-stationarity; BVD variance maps can indicate potential effects of ensemble methods (e.g. bagging), and inform efficient training sample allocation - training samples should capture the full complexity of the modeled process, and more samples should be allocated to regions with more complex underlying processes rather than regions covering larger areas. Through examining the relationships between model characteristics and their effects on estimation accuracy revealed by BVD for both absolute and squared errors (i.e. error is the absolute or the squared value of the difference between observation and estimate), we found that the two error metrics embody different diagnostic emphases, can lead to different conclusions about the same model, and may suggest different solutions for performance improvement. We emphasize BVD's strength in revealing the connection between model characteristics and estimation accuracy, as understanding this relationship empowers analysts to effectively steer performance through model adjustments.

  19. LACIE performance predictor FOC users manual

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The LACIE Performance Predictor (LPP) is a computer simulation of the LACIE process for predicting worldwide wheat production. The simulation provides for the introduction of various errors into the system and provides estimates based on these errors, thus allowing the user to determine the impact of selected error sources. The FOC LPP simulates the acquisition of the sample segment data by the LANDSAT Satellite (DAPTS), the classification of the agricultural area within the sample segment (CAMS), the estimation of the wheat yield (YES), and the production estimation and aggregation (CAS). These elements include data acquisition characteristics, environmental conditions, classification algorithms, the LACIE aggregation and data adjustment procedures. The operational structure for simulating these elements consists of the following key programs: (1) LACIE Utility Maintenance Process, (2) System Error Executive, (3) Ephemeris Generator, (4) Access Generator, (5) Acquisition Selector, (6) LACIE Error Model (LEM), and (7) Post Processor.

  20. Measurement Error and Environmental Epidemiology: A Policy Perspective

    PubMed Central

    Edwards, Jessie K.; Keil, Alexander P.

    2017-01-01

    Purpose of review Measurement error threatens public health by producing bias in estimates of the population impact of environmental exposures. Quantitative methods to account for measurement bias can improve public health decision making. Recent findings We summarize traditional and emerging methods to improve inference under a standard perspective, in which the investigator estimates an exposure response function, and a policy perspective, in which the investigator directly estimates population impact of a proposed intervention. Summary Under a policy perspective, the analysis must be sensitive to errors in measurement of factors that modify the effect of exposure on outcome, must consider whether policies operate on the true or measured exposures, and may increasingly need to account for potentially dependent measurement error of two or more exposures affected by the same policy or intervention. Incorporating approaches to account for measurement error into such a policy perspective will increase the impact of environmental epidemiology. PMID:28138941

  1. Motion-induced phase error estimation and correction in 3D diffusion tensor imaging.

    PubMed

    Van, Anh T; Hernando, Diego; Sutton, Bradley P

    2011-11-01

    A multishot data acquisition strategy is one way to mitigate B0 distortion and T2∗ blurring for high-resolution diffusion-weighted magnetic resonance imaging experiments. However, different object motions that take place during different shots cause phase inconsistencies in the data, leading to significant image artifacts. This work proposes a maximum likelihood estimation and k-space correction of motion-induced phase errors in 3D multishot diffusion tensor imaging. The proposed error estimation is robust, unbiased, and approaches the Cramer-Rao lower bound. For rigid body motion, the proposed correction effectively removes motion-induced phase errors regardless of the k-space trajectory used and gives comparable performance to the more computationally expensive 3D iterative nonlinear phase error correction method. The method has been extended to handle multichannel data collected using phased-array coils. Simulation and in vivo data are shown to demonstrate the performance of the method.

  2. An investigation into multi-dimensional prediction models to estimate the pose error of a quadcopter in a CSP plant setting

    NASA Astrophysics Data System (ADS)

    Lock, Jacobus C.; Smit, Willie J.; Treurnicht, Johann

    2016-05-01

    The Solar Thermal Energy Research Group (STERG) is investigating ways to make heliostats cheaper to reduce the total cost of a concentrating solar power (CSP) plant. One avenue of research is to use unmanned aerial vehicles (UAVs) to automate and assist with the heliostat calibration process. To do this, the pose estimation error of each UAV must be determined and integrated into a calibration procedure. A computer vision (CV) system is used to measure the pose of a quadcopter UAV. However, this CV system contains considerable measurement errors. Since this is a high-dimensional problem, a sophisticated prediction model must be used to estimate the measurement error of the CV system for any given pose measurement vector. This paper attempts to train and validate such a model with the aim of using it to determine the pose error of a quadcopter in a CSP plant setting.

  3. Comparison of Kalman filter and optimal smoother estimates of spacecraft attitude

    NASA Technical Reports Server (NTRS)

    Sedlak, J.

    1994-01-01

    Given a valid system model and adequate observability, a Kalman filter will converge toward the true system state with error statistics given by the estimated error covariance matrix. The errors generally do not continue to decrease. Rather, a balance is reached between the gain of information from new measurements and the loss of information during propagation. The errors can be further reduced, however, by a second pass through the data with an optimal smoother. This algorithm obtains the optimally weighted average of forward and backward propagating Kalman filters. It roughly halves the error covariance by including future as well as past measurements in each estimate. This paper investigates whether such benefits actually accrue in the application of an optimal smoother to spacecraft attitude determination. Tests are performed both with actual spacecraft data from the Extreme Ultraviolet Explorer (EUVE) and with simulated data for which the true state vector and noise statistics are exactly known.

  4. Errors in the estimation of approximate entropy and other recurrence-plot-derived indices due to the finite resolution of RR time series.

    PubMed

    García-González, Miguel A; Fernández-Chimeno, Mireya; Ramos-Castro, Juan

    2009-02-01

    An analysis of the errors due to the finite resolution of RR time series in the estimation of the approximate entropy (ApEn) is described. The quantification errors in the discrete RR time series produce considerable errors in the ApEn estimation (bias and variance) when the signal variability or the sampling frequency is low. Similar errors can be found in indices related to the quantification of recurrence plots. An easy way to calculate a figure of merit [the signal to resolution of the neighborhood ratio (SRN)] is proposed in order to predict when the bias in the indices could be high. When SRN is close to an integer value n, the bias is higher than when near n - 1/2 or n + 1/2. Moreover, if SRN is close to an integer value, the lower this value, the greater the bias is.

  5. Derivation of an analytic expression for the error associated with the noise reduction rating

    NASA Astrophysics Data System (ADS)

    Murphy, William J.

    2005-04-01

    Hearing protection devices are assessed using the Real Ear Attenuation at Threshold (REAT) measurement procedure for the purpose of estimating the amount of noise reduction provided when worn by a subject. The rating number provided on the protector label is a function of the mean and standard deviation of the REAT results achieved by the test subjects. If a group of subjects have a large variance, then it follows that the certainty of the rating should be correspondingly lower. No estimate of the error of a protector's rating is given by existing standards or regulations. Propagation of errors was applied to the Noise Reduction Rating to develop an analytic expression for the hearing protector rating error term. Comparison of the analytic expression for the error to the standard deviation estimated from Monte Carlo simulation of subject attenuations yielded a linear relationship across several protector types and assumptions for the variance of the attenuations.

  6. Worst-error analysis of batch filter and sequential filter in navigation problems. [in spacecraft trajectory estimation

    NASA Technical Reports Server (NTRS)

    Nishimura, T.

    1975-01-01

    This paper proposes a worst-error analysis for dealing with problems of estimation of spacecraft trajectories in deep space missions. Navigation filters in use assume either constant or stochastic (Markov) models for their estimated parameters. When the actual behavior of these parameters does not follow the pattern of the assumed model, the filters sometimes result in very poor performance. To prepare for such pathological cases, the worst errors of both batch and sequential filters are investigated based on the incremental sensitivity studies of these filters. By finding critical switching instances of non-gravitational accelerations, intensive tracking can be carried out around those instances. Also the worst errors in the target plane provide a measure in assignment of the propellant budget for trajectory corrections. Thus the worst-error study presents useful information as well as practical criteria in establishing the maneuver and tracking strategy of spacecraft's missions.

  7. A Canonical Ensemble Correlation Prediction Model for Seasonal Precipitation Anomaly

    NASA Technical Reports Server (NTRS)

    Shen, Samuel S. P.; Lau, William K. M.; Kim, Kyu-Myong; Li, Guilong

    2001-01-01

    This report describes an optimal ensemble forecasting model for seasonal precipitation and its error estimation. Each individual forecast is based on the canonical correlation analysis (CCA) in the spectral spaces whose bases are empirical orthogonal functions (EOF). The optimal weights in the ensemble forecasting crucially depend on the mean square error of each individual forecast. An estimate of the mean square error of a CCA prediction is made also using the spectral method. The error is decomposed onto EOFs of the predictand and decreases linearly according to the correlation between the predictor and predictand. This new CCA model includes the following features: (1) the use of area-factor, (2) the estimation of prediction error, and (3) the optimal ensemble of multiple forecasts. The new CCA model is applied to the seasonal forecasting of the United States precipitation field. The predictor is the sea surface temperature.

  8. Ensemble Kalman filters for dynamical systems with unresolved turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grooms, Ian, E-mail: grooms@cims.nyu.edu; Lee, Yoonsang; Majda, Andrew J.

    Ensemble Kalman filters are developed for turbulent dynamical systems where the forecast model does not resolve all the active scales of motion. Coarse-resolution models are intended to predict the large-scale part of the true dynamics, but observations invariably include contributions from both the resolved large scales and the unresolved small scales. The error due to the contribution of unresolved scales to the observations, called ‘representation’ or ‘representativeness’ error, is often included as part of the observation error, in addition to the raw measurement error, when estimating the large-scale part of the system. It is here shown how stochastic superparameterization (amore » multiscale method for subgridscale parameterization) can be used to provide estimates of the statistics of the unresolved scales. In addition, a new framework is developed wherein small-scale statistics can be used to estimate both the resolved and unresolved components of the solution. The one-dimensional test problem from dispersive wave turbulence used here is computationally tractable yet is particularly difficult for filtering because of the non-Gaussian extreme event statistics and substantial small scale turbulence: a shallow energy spectrum proportional to k{sup −5/6} (where k is the wavenumber) results in two-thirds of the climatological variance being carried by the unresolved small scales. Because the unresolved scales contain so much energy, filters that ignore the representation error fail utterly to provide meaningful estimates of the system state. Inclusion of a time-independent climatological estimate of the representation error in a standard framework leads to inaccurate estimates of the large-scale part of the signal; accurate estimates of the large scales are only achieved by using stochastic superparameterization to provide evolving, large-scale dependent predictions of the small-scale statistics. Again, because the unresolved scales contain so much energy, even an accurate estimate of the large-scale part of the system does not provide an accurate estimate of the true state. By providing simultaneous estimates of both the large- and small-scale parts of the solution, the new framework is able to provide accurate estimates of the true system state.« less

  9. Sources of Error in Substance Use Prevalence Surveys

    PubMed Central

    Johnson, Timothy P.

    2014-01-01

    Population-based estimates of substance use patterns have been regularly reported now for several decades. Concerns with the quality of the survey methodologies employed to produce those estimates date back almost as far. Those concerns have led to a considerable body of research specifically focused on understanding the nature and consequences of survey-based errors in substance use epidemiology. This paper reviews and summarizes that empirical research by organizing it within a total survey error model framework that considers multiple types of representation and measurement errors. Gaps in our knowledge of error sources in substance use surveys and areas needing future research are also identified. PMID:27437511

  10. Unmanned aerial vehicle-based structure from motion biomass inventory estimates

    NASA Astrophysics Data System (ADS)

    Bedell, Emily; Leslie, Monique; Fankhauser, Katie; Burnett, Jonathan; Wing, Michael G.; Thomas, Evan A.

    2017-04-01

    Riparian vegetation restoration efforts require cost-effective, accurate, and replicable impact assessments. We present a method to use an unmanned aerial vehicle (UAV) equipped with a GoPro digital camera to collect photogrammetric data of a 0.8-ha riparian restoration. A three-dimensional point cloud was created from the photos using "structure from motion" techniques. The point cloud was analyzed and compared to traditional, ground-based monitoring techniques. Ground-truth data were collected on 6.3% of the study site and averaged across the entire site to report stem heights in stems/ha in three height classes. The project site was divided into four analysis sections, one for derivation of parameters used in the UAV data analysis and the remaining three sections reserved for method validation. Comparing the ground-truth data to the UAV generated data produced an overall error of 21.6% and indicated an R2 value of 0.98. A Bland-Altman analysis indicated a 95% probability that the UAV stems/section result will be within 61 stems/section of the ground-truth data. The ground-truth data are reported with an 80% confidence interval of ±1032 stems/ha thus, the UAV was able to estimate stems well within this confidence interval.

  11. An analysis of errors in special sensor microwave imager evaporation estimates over the global oceans

    NASA Technical Reports Server (NTRS)

    Esbensen, S. K.; Chelton, D. B.; Vickers, D.; Sun, J.

    1993-01-01

    The method proposed by Liu (1984) is used to estimate monthly averaged evaporation over the global oceans from 1 yr of special sensor microwave imager (SDSM/I) data. Intercomparisons involving SSM/I and in situ data are made over a wide range of oceanic conditions during August 1987 and February 1988 to determine the source of errors in the evaporation estimates. The most significant spatially coherent evaporation errors are found to come from estimates of near-surface specific humidity, q. Systematic discrepancies of over 2 g/kg are found in the tropics, as well as in the middle and high latitudes. The q errors are partitioned into contributions from the parameterization of q in terms of the columnar water vapor, i.e., the Liu q/W relationship, and from the retrieval algorithm for W. The effects of W retrieval errors are found to be smaller over most of the global oceans and due primarily to the implicitly assumed vertical structures of temperature and specific humidity on which the physically based SSM/I retrievals of W are based.

  12. The vertical variability of hyporheic fluxes inferred from riverbed temperature data

    NASA Astrophysics Data System (ADS)

    Cranswick, Roger H.; Cook, Peter G.; Shanafield, Margaret; Lamontagne, Sebastien

    2014-05-01

    We present detailed profiles of vertical water flux from the surface to 1.2 m beneath the Haughton River in the tropical northeast of Australia. A 1-D numerical model is used to estimate vertical flux based on raw temperature time series observations from within downwelling, upwelling, neutral, and convergent sections of the hyporheic zone. A Monte Carlo analysis is used to derive error bounds for the fluxes based on temperature measurement error and uncertainty in effective thermal diffusivity. Vertical fluxes ranged from 5.7 m d-1 (downward) to -0.2 m d-1 (upward) with the lowest relative errors for values between 0.3 and 6 m d-1. Our 1-D approach provides a useful alternative to 1-D analytical and other solutions because it does not incorporate errors associated with simplified boundary conditions or assumptions of purely vertical flow, hydraulic parameter values, or hydraulic conditions. To validate the ability of this 1-D approach to represent the vertical fluxes of 2-D flow fields, we compare our model with two simple 2-D flow fields using a commercial numerical model. These comparisons showed that: (1) the 1-D vertical flux was equivalent to the mean vertical component of flux irrespective of a changing horizontal flux; and (2) the subsurface temperature data inherently has a "spatial footprint" when the vertical flux profiles vary spatially. Thus, the mean vertical flux within a 2-D flow field can be estimated accurately without requiring the flow to be purely vertical. The temperature-derived 1-D vertical flux represents the integrated vertical component of flux along the flow path intersecting the observation point. This article was corrected on 6 JUN 2014. See the end of the full text for details.

  13. Role-modeling and medical error disclosure: a national survey of trainees.

    PubMed

    Martinez, William; Hickson, Gerald B; Miller, Bonnie M; Doukas, David J; Buckley, John D; Song, John; Sehgal, Niraj L; Deitz, Jennifer; Braddock, Clarence H; Lehmann, Lisa Soleymani

    2014-03-01

    To measure trainees' exposure to negative and positive role-modeling for responding to medical errors and to examine the association between that exposure and trainees' attitudes and behaviors regarding error disclosure. Between May 2011 and June 2012, 435 residents at two large academic medical centers and 1,187 medical students from seven U.S. medical schools received anonymous, electronic questionnaires. The questionnaire asked respondents about (1) experiences with errors, (2) training for responding to errors, (3) behaviors related to error disclosure, (4) exposure to role-modeling for responding to errors, and (5) attitudes regarding disclosure. Using multivariate regression, the authors analyzed whether frequency of exposure to negative and positive role-modeling independently predicted two primary outcomes: (1) attitudes regarding disclosure and (2) nontransparent behavior in response to a harmful error. The response rate was 55% (884/1,622). Training on how to respond to errors had the largest independent, positive effect on attitudes (standardized effect estimate, 0.32, P < .001); negative role-modeling had the largest independent, negative effect (standardized effect estimate, -0.26, P < .001). Positive role-modeling had a positive effect on attitudes (standardized effect estimate, 0.26, P < .001). Exposure to negative role-modeling was independently associated with an increased likelihood of trainees' nontransparent behavior in response to an error (OR 1.37, 95% CI 1.15-1.64; P < .001). Exposure to role-modeling predicts trainees' attitudes and behavior regarding the disclosure of harmful errors. Negative role models may be a significant impediment to disclosure among trainees.

  14. Worldwide Ocean Optics Database (WOOD)

    DTIC Science & Technology

    2001-09-30

    user can obtain values computed from empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error ...from empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for...properties, including diffuse attenuation, beam attenuation, and scattering. The database shall be easy to use, Internet accessible, and frequently updated

  15. Measurement Error in Nonparametric Item Response Curve Estimation. Research Report. ETS RR-11-28

    ERIC Educational Resources Information Center

    Guo, Hongwen; Sinharay, Sandip

    2011-01-01

    Nonparametric, or kernel, estimation of item response curve (IRC) is a concern theoretically and operationally. Accuracy of this estimation, often used in item analysis in testing programs, is biased when the observed scores are used as the regressor because the observed scores are contaminated by measurement error. In this study, we investigate…

  16. Verification of unfold error estimates in the unfold operator code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehl, D.L.; Biggs, F.

    Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashionmore » with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5{percent} (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95{percent} confidence level). A possible 10{percent} bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums. {copyright} {ital 1997 American Institute of Physics.}« less

  17. A linear, separable two-parameter model for dual energy CT imaging of proton stopping power computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Dong, E-mail: radon.han@gmail.com; Williamson, Jeffrey F.; Siebers, Jeffrey V.

    2016-01-15

    Purpose: To evaluate the accuracy and robustness of a simple, linear, separable, two-parameter model (basis vector model, BVM) in mapping proton stopping powers via dual energy computed tomography (DECT) imaging. Methods: The BVM assumes that photon cross sections (attenuation coefficients) of unknown materials are linear combinations of the corresponding radiological quantities of dissimilar basis substances (i.e., polystyrene, CaCl{sub 2} aqueous solution, and water). The authors have extended this approach to the estimation of electron density and mean excitation energy, which are required parameters for computing proton stopping powers via the Bethe–Bloch equation. The authors compared the stopping power estimation accuracymore » of the BVM with that of a nonlinear, nonseparable photon cross section Torikoshi parametric fit model (VCU tPFM) as implemented by the authors and by Yang et al. [“Theoretical variance analysis of single- and dual-energy computed tomography methods for calculating proton stopping power ratios of biological tissues,” Phys. Med. Biol. 55, 1343–1362 (2010)]. Using an idealized monoenergetic DECT imaging model, proton ranges estimated by the BVM, VCU tPFM, and Yang tPFM were compared to International Commission on Radiation Units and Measurements (ICRU) published reference values. The robustness of the stopping power prediction accuracy of tissue composition variations was assessed for both of the BVM and VCU tPFM. The sensitivity of accuracy to CT image uncertainty was also evaluated. Results: Based on the authors’ idealized, error-free DECT imaging model, the root-mean-square error of BVM proton stopping power estimation for 175 MeV protons relative to ICRU reference values for 34 ICRU standard tissues is 0.20%, compared to 0.23% and 0.68% for the Yang and VCU tPFM models, respectively. The range estimation errors were less than 1 mm for the BVM and Yang tPFM models, respectively. The BVM estimation accuracy is not dependent on tissue type and proton energy range. The BVM is slightly more vulnerable to CT image intensity uncertainties than the tPFM models. Both the BVM and tPFM prediction accuracies were robust to uncertainties of tissue composition and independent of the choice of reference values. This reported accuracy does not include the impacts of I-value uncertainties and imaging artifacts and may not be achievable on current clinical CT scanners. Conclusions: The proton stopping power estimation accuracy of the proposed linear, separable BVM model is comparable to or better than that of the nonseparable tPFM models proposed by other groups. In contrast to the tPFM, the BVM does not require an iterative solving for effective atomic number and electron density at every voxel; this improves the computational efficiency of DECT imaging when iterative, model-based image reconstruction algorithms are used to minimize noise and systematic imaging artifacts of CT images.« less

  18. Enabling Predictive Simulation and UQ of Complex Multiphysics PDE Systems by the Development of Goal-Oriented Variational Sensitivity Analysis and a-Posteriori Error Estimation Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estep, Donald

    2015-11-30

    This project addressed the challenge of predictive computational analysis of strongly coupled, highly nonlinear multiphysics systems characterized by multiple physical phenomena that span a large range of length- and time-scales. Specifically, the project was focused on computational estimation of numerical error and sensitivity analysis of computational solutions with respect to variations in parameters and data. In addition, the project investigated the use of accurate computational estimates to guide efficient adaptive discretization. The project developed, analyzed and evaluated new variational adjoint-based techniques for integration, model, and data error estimation/control and sensitivity analysis, in evolutionary multiphysics multiscale simulations.

  19. Telemetry location error in a forested habitat

    USGS Publications Warehouse

    Chu, D.S.; Hoover, B.A.; Fuller, M.R.; Geissler, P.H.; Amlaner, Charles J.

    1989-01-01

    The error associated with locations estimated by radio-telemetry triangulation can be large and variable in a hardwood forest. We assessed the magnitude and cause of telemetry location errors in a mature hardwood forest by using a 4-element Yagi antenna and compass bearings toward four transmitters, from 21 receiving sites. The distance error from the azimuth intersection to known transmitter locations ranged from 0 to 9251 meters. Ninety-five percent of the estimated locations were within 16 to 1963 meters, and 50% were within 99 to 416 meters of actual locations. Angles with 20o of parallel had larger distance errors than other angles. While angle appeared most important, greater distances and the amount of vegetation between receivers and transmitters also contributed to distance error.

  20. Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes.

    PubMed

    Creel, Scott; Spong, Goran; Sands, Jennifer L; Rotella, Jay; Zeigle, Janet; Joe, Lawrence; Murphy, Kerry M; Smith, Douglas

    2003-07-01

    Determining population sizes can be difficult, but is essential for conservation. By counting distinct microsatellite genotypes, DNA from noninvasive samples (hair, faeces) allows estimation of population size. Problems arise because genotypes from noninvasive samples are error-prone, but genotyping errors can be reduced by multiple polymerase chain reaction (PCR). For faecal genotypes from wolves in Yellowstone National Park, error rates varied substantially among samples, often above the 'worst-case threshold' suggested by simulation. Consequently, a substantial proportion of multilocus genotypes held one or more errors, despite multiple PCR. These genotyping errors created several genotypes per individual and caused overestimation (up to 5.5-fold) of population size. We propose a 'matching approach' to eliminate this overestimation bias.

  1. Probing-error compensation using 5 degree of freedom force/moment sensor for coordinate measuring machine

    NASA Astrophysics Data System (ADS)

    Lee, Minho; Cho, Nahm-Gyoo

    2013-09-01

    A new probing and compensation method is proposed to improve the three-dimensional (3D) measuring accuracy of 3D shapes, including irregular surfaces. A new tactile coordinate measuring machine (CMM) probe with a five-degree of freedom (5-DOF) force/moment sensor using carbon fiber plates was developed. The proposed method efficiently removes the anisotropic sensitivity error and decreases the stylus deformation and the actual contact point estimation errors that are major error components of shape measurement using touch probes. The relationship between the measuring force and estimation accuracy of the actual contact point error and stylus deformation error are examined for practical use of the proposed method. The appropriate measuring force condition is presented for the precision measurement.

  2. Network Adjustment of Orbit Errors in SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Bahr, Hermann; Hanssen, Ramon

    2010-03-01

    Orbit errors can induce significant long wavelength error signals in synthetic aperture radar (SAR) interferograms and thus bias estimates of wide-scale deformation phenomena. The presented approach aims for correcting orbit errors in a preprocessing step to deformation analysis by modifying state vectors. Whereas absolute errors in the orbital trajectory are negligible, the influence of relative errors (baseline errors) is parametrised by their parallel and perpendicular component as a linear function of time. As the sensitivity of the interferometric phase is only significant with respect to the perpendicular base-line and the rate of change of the parallel baseline, the algorithm focuses on estimating updates to these two parameters. This is achieved by a least squares approach, where the unwrapped residual interferometric phase is observed and atmospheric contributions are considered to be stochastic with constant mean. To enhance reliability, baseline errors are adjusted in an overdetermined network of interferograms, yielding individual orbit corrections per acquisition.

  3. Diagnostic precision of mentally estimated home blood pressure means.

    PubMed

    Ouattara, Franck Olivier; Laskine, Mikhael; Cheong, Nathalie Ng; Birnbaum, Leora; Wistaff, Robert; Bertrand, Michel; van Nguyen, Paul; Kolan, Christophe; Durand, Madeleine; Rinfret, Felix; Lamarre-Cliche, Maxime

    2018-05-07

    Paper home blood pressure (HBP) charts are commonly brought to physicians at office visits. The precision and accuracy of mental calculations of blood pressure (BP) means are not known. A total of 109 hypertensive patients were instructed to measure and record their HBP for 1 week and to bring their paper charts to their office visit. Study section 1: HBP means were calculated electronically and compared to corresponding in-office BP estimates made by physicians. Study section 2: 100 randomly ordered HBP charts were re-examined repetitively by 11 evaluators. Each evaluator estimated BP means four times in 5, 15, 30, and 60 s (random order) allocated for the task. BP means and diagnostic performance (determination of therapeutic systolic and diastolic BP goals attained or not) were compared between physician estimates and electronically calculated results. Overall, electronically and mentally calculated BP means were not different. Individual analysis showed that 83% of in-office physician estimates were within a 5-mmHg systolic BP range. There was diagnostic disagreement in 15% of cases. Performance improved consistently when the time allocated for BP estimation was increased from 5 to 15 s and from 15 to 30 s, but not when it exceeded 30 s. Mentally calculating HBP means from paper charts can cause a number of diagnostic errors. Chart evaluation exceeding 30 s does not significantly improve accuracy. BP-measuring devices with modern analytical capacities could be useful to physicians.

  4. Perennial snow and ice volumes on Iliamna Volcano, Alaska, estimated with ice radar and volume modeling

    USGS Publications Warehouse

    Trabant, Dennis C.

    1999-01-01

    The volume of four of the largest glaciers on Iliamna Volcano was estimated using the volume model developed for evaluating glacier volumes on Redoubt Volcano. The volume model is controlled by simulated valley cross sections that are constructed by fitting third-order polynomials to the shape of the valley walls exposed above the glacier surface. Critical cross sections were field checked by sounding with ice-penetrating radar during July 1998. The estimated volumes of perennial snow and glacier ice for Tuxedni, Lateral, Red, and Umbrella Glaciers are 8.6, 0.85, 4.7, and 0.60 cubic kilometers respectively. The estimated volume of snow and ice on the upper 1,000 meters of the volcano is about 1 cubic kilometer. The volume estimates are thought to have errors of no more than ?25 percent. The volumes estimated for the four largest glaciers are more than three times the total volume of snow and ice on Mount Rainier and about 82 times the total volume of snow and ice that was on Mount St. Helens before its May 18, 1980 eruption. Volcanoes mantled by substantial snow and ice covers have produced the largest and most catastrophic lahars and floods. Therefore, it is prudent to expect that, during an eruptive episode, flooding and lahars threaten all of the drainages heading on Iliamna Volcano. On the other hand, debris avalanches can happen any time. Fortunately, their influence is generally limited to the area within a few kilometers of the summit.

  5. Nonlinear calibration for petroleum water content measurement using PSO

    NASA Astrophysics Data System (ADS)

    Li, Mingbao; Zhang, Jiawei

    2008-10-01

    A new algorithmic for strapdown inertial navigation system (SINS) state estimation based on neural networks is introduced. In training strategy, the error vector and its delay are introduced. This error vector is made of the position and velocity difference between the estimations of system and the outputs of GPS. After state prediction and state update, the states of the system are estimated. After off-line training, the network can approach the status switching of SINS and after on-line training, the state estimate precision can be improved further by reducing network output errors. Then the network convergence is discussed. In the end, several simulations with different noise are given. The results show that the neural network state estimator has lower noise sensitivity and better noise immunity than Kalman filter.

  6. Application of the precipitation-runoff modeling system to the Ah- shi-sle-pah Wash watershed, San Juan County, New Mexico

    USGS Publications Warehouse

    Hejl, H.R.

    1989-01-01

    The precipitation-runoff modeling system was applied to the 8.21 sq-mi drainage area of the Ah-shi-sle-pah Wash watershed in northwestern New Mexico. The calibration periods were May to September of 1981 and 1982, and the verification period was May to September 1983. Twelve storms were available for calibration and 8 storms were available for verification. For calibration A (hydraulic conductivity estimated from onsite data and other storm-mode parameters optimized), the computed standard error of estimate was 50% for runoff volumes and 72% of peak discharges. Calibration B included hydraulic conductivity in the optimization, which reduced the standard error of estimate to 28 % for runoff volumes and 50% for peak discharges. Optimized values for hydraulic conductivity resulted in reductions from 1.00 to 0.26 in/h and 0.20 to 0.03 in/h for the 2 general soils groups in the calibrations. Simulated runoff volumes using 7 of 8 storms occurring during the verification period had a standard error of estimate of 40% for verification A and 38% for verification B. Simulated peak discharge had a standard error of estimate of 120% for verification A and 56% for verification B. Including the eighth storm which had a relatively small magnitude in the verification analysis more than doubled the standard error of estimating volumes and peaks. (USGS)

  7. A methodology for translating positional error into measures of attribute error, and combining the two error sources

    Treesearch

    Yohay Carmel; Curtis Flather; Denis Dean

    2006-01-01

    This paper summarizes our efforts to investigate the nature, behavior, and implications of positional error and attribute error in spatiotemporal datasets. Estimating the combined influence of these errors on map analysis has been hindered by the fact that these two error types are traditionally expressed in different units (distance units, and categorical units,...

  8. Estimation of time averages from irregularly spaced observations - With application to coastal zone color scanner estimates of chlorophyll concentration

    NASA Technical Reports Server (NTRS)

    Chelton, Dudley B.; Schlax, Michael G.

    1991-01-01

    The sampling error of an arbitrary linear estimate of a time-averaged quantity constructed from a time series of irregularly spaced observations at a fixed located is quantified through a formalism. The method is applied to satellite observations of chlorophyll from the coastal zone color scanner. The two specific linear estimates under consideration are the composite average formed from the simple average of all observations within the averaging period and the optimal estimate formed by minimizing the mean squared error of the temporal average based on all the observations in the time series. The resulting suboptimal estimates are shown to be more accurate than composite averages. Suboptimal estimates are also found to be nearly as accurate as optimal estimates using the correct signal and measurement error variances and correlation functions for realistic ranges of these parameters, which makes it a viable practical alternative to the composite average method generally employed at present.

  9. A Java Applet for Illustrating Internet Error Control

    ERIC Educational Resources Information Center

    Holliday, Mark A.

    2004-01-01

    This paper discusses the author's experiences developing a Java applet that illustrates how error control is implemented in the Transmission Control Protocol (TCP). One section discusses the concepts which the TCP error control Java applet is intended to convey, while the nature of the Java applet is covered in another section. The author…

  10. Error Estimation of Pathfinder Version 5.3 SST Level 3C Using Three-way Error Analysis

    NASA Astrophysics Data System (ADS)

    Saha, K.; Dash, P.; Zhao, X.; Zhang, H. M.

    2017-12-01

    One of the essential climate variables for monitoring as well as detecting and attributing climate change, is Sea Surface Temperature (SST). A long-term record of global SSTs are available with observations obtained from ships in the early days to the more modern observation based on in-situ as well as space-based sensors (satellite/aircraft). There are inaccuracies associated with satellite derived SSTs which can be attributed to the errors associated with spacecraft navigation, sensor calibrations, sensor noise, retrieval algorithms, and leakages due to residual clouds. Thus it is important to estimate accurate errors in satellite derived SST products to have desired results in its applications.Generally for validation purposes satellite derived SST products are compared against the in-situ SSTs which have inaccuracies due to spatio/temporal inhomogeneity between in-situ and satellite measurements. A standard deviation in their difference fields usually have contributions from both satellite as well as the in-situ measurements. A real validation of any geophysical variable must require the knowledge of the "true" value of the said variable. Therefore a one-to-one comparison of satellite based SST with in-situ data does not truly provide us the real error in the satellite SST and there will be ambiguity due to errors in the in-situ measurements and their collocation differences. A Triple collocation (TC) or three-way error analysis using 3 mutually independent error-prone measurements, can be used to estimate root-mean square error (RMSE) associated with each of the measurements with high level of accuracy without treating any one system a perfectly-observed "truth". In this study we are estimating the absolute random errors associated with Pathfinder Version 5.3 Level-3C SST product Climate Data record. Along with the in-situ SST data, the third source of dataset used for this analysis is the AATSR reprocessing of climate (ARC) dataset for the corresponding period. All three SST observations are collocated, and statistics of difference between each pair is estimated. Instead of using a traditional TC analysis we have implemented the Extended Triple Collocation (ETC) approach to estimate the correlation coefficient of each measurement system w.r.t. the unknown target variable along with their RMSE.

  11. Estimation of αL, velocity, Kd and confidence limits from tracer injection test data

    USGS Publications Warehouse

    Broermann, James; Bassett, R.L.; Weeks, Edwin P.; Borgstrom, Mark

    1997-01-01

    Bromide and boron were used as tracers during an injection experiment conducted at an artificial recharge facility near Stanton, Texas. The Ogallala aquifer at the Stanton site represents a heterogeneous alluvial environment and provides the opportunity to report scale dependent dispersivities at observation distances of 2 to 15 m in this setting. Values of longitudinal dispersivities are compared with other published values. Water samples were collected at selected depths both from piezometers and from fully screened observation wells at radii of 2, 5, 10 and 15 m. An exact analytical solution is used to simulate the concentration breakthrough curves and estimate longitudinal dispersivities and velocity parameters. Greater confidence can be placed on these data because the estimated parameters are error bounded using the bootstrap method. The non-conservative behavior of boron transport in clay rich sections of the aquifer were quantified with distribution coefficients by using bromide as a conservative reference tracer.

  12. Estimation of αL, velocity, Kd, and confidence limits from tracer injection data

    USGS Publications Warehouse

    Broermann, James; Bassett, R.L.; Weeks, Edwin P.; Borgstrom, Mark

    1997-01-01

    Bromide and boron were used as tracers during an injection experiment conducted at an artificial recharge facility near Stanton, Texas. The Ogallala aquifer at the Stanton site represents a heterogeneous alluvial environment and provides the opportunity to report scale dependent dispersivities at observation distances of 2 to 15 m in this setting. Values of longitudinal dispersivities are compared with other published values. Water samples were collected at selected depths both from piezometers and from fully screened observation wells at radii of 2, 5, 10 and 15 m. An exact analytical solution is used to simulate the concentration breakthrough curves and estimate longitudinal dispersivities and velocity parameters. Greater confidence can be placed on these data because the estimated parameters are error bounded using the bootstrap method. The non-conservative behavior of boron transport in clay rich sections of the aquifer were quantified with distribution coefficients by using bromide as a conservative reference tracer.

  13. Development of Environmental Load Estimation Model for Road Drainage Systems in the Early Design Phase

    NASA Astrophysics Data System (ADS)

    Park, Jin-Young; Lee, Dong-Eun; Kim, Byung-Soo

    2017-10-01

    Due to the increasing concern about climate change, efforts to reduce environmental load are continuously being made in construction industry, and LCA (life cycle assessment) is being presented as an effective method to assess environmental load. Since LCA requires information on construction quantity used for environmental load estimation, however, it is not being utilized in the environmental review in the early design phase where it is difficult to obtain such information. In this study, computation system for construction quantity based on standard cross section of road drainage facilities was developed to compute construction quantity required for LCA using only information available in the early design phase to develop and verify the effectiveness of a model that can perform environmental load estimation. The result showed that it is an effective model that can be used in the early design phase as it revealed a 13.39% mean absolute error rate.

  14. Synthetic temperature profiles derived from Geosat altimetry: Comparison with air-dropped expendable bathythermograph profiles

    NASA Astrophysics Data System (ADS)

    Carnes, Michael R.; Mitchell, Jim L.; de Witt, P. Webb

    1990-10-01

    Synthetic temperature profiles are computed from altimeter-derived sea surface heights in the Gulf Stream region. The required relationships between surface height (dynamic height at the surface relative to 1000 dbar) and subsurface temperature are provided from regression relationships between dynamic height and amplitudes of empirical orthogonal functions (EOFs) of the vertical structure of temperature derived by de Witt (1987). Relationships were derived for each month of the year from historical temperature and salinity profiles from the region surrounding the Gulf Stream northeast of Cape Hatteras. Sea surface heights are derived using two different geoid estimates, the feature-modeled geoid and the air-dropped expendable bathythermograph (AXBT) geoid, both described by Carnes et al. (1990). The accuracy of the synthetic profiles is assessed by comparison to 21 AXBT profile sections which were taken during three surveys along 12 Geosat ERM ground tracks nearly contemporaneously with Geosat overflights. The primary error statistic considered is the root-mean-square (rms) difference between AXBT and synthetic isotherm depths. The two sources of error are the EOF relationship and the altimeter-derived surface heights. EOF-related and surface height-related errors in synthetic temperature isotherm depth are of comparable magnitude; each translates into about a 60-m rms isotherm depth error, or a combined 80 m to 90 m error for isotherms in the permanent thermocline. EOF-related errors are responsible for the absence of the near-surface warm core of the Gulf Stream and for the reduced volume of Eighteen Degree Water in the upper few hundred meters of (apparently older) cold-core rings in the synthetic profiles. The overall rms difference between surface heights derived from the altimeter and those computed from AXBT profiles is 0.15 dyn m when the feature-modeled geoid is used and 0.19 dyn m when the AXBT geoid is used; the portion attributable to altimeter-derived surface height errors alone is 0.03 dyn m less for each. In most cases, the deeper structure of the Gulf Stream and eddies is reproduced well by vertical sections of synthetic temperature, with largest errors typically in regions of high horizontal gradient such as across rings and the Gulf Stream front.

  15. Evaluating the potential for remote bathymetric mapping of a turbid, sand-bed river: 2. Application to hyperspectral image data from the Platte River

    USGS Publications Warehouse

    Legleiter, C.J.; Kinzel, P.J.; Overstreet, B.T.

    2011-01-01

    This study examined the possibility of mapping depth from optical image data in turbid, sediment-laden channels. Analysis of hyperspectral images from the Platte River indicated that depth retrieval in these environments is feasible, but might not be highly accurate. Four methods of calibrating image-derived depth estimates were evaluated. The first involved extracting image spectra at survey point locations throughout the reach. These paired observations of depth and reflectance were subjected to optimal band ratio analysis (OBRA) to relate (R2 = 0.596) a spectrally based quantity to flow depth. Two other methods were based on OBRA of data from individual cross sections. A fourth strategy used ground-based reflectance measurements to derive an OBRA relation (R2 = 0.944) that was then applied to the image. Depth retrieval accuracy was assessed by visually inspecting cross sections and calculating various error metrics. Calibration via field spectroscopy resulted in a shallow bias but provided relative accuracies similar to image-based methods. Reach-aggregated OBRA was marginally superior to calibrations based on individual cross sections, and depth retrieval accuracy varied considerably along each reach. Errors were lower and observed versus predicted regression R2 values higher for a relatively simple, deeper site than a shallower, braided reach; errors were 1/3 and 1/2 the mean depth for the two reaches. Bathymetric maps were coherent and hydraulically reasonable, however, and might be more reliable than implied by numerical metrics. As an example application, linear discriminant analysis was used to produce a series of depth threshold maps for characterizing shallow-water habitat for roosting cranes. ?? 2011 by the American Geophysical Union.

  16. Evaluating the potential for remote bathymetric mapping of a turbid, sand-bed river: 2. application to hyperspectral image data from the Platte River

    USGS Publications Warehouse

    Legleiter, Carl J.; Kinzel, Paul J.; Overstreet, Brandon T.

    2011-01-01

    This study examined the possibility of mapping depth from optical image data in turbid, sediment-laden channels. Analysis of hyperspectral images from the Platte River indicated that depth retrieval in these environments is feasible, but might not be highly accurate. Four methods of calibrating image-derived depth estimates were evaluated. The first involved extracting image spectra at survey point locations throughout the reach. These paired observations of depth and reflectance were subjected to optimal band ratio analysis (OBRA) to relate (R2 = 0.596) a spectrally based quantity to flow depth. Two other methods were based on OBRA of data from individual cross sections. A fourth strategy used ground-based reflectance measurements to derive an OBRA relation (R2 = 0.944) that was then applied to the image. Depth retrieval accuracy was assessed by visually inspecting cross sections and calculating various error metrics. Calibration via field spectroscopy resulted in a shallow bias but provided relative accuracies similar to image-based methods. Reach-aggregated OBRA was marginally superior to calibrations based on individual cross sections, and depth retrieval accuracy varied considerably along each reach. Errors were lower and observed versus predicted regression R2 values higher for a relatively simple, deeper site than a shallower, braided reach; errors were 1/3 and 1/2 the mean depth for the two reaches. Bathymetric maps were coherent and hydraulically reasonable, however, and might be more reliable than implied by numerical metrics. As an example application, linear discriminant analysis was used to produce a series of depth threshold maps for characterizing shallow-water habitat for roosting cranes.

  17. Analysis of normalized radar cross section (sigma-O) signature of Amazon rain forest using SEASAT scatterometer data

    NASA Technical Reports Server (NTRS)

    Bracalente, E. M.; Sweet, J. L.

    1984-01-01

    The normalized radar cross section (NRCS) signature of the Amazon rain forest was SEASAT scatterometer data. Statistics of the measured (NRCS) values were determined from multiple orbit passes for three local time periods. Plots of mean normalized radar cross section, dB against incidence angle as a function of beam and polarization show that less than 0.3 dB relative bias exists between all beams over a range of incidence angle from 30 deg to 53 deg. The backscattered measurements analyzed show the Amazon rain forest to be relatively homogeneous, azimuthally isotropic and insensitive to polarization. The return from the rain forest target appears relatively consistent and stable, except for the small diurnal variation (0.75 dB) that occurs at sunrise. Because of the relative stability of the rain forest target and the scatterometer instrument, the response of versus incidence angle was able to detect errors in the estimated yaw altitude angle. Also, small instrument gain biases in some of the processing channels were detected. This led to the development of an improved NRCS algorithm, which uses a more accurate method for estimating the system noise power.

  18. A Reduced Dimension Static, Linearized Kalman Filter and Smoother

    NASA Technical Reports Server (NTRS)

    Fukumori, I.

    1995-01-01

    An approximate Kalman filter and smoother, based on approximations of the state estimation error covariance matrix, is described. Approximations include a reduction of the effective state dimension, use of a static asymptotic error limit, and a time-invariant linearization of the dynamic model for error integration. The approximations lead to dramatic computational savings in applying estimation theory to large complex systems. Examples of use come from TOPEX/POSEIDON.

  19. Radiative flux and forcing parameterization error in aerosol-free clear skies.

    PubMed

    Pincus, Robert; Mlawer, Eli J; Oreopoulos, Lazaros; Ackerman, Andrew S; Baek, Sunghye; Brath, Manfred; Buehler, Stefan A; Cady-Pereira, Karen E; Cole, Jason N S; Dufresne, Jean-Louis; Kelley, Maxwell; Li, Jiangnan; Manners, James; Paynter, David J; Roehrig, Romain; Sekiguchi, Miho; Schwarzkopf, Daniel M

    2015-07-16

    Radiation parameterizations in GCMs are more accurate than their predecessorsErrors in estimates of 4 ×CO 2 forcing are large, especially for solar radiationErrors depend on atmospheric state, so global mean error is unknown.

  20. Reduction of shading-derived artifacts in skin chromophore imaging without measurements or assumptions about the shape of the subject

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichiro; Nishidate, Izumi; Ojima, Nobutoshi; Iwata, Kayoko

    2014-01-01

    To quantitatively evaluate skin chromophores over a wide region of curved skin surface, we propose an approach that suppresses the effect of the shading-derived error in the reflectance on the estimation of chromophore concentrations, without sacrificing the accuracy of that estimation. In our method, we use multiple regression analysis, assuming the absorbance spectrum as the response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as the predictor variables. The concentrations of melanin and total hemoglobin are determined from the multiple regression coefficients using compensation formulae (CF) based on the diffuse reflectance spectra derived from a Monte Carlo simulation. To suppress the shading-derived error, we investigated three different combinations of multiple regression coefficients for the CF. In vivo measurements with the forearm skin demonstrated that the proposed approach can reduce the estimation errors that are due to shading-derived errors in the reflectance. With the best combination of multiple regression coefficients, we estimated that the ratio of the error to the chromophore concentrations is about 10%. The proposed method does not require any measurements or assumptions about the shape of the subjects; this is an advantage over other studies related to the reduction of shading-derived errors.

Top