Greenhouse Gas Mitigation Options Database(GMOD)and Tool
Greenhouse Gas Mitigation Options Database (GMOD) is a decision support database and tool that provides cost and performance information for GHG mitigation options for the power, cement, refinery, landfill and pulp and paper sectors. The GMOD includes approximately 450 studies fo...
Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products.
Levi, Peter G; Cullen, Jonathan M
2018-02-20
Chemical products are ubiquitous in modern society. The chemical sector is the largest industrial energy consumer and the third largest industrial emitter of carbon dioxide. The current portfolio of mitigation options for the chemical sector emphasizes upstream "supply side" solutions, whereas downstream mitigation options, such as material efficiency, are given comparatively short shrift. Key reasons for this are the scarcity of data on the sector's material flows, and the highly intertwined nature of its complex supply chains. We provide the most up to date, comprehensive and transparent data set available publicly, on virgin production routes in the chemical sector: from fossil fuel feedstocks to chemical products. We map global mass flows for the year 2013 through a complex network of transformation processes, and by taking account of secondary reactants and by-products, we maintain a full mass balance throughout. The resulting data set partially addresses the dearth of publicly available information on the chemical sector's supply chain, and can be used to prioritise downstream mitigation options.
NASA Astrophysics Data System (ADS)
Vinson, Ted S.; Kolchugina, Tatyana P.; Andrasko, Kenneth A.
1996-01-01
Greenhouse gas (GHG) mitigation options in the Russian forest sector include: afforestation and reforestation of unforested/degraded land area; enhanced forest productivity; incorporation of nondestructive methods of wood harvesting in the forest industry; establishment of land protective forest stands; increase in stand age of final harvest in the European part of Russia; increased fire control; increased disease and pest control; and preservation of old growth forests in the Russian Far-East, which are presently threatened. Considering the implementation of all of the options presented, the GHG mitigation potential within the forest and agroforestry sectors of Russia is approximately 0.6 0.7 Pg C/yr or one half of the industrial carbon emissions of the United States. The difference between the GHG mitigation potential and the actual level of GHGs mitigated in the Russian forest sector will depend to a great degree on external financing that may be available. One possibility for external financing is through joint implementation (JI). However, under the JI process, each project will be evaluated by considering a number of criteria including also the difference between the carbon emissions or sequestration for the baseline (or reference) and the project case, the permanence of the project, and leakage. Consequently, a project level assessment must appreciate the near-term constraints that will face practitioners who attempt to realize the GHG mitigation potential in the forest and agroforestry sectors of their countries.
Quantifying the biophysical climate change mitigation potential of Canada's forest sector
NASA Astrophysics Data System (ADS)
Smyth, C. E.; Stinson, G.; Neilson, E.; Lemprière, T. C.; Hafer, M.; Rampley, G. J.; Kurz, W. A.
2014-01-01
The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Forests and their carbon (C) sequestration potential are affected by management practices, where wood harvesting transfers C out of the forest into products, and subsequent regrowth allows further C sequestration. Here we determine the mitigation potential of the 2.3 × 106 km2 of Canada's managed forests from 2015 to 2050 using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), a harvested wood products model that estimates emissions based on product half-life decay times, and an account of emission substitution benefits from the use of wood products and bioenergy. We examine several mitigation scenarios with different assumptions about forest management activity levels relative to a base-case scenario, including improved growth from silvicultural activities, increased harvest and residue management for bioenergy, and reduced harvest for conservation. We combine forest management options with two mitigation scenarios for harvested wood product use involving an increase in either long-lived products or bioenergy uses. Results demonstrate large differences among alternative scenarios, and we identify potential mitigation scenarios with increasing benefits to the atmosphere for many decades into the future, as well as scenarios with no net benefit over many decades. The greatest mitigation impact was achieved through a mix of strategies that varied across the country and had cumulative mitigation of 254 Tg CO2e in 2030, and 1180 Tg CO2e in 2050. We conclude that (i) national-scale forest sector mitigation options need to be assessed rigorously from a systems perspective to avoid the development of policies that deliver no net benefits to the atmosphere, (ii) a mix of strategies implemented across the country achieves the greatest mitigation impact, and (iii) because of the time delays in achieving carbon benefits for many forest-based mitigation activities, future contributions of the forest sector to climate mitigation can be maximized if implemented soon.
Reducing emissions from agriculture to meet the 2 °C target.
Wollenberg, Eva; Richards, Meryl; Smith, Pete; Havlík, Petr; Obersteiner, Michael; Tubiello, Francesco N; Herold, Martin; Gerber, Pierre; Carter, Sarah; Reisinger, Andrew; van Vuuren, Detlef P; Dickie, Amy; Neufeldt, Henry; Sander, Björn O; Wassmann, Reiner; Sommer, Rolf; Amonette, James E; Falcucci, Alessandra; Herrero, Mario; Opio, Carolyn; Roman-Cuesta, Rosa Maria; Stehfest, Elke; Westhoek, Henk; Ortiz-Monasterio, Ivan; Sapkota, Tek; Rufino, Mariana C; Thornton, Philip K; Verchot, Louis; West, Paul C; Soussana, Jean-François; Baedeker, Tobias; Sadler, Marc; Vermeulen, Sonja; Campbell, Bruce M
2016-12-01
More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO 2 e yr -1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit. © 2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd.
Quantifying the biophysical climate change mitigation potential of Canada's forest sector
NASA Astrophysics Data System (ADS)
Smyth, C. E.; Stinson, G.; Neilson, E.; Lemprière, T. C.; Hafer, M.; Rampley, G. J.; Kurz, W. A.
2014-07-01
The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Forests and their carbon (C) sequestration potential are affected by management practices, where wood harvesting transfers C out of the forest into products, and subsequent regrowth allows further C sequestration. Here we determine the mitigation potential of the 2.3 × 106 km2 of Canada's managed forests from 2015 to 2050 using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), a harvested wood products (HWP) model that estimates emissions based on product half-life decay times, and an account of emission substitution benefits from the use of wood products and bioenergy. We examine several mitigation scenarios with different assumptions about forest management activity levels relative to a base case scenario, including improved growth from silvicultural activities, increased harvest and residue management for bioenergy, and reduced harvest for conservation. We combine forest management options with two mitigation scenarios for harvested wood product use involving an increase in either long-lived products or bioenergy uses. Results demonstrate large differences among alternative scenarios, and we identify potential mitigation scenarios with increasing benefits to the atmosphere for many decades into the future, as well as scenarios with no net benefit over many decades. The greatest mitigation impact was achieved through a mix of strategies that varied across the country and had cumulative mitigation of 254 Tg CO2e in 2030, and 1180 Tg CO2e in 2050. There was a trade-off between short-term and long-term goals, in that maximizing short-term emissions reduction could reduce the forest sector's ability to contribute to longer-term objectives. We conclude that (i) national-scale forest sector mitigation options need to be assessed rigorously from a systems perspective to avoid the development of policies that deliver no net benefits to the atmosphere, (ii) a mix of strategies implemented across the country achieves the greatest mitigation impact, and (iii) because of the time delays in achieving carbon benefits for many forest-based mitigation activities, future contributions of the forest sector to climate mitigation can be maximized if implemented soon.
Designing climate change mitigation plans that add up.
Bajželj, Bojana; Allwood, Julian M; Cullen, Jonathan M
2013-07-16
Mitigation plans to combat climate change depend on the combined implementation of many abatement options, but the options interact. Published anthropogenic emissions inventories are disaggregated by gas, sector, country, or final energy form. This allows the assessment of novel energy supply options, but is insufficient for understanding how options for efficiency and demand reduction interact. A consistent framework for understanding the drivers of emissions is therefore developed, with a set of seven complete inventories reflecting all technical options for mitigation connected through lossless allocation matrices. The required data set is compiled and calculated from a wide range of industry, government, and academic reports. The framework is used to create a global Sankey diagram to relate human demand for services to anthropogenic emissions. The application of this framework is demonstrated through a prediction of per-capita emissions based on service demand in different countries, and through an example showing how the "technical potentials" of a set of separate mitigation options should be combined.
Bustamante, Mercedes; Robledo-Abad, Carmenza; Harper, Richard; Mbow, Cheikh; Ravindranat, Nijavalli H; Sperling, Frank; Haberl, Helmut; Pinto, Alexandre de Siqueira; Smith, Pete
2014-10-01
The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost-competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case-by-case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land-use decisions are made and how new social, political and economic forces in the future will influence this process. © 2014 John Wiley & Sons Ltd.
Greenhouse gas mitigation potentials in the livestock sector
NASA Astrophysics Data System (ADS)
Herrero, Mario; Henderson, Benjamin; Havlík, Petr; Thornton, Philip K.; Conant, Richard T.; Smith, Pete; Wirsenius, Stefan; Hristov, Alexander N.; Gerber, Pierre; Gill, Margaret; Butterbach-Bahl, Klaus; Valin, Hugo; Garnett, Tara; Stehfest, Elke
2016-05-01
The livestock sector supports about 1.3 billion producers and retailers, and contributes 40-50% of agricultural GDP. We estimated that between 1995 and 2005, the livestock sector was responsible for greenhouse gas emissions of 5.6-7.5 GtCO2e yr-1. Livestock accounts for up to half of the technical mitigation potential of the agriculture, forestry and land-use sectors, through management options that sustainably intensify livestock production, promote carbon sequestration in rangelands and reduce emissions from manures, and through reductions in the demand for livestock products. The economic potential of these management alternatives is less than 10% of what is technically possible because of adoption constraints, costs and numerous trade-offs. The mitigation potential of reductions in livestock product consumption is large, but their economic potential is unknown at present. More research and investment are needed to increase the affordability and adoption of mitigation practices, to moderate consumption of livestock products where appropriate, and to avoid negative impacts on livelihoods, economic activities and the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karali, Nihan; Xu, Tengfang; Sathaye, Jayant
The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’smore » and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO 2 emission reduction in the U.S, China, and India’s iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO 2 emission reduction targets for the iron and steel sector under different strategies such as simple CO 2 emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.« less
GHG emission mitigation measures and technologies in the Czech Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichy, M.
1996-12-31
The paper presents a short overview of main results in two fields: projection of GHG emission from energy sector in the Czech Republic and assessment of technologies and options for GHG mitigation. The last part presents an overview of measures that were prepared for potential inclusion to the Czech Climate Change Action Plan.
NASA Astrophysics Data System (ADS)
Bensaida, K.; Alie, Colin; Elkamel, A.; Almansoori, A.
2017-08-01
This paper presents a novel techno-economic optimization model for assessing the effectiveness of CO2 mitigation options for the electricity generation sub-sector that includes renewable energy generation. The optimization problem was formulated as a MINLP model using the GAMS modeling system. The model seeks the minimization of the power generation costs under CO2 emission constraints by dispatching power from low CO2 emission-intensity units. The model considers the detailed operation of the electricity system to effectively assess the performance of GHG mitigation strategies and integrates load balancing, carbon capture and carbon taxes as methods for reducing CO2 emissions. Two case studies are discussed to analyze the benefits and challenges of the CO2 reduction methods in the electricity system. The proposed mitigations options would not only benefit the environment, but they will as well improve the marginal cost of producing energy which represents an advantage for stakeholders.
NASA Astrophysics Data System (ADS)
Brandt, Patric; Herold, Martin; Rufino, Mariana C.
2018-03-01
Reducing greenhouse gas (GHG) emissions from agriculture has become a critical target in national climate change policies. More than 80% of the countries in Sub-Saharan Africa (SSA) refer to the reduction of agricultural emissions, including livestock, in their nationally determined contribution (NDC) to mitigate climate change. The livestock sector in Kenya contributes largely to the gross domestic product and to GHG emissions from the land use sector. The government has recently pledged in its NDC to curb total GHG emissions by 30% by 2030. Quantifying and linking the mitigation potential of farm practices to national targets is required to support realistically the implementation of NDCs. Improvements in feed and manure management represent promising mitigation options for dairy production. This study aimed (i) to assess mitigation and food production benefits of feed and manure management scenarios, including land use changes covering Kenya’s entire dairy production region and (ii) to analyse the contribution of these practices to national targets on milk production and mitigation, and their biophysical feasibility given the availability of arable land. The results indicate that improving forage quality by increasing the use of Napier grass and supplementing dairy concentrates supports Kenya’s NDC target, reduces emission intensities by 26%-31%, partially achieves the national milk productivity target for 2030 by 38%-41%, and shows high feasibility given the availability of arable land. Covering manure heaps may reduce emissions from manure management by 68%. In contrast, including maize silage in cattle diets would not reduce emission intensities due to the risk of ten-fold higher emissions from the conversion of land required to grow additional maize. The shortage of arable land may render the implementation of these improved feed practices largely infeasible. This assessment provides the first quantitative estimates of the potential of feed intensification and manure management to mitigate GHG emissions and to increase milk yields at sectoral-level and at a high spatial resolution for an SSA country. The scientific evidence is tailored to support actual policy and decision-making processes at the national level, such as ‘Nationally Appropriate Mitigation Actions’. Linking feed intensification and manure management strategies with spatially-explicit estimates of mitigation and food production to national targets may help the sector to access climate financing while contributing to food security.
Mitigating secondary aerosol generation potentials from biofuel use in the energy sector.
Tiwary, Abhishek; Colls, Jeremy
2010-01-01
This paper demonstrates secondary aerosol generation potential of biofuel use in the energy sector from the photochemical interactions of precursor gases on a life cycle basis. The paper is divided into two parts-first, employing life cycle analysis (LCA) to evaluate the extent of the problem for a typical biofuel based electricity production system using five baseline scenarios; second, proposing adequate mitigation options to minimise the secondary aerosol generation potential on a life cycle basis. The baseline scenarios cover representative technologies for 2010 utilising energy crop (miscanthus), short rotation coppiced chips and residual/waste wood in different proportions. The proposed mitigation options include three approaches-biomass gasification prior to combustion, delaying the harvest of biomass, and increasing the geographical distance between the biomass plant and the harvest site (by importing the biofuels). Preliminary results indicate that the baseline scenarios (assuming all the biomass is sourced locally) bear significant secondary aerosol formation potential on a life cycle basis from photochemical neutralisation of acidic emissions (hydrogen chloride and sulphur dioxide) with ammonia. Our results suggest that gasification of miscanthus biomass would provide the best option by minimising the acidic emissions from the combustion plant whereas the other two options of delaying the harvest or importing biofuels from elsewhere would only lead to marginal reduction in the life cycle aerosol loadings of the systems.
Mitigation options for the industrial sector in Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelil, I.A.; El-Touny, S.; Korkor, H.
1996-12-31
Though its contribution to the global Greenhouse gases emission is relatively small, Egypt has signed and ratified the United Nations Framework Convention on Climate Change (UN FCCC) and has been playing an active role in the international efforts to deal with such environmental challenges. Energy efficiency has been one of the main strategies that Egypt has adopted to improve environmental quality and enhance economic competitiveness. This paper highlights three initiatives currently underway to improve energy efficiency of the Egyptian industry. The first is a project that has been recently completed by OECP to assess potential GHG mitigation options available inmore » Egypt`s oil refineries. The second initiative is an assessment of GHG mitigation potential in the Small and Medium size Enterprises (SME) in the Mediterranean city of Alexandria. The third one focuses on identifying demand side management options in some industrial electricity consumers in the same city.« less
Ralph J. Alig
2010-01-01
This report is a compilation of six briefing papers based on literature reviews and syntheses, prepared for U.S. Department of Agriculture, Forest Service policy analysts and decisionmakers about specific questions pertaining to climate change. The main topics addressed here are economic effects on the forest sector at the national and global scales, costs of forest...
Reducing greenhouse gas emissions in agriculture without compromising food security?
NASA Astrophysics Data System (ADS)
Frank, Stefan; Havlík, Petr; Soussana, Jean-Francois; Levesque, Antoine; Valin, Hugo; Wollenberg, Eva; Kleinwechter, Ulrich; Fricko, Oliver; Gusti, Mykola; Herrero, Mario; Smith, Pete; Hasegawa, Tomoko; Kraxner, Florian; Obersteiner, Michael
2017-04-01
To keep global warming possibly below 1.5 C and mitigate adverse effects of climate change, agriculture, like all other sectors, will have to contribute to efforts in achieving net negative emissions by the end of the century. Cost-efficient distribution of mitigation across regions and sectors is typically calculated using a global uniform carbon price in climate stabilization scenarios. However, in reality such a carbon price could substantially affect other Sustainable Development Goals. Here, we assess the implications of climate change mitigation in agriculture for agricultural production and food security using an integrated modelling framework and explore ways of relaxing the competition between climate change mitigation and food availability. Using a scenario that limits global warming to 1.5 C, results indicate a food calorie loss in 2050 of up to 330 kcal per capita in food insecure countries. If only developed countries participated in the mitigation effort, the calorie loss would be 40 kcal per capita, however the climate target would not be achieved. Land-rich countries with a high proportion of emissions from land use change, such as Brazil, could reduce emissions with only a marginal effect on food availability. In contrast, agricultural mitigation in high population (density) countries, such as China and India, would lead to substantial food calorie loss without a major contribution to global GHG mitigation. Increasing soil carbon sequestration on agricultural land using a comprehensive set of management options, would allow achieving a 1.5 C target while reducing the implied calorie loss by up to 70% and storing up to 3.5 GtCO2 in soils. Hence, the promotion of so called "win-win" mitigation options i.e. soil carbon sequestration, and ensuring successful mitigation of land use change emissions are crucial to stabilize the climate without deteriorating food security.
Timilsina, Govinda R; Shrestha, Ram M
2006-09-01
The Clean Development Mechanism (CDM) under the Kyoto Protocol to the United Nations Framework Convention on Climate Change is considered a key instrument to encourage developing countries' participation in the mitigation of global climate change. Reduction of greenhouse gas (GHG) emissions through the energy supply and demand side activities are the main options to be implemented under the CDM. This paper analyses the general equilibrium effects of a supply side GHG mitigation option-the substitution of thermal power with hydropower--in Thailand under the CDM. A static multi-sector general equilibrium model has been developed for the purpose of this study. The key finding of the study is that the substitution of electricity generation from thermal power plants with that from hydropower plants would increase economic welfare in Thailand. The supply side option would, however, adversely affect the gross domestic product (GDP) and the trade balance. The percentage changes in economic welfare, GDP and trade balance increase with the level of substitution and the price of certified emission reduction (CER) units.
Greenhouse Gas Mitigation Options Database and Tool - Data ...
Industry and electricity production facilities generate over 50 percent of greenhouse gas (GHG) emissions in the United States. There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Reducing GHG emissions from these sources is a key part of the United States’ strategy to reduce the impacts of these global-warming emissions. As a result of the recent focus on GHG emissions, the U.S. Environmental Protection Agency (EPA) and state agencies are implementing policies and programs to quantify and regulate GHG emissions from key emitting sources in the United States. These policies and programs have generated a need for a reliable source of information regarding GHG mitigation options for both industry and regulators. In response to this need, EPA developed a comprehensive GHG mitigation options database (GMOD) that was compiled based on information from industry, government research agencies, and academia. The GMOD and Tool (GMODT) is a comprehensive data repository and analytical tool being developed by EPA to evaluate alternative GHG mitigation options for several high-emitting industry sectors, including electric power plants, cement plants, refineries, landfills and other industrial sources of GHGs. The data is collected from credible sources including peer-reviewed journals, reports, and others government and academia data sources which include performance, applicability, develop
NASA Astrophysics Data System (ADS)
Olguin, Marcela; Wayson, Craig; Fellows, Max; Birdsey, Richard; Smyth, Carolyn E.; Magnan, Michael; Dugan, Alexa J.; Mascorro, Vanessa S.; Alanís, Armando; Serrano, Enrique; Kurz, Werner A.
2018-03-01
The Paris Agreement of the United Nation Framework Convention on Climate Change calls for a balance of anthropogenic greenhouse emissions and removals in the latter part of this century. Mexico indicated in its Intended Nationally Determined Contribution and its Climate Change Mid-Century Strategy that the land sector will contribute to meeting GHG emission reduction goals. Since 2012, the Mexican government through its National Forestry Commission, with international financial and technical support, has been developing carbon dynamics models to explore climate change mitigation options in the forest sector. Following a systems approach, here we assess the biophysical mitigation potential of forest ecosystems, harvested wood products and their substitution benefits (i.e. the change in emissions resulting from substitution of wood for more emissions-intensive products and fossil fuels), for policy alternatives considered by the Mexican government, such as a net zero deforestation rate and sustainable forest management. We used available analytical frameworks (Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model), parameterized with local input data in two contrasting Mexican states. Using information from the National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data), we demonstrate that activities aimed at reaching a net-zero deforestation rate can yield significant CO2e mitigation benefits by 2030 and 2050 relative to a baseline scenario (‘business as usual’), but if combined with increasing forest harvest to produce long-lived products and substitute more energy-intensive materials, emissions reductions could also provide other co-benefits (e.g. jobs, illegal logging reduction). We concluded that the relative impact of mitigation activities is locally dependent, suggesting that mitigation strategies should be designed and implemented at sub-national scales. We were also encouraged about the ability of the modeling framework to effectively use Mexico’s data, and showed the need to include multiple sectors and types of collaborators (scientific and policy-maker communities) to design more comprehensive portfolios for climate change mitigation.
A TECHNOLOGY FOR REDUCTION OF CO2 EMISSIONS FROM THE TRANSPORTATION SECTOR
The paper gives results of a preliminary assessment of the Hydrocarb Process which indicates that substantially more fuel energy can be produced--and at lower cost--than other current options for mitigating carbon dioxide (CO2) from mobile sources. The incremental cost...
Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuyu; Gurney, Kevin R.
2011-07-01
Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are drivenmore » by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy« less
Gerber, P J; Hristov, A N; Henderson, B; Makkar, H; Oh, J; Lee, C; Meinen, R; Montes, F; Ott, T; Firkins, J; Rotz, A; Dell, C; Adesogan, A T; Yang, W Z; Tricarico, J M; Kebreab, E; Waghorn, G; Dijkstra, J; Oosting, S
2013-06-01
Although livestock production accounts for a sizeable share of global greenhouse gas emissions, numerous technical options have been identified to mitigate these emissions. In this review, a subset of these options, which have proven to be effective, are discussed. These include measures to reduce CH4 emissions from enteric fermentation by ruminants, the largest single emission source from the global livestock sector, and for reducing CH4 and N2O emissions from manure. A unique feature of this review is the high level of attention given to interactions between mitigation options and productivity. Among the feed supplement options for lowering enteric emissions, dietary lipids, nitrates and ionophores are identified as the most effective. Forage quality, feed processing and precision feeding have the best prospects among the various available feed and feed management measures. With regard to manure, dietary measures that reduce the amount of N excreted (e.g. better matching of dietary protein to animal needs), shift N excretion from urine to faeces (e.g. tannin inclusion at low levels) and reduce the amount of fermentable organic matter excreted are recommended. Among the many 'end-of-pipe' measures available for manure management, approaches that capture and/or process CH4 emissions during storage (e.g. anaerobic digestion, biofiltration, composting), as well as subsurface injection of manure, are among the most encouraging options flagged in this section of the review. The importance of a multiple gas perspective is critical when assessing mitigation potentials, because most of the options reviewed show strong interactions among sources of greenhouse gas (GHG) emissions. The paper reviews current knowledge on potential pollution swapping, whereby the reduction of one GHG or emission source leads to unintended increases in another.
Cities' Role in Mitigating United States Food System Greenhouse Gas Emissions.
Mohareb, Eugene A; Heller, Martin C; Guthrie, Peter M
2018-05-15
Current trends of urbanization, population growth, and economic development have made cities a focal point for mitigating global greenhouse gas (GHG) emissions. The substantial contribution of food consumption to climate change necessitates urban action to reduce the carbon intensity of the food system. While food system GHG mitigation strategies often focus on production, we argue that urban influence dominates this sector's emissions and that consumers in cities must be the primary drivers of mitigation. We quantify life cycle GHG emissions of the United States food system through data collected from literature and government sources producing an estimated total of 3800 kg CO 2 e/capita in 2010, with cities directly influencing approximately two-thirds of food sector GHG emissions. We then assess the potential for cities to reduce emissions through selected measures; examples include up-scaling urban agriculture and home delivery of grocery options, which each may achieve emissions reductions on the order of 0.4 and ∼1% of this total, respectively. Meanwhile, changes in waste management practices and reduction of postdistribution food waste by 50% reduce total food sector emissions by 5 and 11%, respectively. Consideration of the scale of benefits achievable through policy goals can enable cities to formulate strategies that will assist in achieving deep long-term GHG emissions targets.
IPCC Climate Change 2013: Mitigation of Climate Change - Key Findings and Lessons Learned
NASA Astrophysics Data System (ADS)
Sokona, Youba
2014-05-01
The Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Mitigation of Climate Change, examines the results of scientific research about mitigation, with special attention on how knowledge has evolved since the Fourth Assessment Report published in 2007. Throughout, the focus is on the implications of its findings for policy, without being prescriptive about the particular policies that governments and other important participants in the policy process should adopt. The report begins with a framing of important concepts and methods that help to contextualize the findings presented throughout the assessment. The valuation of risks and uncertainties, ethical concepts and the context of sustainable development and equity are among the guiding principles for the assessment of mitigation strategies. The report highlights past trends in stocks and flows of greenhouse gases and the factors that drive emissions at global, regional, and sectoral scales including economic growth, technology or population changes. It provides analyses of the technological, economic and institutional requirements of long-term mitigation scenarios and details on mitigation measures and policies that are applied in different economic sectors and human settlements. It then discusses interactions of mitigation policies and different policy instrument types at national, regional and global governance levels and between economic sectors, The Working Group III report comprises 16 chapters and in assembling this assessment authors were guided by the principles of the IPCC mandate: to be explicit about mitigation options, to be explicit about their costs and about their risks and opportunities vis-à-vis other development priorities, and to be explicit about the underlying criteria, concepts, and methods for evaluating alternative policies.
NASA Astrophysics Data System (ADS)
Noble, Bram F.; Christmas, Lisa M.
2008-01-01
This article presents a methodological framework for strategic environmental assessment (SEA) application. The overall objective is to demonstrate SEA as a systematic and structured policy, plan, and program (PPP) decision support tool. In order to accomplish this objective, a stakeholder-based SEA application to greenhouse gas (GHG) mitigation policy options in Canadian agriculture is presented. Using a mail-out impact assessment exercise, agricultural producers and nonproducers from across the Canadian prairie region were asked to evaluate five competing GHG mitigation options against 13 valued environmental components (VECs). Data were analyzed using multi-criteria and exploratory analytical techniques. The results suggest considerable variation in perceived impacts and GHG mitigation policy preferences, suggesting that a blanket policy approach to GHG mitigation will create gainers and losers based on soil type and associate cropping and on-farm management practices. It is possible to identify a series of regional greenhouse gas mitigation programs that are robust, socially meaningful, and operationally relevant to both agricultural producers and policy decision makers. The assessment demonstrates the ability of SEA to address, in an operational sense, environmental problems that are characterized by conflicting interests and competing objectives and alternatives. A structured and systematic SEA methodology provides the necessary decision support framework for the consideration of impacts, and allows for PPPs to be assessed based on a much broader set of properties, objectives, criteria, and constraints whereas maintaining rigor and accountability in the assessment process.
Spatial relationships of sector-specific fossil fuel CO2 emissions in the United States
NASA Astrophysics Data System (ADS)
Zhou, Yuyu; Gurney, Kevin Robert
2011-09-01
Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multistate spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multistate perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements.
Global climate change and the mitigation challenge.
Princiotta, Frank
2009-10-01
Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO2), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8 degrees C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO2 emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5 degrees C in 2100, the recent annual 3% CO2 emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required.
Relevance of Clean Coal Technology for India’s Energy Security: A Policy Perspective
NASA Astrophysics Data System (ADS)
Garg, Amit; Tiwari, Vineet; Vishwanathan, Saritha
2017-07-01
Climate change mitigation regimes are expected to impose constraints on the future use of fossil fuels in order to reduce greenhouse gas (GHG) emissions. In 2015, 41% of total final energy consumption and 64% of power generation in India came from coal. Although almost a sixth of the total coal based thermal power generation is now super critical pulverized coal technology, the average CO2 emissions from the Indian power sector are 0.82 kg-CO2/kWh, mainly driven by coal. India has large domestic coal reserves which give it adequate energy security. There is a need to find options that allow the continued use of coal while considering the need for GHG mitigation. This paper explores options of linking GHG emission mitigation and energy security from 2000 to 2050 using the AIM/Enduse model under Business-as-Usual scenario. Our simulation analysis suggests that advanced clean coal technologies options could provide promising solutions for reducing CO2 emissions by improving energy efficiencies. This paper concludes that integrating climate change security and energy security for India is possible with a large scale deployment of advanced coal combustion technologies in Indian energy systems along with other measures.
Methodological Issues In Forestry Mitigation Projects: A CaseStudy Of Kolar District
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravindranath, N.H.; Murthy, I.K.; Sudha, P.
2007-06-01
There is a need to assess climate change mitigationopportunities in forest sector in India in the context of methodologicalissues such as additionality, permanence, leakage, measurement andbaseline development in formulating forestry mitigation projects. A casestudy of forestry mitigation project in semi-arid community grazing landsand farmlands in Kolar district of Karnataka, was undertaken with regardto baseline and project scenariodevelopment, estimation of carbon stockchange in the project, leakage estimation and assessment ofcost-effectiveness of mitigation projects. Further, the transaction coststo develop project, and environmental and socio-economic impact ofmitigation project was assessed.The study shows the feasibility ofestablishing baselines and project C-stock changes. Since the areamore » haslow or insignificant biomass, leakage is not an issue. The overallmitigation potential in Kolar for a total area of 14,000 ha under variousmitigation options is 278,380 tC at a rate of 20 tC/ha for the period2005-2035, which is approximately 0.67 tC/ha/yr inclusive of harvestregimes under short rotation and long rotation mitigation options. Thetransaction cost for baseline establishment is less than a rupee/tC andfor project scenario development is about Rs. 1.5-3.75/tC. The projectenhances biodiversity and the socio-economic impact is alsosignificant.« less
Smith, Pete; Haberl, Helmut; Popp, Alexander; Erb, Karl-Heinz; Lauk, Christian; Harper, Richard; Tubiello, Francesco N; de Siqueira Pinto, Alexandre; Jafari, Mostafa; Sohi, Saran; Masera, Omar; Böttcher, Hannes; Berndes, Göran; Bustamante, Mercedes; Ahammad, Helal; Clark, Harry; Dong, Hongmin; Elsiddig, Elnour A; Mbow, Cheikh; Ravindranath, Nijavalli H; Rice, Charles W; Robledo Abad, Carmenza; Romanovskaya, Anna; Sperling, Frank; Herrero, Mario; House, Joanna I; Rose, Steven
2013-08-01
Feeding 9-10 billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to date have considered the interactions between these challenges. In this study we briefly outline the challenges, review the supply- and demand-side climate mitigation potential available in the Agriculture, Forestry and Other Land Use AFOLU sector and options for delivering food security. We briefly outline some of the synergies and trade-offs afforded by mitigation practices, before presenting an assessment of the mitigation potential possible in the AFOLU sector under possible future scenarios in which demand-side measures codeliver to aid food security. We conclude that while supply-side mitigation measures, such as changes in land management, might either enhance or negatively impact food security, demand-side mitigation measures, such as reduced waste or demand for livestock products, should benefit both food security and greenhouse gas (GHG) mitigation. Demand-side measures offer a greater potential (1.5-15.6 Gt CO2 -eq. yr(-1) ) in meeting both challenges than do supply-side measures (1.5-4.3 Gt CO2 -eq. yr(-1) at carbon prices between 20 and 100 US$ tCO2 -eq. yr(-1) ), but given the enormity of challenges, all options need to be considered. Supply-side measures should be implemented immediately, focussing on those that allow the production of more agricultural product per unit of input. For demand-side measures, given the difficulties in their implementation and lag in their effectiveness, policy should be introduced quickly, and should aim to codeliver to other policy agenda, such as improving environmental quality or improving dietary health. These problems facing humanity in the 21st Century are extremely challenging, and policy that addresses multiple objectives is required now more than ever. © 2013 John Wiley & Sons Ltd.
Cities’ Role in Mitigating United States Food System Greenhouse Gas Emissions
2018-01-01
Current trends of urbanization, population growth, and economic development have made cities a focal point for mitigating global greenhouse gas (GHG) emissions. The substantial contribution of food consumption to climate change necessitates urban action to reduce the carbon intensity of the food system. While food system GHG mitigation strategies often focus on production, we argue that urban influence dominates this sector’s emissions and that consumers in cities must be the primary drivers of mitigation. We quantify life cycle GHG emissions of the United States food system through data collected from literature and government sources producing an estimated total of 3800 kg CO2e/capita in 2010, with cities directly influencing approximately two-thirds of food sector GHG emissions. We then assess the potential for cities to reduce emissions through selected measures; examples include up-scaling urban agriculture and home delivery of grocery options, which each may achieve emissions reductions on the order of 0.4 and ∼1% of this total, respectively. Meanwhile, changes in waste management practices and reduction of postdistribution food waste by 50% reduce total food sector emissions by 5 and 11%, respectively. Consideration of the scale of benefits achievable through policy goals can enable cities to formulate strategies that will assist in achieving deep long-term GHG emissions targets. PMID:29717606
Dace, Elina; Muizniece, Indra; Blumberga, Andra; Kaczala, Fabio
2015-09-15
European Union (EU) Member States have agreed to limit their greenhouse gas (GHG) emissions from sectors not covered by the EU Emissions Trading Scheme (non-ETS). That includes also emissions from agricultural sector. Although the Intergovernmental Panel on Climate Change (IPCC) has established a methodology for assessment of GHG emissions from agriculture, the forecasting options are limited, especially when policies and their interaction with the agricultural system are tested. Therefore, an advanced tool, a system dynamics model, was developed that enables assessment of effects various decisions and measures have on agricultural GHG emissions. The model is based on the IPCC guidelines and includes the main elements of an agricultural system, i.e. land management, livestock farming, soil fertilization and crop production, as well as feedback mechanisms between the elements. The case of Latvia is selected for simulations, as agriculture generates 22% of the total anthropogenic GHG emissions in the country. The results demonstrate that there are very limited options for GHG mitigation in the agricultural sector. Thereby, reaching the non-ETS GHG emission targets will be very challenging for Latvia, as the level of agricultural GHG emissions will be exceeded considerably above the target levels. Thus, other non-ETS sectors will have to reduce their emissions drastically to "neutralize" the agricultural sector's emissions for reaching the EU's common ambition to move towards low-carbon economy. The developed model may serve as a decision support tool for impact assessment of various measures and decisions on the agricultural system's GHG emissions. Although the model is applied to the case of Latvia, the elements and structure of the model developed are similar to agricultural systems in many countries. By changing numeric values of certain parameters, the model can be applied to analyze decisions and measures in other countries. Copyright © 2015 Elsevier B.V. All rights reserved.
Bangladesh arsenic mitigation programs: lessons from the past
Milton, Abul Hasnat; Hore, Samar Kumar; Hossain, Mohammad Zahid; Rahman, Mahfuzar
2012-01-01
Ensuring access to safe drinking water by 2015 is a global commitment by the Millennium Development Goals (MDGs). In Bangladesh, significant achievements in providing safe water were made earlier by nationwide tubewell-installation programme. This achievement was overshadowed in 1993 by the presence of arsenic in underground water. A total of 6 million tubewells have been tested for arsenic since then, the results of which warranted immediate mitigation. Mitigation measures included tubewell testing and replacing; usage of deeper wells; surface water preservation and treatment; use of sanitary dug wells, river sand and pond sand filters; rainwater collection and storage; household-scale and large-scale arsenic filtrations; and rural pipeline water supply installation. Shallow tubewell installation was discouraged. Efforts have been made to increase people's awareness. This paper describes the lessons learned about mitigation efforts by the authors from experience of arsenic-related work. In spite of national mitigation plans and efforts, a few challenges still persist: inadequate coordination between stakeholders, differences in inter-sectoral attitudes, inadequate research to identify region-specific, suitable safe water options, poor quality of works by various implementing agencies, and inadequate dissemination of the knowledge and experiences to the people by those organizations. Issues such as long-time adaptation using ground water, poor surface water quality including bad smell and turbidity, and refusal to using neighbor's water have delayed mitigation measures so far. Region-specific mitigation water supply policy led by the health sector could be adopted with multisectoral involvement and responsibility. Large-scale piped water supply could be arranged through Public Private Partnerships (PPP) in new national approach. PMID:22558005
Bangladesh arsenic mitigation programs: lessons from the past.
Milton, Abul Hasnat; Hore, Samar Kumar; Hossain, Mohammad Zahid; Rahman, Mahfuzar
2012-01-01
Ensuring access to safe drinking water by 2015 is a global commitment by the Millennium Development Goals (MDGs). In Bangladesh, significant achievements in providing safe water were made earlier by nationwide tubewell-installation programme. This achievement was overshadowed in 1993 by the presence of arsenic in underground water. A total of 6 million tubewells have been tested for arsenic since then, the results of which warranted immediate mitigation. Mitigation measures included tubewell testing and replacing; usage of deeper wells; surface water preservation and treatment; use of sanitary dug wells, river sand and pond sand filters; rainwater collection and storage; household-scale and large-scale arsenic filtrations; and rural pipeline water supply installation. Shallow tubewell installation was discouraged. Efforts have been made to increase people's awareness. This paper describes the lessons learned about mitigation efforts by the authors from experience of arsenic-related work. In spite of national mitigation plans and efforts, a few challenges still persist: inadequate coordination between stakeholders, differences in inter-sectoral attitudes, inadequate research to identify region-specific, suitable safe water options, poor quality of works by various implementing agencies, and inadequate dissemination of the knowledge and experiences to the people by those organizations. Issues such as long-time adaptation using ground water, poor surface water quality including bad smell and turbidity, and refusal to using neighbor's water have delayed mitigation measures so far. Region-specific mitigation water supply policy led by the health sector could be adopted with multisectoral involvement and responsibility. Large-scale piped water supply could be arranged through Public Private Partnerships (PPP) in new national approach.
Quantitative option analysis for implementation and management of landfills.
Kerestecioğlu, Merih
2016-09-01
The selection of the most feasible strategy for implementation of landfills is a challenging step. Potential implementation options of landfills cover a wide range, from conventional construction contracts to the concessions. Montenegro, seeking to improve the efficiency of the public services while maintaining affordability, was considering privatisation as a way to reduce public spending on service provision. In this study, to determine the most feasible model for construction and operation of a regional landfill, a quantitative risk analysis was implemented with four steps: (i) development of a global risk matrix; (ii) assignment of qualitative probabilities of occurrences and magnitude of impacts; (iii) determination of the risks to be mitigated, monitored, controlled or ignored; (iv) reduction of the main risk elements; and (v) incorporation of quantitative estimates of probability of occurrence and expected impact for each risk element in the reduced risk matrix. The evaluated scenarios were: (i) construction and operation of the regional landfill by the public sector; (ii) construction and operation of the landfill by private sector and transfer of the ownership to the public sector after a pre-defined period; and (iii) operation of the landfill by the private sector, without ownership. The quantitative risk assessment concluded that introduction of a public private partnership is not the most feasible option, unlike the common belief in several public institutions in developing countries. A management contract for the first years of operation was advised to be implemented, after which, a long term operating contract may follow. © The Author(s) 2016.
Fifth IPCC Assessment Report Now Out
NASA Astrophysics Data System (ADS)
Kundzewicz, Zbigniew W.
2014-01-01
The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) is now available. It provides policymakers with an assessment of information on climate change, its impacts and possible response options (adaptation and mitigation). Summaries for policymakers of three reports of IPCC working groups and of the Synthesis Report have now been approved by IPCC plenaries. This present paper reports on the most essential findings in AR5. It briefly informs on the contents of reports of all IPCC working groups. It discusses the physical science findings, therein observed changes (ubiquitous warming, shrinking cryosphere, sea level rise, changes in precipitation and extremes, and biogeochemical cycles). It deals with the drivers of climate change, progress in climate system understanding (evaluation of climate models, quantification of climate system responses), and projections for the future. It reviews impacts, adaptation and vulnerability, including observed changes, key risks, key reasons for concern, sectors and systems, and managing risks and building resilience. Finally, mitigation of climate change is discussed, including greenhouse gas emissions in the past, present and future, and mitigation in sectors. It is hoped that the present article will encourage the readership of this journal to dive into the AR5 report that provides a wealth of useful information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogger, Cyrill; Beaurain, Francois; Schmidt, Tobias S., E-mail: tobiasschmidt@ethz.ch
2011-01-15
The Clean Development Mechanism (CDM) of the Kyoto Protocol aims to reduce greenhouse gas emissions in developing countries and at the same time to assist these countries in sustainable development. While composting as a suitable mitigation option in the waste sector can clearly contribute to the former goal there are indications that high rents can also be achieved regarding the latter. In this article composting is compared with other CDM project types inside and outside the waste sector with regards to both project numbers and contribution to sustainable development. It is found that, despite the high number of waste projects,more » composting is underrepresented and a major reason for this fact is identified. Based on a multi-criteria analysis it is shown that composting has a higher potential for contribution to sustainable development than most other best in class projects. As these contributions can only be assured if certain requirements are followed, eight key obligations are presented.« less
Modeling the Heterogeneous Effects of GHG Mitigation Policies on Global Agriculture and Forestry
NASA Astrophysics Data System (ADS)
Golub, A.; Henderson, B.; Hertel, T. W.; Rose, S. K.; Sohngen, B.
2010-12-01
Agriculture and forestry are envisioned as potentially key sectors for climate change mitigation policy, yet the depth of analysis of mitigation options and their economic consequences remains remarkably shallow in comparison to that for industrial mitigation. Farming and land use change - much of it induced by agriculture -account for one-third of global greenhouse gas (GHG) emissions. Any serious attempt to curtail these emissions will involve changes in the way farming is conducted, as well as placing limits on agricultural expansion into areas currently under more carbon-intensive land cover. However, agriculture and forestry are extremely heterogeneous, both in the technology and intensity of production, as well as in the GHG emissions intensity of these activities. And these differences, in turn, give rise to significant changes in the distribution of agricultural production, trade and consumption in the wake of mitigation policies. This paper assesses such distributional impacts via a global economic analysis undertaken with a modified version of the GTAP model. The paper builds on a global general equilibrium GTAP-AEZ-GHG model (Golub et al., 2009). This is a unified modeling framework that links the agricultural, forestry, food processing and other sectors through land, and other factor markets and international trade, and incorporates different land-types, land uses and related CO2 and non-CO2 GHG emissions and sequestration. The economic data underlying this work is the global GTAP data base aggregated up to 19 regions and 29 sectors. The model incorporates mitigation cost curves for different regions and sectors based on information from the US-EPA. The forestry component of the model is calibrated to the results of the state of the art partial equilibrium global forestry model of Sohngen and Mendelson (2007). Forest carbon sequestration at both the extensive and intensive margins are modeled separately to better isolate land competition between agriculture and timber products. We analyze regional changes in land use, output, competitiveness, and food consumption under climate change mitigation policy regimes which differ by participation/exclusion of agricultural sectors and non-Annex I countries, as well as policy instruments. While responsible for only a third of global GHG emissions, under the global carbon tax the land using sectors could contribute half of all economically efficient mitigation in the near term, at modest carbon prices. The imposition of a carbon tax in agriculture, however, has adverse effects on food consumption, especially in developing countries. These effects are much smaller if an agricultural producer subsidy is introduced to compensate for carbon tax the producers pay. The global forest carbon sequestration subsidy effectively controls emission leakage when the carbon tax is imposed only in Annex I regions, since the sequestration subsidy bids land away from agriculture in non-Annex I regions. Though the sequestration subsidy yields GHG abatement benefit, the policy may adversely affect food security and agricultural development in developing countries.
Alkayal, Emrah; Bogurcu, Merve; Ulutas, Ferda; Demirer, Göksel Niyazi
2015-01-01
The objective of this study was to investigate the climate change adaptation opportunities of six companies from different sectors through resource efficiency and sustainable production. A total of 77 sustainable production options were developed for the companies based on the audits conducted. After screening these opportunities with each company's staff, 19 options were selected and implemented. Significant water savings (849,668 m3/year) were achieved as a result of the applications that targeted reduction of water use. In addition to water savings, the energy consumption was reduced by 3,607 MWh, which decreased the CO2 emissions by 904.1 tons/year. Moreover, the consumption of 278.4 tons/year of chemicals (e.g., NaCl, CdO, NaCN) was avoided, thus the corresponding pollution load to the wastewater treatment plant was reduced. Besides the tangible improvements, other gains were achieved, such as improved product quality, improved health and safety conditions, reduced maintenance requirements, and ensured compliance with national and EU regulations. To the best of the authors' knowledge, this study is the first ever activity in Turkey devoted to climate change adaptation in the private sector. This study may serve as a building block in Turkey for the integration of climate change adaptation and mitigation approach in the industry, since water efficiency (adaptation) and carbon reduction (mitigation) are achieved simultaneously.
Reducing greenhouse gas emissions for climate stabilization: framing regional options.
Olabisi, Laura Schmitt; Reich, Peter B; Johnson, Kris A; Kapuscinski, Anne R; Su, Sangwon H; Wilson, Elizabeth J
2009-03-15
The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO2 concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term.
Alternative energy balances for Bulgaria to mitigate climate change
NASA Astrophysics Data System (ADS)
Christov, Christo
1996-01-01
Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.
Optimization of carbon mitigation paths in the power sector of Shenzhen, China
NASA Astrophysics Data System (ADS)
Li, Xin; Hu, Guangxiao; Duan, Ying; Ji, Junping
2017-08-01
This paper studied the carbon mitigation paths of the power sector in Shenzhen, China from a supply-side perspective. We investigated the carbon mitigation potentials and investments of seventeen mitigation technologies in the power sector, and employed a linear programming method to optimize the mitigation paths. The results show that: 1) The total carbon mitigation potential is 5.95 MtCO2 in 2020 in which the adjustment of power supply structure, technical improvements of existing coal- and gas-fired power plant account for 87.5%,6.5% and 6.0%, respectively. 2) In the optimal path, the avoided carbon dioxide to meet the local government’s mitigation goal in power sector is 1.26 MtCO2.The adjustment of power supply structure and technical improvement of the coal-fired power plants are the driving factors of carbon mitigation, with contributions to total carbon mitigation are 72.6% and 27.4%, respectively.
Rudokas, Jason; Miller, Paul J; Trail, Marcus A; Russell, Armistead G
2015-04-21
We investigate the projected impact of six climate mitigation scenarios on U.S. emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOX) associated with energy use in major sectors of the U.S. economy (commercial, residential, industrial, electricity generation, and transportation). We use the EPA U.S. 9-region national database with the MARKet Allocation energy system model to project emissions changes over the 2005 to 2050 time frame. The modeled scenarios are two carbon tax, two low carbon transportation, and two biomass fuel choice scenarios. In the lower carbon tax and both biomass fuel choice scenarios, SO2 and NOX achieve reductions largely through pre-existing rules and policies, with only relatively modest additional changes occurring from the climate mitigation measures. The higher carbon tax scenario projects greater declines in CO2 and SO2 relative to the 2050 reference case, but electricity sector NOX increases. This is a result of reduced investments in power plant NOX controls in earlier years in anticipation of accelerated coal power plant retirements, energy penalties associated with carbon capture systems, and shifting of NOX emissions in later years from power plants subject to a regional NOX cap to those in regions not subject to the cap.
India Energy Outlook: End Use Demand in India to 2020
DOE Office of Scientific and Technical Information (OSTI.GOV)
de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant
Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries oftenmore » poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.« less
NASA Astrophysics Data System (ADS)
Gobin, A.; Le Trinh, H.; Pham Ha, L.; Hens, L.
2012-04-01
Desertification and drought affects approximately 300,000 ha of land in the southeastern provinces of Vietnam, much of which is located on agricultural land and forest in the Binh Thuan Province. The methodology for analysing mitigation and adaptation options follows a chain of risk approach that includes a spatio-temporal characterisation of (1) the hazard, (2) the bio-physical and socio-economic impact, (3) the vulnerability to different activities as related to land uses, and (4) risk management options. The present forms of land degradation include sand dune formation and severe erosion (63%), degradation due to laterisation (14%), salinisation (13%), and rock outcrops (10%). The climate is characterized by a distinct dry season with high temperatures, a lot of sunshine and a warm land wind resulting in high evapotranspiration rates. Delays in the onset of the rainy season, e.g. with 20 days in 2010, cause a shift in the growing season. Damages due to drought are estimated at hundreds billion VND (US 1 = VND 20,8900) and contribute to poverty in the rural areas. The current risk-exposure is exacerbated further by climate change. Combined effects of desertification and climate change cause increased degradation of natural resources including land cover. At the same time land use changes are crucial in influencing responses to climate change and desertification. A further SWOT analysis combined with spatio-temporal analysis for each of the major sectors (agriculture, forestry and nature protection, urban and rural development, water resources and fisheries, industry) demonstrates a series of adaptation and mitigation options. Land is a valuable and limited resource. An integrated approach to land use and management is therefore essential to combat environmental hazards such as desertification and climate change.
Liang, Sai; Qu, Shen; Xu, Ming
2016-02-02
To develop industry-specific policies for mitigating environmental pressures, previous studies primarily focus on identifying sectors that directly generate large amounts of environmental pressures (a.k.a. production-based method) or indirectly drive large amounts of environmental pressures through supply chains (e.g., consumption-based method). In addition to those sectors as important environmental pressure producers or drivers, there exist sectors that are also important to environmental pressure mitigation as transmission centers. Economy-wide environmental pressure mitigation might be achieved by improving production efficiency of these key transmission sectors, that is, using less upstream inputs to produce unitary output. We develop a betweenness-based method to measure the importance of transmission sectors, borrowing the betweenness concept from network analysis. We quantify the betweenness of sectors by examining supply chain paths extracted from structural path analysis that pass through a particular sector. We take China as an example and find that those critical transmission sectors identified by betweenness-based method are not always identifiable by existing methods. This indicates that betweenness-based method can provide additional insights that cannot be obtained with existing methods on the roles individual sectors play in generating economy-wide environmental pressures. Betweenness-based method proposed here can therefore complement existing methods for guiding sector-level environmental pressure mitigation strategies.
Structural change as a key component for agricultural non-CO2 mitigation efforts.
Frank, Stefan; Beach, Robert; Havlík, Petr; Valin, Hugo; Herrero, Mario; Mosnier, Aline; Hasegawa, Tomoko; Creason, Jared; Ragnauth, Shaun; Obersteiner, Michael
2018-03-13
Agriculture is the single largest source of anthropogenic non-carbon dioxide (non-CO 2 ) emissions. Reaching the climate target of the Paris Agreement will require significant emission reductions across sectors by 2030 and continued efforts thereafter. Here we show that the economic potential of non-CO 2 emissions reductions from agriculture is up to four times as high as previously estimated. In fact, we find that agriculture could achieve already at a carbon price of 25 $/tCO 2 eq non-CO 2 reductions of around 1 GtCO 2 eq/year by 2030 mainly through the adoption of technical and structural mitigation options. At 100 $/tCO 2 eq agriculture could even provide non-CO 2 reductions of 2.6 GtCO 2 eq/year in 2050 including demand side efforts. Immediate action to favor the widespread adoption of technical options in developed countries together with productivity increases through structural changes in developing countries is needed to move agriculture on track with a 2 °C climate stabilization pathway.
32 CFR 211.9 - Mitigation Options.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 2 2013-07-01 2013-07-01 false Mitigation Options. 211.9 Section 211.9 National... MISSION COMPATIBILITY EVALUATION PROCESS Project Evaluation Procedures § 211.9 Mitigation Options. (a) In discussing mitigation to avoid an unacceptable risk to the national security of the United States, the DoD...
32 CFR 211.9 - Mitigation options.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false Mitigation options. 211.9 Section 211.9 National... MISSION COMPATIBILITY EVALUATION PROCESS Project Evaluation Procedures § 211.9 Mitigation options. (a) In discussing mitigation to avoid an unacceptable risk to the national security of the United States, the DoD...
32 CFR 211.9 - Mitigation Options.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Mitigation Options. 211.9 Section 211.9 National... MISSION COMPATIBILITY EVALUATION PROCESS Project Evaluation Procedures § 211.9 Mitigation Options. (a) In discussing mitigation to avoid an unacceptable risk to the national security of the United States, the DoD...
Utility and Value of Satellite-Based Frost Forecasting for Kenya's Tea Farming Sector
NASA Astrophysics Data System (ADS)
Morrison, I.
2016-12-01
Frost damage regularly inflicts millions of dollars of crop losses in the tea-growing highlands of western Kenya, a problem that the USAID/NASA Regional Visualization and Monitoring System (SERVIR) program is working to mitigate through a frost monitoring and forecasting product that uses satellite-based temperature and soil moisture data to generate up to three days of advanced warning before frost events. This paper presents the findings of a value of information (VOI) study assessing the value of this product based on Kenyan tea farmers' experiences with frost and frost-damage mitigation. Value was calculated based on historic trends of frost frequency, severity, and extent; likelihood of warning receipt and response; and subsequent frost-related crop-loss aversion. Quantification of these factors was derived through inferential analysis of survey data from 400 tea-farming households across the tea-growing regions of Kericho and Nandi, supplemented with key informant interviews with decision-makers at large estate tea plantations, historical frost incident and crop-loss data from estate tea plantations and agricultural insurance companies, and publicly available demographic and economic data. At this time, the product provides a forecasting window of up to three days, and no other frost-prediction methods are used by the large or small-scale farmers of Kenya's tea sector. This represents a significant opportunity for preemptive loss-reduction via Earth observation data. However, the tea-growing community has only two realistic options for frost-damage mitigation: preemptive harvest of available tea leaves to minimize losses, or skiving (light pruning) to facilitate fast recovery from frost damage. Both options are labor-intensive and require a minimum of three days of warning to be viable. As a result, the frost forecasting system has a very narrow margin of usefulness, making its value highly dependent on rapid access to the warning messages and flexible access to harvesting labor for mitigation activities. These findings show that the Frost monitoring product has the potential for real monetary benefit to members of the frost-vulnerable tea growing community but realization of that value needs direct collaboration with the tea-farming community to ensure effective product utilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishkov, A.; Akopova, Gretta; Evans, Meredydd
This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trendsmore » as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses. Depending on the value of gas, simple, low-cost measures, such as adjusting leaking equipment components, or larger-scale measures, such as installing dry seals on compressors, can be applied.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-10
... of orderly markets by helping to mitigate the potential risks associated with legging stock option... orderly markets by helping to mitigate the potential risks associated with legging stock option orders, e... markets by helping to mitigate potential risks associated with the legging of stock-option orders...
Effects of California's Climate Policy in Facilitating CCUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, Elizabeth
California is at the forefront of addressing the challenges involved in redesigning its energy infrastructure to meet 2050 GHG reduction goals, but CCUS commercialization lags in California as it does elsewhere. It is unclear why this is the case given the state’s forefront position in aggressive climate change policy. The intent of this paper is to examine the factors that may explain why CCUS has not advanced as rapidly as other GHG emissions mitigation technologies in California and identify ways by which CCUS commercialization may be advanced in the context of California’s future energy infrastructure. CCUS has application to reducemore » GHG emissions from the power, industrial and transportation sectors in the state. Efficiency, use of renewable energy or nuclear generation to replace fossil fuels, use of lower or no-net-carbon feedstocks (such as biomass), and use of CCUS on fossil fuel generation are the main options, but California has fewer options for making the deep cuts in CO 2 emissions within the electricity sector to meet 2050 goals. California is already the most efficient of all 50 states as measured by electricity use per capita, and, while further efficiency measures can reduce per capita consumption, increasing population is still driving electricity demand upwards. A 1976 law prevents building any new nuclear plants until a federal high-level nuclear waste repository is approved. Most all in-state electricity generation already comes from natural gas; although California does plan to eliminate electricity imports from out-of-state coal-fired generation. Thus, the two options with greatest potential to reduce in-state power sector CO 2 emissions are replacing fossil with renewable generation or employing CCUS on natural gas power plants. Although some scenarios call on California to transition its electricity sector to 100 percent renewables, it is unclear how practical this approach is given the intermittency of renewable generation, mismatches between peak generation times and demand times, and the rate of progress in developing technologies for large-scale power storage. Vehicles must be electrified or move to biofuels or zero-carbon fuels in order to decarbonize the transportation sector. These options transfer the carbon footprint of transportation to other sectors: the power sector in the case of electric vehicles and the industrial and agricultural sectors in the case of biofuels or zero-carbon fuels. Thus, the underlying presumption to achieve overall carbon reductions is that the electricity used by vehicles does not raise the carbon emissions of the power sector: biofuel feedstock growth, harvest, and processing uses low carbon energy or production of fuels from fossil feedstocks employs CCUS. This results in future transportation sector energy derived solely from renewables, biomass, or fossil fuel point sources utilizing CCUS. In the industrial sector, the largest contributors to GHG emissions are transportation fuel refineries and cement plants. Emissions from refineries come from on-site power generation and hydrogen plants; while fuel mixes can be changed to reduce the GHG emissions from processing and renewable sources can be used to generate power, total decarbonization requires use of CCUS. Similarly, for cement plants, power generation may use carbon-free feedstocks instead of fossil fuels, but CO 2 emissions associated with the manufacture of cement products must be dealt with through CCUS. Of course, another option for these facilities is the purchase of offsets to create a zero-emissions plant.« less
Effects of California's Climate Policy in Facilitating CCUS
Burton, Elizabeth
2014-12-31
California is at the forefront of addressing the challenges involved in redesigning its energy infrastructure to meet 2050 GHG reduction goals, but CCUS commercialization lags in California as it does elsewhere. It is unclear why this is the case given the state’s forefront position in aggressive climate change policy. The intent of this paper is to examine the factors that may explain why CCUS has not advanced as rapidly as other GHG emissions mitigation technologies in California and identify ways by which CCUS commercialization may be advanced in the context of California’s future energy infrastructure. CCUS has application to reducemore » GHG emissions from the power, industrial and transportation sectors in the state. Efficiency, use of renewable energy or nuclear generation to replace fossil fuels, use of lower or no-net-carbon feedstocks (such as biomass), and use of CCUS on fossil fuel generation are the main options, but California has fewer options for making the deep cuts in CO 2 emissions within the electricity sector to meet 2050 goals. California is already the most efficient of all 50 states as measured by electricity use per capita, and, while further efficiency measures can reduce per capita consumption, increasing population is still driving electricity demand upwards. A 1976 law prevents building any new nuclear plants until a federal high-level nuclear waste repository is approved. Most all in-state electricity generation already comes from natural gas; although California does plan to eliminate electricity imports from out-of-state coal-fired generation. Thus, the two options with greatest potential to reduce in-state power sector CO 2 emissions are replacing fossil with renewable generation or employing CCUS on natural gas power plants. Although some scenarios call on California to transition its electricity sector to 100 percent renewables, it is unclear how practical this approach is given the intermittency of renewable generation, mismatches between peak generation times and demand times, and the rate of progress in developing technologies for large-scale power storage. Vehicles must be electrified or move to biofuels or zero-carbon fuels in order to decarbonize the transportation sector. These options transfer the carbon footprint of transportation to other sectors: the power sector in the case of electric vehicles and the industrial and agricultural sectors in the case of biofuels or zero-carbon fuels. Thus, the underlying presumption to achieve overall carbon reductions is that the electricity used by vehicles does not raise the carbon emissions of the power sector: biofuel feedstock growth, harvest, and processing uses low carbon energy or production of fuels from fossil feedstocks employs CCUS. This results in future transportation sector energy derived solely from renewables, biomass, or fossil fuel point sources utilizing CCUS. In the industrial sector, the largest contributors to GHG emissions are transportation fuel refineries and cement plants. Emissions from refineries come from on-site power generation and hydrogen plants; while fuel mixes can be changed to reduce the GHG emissions from processing and renewable sources can be used to generate power, total decarbonization requires use of CCUS. Similarly, for cement plants, power generation may use carbon-free feedstocks instead of fossil fuels, but CO 2 emissions associated with the manufacture of cement products must be dealt with through CCUS. Of course, another option for these facilities is the purchase of offsets to create a zero-emissions plant.« less
The economics of soil C sequestration
NASA Astrophysics Data System (ADS)
Alexander, P.; Paustian, K.; Smith, P.; Moran, D.
2014-12-01
Carbon is a critical component of soil vitality and of our ability to produce food. Carbon sequestered in soils also provides a further regulating ecosystem service, valued as the avoided damage from global climate change. We consider the demand and supply attributes that underpin and constrain the emergence of a market value for this vital global ecosystem service: markets being what economists regard as the most efficient institutions for allocating scarce resources to the supply and consumption of valuable goods. This paper considers how a potentially large global supply of soil carbon sequestration is reduced by economic and behavioural constraints that impinge on the emergence of markets, and alternative public policies that can efficiently transact demand for the service from private and public sector agents. In essence this is a case of significant market failure. In the design of alternative policy options we consider whether soil carbon mitigation is actually cost-effective relative to other measures in agriculture and elsewhere in the economy, and the nature of behavioural incentives that hinder policy options. We suggest that reducing cost and uncertainties of mitigation through soil-based measures is crucial for improving uptake. Monitoring and auditing processes will also be required to eventually facilitate wide-scale adoption of these measures.
NASA Astrophysics Data System (ADS)
Schmale, J.; von Schneidemesser, E.; Chabay, I.; Maas, A.; Lawrence, M. G.
2013-12-01
Climate change and air pollution both have impacts across a wide range of sectors. While it is fundamental to communicate scientific findings as basis for decision making to a variety of stakeholders, it is difficult to establish long-lasting, multi-way communication and mutual learning between all parties to ensure success. There are many reasons for this difficulty, one of them being the subtle nature of climate change impacts (excluding extreme events). The decadal timescales over which changes occur make it difficult to communicate the urgent need for action, as evidence is difficult to perceive directly in the present or over the short timescales on which people are normally most accustomed to thinking. Here, we analyze experiences from the ClimPol project, designed to identify research needs and pathways to policy implementation for an integrated and sustainable policy approach to mitigate air pollution and climate change simultaneously. These two challenges are inextricably linked with regard to their causes, effects and mitigation options. Due to their linkages, action in one sector will often affect the other sector. This can have positive effects, co-benefits, e.g. by replacing coal-fired power plants through wind power, because overall emissions will be reduced. But adverse effects are also possible, trade-offs, e.g. by increasingly using wood for domestic heating, which reduces the overall CO2 emissions, but increases the emissions of particulate matter and other air pollutants. The ClimPol project uses short-lived climate-forcing air pollutants (SLCPs) as an entry point to exploring joint mitigation approaches. Due to their short atmospheric lifetimes and various adverse qualities, SLCPs exert immediate, local and direct effects across sectors like public health and food security (air quality issues), while also driving climate change. SLCP and CO2 mitigation can be complementary for reducing climate change and improving air quality. Using this linkage to present-day problems in contrast to only focusing on the long-term time scales of CO2-driven climate change, the ClimPol project goes beyond the academic realm and collaborates with a variety of stakeholders across scales from local to international to investigate potential options for joint and sustainable policies. The underlying assumption is that each stakeholder community possesses their own knowledge system which contributes an important piece to the puzzle which is necessary to assemble for creating solutions. We call this approach co-designing usable knowledge. This new type of knowledge can serve as a basis for decision making. This inclusive approach encourages all parties to take ownership in the process and solutions, thereby causing them to be more likely to act on the problem, both at the systemic, policy-driven level, and at the individual level by cooperatively supporting the associated structural and lifestyle developments. For the presentation of the results, we will focus on experiences from joint projects with non-governmental organizations on city authorities.
Setting priorities for land management to mitigate climate change
2012-01-01
Background No consensus has been reached how to measure the effectiveness of climate change mitigation in the land-use sector and how to prioritize land use accordingly. We used the long-term cumulative and average sectorial C stocks in biomass, soil and products, C stock changes, the substitution of fossil energy and of energy-intensive products, and net present value (NPV) as evaluation criteria for the effectiveness of a hectare of productive land to mitigate climate change and produce economic returns. We evaluated land management options using real-life data of Thuringia, a region representative for central-western European conditions, and input from life cycle assessment, with a carbon-tracking model. We focused on solid biomass use for energy production. Results In forestry, the traditional timber production was most economically viable and most climate-friendly due to an assumed recycling rate of 80% of wood products for bioenergy. Intensification towards "pure bioenergy production" would reduce the average sectorial C stocks and the C substitution and would turn NPV negative. In the forest conservation (non-use) option, the sectorial C stocks increased by 52% against timber production, which was not compensated by foregone wood products and C substitution. Among the cropland options wheat for food with straw use for energy, whole cereals for energy, and short rotation coppice for bioenergy the latter was most climate-friendly. However, specific subsidies or incentives for perennials would be needed to favour this option. Conclusions When using the harvested products as materials prior to energy use there is no climate argument to support intensification by switching from sawn-wood timber production towards energy-wood in forestry systems. A legal framework would be needed to ensure that harvested products are first used for raw materials prior to energy use. Only an effective recycling of biomaterials frees land for long-term sustained C sequestration by conservation. Reuse cascades avoid additional emissions from shifting production or intensification. PMID:22423646
Assessment of Clmate Change Mitigation Strategies for the Road Transport Sector of India
NASA Astrophysics Data System (ADS)
Singh, N.; Mishra, T.; Banerjee, R.
2017-12-01
India is one of the fastest growing major economies of the world. It imports three quarters of its oil demand, making transport sector major contributor of greenhouse gas (GHG) emissions. 40% of oil consumption in India comes from transport sector and over 90% of energy demand is from road transport sector. This has led to serious increase in CO2 emission and concentration of air pollutants in India. According to Intergovernmental Panel on Climate Change (IPCC), transport can play a crucial role for mitigation of global greenhouse gas emissions. Therefore, assessment of appropriate mitigation policies is required for emission reduction and cost benefit potential. The present study aims to estimate CO2, SO2, PM and NOx emissions from the road transport sector for the base year (2014) and target year (2030) by applying bottom up emission inventory model. Effectiveness of different mitigation strategies like inclusion of natural gas as alternate fuel, penetration of electric vehicle as alternate vehicle, improvement of fuel efficiency and increase share of public transport is evaluated for the target year. Emission reduction achieved from each mitigation strategies in the target year (2030) is compared with the business as usual scenario for the same year. To obtain cost benefit analysis, marginal abatement cost for each mitigation strategy is estimated. The study evaluates mitigation strategies not only on the basis of emission reduction potential but also on their cost saving potential.
NASA Astrophysics Data System (ADS)
Rhodes, James S., III
2007-12-01
Industrial bio-energy systems provide diverse opportunities for abating anthropogenic greenhouse gas ("GHG") emissions and for advancing other important policy objectives. The confluence of potential contributions to important social, economic, and environmental policy objectives with very real challenges to deployment creates rich opportunities for study. In particular, the analyses developed in this thesis aim to increase understanding of how industrial bio-energy may be applied to abate GHG emissions in prospective energy markets, the relative merits of alternate bio-energy systems, the extent to which public support for developing such systems is justified, and the public policy instruments that may be capable of providing such support. This objective is advanced through analysis of specific industrial bio-energy technologies, in the form of bottom-up engineering-economic analyses, to determine their economic performance relative to other mitigation options. These bottom-up analyses are used to inform parameter definitions in two higher-level stochastic models that explicitly account for uncertainty in key model parameters, including capital costs, operating and maintenance costs, and fuel costs. One of these models is used to develop supply curves for electricity generation and carbon mitigation from biomass-coal cofire in the U.S. The other is used to characterize the performance of multiple bio-energy systems in the context of a competitive market for low-carbon energy products. The results indicate that industrial bio-energy systems are capable of making a variety of potentially important contributions under scenarios that value anthropogenic GHG emissions. In the near term, cofire of available biomass in existing coal fired power plants has the potential to provide substantial emissions reductions at reasonable costs. Carbon prices between 30 and 70 per ton carbon could induce reductions in U.S. carbon emissions by 100 to 225 megatons carbon ("MtC"), equivalent to roughly 3% of U.S. GHG emissions. In the medium or longer term, integration of carbon capture and storage technologies with advanced bio-energy conversion technologies ("biomass-CCS"), in both liquid fuels production and electric sector applications, will likely be feasible. These systems are capable of generating useful energy products with negative net atmospheric carbon emissions at carbon prices between 100 and 200 per tC. Negative emissions from biomass-CCS could be applied to offset emissions sources that are difficult or expensive to abate directly. Such indirect mitigation may prove cost competitive and provide important flexibility in achieving stabilization of atmospheric GHG concentrations at desirable levels. With increasing deployments, alternate bio-energy systems will eventually compete for limited biomass resources and inputs to agricultural production--particularly land. In this context, resource allocation decisions will likely turn on the relative economic performance of alternate bio-energy systems in their respective energy markets. The relatively large uncertainty in forecasts of energy futures confounds reliable prediction of economically efficient uses for available biomass resources. High oil prices or large valuation of energy security benefits will likely enable bio-fuels production to dominate electric-sector options. In contrast, low oil prices and low valuation of energy security benefits will likely enable electric-sector applications to dominate. In the latter scenario, indirect mitigation of transportation-sector emissions via emissions offsets from electric-sector biomass-CCS could prove more efficient than direct fuel substitution with biofuels, both economically and in terms of the transportation-sector mitigation of available biomass resources [tC tbiomass-1]. The policy environment surrounding industrial bio-energy development is systematically examined. Specifically, the policy objectives that may be advanced with bio-energy and the challenges constraining deployment are examined to understand the extent to which public policy support is justified to accelerate development. Policy frameworks and specific policy instruments that have been proposed or enacted to support industrial bio-energy are evaluated to understand their current and potential future roles in shaping bio-energy development. This analysis indicates that deployment of industrial bio-energy systems to advance specified policy objectives has been compromised by inefficient and inconsistent public policies. Amending existing policies could substantially accelerate bio-energy deployment. More generally, public policies that set even prices across the economy for advancing targeted policy objectives should be developed. Industrial bio-energy systems can be expected to compete favorably in the context of such policies, including those valuing deep reductions in anthropogenic GHG emissions.
Mitigation options for methane emissions from rice fields in the Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantin, R.S.; Buendia, L.V.; Wassmann, R.
1996-12-31
The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of themore » total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.« less
NASA Astrophysics Data System (ADS)
Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.
2006-12-01
Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the behavior of terrestrial C mitigation options in the presence and absence of climate change mitigation policies.
NASA Technical Reports Server (NTRS)
Frieler, K.; Elliott, Joshua; Levermann, A.; Heinke, J.; Arneth, A.; Bierkens, M. F. P.; Ciais, P.; Clark, D. B.; Deryng, D.; Doll, P.;
2015-01-01
Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impactmodel setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making
NASA Astrophysics Data System (ADS)
Frieler, K.; Levermann, A.; Elliott, J.; Heinke, J.; Arneth, A.; Bierkens, M. F. P.; Ciais, P.; Clark, D. B.; Deryng, D.; Döll, P.; Falloon, P.; Fekete, B.; Folberth, C.; Friend, A. D.; Gellhorn, C.; Gosling, S. N.; Haddeland, I.; Khabarov, N.; Lomas, M.; Masaki, Y.; Nishina, K.; Neumann, K.; Oki, T.; Pavlick, R.; Ruane, A. C.; Schmid, E.; Schmitz, C.; Stacke, T.; Stehfest, E.; Tang, Q.; Wisser, D.; Huber, V.; Piontek, F.; Warszawski, L.; Schewe, J.; Lotze-Campen, H.; Schellnhuber, H. J.
2015-07-01
Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-08
... Proposal Regarding Quote Mitigation November 2, 2012. Pursuant to Section 19(b)(1) under the Securities... (Quote Mitigation) and refine the current quote mitigation strategy for its options trading facility, BOX Market LLC (``BOX'') by replacing the current quote mitigation rule with a ``holdback timer'' mechanism...
38 CFR 36.4319 - Servicer loss-mitigation options and incentives.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2013-07-01 2013-07-01 false Servicer loss-mitigation... Reporting § 36.4319 Servicer loss-mitigation options and incentives. (a) The Secretary will pay a servicer in tiers one, two, or three an incentive payment for each of the following successful loss-mitigation...
38 CFR 36.4319 - Servicer loss-mitigation options and incentives.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Servicer loss-mitigation... Reporting § 36.4319 Servicer loss-mitigation options and incentives. (a) The Secretary will pay a servicer in tiers one, two, or three an incentive payment for each of the following successful loss-mitigation...
38 CFR 36.4319 - Servicer loss-mitigation options and incentives.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Servicer loss-mitigation... Reporting § 36.4319 Servicer loss-mitigation options and incentives. (a) The Secretary will pay a servicer in tiers one, two, or three an incentive payment for each of the following successful loss-mitigation...
38 CFR 36.4319 - Servicer loss-mitigation options and incentives.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Servicer loss-mitigation... Reporting § 36.4319 Servicer loss-mitigation options and incentives. (a) The Secretary will pay a servicer in tiers one, two, or three an incentive payment for each of the following successful loss-mitigation...
Nonzero-Sum Relationships in Mitigating Urban Carbon Emissions: A Dynamic Network Simulation.
Chen, Shaoqing; Chen, Bin; Su, Meirong
2015-10-06
The "stove-pipe" way of thinking has been mostly used in mitigating carbon emissions and managing socioeconomics because of its convenience of implementation. However, systems-oriented approaches become imperative in pursuit of an efficient regulation of carbon emissions from systems as complicated as urban systems. The aim of this paper is to establish a dynamic network approach that is capable of assessing the effectiveness of carbon emissions mitigation in a more holistic way. A carbon metabolic network is constructed by modeling the carbon flows between economic sectors and environment. With the network shocked by interventions to the sectoral carbon flows, indirect emissions from the city are accounted for under certain carbon mitigation strategies. The nonzero-sum relationships between sectors and environmental components are identified based on utility analysis, which synthesize the nature of direct and indirect network interactions. The results of the case study of Beijing suggest that the stove-pipe mitigation strategies targeted the economic sectors might be not as efficient as they were expected. A direct cutting in material or energy import to the sectors may result in a rebound in indirect emissions and thus fails to achieve the carbon mitigation goal of the city as a whole. A promising way of foreseeing the dynamic mechanism of emissions is to analyze the nonzero-sum relationships between important urban components. Thinking cities as systems of interactions, the network approach is potentially a strong tool for appraising and filtering mitigation strategies of carbon emissions.
Spatially Refined Aerosol Direct Radiative Forcing Efficiencies
NASA Technical Reports Server (NTRS)
Henze, Daven K.; Shindell, Drew Todd; Akhtar, Farhan; Spurr, Robert J. D.; Pinder, Robert W.; Loughlin, Dan; Kopacz, Monika; Singh, Kumaresh; Shim, Changsub
2012-01-01
Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary to assess realistic policy options. To address this challenge, here we show how adjoint model sensitivities can be used to provide highly spatially resolved estimates of the DRF from emissions of black carbon (BC), primary organic carbon (OC), sulfur dioxide (SO2), and ammonia (NH3), using the example of emissions from each sector and country following multiple Representative Concentration Pathway (RCPs). The radiative forcing efficiencies of many individual emissions are found to differ considerably from regional or sectoral averages for NH3, SO2 from the power sector, and BC from domestic, industrial, transportation and biomass burning sources. Consequently, the amount of emissions controls required to attain a specific DRF varies at intracontinental scales by up to a factor of 4. These results thus demonstrate both a need and means for incorporating spatially refined aerosol DRF into analysis of future emissions scenario and design of air quality and climate change mitigation policies.
Reducing greenhouse gas emissions in agriculture without compromising food security?
NASA Astrophysics Data System (ADS)
Frank, Stefan; Havlík, Petr; Soussana, Jean-François; Levesque, Antoine; Valin, Hugo; Wollenberg, Eva; Kleinwechter, Ulrich; Fricko, Oliver; Gusti, Mykola; Herrero, Mario; Smith, Pete; Hasegawa, Tomoko; Kraxner, Florian; Obersteiner, Michael
2017-10-01
To keep global warming possibly below 1.5 °C and mitigate adverse effects of climate change, agriculture, like all other sectors, will have to contribute to efforts in achieving net negative emissions by the end of the century. Cost-efficient distribution of mitigation across regions and economic sectors is typically calculated using a global uniform carbon price in climate stabilization scenarios. However, in reality such a carbon price would substantially affect food availability. Here, we assess the implications of climate change mitigation in the land use sector for agricultural production and food security using an integrated partial equilibrium modelling framework and explore ways of relaxing the competition between mitigation in agriculture and food availability. Using a scenario that limits global warming cost-efficiently across sectors to 1.5 °C, results indicate global food calorie losses ranging from 110-285 kcal per capita per day in 2050 depending on the applied demand elasticities. This could translate into a rise in undernourishment of 80-300 million people in 2050. Less ambitious greenhouse gas (GHG) mitigation in the land use sector reduces the associated food security impact significantly, however the 1.5 °C target would not be achieved without additional reductions outside the land use sector. Efficiency of GHG mitigation will also depend on the level of participation globally. Our results show that if non-Annex-I countries decide not to contribute to mitigation action while other parties pursue their mitigation efforts to reach the global climate target, food security impacts in these non-Annex-I countries will be higher than if they participate in a global agreement, as inefficient mitigation increases agricultural production costs and therefore food prices. Land-rich countries with a high proportion of emissions from land use change, such as Brazil, could reduce emissions with only a marginal effect on food availability. In contrast, agricultural mitigation in high population (density) countries, such as China and India, would lead to substantial food calorie loss without a major contribution to global GHG mitigation. Increasing soil carbon sequestration on agricultural land would allow reducing the implied calorie loss by 65% when sticking to the initially estimated land use mitigation requirements, thereby limiting the impact on undernourishment to 20-75 million people, and storing significant amounts of carbon in soils.
One Health Economics to confront disease threats
Machalaba, Catherine; Smith, Kristine M; Awada, Lina; Berry, Kevin; Berthe, Franck; Bouley, Timothy A; Bruce, Mieghan; Cortiñas Abrahantes, Jose; El Turabi, Anas; Feferholtz, Yasha; Flynn, Louise; Fournié, Giullaume; Andre, Amanda; Grace, Delia; Jonas, Olga; Kimani, Tabitha; Le Gall, François; Miranda, Juan Jose; Peyre, Marisa; Pinto, Julio; Ross, Noam; Rüegg, Simon R; Salerno, Robert H; Seifman, Richard; Zambrana-Torrelio, Carlos; Karesh, William B
2017-01-01
Abstract Global economic impacts of epidemics suggest high return on investment in prevention and One Health capacity. However, such investments remain limited, contributing to persistent endemic diseases and vulnerability to emerging ones. An interdisciplinary workshop explored methods for country-level analysis of added value of One Health approaches to disease control. Key recommendations include: 1. systems thinking to identify risks and mitigation options for decision-making under uncertainty; 2. multisectoral economic impact assessment to identify wider relevance and possible resource-sharing, and 3. consistent integration of environmental considerations. Economic analysis offers a congruent measure of value complementing diverse impact metrics among sectors and contexts. PMID:29044367
Mereu, Simone; Sušnik, Janez; Trabucco, Antonio; Daccache, Andre; Vamvakeridou-Lyroudia, Lydia; Renoldi, Stefano; Virdis, Andrea; Savić, Dragan; Assimacopoulos, Dionysis
2016-02-01
Many (semi-) arid locations globally, and particularly islands, rely heavily on reservoirs for water supply. Some reservoirs are particularly vulnerable to climate and development changes (e.g. population change, tourist growth, hydropower demands). Irregularities and uncertainties in the fluvial regime associated with climate change and the continuous increase in water demand by different sectors will add new challenges to the management and to the resilience of these reservoirs. The resilience of vulnerable reservoirs must be studied in detail to prepare for and mitigate potential impacts of these changes. In this paper, a reservoir balance model is developed and presented for the Pedra e' Othoni reservoir in Sardinia, Italy, to assess resilience to climate and development changes. The model was first calibrated and validated, then forced with extensive ensemble climate data for representative concentration pathways (RCPs) 4.5 and 8.5, agricultural data, and with four socio-economic development scenarios. Future projections show a reduction in annual reservoir inflow and an increase in demand, mainly in the agricultural sector. Under no scenario is reservoir resilience significantly affected, the reservoir always achieves refill. However, this occurs at the partial expenses of hydropower production with implications for the production of renewable energy. There is also the possibility of conflict between the agricultural sector and hydropower sector for diminishing water supply. Pedra e' Othoni reservoir shows good resilience to future change mostly because of the disproportionately large basin feeding it. However this is not the case of other Sardinian reservoirs and hence a detailed resilience assessment of all reservoirs is needed, where development plans should carefully account for the trade-offs and potential conflicts among sectors. For Sardinia, the option of physical connection between reservoirs is available, as are alternative water supply measures. Those reservoirs at risk to future change should be identified, and mitigating measures investigated. Copyright © 2015 Elsevier B.V. All rights reserved.
The economics of soil C sequestration and agricultural emissions abatement
NASA Astrophysics Data System (ADS)
Alexander, P.; Paustian, K.; Smith, P.; Moran, D.
2015-04-01
Carbon is a critical component of soil vitality and is crucial to our ability to produce food. Carbon sequestered in soils also provides a further regulating ecosystem service, valued as the avoided damage from global climate change. We consider the demand and supply attributes that underpin and constrain the emergence of a market value for this vital global ecosystem service: markets being what economists regard as the most efficient institutions for allocating scarce resources to the supply and consumption of valuable goods. This paper considers how a potentially large global supply of soil carbon sequestration is reduced by economic and behavioural constraints that impinge on the emergence of markets, and alternative public policies that can efficiently transact demand for the service from private and public sector agents. In essence, this is a case of significant market failure. In the design of alternative policy options, we consider whether soil carbon mitigation is actually cost-effective relative to other measures in agriculture and elsewhere in the economy, and the nature of behavioural incentives that hinder policy options. We suggest that reducing the cost and uncertainties of mitigation through soil-based measures is crucial for improving uptake. Monitoring and auditing processes will also be required to eventually facilitate wide-scale adoption of these measures.
NASA Astrophysics Data System (ADS)
Ravikumar, Arvind P.; Brandt, Adam R.
2017-04-01
Methane—a short-lived and potent greenhouse gas—presents a unique challenge: it is emitted from a large number of highly distributed and diffuse sources. In this regard, the United States’ Environmental Protection Agency (EPA) has recommended periodic leak detection and repair surveys at oil and gas facilities using optical gas imaging technology. This regulation requires an operator to fix all detected leaks within a set time period. Whether such ‘find-all-fix-all’ policies are effective depends on significant uncertainties in the character of emissions. In this work, we systematically analyze the effect of facility-related and mitigation-related uncertainties on regulation effectiveness. Drawing from multiple publicly-available datasets, we find that: (1) highly-skewed leak-size distributions strongly influence emissions reduction potential; (2) variations in emissions estimates across facilities leads to large variability in mitigation effectiveness; (3) emissions reductions from optical gas imaging-based leak detection programs can range from 15% to over 70%; and (4) while implementation costs are uniformly lower than EPA estimates, benefits from saved gas are highly variable. Combining empirical evidence with model results, we propose four policy options for effective methane mitigation: performance-oriented targets for accelerated emission reductions, flexible policy mechanisms to account for regional variation, technology-agnostic regulations to encourage adoption of the most cost-effective measures, and coordination with other greenhouse gas mitigation policies to reduce unintended spillover effects.
Mitigating Methane: Emerging Technologies To Combat Climate Change's Second Leading Contributor.
Pratt, Chris; Tate, Kevin
2018-06-05
Methane (CH 4 ) is the second greatest contributor to anthropogenic climate change. Emissions have tripled since preindustrial times and continue to rise rapidly, given the fact that the key sources of food production, energy generation and waste management, are inexorably tied to population growth. Until recently, the pursuit of CH 4 mitigation approaches has tended to align with opportunities for easy energy recovery through gas capture and flaring. Consequently, effective abatement has been largely restricted to confined high-concentration sources such as landfills and anaerobic digesters, which do not represent a major share of CH 4 's emission profile. However, in more recent years we have witnessed a quantum leap in the sophistication, diversity and affordability of CH 4 mitigation technologies on the back of rapid advances in molecular analytical techniques, developments in material sciences and increasingly efficient engineering processes. Here, we present some of the latest concepts, designs and applications in CH 4 mitigation, identifying a number of abatement synergies across multiple industries and sectors. We also propose novel ways to manipulate cutting-edge technology approaches for even more effective mitigation potential. The goal of this review is to stimulate the ongoing quest for and uptake of practicable CH 4 mitigation options; supplementing established and proven approaches with immature yet potentially high-impact technologies. There has arguably never been, and if we do not act soon nor will there be, a better opportunity to combat climate change's second most significant greenhouse gas.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
... use with the SVN 49 satellite and will not be implemented for any other GPS satellite. Responses from.... Air Force GPS Wing to discuss the mitigation options. These will be held on March 26, 2010 and April... without the other mitigations. All mitigations are intended for use with SVN 49 only and no changes will...
CO2 Mitigation Measures of Power Sector and Its Integrated Optimization in China
Dai, Pan; Chen, Guang; Zhou, Hao; Su, Meirong; Bao, Haixia
2012-01-01
Power sector is responsible for about 40% of the total CO2 emissions in the world and plays a leading role in climate change mitigation. In this study, measures that lower CO2 emissions from the supply side, demand side, and power grid are discussed, based on which, an integrated optimization model of CO2 mitigation (IOCM) is proposed. Virtual energy, referring to energy saving capacity in both demand side and the power grid, together with conventional energy in supply side, is unified planning for IOCM. Consequently, the optimal plan of energy distribution, considering both economic benefits and mitigation benefits, is figured out through the application of IOCM. The results indicate that development of demand side management (DSM) and smart grid can make great contributions to CO2 mitigation of power sector in China by reducing the CO2 emissions by 10.02% and 12.59%, respectively, in 2015, and in 2020. PMID:23213305
The role of non-CO2 mitigation within the dairy sector in pursuing climate goals
NASA Astrophysics Data System (ADS)
Rolph, K.; Forest, C. E.
2017-12-01
Mitigation of non-CO2 climate forcing agents must complement the mitigation of carbon dioxide (CO2) to achieve long-term temperature and climate policy goals. By using multi-gas mitigation strategies, society can limit the rate of temperature change on decadal timescales and reduce the cost of implementing policies that only consider CO2 mitigation. The largest share of global non-CO2 greenhouse gas emissions is attributed to agriculture, with activities related to dairy production contributing the most in this sector. Approximately 4% of global anthropogenic greenhouse gas emissions is released from the dairy sub-sector, primarily through enteric fermentation, feed production, and manure management. Dairy farmers can significantly reduce their emissions by implementing better management practices. This study assesses the potential mitigation of projected climate change if greenhouse gases associated with the dairy sector were reduced. To compare the performance of several mitigation measures under future climate change, we employ a fully coupled earth system model of intermediate complexity, the MIT Integrated Global System Model (IGSM). The model includes an interactive carbon-cycle capable of addressing important feedbacks between the climate and terrestrial biosphere. Mitigation scenarios are developed using estimated emission reductions of implemented management practices studied by the USDA-funded Sustainable Dairy Project (Dairy-CAP). We examine pathways to reach the US dairy industry's voluntary goal of reducing dairy emissions 25% by 2020. We illustrate the importance of ongoing mitigation efforts in the agricultural industry to reduce non-CO2 greenhouse gas emissions towards established climate goals.
NASA Astrophysics Data System (ADS)
Tarroja, Brian
The convergence of increasing populations, decreasing primary resource availability, and uncertain climates have drawn attention to the challenge of shifting the operations of key resource sectors towards a sustainable paradigm. This is prevalent in California, which has set sustainability-oriented policies such as the Renewable Portfolio Standards and Zero-Emission Vehicle mandates. To meet these goals, many options have been identified to potentially carry out these shifts. The electricity sector is focusing on accommodating renewable power generation, the transportation sector on alternative fuel drivetrains and infrastructure, and the water supply sector on conservation, reuse, and unconventional supplies. Historical performance evaluations of these options, however, have not adequately taken into account the impacts on and constraints of co-dependent infrastructures that must accommodate them and their interactions with other simultaneously deployed options. These aspects are critical for optimally choosing options to meet sustainability goals, since the combined system of all resource sectors must satisfy them. Certain operations should not be made sustainable at the expense of rendering others as unsustainable, and certain resource sectors should not meet their individual goals in a way that hinders the ability of the entire system to do so. Therefore, this work develops and utilizes an integrated platform of the electricity, transportation, and water supply sectors to characterize the performance of emerging technology and management options while taking into account their impacts on co-dependent infrastructures and identify synergistic or detrimental interactions between the deployment of different options. This is carried out by first evaluating the performance of each option in the context of individual resource sectors to determine infrastructure impacts, then again in the context of paired resource sectors (electricity-transportation, electricity-water), and finally in the context of the combined tri-sector system. This allows a more robust basis for composing preferred option portfolios to meet sustainability goals and gives a direction for coordinating the paradigm shifts of different resource sectors. Overall, it is determined that taking into account infrastructure constraints and potential operational interactions can significantly change the evaluation of the preferred role that different technologies should fulfill in contributing towards satisfying sustainability goals in the holistic context.
Morrow, William R; Griffin, W Michael; Matthews, H Scott
2008-05-15
We update a previously presented Linear Programming (LP) methodology for estimating state level costs for reducing CO2 emissions from existing coal-fired power plants by cofiring switchgrass, a biomass energy crop, and coal. This paper presents national level results of applying the methodology to the entire portion of the United States in which switchgrass could be grown without irrigation. We present incremental switchgrass and coal cofiring carbon cost of mitigation curves along with a presentation of regionally specific cofiring economics and policy issues. The results show that cofiring 189 million dry short tons of switchgrass with coal in the existing U.S. coal-fired electricity generation fleet can mitigate approximately 256 million short tons of carbon-dioxide (CO2) per year, representing a 9% reduction of 2005 electricity sector CO2 emissions. Total marginal costs, including capital, labor, feedstock, and transportation, range from $20 to $86/ton CO2 mitigated,with average costs ranging from $20 to $45/ton. If some existing power plants upgrade to boilers designed for combusting switchgrass, an additional 54 million tons of switchgrass can be cofired. In this case, total marginal costs range from $26 to $100/ton CO2 mitigated, with average costs ranging from $20 to $60/ton. Costs for states east of the Mississippi River are largely unaffected by boiler replacement; Atlantic seaboard states represent the lowest cofiring cost of carbon mitigation. The central plains states west of the Mississippi River are most affected by the boiler replacement option and, in general, go from one of the lowest cofiring cost of carbon mitigation regions to the highest. We explain the variation in transportation expenses and highlight regional cost of mitigation variations as transportation overwhelms other cofiring costs.
Intersects between Land, Energy, Water and the Climate System
NASA Astrophysics Data System (ADS)
Hibbard, K. A.; Skaggs, R.; Wilson, T.
2012-12-01
Climate change affects water, and land resources, and with growing human activity, each of these sectors relies increasingly on the others for critical resources. Events such as drought across the South Central U.S. during 2011 demonstrate that climatic impacts within each of these sectors can cascade through interactions between sectors. Energy, water, and land resources are each vulnerable to impacts on either of the other two sectors. For example, energy systems inherently require land and water. Increased electricity demands to contend with climate change can impose additional burdens on overly subscribed water resources. Within this environment, energy systems compete for water with agriculture, human consumption, and other needs. In turn, climate driven changes in landscape attributes and land use affect water quality and availability as well as energy demands. Diminishing water quality and availability impose additional demands for energy to access and purify water, and for land to store and distribute water. In some situations, interactions between water, energy, and land resources make options for reducing greenhouse gas emissions vulnerable to climate change. Energy options such as solar power or biofuel use can reduce net greenhouse gas emissions as well as U.S. dependence on foreign resources. As a result, the U.S. is expanding renewable energy systems. Advanced technology such as carbon dioxide capture with biofuels may offer a means of removing CO2 from the atmosphere. But as with fossil fuels, renewable energy sources can impose significant demands for water and land. For example, solar power mayrequire significant land to site facilities and water for cooling or to produce steam. Raising crops to produce biofuels uses arable land and water that might otherwise be available for food production. Thus, warmer and drier climate can compromise these renewable energy resources, and drought can stress water supplies creating competition between energy production and agriculture. These kinds of stresses often initiate innovated technological developments, such as dry cooling to reduce water demands in the U.S. Southwest for utility-scalesolar development, however, the need for large areas of land remain, and often, large land tracts in this region are under Federal ownership and used as conservation or wildlife refuges. Conflicting stakeholder views, institutional commitments, and international concerns can constrain options for reducing vulnerability to climate change, and interactions among water, energy, and land resource sectors can intensify such constraints. While management decisions may focus primarily on one of these resource sectors, where the three sectors are tightly coupled, options for mitigating or adapting to climate change may be limited more than expected. For example, the Columbia River Treaty between Canada and the U.S. emphasizes hydroelectric power and flood control, but with warmer temperatures and drier summers projected for the Northwest, diminishing water supplies will result in increased pumping for resource production (i.e., deeper groundwater) and transmission. Finally, coordinated water management for agriculture, ecosystem services, and hydropower will be an important aspect of adaptation not necessarily accommodated by the Treaty.
2014-03-01
the number of appropriate private sector housing units available to military families within 20 miles, or a GO-minute commute during peak driving...likely be accomplished by purchasing wetland mitigation credits at a USACE-approved mitigation bank in the service area where Moody AFB is located...authorized the Department of Defense (DoD) to engage private sector businesses through a process of housing privatization, wherein private sector housing
NASA Astrophysics Data System (ADS)
Deng, Hong-Mei; Liang, Qiao-Mei; Liu, Li-Jing; Diaz Anadon, Laura
2017-12-01
The perceived inability of climate change mitigation goals alone to mobilize sufficient climate change mitigation efforts has, among other factors, led to growing research on the co-benefits of reducing greenhouse gas (GHG) emissions. This study conducts a systematic review (SR) of the literature on the co-benefits of mitigating GHG emissions resulting in 1554 papers. We analyze these papers using bibliometric analysis, including a keyword co-occurrence analysis. We then iteratively develop and present a typology of co-benefits, mitigation sectors, geographic scope, and methods based on the manual double coding of the papers resulting from the SR. We find that the co-benefits from GHG mitigation that have received the largest attention of researchers are impacts on ecosystems, economic activity, health, air pollution, and resource efficiency. The co-benefits that have received the least attention include the impacts on conflict and disaster resilience, poverty alleviation (or exacerbation), energy security, technological spillovers and innovation, and food security. Most research has investigated co-benefits from GHG mitigation in the agriculture, forestry and other land use (AFOLU), electricity, transport, and residential sectors, with the industrial sector being the subject of significantly less research. The largest number of co-benefits publications provide analysis at a global level, with relatively few studies providing local (city) level analysis or studying co-benefits in Oceanian or African contexts. Finally, science and engineering methods, in contrast to economic or social science methods, are the methods most commonly employed in co-benefits papers. We conclude that given the potential mobilizing power of understudied co-benefits (e.g. poverty alleviation) and local impacts, the magnitude of GHG emissions from the industrial sector, and the fact that Africa and South America are likely to be severely affected by climate change, there is an opportunity for the research community to fill these gaps.
NASA Astrophysics Data System (ADS)
Quinton, John; Stevens, Carly
2010-05-01
Pollution swapping occurs when a mitigation option introduced to reduce one pollutant results in an increase in a different pollutant. Although the concept of pollution swapping is widely understood it has received little attention in research and policy design. This study investigated diffuse pollution mitigation options applied in combinable crop systems. They are: cover crops, residue management, no-tillage, riparian buffer zones, contour grass strips and constructed wetlands. A wide range of water and atmospheric pollutants were considered, including nitrogen, phosphorus, carbon and sulphur. It is clear from this investigation that there is no single mitigation option that will reduce all pollutants and in this poster we consider how choices may be made between mitigation measures which may have a positive effect on one pollutant but a negative effect on another.
Climate change and eHealth: a promising strategy for health sector mitigation and adaptation
Holmner, Åsa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria
2012-01-01
Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on ‘green information and communication technology (ICT)’ are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies. PMID:22679398
Climate change and eHealth: a promising strategy for health sector mitigation and adaptation.
Holmner, Asa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria
2012-01-01
Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on 'green information and communication technology (ICT)' are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies.
Susceptibility of SCADA systems and the energy sector
NASA Astrophysics Data System (ADS)
Goike, Lindsay
The research in this paper focused on analyzing SCADA systems in the energy sector for susceptibility to cyber attacks, in furtherance of providing suggestions to mitigate current and future cyber attacks. The research will be addressing the questions: how are SCADA systems susceptible to cyber attacks, and what are the suggested ways to mitigate both current and future cyber attacks. The five main categories of security vulnerabilities facing current SCADA systems were found to be: connectivity to the Internet, failure to plan, interdependency of sectors, numerous different types of threats, and outdated software. Some of the recommendations mentioned to mitigate current and future risks were: virtual private networks, risk assessments, increased physical security, updating of software, and firewalls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sarah L; Hotchkiss, Elizabeth L; Bilello, Daniel E
Reliable, safe, and secure electricity is essential for economic and social development and a necessary input for many sectors of the economy. However, electricity generation and associated processes make up a significant portion of global greenhouse gas (GHG) emissions contributing to climate change. Furthermore, electricity systems are vulnerable to climate change impacts - both short-term events and changes over the longer term. This vulnerability presents both near-term and chronic challenges in providing reliable, affordable, equitable, and sustainable energy services. Within this context, developing countries face a number of challenges in the energy sector, including the need to reliably meet growingmore » electricity demand, lessen dependence on imported fuels, expand energy access, and improve stressed infrastructure for fuel supply and electricity transmission. Energy efficiency (EE) and renewable energy (RE) technical solutions described in this paper can bridge action across climate change mitigation and resilience through reducing GHG emissions and supporting electric power sector adaptation to increasing climate risk. Integrated planning approaches, also highlighted in this paper, play an integral role in bringing together mitigation and resilience action under broader frameworks. Through supporting EE and RE deployment and integrated planning approaches, unique to specific national and local circumstances, countries can design and implement policies, strategies, and sectoral plans that unite development priorities, climate change mitigation, and resilience.« less
Pathways to Mexico’s climate change mitigation targets: A multi-model analysis
Veysey, Jason; Octaviano, Claudia; Calvin, Katherine; ...
2015-04-25
Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexico have grown substantially over the last two decades. Here, we investigate how Mexico might reverse current trends and reach its mitigation targets by exploring results from energy system and economic models involved in the CLIMACAP-LAMP project. To meet Mexico’s emission reduction targets, all modeling groups agree that decarbonization of electricity is needed, along withmore » changes in the transport sector, either to more efficient vehicles or a combination of more efficient vehicles and lower carbon fuels. These measures reduce GHG emissions as well as emissions of other air pollutants. The models find different energy supply pathways, with some solutions based on renewable energy and others relying on biomass or fossil fuels with carbon capture and storage. The economy-wide costs of deep mitigation could range from 2% to 4% of GDP in 2030, and from 7% to 15% of GDP in 2050. Our results suggest that Mexico has some flexibility in designing deep mitigation strategies, and that technological options could allow Mexico to achieve its emission reduction targets, albeit at a cost to the country.« less
NASA Astrophysics Data System (ADS)
Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao
If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.
Role of the Freight Sector in Future Climate Change Mitigation Scenarios
Muratori, Matteo; Smith, Steven J.; Kyle, Page; ...
2017-02-27
The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that applymore » a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. Finally, by contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.« less
Role of the Freight Sector in Future Climate Change Mitigation Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratori, Matteo; Smith, Steven J.; Kyle, Page
The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that applymore » a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. Finally, by contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.« less
Role of the Freight Sector in Future Climate Change Mitigation Scenarios.
Muratori, Matteo; Smith, Steven J; Kyle, Page; Link, Robert; Mignone, Bryan K; Kheshgi, Haroon S
2017-03-21
The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that apply a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. By contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.
Strategies to mitigate nitrous oxide emissions from herbivore production systems.
Schils, R L M; Eriksen, J; Ledgard, S F; Vellinga, Th V; Kuikman, P J; Luo, J; Petersen, S O; Velthof, G L
2013-03-01
Herbivores are a significant source of nitrous oxide (N(2)O) emissions. They account for a large share of manure-related N(2)O emissions, as well as soil-related N(2)O emissions through the use of grazing land, and land for feed and forage production. It is widely acknowledged that mitigation measures are necessary to avoid an increase in N(2)O emissions while meeting the growing global food demand. The production and emissions of N(2)O are closely linked to the efficiency of nitrogen (N) transfer between the major components of a livestock system, that is, animal, manure, soil and crop. Therefore, mitigation options in this paper have been structured along these N pathways. Mitigation technologies involving diet-based intervention include lowering the CP content or increasing the condensed tannin content of the diet. Animal-related mitigation options also include breeding for improved N conversion and high animal productivity. The main soil-based mitigation measures include efficient use of fertilizer and manure, including the use of nitrification inhibitors. In pasture-based systems with animal housing facilities, reducing grazing time is an effective option to reduce N(2)O losses. Crop-based options comprise breeding efforts for increased N-use efficiency and the use of pastures with N(2)-fixing clover. It is important to recognize that all N(2)O mitigation options affect the N and carbon cycles of livestock systems. Therefore, care should be taken that reductions in N(2)O emissions are not offset by unwanted increases in ammonia, methane or carbon dioxide emissions. Despite the abundant availability of mitigation options, implementation in practice is still lagging. Actual implementation will only follow after increased awareness among farmers and greenhouse gases targeted policies. So far, reductions in N(2)O emissions that have been achieved are mostly a positive side effect of other N-targeted policies.
Improved representation of investment decisions in assessments of CO2 mitigation
NASA Astrophysics Data System (ADS)
Iyer, Gokul C.; Clarke, Leon E.; Edmonds, James A.; Flannery, Brian P.; Hultman, Nathan E.; McJeon, Haewon C.; Victor, David G.
2015-05-01
Assessments of emissions mitigation patterns have largely ignored the huge variation in real-world factors--in particular, institutions--that affect where, how and at what costs firms deploy capital. We investigate one such factor--how national institutions affect investment risks and thus the cost of financing. We use an integrated assessment model (IAM; ref. ) to represent the variation in investment risks across technologies and regions in the electricity generation sector--a pivotally important sector in most assessments of climate change mitigation--and compute the impact on the magnitude and distribution of mitigation costs. This modified representation of investment risks has two major effects. First, achieving an emissions mitigation goal is more expensive than it would be in a world with uniform investment risks. Second, industrialized countries mitigate more, and developing countries mitigate less. Here, we introduce a new front in the research on how real-world factors influence climate mitigation. We also suggest that institutional reforms aimed at lowering investment risks could be an important element of cost-effective climate mitigation strategies.
Gao, Jinghong; Hou, Hongli; Zhai, Yunkai; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; Li, Liping; Song, Xiaoqin; Xu, Lei; Meng, Bohan; Liu, Xiaobo; Wang, Jun; Zhao, Jie; Liu, Qiyong
2018-09-01
To date, greenhouse gas (GHG) emissions, mitigation strategies and the accompanying health co-benefits in different economic sectors have not been fully investigated. The purpose of this paper is to review comprehensively the evidence on GHG mitigation measures and the related health co-benefits, identify knowledge gaps, and provide recommendations to promote further development and implementation of climate change response policies. Evidence on GHG emissions, abatement measures and related health co-benefits has been observed at regional, national and global levels, involving both low- and high-income societies. GHG mitigation actions have mainly been taken in five sectors: energy generation, transport, food and agriculture, household and industry, consistent with the main sources of GHG emissions. GHGs and air pollutants to a large extent stem from the same sources and are inseparable in terms of their atmospheric evolution and effects on ecosystem; thus, GHG reductions are usually, although not always, estimated to have cost effective co-benefits for public health. Some integrated mitigation strategies involving multiple sectors, which tend to create greater health benefits. The pros and cons of different mitigation measures, issues with existing knowledge, priorities for research, and potential policy implications were also discussed. Findings from this study can play a role not only in motivating large GHG emitters to make decisive changes in GHG emissions, but also in facilitating cooperation at international, national and regional levels, to promote GHG mitigation policies that protect public health from climate change and air pollution simultaneously. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Effect of Mitigation Policy on Regional Climate Impacts on the U.S. Electric Sector
NASA Astrophysics Data System (ADS)
Cohen, S. M.; Sun, Y.; Strzepek, K.; McFarland, J.; Boehlert, B.; Fant, C.
2017-12-01
Climate change can influence the U.S. electricity sector in many ways, the nature of which can be shaped by energy and environmental policy choices. Changing temperatures affect electricity demand largely through heating and cooling needs, and temperatures also affect generation and transmission system performance. Altered precipitation patterns affect the regional and seasonal distribution of surface water runoff, which changes hydropower operation and thermal cooling water availability. The extent to which these stimuli influence U.S. power sector operation and planning will depend to some extent on whether or not proactive policies are enacted to mitigate these impacts. Mitigation policies such as CO2 emissions limits or technology restrictions can change the makeup of the electricity system while reducing the extent of climate change itself. We use the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS), a U.S. electric sector capacity expansion model, to explore electric sector evolution through 2050 under alternative climate and policy assumptions. The model endogenously represents climate impacts on load, power system performance, cooling water availability, and hydropower, allowing internally consistent system responses to climate change along with projected technology, market, and policy conditions. We compare climate impacts across 5 global circulation models for a 8.5 W/m2 representative concentration pathway (RCP) without a climate mitigation policy and a 4.5 W/m2 RCP with climate mitigation. Climate drivers affect the capacity and generation mix at the national and regional levels, with relative growth of wind, solar, and natural gas-based technologies depending on local electricity system characteristics. These differences affect regional economic impacts, measured here as changes to electricity price and system costs. Mitigation policy reduces the economic and system impacts of climate change largely by moderating temperature-induced load but also by lessening water- and temperature-based performance constraints. Policy impacts are nuanced and region-specific, and this analysis underscores the importance of climate mitigation policy to regional electricity system planning decisions.
Mitigating GHG emissions in dairy production
USDA-ARS?s Scientific Manuscript database
Comprehensive inventories of greenhouse gas (GHG) mitigation options for animal agriculture have been published recently. For dairy production systems, management option include (1) manipulation of dietary components (e.g., forages, concentrates) and use of feed additives (e.g., oils, tannins) to re...
One Health Economics to confront disease threats.
Machalaba, Catherine; Smith, Kristine M; Awada, Lina; Berry, Kevin; Berthe, Franck; Bouley, Timothy A; Bruce, Mieghan; Cortiñas Abrahantes, Jose; El Turabi, Anas; Feferholtz, Yasha; Flynn, Louise; Fournié, Giullaume; Andre, Amanda; Grace, Delia; Jonas, Olga; Kimani, Tabitha; Le Gall, François; Miranda, Juan Jose; Peyre, Marisa; Pinto, Julio; Ross, Noam; Rüegg, Simon R; Salerno, Robert H; Seifman, Richard; Zambrana-Torrelio, Carlos; Karesh, William B
2017-06-01
Global economic impacts of epidemics suggest high return on investment in prevention and One Health capacity. However, such investments remain limited, contributing to persistent endemic diseases and vulnerability to emerging ones. An interdisciplinary workshop explored methods for country-level analysis of added value of One Health approaches to disease control. Key recommendations include: 1. systems thinking to identify risks and mitigation options for decision-making under uncertainty; 2. multisectoral economic impact assessment to identify wider relevance and possible resource-sharing, and 3. consistent integration of environmental considerations. Economic analysis offers a congruent measure of value complementing diverse impact metrics among sectors and contexts. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.
A meta-analysis of the greenhouse gas abatement of bioenergy factoring in land use changes.
El Akkari, M; Réchauchère, O; Bispo, A; Gabrielle, B; Makowski, D
2018-06-04
Non-food biomass production is developing rapidly to fuel the bioenergy sector and substitute dwindling fossil resources, which is likely to impact land-use patterns worldwide. Recent publications attempting to factor this effect into the climate mitigation potential of bioenergy chains have come to widely variable conclusions depending on their scope, data sources or methodology. Here, we conducted a first of its kind, systematic review of scientific literature on this topic and derived quantitative trends through a meta-analysis. We showed that second-generation biofuels and bioelectricity have a larger greenhouse gas (GHG) abatement potential than first generation biofuels, and stand the best chances (with a 80 to 90% probability range) of achieving a 50% reduction compared to fossil fuels. Conversely, directly converting forest ecosystems to produce bioenergy feedstock appeared as the worst-case scenario, systematically leading to negative GHG savings. On the other hand, converting grassland appeared to be a better option and entailed a 60% chance of halving GHG emissions compared to fossil energy sources. Since most climate mitigation scenarios assume still larger savings, it is critical to gain better insight into land-use change effects to provide a more realistic estimate of the mitigation potential associated with bioenergy.
Haines, Andy; Smith, Kirk R; Anderson, Dennis; Epstein, Paul R; McMichael, Anthony J; Roberts, Ian; Wilkinson, Paul; Woodcock, James; Woods, Jeremy
2007-10-06
The absence of reliable access to clean energy and the services it provides imposes a large disease burden on low-income populations and impedes prospects for development. Furthermore, current patterns of fossil-fuel use cause substantial ill-health from air pollution and occupational hazards. Impending climate change, mainly driven by energy use, now also threatens health. Policies to promote access to non-polluting and sustainable sources of energy have great potential both to improve public health and to mitigate (prevent) climate disruption. There are several technological options, policy levers, and economic instruments for sectors such as power generation, transport, agriculture, and the built environment. However, barriers to change include vested interests, political inertia, inability to take meaningful action, profound global inequalities, weak technology-transfer mechanisms, and knowledge gaps that must be addressed to transform global markets. The need for policies that prevent dangerous anthropogenic interference with the climate while addressing the energy needs of disadvantaged people is a central challenge of the current era. A comprehensive programme for clean energy should optimise mitigation and, simultaneously, adaption to climate change while maximising co-benefits for health--eg, through improved air, water, and food quality. Intersectoral research and concerted action, both nationally and internationally, will be required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veysey, Jason; Octaviano, Claudia; Calvin, Katherine
Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexico have grown substantially over the last two decades. Here, we investigate how Mexico might reverse current trends and reach its mitigation targets by exploring results from energy system and economic models involved in the CLIMACAP-LAMP project. To meet Mexico’s emission reduction targets, all modeling groups agree that decarbonization of electricity is needed, along withmore » changes in the transport sector, either to more efficient vehicles or a combination of more efficient vehicles and lower carbon fuels. These measures reduce GHG emissions as well as emissions of other air pollutants. The models find different energy supply pathways, with some solutions based on renewable energy and others relying on biomass or fossil fuels with carbon capture and storage. The economy-wide costs of deep mitigation could range from 2% to 4% of GDP in 2030, and from 7% to 15% of GDP in 2050. Our results suggest that Mexico has some flexibility in designing deep mitigation strategies, and that technological options could allow Mexico to achieve its emission reduction targets, albeit at a cost to the country.« less
Industrial Scale Energy Systems Integration; NREL (National Renewable Energy Laboratory)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, Mark
2015-07-28
The industrial sector consumes 25% of the total energy in the U.S. and produces 18% of the greenhouse gas (GHG) emissions. Energy Systems Integration (ESI) opportunities can reduce those values and increase the profitability of that sector. This presentation outlines several options. Combined heat and power (CHP) is an option that is available today for many applications. In some cases, it can be extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits ofmore » CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed. extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed.« less
Casas-Mulet, Roser; Saltveit, Svein Jakob; Alfredsen, Knut Tore
2016-12-15
Alterations in hydrological and thermal regimes can potentially affect salmonid early life stages development and survival. The dewatering of salmon spawning redds due to hydropeaking can lead to mortality in early life stages, with higher impact on the alevins as they have lower tolerance to dewatering than the eggs. Flow-related mitigation measures can reduce early life stage mortality. We present a set of modelling tools to assess impacts and mitigation options to minimise the risk of mortality in early life stages in hydropeaking rivers. We successfully modelled long-term hydrological and thermal alterations and consequences for development rates. We estimated the risk of early life stages mortality and assessed the cost-effectiveness of implementing three release-related mitigation options (A,B,C). The economic cost of mitigation was low and ranged between 0.7% and 2.6% of the annual hydropower production. Options reducing the flow during spawning (B and C) in addition to only release minimum flows during development (A) were considered more effective for egg and alevin survival. Options B and C were however constraint by water availability in the system for certain years, and therefore only option A was always feasible. The set of modelling tools used in this study were satisfactory and their applications can be useful especially in systems where little field data is available. Targeted measures built on well-informed modelling tools can be tested on their effectiveness to mitigate dewatering effects vs. the hydropower system capacity to release or conserve water for power production. Environmental flow releases targeting specific ecological objectives can provide better cost-effective options than conventional operational rules complying with general legislation. Copyright © 2016 Elsevier B.V. All rights reserved.
A Model for Climate Change Adaptation
NASA Astrophysics Data System (ADS)
Pasqualini, D.; Keating, G. N.
2009-12-01
Climate models predict serious impacts on the western U.S. in the next few decades, including increased temperatures and reduced precipitation. In combination, these changes are linked to profound impacts on fundamental systems, such as water and energy supplies, agriculture, population stability, and the economy. Global and national imperatives for climate change mitigation and adaptation are made actionable at the state level, for instance through greenhouse gas (GHG) emission regulations and incentives for renewable energy sources. However, adaptation occurs at the local level, where energy and water usage can be understood relative to local patterns of agriculture, industry, and culture. In response to the greenhouse gas emission reductions required by California’s Assembly Bill 32 (2006), Sonoma County has committed to sharp emissions reductions across several sectors, including water, energy, and transportation. To assist Sonoma County develop a renewable energy (RE) portfolio to achieve this goal we have developed an integrated assessment model, CLEAR (CLimate-Energy Assessment for Resiliency) model. Building on Sonoma County’s existing baseline studies of energy use, carbon emissions and potential RE sources, the CLEAR model simulates the complex interactions among technology deployment, economics and social behavior. This model enables assessment of these and other components with specific analysis of their coupling and feedbacks because, due to the complex nature of the problem, the interrelated sectors cannot be studied independently. The goal is an approach to climate change mitigation and adaptation that is replicable for use by other interested communities. The model user interfaces helps stakeholders and policymakers understand options for technology implementation.
NASA Astrophysics Data System (ADS)
Patrizio, Piera; Leduc, Sylvain; Mesfun, Sennai; Yowargana, Ping; Kraxner, Florian
2017-04-01
The mitigation of adverse environmental impacts due to climate change requires the reduction of carbon dioxide emissions - also from the U.S. energy sector, a dominant source of greenhouse-gas emissions. This is especially true for the existing fleet of coal-fired power plants, accounting for roughly two-thirds of the U.S. energy sectors' total CO2 emissions. With this aim, different carbon mitigation options have been proposed in literature, such as increasing the energy efficiency, co-firing of biomass and/or the adoption of carbon capturing technologies (BECCS). However, the extent to which these solutions can be adopted depends on a suite of site specific factors and therefore needs to be evaluated on a site-specific basis. We propose a spatially explicit approach to identify candidate coal plants for which carbon capture technologies are economically feasible, according to different economic and policy frameworks. The methodology implies the adoption of IIASA's techno economic model BeWhere, which optimizes the cost of the entire BECCS supply chain, from the biomass resources to the storage of the CO2 in the nearest geological sink. The results shows that biomass co-firing appears to be the most appealing economic solution for a larger part of the existing U.S. coal fleet, while the adoption of CCS technologies is highly dependent on the level of CO2 prices as well as on local factors such as the type of coal firing technology and proximity of storage sites.
Comparing impacts of climate change and mitigation on global agriculture by 2050
NASA Astrophysics Data System (ADS)
van Meijl, Hans; Havlik, Petr; Lotze-Campen, Hermann; Stehfest, Elke; Witzke, Peter; Pérez Domínguez, Ignacio; Bodirsky, Benjamin Leon; van Dijk, Michiel; Doelman, Jonathan; Fellmann, Thomas; Humpenöder, Florian; Koopman, Jason F. L.; Müller, Christoph; Popp, Alexander; Tabeau, Andrzej; Valin, Hugo; van Zeist, Willem-Jan
2018-06-01
Systematic model inter-comparison helps to narrow discrepancies in the analysis of the future impact of climate change on agricultural production. This paper presents a set of alternative scenarios by five global climate and agro-economic models. Covering integrated assessment (IMAGE), partial equilibrium (CAPRI, GLOBIOM, MAgPIE) and computable general equilibrium (MAGNET) models ensures a good coverage of biophysical and economic agricultural features. These models are harmonized with respect to basic model drivers, to assess the range of potential impacts of climate change on the agricultural sector by 2050. Moreover, they quantify the economic consequences of stringent global emission mitigation efforts, such as non-CO2 emission taxes and land-based mitigation options, to stabilize global warming at 2 °C by the end of the century under different Shared Socioeconomic Pathways. A key contribution of the paper is a vis-à-vis comparison of climate change impacts relative to the impact of mitigation measures. In addition, our scenario design allows assessing the impact of the residual climate change on the mitigation challenge. From a global perspective, the impact of climate change on agricultural production by mid-century is negative but small. A larger negative effect on agricultural production, most pronounced for ruminant meat production, is observed when emission mitigation measures compliant with a 2 °C target are put in place. Our results indicate that a mitigation strategy that embeds residual climate change effects (RCP2.6) has a negative impact on global agricultural production relative to a no-mitigation strategy with stronger climate impacts (RCP6.0). However, this is partially due to the limited impact of the climate change scenarios by 2050. The magnitude of price changes is different amongst models due to methodological differences. Further research to achieve a better harmonization is needed, especially regarding endogenous food and feed demand, including substitution across individual commodities, and endogenous technological change.
Drivers of U.S. toxicological footprints trajectory 1998-2013
NASA Astrophysics Data System (ADS)
Koh, S. C. L.; Ibn-Mohammed, T.; Acquaye, A.; Feng, K.; Reaney, I. M.; Hubacek, K.; Fujii, H.; Khatab, K.
2016-12-01
By exploiting data from the Toxic Release Inventory of the United States, we have established that the toxicological footprint (TF) increased by 3.3% (88.4 Mt) between 1998 and 1999 and decreased by 39% (1088.5 Mt) between 1999 and 2013. From 1999 to 2006, the decreasing TF was driven by improvements in emissions intensity (i.e. gains in production efficiency) through toxic chemical management options: cleaner production; end of pipe treatment; transfer for further waste management; and production scale. In particular, the mining sector reduced its TF through outsourcing processes. Between 2006 and 2009, decreasing TF was due to decrease in consumption volume triggered by economic recession. Since 2009, the economic recovery increased TF, overwhelming the influence of improved emissions intensity through population growth, consumption and production structures. Accordingly, attaining a less-toxic economy and environment will be influenced by a combination of gains in production efficiency through improvement in emissions mitigation technologies and changes in consumption patterns. Overall, the current analysis highlights the structural dynamics of toxic chemical release and would inform future formulation of effective mitigation standards and management protocols towards the detoxification of the environment.
NASA Astrophysics Data System (ADS)
Thomson, A. M.; Izaurralde, R. C.; Calvin, K.; Zhang, X.; Wise, M.; West, T. O.
2010-12-01
Climate change and food security are global issues increasingly linked through human decision making that takes place across all scales from on-farm management actions to international climate negotiations. Understanding how agricultural systems can respond to climate change, through mitigation or adaptation, while still supplying sufficient food to feed a growing global population, thus requires a multi-sector tool in a global economic framework. Integrated assessment models are one such tool, however they are typically driven by historical aggregate statistics of production in combination with exogenous assumptions of future trends in agricultural productivity; they are not yet capable of exploring agricultural management practices as climate adaptation or mitigation strategies. Yet there are agricultural models capable of detailed biophysical modeling of farm management and climate impacts on crop yield, soil erosion and C and greenhouse gas emissions, although these are typically applied at point scales that are incompatible with coarse resolution integrated assessment modeling. To combine the relative strengths of these modeling systems, we are using the agricultural model EPIC (Environmental Policy Integrated Climate), applied in a geographic data framework for regional analyses, to provide input to the global economic model GCAM (Global Change Assessment Model). The initial phase of our approach focuses on a pilot region of the Midwest United States, a highly productive agricultural area. We apply EPIC, a point based biophysical process model, at 60 m spatial resolution within this domain and aggregate the results to GCAM agriculture and land use subregions for the United States. GCAM is then initialized with multiple management options for key food and bioenergy crops. Using EPIC to distinguish these management options based on grain yield, residue yield, soil C change and cost differences, GCAM then simulates the optimum distribution of the available management options to meet demands for food and energy over the next century. The coupled models provide a new platform for evaluating future changes in agricultural management based on food demand, bioenergy demand, and changes in crop yield and soil C under a changing climate. This framework can be applied to evaluate the economically and biophysically optimal distribution of management under future climates.
Martinez, Sara; Marchamalo, Miguel; Alvarez, Sergio
2018-03-15
Wood has been presented as a carbon-neutral material capable of significantly contribute to climate change mitigation and has become an appealing option for the building sector. This paper presents the quantification of the organization environmental footprint of a wood parquet company. The multi-regional input-output (MRIO) database EXIOBASE was used with a further structural path analysis decomposition. The application of the proposed method quantifies 14 environmental impacts. Highly influential sectors and regions responsible for these impacts are assessed to propose efficient measures. For the parquet company studied, the highest impact category once normalized was ozone depletion and the dominant sector responsible for this impact was the chemical industry from Spain and China. The structural path decomposition related to ozone loss revealed that the indirect impacts embedded in the supply chain are higher than the direct impacts. It can be concluded that the assessment of the organizational environmental footprint can be carried out applying this well-structured and robust method. Its implementation will enable tracking of the environmental burdens through a company's supply chain at a global scale and provide information for the adoption of environmental strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
Urban cross-sector actions for carbon mitigation with local health co-benefits in China
NASA Astrophysics Data System (ADS)
Ramaswami, Anu; Tong, Kangkang; Fang, Andrew; Lal, Raj M.; Nagpure, Ajay Singh; Li, Yang; Yu, Huajun; Jiang, Daqian; Russell, Armistead G.; Shi, Lei; Chertow, Marian; Wang, Yangjun; Wang, Shuxiao
2017-10-01
Cities offer unique strategies to reduce fossil fuel use through the exchange of energy and materials across homes, businesses, infrastructure and industries co-located in urban areas. However, the large-scale impact of such strategies has not been quantified. Using new models and data sets representing 637 Chinese cities, we find that such cross-sectoral strategies--enabled by compact urban design and circular economy policies--contribute an additional 15%-36% to national CO2 mitigation, compared to conventional single-sector strategies. As a co-benefit, ~25,500 to ~57,500 deaths annually are avoided from air pollution reduction. The benefits are highly variable across cities, ranging from <1%-37% for CO2 emission reduction and <1%-47% for avoided premature deaths. These results, using multi-scale, multi-sector physical systems modelling, identify cities with high carbon and health co-benefit potential and show that urban-industrial symbiosis is a significant carbon mitigation strategy, achievable with a combination of existing and advanced technologies in diverse city types.
de Boer, Joop; de Witt, Annick; Aiking, Harry
2016-03-01
This paper explores how the transition to a low-carbon society to mitigate climate change can be better supported by a diet change. As climate mitigation is not the focal goal of consumers who are buying or consuming food, the study highlighted the role of motivational and cognitive background factors, including possible spillover effects. Consumer samples in the Netherlands (n = 527) and the United States (n = 556) were asked to evaluate food-related and energy-related mitigation options in a design that included three food-related options with very different mitigation potentials (i.e. eating less meat, buying local and seasonal food, and buying organic food). They rated each option's effectiveness and their willingness to adopt it. The outstanding effectiveness of the less meat option (as established by climate experts) was recognized by merely 12% of the Dutch and 6% of the American sample. Many more participants gave fairly positive effectiveness ratings and this was correlated with belief in human causation of climate change, personal importance of climate change, and being a moderate meat eater. Willingness to adopt the less meat option increased with its perceived effectiveness and, controlling for that, it was significantly related to various motivationally relevant factors. The local food option appealed to consumer segments with overlapping but partly different motivational orientations. It was concluded that a transition to a low carbon society can significantly benefit from a special focus on the food-related options to involve more consumers and to improve mitigation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Real options approach to inter-sectoral migration of U.S.farm labor
Gulcan Onel; Barry K. Goodwin
2014-01-01
The core of the literature on inter-sectoral labor migration is based on net present value models of investment in which individuals are assumed to migrate to take advantage of positive wage differentials. In this article, we argue that a real options approach, taken together with the adjustment costs associated with sectoral relocation, may provide a basis for...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... the Number of Components in the PHLX Semiconductor Sector SM Known as SOX SM , on Which Options are... expand the number of components in the PHLX Semiconductor Sector\\SM\\ known as SOX\\SM\\, on which options... 240.19b-4. \\3\\ PHLX Semiconductor Sector\\SM\\ may also be known as PHLX Semiconductor Index or PHLX...
Falloon, Pete; Betts, Richard
2010-11-01
We review and qualitatively assess the importance of interactions and feedbacks in assessing climate change impacts on water and agriculture in Europe. We focus particularly on the impact of future hydrological changes on agricultural greenhouse gas (GHG) mitigation and adaptation options. Future projected trends in European agriculture include northward movement of crop suitability zones and increasing crop productivity in Northern Europe, but declining productivity and suitability in Southern Europe. This may be accompanied by a widening of water resource differences between the North and South, and an increase in extreme rainfall events and droughts. Changes in future hydrology and water management practices will influence agricultural adaptation measures and alter the effectiveness of agricultural mitigation strategies. These interactions are often highly complex and influenced by a number of factors which are themselves influenced by climate. Mainly positive impacts may be anticipated for Northern Europe, where agricultural adaptation may be shaped by reduced vulnerability of production, increased water supply and reduced water demand. However, increasing flood hazards may present challenges for agriculture, and summer irrigation shortages may result from earlier spring runoff peaks in some regions. Conversely, the need for effective adaptation will be greatest in Southern Europe as a result of increased production vulnerability, reduced water supply and increased demands for irrigation. Increasing flood and drought risks will further contribute to the need for robust management practices. The impacts of future hydrological changes on agricultural mitigation in Europe will depend on the balance between changes in productivity and rates of decomposition and GHG emission, both of which depend on climatic, land and management factors. Small increases in European soil organic carbon (SOC) stocks per unit land area are anticipated considering changes in climate, management and land use, although an overall reduction in the total stock may result from a smaller agricultural land area. Adaptation in the water sector could potentially provide additional benefits to agricultural production such as reduced flood risk and increased drought resilience. The two main sources of uncertainty in climate impacts on European agriculture and water management are projections of future climate and their resulting impacts on water and agriculture. Since changes in climate, agricultural ecosystems and hydrometeorology depend on complex interactions between the atmosphere, biosphere and hydrological cycle there is a need for more integrated approaches to climate impacts assessments. Methods for assessing options which "moderate" the impact of agriculture in the wider sense will also need to consider cross-sectoral impacts and socio-economic aspects. Crown Copyright © 2009. Published by Elsevier B.V. All rights reserved.
GREENHOUSE GAS MITIGATION POTENTIAL IN U.S. FORESTRY AND AGRICULTURE
This report describes the FASOM-GHG model (Forestry and Agriculture Sector Optimization Model with Greenhouse Gases), the GHG mitigation scenarios for U.S. forestry and agriculture run through the FASOM-GHG model, and the results and insights that are generated. GHG mitigation po...
The Moving Target of Climate Mitigation: Examples from the Energy Sector in California
NASA Astrophysics Data System (ADS)
Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.
2016-12-01
In response to the concerns of climate change-induced impacts on human health, environmental integrity, and the secure operation of resource supply infrastructures, strategies to reduce greenhouse gas (GHG) emissions of major societal sectors have been in development. In the energy sector, these strategies are based in low carbon primary energy deployment, increased energy efficiency, and implementing complementary technologies for operational resilience. While these strategies are aimed at climate mitigation, a degree of climate change-induced impacts will occur by the time of their deployment, and many of these impacts can compromise the effectiveness of these climate mitigation strategies. In order to develop climate mitigation strategies that will achieve their GHG reduction and other goals, the impact that climate change-induced conditions can have on different components of climate mitigation strategies must be understood. This presentation will highlight three examples of how climate change-induced conditions affect components of climate mitigation strategies in California: through impacts on 1) hydropower generation, 2) renewable potential for geothermal and solar thermal resources to form part of the renewable resource portfolio, and 3) the magnitudes and shapes of the electric load demand that must be met sustainably. These studies are part of a larger, overarching project to understand how climate change impacts the energy system and how to develop a sustainable energy infrastructure that is resilient against these impacts.
CO{sub 2} mitigation potential of efficient demand-side technologies: The case of Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, R.M.; Biswas, W.K.; Timilsina, G.R.
This study assesses the techno-economic potential of selected demand-side efficient appliances to mitigate CO{sub 2} emission from the power sector in Thailand under national, consumer, and utility perspectives. A key finding of this study is that about 5.5--7% of the total annual CO{sub 2} emission from the electricity sector of the country can be reduced during 1996--2011 from the national perspective.
Peng, Wei; Yang, Junnan; Wagner, Fabian; Mauzerall, Denise L
2017-11-15
China is the world's top carbon emitter and suffers from severe air pollution. We examine near-term air quality and CO 2 co-benefits of various current sector-based policies in China. Using a 2015 base case, we evaluate the potential benefits of four sectoral mitigation strategies. All scenarios include a 20% increase in conventional air pollution controls as well as the following sector-specific fuel switching or technology upgrade strategies. Power sector (POW): 80% replacement of small coal power plants with larger more efficient ones; Industry sector (IND): 10% improvement in energy efficiency; Transport sector (TRA): replacement of high emitters with average vehicle fleet emissions; and Residential sector (RES): replacement of 20% of coal-based stoves with stoves using liquefied petroleum gas (LPG). Conducting an integrated assessment using the regional air pollution model WRF-Chem, we find that the IND scenario reduces national air-pollution-related deaths the most of the four scenarios examined (27,000, 24,000, 13,000 and 23,000 deaths reduced annually in IND, POW, TRA and RES, respectively). In addition, the IND scenario reduces CO 2 emissions more than 8times as much as any other scenario (440, 53, 0 and 52Mt CO 2 reduced in IND, POW, TRA and RES, respectively). We also examine the benefits of an industrial efficiency improvement of just 5%. We find the resulting air quality and health benefits are still among the largest of the sectoral scenarios, while the carbon mitigation benefits remain more than 3 times larger than any other scenario. Our analysis hence highlights the importance of even modest industrial energy efficiency improvements and air pollution control technology upgrades for air quality, health and climate benefits in China. Copyright © 2017 Elsevier B.V. All rights reserved.
Mitigation of wildfire risk by homeowners
Hannah Brenkert; Patricia Champ; Nicholas Flores
2005-01-01
In-depth interviews conducted with homeowners in Larimer County's Wildland-Urban Interface revealed that homeowners face difficult decisions regarding the implementation of wildfire mitigation measures. Perceptions of wildfire mitigation options may be as important as perceptions of wildfire risk in determining likelihood of implementation. These mitigation...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudha, P.; Shubhashree, D.; Khan, H.
2007-06-01
Setting a baseline for carbon stock changes in forest andland use sector mitigation projects is an essential step for assessingadditionality of the project. There are two approaches for settingbaselines namely, project-specific and regional baseline. This paperpresents the methodology adopted for estimating the land available formitigation, for developing a regional baseline, transaction cost involvedand a comparison of project-specific and regional baseline. The studyshowed that it is possible to estimate the potential land and itssuitability for afforestation and reforestation mitigation projects,using existing maps and data, in the dry zone of Karnataka, southernIndia. The study adopted a three-step approach for developing a regionalbaseline,more » namely: i) identification of likely baseline options for landuse, ii) estimation of baseline rates of land-use change, and iii)quantification of baseline carbon profile over time. The analysis showedthat carbon stock estimates made for wastelands and fallow lands forproject-specific as well as the regional baseline are comparable. Theratio of wasteland Carbon stocks of a project to regional baseline is1.02, and that of fallow lands in the project to regional baseline is0.97. The cost of conducting field studies for determination of regionalbaseline is about a quarter of the cost of developing a project-specificbaseline on a per hectare basis. The study has shown the reliability,feasibility and cost-effectiveness of adopting regional baseline forforestry sectormitigation projects.« less
Trlica, Andrew; Brown, Sally
2013-07-02
The interrelation between urban areas and land use options for greenhouse gas mitigation was evaluated by assessing the utility of urban residuals for soil reclamation. Long-term impacts on soil C storage for mine lands restored with urban organic residuals were quantified by sampling historic sites reclaimed both conventionally and with residuals-based amendments. Use of amendments resulted in greater C storage compared to conventional practices for all sites sampled, with increases ranging from 14.2 Mg C ha(-1) in a coalmine in WA to 38.4 Mg C ha(-1) for a copper mine in British Columbia. Expressed as Mg C per Mg amendment, effective C increases ranged from 0.03 to 0.31 Mg C per Mg amendment. Results were applied to three alternative land-use scenarios to model the net GHG balance for a site restored to forest or low-density development. The model included construction of 3.9 243 m(2)-homes, typical of urban sprawl. Emissions for home and road construction and use over a 30-year period resulted in net emissions of 1269 Mg CO2. In contrast, conventional reclamation to forestland or reclamation with 100 Mg of residuals resulted in net GHG reductions of -293 and -475 Mg CO2. Construction of an equivalent number of smaller homes in an urban core coupled with restoration of 1 ha with amendments was close to carbon neutral. These results indicate that targeted use of urban residuals for forest reclamation, coupled with high-density development, can increase GHG mitigation across both sectors.
Structural Path Analysis of Fossil Fuel Based CO2 Emissions: A Case Study for China.
Yang, Zhiyong; Dong, Wenjie; Xiu, Jinfeng; Dai, Rufeng; Chou, Jieming
2015-01-01
Environmentally extended input-output analysis (EEIOA) has long been used to quantify global and regional environmental impacts and to clarify emission transfers. Structural path analysis (SPA), a technique based on EEIOA, is especially useful for measuring significant flows in this environmental-economic system. This paper constructs an imports-adjusted single-region input-output (SRIO) model considering only domestic final use elements, and it uses the SPA technique to highlight crucial routes along the production chain in both final use and sectoral perspectives. The results indicate that future mitigation policies on household consumption should change direct energy use structures in rural areas, cut unreasonable demand for power and chemical products, and focus on urban areas due to their consistently higher magnitudes than rural areas in the structural routes. Impacts originating from government spending should be tackled by managing onsite energy use in 3 major service sectors and promoting cleaner fuels and energy-saving techniques in the transport sector. Policies on investment should concentrate on sectoral interrelationships along the production chain by setting up standards to regulate upstream industries, especially for the services, construction and equipment manufacturing sectors, which have high demand pulling effects. Apart from the similar methods above, mitigating policies in exports should also consider improving embodied technology and quality in manufactured products to achieve sustainable development. Additionally, detailed sectoral results in the coal extraction industry highlight the onsite energy use management in large domestic companies, emphasize energy structure rearrangement, and indicate resources and energy safety issues. Conclusions based on the construction and public administration sectors reveal that future mitigation in secondary and tertiary industries should be combined with upstream emission intensive industries in a systematic viewpoint to achieve sustainable development. Overall, SPA is a useful tool in empirical studies, and it can be used to analyze national environmental impacts and guide future mitigation policies.
Structural Path Analysis of Fossil Fuel Based CO2 Emissions: A Case Study for China
Yang, Zhiyong; Dong, Wenjie; Xiu, Jinfeng; Dai, Rufeng; Chou, Jieming
2015-01-01
Environmentally extended input-output analysis (EEIOA) has long been used to quantify global and regional environmental impacts and to clarify emission transfers. Structural path analysis (SPA), a technique based on EEIOA, is especially useful for measuring significant flows in this environmental-economic system. This paper constructs an imports-adjusted single-region input-output (SRIO) model considering only domestic final use elements, and it uses the SPA technique to highlight crucial routes along the production chain in both final use and sectoral perspectives. The results indicate that future mitigation policies on household consumption should change direct energy use structures in rural areas, cut unreasonable demand for power and chemical products, and focus on urban areas due to their consistently higher magnitudes than rural areas in the structural routes. Impacts originating from government spending should be tackled by managing onsite energy use in 3 major service sectors and promoting cleaner fuels and energy-saving techniques in the transport sector. Policies on investment should concentrate on sectoral interrelationships along the production chain by setting up standards to regulate upstream industries, especially for the services, construction and equipment manufacturing sectors, which have high demand pulling effects. Apart from the similar methods above, mitigating policies in exports should also consider improving embodied technology and quality in manufactured products to achieve sustainable development. Additionally, detailed sectoral results in the coal extraction industry highlight the onsite energy use management in large domestic companies, emphasize energy structure rearrangement, and indicate resources and energy safety issues. Conclusions based on the construction and public administration sectors reveal that future mitigation in secondary and tertiary industries should be combined with upstream emission intensive industries in a systematic viewpoint to achieve sustainable development. Overall, SPA is a useful tool in empirical studies, and it can be used to analyze national environmental impacts and guide future mitigation policies. PMID:26332222
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strzepek, K.; Neumann, Jim; Smith, Joel
Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less
Strzepek, K.; Neumann, Jim; Smith, Joel; ...
2014-11-29
Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less
Johnston, Richard; Hug, Stephan J; Inauen, Jennifer; Khan, Nasreen I; Mosler, Hans-Joachim; Yang, Hong
2014-08-01
As part of a trans-disciplinary research project, a series of surveys and interventions were conducted in different arsenic-affected regions of rural Bangladesh. Surveys of institutional stakeholders identified deep tubewells and piped water systems as the most preferred options, and the same preferences were found in household surveys of populations at risk. Psychological surveys revealed that these two technologies were well-supported by potential users, with self-efficacy and social norms being the principal factors driving behavior change. The principal drawbacks of deep tubewells are that installation costs are too high for most families to own private wells, and that for various socio-cultural-religious reasons, people are not willing to walk long distances to access communal tubewells. In addition, water sector planners have reservations about greater exploitation of the deep aquifer, out of concern for current or future geogenic contamination. Groundwater models and field studies have shown that in the great majority of the affected areas, the risk of arsenic contamination of deep groundwater is small; salinity, iron, and manganese are more likely to pose problems. These constituents can in some cases be avoided by exploiting an intermediate depth aquifer of good chemical quality, which is hydraulically and geochemically separate from the arsenic-contaminated shallow aquifer. Deep tubewells represent a technically sound option throughout much of the arsenic-affected regions, and future mitigation programs should build on and accelerate construction of deep tubewells. Utilization of deep tubewells, however, could be improved by increasing the tubewell density (which requires stronger financial support) to reduce travel times, by considering water quality in a holistic way, and by accompanying tubewell installation with motivational interventions based on psychological factors. By combining findings from technical and social sciences, the efficiency and success of arsenic mitigation in general - and installation of deep tubewells in particular - can be significantly enhanced. Copyright © 2013 Elsevier B.V. All rights reserved.
Using land to mitigate climate change: hitting the target, recognizing the trade-offs.
Reilly, John; Melillo, Jerry; Cai, Yongxia; Kicklighter, David; Gurgel, Angelo; Paltsev, Sergey; Cronin, Timothy; Sokolov, Andrei; Schlosser, Adam
2012-06-05
Land can be used in several ways to mitigate climate change, but especially under changing environmental conditions there may be implications for food prices. Using an integrated global system model, we explore the roles that these land-use options can play in a global mitigation strategy to stabilize Earth's average temperature within 2 °C of the preindustrial level and their impacts on agriculture. We show that an ambitious global Energy-Only climate policy that includes biofuels would likely not achieve the 2 °C target. A thought-experiment where the world ideally prices land carbon fluxes combined with biofuels (Energy+Land policy) gets the world much closer. Land could become a large net carbon sink of about 178 Pg C over the 21st century with price incentives in the Energy+Land scenario. With land carbon pricing but without biofuels (a No-Biofuel scenario) the carbon sink is nearly identical to the case with biofuels, but emissions from energy are somewhat higher, thereby results in more warming. Absent such incentives, land is either a much smaller net carbon sink (+37 Pg C - Energy-Only policy) or a net source (-21 Pg C - No-Policy). The significant trade-off with this integrated land-use approach is that prices for agricultural products rise substantially because of mitigation costs borne by the sector and higher land prices. Share of income spent on food for wealthier regions continues to fall, but for the poorest regions, higher food prices lead to a rising share of income spent on food.
78 FR 34112 - Review and Revision of the National Infrastructure Protection Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-06
... consider sector dependencies on energy and communications systems, and identify pre-event and mitigation... development efforts; Review of the risk management approach; Sector dependencies on energy and communications... framework going forward. Sector Dependencies on Energy and Communications Systems PPD-21 acknowledges the...
The Commercial Energy Consumer: About Whom Are We Speaking?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Christopher
2006-05-12
Who are commercial sector customers, and how do they make decisions about energy consumption and energy efficiency investment? The energy policy field has not done a thorough job of describing energy consumption in the commercial sector. First, the discussion of the commercial sector itself is dominated by discussion of large businesses/buildings. Second, discussion of this portion of the commercial sectors consumption behavior is driven primarily by theory, with very little field data collected on the way commercial sector decision-makers describe their own options, choices, and reasons for taking action. These limitations artificially constrain energy policy options. This paper reviews themore » extant literature on commercial sector energy consumption behavior and identifies gaps in our knowledge. In particular, it argues that the primary energy policy model of commercial sector energy consumption is a top-down model that uses macro-level investment data to make conclusions about commercial behavior. Missing from the discussion is a model of consumption behavior that builds up to a theoretical framework informed by the micro-level data provided by commercial decision-makers themselves. Such a bottom-up model could enhance the effectiveness of commercial sector energy policy. In particular, translation of some behavioral models from the residential sector to the commercial sector may offer new opportunities for policies to change commercial energy consumption behavior. Utility bill consumption feedback is considered as one example of a policy option that may be applicable to both the residential and small commercial sector.« less
Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives
Bauer, Nico; Calvin, Katherine; Emmerling, Johannes; ...
2016-08-23
Energy is crucial for supporting basic human needs, development and well-being. The future evolution of the scale and character of the energy system will be fundamentally shaped by socioeconomic conditions and drivers, available energy resources, technologies of energy supply and transformation, and end-use energy demand. However, because energy-related activities are significant sources of greenhouse gas (GHG) emissions and other environmental and social externalities, energy system development will also be influenced by social acceptance and strategic policy choices. All of these uncertainties have important implications for many aspects of economic and environmental sustainability, and climate change in particular. In the Shared-Socioeconomicmore » Pathway (SSP) framework these uncertainties are structured into five narratives, arranged according to the challenges to climate change mitigation and adaptation. In this study we explore future energy sector developments across the five SSPs using Integrated Assessment Models (IAMs), and we also provide summary output and analysis for selected scenarios of global emissions mitigation policies. The mitigation challenge strongly corresponds with global baseline energy sector growth over the 21st century, which varies between 40% and 230% depending on final energy consumer behavior, technological improvements, resource availability and policies. The future baseline CO 2-emission range is even larger, as the most energy-intensive SSP also incorporates a comparatively high share of carbon-intensive fossil fuels, and vice versa. Inter-regional disparities in the SSPs are consistent with the underlying socioeconomic assumptions; these differences are particularly strong in the SSPs with large adaptation challenges, which have little inter-regional convergence in long-term income and final energy demand levels. The scenarios presented do not include feedbacks of climate change on energy sector development. The energy sector SSPs with and without emissions mitigation policies are introduced and analyzed here in order to contribute to future research in climate sciences, mitigation analysis, and studies on impacts, adaptation and vulnerability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balbus, John M.; Greenblatt, Jeffery B.; Chari, Ramya
While it has been recognized that actions reducing greenhouse gas (GHG) emissions can have significant positive and negative impacts on human health through reductions in ambient fine particulate matter (PM2.5) concentrations, these impacts are rarely taken into account when analyzing specific policies. This study presents a new framework for estimating the change in health outcomes resulting from implementation of specific carbon dioxide (CO 2) reduction activities, allowing comparison of different sectors and options for climate mitigation activities. Our estimates suggest that in the year 2020, the reductions in adverse health outcomes from lessened exposure to PM2.5 would yield economic benefitsmore » in the range of $6 to $14 billion (in 2008 USD), depending on the specific activity. This equates to between $40 and $93 per metric ton of CO 2 in health benefits. Specific climate interventions will vary in the health co-benefits they provide as well as in potential harms that may result from their implementation. Rigorous assessment of these health impacts is essential for guiding policy decisions as efforts to reduce GHG emissions increase in scope and intensity.« less
NASA Astrophysics Data System (ADS)
Yu, Sha; Evans, Meredydd; Kyle, Page; Vu, Linh; Tan, Qing; Gupta, Ashu; Patel, Pralit
2018-03-01
The Nationally Determined Contributions are allowing countries to examine options for reducing emissions through a range of domestic policies. India, like many developing countries, has committed to reducing emissions through specific policies, including building energy codes. Here we assess the potential of these sectoral policies to help in achieving mitigation targets. Collectively, it is critically important to see the potential impact of such policies across developing countries in meeting national and global emission goals. Buildings accounted for around one third of global final energy use in 2010, and building energy consumption is expected to increase as income grows in developing countries. Using the Global Change Assessment Model, this study finds that implementing a range of energy efficiency policies robustly can reduce total Indian building energy use by 22% and lower total Indian carbon dioxide emissions by 9% in 2050 compared to the business-as-usual scenario. Among various policies, energy codes for new buildings can result in the most significant savings. For all building energy policies, well-coordinated, consistent implementation is critical, which requires coordination across different departments and agencies, improving capacity of stakeholders, and developing appropriate institutions to facilitate policy implementation.
Drivers of U.S. toxicological footprints trajectory 1998–2013
Koh, S. C. L.; Ibn-Mohammed, T.; Acquaye, A.; Feng, K.; Reaney, I. M.; Hubacek, K.; Fujii, H.; Khatab, K.
2016-01-01
By exploiting data from the Toxic Release Inventory of the United States, we have established that the toxicological footprint (TF) increased by 3.3% (88.4 Mt) between 1998 and 1999 and decreased by 39% (1088.5 Mt) between 1999 and 2013. From 1999 to 2006, the decreasing TF was driven by improvements in emissions intensity (i.e. gains in production efficiency) through toxic chemical management options: cleaner production; end of pipe treatment; transfer for further waste management; and production scale. In particular, the mining sector reduced its TF through outsourcing processes. Between 2006 and 2009, decreasing TF was due to decrease in consumption volume triggered by economic recession. Since 2009, the economic recovery increased TF, overwhelming the influence of improved emissions intensity through population growth, consumption and production structures. Accordingly, attaining a less-toxic economy and environment will be influenced by a combination of gains in production efficiency through improvement in emissions mitigation technologies and changes in consumption patterns. Overall, the current analysis highlights the structural dynamics of toxic chemical release and would inform future formulation of effective mitigation standards and management protocols towards the detoxification of the environment. PMID:28000739
Interdependencies and Risks at the Nexus of Energy, Water, and Land Systems
NASA Astrophysics Data System (ADS)
Geernaert, G. L.
2016-12-01
During recent years, the federal agencies have rallied around efforts to understand and predict the interdependencies involving various combinations of energy infrastructure and supply, water supply and quality, and land use that combines agriculture and food production. The US Department of Energy has, in particular, focused on the energy-water nexus, with specific goals to understand the degree of interdependence that leads to multi-sector risk and, in the worst case, the precursors that can lead to cascading failure. Determining thresholds for system interdependence, evaluating the impact of drought on systems, and planning for robust mitigation options to avert future risks, are among DOE's highest research priorities. In this presentation, the DOE program plan and its rationale will be described; and the DOE plan will be placed in context of broader efforts across the federal government.
12 CFR 1024.41 - Loss mitigation procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 8 2014-01-01 2014-01-01 false Loss mitigation procedures. 1024.41 Section... (REGULATION X) Mortgage Servicing § 1024.41 Loss mitigation procedures. (a) Enforcement and limitations. A... mitigation option. Nothing in § 1024.41 should be construed to create a right for a borrower to enforce the...
The 2008 California climate change assessment
NASA Astrophysics Data System (ADS)
Franco, G.
2008-12-01
In 2005, Governor Arnold Schwarzenegger signed Executive Order S-03-05, which laid the foundation for California's ambitious greenhouse gas mitigation reduction efforts. The 2020 goal is now codified in state law requiring bringing 2020 emissions to the 1990 levels. The Executive Order also mandates the preparation of biennial updates on the latest climate change science, potential impacts, and assessment of the state's efforts to manage its climate change risks through various adaptation options. In 2006, the first of these mandated scientific assessments (The Governor's Scenarios Report) was released. Based on new scientific studies conducted in the interim, the next assessment, the '2008 Governor's Scenarios Report' is currently in preparation. It has three principal goals: (1) to improve the assessment of climate changes for California and associated impacts on key physical and biological indicators; (2) to begin to translate these physical and biological impacts into sectoral economic impacts; and (3) to begin to develop and evaluate strategies for key sectors or regions for adapting to climate changes already underway. Contributors to this session will present some of this new research to the scientific community. Among the most exciting new insights are impacts assessments for the all-important water and agricultural sectors, coastal areas, public health and related air quality and environmental justice issues, the forestry and energy sectors. This presentation will give an overview of the overall effort which will result in about 35 scientific papers from different research institutions in California. All of the studies are interlinked in such a way as to produce a consistent overall assessment.
Representative concentration pathways and mitigation scenarios for nitrous oxide
NASA Astrophysics Data System (ADS)
Davidson, Eric A.
2012-06-01
The challenges of mitigating nitrous oxide (N2O) emissions are substantially different from those for carbon dioxide (CO2) and methane (CH4), because nitrogen (N) is essential for food production, and over 80% of anthropogenic N2O emissions are from the agricultural sector. Here I use a model of emission factors of N2O to demonstrate the magnitude of improvements in agriculture and industrial sectors and changes in dietary habits that would be necessary to match the four representative concentration pathways (RCPs) now being considered in the fifth assessment report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). Stabilizing atmospheric N2O by 2050, consistent with the most aggressive of the RCP mitigation scenarios, would require about 50% reductions in emission factors in all sectors and about a 50% reduction in mean per capita meat consumption in the developed world. Technologies exist to achieve such improved efficiencies, but overcoming social, economic, and political impediments for their adoption and for changes in dietary habits will present large challenges.
Predicting Airspace Capacity Impacts Using the Consolidated Storm Prediction for Aviation
NASA Technical Reports Server (NTRS)
Russell, Carl
2010-01-01
Convective weather is currently the largest contributor to air traffic delays in the United States. In order to make effective traffic flow management decisions to mitigate these delays, weather forecasts must be made as early and as accurately as possible. A forecast product that could be used to mitigate convective weather impacts is the Consolidated Storm Prediction for Aviation. This product provides forecasts of cloud water content and convective top heights at 0- to 8-hour look-ahead times. The objective of this study was to examine a method of predicting the impact of convective weather on air traffic sector capacities using these forecasts. Polygons representing forecast convective weather were overlaid at multiple flight levels on a sector map to calculate the fraction of each sector covered by weather. The fractional volume coverage was used as the primary metric to determine convection s impact on sectors. Results reveal that the forecasts can be used to predict the probability and magnitude of weather impacts on sector capacity up to eight hours in advance.
An approach to quantify the heat wave strength and price a heat derivative for risk hedging
NASA Astrophysics Data System (ADS)
Shen, Samuel S. P.; Kramps, Benedikt; Sun, Shirley X.; Bailey, Barbara
2012-01-01
Mitigating the heat stress via a derivative policy is a vital financial option for agricultural producers and other business sectors to strategically adapt to the climate change scenario. This study has provided an approach to identifying heat stress events and pricing the heat stress weather derivative due to persistent days of high surface air temperature (SAT). Cooling degree days (CDD) are used as the weather index for trade. In this study, a call-option model was used as an example for calculating the price of the index. Two heat stress indices were developed to describe the severity and physical impact of heat waves. The daily Global Historical Climatology Network (GHCN-D) SAT data from 1901 to 2007 from the southern California, USA, were used. A major California heat wave that occurred 20-25 October 1965 was studied. The derivative price was calculated based on the call-option model for both long-term station data and the interpolated grid point data at a regular 0.1°×0.1° latitude-longitude grid. The resulting comparison indicates that (a) the interpolated data can be used as reliable proxy to price the CDD and (b) a normal distribution model cannot always be used to reliably calculate the CDD price. In conclusion, the data, models, and procedures described in this study have potential application in hedging agricultural and other risks.
Evaluating options for U.S. greenhouse-gas mitigation using multiple criteria
DOT National Transportation Integrated Search
2009-01-01
Choosing a set of policy responses to mitigate greenhouse gases (GHGs) responsible for climate change is one of the great challenges that the United States faces in the coming years. This paper develops a framework for evaluating GHG-mitigation polic...
The California Baseline Methane Survey
NASA Astrophysics Data System (ADS)
Duren, R. M.; Thorpe, A. K.; Hopkins, F. M.; Rafiq, T.; Bue, B. D.; Prasad, K.; Mccubbin, I.; Miller, C. E.
2017-12-01
The California Baseline Methane Survey is the first systematic, statewide assessment of methane point source emissions. The objectives are to reduce uncertainty in the state's methane budget and to identify emission mitigation priorities for state and local agencies, utilities and facility owners. The project combines remote sensing of large areas with airborne imaging spectroscopy and spatially resolved bottom-up data sets to detect, quantify and attribute emissions from diverse sectors including agriculture, waste management, oil and gas production and the natural gas supply chain. Phase 1 of the project surveyed nearly 180,000 individual facilities and infrastructure components across California in 2016 - achieving completeness rates ranging from 20% to 100% per emission sector at < 5 meters spatial resolution. Additionally, intensive studies of key areas and sectors were performed to assess source persistence and variability at times scales ranging from minutes to months. Phase 2 of the project continues with additional data collection in Spring and Fall 2017. We describe the survey design and measurement, modeling and analysis methods. We present initial findings regarding the spatial, temporal and sectoral distribution of methane point source emissions in California and their estimated contribution to the state's total methane budget. We provide case-studies and lessons learned about key sectors including examples where super-emitters were identified and mitigated. We summarize challenges and recommendations for future methane research, inventories and mitigation guidance within and beyond California.
Mitigation potential and cost in tropical forestry - relative role for agroforestry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makundi, Willy R.; Sathaye, Jayant A.
2004-01-01
This paper summarizes studies of carbon mitigation potential (MP) and costs of forestry options in seven developing countries with a focus on the role of agroforestry. A common methodological approach known as comprehensive mitigation assessment process (COMAP) was used in each study to estimate the potential and costs between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios derived from the demand for forest products and forestland for other uses such as agriculture and pasture. By using data on estimated carbon sequestration, emission avoidance, costs and benefits, the model enables one to estimate cost effectivenessmore » indicators based on monetary benefit per t C, as well as estimates of total mitigation costs and potential when the activities are implemented at equilibrium level. The results show that about half the MP of 6.9 Gt C (an average of 223 Mt C per year) between 2000 and 2030 in the seven countries could be achieved at a negative cost, and the other half at costs not exceeding $100 per t C. Negative cost indicates that non-carbon revenue is sufficient to offset direct costs of about half of the options. The agroforestry options analyzed bear a significant proportion of the potential at medium to low cost per t C when compared to other options. The role of agroforestry in these countries varied between 6% and 21% of the MP, though the options are much more cost effective than most due to the low wage or opportunity cost of rural labor. Agroforestry options are attractive due to the large number of people and potential area currently engaged in agriculture, but they pose unique challenges for carbon and cost accounting due to the dispersed nature of agricultural activities in the tropics, as well as specific difficulties arising from requirements for monitoring, verification, leakage assessment and the establishment of credible baselines.« less
Stratton, Russell W; Wolfe, Philip J; Hileman, James I
2011-12-15
Alternative fuels represent a potential option for reducing the climate impacts of the aviation sector. The climate impacts of alternatives fuel are traditionally considered as a ratio of life cycle greenhouse gas (GHG) emissions to those of the displaced petroleum product; however, this ignores the climate impacts of the non-CO(2) combustion effects from aircraft in the upper atmosphere. The results of this study show that including non-CO(2) combustion emissions and effects in the life cycle of a Synthetic Paraffinic Kerosene (SPK) fuel can lead to a decrease in the relative merit of the SPK fuel relative to conventional jet fuel. For example, an SPK fuel option with zero life cycle GHG emissions would offer a 100% reduction in GHG emissions but only a 48% reduction in actual climate impact using a 100-year time window and the nominal climate modeling assumption set outlined herein. Therefore, climate change mitigation policies for aviation that rely exclusively on relative well-to-wake life cycle GHG emissions as a proxy for aviation climate impact may overestimate the benefit of alternative fuel use on the global climate system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathaye, J.; Makundi, W.; Andrasko, K.
2001-01-01
This paper summarizes studies of carbon (C) mitigation potential and costs of about 40 forestry options in seven developing countries. Each study uses the same methodological approach - Comprehensive Mitigation Assessment Process (COMAP) - to estimate the above parameters between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios. Coupled with data on a per ha basis on C sequestration or avoidance, and costs and benefits, it allows the estimation of monetary benefit per Mg C, and the total costs and carbon potential. The results show that about half (3.0 Pg C) the cumulative mitigationmore » potential of 6.2 Petagram (Pg) C between 2000 and 2030 in the seven countries (about 200 x 106 Mg C yr-1) could be achieved at a negative cost and the remainder at costs ranging up to $100 Mg C-1. About 5 Pg C could be achieved, at a cost less than $20 per Mg C. Negative cost potential indicates that non-carbon revenue is sufficient to offset direct costs of these options. The achievable potential is likely to be smaller, however, due to market, institutional, and sociocultural barriers that can delay or prevent the implementation of the analyzed options.« less
Olander, Lydia P; Cooley, David M; Galik, Christopher S
2012-03-01
Management of forests, rangelands, and wetlands on public lands, including the restoration of degraded lands, has the potential to increase carbon sequestration or reduce greenhouse gas (GHG) emissions beyond what is occurring today. In this paper we discuss several policy options for increasing GHG mitigation on public lands. These range from an extension of current policy by generating supplemental mitigation on public lands in an effort to meet national emissions reduction goals, to full participation in an offsets market by allowing GHG mitigation on public lands to be sold as offsets either by the overseeing agency or by private contractors. To help place these policy options in context, we briefly review the literature on GHG mitigation and public lands to examine the potential for enhanced mitigation on federal and state public lands in the United States. This potential will be tempered by consideration of the tradeoffs with other uses of public lands, the needs for climate change adaptation, and the effects on other ecosystem services.
Forestry mitigation potential and costs in developing countries - Preface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathaye, Jayant A.; Makundi, Willy; Andrasko, Kenneth
2001-01-01
The forest sector in Tanzania offers ample opportunities to reduce greenhouse gas emissions (GHG) and sequestered carbon (C) in terrestrial ecosystems. More than 90% of the country's demand for primary energy is obtained from biomass mostly procured unsustainably from natural forests. This study examines the potential to sequester C through expansion of forest plantations aimed at reducing the dependence on natural forest for wood fuel production, as well as increase the country's output of industrial wood from plantations. These were compared ton conservation options in the tropical and miombo ecosystems. Three sequestration options were analyzed, involving the establishment of shortmore » rotation and long rotation plantations on about 1.7 x 106 hectares. The short rotation community forest option has a potential to sequester an equilibrium amount of 197.4 x 106 Mg C by 2024 at a net benefit of $79.5 x 106, while yielding a NPV of $0.46 Mg-1 C. The long rotation options for softwood and hardwood plantations will reach an equilibrium sequestration of 5.6 and 11.8 x 106 Mg C at a negative NPV of $0.60 Mg-1 C and $0.32 Mg-1 C. The three options provide cost competitive opportunities for sequestering about 7.5 x 106 Mg C yr -1 while providing desired forest products and easing the pressure on the natural forests in Tanzania. The endowment costs of the sequestration options were all found to be cheaper than the emission avoidance cost for conservation options which had an average cost of $1.27 Mg-1 C, rising to $7.5 Mg-1 C under some assumptions on vulnerability to encroachment. The estimates shown here may represent the upper bound, because the actual potential will be influenced by market prices for inputs and forest products, land use policy constraints and the structure of global C transactions.« less
Scasta, J D; Stam, B; Windh, J L
2017-10-26
Pastoralists have dealt with livestock losses from predators for millennia, yet effective mitigation strategies that balance wildlife conservation and sustainable agriculture are still needed today. In Wyoming, USA, 274 ranchers responded to a retrospective survey, and rated the efficacy of predation mitigation strategies for foxes, dogs, coyotes, wolves, bobcats, mountain lions, bears, and birds (buzzards, eagles, hawks, ravens). Rancher reported efficacy of mitigation varied by predator species, mitigation strategy, and lethality of strategies, but not livestock type. Ranchers perceive they were most effective at mitigating predation by foxes and coyotes, moderately effective at mitigating large carnivores, and the least effective at mitigating birds. Ranchers also reported that avian predators seem to be the most challenging predator type. The general perception was lethal mitigation strategies were more effective than non-lethal strategies, with guard animals showing the most potential among the non-lethal options. In general, ranchers did not perceive non-lethal strategies as a proxy for lethal strategies. However, a few ranchers reported being successful with non-lethal options such as herding, fencing, and stalling at night but more details about such successful applications are needed. Innovation in current or novel non-lethal mitigation strategies, and examples of efficacy, are needed to justify producer adoption.
Mitigating amphibian chytridiomycosis in nature
Garner, Trenton W. J.; Schmidt, Benedikt R.; Martel, An; Pasmans, Frank; Muths, Erin L.; Cunningham, Andrew A.; Weldon, Che; Fisher, Matthew C.; Bosch, Jaime
2016-01-01
Amphibians across the planet face the threat of population decline and extirpation caused by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and other sources of infection remains the first line of defence and a primary objective when mitigating the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis are already widespread, though, and we therefore focus on discussing options for mitigating the threats once disease emergence has occurred in wild amphibian populations. All strategies have shortcomings that need to be overcome before implementation, including stronger efforts towards understanding and addressing ethical and legal considerations. Even if these issues can be dealt with, all currently available approaches, or those under discussion, are unlikely to yield the desired conservation outcome of disease mitigation. The decision process for establishing mitigation strategies requires integrated thinking that assesses disease mitigation options critically and embeds them within more comprehensive strategies for the conservation of amphibian populations, communities and ecosystems.
NASA Astrophysics Data System (ADS)
Lahlou, Ouiam; Imani, Yasmina; Bennasser Alaoui, Si; Dutra, Emanuel; DiGiuseppe, Francesca; Pappenberger, Florian; Wetterhall, Fredrik
2014-05-01
Use of medium-range weather forecasts for drought mitigation and adaptation under a Mediterranean area Authors: Ouiam Lahlou1, Yasmina Imani1, Si Bennasser Alaoui1, Emmanuel Dutra 2, Francesca Di Guiseppe2, Florian Pappenberger2, Fredrik Wetterhall2 1: Institut Agronomique et Vétérinaire Hassan II (IAV Hassan II) 2: European Center for Medium-Range Weather Forecasts (ECMWF) The main pillar of economic development in Morocco is the agricultural sector employing 40% of the active workforce. Agriculture is still mainly dominated by rainfed agriculture which is vulnerable to an increasing frequency and severity of drought events. In rainfed agriculture, there are few interventions possible once crops are planted. Medium to long range weather forecasts could therefore provide valid information for crop selection and sowing time at the onset of the yield season and later to plan mitigation measures during dry-spell episodes. More than 600 daily forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecasting system were analyzed in terms of probabilistic skills scores. Results show that, while daily and weekly accumulated precipitation are poorly predicted there is good skill in the forecast of occurrence and extent of dry periods. The availability of this information to decision makers in the agricultural sector would mean moving from a reactive drought management plan to a proactive one. This is very important, especially for the remote areas where often the needed help comes late. A simulation case-study involving farmers who were made aware of the availability of forecasts for the next seasons, show that medium-range forecasts will allow i) governments and relief agencies to position themselves for more effective and cost-efficient drought interventions, ii) producers to be more aware of their production options and insure their payment rate, iii) Herders, to cope with higher food costs for their cattle iv) farmers to better plan the pre-season agronomic corrections, to schedule the most appropriate timing for the unique complementary irrigation that they can provide to cereals, and to better schedule the harvesting date. Since failing on these mitigation actions due to a lack of forecast availability would be highly priced for the rural Marocco economy, we stress that forecasting drought onset, especially under the high variability of the Mediterranean climate, is of a paramount importance.
2016-04-30
Ü~åÖÉ= - 351 - products, similar to those found in a bill of material. Figure 3 provides an example of the relationship between sectors , sub- sectors ...defense aircraft. Defense aircraft are divided in three main sub- sectors : fixed-wing, rotary wing, and unmanned systems. The fixed-wing sub- sector ...Risk Sectors and Tiers of the Defense Industrial Base: Assessment Approach to Industrial Base Risks Lirio Avilés, Engineer, MIBP, OUSD(AT&L) Sally
Optimizing spacecraft design - optimization engine development : progress and plans
NASA Technical Reports Server (NTRS)
Cornford, Steven L.; Feather, Martin S.; Dunphy, Julia R; Salcedo, Jose; Menzies, Tim
2003-01-01
At JPL and NASA, a process has been developed to perform life cycle risk management. This process requires users to identify: goals and objectives to be achieved (and their relative priorities), the various risks to achieving those goals and objectives, and options for risk mitigation (prevention, detection ahead of time, and alleviation). Risks are broadly defined to include the risk of failing to design a system with adequate performance, compatibility and robustness in addition to more traditional implementation and operational risks. The options for mitigating these different kinds of risks can include architectural and design choices, technology plans and technology back-up options, test-bed and simulation options, engineering models and hardware/software development techniques and other more traditional risk reduction techniques.
Impacts of pending federal greenhouse gas legislation on the Texas transportation sector.
DOT National Transportation Integrated Search
2010-05-01
This 2010 study, funded by the Southwest Region University Transportation Center, assesses current regulatory : attempts to mitigate climate change and how such proposed action would impact the Texas transportation sector : economically. Social and p...
A multi-period optimization model for energy planning with CO(2) emission consideration.
Mirzaesmaeeli, H; Elkamel, A; Douglas, P L; Croiset, E; Gupta, M
2010-05-01
A novel deterministic multi-period mixed-integer linear programming (MILP) model for the power generation planning of electric systems is described and evaluated in this paper. The model is developed with the objective of determining the optimal mix of energy supply sources and pollutant mitigation options that meet a specified electricity demand and CO(2) emission targets at minimum cost. Several time-dependent parameters are included in the model formulation; they include forecasted energy demand, fuel price variability, construction lead time, conservation initiatives, and increase in fixed operational and maintenance costs over time. The developed model is applied to two case studies. The objective of the case studies is to examine the economical, structural, and environmental effects that would result if the electricity sector was required to reduce its CO(2) emissions to a specified limit. Copyright 2009 Elsevier Ltd. All rights reserved.
Climate change mitigation and adaptation in the land use sector: from complementarity to synergy.
Duguma, Lalisa A; Minang, Peter A; van Noordwijk, Meine
2014-09-01
Currently, mitigation and adaptation measures are handled separately, due to differences in priorities for the measures and segregated planning and implementation policies at international and national levels. There is a growing argument that synergistic approaches to adaptation and mitigation could bring substantial benefits at multiple scales in the land use sector. Nonetheless, efforts to implement synergies between adaptation and mitigation measures are rare due to the weak conceptual framing of the approach and constraining policy issues. In this paper, we explore the attributes of synergy and the necessary enabling conditions and discuss, as an example, experience with the Ngitili system in Tanzania that serves both adaptation and mitigation functions. An in-depth look into the current practices suggests that more emphasis is laid on complementarity-i.e., mitigation projects providing adaptation co-benefits and vice versa rather than on synergy. Unlike complementarity, synergy should emphasize functionally sustainable landscape systems in which adaptation and mitigation are optimized as part of multiple functions. We argue that the current practice of seeking co-benefits (complementarity) is a necessary but insufficient step toward addressing synergy. Moving forward from complementarity will require a paradigm shift from current compartmentalization between mitigation and adaptation to systems thinking at landscape scale. However, enabling policy, institutional, and investment conditions need to be developed at global, national, and local levels to achieve synergistic goals.
NASA Astrophysics Data System (ADS)
Chentouf, M.; Allouch, M.
2018-05-01
Producing electricity at an affordable price while taking into account environmental concerns has become a major challenge in Morocco. Moreover, the technical and financial issues related to renewable electricity plants are still hindering their efficient integration in the country. In fact, the energy sector (both electricity and heat) accounted for more than half of all Greenhouse Gases (GHG) emissions in the kingdom due to the major reliance on fossil fuels for answering the growing local demand. The key strategies to alleviate this critical situation include the integration of more renewable energies in the total energy mix and the enhancement of energy efficiency measures in different sectors. This paper strives to (1) evaluate the potential of carbon dioxide mitigation in Moroccan electricity sector following the actual and projected strategies and (2) highlight the policy schemes to be taken in order to achieve the ambitious carbon dioxide mitigation targets in the mid-term. A system dynamics model was built in order to simulate different scenarios of carbon dioxide mitigation policies up to 2030. The results shows that the achievement of renewable energies projects by 2030 could save 228.143 MtCO2 between 2020 and 2030 and an additional 18.127 MtCO2 could be avoided in the same period by enhancing energy efficiency measures.
Research options for controlling zoonotic disease in India, 2010-2015.
Sekar, Nitin; Shah, Naman K; Abbas, Syed Shahid; Kakkar, Manish
2011-02-25
Zoonotic infections pose a significant public health challenge for low- and middle-income countries and have traditionally been a neglected area of research. The Roadmap to Combat Zoonoses in India (RCZI) initiative conducted an exercise to systematically identify and prioritize research options needed to control zoonoses in India. Priority setting methods developed by the Child Health and Nutrition Research Initiative were adapted for the diversity of sectors, disciplines, diseases and populations relevant for zoonoses in India. A multidisciplinary group of experts identified priority zoonotic diseases and knowledge gaps and proposed research options to address key knowledge gaps within the next five years. Each option was scored using predefined criteria by another group of experts. The scores were weighted using relative ranks among the criteria based upon the feedback of a larger reference group. We categorized each research option by type of research, disease targeted, factorials, and level of collaboration required. We analysed the research options by tabulating them along these categories. Seventeen experts generated four universal research themes and 103 specific research options, the majority of which required a high to medium level of collaboration across sectors. Research options designated as pertaining to 'social, political and economic' factorials predominated and scored higher than options focussing on ecological, genetic and biological, or environmental factors. Research options related to 'health policy and systems' scored highest while those related to 'research for development of new interventions' scored the lowest. We methodically identified research themes and specific research options incorporating perspectives of a diverse group of stakeholders. These outputs reflect the diverse nature of challenges posed by zoonoses and should be acceptable across diseases, disciplines, and sectors. The identified research options capture the need for 'actionable research' for advancing the prevention and control of zoonoses in India.
44 CFR 201.6 - Local Mitigation Plans.
Code of Federal Regulations, 2011 CFR
2011-10-01
... agencies that have the authority to regulate development, as well as businesses, academia and other private... and development trends within the community so that mitigation options can be considered in future...
The contribution of transport policies to the mitigation potential and cost of 2 °C and 1.5 °C goals
NASA Astrophysics Data System (ADS)
Zhang, Runsen; Fujimori, Shinichiro; Hanaoka, Tatsuya
2018-05-01
The transport sector contributes around a quarter of global CO2 emissions; thus, low-carbon transport policies are required to achieve the 2 °C and 1.5 °C targets. In this paper, representative transport policy scenarios are structured with the aim of achieving a better understanding of the interaction between the transport sector and the macroeconomy. To accomplish this, the Asia–Pacific Integrated Model/Transport (AIM/Transport) model, coupled with a computable general equilibrium model (AIM/CGE), is used to simulate the potential for different transport policy interventions to reduce emissions and cost over the period 2005–2100. The results show that deep decarbonization in the transport sector can be achieved by implementing transport policies such as energy efficiency improvements, vehicle technology innovations particularly the deployment of electric vehicles, public transport developments, and increasing the car occupancy rate. Technological transformations such as vehicle technological innovations and energy efficiency improvements provide the most significant reduction potential. The key finding is that low-carbon transport policies can reduce the carbon price, gross domestic product loss rate, and welfare loss rate generated by climate mitigation policies to limit global warming to 2 °C and 1.5 °C. Interestingly, the contribution of transport policies is more effective for stringent climate change targets in the 1.5 °C scenario, which implies that the stronger the mitigation intensity, the more transport specific policy is required. The transport sector requires attention to achieve the goal of stringent climate change mitigation.
Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance
NASA Astrophysics Data System (ADS)
Engström, Kerstin; Lindeskog, Mats; Olin, Stefan; Hassler, John; Smith, Benjamin
2017-09-01
Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate-economy model, a socio-economic land use model and an ecosystem model). We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs). Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road
). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.
Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gernaat, David; Calvin, Katherine V.; Lucas, Paul
2015-07-01
The combined 2010 emissions of methane (CH4), nitrous oxide (N2O) and the fluorinated gasses (F-gas) account for about 20-30% of total emissions and about 30% of radiative forcing. At the moment, most studies looking at reaching ambitious climate targets project the emission of carbon dioxide (CO2) to be reduced to zero (or less) by the end of the century. As for non-CO2 gases, the mitigation potential seem to be more constrained, we find that by the end of the century in the current deep mitigation scenarios non-CO2 emissions could form the lion’s share of remaining greenhouse gas emissions. In ordermore » to support effective climate policy strategies, in this paper we provide a more in-depth look at the role of non-CO2¬ emission sources (CH4, N2O and F-gases) in achieving deep mitigation targets (radiative forcing target of 2.8 W/m2 in 2100). Specifically, we look at the sectorial mitigation potential and the remaining non-CO2 emissions. By including a set of different models, we provide some insights into the associated uncertainty. Most of the remaining methane emissions in 2100 in the climate mitigation scenario come from the livestock sector. Strong reductions are seen in the energy supply sector across all models. For N2O, less reduction potential is seen compared to methane and the sectoral differences are larger between the models. The paper shows that the assumptions on remaining non-CO2 emissions are critical for the feasibility of reaching ambitious climate targets and the associated costs.« less
Thornton, Philip K.; Herrero, Mario
2010-01-01
We estimate the potential reductions in methane and carbon dioxide emissions from several livestock and pasture management options in the mixed and rangeland-based production systems in the tropics. The impacts of adoption of improved pastures, intensifying ruminant diets, changes in land-use practices, and changing breeds of large ruminants on the production of methane and carbon dioxide are calculated for two levels of adoption: complete adoption, to estimate the upper limit to reductions in these greenhouse gases (GHGs), and optimistic but plausible adoption rates taken from the literature, where these exist. Results are expressed both in GHG per ton of livestock product and in Gt CO2-eq. We estimate that the maximum mitigation potential of these options in the land-based livestock systems in the tropics amounts to approximately 7% of the global agricultural mitigation potential to 2030. Using historical adoption rates from the literature, the plausible mitigation potential of these options could contribute approximately 4% of global agricultural GHG mitigation. This could be worth on the order of $1.3 billion per year at a price of $20 per t CO2-eq. The household-level and sociocultural impacts of some of these options warrant further study, however, because livestock have multiple roles in tropical systems that often go far beyond their productive utility. PMID:20823225
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peelle, E.; Schweitzer, M.; Scharre, P.
1979-07-01
This report inventories Cherokee County's capabilities and CNS project characteristics, projects expected impacts from the interaction of the two defines four options for Cherokee County decision makers, and presents a range of possible mitigation and monitoring plans for dealing with the problems identified. The four options and general implementation guidelines for each are presented after reviewing pertinent features of other mitigation and monitoring plans. The four options include (1) no action, (2) preventing impacts by preventing growth, (3) selective growth in designated areas as services can be supplied, and (4) maximum growth designed to attract as many in-movers as possiblemore » through a major program of capital investiments in public and private services. With the exception of the no action option, all plans deal with impacts according to some strategy determined by how the County wishes to manage growth. Solutions for impact problems depend on which growth strategy is selected and what additional resources are secured during the impact period. A monitoring program deals with the problems of data and projections uncertainty, while direct action is proposed to deal with the institutional problems of delay of the needed access road, timeing and location problems from the tax base mismatch, and lack of local planning capability.« less
Personal Vehicles Evaluated against Climate Change Mitigation Targets.
Miotti, Marco; Supran, Geoffrey J; Kim, Ella J; Trancik, Jessika E
2016-10-18
Meeting global climate change mitigation goals will likely require that transportation-related greenhouse gas emissions begin to decline within the next two decades and then continue to fall. A variety of vehicle technologies and fuels are commercially available to consumers today that can reduce the emissions of the transportation sector. Yet what are the best options, and do any suffice to meet climate policy targets? Here, we examine the costs and carbon intensities of 125 light-duty vehicle models on the U.S. market today and evaluate these models against U.S. emission-reduction targets for 2030, 2040, and 2050 that are compatible with the goal of limiting mean global temperature rise to 2 °C above preindustrial levels. Our results show that consumers are not required to pay more for a low-carbon-emitting vehicle. Across the diverse set of vehicle models and powertrain technologies examined, a clean vehicle is usually a low-cost vehicle. Although the average carbon intensity of vehicles sold in 2014 exceeds the climate target for 2030 by more than 50%, we find that most hybrid and battery electric vehicles available today meet this target. By 2050, only electric vehicles supplied with almost completely carbon-free electric power are expected to meet climate-policy targets.
SECOND GENERATION MODEL | Science Inventory | US ...
One of the environmental and economic models that the U.S. EPA uses to assess climate change policies is the Second Generation Model (SGM). SGM is a 13 region, 24 sector computable general equilibrium (CGE) model of the world that can be used to estimate the domestic and international economic impacts of policies designed to reduce greenhouse gas emissions. SGM was developed by Jae Edmonds and others at the Joint Global Change Research Institute (JGCRI) of Pacific Northwest National Laboratory (PNNL) and the University of Maryland. One of SGM's primary purposes is to provide an integrated assessment of a portfolio of greenhouse gas mitigation strategies. The SGM projects economic activity, energy transformation and consumption, and greenhouse gas emissions for each region of the globe in five-year time steps from 1990 through 2050. The model has been used extensively over the last decade to assess U.S. policy options to achieve greenhouse gas mitigation goals. The SGM is one of EPA's primary tools for analyses of climate change policies. It was used extensively by the the U.S. government to analyze the impact of the Kyoto Protocol. Moreover, the SGM has been used by EPA during the current Administration for analyses of the climate components of various multi-emissions bills.
Basu, Avik; Phipps, Sean; Long, Rachel; Essegbey, George; Basu, Niladri
2015-09-10
The Delphi technique is a means of facilitating discussion among experts in order to develop consensus, and can be used for policy formulation. This article describes a modified Delphi approach in which 27 multi-disciplinary academics and 22 stakeholders from Ghana and North America were polled about ways to address negative effects of small-scale gold mining (ASGM) in Ghana. In early 2014, the academics, working in disciplinary groups, synthesized 17 response options based on data aggregated during an Integrated Assessment of ASGM in Ghana. The researchers participated in two rounds of Delphi polling in March and April 2014, during which 17 options were condensed into 12. Response options were rated via a 4-point Likert scale in terms of benefit (economic, environmental, and benefit to people) and feasibility (economic, social/cultural, political, and implementation). The six highest-scoring options populated a third Delphi poll, which 22 stakeholders from diverse sectors completed in April 2015. The academics and stakeholders also prioritized the response options using ranking exercises. The technique successfully gauged expert opinion on ASGM, and helped identify potential responses, policies and solutions for the sector. This is timely given that improvement to the ASGM sector is an important component within the UN Minamata Convention.
Basu, Avik; Phipps, Sean; Long, Rachel; Essegbey, George; Basu, Niladri
2015-01-01
The Delphi technique is a means of facilitating discussion among experts in order to develop consensus, and can be used for policy formulation. This article describes a modified Delphi approach in which 27 multi-disciplinary academics and 22 stakeholders from Ghana and North America were polled about ways to address negative effects of small-scale gold mining (ASGM) in Ghana. In early 2014, the academics, working in disciplinary groups, synthesized 17 response options based on data aggregated during an Integrated Assessment of ASGM in Ghana. The researchers participated in two rounds of Delphi polling in March and April 2014, during which 17 options were condensed into 12. Response options were rated via a 4-point Likert scale in terms of benefit (economic, environmental, and benefit to people) and feasibility (economic, social/cultural, political, and implementation). The six highest-scoring options populated a third Delphi poll, which 22 stakeholders from diverse sectors completed in April 2015. The academics and stakeholders also prioritized the response options using ranking exercises. The technique successfully gauged expert opinion on ASGM, and helped identify potential responses, policies and solutions for the sector. This is timely given that improvement to the ASGM sector is an important component within the UN Minamata Convention. PMID:26378557
Near Earth Object (NEO) Mitigation Options Using Exploration Technologies
NASA Technical Reports Server (NTRS)
Arnold William; Baysinger, Mike; Crane, Tracie; Capizzo, Pete; Sutherlin, Steven; Dankanich, John; Woodcock, Gordon; Edlin, George; Rushing, Johnny; Fabisinski, Leo;
2007-01-01
This work documents the advancements in MSFC threat modeling and mitigation technology research completed since our last major publication in this field. Most of the work enclosed here are refinements of our work documented in NASA TP-2004-213089. Very long development times from start of funding (10-20 years) can be expected for any mitigation system which suggests that delaying consideration of mitigation technologies could leave the Earth in an unprotected state for a significant period of time. Fortunately there is the potential for strong synergy between architecture requirements for some threat mitigators and crewed deep space exploration. Thus planetary defense has the potential to be integrated into the current U.S. space exploration effort. The number of possible options available for protection against the NEO threat was too numerous for them to all be addressed within the study; instead, a representative selection were modeled and evaluated. A summary of the major lessons learned during this study is presented, as are recommendations for future work.
Waste-to-energy sector and the mitigation of greenhouse gas emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fotis, S.C.; Sussman, D.
The waste-to-energy sector provides one important avenue for the United States to reduce greenhouse gas (GHG) emissions. The purpose of this paper is to highlight the significant GHG reductions capable of being achieved by the waste-to-energy (WTE) sector through avoided fossil generation and reduced municipal landfills. The paper begins with a review of the current voluntary reporting mechanism for {open_quotes}registering{close_quotes} GHG reduction credits under section 1605(b) of the Energy Policy Act of 1992. The paper then provides an overview of possible emerging international and domestic trends that could ultimately lead to mandatory targets and timetables for GHG mitigation in themore » United States and other countries. The paper ends with an analysis of the GHG benefits achievable by the WTE sector, based on the section 1605(b) report filed by the Integrated Waste Services Association IWSA on the GHG emissions avoided for year 1995.« less
Social and ethical perspectives of landslide risk mitigation measures
NASA Astrophysics Data System (ADS)
Kalsnes, Bjørn; Vangelsten, Bjørn V.
2015-04-01
Landslide risk may be mitigated by use of a wide range of measures. Mitigation and prevention options may include (1) structural measures to reduce the frequency, severity or exposure to the hazard, (2) non-structural measures, such as land-use planning and early warning systems, to reduce the hazard frequency and consequences, and (3) measures to pool and transfer the risks. In a given situation the appropriate system of mitigation measures may be a combination of various types of measures, both structural and non-structural. In the process of choosing mitigation measures for a given landslide risk situation, the role of the geoscientist is normally to propose possible mitigation measures on basis of the risk level and technical feasibility. Social and ethical perspectives are often neglected in this process. However, awareness of the need to consider social as well as ethical issues in the design and management of mitigating landslide risk is rising. There is a growing understanding that technical experts acting alone cannot determine what will be considered the appropriate set of mitigation and prevention measures. Issues such as environment versus development, questions of acceptable risk, who bears the risks and benefits, and who makes the decisions, also need to be addressed. Policymakers and stakeholders engaged in solving environmental risk problems are increasingly recognising that traditional expert-based decision-making processes are insufficient. This paper analyse the process of choosing appropriate mitigation measures to mitigate landslide risk from a social and ethical perspective, considering technical, cultural, economical, environmental and political elements. The paper focus on stakeholder involvement in the decision making process, and shows how making strategies for risk communication is a key for a successful process. The study is supported by case study examples from Norway and Italy. In the Italian case study, three different risk mitigation options was presented to the local community. The options were based on a thorough stakeholder involvement process ending up in three different views on how to deal with the landslide risk situation: i) protect lives and properties (hierarchical) ; ii) careful stewardship of the mountains (egalitarian); and iii) rational individual choice (individualist).
Greenhouse gas mitigation in a carbon constrained world - the role of CCS in Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, Katja; Sands, Ronald D.
2009-01-05
In a carbon constrained world, at least four classes of greenhouse gas mitigation options are available: energy efficiency, switching to low or carbon-free energy sources, introduction of carbon dioxide capture and storage along with electric generating technologies, and reductions in emissions of non-CO2 greenhouse gases. The contribution of each option to overall greenhouse gas mitigation varies by cost, scale, and timing. In particular, carbon dioxide capture and storage (CCS) promises to allow for low-emissions fossil-fuel based power generation. This is particularly relevant for Germany, where electricity generation is largely coal-based and, at the same time, ambitious climate targets are inmore » place. Our objective is to provide a balanced analysis of the various classes of greenhouse gas mitigation options with a particular focus on CCS for Germany. We simulate the potential role of advanced fossil fuel based electricity generating technologies with CCS (IGCC, NGCC) as well the potential for retrofit with CCS for existing and currently built fossil plants from the present through 2050. We employ a computable general equilibrium (CGE) economic model as a core model and integrating tool.« less
Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mignone, Bryan K.; Showalter, Sharon; Wood, Frances
One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or 'NEMS' model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. We explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less
Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mignone, Bryan K.; Showalter, Sharon; Wood, Frances
One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or “NEMS” model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. Lastly, we explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less
Energy demand for materials in an international context.
Worrell, Ernst; Carreon, Jesus Rosales
2017-06-13
Materials are everywhere and have determined society. The rapid increase in consumption of materials has led to an increase in the use of energy and release of greenhouse gas (GHG) emissions. Reducing emissions in material-producing industries is a key challenge. If all of industry switched to current best practices, the energy-efficiency improvement potential would be between 20% and 35% for most sectors. While these are considerable potentials, especially for sectors that have historically paid a lot of attention to energy-efficiency improvement, realization of these potentials under current 'business as usual' conditions is slow due to a large variety of barriers and limited efforts by industry and governments around the world. Importantly, the potentials are not sufficient to achieve the deep reductions in carbon emissions that will be necessary to stay within the climate boundaries as agreed in the 2015 Paris Conference of Parties. Other opportunities need to be included in the menu of options to mitigate GHG emissions. It is essential to develop integrated policies combining energy efficiency, renewable energy and material efficiency and material demand reduction, offering the most economically attractive way to realize deep reductions in carbon emissions.This article is part of the themed issue 'Material demand reduction'. © 2017 The Author(s).
Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations
Mignone, Bryan K.; Showalter, Sharon; Wood, Frances; ...
2017-11-01
One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or 'NEMS' model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. We explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less
Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations
Mignone, Bryan K.; Showalter, Sharon; Wood, Frances; ...
2017-09-07
One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or “NEMS” model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. Lastly, we explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less
Johnson, T L; Keith, D W
2001-10-01
The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.
Johnson, Timothy L; Keith, David W
2001-10-01
The decoupling of fossil-fueled electricity production from atmospheric CO 2 emissions via CO 2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO 2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO 2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.
Cloud computing in pharmaceutical R&D: business risks and mitigations.
Geiger, Karl
2010-05-01
Cloud computing provides information processing power and business services, delivering these services over the Internet from centrally hosted locations. Major technology corporations aim to supply these services to every sector of the economy. Deploying business processes 'in the cloud' requires special attention to the regulatory and business risks assumed when running on both hardware and software that are outside the direct control of a company. The identification of risks at the correct service level allows a good mitigation strategy to be selected. The pharmaceutical industry can take advantage of existing risk management strategies that have already been tested in the finance and electronic commerce sectors. In this review, the business risks associated with the use of cloud computing are discussed, and mitigations achieved through knowledge from securing services for electronic commerce and from good IT practice are highlighted.
NASA Astrophysics Data System (ADS)
Hopkins, Francesca M.; Ehleringer, James R.; Bush, Susan E.; Duren, Riley M.; Miller, Charles E.; Lai, Chun-Ta; Hsu, Ying-Kuang; Carranza, Valerie; Randerson, James T.
2016-09-01
Cities generate 70% of anthropogenic greenhouse gas emissions, a fraction that is growing with global urbanization. While cities play an important role in climate change mitigation, there has been little focus on reducing urban methane (CH4) emissions. Here, we develop a conceptual framework for CH4 mitigation in cities by describing emission processes, the role of measurements, and a need for new institutional partnerships. Urban CH4 emissions are likely to grow with expanding use of natural gas and organic waste disposal systems in growing population centers; however, we currently lack the ability to quantify this increase. We also lack systematic knowledge of the relative contribution of these distinct source sectors on emissions. We present new observations from four North American cities to demonstrate that CH4 emissions vary in magnitude and sector from city to city and hence require different mitigation strategies. Detections of fugitive emissions from these systems suggest that current mitigation approaches are absent or ineffective. These findings illustrate that tackling urban CH4 emissions will require research efforts to identify mitigation targets, develop and implement new mitigation strategies, and monitor atmospheric CH4 levels to ensure the success of mitigation efforts. This research will require a variety of techniques to achieve these objectives and should be deployed in cities globally. We suggest that metropolitan scale partnerships may effectively coordinate systematic measurements and actions focused on emission reduction goals.
Feliciano, Diana; Hunter, Colin; Slee, Bill; Smith, Pete
2013-05-15
The Climate Change (Scotland) Act 2009 commits Scotland to reduce GHG emissions by at least 42% by 2020 and 80% by 2050, from 1990 levels. According to the Climate Change Delivery Plan, the desired emission reduction for the rural land use sector (agriculture and other land uses) is 21% compared to 1990, or 10% compared to 2006 levels. In 2006, in North East Scotland, gross greenhouse gas (GHG) emissions from rural land uses were about 1599 ktCO2e. Thus, to achieve a 10% reduction in 2020 relative to 2006, emissions would have to decrease to about 1440 ktCO2e. This study developed a methodology to help selecting land-based practices to mitigate GHG emissions at the regional level. The main criterion used was the "full" mitigation potential of each practice. A mix of methods was used to undertake this study, namely a literature review and quantitative estimates. The mitigation practice that offered greatest "full" mitigation potential (≈66% reduction by 2020 relative to 2006) was woodland planting with Sitka spruce. Several barriers, such as economic, social, political and institutional, affect the uptake of mitigation practices in the region. Consequently the achieved mitigation potential of a practice may be lower than its "full" mitigation potential. Surveys and focus groups, with relevant stakeholders, need to be undertaken to assess the real area where mitigation practices can be implemented and the best way to overcome the barriers for their implementation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Overview of the Special Issue: A Multi-Model Framework to ...
The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the impacts, economic damages, and risks from climate change in the United States. The primary goal of this framework to estimate how climate change impacts and damages in the United States are avoided or reduced due to global greenhouse gas (GHG) emissions mitigation scenarios. Scenarios are designed to explore key uncertainties around the measurement of these changes. The modeling exercise presented in this Special Issue includes two integrated assessment models and 15 sectoral models encompassing six broad impacts sectors - water resources, electric power, infrastructure, human health, ecosystems, and forests. Three consistent emissions scenarios are used to analyze the benefits of global GHG mitigation targets: a reference and two policy scenarios, with total radiative forcing in 2100 of 10.0W/m2, 4.5W/m2, and 3.7W/m2. A range of climate sensitivities, climate models, natural variability measures, and structural uncertainties of sectoral models are examined to explore the implications of key uncertainties. This overview paper describes the motivations, goals, design, and academic contribution of the CIRA modeling exercise and briefly summarizes the subsequent papers in this Special Issue. A summary of results across impact sectors is provided showing that: GHG mitigation provides benefits to the United States that increase over
Le, Aurora B; Witter, Lesley; Herstein, Jocelyn J; Jelden, Katelyn C; Beam, Elizabeth L; Gibbs, Shawn G; Lowe, John J
2017-09-01
A United States industry-specific gap analysis survey of the death care sector-which comprises organizations and businesses affiliated with the funeral industry and the handling of human remains- was developed, the results analyzed, and training and education needs in relation to highly infectious disease mitigation and management were explored in an effort to identify where occupational health and safety can be enhanced in this worker population. Collaborating national death care organizations distributed the 47-question electronic survey. N = 424 surveys were initiated and results recorded. The survey collected death care sector-specific information pertaining to the comfortability and willingness to handle highly infectious remains; perceptions of readiness, current policies and procedures in place to address highly infectious diseases; current highly infectious disease training levels, available resources, and personal protective equipment. One-third of respondents have been trained on how to manage highly infectious remains. There was a discrepancy between Supervisor/Management and Employee/Worker perceptions on employees' willingness and comfortability to manage potentially highly infectious remains. More than 40% of respondents did not know the correct routes of transmission for viral hemorrhagic fevers. Results suggest death care workers could benefit from increasing up-to-date industry-specific training and education on highly infectious disease risk mitigation and management. Professional death care sector organizations are positioned to disseminate information, training, and best practices.
Catching fire? Social interactions, beliefs, and wildfire risk mitigation behaviors
Katherine Dickinson; Hannah Brenkert-Smith; Patricia Champ; Nicholas Flores
2015-01-01
Social interactions are widely recognized as a potential influence on risk-related behaviors. We present a mediation model in which social interactions (classified as formal/informal and generic-fire-specific) are associated with beliefs about wildfire risk and mitigation options, which in turn shape wildfire mitigation behaviors. We test this model using survey data...
Biojet fuels and emissions mitigation in aviation: An integrated assessment modeling analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Marshall; Muratori, Matteo; Kyle, Page
Although the aviation sector is a relatively small contributor to total greenhouse gas emissions, it is a fast-growing, fossil fuel-intensive transportation mode. Because aviation is a mode for which liquid fuels currently have no practical substitute, biofuels are gaining attention as a promising cleaner alternative. In this paper, we use the GCAM integrated assessment model to develop scenarios that explore the potential impact of biojet fuels for use in aviation in the context of broader climate change mitigation. We show that a carbon price would have a significant impact on the aviation sector. In the absence of alternatives to jetmore » fuel from petroleum, mitigation potential is limited and would be at the expense of aviation service demand growth. However, mitigation efforts through the increased use of biojet fuels show potential to reduce the carbon intensity of aviation, and may not have a significant impact on carbon mitigation and bioenergy use in the rest of the energy system. The potential of biofuel to decarbonize air transport is significantly enhanced when carbon dioxide capture and storage (CCS) is used in the conversion process to produce jet fuels from biomass feedstock.« less
Risk Assessment of Arsenic Mitigation Options in Bangladesh
Ahmed, M. Feroze; Shamsuddin, Abu Jafar; Mahmud, Shamsul Gafur; Deere, Daniel
2006-01-01
The provision of alternative water sources is the principal arsenic mitigation strategy in Bangladesh, but can lead to risk substitution. A study of arsenic mitigation options was undertaken to assess water quality and sanitary condition and to estimate the burden of disease associated with each technology in disability-adjusted life years (DALYs). Dugwells and pond-sand filters showed heavy microbial contamination in both dry and monsoon seasons, and the estimated burden of disease was high. Rainwater was of good quality in the monsoon but deteriorated in the dry season. Deep tubewells showed microbial contamination in the monsoon but not in the dry season and was the only technology to approach the World Health Organization's reference level of risk of 10-6 DALYs. A few dugwells and one pond-sand filter showed arsenic in excess of 50 μg/L. The findings suggest that deep tubewells and rainwater harvesting provide safer water than dugwells and pond-sand filters and should be the preferred options. PMID:17366776
Public perceptions about climate change mitigation in British Columbia's forest sector
Hagerman, Shannon; Kozak, Robert; Hoberg, George
2018-01-01
The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia’s forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio-demographic factors. PMID:29684041
Public perceptions about climate change mitigation in British Columbia's forest sector.
Peterson St-Laurent, Guillaume; Hagerman, Shannon; Kozak, Robert; Hoberg, George
2018-01-01
The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia's forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio-demographic factors.
Analysis of technological innovation and environmental performance improvement in aviation sector.
Lee, Joosung; Mo, Jeonghoon
2011-09-01
The past oil crises have caused dramatic improvements in fuel efficiency in all industrial sectors. The aviation sector-aircraft manufacturers and airlines-has also made significant efforts to improve the fuel efficiency through more advanced jet engines, high-lift wing designs, and lighter airframe materials. However, the innovations in energy-saving aircraft technologies do not coincide with the oil crisis periods. The largest improvement in aircraft fuel efficiency took place in the 1960s while the high oil prices in the 1970s and on did not induce manufacturers or airlines to achieve a faster rate of innovation. In this paper, we employ a historical analysis to examine the socio-economic reasons behind the relatively slow technological innovation in aircraft fuel efficiency over the last 40 years. Based on the industry and passenger behaviors studied and prospects for alternative fuel options, this paper offers insights for the aviation sector to shift toward more sustainable technological options in the medium term. Second-generation biofuels could be the feasible option with a meaningful reduction in aviation's lifecycle environmental impact if they can achieve sufficient economies of scale.
Biodiversity Hotspots, Climate Change, and Agricultural Development: Global Limits of Adaptation
NASA Astrophysics Data System (ADS)
Schneider, U. A.; Rasche, L.; Schmid, E.; Habel, J. C.
2017-12-01
Terrestrial ecosystems are threatened by climate and land management change. These changes result from complex and heterogeneous interactions of human activities and natural processes. Here, we study the potential change in pristine area in 33 global biodiversity hotspots within this century under four climate projections (representative concentration pathways) and associated population and income developments (shared socio-economic pathways). A coupled modelling framework computes the regional net expansion of crop and pasture lands as result of changes in food production and consumption. We use a biophysical crop simulation model to quantify climate change impacts on agricultural productivity, water, and nutrient emissions for alternative crop management systems in more than 100 thousand agricultural land polygons (homogeneous response units) and for each climate projection. The crop simulation model depicts detailed soil, weather, and management information and operates with a daily time step. We use time series of livestock statistics to link livestock production to feed and pasture requirements. On the food consumption side, we estimate national demand shifts in all countries by processing population and income growth projections through econometrically estimated Engel curves. Finally, we use a global agricultural sector optimization model to quantify the net change in pristine area in all biodiversity hotspots under different adaptation options. These options include full-scale global implementation of i) crop yield maximizing management without additional irrigation, ii) crop yield maximizing management with additional irrigation, iii) food yield maximizing crop mix adjustments, iv) food supply maximizing trade flow adjustments, v) healthy diets, and vi) combinations of the individual options above. Results quantify the regional potentials and limits of major agricultural producer and consumer adaptation options for the preservation of pristine areas in biodiversity hotspots. Results also quantify the conflicts between food and water security, biodiversity protection, and climate change mitigation.
Prăvălie, Remus; Bandoc, Georgeta
2018-03-01
For decades, nuclear energy has been considered an important option for ensuring global energy security, and it has recently started being promoted as a solution for climate change mitigation. However, nuclear power remains highly controversial due to its associated risks - nuclear accidents and problematic radioactive waste management. This review aims to assess the viability of global nuclear energy economically (energy-wise), climatically and environmentally. To this end, the nuclear sector's energy- and climate-related advantages were explored alongside the downsides that mainly relate to radioactive pollution. Economically, it was found that nuclear energy is still an important power source in many countries around the world. Climatically, nuclear power is a low-carbon technology and can therefore be a viable option for the decarbonization of the world's major economies over the following decades, if coupled with other large-scale strategies such as renewable energies. These benefits are however outweighed by the radioactive danger associated to nuclear power plants, either in the context of the nuclear accidents that have already occurred or in that of the large amounts of long-lived nuclear waste that have been growing for decades and that represent a significant environmental and societal threat. Copyright © 2017 Elsevier Ltd. All rights reserved.
Research Options for Controlling Zoonotic Disease in India, 2010–2015
Sekar, Nitin; Shah, Naman K.; Abbas, Syed Shahid; Kakkar, Manish
2011-01-01
Background Zoonotic infections pose a significant public health challenge for low- and middle-income countries and have traditionally been a neglected area of research. The Roadmap to Combat Zoonoses in India (RCZI) initiative conducted an exercise to systematically identify and prioritize research options needed to control zoonoses in India. Methods and Findings Priority setting methods developed by the Child Health and Nutrition Research Initiative were adapted for the diversity of sectors, disciplines, diseases and populations relevant for zoonoses in India. A multidisciplinary group of experts identified priority zoonotic diseases and knowledge gaps and proposed research options to address key knowledge gaps within the next five years. Each option was scored using predefined criteria by another group of experts. The scores were weighted using relative ranks among the criteria based upon the feedback of a larger reference group. We categorized each research option by type of research, disease targeted, factorials, and level of collaboration required. We analysed the research options by tabulating them along these categories. Seventeen experts generated four universal research themes and 103 specific research options, the majority of which required a high to medium level of collaboration across sectors. Research options designated as pertaining to ‘social, political and economic’ factorials predominated and scored higher than options focussing on ecological, genetic and biological, or environmental factors. Research options related to ‘health policy and systems’ scored highest while those related to ‘research for development of new interventions’ scored the lowest. Conclusions We methodically identified research themes and specific research options incorporating perspectives of a diverse group of stakeholders. These outputs reflect the diverse nature of challenges posed by zoonoses and should be acceptable across diseases, disciplines, and sectors. The identified research options capture the need for ‘actionable research’ for advancing the prevention and control of zoonoses in India. PMID:21364879
CHARACTERIZING AND MITIGATING PATHOGENIC ORGANISMS RELATED TO CAFOS
CHARACTERIZING AND MITIGATING PATHOGENIC ORGANISMS RELATED TO CAFOs John Haines and Shane Rogers NRMRL Science Questions MYP Science Ouestion: What BMP treatment systems and restoration technologies are most effective options for watershed management? For mixed land use wa...
McFarland, James; Zhou, Yuyu; Clarke, Leon; ...
2015-06-10
The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Fewer studies have explored the physical impacts of climate change on the power sector. Our present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effectsmore » of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. Moreover, the increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.« less
Mitigating amphibian chytridiomycoses in nature.
Garner, Trenton W J; Schmidt, Benedikt R; Martel, An; Pasmans, Frank; Muths, Erin; Cunningham, Andrew A; Weldon, Che; Fisher, Matthew C; Bosch, Jaime
2016-12-05
Amphibians across the planet face the threat of population decline and extirpation caused by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and other sources of infection remains the first line of defence and a primary objective when mitigating the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis are already widespread, though, and we therefore focus on discussing options for mitigating the threats once disease emergence has occurred in wild amphibian populations. All strategies have shortcomings that need to be overcome before implementation, including stronger efforts towards understanding and addressing ethical and legal considerations. Even if these issues can be dealt with, all currently available approaches, or those under discussion, are unlikely to yield the desired conservation outcome of disease mitigation. The decision process for establishing mitigation strategies requires integrated thinking that assesses disease mitigation options critically and embeds them within more comprehensive strategies for the conservation of amphibian populations, communities and ecosystems.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).
Mitigating amphibian chytridiomycoses in nature
Martel, An; Pasmans, Frank; Muths, Erin; Cunningham, Andrew A.; Weldon, Che; Bosch, Jaime
2016-01-01
Amphibians across the planet face the threat of population decline and extirpation caused by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and other sources of infection remains the first line of defence and a primary objective when mitigating the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis are already widespread, though, and we therefore focus on discussing options for mitigating the threats once disease emergence has occurred in wild amphibian populations. All strategies have shortcomings that need to be overcome before implementation, including stronger efforts towards understanding and addressing ethical and legal considerations. Even if these issues can be dealt with, all currently available approaches, or those under discussion, are unlikely to yield the desired conservation outcome of disease mitigation. The decision process for establishing mitigation strategies requires integrated thinking that assesses disease mitigation options critically and embeds them within more comprehensive strategies for the conservation of amphibian populations, communities and ecosystems. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’. PMID:28080996
Optimal security investments and extreme risk.
Mohtadi, Hamid; Agiwal, Swati
2012-08-01
In the aftermath of 9/11, concern over security increased dramatically in both the public and the private sector. Yet, no clear algorithm exists to inform firms on the amount and the timing of security investments to mitigate the impact of catastrophic risks. The goal of this article is to devise an optimum investment strategy for firms to mitigate exposure to catastrophic risks, focusing on how much to invest and when to invest. The latter question addresses the issue of whether postponing a risk mitigating decision is an optimal strategy or not. Accordingly, we develop and estimate both a one-period model and a multiperiod model within the framework of extreme value theory (EVT). We calibrate these models using probability measures for catastrophic terrorism risks associated with attacks on the food sector. We then compare our findings with the purchase of catastrophic risk insurance. © 2012 Society for Risk Analysis.
Global farm animal production and global warming: impacting and mitigating climate change.
Koneswaran, Gowri; Nierenberg, Danielle
2008-05-01
The farm animal sector is the single largest anthropogenic user of land, contributing to many environmental problems, including global warming and climate change. The aim of this study was to synthesize and expand upon existing data on the contribution of farm animal production to climate change. We analyzed the scientific literature on farm animal production and documented greenhouse gas (GHG) emissions, as well as various mitigation strategies. An analysis of meat, egg, and milk production encompasses not only the direct rearing and slaughtering of animals, but also grain and fertilizer production for animal feed, waste storage and disposal, water use, and energy expenditures on farms and in transporting feed and finished animal products, among other key impacts of the production process as a whole. Immediate and far-reaching changes in current animal agriculture practices and consumption patterns are both critical and timely if GHGs from the farm animal sector are to be mitigated.
Climate-wise choices in a world of oil abundance
NASA Astrophysics Data System (ADS)
Brandt, Adam R.; Masnadi, Mohammad S.; Englander, Jacob G.; Koomey, Jonathan; Gordon, Deborah
2018-04-01
Constrained oil supply has given way to abundance at a time when strong action on climate change is wavering. Recent innovation has pushed US oil production to all-time heights and driven oil prices lower. At the same time, attention to climate policy is wavering due to geopolitical upheaval. Nevertheless, climate-wise choices in the oil sector remain a priority, given oil’s large role in modern economies. Here we use a set of open-source models along with a detailed dataset comprising 75 global crude oils (~25% of global production) to estimate the effects of carbon intensity and oil demand on decadal scale oil-sector emissions. We find that oil resources are abundant relative to all projections of 21st century demand, due to large light-tight oil (LTO) and heavy oil/bitumen (HOB) resources. We then investigate the ‘barrel forward’ emissions from producing, refining, and consuming all products from a barrel of crude. These oil resources have diverse life-cycle-greenhouse gas (LC-GHG) emissions impacts, and median per-barrel emissions for unconventional resources vary significantly. Median HOB life cycle emissions are 1.5 times those of median LTO emissions, exceeding them by 200 kgCO2eq./bbl. We show that reducing oil LC-GHGs is a mitigation opportunity worth 10–50 gigatonnes CO2 eq. cumulatively by 2050. We discuss means to reduce oil sector LC-GHGs. Results point to the need for policymakers to address both oil supply and oil demand when considering options to reduce LC-GHGs.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-24
...-Settled Foreign Currency Option Fees, in Section III of the Fee Schedule, with Singly Listed Options \\3...\\. The Exchange currently assesses fees for sector index options and U.S. Dollar-Settled foreign currency... U.S. Dollar-Settled Foreign Currency Option Fees.'' \\4\\ BKX represents the KBW Bank Index. \\5\\ RUT...
Vegetation and other development options for mitigating urban air pollution impacts
In addition to installing air pollution control devices and reducing emissions activities, urban air pollution can be further mitigated through planning and design strategies including vegetation planting, building design, installing roadside and near source structures, and modif...
CARNOL PROCESS FOR CO2 MITIGATION FROM POWER PLANTS AND THE TRANSFORMATION SECTOR
The report describes an alternative mitigation process that would convert waste carbon dioxide (CO2) to carbon an methanol using natural gas as process feedstock. The process yields 1 mole of methanol from each mole of CO2 recovered, resulting in a net zero CO2 emission when the ...
Hopkins, Francesca M.; Ehleringer, James R.; Bush, Susan E.; ...
2016-09-10
Cities generate 70% of anthropogenic greenhouse gas emissions, a fraction that is grow-ing with global urbanization. While cities play an important role in climate change mitigation, there has been little focus on reducing urban methane (CH4) emissions. Here, we develop a conceptual framework for CH 4 mitigation in cities by describing emission processes, the role of measurements, and a need for new institutional partnerships. Urban CH 4 emissions are likely to grow with expanding use of natural gas and organic waste disposal systems in growing population centers; however, we currently lack the ability to quantify this increase. We also lackmore » systematic knowledge of the relative contribution of these distinct source sectors on emissions. We present new observations from four North American cities to demonstrate that CH4 emissions vary in magnitude and sector from city to city and hence require different mitigation strategies. Detections of fugitive emissions from these systems suggest that current mitiga- tion approaches are absent or ineffective. These findings illustrate that tackling urban CH 4 emissions will require research efforts to identify mitigation targets, develop and implement new mitigation strategies, and monitor atmospheric CH 4 levels to ensure the success of mitigation efforts. This research will require a variety of techniques to achieve these objectives and should be deployed in cities globally. In conclusion, we suggest that metropolitan scale partnerships may effectively coordinate systematic measurements and actions focused on emission reduction goals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, Francesca M.; Ehleringer, James R.; Bush, Susan E.
Cities generate 70% of anthropogenic greenhouse gas emissions, a fraction that is grow-ing with global urbanization. While cities play an important role in climate change mitigation, there has been little focus on reducing urban methane (CH4) emissions. Here, we develop a conceptual framework for CH 4 mitigation in cities by describing emission processes, the role of measurements, and a need for new institutional partnerships. Urban CH 4 emissions are likely to grow with expanding use of natural gas and organic waste disposal systems in growing population centers; however, we currently lack the ability to quantify this increase. We also lackmore » systematic knowledge of the relative contribution of these distinct source sectors on emissions. We present new observations from four North American cities to demonstrate that CH4 emissions vary in magnitude and sector from city to city and hence require different mitigation strategies. Detections of fugitive emissions from these systems suggest that current mitiga- tion approaches are absent or ineffective. These findings illustrate that tackling urban CH 4 emissions will require research efforts to identify mitigation targets, develop and implement new mitigation strategies, and monitor atmospheric CH 4 levels to ensure the success of mitigation efforts. This research will require a variety of techniques to achieve these objectives and should be deployed in cities globally. In conclusion, we suggest that metropolitan scale partnerships may effectively coordinate systematic measurements and actions focused on emission reduction goals.« less
Odada, Eric O; Olago, Daniel O; Kulindwa, Kassim; Ntiba, Micheni; Wandiga, Shem
2004-02-01
Lake Victoria is an international waterbody that offers the riparian communities a large number of extremely important environmental services. Over the past three decades or so, the lake has come under increasing and considerable pressure from a variety of interlinked human activities such as overfishing, species introductions, industrial pollution, eutrophication, and sedimentation. In this paper we examine the root causes for overfishing and pollution in Lake Victoria and give possible policy options that can help remediate or mitigate the environmental degradation.
Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, William R.; Marano, John; Sathaye, Jayant
2013-02-01
Adoption of efficient process technologies is an important approach to reducing CO 2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves andmore » CO 2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO 2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost-effective given U.S. DOE fuel price forecasts. This represents roughly 70 million metric tonnes of CO 2 emission reductions assuming 2010 emissions factor for grid electricity. Energy efficiency measures resulting in an additional 400 PJ per year of primary fuels savings and close to 1,700 GWh per year of electricity savings, and an associated 24 million metric tonnes of CO 2 emission reductions are not cost-effective given the same assumption with respect to fuel prices and electricity emissions factors. Compared to the modeled energy requirements for the U.S. petroleum refining sector, the cost effective potential represents a 40% reduction in fuel consumption and a 2% reduction in electricity consumption. The non-cost-effective potential represents an additional 13% reduction in fuel consumption and an additional 7% reduction in electricity consumption. The relative energy reduction potentials are mu ch higher for fuel consumption than electricity consumption largely in part because fuel is the primary energy consumption type in the refineries. Moreover, many cost effective fuel savings measures would increase electricity consumption. The model also has the potential to be used to examine the costs and benefits of the other CO 2 mitigation options, such as combined heat and power (CHP), carbon capture, and the potential introduction of biomass feedstocks. However, these options are not addressed in this report as this report is focused on developing the modeling methodology and assessing fuels savings measures. These opportunities to further reduce refinery sector CO 2 emissions and are recommended for further research and analysis.« less
Hybrid Energy: Combining Nuclear and Other Energy Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong Suk; Garcia, Humberto E.
2015-02-01
The leading cause of global climate change is generally accepted to be growing emissions of greenhouse gas (GHG) as a result of increased use of fossil fuels [1]. Among various sources of GHG, the global electricity supply sector generates the largest share of GHG emissions (37.5% of total CO2 emissions) [2]. Since the current electricity production heavily relies on fossil fuels, it is envisioned that bolstering generation technologies based on non-emitting energy sources, i.e., nuclear and/or renewables could reduce future GHG emissions. Integrated nuclear-renewable hybrid energy systems HES) are very-low-emitting options, but they are capital-intensive technologies that should operate atmore » full capacities to maximize profits. Hence, electricity generators often pay the grid to take electricity when demand is low, resulting in negative profits for many hours per year. Instead of wasting an excess generation capacity at negative profit during off-peak hours when electricity prices are low, nuclear-renewable HES could result in positive profits by storing and/or utilizing surplus thermal and/or electrical energy to produce useful storable products to meet industrial and transportation demands. Consequently, it is necessary (1) to identify key integrated system options based on specific regions and (2) to propose optimal operating strategy to economically produce products on demand. In prioritizing region-specific HES options, available resources, markets, existing infrastructures, and etc. need to be researched to identify attractive system options. For example, the scarcity of water (market) and the availability of abundant solar radiation make solar energy (resource) a suitable option to mitigate the water deficit the Central-Southern region of the U.S. Thus, a solar energy-driven desalination process would be an attractive option to be integrated into a nuclear power plant to support the production of fresh water in this region. In this work, we introduce a particular HES option proposed for a specific U.S. region and briefly describe our modeling assumptions and procedure utilized for its analysis. Preliminary simulation results are also included addressing several technical characteristics of the proposed nuclear-renewable HES.« less
Laser Prevention of Earth Impact Disasters
NASA Technical Reports Server (NTRS)
Campbell, J.; Smalley, L.; Boccio, D.; Howell, Joe T. (Technical Monitor)
2002-01-01
We now believe that while there are about 2000 earth orbit crossing rocks greater than 1 kilometer in diameter, there may be as many as 100,000 or more objects in the 100m size range. Can anything be done about this fundamental existence question facing us? The answer is a resounding yes! We have the technology to prevent collisions. By using an intelligent combination of Earth and space based sensors coupled with an infrastructure of high-energy laser stations and other secondary mitigation options, we can deflect inbound asteroids, meteoroids, and comets and prevent them from striking the Earth. This can be accomplished by irradiating the surface of an inbound rock with sufficiently intense pulses so that ablation occurs. This ablation acts as a small rocket incrementally changing the shape of the rock's orbit around the Sun. One-kilometer size rocks can be moved sufficiently in a month while smaller rocks may be moved in a shorter time span.We recommend that the World's space objectives be immediately reprioritized to start us moving quickly towards a multiple option defense capability. While lasers should be the primary approach, all mitigation options depend on robust early warning, detection, and tracking resources to find objects sufficiently prior to Earth orbit passage in time to allow mitigation. Infrastructure options should include ground, LEO, GEO, Lunar, and libration point laser and sensor stations for providing early warning, tracking, and deflection. Other options should include space interceptors that will carry both laser and nuclear ablators for close range work. Response options must be developed to deal with the consequences of an impact should we move too slowly.
Greenhouse gas emissions from aviation and marine transportation : mitigation potential and policies
DOT National Transportation Integrated Search
2009-12-01
This paper provides an overview of greenhouse gas (GHG) emissions : from aviation and marine transportation and the various mitigation options to reduce these emissions. Reducing global emissions by 50 to 80 percent below 1990 levels by 2050reduct...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-22
... mitigate risk in managing large portfolios, particularly for institutional investors.'' \\7\\ \\7\\ Id. The... next four most actively traded options was: Apple Inc. (option symbol AAPL)--1,074,351; S&P 500 Index... listed solely on the Exchange, the Exchange operates in a highly competitive market compromised of eleven...
Land use and climate change: A global perspective on mitigation options: discussion
R. J. Alig
2010-01-01
Land use change can play a very significant role in climate change mitigation and adaptation, as part of efficient portfolios of many land-related activities. Questions involving forestryâs and agricultureâs potential contributions to climate change mitigation are framed within a national context of increased demands for cropland, forage, and wood products to help feed...
Depot Maintenance: Issues and Options for Reporting on Military Depots
2008-05-15
for assessing the balance of public and private sector depot maintenance workload? (3) What issues might Congress wish to consider to enhance reporting...on military depots capabilities or funding allocations of the public sector versus private sector ? This briefing is intended to satisfy the mandate that GAO review 50/50 reporting requirements.
Climate change and nutrition: creating a climate for nutrition security.
Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A
2013-12-01
Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC), and policies and actions formulated by the UN Framework Convention on Climate Change (UNFCCC). Improved multi-sectoral coordination and political will is required to integrate nutrition-sensitive actions into climate-resilient sustainable development efforts in the UNFCCC work and in the post 2015 development agenda. Placing human rights at the center of strategies to mitigate and adapt to the impacts of climate change and international solidarity is essential to advance sustainable development and to create a climate for nutrition security.
Evolution of seismic risk management for insurance over the past 30 years
NASA Astrophysics Data System (ADS)
Shah, Haresh C.; Dong, Weimin; Stojanovski, Pane; Chen, Alex
2018-01-01
During the past 30 years, there has been spectacular growth in the use of risk analysis and risk management tools developed by engineers in the financial and insurance sectors. The insurance, the reinsurance, and the investment banking sectors have enthusiastically adopted loss estimation tools developed by engineers in developing their business strategies and for managing their financial risks. As a result, insurance/reinsurance strategy has evolved as a major risk mitigation tool in managing catastrophe risk at the individual, corporate, and government level. This is particularly true in developed countries such as US, Western Europe, and Japan. Unfortunately, it has not received the needed attention in developing countries, where such a strategy for risk management is most needed. Fortunately, in the last five years, there has been excellent focus in developing "InsurTech" tools to address the much needed "Insurance for the Masses", especially for the Asian Markets. In the earlier years of catastrophe model development, risk analysts were mainly concerned with risk reduction options through engineering strategies, and relatively little attention was given to financial and economic strategies. Such state-of-affairs still exists in many developing countries. The new developments in the science and technologies of loss estimation due to natural catastrophes have made it possible for financial sectors to model their business strategies such as peril and geographic diversification, premium calculations, reserve strategies, reinsurance contracts, and other underwriting tools. These developments have not only changed the way in which financial sectors assess and manage their risks, but have also changed the domain of opportunities for engineers and scientists. This paper will address the issues related to developing insurance/reinsurance strategies to mitigate catastrophe risks and describe the role catastrophe risk insurance and reinsurance has played in managing financial risk due to natural catastrophes. Historical losses and the share of those losses covered by insurance will be presented. How such risk sharing can help the nation share the burden of losses between tax paying public, the "at risk" property owners, the insurers and the reinsurers will be discussed. The paper will summarize the tools that are used by the insurance and reinsurance companies for estimating their future losses due to catastrophic natural events. The paper will also show how the results of loss estimation technologies developed by engineers are communicated to the business flow of insurance/reinsurance companies. Finally, to make it possible to grow "Insurance for the Masses-IFM", the role played by parametric insurance products and InsurTech tools will be discussed.
Sensitivity of Space Launch System Buffet Forcing Functions to Buffet Mitigation Options
NASA Technical Reports Server (NTRS)
Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.
2016-01-01
Time-varying buffet forcing functions arise from unsteady aerodynamic pressures and are one of many load environments, which contribute to the overall loading condition of a launch vehicle during ascent through the atmosphere. The buffet environment is typically highest at transonic conditions and can excite the vehicle dynamic modes of vibration. The vehicle response to these buffet forcing functions may cause high structural bending moments and vibratory environments, which can exceed the capabilities of the structure, or of vehicle components such as payloads and avionics. Vehicle configurations, protuberances, payload fairings, and large changes in stage diameter can trigger undesirable buffet environments. The Space Launch System (SLS) multi-body configuration and its structural dynamic characteristics presented challenges to the load cycle design process with respect to buffet-induced loads and responses. An initial wind-tunnel test of a 3-percent scale SLS rigid buffet model was conducted in 2012 and revealed high buffet environments behind the booster forward attachment protuberance, which contributed to reduced vehicle structural margins. Six buffet mitigation options were explored to alleviate the high buffet environments including modified booster nose cones and fences/strakes on the booster and core. These studies led to a second buffet test program that was conducted in 2014 to assess the ability of the buffet mitigation options to reduce buffet environments on the vehicle. This paper will present comparisons of buffet forcing functions from each of the buffet mitigation options tested, with a focus on sectional forcing function rms levels within regions of the vehicle prone to high buffet environments.
NASA Astrophysics Data System (ADS)
Muntean, M.; Janssens-Maenhout, G.; Olivier, J. G.; Guizzardi, D.; Dentener, F. J.
2012-12-01
The Emission Database for Global Atmospheric Research (EDGAR) describes time-series of emissions of man-made greenhouse gases and short-lived atmospheric pollutants from 1970-2008. EDGARv4 is continuously updated to respond to needs of both the scientific community and environmental policy makers. Mercury, a toxic pollutant with bioaccumulation properties, is included in the forthcoming EDGARv4.3 release, thereby enriching the spectrum of multi-pollutant sources. Three different forms of mercury have been distinguished: gaseous elemental mercury (Hg0), divalent mercury compounds (Hg2+) and particulate associated mercury (Hg-P). A complete inventory of mercury emission sources has been developed at country level using the EDGAR technology-based methodology together with international activity statistics, technology-specific abatement measures, and emission factors from EMEP/EEA (2009), USEPA AP 42 and the scientific literature. A comparison of the EDGAR mercury emission data to the widely used UNEP inventory shows consistent emissions across most sectors compared for the year 2005. The different shares of mercury emissions by region and by sector will be presented with special emphasis on the region-specific mercury emission mitigation potential. We provide a comprehensive ex-post analysis of the mitigation of mercury emissions by respectively end-of-pipe abatement measures in the power generation sector and technology changes in the chlor-alkali industry between 1970 and 2008. Given the local scale impacts of mercury, we have paid special attention to the spatial distribution of emissions. The default EDGAR Population proxy data was only used to distribute emissions from the residential and solid waste incineration sectors. Other sectors use point source data of power plants, industrial plants, gold and mercury mines. The 2008 mercury emission distribution will be presented, which shows emissions hot-spots on a 0.1°x0.1°resolution gridmap.
Pinior, Beate; Firth, Clair L; Richter, Veronika; Lebl, Karin; Trauffler, Martine; Dzieciol, Monika; Hutter, Sabine E; Burgstaller, Johann; Obritzhauser, Walter; Winter, Petra; Käsbohrer, Annemarie
2017-02-01
Infection with bovine viral diarrhea virus (BVDV) results in major economic losses either directly through decreased productive performance in cattle herds or indirectly, such as through expenses for control programs. The aim of this systematic review was to review financial and/or economic assessment studies of prevention and/or mitigation activities of BVDV at national, regional and farm level worldwide. Once all predefined criteria had been met, 35 articles were included for this systematic review. Studies were analyzed with particular focus on the type of financially and/or economically-assessed prevention and/or mitigation activities. Due to the wide range of possible prevention and/or mitigation activities, these activities were grouped into five categories: i) control and/or eradication programs, ii) monitoring or surveillance, iii) prevention, iv) vaccination and v) individual culling, control and testing strategies. Additionally, the studies were analyzed according to economically-related variables such as efficiency, costs or benefits of prevention and/or mitigation activities, the applied financial and/or economic and statistical methods, the payers of prevention and/or mitigation activities, the assessed production systems, and the countries for which such evaluations are available. Financial and/or economic assessments performed in Europe were dominated by those from the United Kingdom, which assessed mostly vaccination strategies, and Norway which primarily carried out assessments in the area of control and eradication programs; whereas among non-European countries the United States carried out the majority of financial and/or economic assessments in the area of individual culling, control and testing. More than half of all studies provided an efficiency calculation of prevention and/or mitigation activities and demonstrated whether the inherent costs of implemented activities were or were not justified. The dairy sector was three times more likely to be assessed by the countries than beef production systems. In addition, the dairy sector was approximately eight times more likely to be assessed economically with respect to prevention and/or mitigation activities than calf and youngstock production systems. Furthermore, the private sector was identified as the primary payer of prevention and/or mitigation activities. This systematic review demonstrated a lack of studies relating to efficiency calculations, in particular at national and regional level, and the specific production systems. Thus, we confirmed the need for more well-designed studies in animal health economics in order to demonstrate that the implementation and inherent costs of BVDV prevention and/or mitigation activities are justified. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
Future Arctic temperature change resulting from a range of aerosol emissions scenarios
Wobus, Cameron; Flanner, Mark; Sarofim, Marcus C.; ...
2016-05-17
The Arctic temperature response to emissions of aerosols – specifically black carbon (BC), organic carbon (OC), and sulfate – depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present-day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present-day emissions frommore » the domestic and transportation sectors generate the majority of present-day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO 2 emissions from the energy sector. Thus, long-term climate mitigation strategies that are focused on reducing carbon dioxide (CO 2) emissions from the energy sector could generate short-term, aerosol-induced Arctic warming. As a result, a properly phased approach that targets BC-rich emissions from the transportation sector as well as the domestic sectors in key regions – while simultaneously working toward longer-term goals of CO 2 mitigation – could potentially avoid some amount of short-term Arctic warming.« less
Recent developments and key barriers to advanced biofuels: A short review.
Oh, You-Kwan; Hwang, Kyung-Ran; Kim, Changman; Kim, Jung Rae; Lee, Jin-Suk
2018-06-01
Biofuels are regarded as one of the most viable options for reduction of CO 2 emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)'s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO 2 mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Role of Social Entrepreneurship in HIV/AIDS Management across the Education Sector in Kenya
ERIC Educational Resources Information Center
Ayiro, Laban P.
2010-01-01
Purpose: The overall purpose of this study is to identify key entrepreneurial variables in the realm of social entrepreneurship that may contribute to enhancing impact mitigation of HIV/AIDS. In addition, the study seeks to establish which of the correlations between the entrepreneurial variables and management of response of impact mitigation of…
Can Roadway Design be used to Mitigate Air Quality Impacts from Traffic?
Recent studies have confirmed the increased risks to human health for populations near roadways with large traffic volumes. This paper summarizes methods in which these impacts may be mitigated by infrastructure design options such as roadway configuration and roadside structures...
Near Earth Object (NEO) Mitigation Options Using Exploration Technologies
NASA Technical Reports Server (NTRS)
Adams, Robert B.
2008-01-01
This presentation considers the use of new launch vehicles in defense against near-Earth objects, building upon expertise in launch vehicle and spacecraft design, astronomy and planetary science and missile defense. This work also seeks to demonstrate the synergy needed between architectures for human/robotic exploration initiatives and planetary defense. Three different mitigation operations were baselined for this study--nuclear standoff explosion, kinetic interceptor, and solar collector--however, these are not the only viable options. The design and predicted performance of each of these methods is discussed and compared. It is determined that the nuclear interceptor option can deflect NEOs of smaller size (100-500 m) with 2 years or more time before impact, and larger NEOs with 5 or more years warning; kinetic interceptors may be effective for deflection of asteroids up to 300-400 m but require 8-10 years warning time; and, solar collectors may be able to deflect NEOs up to 1 km if issues pertaining to long operation can be overcome. Ares I and Ares V vehicles show sufficient performance to enable the development of a near-term categorization and mitigation architecture.
Rice management interventions to mitigate greenhouse gas emissions: a review.
Hussain, Saddam; Peng, Shaobing; Fahad, Shah; Khaliq, Abdul; Huang, Jianliang; Cui, Kehui; Nie, Lixiao
2015-03-01
Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world's population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture.
Kisakye, Angela N; Tweheyo, Raymond; Ssengooba, Freddie; Pariyo, George W; Rutebemberwa, Elizeus; Kiwanuka, Suzanne N
2016-01-01
Background A systematic review was undertaken to identify regulatory mechanisms aimed at mitigating health care worker absenteeism, to describe where and how they have been implemented as well as their possible effects. The goal was to propose potential policy options for managing the problem of absenteeism among human resources for health in low- and middle-income countries. Mechanisms described in this review are at the local workplace and broader national policy level. Methods A comprehensive online search was conducted on EMBASE, CINAHL, PubMed, Google Scholar, Google, and Social Science Citation Index using MEDLINE search terms. Retrieved studies were uploaded onto reference manager and screened by two independent reviewers. Only publications in English were included. Data were extracted and synthesized according to the objectives of the review. Results Twenty six of the 4,975 published articles retrieved were included. All were from high-income countries and covered all cadres of health workers. The regulatory mechanisms and possible effects include 1) organizational-level mechanisms being reported as effective in curbing absenteeism in low- and middle-income countries (LMICs); 2) prohibition of private sector activities in LMICs offering benefits but presenting a challenge for the government to monitor the health workforce; 3) contractual changes from temporary to fixed posts having been associated with no reduction in absenteeism and not being appropriate for LMICs; 4) multifaceted work interventions being implemented in most settings; 5) the possibility of using financial and incentive regulatory mechanisms in LMICs; 6) health intervention mechanisms reducing absenteeism when integrated with exercise programs; and 7) attendance by legislation during emergencies being criticized for violating human rights in the United States and not being effective in curbing absenteeism. Conclusion Most countries have applied multiple strategies to mitigate health care worker absenteeism. The success of these interventions is heavily influenced by the context within which they are applied. PMID:29355189
Energy demand of the German and Dutch residential building stock under climate change
NASA Astrophysics Data System (ADS)
Olonscheck, Mady; Holsten, Anne; Walther, Carsten; Kropp, Jürgen P.
2014-05-01
In order to mitigate climate change, extraordinary measures are necessary in the future. The building sector, in particular, offers considerable potential for transformation to lower energy demand. On a national level, however, successful and far-reaching measures will likely be taken only if reliable estimates regarding future energy demand from different scenarios are available. The energy demand for space heating and cooling is determined by a combination of behavioral, climatic, constructional, and demographic factors. For two countries, namely Germany and the Netherlands, we analyze the combined effect of future climate and building stock changes as well as renovation measures on the future energy demand for room conditioning of residential buildings until 2060. We show how much the heating energy demand will decrease in the future and answer the question of whether the energy decrease will be exceeded by an increase in cooling energy demand. Based on a sensitivity analysis, we determine those influencing factors with the largest impact on the future energy demand from the building stock. Both countries have national targets regarding the reduction of the energy demand for the future. We provide relevant information concerning the annual renovation rates that are necessary to reach these targets. Retrofitting buildings is a win-win option as it not only helps to mitigate climate change and to lower the dependency on fossil fuels but also transforms the buildings stock into one that is better equipped for extreme temperatures that may occur more frequently with climate change. For the Netherlands, the study concentrates not only on the national, but also the provincial level, which should facilitate directed policy measures. Moreover, the analysis is done on a monthly basis in order to ascertain a deeper understanding of the future seasonal energy demand changes. Our approach constitutes an important first step towards deeper insights into the internal dynamics of the building sector and its climate sensitivity.
GHG emissions and mitigation potential in Indian agriculture
NASA Astrophysics Data System (ADS)
Vetter, Sylvia; Feliciano, Diana; Sapkota, Tek; Hillier, Jon; Smith, Pete; Stirling, Clare
2016-04-01
India is one of the world's largest greenhouse gas (GHG) emitter, accounting for about 5% of global emissions with further increases expected in the future. The Government of India aims to reduce emission intensities by 20-25% by 2020 compared with the 2005 level. In a recent departure from past practice the reconvened Council on Climate Change stated that climate change in agriculture would include a component that would focus on reducing emissions in agriculture, particularly methane and nitrous oxide emissions. To develop recommendations for mitigation in agriculture in India, a baseline study is presented to analyse the GHG emissions from agriculture for current management (Directorate of Economics and Statistics of the government of India). This analysis is done for the two states Bihar and Haryana, which differ in their management and practises based on different climate and policies. This first analysis shows were the highest GHG emissions in agriculture is produced and were the highest mitigation potential might be. The GHG emissions and mitigation potential are calculated using the CCAFS Mitigation Option Tool (CCAFS-MOT) (https://ccafs.cgiar.org/mitigation-option-tool-agriculture#.VpTnWL826d4) with modifications for the special modelling. In a second step, stakeholder meetings provided a wide range of possible and definite scenarios (management, policy, technology, costs, etc.) for the future to mitigate emissions in agriculture as well as how to increase productivity. These information were used to create scenarios to give estimates for the mitigation potential in agriculture for India in 2020.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, P.; Munasinghe, M.; Team, S.L.S.
1994-04-01
Weighs Sri Lanka`s options for addressing environmental concerns during the planning stages of energy policymaking. Here is a holistic approach to analyzing the environmental impact of various power systems. Unlike standard impact studies that begin at the project level, this method calls for environmental assessments that start at the planning stage of a national framework for energy policymaking. The framework would take into account the energy needs of Sri Lanka`s total economy. It also would make it easier to incorporate environmental goals into power sector decisionmaking at the critical investment stage. Sri Lanka`s development options for the power sector aremore » reviewed in detail. Topics include alternative ways to assess the economic value of a power plant`s impact on biodiversity, human health, and air and water pollution. The study also assesses which energy planning options work best and recommends ways in which the Ceylon Electricity Board can improve its environmental policies.« less
Analysis of Potential Alternatives to Reduce NASA's Cost of Human Access to Space
NASA Technical Reports Server (NTRS)
1998-01-01
The purpose of this report is to analyze NASA's potential options for significantly reducing the cost of human access to space. The opinions expressed in this report are based on Hawthorne, Krauss & Associates' ("HKA") interaction with NASA and several of its key contractors over the past nine months. This report is not intended to be an exhaustive quantitative analysis of the various options available to NASA. Instead, its purpose is to outline key decision-related issues that the agency should consider prior to making a decision as to which option to pursue. This report attempts to bring a private-sector perspective to bear on the issue of reducing the cost of human access to space. HKA believes that the key to the NASA's success in reducing those costs over the long-term is the involvement of the private-sector incentives and disciplines--which is achieved only through the assumption of risk by the private sector, not through a traditional contractor relationship--is essential to achieve significant long-term cost reductions.
Edelenbosch, O. Y.; Kermeli, K.; Crijns-Graus, W.; ...
2017-01-09
The industry sector consumes more energy and emits more greenhouse gas (GHG) emissions than any other end-use sector. Integrated assessment models (IAMs) and energy system models have been widely used to evaluate climate policy at a global level, and include a representation of industrial energy use. In this study, the projected industrial energy use and accompanying GHG emissions, as well as the model structure of multiple long-term energy models are compared. The models show varying degrees to which energy consumption is decoupled from GDP growth in the future. In all models, the sector remains mostly (>50%) reliant on fossil energymore » through 2100 in a reference scenario (i.e., absent emissions mitigation policies), though there is significant divergence in the projected ability to switch to alternative fuels to mitigate GHG emissions. Among the set analyzed here, the more technologically detailed models tend to have less capacity for switching from fossil fuels to electricity. This highlights the importance of understanding of economy-wide mitigation responses and costs as an area for future improvement. Analyzing industry subsector material and energy use details can improve the ability to interpret results, and provide insight in feasibility of how emissions reduction can be achieved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelenbosch, O. Y.; Kermeli, K.; Crijns-Graus, W.
The industry sector consumes more energy and emits more greenhouse gas (GHG) emissions than any other end-use sector. Integrated assessment models (IAMs) and energy system models have been widely used to evaluate climate policy at a global level, and include a representation of industrial energy use. In this study, the projected industrial energy use and accompanying GHG emissions, as well as the model structure of multiple long-term energy models are compared. The models show varying degrees to which energy consumption is decoupled from GDP growth in the future. In all models, the sector remains mostly (>50%) reliant on fossil energymore » through 2100 in a reference scenario (i.e., absent emissions mitigation policies), though there is significant divergence in the projected ability to switch to alternative fuels to mitigate GHG emissions. Among the set analyzed here, the more technologically detailed models tend to have less capacity for switching from fossil fuels to electricity. This highlights the importance of understanding of economy-wide mitigation responses and costs as an area for future improvement. Analyzing industry subsector material and energy use details can improve the ability to interpret results, and provide insight in feasibility of how emissions reduction can be achieved.« less
Industry and electricity production facilities generate over 50 percent of greenhouse gas (GHG) emissions in the United States. There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Reducing GHG emi...
NASA Astrophysics Data System (ADS)
Shaw, C.; Kurz, W. A.; Metsaranta, J.; Bona, K. A.; Hararuk, O.; Smyth, C.
2017-12-01
The Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) is a forest carbon budget model that operates on individual stands. It is applied from regional to national-scales in Canada for national and international reporting of GHG emissions and removals and in support of analyses of forest sector mitigation options and other scientific and policy questions. This presentation will review the history and continuous improvement process of representations of dead organic matter (DOM) and soil carbon modelling. Early model versions in which dead organic matter (DOM) pools only included litter, downed deadwood and soil, to the current version where these pools are estimated separately to better compare model estimates against field measurements, or new pools have been added. Uncertainty analyses consistently point at soil C pools as large sources of uncertainty. With the new ground plot measurements from the National Forest Inventory, and with a newly compiled forest soil carbon database, we have recently completed a model data assimilation exercise that helped reduce parameter uncertainties. Lessons learned from the continuous improvement process will be summarised and we will discuss how model modification have led to improved representation of DOM and soil carbon dynamics. We conclude by suggesting future research priorities that can advance DOM and soil carbon modelling in Canadian forest ecosystems.
How can land-use modelling tools inform bioenergy policies?
Davis, Sarah C.; House, Joanna I.; Diaz-Chavez, Rocio A.; Molnar, Andras; Valin, Hugo; DeLucia, Evan H.
2011-01-01
Targets for bioenergy have been set worldwide to mitigate climate change. Although feedstock sources are often ambiguous, pledges in European nations, the United States and Brazil amount to more than 100 Mtoe of biorenewable fuel production by 2020. As a consequence, the biofuel sector is developing rapidly, and it is increasingly important to distinguish bioenergy options that can address energy security and greenhouse gas mitigation from those that cannot. This paper evaluates how bioenergy production affects land-use change (LUC), and to what extent land-use modelling can inform sound decision-making. We identified local and global internalities and externalities of biofuel development scenarios, reviewed relevant data sources and modelling approaches, identified sources of controversy about indirect LUC (iLUC) and then suggested a framework for comprehensive assessments of bioenergy. Ultimately, plant biomass must be managed to produce energy in a way that is consistent with the management of food, feed, fibre, timber and environmental services. Bioenergy production provides opportunities for improved energy security, climate mitigation and rural development, but the environmental and social consequences depend on feedstock choices and geographical location. The most desirable solutions for bioenergy production will include policies that incentivize regionally integrated management of diverse resources with low inputs, high yields, co-products, multiple benefits and minimal risks of iLUC. Many integrated assessment models include energy resources, trade, technological development and regional environmental conditions, but do not account for biodiversity and lack detailed data on the location of degraded and underproductive lands that would be ideal for bioenergy production. Specific practices that would maximize the benefits of bioenergy production regionally need to be identified before a global analysis of bioenergy-related LUC can be accomplished. PMID:22482028
Global climate change: the quantifiable sustainability challenge.
Princiotta, Frank T; Loughlin, Daniel H
2014-09-01
Population growth and the pressures spawned by increasing demands for energy and resource-intensive goods, foods, and services are driving unsustainable growth in greenhouse gas (GHG) emissions. Recent GHG emission trends are consistent with worst-case scenarios of the previous decade. Dramatic and near-term emission reductions likely will be needed to ameliorate the potential deleterious impacts of climate change. To achieve such reductions, fundamental changes are required in the way that energy is generated and used. New technologies must be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear and transportation technologies are particularly important; however, global research and development efforts related to these technologies currently appear to fall short relative to needs. Even with a proactive and international mitigation effort, humanity will need to adapt to climate change, but the adaptation needs and damages will be far greater if mitigation activities are not pursued in earnest. In this review, research is highlighted that indicates increasing global and regional temperatures and ties climate changes to increasing GHG emissions. GHG mitigation targets necessary for limiting future global temperature increases are discussed, including how factors such as population growth and the growing energy intensity of the developing world will make these reduction targets more challenging. Potential technological pathways for meeting emission reduction targets are examined, barriers are discussed, and global and US. modeling results are presented that suggest that the necessary pathways will require radically transformed electric and mobile sectors. While geoengineering options have been proposed to allow more time for serious emission reductions, these measures are at the conceptual stage with many unanswered cost, environmental, and political issues. Implications: This paper lays out the case that mitigating the potential for catastrophic climate change will be a monumental challenge, requiring the global community to transform its energy system in an aggressive, coordinated, and timely manner. If this challenge is to be met, new technologies will have to be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear, and transportation technologies are particularly important. Even with an aggressive international mitigation effort, humanity will still need to adapt to significant climate change.
NASA Astrophysics Data System (ADS)
Groth, Markus; Cortekar, Jörg
2015-04-01
The option of adapting to climate change is becoming more and more important in climate change policy. Hence, responding to climate change now involves both mitigation to address the cause and adaptation as a response to already ongoing and expected changes. These changes also have relevance for the current and future energy sector in Germany. An energy sector that in the course of the German Energiewende also has to deal with a fundamental shift in energy supply from fossil fuel to renewable energies in the next decades. Thereby it needs to be considered that the energy sector is one critical infrastructure in the European Union that needs to be protected. Critical infrastructures can be defined as organisations or facilities of special importance for the country and its people where failure or functional impairment would lead to severe supply bottlenecks, significant disturbance of public order or other dramatic consequences. Regarding the adaptation to climate change, the main question is, whether adaptation options will be implemented voluntarily by companies or not. This will be the case, when the measure is considered a private good and is economically beneficial. If, on the contrary, the measure is considered a public good, additional incentives are needed. Based on a synthesis of the current knowledge regarding the possible impacts of climate change on the German energy sector along its value-added chain, the paper points out, that the power distribution and the grid infrastructure is consistently attributed the highest vulnerability. Direct physical impacts and damages to the transmission and distribution grids, utility poles, power transformers, and relay stations are expected due to more intense extreme weather events like storms, floods or thunderstorms. Furthermore fundaments of utility poles can be eroded and relay stations or power transformers can be flooded, which might cause short circuits etc. Besides these impacts causing damage to the physical infrastructure, there might also occur efficiency losses in electricity transmission due to very high or very low temperatures. While vulnerabilities in power generation primarily result in efficiency losses, interferences on the grid level could cause power outages with cascade effects influencing other sectors of society and economy. The paper argues that these possible impacts of a changing climate should be taken into account in the upcoming infrastructure projects in the course of the Energiewende. Therefore governmental intervention - like legal obligations or incentives by the use of economic instruments - are for example justifiable regarding measures to adapt the grid infrastructure as a critical infrastructure that needs to be protected against current and future impacts of climate change.
Ma, Minda; Cai, Weiguang
2018-09-01
Energy efficiency in the building sector is expected to contribute >50% to the nationwide carbon mitigation efforts for achieving China's carbon emission peak in 2030, and carbon mitigation in Chinese commercial buildings (CMCCB) is an indicator of this effort. However, the CMCCB assessment has faced the challenge of ineffective and inadequate approaches; therefore, we have followed a different approach. Using the China Database of Building Energy Consumption and Carbon Emissions as our data source, our study is the first to employ the Logarithmic Mean Divisia Index (LMDI) to decompose five driving forces from the Kaya identity of Chinese commercial building carbon emissions (CCBCE) to assess the CMCCB values in 2001-2015. The results of our study indicated that: (1) Only two driving forces (i.e., the reciprocal of GDP per capita of Tertiary Industry in China and the CCBCE intensity) contributed negatively re m i to CCBCE during 2001-2015, and the quantified negative contributions denoted the CMCCB values. Specifically, the CMCCB values in 2001-2005, 2006-2010, and 2011-2015 were 123.96, 252.83, and 249.07 MtCO 2 , respectively. (2) The data quality control involving the CMCCB values proved the reliability of our CMCCB assessment model, and the universal applicability of this model was also confirmed. (3) The substantial achievements of the energy efficiency project in the Chinese commercial building sector were the root cause of the rapidly growing CMCCB. Overall, we believe that our model successfully bridges the research gap of the nationwide CMCCB assessment and that the proposed model is also suitable either at the provincial level or in different building climate zones in China. Meanwhile, a global-level assessment of the carbon mitigation in the commercial building sector is feasible through applying our model. Furthermore, we consider our contribution as constituting significant guidance for developing the building energy efficiency strategy in China in the upcoming phase. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarofim, M. C.; Martinich, J.; Waldhoff, S.; DeAngelo, B. J.; McFarland, J.; Jantarasami, L.; Shouse, K.; Crimmins, A.; Li, J.
2014-12-01
The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the physical impacts, economic damages, and risks from climate change. The primary goal of this framework is to estimate the degree to which climate change impacts and damages in the United States are avoided or reduced in the 21st century under multiple greenhouse gas (GHG) emissions mitigation scenarios. The first phase of the CIRA project is a modeling exercise that included two integrated assessment models and 15 sectoral models encompassing five broad impacts sectors: water resources, electric power, infrastructure, human health, and ecosystems. Three consistent socioeconomic and climate scenarios are used to analyze the benefits of global GHG mitigation targets: a reference scenario and two policy scenarios with total radiative forcing targets in 2100 of 4.5 W/m2 and 3.7 W/m2. In this exercise, the implications of key uncertainties are explored, including climate sensitivity, climate model, natural variability, and model structures and parameters. This presentation describes the motivations and goals of the CIRA project; the design and academic contribution of the first CIRA modeling exercise; and briefly summarizes several papers published in a special issue of Climatic Change. The results across impact sectors show that GHG mitigation provides benefits to the United States that increase over time, the effects of climate change can be strongly influenced by near-term policy choices, adaptation can reduce net damages, and impacts exhibit spatial and temporal patterns that may inform mitigation and adaptation policy discussions.
Fuel-mix, fuel efficiency, and transport demand affect prospects for biofuels in northern Europe.
Bright, Ryan M; Strømman, Anders Hammer
2010-04-01
Rising greenhouse gas (GHG) emissions in the road transport sector represents a difficult mitigation challenge due to a multitude of intricate factors, namely the dependency on liquid energy carriers and infrastructure lock-in. For this reason, low-carbon renewable energy carriers, particularly second generation biofuels, are often seen as a prominent candidate for realizing reduced emissions and lowered oil dependency over the medium- and long-term horizons. However, the overarching question is whether advanced biofuels can be an environmentally effective mitigation strategy in the face of increasing consumption and resource constraints. Here we develop both biofuel production and road transport consumption scenarios for northern Europe-a region with a vast surplus of forest bioenergy resources-to assess the potential role that forest-based biofuels may play over the medium- and long-term time horizons using an environmentally extended, multiregion input-output model. Through scenarios, we explore how evolving vehicle technologies and consumption patterns will affect the mitigation opportunities afforded by any future supply of forest biofuels. We find that in a scenario involving ambitious biofuel targets, the size of the GHG mitigation wedge attributed to the market supply of biofuels is severely reduced under business-as-usual growth in consumption in the road transport sector. Our results indicate that climate policies targeting the road transport sector which give high emphases to reducing demand (volume), accelerating the deployment of more fuel-efficient vehicles, and promoting altered consumption patterns (structure) can be significantly more effective than those with single emphasis on expanded biofuel supply.
Vegetation and other development options for mitigating urban air pollution impacts
Richard Baldauf; David J. Nowak
2014-01-01
While air pollution control devices and programs are the primary method of reducing emissions, urban air pollution can be further mitigated through planning and design strategies, including vegetation preservation and planting, building design and development, installing roadside and near-source structures, and modifying surrounding terrain features.
Ogle, Stephen M; Olander, Lydia; Wollenberg, Lini; Rosenstock, Todd; Tubiello, Francesco; Paustian, Keith; Buendia, Leandro; Nihart, Alison; Smith, Pete
2014-01-01
Agriculture in developing countries has attracted increasing attention in international negotiations within the United Nations Framework Convention on Climate Change for both adaptation to climate change and greenhouse gas mitigation. However, there is limited understanding about potential complementarity between management practices that promote adaptation and mitigation, and limited basis to account for greenhouse gas emission reductions in this sector. The good news is that the global research community could provide the support needed to address these issues through further research linking adaptation and mitigation. In addition, a small shift in strategy by the Intergovernmental Panel on Climate Change (IPCC) and ongoing assistance from agricultural organizations could produce a framework to move the research and development from concept to reality. In turn, significant progress is possible in the near term providing the basis for UNFCCC negotiations to move beyond discussion to action for the agricultural sector in developing countries. © 2013 John Wiley & Sons Ltd.
Emissions reduction scenarios in the Argentinean Energy Sector
Di Sbroiavacca, Nicolás; Nadal, Gustavo; Lallana, Francisco; ...
2016-04-14
Here in this paper the LEAP, TIAM-ECN, and GCAM models were applied to evaluate the impact of a variety of climate change control policies (including carbon pricing and emission constraints relative to a base year) on primary energy consumption, final energy consumption, electricity sector development, and CO 2 emission savings of the energy sector in Argentina over the 2010-2050 period. The LEAP model results indicate that if Argentina fully implements the most feasible mitigation measures currently under consideration by official bodies and key academic institutions on energy supply and demand, such as the ProBiomass program, a cumulative incremental economic costmore » of 22.8 billion US$(2005) to 2050 is expected, resulting in a 16% reduction in GHG emissions compared to a business-as-usual scenario. These measures also bring economic co-benefits, such as a reduction of energy imports improving the balance of trade. A Low CO 2 price scenario in LEAP results in the replacement of coal by nuclear and wind energy in electricity expansion. A High CO 2 price leverages additional investments in hydropower. An emission cap scenario (2050 emissions 20% lower than 2010 emissions) is feasible by including such measures as CCS and Bio CCS, but at a significant cost. By way of cross-model comparison with the TIAM-ECN and GCAM global integrated assessment models, significant variation in projected emissions reductions in the carbon price scenarios was observed, which illustrates the inherent uncertainties associated with such long-term projections. These models predict approximately 37% and 94% reductions under the High CO 2 price scenario, respectively. By comparison, the LEAP model, using an approach based on the assessment of a limited set of mitigation options, predicts a 11.3% reduction under the ‘high’ carbon tax. The main reasons for this difference are differences in assumptions about technology cost and availability, CO 2 storage capacity, and the ability to import bioenergy. In terms of technology pathways, the models agree that fossil fuels, in particular natural gas, will remain an important part of the electricity mix in the core baseline scenario. Finally, according to the models there is agreement that the introduction of a carbon price will lead to a decline in absolute and relative shares of aggregate fossil fuel generation. However, predictions vary as to the extent to which coal, nuclear and renewable energy play a role.« less
Agricultural climate impacts assessment for economic modeling and decision support
NASA Astrophysics Data System (ADS)
Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.
2013-12-01
A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a mitigation level of 3.7 W/m2, as well as consideration of different levels of climate sensitivity (2, 3, 4.5 and 6oC) and different initial conditions for addressing uncertainty. Since the CMIP 3 and CMIP5 protocols did not include this mitigation level or consider alternative levels of climate sensitivity, additional climate projections were required. These two cases will be discussed to illustrate some of the trade-offs made in development of methodologies for climate impact assessments that are intended for a specific user or audience, and oriented towards addressing a specific topic of interest and providing useable results. This involvement of stakeholders from the design phase of climate impacts methodology serves to both define the appropriate method for the question at hand and also to engage and inform the stakeholders of the myriad options and uncertainties associated with different methodology choices. This type of engagement should benefit decision making in the long run through greater stakeholder understanding of the science of future climate model projections, scenarios, the climate impacts sector models and the types of outputs that can be generated by each along with the respective uncertainties at each step of the climate impacts assessment process.
2014-06-16
SCADA systems. These professionals should be aware of the vulnerabilities so they can take intelligent precautions to mitigate attacks. SCADA...vulnerabilities • Describe mitigation options for protecting a system from SCADA attacks For students that go on to pursue a degree in Computer...from SCADA attacks For students who do not remain in the IT realm, this introduction provides an awareness to help them mitigate threats for their
2006-09-30
allocated to intangible assets. With Proctor & Gamble’s $53.5 billion acquisition of Gillette , $31.5 billion or 59% of the total purchase price was... outsourcing , alliances, joint ventures) • Compound Option (platform options) • Sequential Options (stage-gate development, R&D, phased...Comparisons • RO/KVA could enhance outsourcing comparisons between the Government’s Most Efficient Organization (MEO) and private-sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Meredydd; Roshchanka, Volha
2014-08-04
This paper uses Russian policy in the oil and gas sector as a case study in assessing options and challenges for scaling-up emission reductions. We examine the challenges to achieving large-scale emission reductions, successes that companies have achieved to date, how Russia has sought to influence methane emissions through its environmental fine system, and options for helping companies achieve large-scale emission reductions in the future through simpler and clearer incentives.
For Frank Princiotta’s book, Global Climate Change—The Technology Challenge China, India, and Mexico are the top emitters of CO2 among developing nations. The electric power sectors in China and India is dominated by coal-fired power plants, whereas in Mexico, fuel oil and natur...
Pathways to Carbon-Negative Liquid Biofuels
NASA Astrophysics Data System (ADS)
Woolf, D.; Lehmann, J.
2017-12-01
Many climate change mitigation scenarios assume that atmospheric carbon dioxide removal will be delivered at scale using bioenergy power generation with carbon capture and storage (BECCS). However, other pathways to negative emission technologies (NETs) in the energy sector are possible, but have received relatively little attention. Given that the costs, benefits and life-cycle emissions of technologies vary widely, more comprehensive analyses of the policy options for NETs are critical. This study provides a comparative assessment of the potential pathways to carbon-negative liquid biofuels. It is often assumed that that decarbonisation of the transport sector will include use of liquid biofuels, particularly for applications that are difficult to electrify such as aviation and maritime transport. However, given that biomass and land on which to grow it sustainably are limiting factors in the scaling up of both biofuels and NETs, these two strategies compete for shared factors of production. One way to circumvent this competition is carbon-negative biofuels. Because capture of exhaust CO2 in the transport sector is impractical, this will likely require carbon capture during biofuel production. Potential pathways include, for example, capture of CO2 from fermentation, or sequestration of biochar from biomass pyrolysis in soils, in combination with thermochemical or bio-catalytic conversion of syngas to alcohols or alkanes. Here we show that optimal pathway selection depends on specific resource constraints. As land availability becomes increasingly limiting if bioenergy is scaled up—particularly in consideration that abandoned degraded land is widely considered to be an important resource that does not compete with food fiber or habitat—then systems which enhance land productivity by increasing soil fertility using soil carbon sequestration become increasingly preferable compared to bioenergy systems that deplete or degrade the land resource on which they depend.
The environmental and economic sustainability of carbon capture and storage.
Hardisty, Paul E; Sivapalan, Mayuran; Brooks, Peter
2011-05-01
For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO(2) abated--there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications-indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO(2) entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically challenging, and the economic sustainability of post-combustion capture retrofit needs to be compared on a portfolio basis to the relative overall net benefit of CCS on new-build plants, where energy efficiency can be optimised as a first step, and locations can be selected with sequestration sites in mind. Examples from the natural gas processing, liquefied natural gas (LNG), and coal-fired power generation sectors, illustrate that there is currently a wide range of financial costs for CCS, depending on how and where it is applied, but equally, environmental and social benefits of emissions reduction can be considerable. Some CCS applications are far more economic and sustainable than others. CCS must be considered in the context of the other things that a business can do to eliminate emissions, such as far-reaching efforts to improve energy efficiency.
The Environmental and Economic Sustainability of Carbon Capture and Storage
Hardisty, Paul E.; Sivapalan, Mayuran; Brooks, Peter
2011-01-01
For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO2 abated—there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications—indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO2 entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically challenging, and the economic sustainability of post-combustion capture retrofit needs to be compared on a portfolio basis to the relative overall net benefit of CCS on new-build plants, where energy efficiency can be optimised as a first step, and locations can be selected with sequestration sites in mind. Examples from the natural gas processing, liquefied natural gas (LNG), and coal-fired power generation sectors, illustrate that there is currently a wide range of financial costs for CCS, depending on how and where it is applied, but equally, environmental and social benefits of emissions reduction can be considerable. Some CCS applications are far more economic and sustainable than others. CCS must be considered in the context of the other things that a business can do to eliminate emissions, such as far-reaching efforts to improve energy efficiency. PMID:21655130
NASA Astrophysics Data System (ADS)
Lima de Azevedo, Ines Margarida
Energy efficiency and conservation is a very promising part of a portfolio of the needed strategies to mitigate climate change. Several technologies and energy efficiency measures in the residential sector offer potential for large energy savings. However, while energy efficiency options are currently considered as a means of reducing carbon emissions, there is still large uncertainty about the effect of such measures on overall carbon savings. The first part of this thesis provides a national assessment of the energy efficiency potential in the residential sector under several different scenarios, which include the perspectives of different economic agents (consumers, utilities, ESCOs, and a society). The scenarios also include maximizing energy, electricity or carbon dioxide savings. The second part of this thesis deals with a detailed assessment of the potential for white-light LEDs for energy and carbon dioxide savings in the U.S. commercial and residential sectors. Solid-state lighting shows great promise as a source of efficient, affordable, color-balanced white light. Indeed, assuming market discount rates, the present work demonstrates that white solid-state lighting already has a lower levelized annual cost (LAC) than incandescent bulbs and that it will be lower than that of the most efficient fluorescent bulbs by the end of this decade. However, a large literature indicates that households do not make their decisions in terms of simple expected economic value. The present analysis shows that incorporating the findings from literature on high implicit discount rates from households when performing decisions towards efficient technologies delays the adoption of white LEDs by a couple of years. After a review of the technology, the present work compares the electricity consumption, carbon emissions and cost-effectiveness of current lighting technologies, when accounting for expected performance evolution through 2015. Simulations of lighting electricity consumption and implicit greenhouse gases emissions for the U.S. residential and commercial sectors through 2015 under different policy scenarios (voluntary solid-state lighting adoption, implementation of lighting standards in new construction and rebate programs or equivalent subsidies) are also included.
The Impact of CCS Readiness on the Evolution of China's Electric Power Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahowski, Robert T.; Davidson, Casie L.; Yu, Sha
In this study, GCAM-China is exercised to examine the impact of CCS availability on the projected evolution of China’s electric power sector under the Paris Increased Ambition policy scenario developed by Fawcett et al. based on the Intended Nationally Determined Contributions (INDCs) submitted under the COP-21 Paris Agreement. This policy scenario provides a backdrop for understanding China’s electric generation mix over the coming century under several CCS availability scenarios: CCS is fully available for commercial-scale deployment by 2025; by 2050; by 2075; and CCS is unavailable for use in meeting the modelled mitigation targets through 2100. Without having CCS available,more » the Chinese electric power sector turns to significant use of nuclear, wind, and solar to meet growing demands and emissions targets, at a cost. Should large-scale CCS deployment be delayed in China by 25 years, the modeled per-ton cost of climate change mitigation is projected to be roughly $420/tC (2010 US dollars) by 2050, relative to $360/tC in the case in which CCS is available to deploy by 2025, a 16% increase. Once CCS is available for commercial use, mitigation costs for the two cases converge, equilibrating by 2085. However, should CCS be entirely unavailable to deploy in China, the mitigation cost spread, compared to the 2025 case, doubles by 2075 ($580/tC and $1130/tC respectively), and triples by 2100 ($1050/tC vs. $3200/tC). However, while delays in CCS availability may have short-term impacts on China’s overall per-ton cost of meeting the emissions reduction target evaluated here, as well as total mitigation costs, the carbon price is likely to approach the price path associated with the full CCS availability case within a decade of CCS deployment. Having CCS available before the end of the century, even under the delays examined here, could reduce the total amount of nuclear and renewable energy that must deploy, reducing the overall cost of meeting the emissions mitigation targets.« less
Jia, Junsong; Gong, Zhihai; Gu, Zhongyu; Chen, Chundi; Xie, Dongming
2018-04-01
This study is the first attempt to investigate the drivers of Chinese industrial SO 2 and NO x emissions from both periodic and structural perspectives through a decomposition analysis using the logarithmic mean Divisia index (LMDI). The two pollutants' emissions were decomposed into output effects, structural effects, clean production effects, and pollution abatement effects. The results showed that China's industrial SO 2 discharge increased by 1.14 Mt during 2003-2014, and the contributions from the four effects were 23.17, - 1.88, - 3.80, and - 16.36 Mt, respectively. Likewise, NO x discharge changed by - 3.44 Mt over 2011-2014, and the corresponding contributions from the four effects were 2.97, - 0.62, - 1.84, and - 3.95 Mt. Thus, the output effect was mainly responsible for the growth of the two discharges. The average annual contribution rates of SO 2 and NO x from output were 14.33 and 5.97%, respectively, but pollution abatement technology presented the most obvious mitigating effects (- 10.11 and - 7.92%), followed by the mitigating effects of clean production technology (- 2.35 and - 3.7%), and the mitigation from the structural effect was the weakest (- 1.16 and - 1.25%, respectively), which meant pollutant reduction policies related to industrial structure adjustment should be a long-term measure for the two discharges. In addition, the sub-sectors of I20 (manufacture of raw chemical materials and chemical products), I24 (manufacture of non-metallic mineral products), and I26 (smelting and pressing of non-ferrous metals) were the major contributors to both discharges. Thus, these sub-sectors should be given priority consideration when designing mitigation-related measures. Last, some particular policy implications were recommended for reducing the two discharges, including that the government should seek a technological discharge reduction route.
The roles of energy and material efficiency in meeting steel industry CO2 targets.
Milford, Rachel L; Pauliuk, Stefan; Allwood, Julian M; Müller, Daniel B
2013-04-02
Identifying strategies for reducing greenhouse gas emissions from steel production requires a comprehensive model of the sector but previous work has either failed to consider the whole supply chain or considered only a subset of possible abatement options. In this work, a global mass flow analysis is combined with process emissions intensities to allow forecasts of future steel sector emissions under all abatement options. Scenario analysis shows that global capacity for primary steel production is already near to a peak and that if sectoral emissions are to be reduced by 50% by 2050, the last required blast furnace will be built by 2020. Emissions reduction targets cannot be met by energy and emissions efficiency alone, but deploying material efficiency provides sufficient extra abatement potential.
A wildfire risk assessment framework for land and resource management
Joe H. Scott; Matthew P. Thompson; David E. Calkin
2013-01-01
Wildfires can result in significant, long-lasting impacts to ecological, social, and economic systems. It is necessary, therefore, to identify and understand the risks posed by wildland fire, and to develop cost-effective mitigation strategies accordingly. This report presents a general framework with which to assess wildfire risk and explore mitigation options, and...
Climate-Change Science and Policy: What Do We Know? What Should We Do
2010-09-06
These briefing charts discuss climate change science and policy including: the essence of the challenge, five myths and their refutations, climate ... change risks and impact going forward, available options, how much mitigation, how soon?, mitigation supply curve and its implications, and the Obama Administration’s strategy.
Performance improvement: an active life cycle product management
NASA Astrophysics Data System (ADS)
Cucchiella, Federica; Gastaldi, Massimo; Lenny Koh, S. C.
2010-03-01
The management of the supply chain has gained importance in many manufacturing firms. Operational flexibility can be considered a crucial weapon to increase competitiveness in a turbulent marketplace. It reflects the ability of a firm to properly and rapidly respond to a variable and dynamic environment. For the firm operating in a fashion sector, the management of the supply chain is even more complex because the product life cycle is shorter than that of the firm operating in a non-fashion sector. The increase of firm flexibility level can be reached through the application of the real option theory inside the firm network. In fact, real option may increase the project value by allowing managers to more efficiently direct the production. The real option application usually analysed in literature does not take into account that the demands of products are well-defined by the product life cycle. Working on a fashion sector, the life cycle pattern is even more relevant because of an expected demand that grows according to a constant rate that does not capture the demand dynamics of the underlying fashion goods. Thus, the primary research objective of this article is to develop a model useful for the management of investments in a supply chain operating in a fashion sector where the system complexity is increased by the low level of unpredictability and stability that is proper of the mood phenomenon. Moreover, unlike the traditional model, a real option framework is presented here that considers fashion product characterised by uncertain stages of the production cycle.
Analysis of Technological Innovation and Environmental Performance Improvement in Aviation Sector
Lee, Joosung; Mo, Jeonghoon
2011-01-01
The past oil crises have caused dramatic improvements in fuel efficiency in all industrial sectors. The aviation sector—aircraft manufacturers and airlines—has also made significant efforts to improve the fuel efficiency through more advanced jet engines, high-lift wing designs, and lighter airframe materials. However, the innovations in energy-saving aircraft technologies do not coincide with the oil crisis periods. The largest improvement in aircraft fuel efficiency took place in the 1960s while the high oil prices in the 1970s and on did not induce manufacturers or airlines to achieve a faster rate of innovation. In this paper, we employ a historical analysis to examine the socio-economic reasons behind the relatively slow technological innovation in aircraft fuel efficiency over the last 40 years. Based on the industry and passenger behaviors studied and prospects for alternative fuel options, this paper offers insights for the aviation sector to shift toward more sustainable technological options in the medium term. Second-generation biofuels could be the feasible option with a meaningful reduction in aviation’s lifecycle environmental impact if they can achieve sufficient economies of scale. PMID:22016716
NASA Astrophysics Data System (ADS)
Olguin-Alvarez, M. I.; Wayson, C.; Fellows, M.; Birdsey, R.; Smyth, C.; Magnan, M.; Dugan, A.; Mascorro, V.; Alanís, A.; Serrano, E.; Kurz, W. A.
2017-12-01
Since 2012, the Mexican government through its National Forestry Commission, with support from the Commission for Environmental Cooperation, the Forest Services of Canada and USA, the SilvaCarbon Program and research institutes in Mexico, has made important progress towards the use of carbon dynamics models ("gain-loss" approach) for greenhouse gas (GHG) emissions monitoring and projections into the future. Here we assess the biophysical mitigation potential of policy alternatives identified by the Mexican Government (e.g. net zero deforestation rate, sustainable forest management) based on a systems approach that models carbon dynamics in forest ecosystems, harvested wood products and substitution benefits in two contrasting states of Mexico. We provide key messages and results derived from the use of the Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model, parameterized with input data from Mexicós National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data). The ultimate goal of this tri-national effort is to develop data and tools for carbon assessment in strategic landscapes in North America, emphasizing the need to include multiple sectors and types of collaborators (scientific and policy-maker communities) to design more comprehensive portfolios for climate change mitigation in accordance with the Paris Agreement of the United Nation Framework Convention on Climate Change (e.g. Mid-Century Strategy, NDC goals).
Womack, C; Gray, N M; Pearson, J E; Fehily, D
2001-01-01
The Peterborough Hospital Human Tissue Bank (PHHTB) and National Blood Service Tissue Services (London and South East Zone) (NBSTS) operate within the U.K. National Health Service (NHS) and have a system in place to retrieve cadaveric tissues for commercial sector research. The collaboration meets the aims of PHHTB and NBSTS and is legal, ethical and safe. This paper presents the results of the first 20 successful retrievals referred from NBSTS to PHHTB. Cadaveric retrieval of tissue for research extends the options for donors and their relatives. The research option is particularly welcomed in cases where clinical retrieval for tissue transplantation is contraindicated. We believe the system is applicable to other centres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van der Zwaan, Bob; Kober, Tom; Calderon, Silvia
In this paper we investigate opportunities for energy technology deployment under climate change mitigation efforts in Latin America. Through several carbon tax and CO 2 abatement scenarios until 2050 we analyze what resources and technologies, notably for electricity generation, could be cost-optimal in the energy sector to significantly reduce CO 2 emissions in the region. By way of sensitivity test we perform a cross-model comparison study and inspect whether robust conclusions can be drawn across results from different models as well as different types of models (general versus partial equilibrium). Given the abundance of biomass resources in Latin America, theymore » play a large role in energy supply in all scenarios we inspect. This is especially true for stringent climate policy scenarios, for instance because the use of biomass in power plants in combination with CCS can yield negative CO 2 emissions. We find that hydropower, which today contributes about 800 TWh to overall power production in Latin America, could be significantly expanded to meet the climate policies we investigate, typically by about 50%, but potentially by as much as 75%. According to all models, electricity generation increases exponentially with a two- to three-fold expansion between 2010 and 2050.Wefind that in our climate policy scenarios renewable energy overall expands typically at double-digit growth rates annually, but there is substantial spread in model results for specific options such as wind and solar power: the climate policies that we simulate raise wind power in 2050 on average to half the production level that hydropower provides today, while they raise solar power to either a substantially higher or a much lower level than hydropower supplies at present, depending on which model is used. Also for CCS we observe large diversity in model outcomes, which reflects the uncertainties with regard to its future implementation potential as a result of the challenges this CO 2 abatement technology experiences. The extent to which different mitigation options can be used in practice varies greatly between countries within Latin America, depending on factors such as resource potentials, economic performance, environmental impacts, and availability of technical expertise. We provide concise assessments of possible deployment opportunities for some low-carbon energy options, for the region at large and with occasional country-level detail in specific cases.« less
NASA Astrophysics Data System (ADS)
Muñoz-Rojas, Miriam; Pereira, Paulo; Brevik, Eric; Cerda, Artemi; Jordan, Antonio
2017-04-01
As agreed in Paris in December 2015, global average temperature is to be limited to "well below 2 °C above pre-industrial levels" and efforts will be made to "limit the temperature increase to 1.5 °C above pre-industrial levels. Thus, reducing greenhouse gas emissions (GHG) in all sectors becomes critical and appropriate sustainable land management practices need to be taken (Pereira et al., 2017). Mitigation strategies focus on reducing the rate and magnitude of climate change by reducing its causes. Complementary to mitigation, adaptation strategies aim to minimise impacts and maximize the benefits of new opportunities. The adoption of both practices will require developing system models to integrate and extrapolate anticipated climate changes such as global climate models (GCMs) and regional climate models (RCMs). Furthermore, integrating climate models driven by socio-economic scenarios in soil process models has allowed the investigation of potential changes and threats in soil characteristics and functions in future climate scenarios. One of the options with largest potential for climate change mitigation is sequestering carbon in soils. Therefore, the development of new methods and the use of existing tools for soil carbon monitoring and accounting have therefore become critical in a global change context. For example, soil C maps can help identify potential areas where management practices that promote C sequestration will be productive and guide the formulation of policies for climate change mitigation and adaptation strategies. Despite extensive efforts to compile soil information and map soil C, many uncertainties remain in the determination of soil C stocks, and the reliability of these estimates depends upon the quality and resolution of the spatial datasets used for its calculation. Thus, better estimates of soil C pools and dynamics are needed to advance understanding of the C balance and the potential of soils for climate change mitigation. Here, we discuss the most recent advances on the application of soil mapping and modeling to support climate change mitigation and adaptation strategies; and These strategies are a key component of the implementation of sustainable land management policies need to be integrated are critical to. The objective of this work is to present a review about the advantages of soil mapping and process modeling for sustainable land management. Muñoz-Rojas, M., Pereira, P., Brevic, E., Cerda, A., Jordan, A. (2017) Soil mapping and processes models for sustainable land management applied to modern challenges. In: Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B. (Eds.) Soil mapping and process modelling for sustainable land use management (Elsevier Publishing House) ISBN: 9780128052006
Luo, Kui; Li, Guangdong; Fang, Chuanglin; Sun, Siao
2018-05-01
Elucidating the key impact factors on PM 2.5 concentrations is crucial to formulate effective mitigation policies. In this study, we employed an extended Stochastic Impacts by Regression on Population Affluence and Technology (STIRPAT) model to identify the socioeconomic determinants of PM 2.5 concentrations for 12 different regions and across China. The evaluation was based on a balanced panel dataset integrating long-term satellite-derived PM 2.5 concentrations and socio-economic data in China from 1999 to 2011. Empirical results indicate that the influencing factors can be ranked in descending order of importance as: proportion of secondary sector of the economy, GDP per capita, urbanization, population, energy intensity, and proportion of tertiary sector. Proportion of secondary sector is the greatest contribution to increasing PM 2.5 concentrations, especially for heavily polluted regions. GDP per capita is secondary in importance, and its impact is weakened by the existence of an EKC relationship between GDP per capita and PM 2.5 concentrations. Therefore, PM 2.5 pollution is an economic development mode problem, rather than a general economic development problem. The impact of urbanization varies across regions; while promoting urbanization will be conducive to decreased PM 2.5 concentrations in Northwest China and Northeast China, it will contribute to increased PM 2.5 concentrations in other regions. Population and energy intensity are significant in most regions, but neither are decisive factors because of the small absolute value of their coefficients. Finally, different combinations of mitigation policies are proposed for different regions in this study to meet the mitigation targets. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriegler, Elmar; Weyant, John; Blanford, Geoffrey J.
2014-04-01
This article presents the synthesis of results from the Stanford Energy Modeling Forum Study 27, an inter-comparison of 19 energy-economy and integrated assessment models. The study investigated the value of individual mitigation technologies such as energy intensity improvements, carbon capture and sequestration (CCS), nuclear power, solar and wind power and bioenergy for climate mitigation. Achieving atmospheric greenhouse gas concentration targets at 450 and 550 ppm CO2 equivalent requires massive greenhouse gas emissions reductions. A fragmented policy approach at the level of current ambition is inconsistent with these targets. The availability of a negative emissions technology, in most models biofuels withmore » CCS, proved to be a key element for achieving the climate targets. Robust characteristics of the transformation of the energy system are increased energy intensity improvements and the electrification of energy end use coupled with a fast decarbonization of the electricity sector. Non-electric energy end use is hardest to decarbonize, particularly in the transport sector. Technology is a key element of climate mitigation. Versatile technologies such as CCS and bioenergy have largest value, due in part to their combined ability to produce negative emissions. The individual value of low-carbon power technologies is more limited due to the many alternatives in the sector. The scale of the energy transformation is larger for the 450 ppm than for the 550 ppm CO2e target. As a result, the achievability and the costs of the 450 ppm target are more sensitive to variations in technology variability. Mitigation costs roughly double when moving from 550 ppm to 450 ppm CO2e, but remain below 3% of GDP for most models.« less
The engineering options for mitigating the climate impacts of aviation.
Williams, Victoria
2007-12-15
Aviation is a growing contributor to climate change, with unique impacts due to the altitude of emissions. If existing traffic growth rates continue, radical engineering solutions will be required to prevent aviation becoming one of the dominant contributors to climate change. This paper reviews the engineering options for mitigating the climate impacts of aviation using aircraft and airspace technologies. These options include not only improvements in fuel efficiency, which would reduce carbon dioxide (CO2) emissions, but also measures to reduce non-CO2 impacts including the formation of persistent contrails. Integrated solutions to optimize environmental performance will require changes to airframes, engines, avionics, air traffic control systems and airspace design. While market-based measures, such as offset schemes and emissions trading, receive growing attention, this paper sets out the crucial role of engineering in the challenge to develop a 'green air traffic system'.
Assessing Inter-Sectoral Climate Change Risks: The Role of ISIMIP
NASA Technical Reports Server (NTRS)
Rosenzweig, Cynthia; Arnell, Nigel W.; Ebi, Kristie L.; Lotze-Campen, Hermann; Raes, Frank; Rapley, Chris; Smith, Mark Stafford; Cramer, Wolfgang; Frieler, Katja; Reyer, Christopher P. O.;
2017-01-01
The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socioeconomic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change.
NASA Astrophysics Data System (ADS)
Ahmed, Ayman A.; Diab, Maghawri S.
2018-04-01
Wadi Feiran basin is one of the most promising areas in southern Sinai (Egypt) for establishing new communities and for growth in agriculture, tourism, and industry. The present challenges against development include water runoff hazards (flash flooding), the increasing water demand, and water scarcity and contamination. These challenges could be mitigated by efficient use of runoff and rainwater through appropriate management, thereby promoting sustainable development. Strategies include the mitigation of runoff hazards and promoting the natural and artificial recharge of aquifers. This study uses a watershed modeling system, geographic information system, and classification scheme to predict the effects of various mitigation options on the basin's water resources. Rainwater-harvesting techniques could save more than 77% of the basin's runoff (by volume), which could be used for storage and aquifer recharge. A guide map is provided that shows possible locations for the proposed mitigation options in the study basin. Appropriate measures should be undertaken urgently: mitigation of groundwater contamination (including effective sewage effluent management); regular monitoring of the municipal, industrial and agricultural processes that release contaminants; rationalization and regulation of the application of agro-chemicals to farmland; and regular monitoring of contaminants in groundwater. Stringent regulations should be implemented to prevent wastewater disposal to the aquifers in the study area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, R.M.; Biswas, W.K.; Jalal, A.I.
1998-11-01
This paper assesses the potential of selected efficient electrical appliances for avoiding power generation and for mitigation of selected air pollutants from the power sector in Pakistan from technical as well as national, utility and user perspectives. The study shows that about 14, 21 and 35% of the total CO{sub 2}, SO{sub 2} and NO{sub x} emissions in the business as usual (BAU) case could be avoided by the adoption of selected efficient appliances during 1997--2015 from the national perspective, while the corresponding figures from the user perspective are 12, 17 and 29%, respectively. All selected efficient appliances would bemore » cost effective to the users if electricity prices were set at the long-run marginal cost of supply.« less
Ralph Alig; Greg Latta; Darius Adams; Bruce McCarl
2009-01-01
The forest sector can contribute to atmospheric greenhouse gas reduction, while also providing other environmental, economic, and social benefits. Policy tools for climate change mitigation include carbon-related payment programs as well as laws and programs to impede the loss of agricultural and forest lands to development. Policy makers will base their expectations...
NASA Astrophysics Data System (ADS)
Valin, H.; Havlík, P.; Mosnier, A.; Herrero, M.; Schmid, E.; Obersteiner, M.
2013-09-01
In this letter, we investigate the effects of crop yield and livestock feed efficiency scenarios on greenhouse gas (GHG) emissions from agriculture and land use change in developing countries. We analyze mitigation associated with different productivity pathways using the global partial equilibrium model GLOBIOM. Our results confirm that yield increase could mitigate some agriculture-related emissions growth over the next decades. Closing yield gaps by 50% for crops and 25% for livestock by 2050 would decrease agriculture and land use change emissions by 8% overall, and by 12% per calorie produced. However, the outcome is sensitive to the technological path and which factor benefits from productivity gains: sustainable land intensification would increase GHG savings by one-third when compared with a fertilizer intensive pathway. Reaching higher yield through total factor productivity gains would be more efficient on the food supply side but halve emissions savings due to a strong rebound effect on the demand side. Improvement in the crop or livestock sector would have different implications: crop yield increase would bring the largest food provision benefits, whereas livestock productivity gains would allow the greatest reductions in GHG emission. Combining productivity increases in the two sectors appears to be the most efficient way to exploit mitigation and food security co-benefits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. A. Gano, J. G. Lucas, C. T. Lindsey
An ecological investigation was conducted to evaluate mitigation options for demolition of a retired facility that contained a maternity roost of approximately 2,000 Myotis yumanensis bats. The recommendation from the study was to leave the non-contaminated structure intact and fence the area.
Evaluating fuel complexes for fire hazard mitigation planning in the southeastern United States
Anne G. Andreu; Dan Shea; Bernard R. Parresol; Roger D. Ottmar
2012-01-01
Fire hazard mitigation planning requires an accurate accounting of fuel complexes to predict potential fire behavior and effects of treatment alternatives. In the southeastern United States, rapid vegetation growth coupled with complex land use history and forest management options requires a dynamic approach to fuel characterization. In this study we assessed...
Vaccari, Mentore; Montasser, Waleed; Tudor, Terry; Leone, Luigi
2017-05-01
In Europe, there are an increasing number of policy and legislative drivers for a more sustainable approach to the management of natural resources as well as for the mitigation of environmental health risks. However, despite significant progress in recent years, there is still some way to go to achieve circularity of process, as well as risk mitigation within organisations. Using a case study of the Gardone Val Trompia hospital in northern Italy, this manuscript offers a novel holistic examination of strategies to enhance resource efficiency and environmental health within a key sector, i.e. the healthcare sector. Through the use of environmental audits and process flow mapping, trends in waste and wastewater arisings and the associated financial and environmental costs and risks were identified. Recommendations for developing more resource efficient approaches as well as mitigating the environmental and public health risks are suggested. These include strategies for improved resource efficiency (including reduction in the hazardous waste) and reduced environmental impacts during the containment, transport and treatment of the waste.
Applying the conservativeness principle to REDD to deal with the uncertainties of the estimates
NASA Astrophysics Data System (ADS)
Grassi, Giacomo; Monni, Suvi; Federici, Sandro; Achard, Frederic; Mollicone, Danilo
2008-07-01
A common paradigm when the reduction of emissions from deforestations is estimated for the purpose of promoting it as a mitigation option in the context of the United Nations Framework Convention on Climate Change (UNFCCC) is that high uncertainties in input data—i.e., area change and C stock change/area—may seriously undermine the credibility of the estimates and therefore of reduced deforestation as a mitigation option. In this paper, we show how a series of concepts and methodological tools—already existing in UNFCCC decisions and IPCC guidance documents—may greatly help to deal with the uncertainties of the estimates of reduced emissions from deforestation.
Taylor, Sam D; He, Yi; Hiscock, Kevin M
2016-09-15
Agricultural diffuse water pollution remains a notable global pressure on water quality, posing risks to aquatic ecosystems, human health and water resources and as a result legislation has been introduced in many parts of the world to protect water bodies. Due to their efficiency and cost-effectiveness, water quality models have been increasingly applied to catchments as Decision Support Tools (DSTs) to identify mitigation options that can be introduced to reduce agricultural diffuse water pollution and improve water quality. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the River Wensum catchment in eastern England with the aim of quantifying the long-term impacts of potential changes to agricultural management practices on river water quality. Calibration and validation were successfully performed at a daily time-step against observations of discharge, nitrate and total phosphorus obtained from high-frequency water quality monitoring within the Blackwater sub-catchment, covering an area of 19.6 km(2). A variety of mitigation options were identified and modelled, both singly and in combination, and their long-term effects on nitrate and total phosphorus losses were quantified together with the 95% uncertainty range of model predictions. Results showed that introducing a red clover cover crop to the crop rotation scheme applied within the catchment reduced nitrate losses by 19.6%. Buffer strips of 2 m and 6 m width represented the most effective options to reduce total phosphorus losses, achieving reductions of 12.2% and 16.9%, respectively. This is one of the first studies to quantify the impacts of agricultural mitigation options on long-term water quality for nitrate and total phosphorus at a daily resolution, in addition to providing an estimate of the uncertainties of those impacts. The results highlighted the need to consider multiple pollutants, the degree of uncertainty associated with model predictions and the risk of unintended pollutant impacts when evaluating the effectiveness of mitigation options, and showed that high-frequency water quality datasets can be applied to robustly calibrate water quality models, creating DSTs that are more effective and reliable. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ralph J. Alig; Darius M. Adams; Bruce McCarl; J.M. Callaway; Steven Winnett
1997-01-01
A model of product and land markets in U.S. forest and agricultural sectors is used to examine the private forest management, land use, and market implications of carbon sequestration policies implemented in a "least social cost" fashion. Results suggest: policy-induced land use changes may generate compensating land use shifts through markets: land use...
Tracing Primary PM2.5 emissions via Chinese supply chains
NASA Astrophysics Data System (ADS)
Meng, Jing; Liu, Junfeng; Xu, Yuan; Tao, Shu
2015-05-01
In this study, we examine a supply-chain approach to more effectively mitigate primary PM2.5 emissions in China from the perspectives of production, consumption and their linkages using structural path analysis. We identify the pattern of all supply chain paths using principal component analysis. To address the severe haze problems in China, it is important to understand how final demand purchase initiates production processes and ultimately leads to primary PM2.5 emission. We found that consumers’ demands on power and transportation mainly induce direct emissions, quite different from the demands on construction, industry and service products which largely drive emissions in upstream activities. We also found that nearly 80% of the economic sectors in China follow a similar pattern in generating primary PM2.5 emissions in electricity, cement and the ferrous metal industries; but only the construction sector increases the release of PM2.5 due to the production of non-metallic mineral products. These findings indicate that further reduction of end-of-pipe emissions in the power and transportation sectors will facilitate cleaner production in almost all the economic sectors. However, for urbanization induced emissions, China should mitigate PM2.5 emissions through the supply chain of construction, either severely reducing its life-cycle intensity or carefully planning to avoid extensive, unnecessary building activity.
NASA Astrophysics Data System (ADS)
Hejazi, M. I.; Edmonds, J. A.; Clarke, L. E.; Kyle, P.; Davies, E. G.; Chaturvedi, V.; Patel, P.; Eom, J.; Wise, M.; Kim, S.; Calvin, K. V.; Moss, R. H.
2012-12-01
We investigate the relative effects of climate emission mitigation policies and socioeconomic drivers on water scarcity conditions over the 21st century both globally and regionally, by estimating both water availability and demand within a technologically-detailed global integrated assessment model of energy, agriculture, and climate change - the Global Change Assessment Model (GCAM). We first develop a global gridded monthly hydrologic model that reproduces historical streamflow observations and simulates the future availability of freshwater under both a changing climate and an evolving landscape, and incorporate this model into GCAM. We then develop and incorporate technologically oriented representations of water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. To perform the water scarcity analysis at the grid scale, the global water demands for the six demand sectors are spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. The water scarcity index (WSI) compares total water demand to the total amount of renewable water available, and defines extreme water scarcity in any region as demand greater than 40% of total water availability. Using a reference scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 by 2095 and a global population of 14 billion, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demands for water exceed the total renewable freshwater available in two GCAM regions, the Middle East and India. Additionally, 20% and 27% of the global population in years 2050 and 2095, respectively, is projected to live in areas (grid cells) that will experience greater water demands than the amount of renewable water available in a year (i.e., WSI > 1.0). We also investigate the effects of emission mitigation policies on water demand and compare them to the contribution of socioeconomic drivers both globally and regionally. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 in year 2095, under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. With more stringent climate mitigation targets, water scarcity declines under a UCT mitigation policy while increases with a FFICT mitigation scenario by the year 2095. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food, energy, and land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops.
Cooperative Agreement Funding for Indoor Air Quality
The Indoor Environments Division has created partnership with public and private sector entities to help encourage the public to take action to minimize their risk and mitigate indoor air quality problems.
NASA Astrophysics Data System (ADS)
Kinnon, Michael Mac
The current domestic reliance on high-emitting fossil fuels for energy needs is the key driver of U.S. greenhouse gas (GHG) and pollutant emissions driving both climate change and regional air quality (AQ) concerns. Moving forward, emission sources in U.S. energy sectors will be subjected to changes driven by numerous phenomena, including technology evolution, environmental impacts, sustainability goals, and socioeconomic factors. This evolution will directly affect emissions source-related impacts on regional AQ that effective emissions control strategies must account for, including relative source contributions. Though previous studies have evaluated the emissions and AQ impacts of different sectors, technologies and fuels, most previous studies have assessed emissions impacts only without using advanced atmospheric models to accurately account for both spatial and temporal emissions perturbations and atmospheric chemistry and transport. In addition, few previous studies have considered the integration of multiple technologies and fuels in different U.S. regions.. Finally, most studies do not project emissions several decades into the future to assess what sources should be targeted with priority over time. These aspects are critical for understanding how both emissions sources and potential mitigation strategies impact the formation and fate of primary and secondary pollutants, including ground-level ozone and particulate matter concentrations. Therefore, this work utilizes a set of modeling tools to project and then to spatially and temporally resolve emissions as input into a 3-D Eulerian AQ model to assess how sources of emissions contribute to future atmospheric pollutant burdens. Further, analyses of the potential impacts of alternative energy strategies contained in potential mitigation strategies are conducted for priority targets to develop an understanding of how to maximize AQ benefits and avoid unforeseen deleterious tradeoffs between GHG reduction and AQ. Findings include changes in the relative contribution to AQ that elevate the importance of addressing emissions from all sectors and sources including some that may be more difficult to control, including industry, petroleum refineries, and nonlight duty vehicle transportation sources. Additionally, mitigation strategies must consider the full range of life cycle and system effects in order to avoid AQ tradeoffs spatially and temporally.
DOT National Transportation Integrated Search
2007-07-01
The goal of this discussion paper is to contribute to the current policy debate about how to effectively limit or reduce oil consumption and greenhouse-gas emissions from the U.S. transportation sector. The paper explains what is wrong with the statu...
The effect of ICT on CO2 emissions in emerging economies: does the level of income matters?
Danish; Khan, Noheed; Baloch, Muhammad Awais; Saud, Shah; Fatima, Tehreem
2018-05-31
In the modern era of globalization, the rapid increase in information and telecommunication technologies (ICTs) contributes in various sectors of an economy; however, the environmental consequences of ICTs cannot be ignored. Therefore, the study investigates the nexus between ICTs, economic growth, financial development, and environmental quality in emerging economies. The novel feature of the study is that the interaction term of ICT is introduced with economic growth and financial development. The empirical findings of the study are based on panel mean group (MG) and augmented mean group (AMG) estimation methods from 1990 to 2015. The following empirical results are established: first the ICTs significantly affect CO 2 emissions. Second, the moderating effect of ICT and financial development stimulate the level of CO 2 emissions. Third, economic growth contributes CO 2 emission; however, the interaction between ICT and GDP mitigates the level of pollution. Policy thresholds with the R&D in ICT sector are required to mitigate the level of CO 2 emission. Introduction of green ICTs projects in the financial sector is a better choice to improve the energy efficiency.
Internal combustion engine run on biogas is a potential solution to meet Indonesia emission target
NASA Astrophysics Data System (ADS)
Ambarita, Himsar
2017-09-01
Indonesia has released two different Greenhouse Gas (GHG) emissions reduction targets. The first target, released in 2009, is reduction GHG emissions 26% from Business-as-Usual (BAU) level using own budget and up 41% if supported international aids by 2020. The second target is reduction 29% and 41% from BAU by 2030 using own budget and with international support, respectively. In this paper, the BAU emissions and emissions reduction target of these two targets are elaborated. In addition, the characteristics of emissions from transportation sector are discussed. One of the potential mitigation actions is switching fuel in transportation sector. The results the most promising mitigation action in the transportation is switching oil fuel with biofuel. The Government of Indonesia (GoI) focuses on using biodiesel and bioethanol to run internal combustion engine in transportation sector and biogas is aimed to fuel power plant unit. However, there is very limited of success stories on using biogas in the power plant. The barriers and challenges will be discussed here. It is suggested to run internal combustion engine with biogas.
Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.
Bouraoui, Fayçal; Grizzetti, Bruna
2014-01-15
Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability. © 2013.
Distance Travelled: Outcomes and Evidence in Flexible Learning Options
ERIC Educational Resources Information Center
Thomas, Joseph; McGinty, Sue; te Riele, Kitty; Wilson, Kimberley
2017-01-01
Flexible learning options (FLOs) provide individualised learning pathways for disengaged young people with strong emphasis on inclusivity and wellbeing support. Amidst a rapid expansion of Australia's flexible learning sector, service providers are under increasing pressure to substantiate participant outcomes. This paper stems from a national…
Transforming the Enterprise of Acquiring Public Sector Complex Systems
2006-04-30
analytic equation that determines the value of a compound call option (see Geske , 1979; Cassimon et al., 2004). Another approach that is more...Park, MD: University of Maryland, Center for Public Policy and Private Enterprise. Geske , R. (1979). The valuation of compound options. Journal of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraucunas, Ian P.; Clarke, Leon E.; Dirks, James A.
2015-04-01
The Platform for Regional Integrated Modeling and Analysis (PRIMA) is an innovative modeling system developed at Pacific Northwest National Laboratory (PNNL) to simulate interactions among natural and human systems at scales relevant to regional decision making. PRIMA brings together state-of-the-art models of regional climate, hydrology, agriculture, socioeconomics, and energy systems using a flexible coupling approach. The platform can be customized to inform a variety of complex questions and decisions, such as the integrated evaluation of mitigation and adaptation options across a range of sectors. Research into stakeholder decision support needs underpins the platform's application to regional issues, including uncertainty characterization.more » Ongoing numerical experiments are yielding new insights into the interactions among human and natural systems on regional scales with an initial focus on the energy-land-water nexus in the upper U.S. Midwest. This paper focuses on PRIMA’s functional capabilities and describes some lessons learned to date about integrated regional modeling.« less
Jeon, Boyoung; Kwon, Soonman
2013-11-01
This study examined the effect of private health insurance (PHI) on health care utilization in South Korea using a nationally representative sample of 9512 adults participating in Korea Health Panel Survey (KHPS). We compared the health care utilization and subsequent expenditure according to whether or not and how many PHIs are purchased, controlling for the endogeneity of insurance purchase by propensity score matching method and Heckman-type treatment effect model. The results of this study show that the probability of any health care utilization, both outpatient care and inpatient care, is higher for the people who have PHI. For those who utilize health care, PHI has a positive impact on outpatient expenditure, but not on the number of outpatient visits. The effect of PHI on the number of inpatient days and expenditure is not statistically significant among the users of inpatient care. These results imply a need for policy options to mitigate the moral hazard effect of PHI in the outpatient care sector. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Suppressing ghost beams: Backlink options for LISA
NASA Astrophysics Data System (ADS)
Isleif, K.-S.; Gerberding, O.; Penkert, D.; Fitzsimons, E.; Ward, H.; Robertson, D.; Livas, J.; Mueller, G.; Reiche, J.; Heinzel, G.; Danzmann, K.
2017-05-01
In this article we discuss possible design options for the optical phase reference system, the so called backlink, between two moving optical benches in a LISA satellite. The candidates are based on two approaches: Fiber backlinks, with additional features like mode cleaning cavities and Faraday isolators, and free beam backlinks with angle compensation techniques. We will indicate dedicated ghost beam mitigation strategies for the design options and we will point out critical aspects in case of an implementation in LISA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuqiang; Smith, Steven J.; Bowden, Jared H.
Policies to reduce greenhouse gas (GHG) emissions can bring ancillary benefits of improved air quality and reduced premature mortality, in addition to slowing climate change. Here we study the co-benefits of global and domestic GHG mitigation on US air quality and human health in 2050 at fine resolution using dynamical downscaling, and quantify for the first time the co-benefits from foreign GHG mitigation. Relative to a reference scenario, global GHG reductions in RCP4.5 avoid 16000 PM2.5-related all-cause deaths yr-1 (90% confidence interval, 11700-20300), and 8000 (3600-12400) O3-related respiratory deaths yr-1 in the US in 2050. Foreign GHG mitigation avoids 15%more » and 62% of PM2.5- and O3-related total avoided deaths, highlighting the importance of foreign GHG mitigation on US human health benefits. GHG mitigation in the US residential sector brings the largest co-benefits for PM2.5-related deaths (21% of total domestic co-benefits), and industry for O3 (17%). Monetized benefits, for avoided deaths from ozone, PM2.5, and heat stress from a related study, are $148 ($96-201) per ton CO2 at high valuation and $49 ($32-67) at low valuation, of which 36% are from foreign GHG reductions. These benefits likely exceed the marginal cost of GHG reductions in 2050. The US gains significantly greater co-benefits when coordinating GHG reductions with foreign countries. Similarly, previous studies estimating co-benefits locally or regionally may greatly underestimate the full co-benefits of coordinated global actions.« less
What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Fridley, David; Zheng, Nina; T. Aden, Nathaniel
After rapid growth in economic development and energy demand over the last three decades, China has undertaken energy efficiency improvement efforts to reduce its energy intensity under the 11th Five Year Plan (FYP). Since becoming the world's largest annual CO{sub 2} emitter in 2007, China has set reduction targets for energy and carbon intensities and committed to meeting 15% of its total 2020 energy demand with non-fossil fuel. Despite having achieved important savings in 11th FYP efficiency programs, rising per capita income and the continued economic importance of trade will drive demand for transport activity and fuel use. At themore » same time, an increasingly 'electrified' economy will drive rapid power demand growth. Greater analysis is therefore needed to understand the underlying drivers, possible trajectories and mitigation potential in the growing industrial, transport and power sectors. This study uses scenario analysis to understand the likely trajectory of China's energy and carbon emissions to 2030 in light of the current and planned portfolio of programs, policies and technology development and ongoing urbanization and demographic trends. It evaluates the potential impacts of alternative transportation and power sector development using two key scenarios, Continued Improvement Scenario (CIS) and Accelerated Improvement Scenario (AIS). CIS represents the most likely path of growth based on continuation of current policies and meeting announced targets and goals, including meeting planned appliance efficiency standard revisions, fuel economy standards, and industrial targets and moderate phase-out of subcritical coal-fired generation with additional non-fossil generation. AIS represents a more aggressive trajectory of accelerated improvement in energy intensity and decarbonized power and transport sectors. A range of sensitivity analysis and power technology scenarios are tested to evaluate the impact of additional actions such as carbon capture and sequestration (CCS) and integrated mine-mouth generation. The CIS and AIS results are also contextualized and compared to model scenarios in other published studies. The results of this study show that China's energy and CO{sub 2} emissions will not likely peak before 2030, although growth is expected to slow after 2020. Moreover, China will be able to meet its 2020 carbon intensity reduction target of 40 to 45% under both CIS and AIS, but only meet its 15% non-fossil fuel target by 2020 under AIS. Under both scenarios, efficiency remains a key resource and has the same, if not greater, mitigation potential as new technologies in transport and power sectors. In the transport sector, electrification will be closely linked the degree of decarbonization in the power sector and EV deployment has little or no impact on China's crude oil import demand. Rather, power generation improvements have the largest sector potential for overall emission mitigation while mine-mouth power generation and CCS have limited mitigation potential compared to fuel switching and efficiency improvements. Comparisons of this study's results with other published studies reveal that CIS and AIS are within the range of other national energy projections but alternative studies rely much more heavily on CCS for carbon reduction. The McKinsey study, in particular, has more optimistic assumptions for reductions in crude oil imports and coal demand in its abatement scenario and has much higher gasoline reduction potential for the same level of EV deployment. Despite these differences, this study's scenario analysis of both transport and power sectors illustrate the necessity for continued efficiency improvements and aggressive power sector decarbonization in flattening China's CO{sub 2} emissions.« less
A View Indoors, Indoor Environment Division's e-Article Series
The Indoor Environments Division has created partnership with public and private sector entities to help encourage the public to take action to minimize their risk and mitigate indoor air quality problems.
Health co-benefits of climate change mitigation policies in the transport sector
NASA Astrophysics Data System (ADS)
Shaw, Caroline; Hales, Simon; Howden-Chapman, Philippa; Edwards, Richard
2014-06-01
Theory, common sense and modelling studies suggest that some interventions to mitigate carbon emissions in the transport sector can also have substantial short-term benefits for population health. Policies that encourage active modes of transportation such as cycling may, for example, increase population physical activity and decrease air pollution, thus reducing the burden of conditions such as some cancers, diabetes, heart disease and dementia. In this Perspective we systematically review the evidence from 'real life' transport policies and their impacts on health and CO2 emissions. We identified a few studies that mostly involved personalized travel planning and showed modest increases in active transport such as walking, and reductions in vehicle use and CO2 emissions. Given the poor quality of the studies identified, urgent action is needed to provide more robust evidence for policies.
Model-data frameworks for determining greenhouse gas implications of bioenergy landscapes in the US
NASA Astrophysics Data System (ADS)
Hudiburg, T. W.; Kent, J.; DeLucia, E. H.; Law, B. E.
2017-12-01
A sustainable, carbon-negative, bio-based portion of the energy sector may require considerable changes in land use. Perennial grasses have been proposed because of their potential to yield substantial biomass on marginal lands without displacing food and reduce GHG emissions by storing soil carbon. Woody biomass from harvest residues and forest health thinning operations have also been proposed, however the GHG mitigation potential is less clear. Through integration of observations, ecosystem, and economic models we have assessed the potential for a US Renewable Fuel Standard (RFS) to displace gasoline and reduce GHG emissions from the transportation sector, through the use of cellulosic biofuels (e.g. perennial grasses). We found that 2022 US transportation sector GHG emissions are decreased by 7.0 ± 2.5%; an estimate that is 50% less than those unconstrained by economic feasibility. Also, through integration of observations, ecosystem modeling, and life cycle assessment, we investigated potential carbon mitigation by replacing an Oregon coal plant with wood (bio-coal) from harvest residues and thinning operations in forests vulnerable to drought and fire. We found that carbon emissions varied from no change to moderate increases compared to the current emissions from the coal plant depending on transportation distance, energy inputs for conversion to bio-coal, and avoided emissions from fire and drought. Our work indicates that integrated assessment using ecosystem and economic models that are constrained by observations is required to evaluate potential GHG and carbon mitigation scenarios from varied feedstock sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaturvedi, Vaibhav; Clarke, Leon E.; Edmonds, James A.
Electrification plays a crucial role in cost-effective greenhouse gas emissions mitigation strategies. Such strategies in turn carry implications for financial capital markets. This paper explores the implication of climate mitigation policy for capital investment demands by the electric power sector on decade to century time scales. We go further to explore the implications of technology performance and the stringency of climate policy for capital investment demands by the power sector. Finally, we discuss the regional distribution of investment demands. We find that stabilizing GHG emissions will require additional investment in the electricity generation sector over and above investments that wouldmore » be need in the absence of climate policy, in the range of 16 to 29 Trillion US$ (60-110%) depending on the stringency of climate policy during the period 2015 to 2095 under default technology assumptions. This increase reflects the higher capital intensity of power systems that control emissions. Limits on the penetration of nuclear and carbon capture and storage technology could increase costs substantially. Energy efficiency improvements can reduce the investment requirement by 8 to21 Trillion US$ (default technology assumptions), depending on climate policy scenario with higher savings being obtained under the most stringent climate policy. The heaviest investments in power generation were observed in the China, India, SE Asia and Africa regions with the latter three regions dominating in the second half of the 21st century.« less
Economic Assessment of Zoonoses Surveillance in a 'One Health' Context: A Conceptual Framework.
Babo Martins, S; Rushton, J; Stärk, K D C
2016-08-01
Collaboration between animal and public health sectors has been highlighted as a means to improve the management of zoonotic threats. This includes surveillance systems for zoonoses, where enhanced cross-sectoral integration and sharing of information are seen as key to improved public health outcomes. Yet, there is a lack of evidence on the economic returns of such collaboration, particularly in the development and implementation of surveillance programmes. The economic assessment of surveillance in this context needs to be underpinned by the understanding of the links between zoonotic disease surveillance in animal populations and the wider public health disease mitigation process and how these relations impact on the costs and benefits of the surveillance activities. This study presents a conceptual framework of these links as a basis for the economic assessment of cross-sectoral zoonoses surveillance with the aim of supporting the prioritization of resource allocation to surveillance. In the proposed framework, monetary, non-monetary and intermediate or intangible cost components and benefit streams of three conceptually distinct stages of zoonotic disease mitigation are identified. In each stage, as the final disease mitigation objective varies so does the use of surveillance information generated in the animal populations for public health decision-making. Consequently, the associated cost components and benefit streams also change. Building on the proposed framework and taking into account these links, practical steps for its application are presented and future challenges are discussed. © 2015 Blackwell Verlag GmbH.
James M. Vose; Kier D. Klepzig
2014-01-01
The rapid pace of climate change and its direct and indirect effects on forest ecosystems present a pressing need for better scientific understanding and the development of new science-management partnerships. Understanding the effects of stressors and disturbances (including climatic variability), and developing and testing science-based management options to deal...
Sustainable water use and management options in a water-stressed river basin in Kenya
NASA Astrophysics Data System (ADS)
Hirpa, Feyera; Dadson, Simon; Dyer, Ellen; Barbour, Emily; Charles, Katrina; Hope, Robert
2017-04-01
Sustainable water resource is critical for maintaining healthy ecosystems and supporting socio-economic sectors. Hydro-climatic change and variability, population growth as well as new infrastructure developments create water security risks. Therefore, evidence-based management decisions are necessary to improve water security and meet the future water demands of multiple competing sectors. In this work we perform water resource modelling in order to investigate the impact of increasing water demand (expanding agriculture, booming industry, growing population) on the sustainable water use in Turkwel river basin, located in arid north-western Kenya. We test different management options to determine those that meet the water demands of the concerned sectors whilst minimising environmental impact. We perform scenario analysis using Water Evaluation And Planning (WEAP) model to explore different ranges of climate conditions, population growth rates, irrigation scale, reservoir operations, and economic development. The results can be used as a scientific guideline for the policy makers who decide the alternative management options that ensure the sustainable water use in the basin. The work is part of the REACH - improving water security for the poor program (http://reachwater.org.uk/), aiming to support a pathway to sustainable growth and poverty reduction
Optimal Timing of Oceanic, Geological and Biological Carbon Sequestration to Safeguard Climate
NASA Astrophysics Data System (ADS)
Gitz, V.; Ambrosi, P.; Ciais, P.; Orr, J.; Magne, B.; Hourcade, J.
2005-12-01
We address the issue of safeguarding climate in the presence of a cascade of uncertainties through a portfolio of mitigation options: emissions reductions (M), biological carbon sequestration (BCS), carbon capture and storage - both geological (GCS) and oceanic (OCS). Within a sequential decision framework (i.e. as uncertainties are progressively resolved with time), we use a global optimal control model, RESPONSE, to examine the relative advantages of the three sequestration options in lowering fossil fuel abatement expenditures. Moreover, we show to what extent these options offer additional flexibility for short- and long-term decision given uncertainties on climate sensitivity and ``safe'' climate targets. To do so, we compute the value of information regarding these uncertainties and assess the timeliness of learning (i.e. which uncertainty is more``urgent'' to resolve). Finally, we show to what extent short term optimal paths of fossil emissions abatement and carbon sequestration are robust to these uncertainties. We find that BCS, GCS and OCS are complementary both in alleviating the constraint on the energy sector and in tackling the uncertainties. BCS is used more in the short term as a brake whereas OCS and GCS are used more in the long term as a safety valve. In other words, a portfolio approach is preferable to an approach based solely on emissions reduction: with a fully- diversified mitigation portfolio, discounted global climate policy costs are up to 38% lower than with an abatement-only policy and discounted abatement costs decrease up to 54%. Short-term costs are lower, mainly (81%) thanks to BCS - a result relatively independent upon the emissions scenario. Long- term costs are mainly lower thanks to GCS or OCS, both options being concurrent. However, in the case of high-emissions scenarios (like A2), OCS proves highly helpful (up to 25% of A2 reference scenario cumulated emissions could be stored). Though marginal in duration given the opportunity cost to permanently immobilize lands, BCS proves helpful on short-term (when the rate constraint essentially bites) against all uncertainties. GCS and OCS, which deploy later and prove helpful against uncertainties that are pregnant on a longer term (like the magnitude constraint), or when they are supposed to be resolved in the long run. \\begin{tabular}{ccccccc}\\hline\\hline &μlticolumn{3}{c} {early learning}&μlticolumn{3}{c}{late learning} policy option&t2x&ryt&tmax&t2x&ryt&tmax\\hline M&1.64&6.32&1.24&2.22&7.81&4.46 M+BCS&1.05&4.44&0.84&1.50&5.55&3.29 M+GCS&1.51&5.91&0.80&2.02&6.90&2.47 M+OCS&1.62&6.02&0.89&2.13&6.93&2.47 M+BCS+GCS+OCS&1.02&4.22&0.59&1.45&5.07&2.04\\hline\\hline Table 1. The value of information in 1990 (T US90$) for the climate sensitivity (t2x), the rate constraint (ryt), the magnitude constraint (tmax) in early-learning (2030) and late-learning (2060) scenarios, under four policy options.53 wt.
Hsu, Minchung; Huang, Xianguo; Yupho, Somrasri
2015-11-01
This paper quantitatively investigates the sustainability of the universal health insurance coverage (UHI) system in Thailand while taking into account the country's rapidly aging population and large informal labor sector. We examine the effects of population aging and informal employment across three tax options for financing the UHI. A modern dynamic general equilibrium framework is utilized to conduct policy experiments and welfare analysis. In the case of labor income tax being used to finance the cost of UHI, an additional 11-15% of labor tax will be required with the 2050 population age structure, compared with the 2005 benchmark economy. We also find that an expansion of income tax base to the informal sector can substantially alleviate the tax burden. Based on welfare comparisons across the alternative tax options, the labor income tax is the most preferred because the inequality between formal/informal sectors is large. If the informal sector cannot avoid labor income tax, capital tax will be preferred over labor and consumption taxes. Copyright © 2015 Elsevier Ltd. All rights reserved.
U.S. Global Climate Change Impacts Report, Adaptation
NASA Astrophysics Data System (ADS)
Pulwarty, R.
2009-12-01
Adaptation measures improve our ability to cope with or avoid harmful climate impacts and take advantage of beneficial ones, now and as climate varies and changes. Adaptation and mitigation are necessary elements of an effective response to climate change. Adaptation options also have the potential to moderate harmful impacts of current and future climate variability and change. The Global Climate Change Impacts Report identifies examples of adaptation-related actions currently being pursued in various sectors and regions to address climate change, as well as other environmental problems that could be exacerbated by climate change such as urban air pollution and heat waves. Some adaptation options that are currently being pursued in various regions and sectors to deal with climate change and/or other environmental issues are identified in this report. A range of adaptation responses can be employed to reduce risks through redesign or relocation of infrastructure, sustainability of ecosystem services, increased redundancy of critical social services, and operational improvements. Adapting to climate change is an evolutionary process and requires both analytic and deliberative decision support. Many of the climate change impacts described in the report have economic consequences. A significant part of these consequences flow through public and private insurance markets, which essentially aggregate and distribute society's risk. However, in most cases, there is currently insufficient robust information to evaluate the practicality, efficiency, effectiveness, costs, or benefits of adaptation measures, highlighting a need for research. Adaptation planning efforts such as that being conducted in New York City and the Colorado River will be described. Climate will be continually changing, moving at a relatively rapid rate, outside the range to which society has adapted in the past. The precise amounts and timing of these changes will not be known with certainty. The disaster research and emergency management communities have shown over that early warnings of impending hazards need to be complemented by information on the risks actually posed by the hazards (including those resulting from low levels of preparedness), existing strategies on the ground, and likely pathways to mitigate the loss and damage in the particular context in which they arise. Effective adaptations require information for long-term infrastructural planning and as critically deliberative mechanisms to structure learning and redesign in the face of emergent problems. Adaptation tends to be reactive, unevenly distributed, and focused on coping rather than preventing problems. Reduction in vulnerability will require anticipatory deliberative processes focused on incorporating adaptation into long-term municipal and public service planning, including energy, water, and health services, in the face of changing climate-related risks combined with ongoing changes in population, land use and development patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietzcker, Robert C.; Ueckerdt, Falko; Carrara, Samuel
Mitigation-Process Integrated Assessment Models (MP-IAMs) are used to analyze long-term transformation pathways of the energy system required to achieve stringent climate change mitigation targets. Due to their substantial temporal and spatial aggregation, IAMs cannot explicitly represent all detailed challenges of integrating the variable renewable energies (VRE) wind and solar in power systems, but rather rely on parameterized modeling approaches. In the ADVANCE project, six international modeling teams have developed new approaches to improve the representation of power sector dynamics and VRE integration in IAMs. In this study, we qualitatively and quantitatively evaluate the last years' modeling progress and study themore » impact of VRE integration modeling on VRE deployment in IAM scenarios. For a comprehensive and transparent qualitative evaluation, we first develop a framework of 18 features of power sector dynamics and VRE integration. We then apply this framework to the newly-developed modeling approaches to derive a detailed map of strengths and limitations of the different approaches. For the quantitative evaluation, we compare the IAMs to the detailed hourly-resolution power sector model REMIX. We find that the new modeling approaches manage to represent a large number of features of the power sector, and the numerical results are in reasonable agreement with those derived from the detailed power sector model. Updating the power sector representation and the cost and resources of wind and solar substantially increased wind and solar shares across models: Under a carbon price of 30$/tCO2 in 2020 (increasing by 5% per year), the model-average cost-minimizing VRE share over the period 2050-2100 is 62% of electricity generation, 24%-points higher than with the old model version.« less
75 FR 39266 - National Protection and Programs Directorate; National Infrastructure Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... infrastructure sectors and their information systems. Pursuant to 41 CFR 102-3.150(b), this notice was published... Critical Infrastructure Resilience Goals VI. Working Group Status: Optimization of Resources for Mitigating...
Identifying and Mitigating Risks in Security Sector Assistance for Africa’s Fragile States
2015-01-01
The Logframe Handbook: A Logical Framework Approach to Project Cycle Management , Washington, D.C., 2005. 34 Identifying and Mitigating Risks in SSA...Fragile States 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER... Project Unique Identification Code (PUIC) for the project that produced this document is HQD126409. v Contents Preface
China and Latin America: The Other Option
2017-06-09
maps, graphics, and any other works incorporated into this manuscript. A work of the United States Government is not subject to copyright, however... government adjust its priorities to mitigate the growing Chinese influence in Latin America. 15. SUBJECT TERMS China, Latin America, national...environment, should the U.S. government adjust its priorities to mitigate the growing Chinese influence in Latin America. v ACKNOWLEDGMENTS No great
ERIC Educational Resources Information Center
Menassa, Carol Chukri
2009-01-01
A project-specific dispute resolution ladder (DRL) typically consists of multiple alternative dispute resolution (ADR) techniques that are chosen to assist in mitigating the impact of change orders and claims (CCO) occurring during the project construction phase, and avoid their escalation to protracted disputes that adversely affect a…
Space industrialization. Volume 3: Space industrialization implementation concepts
NASA Technical Reports Server (NTRS)
1978-01-01
Methods for selecting the most viable program options were examined along with techniques for hardware development. Several separate program options were defined, and future plans for space exploitation were reviewed. Hardware elements in various sectors of space are discussed in detail to provide a definition for the major functional elements and operations.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
... promotional pricing period for options overlying the NASDAQ Internet Index (``QNET''). The text of the... pricing is to assess a fixed rate across all market participants for a specified period of time to... promotional pricing after December 30, 2010, and instead assesses members the applicable sector index options...
NASA Astrophysics Data System (ADS)
Saleth, R. Maria; Dinar, Ariel
2001-01-01
Utilizing both primary and secondary information pertaining to the water sector of Hyderabad City, India, this paper (1) evaluates the economics of various technically feasible supply augmentations options; (2) estimates the group-specific water demand and consumption response functions under alternative pricing behaviors; (3) calculates the net willingness to pay (NWTP, considered to be the value of raw water at source) of different user groups as derived from their respective price elasticities; (4) shows how inadequate the NWTP is to justify most supply augmentation options including intersectoral water transfers under the existing water rate structure; (5) argues that the economic and institutional conditions internal to urban water sector cannot justify an externally imposed water transfers, whether market-based or otherwise, as long as the water rate structure is inefficient and regressive; and (6) concludes by underlining the central role that the pricing option, both the level and structure, plays not only in activating a number of nonprice options but also in generating incentives for the emergence of new and the consolidation of existing institutional conditions needed to support economically rooted water transfers and conservation initiatives.
The interconnected and cross-border nature of risks posed by infectious diseases
Suk, Jonathan E.; Van Cangh, Thomas; Beauté, Julien; Bartels, Cornelius; Tsolova, Svetla; Pharris, Anastasia; Ciotti, Massimo; Semenza, Jan C.
2014-01-01
Infectious diseases can constitute public health emergencies of international concern when a pathogen arises, acquires new characteristics, or is deliberately released, leading to the potential for loss of human lives as well as societal disruption. A wide range of risk drivers are now known to lead to and/or exacerbate the emergence and spread of infectious disease, including global trade and travel, the overuse of antibiotics, intensive agriculture, climate change, high population densities, and inadequate infrastructures, such as water treatment facilities. Where multiple risk drivers interact, the potential impact of a disease outbreak is amplified. The varying temporal and geographic frequency with which infectious disease events occur adds yet another layer of complexity to the issue. Mitigating the emergence and spread of infectious disease necessitates mapping and prioritising the interdependencies between public health and other sectors. Conversely, during an international public health emergency, significant disruption occurs not only to healthcare systems but also to a potentially wide range of sectors, including trade, tourism, energy, civil protection, transport, agriculture, and so on. At the same time, dealing with a disease outbreak may require a range of critical sectors for support. There is a need to move beyond narrow models of risk to better account for the interdependencies between health and other sectors so as to be able to better mitigate and respond to the risks posed by emerging infectious disease. PMID:25308818
Disasters and development: Part 2: understanding and exploiting disaster-development linkages.
Stephenson, Rob S; DuFrane, Charles
2002-01-01
Disasters can impede the effectiveness of development resource allocation. The damage sustained from an event can be classified into four categories: (1) Loss of resources; (2) Interruption of programs and switching of crucial resources to other, shorter-term needs; (3) Negative impacts upon investment climates; and/or (4) Disruption of the non-formal sector (local businesses). Disasters have a particularly destructive economic impact in areas in which there are few alternatives for assets that are destroyed or in areas in which the resources already are at critical levels. Development processes can both increase and/or decrease the vulnerability of a society to hazards. There are dearly established linkages between poverty, marginalization, over-population, and vulnerability. To a large extent, vulnerability derives from poverty. The poor are more likely to live in vulnerable areas (slopes prone to landslides, flood plains, marginal agricultural land), have difficulty accessing education and information, have fewer assets to invest in resources to reduce vulnerability, and are more prone to become malnourished and have chronic illnesses that predispose them to injury and death. Development may be associated with the production of new hazards accepted by a society because the perceived benefits of the development project far exceed the relative risk associated with the project. Therefore, risk assessments must be part of any program planning and evaluation. Training and education are of critical importance in preventing increased vulnerability as a result of development strategies. Development also can progress in a manner that will result in mitigation of the impacts of an event on a given society (increase absorbing capacity and/or buffering capacity, elimination of hazards or the risk of them producing a disaster). Such mitigation measures can be either structural or nonstructural. There exists a wide range of options for incorporating mitigation measures in development projects. Two case studies provide exercises that incorporate the concepts provided in this discussion: (1) The 1985 earthquake in Mexico City; and (2) Agricultural development in northern Sudan.
NASA Astrophysics Data System (ADS)
Olguin-Alvarez, M. I.; Kurz, W. A.; Wayson, C.; Birdsey, R.; Richardson, K.; Angeles, G.; Vargas, B.; Corral, J.; Magnan, M.; Fellows, M.; Morken, S.; Maldonado, V.; Mascorro, V.; Meneses, C.; Galicia, G.; Serrano, E.
2016-12-01
The Government of Mexico has recently designed a system of measurement, reporting and verification (MRV) to account for the emissions and removals of greenhouse gases (GHG) associated with the country's forest sector. This system reports national-scale GHG emissions based on the "stock-difference" approach combining information from two sets of measurements from the national forest inventory and remote sensing data. However, consistent with the commitments made by the country to the United Nations Framework Convention on Climate Change (UNFCCC), the MRV system must strive to reduce, as far as practicable, the uncertainties associated with national estimates on GHG fluxes. Since 2012, the Mexican government through its National Forestry Commission, with support from the North America Commission of Environmental Cooperation, the Forest Services of Canada and USA, the SilvaCarbon Program and research institutes in Mexico, has made progress towards the use of carbon dynamics models ("gain-loss" approach) to reduce uncertainty of the GHG estimates in strategic landscapes. In Mexico, most of the forests are under social tenure where management includes a wide array of activities (e.g. selective harvesting, firewood collection). Altering these diverse management activities (REDD+ strategies as well as harvested wood products), can augment their mitigation potential. Here we present the main steps conducted to compile and integrate information from forest inventories, remote sensing, disturbance data and ecosystem carbon transfers to generate inputs required to calibrate these models and validate their outputs. The analyses are supported by the use of the CBM-CFS3 model with the appropriate modification of the model parameters and input data according to the 2006 guidelines of the Intergovernmental Panel on Climate Change (IPCC) for preparing Tier 3-GHG inventories. The ultimate goal of this tri-national effort is to show how the data and tools developed for carbon assessment in strategic landscapes in North America can help estimate the impact of several mitigation options consistent with national goals of GHG emission reductions.
An Adaptation Dilemma Caused by Impacts-Modeling Uncertainty
NASA Astrophysics Data System (ADS)
Frieler, K.; Müller, C.; Elliott, J. W.; Heinke, J.; Arneth, A.; Bierkens, M. F.; Ciais, P.; Clark, D. H.; Deryng, D.; Doll, P. M.; Falloon, P.; Fekete, B. M.; Folberth, C.; Friend, A. D.; Gosling, S. N.; Haddeland, I.; Khabarov, N.; Lomas, M. R.; Masaki, Y.; Nishina, K.; Neumann, K.; Oki, T.; Pavlick, R.; Ruane, A. C.; Schmid, E.; Schmitz, C.; Stacke, T.; Stehfest, E.; Tang, Q.; Wisser, D.
2013-12-01
Ensuring future well-being for a growing population under either strong climate change or an aggressive mitigation strategy requires a subtle balance of potentially conflicting response measures. In the case of competing goals, uncertainty in impact estimates plays a central role when high confidence in achieving a primary objective (such as food security) directly implies an increased probability of uncertainty induced failure with regard to a competing target (such as climate protection). We use cross sectoral consistent multi-impact model simulations from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, www.isi-mip.org) to illustrate this uncertainty dilemma: RCP projections from 7 global crop, 11 hydrological, and 7 biomes models are combined to analyze irrigation and land use changes as possible responses to climate change and increasing crop demand due to population growth and economic development. We show that - while a no-regrets option with regard to climate protection - additional irrigation alone is not expected to balance the demand increase by 2050. In contrast, a strong expansion of cultivated land closes the projected production-demand gap in some crop models. However, it comes at the expense of a loss of natural carbon sinks of order 50%. Given the large uncertainty of state of the art crop model projections even these strong land use changes would not bring us ';on the safe side' with respect to food supply. In a world where increasing carbon emissions continue to shrink the overall solution space, we demonstrate that current impacts-modeling uncertainty is a luxury we cannot afford. ISI-MIP is intended to provide cross sectoral consistent impact projections for model intercomparison and improvement as well as cross-sectoral integration. The results presented here were generated within the first Fast-Track phase of the project covering global impact projections. The second phase will also include regional projections. It is the aim of the project to build up a CMIP like open archive for climate impact projections allowing for the necessary sharpening the our picture of a 1,2,3,4 degrees warmer world.
Defense Expenditures in Pakistan: A Source of Stimulus for or Competition With the Private Sector
1994-01-01
private sector activity, particularly investment, is the only viable option open to the authorities. It follows that for policy purposes the most important issue involves restructuring government expenditures and their financing in a manner that would provide the maximum inducement to private sector capital formation, especially in manufacturing. Operationally, this means finding an optimal balance between the government’s three most important budgetary items: defense, public consumption and infrastructural development. More importantly because
Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria.
Elum, Z A; Modise, D M; Nhamo, G
2017-02-01
Energy is pivotal to the economic development of every nation. However, its production and utilization leads to undesirable carbon emissions that aggravate global warming which results in climate change. The agriculture sector is a significant user of energy. However, it has the potential to be a major contributor to Nigeria's energy supply mix in meeting its energy deficit. More so, in the light of current and impending adverse effects of climate change, there is a need to contain GHG's emissions. This paper focuses on bioenergy utilization as a climate change mitigation strategy and one that can, through effective waste management, enhance sustainable economic development in Nigeria. The paper employed a critical discourse analysis to examine the potential of the agricultural sector to provide biofuels from energy crops and other biomass sources. We conclude that Nigeria can reduce its GHG emissions and greatly contribute to global climate change mitigation while also alleviating its energy supply deficit if the agricultural and municipal wastes readily available in its towns and cities are converted to bioenergy. Such engagements will not only promote a clean and healthy environment but also create jobs for economic empowerment and a better standard of living for the people.
Bakam, Innocent; Balana, Bedru Babulo; Matthews, Robin
2012-12-15
Market-based policy instruments to reduce greenhouse gas (GHG) emissions are generally considered more appropriate than command and control tools. However, the omission of transaction costs from policy evaluations and decision-making processes may result in inefficiency in public resource allocation and sub-optimal policy choices and outcomes. This paper aims to assess the relative cost-effectiveness of market-based GHG mitigation policy instruments in the agricultural sector by incorporating transaction costs. Assuming that farmers' responses to mitigation policies are economically rationale, an individual-based model is developed to study the relative performances of an emission tax, a nitrogen fertilizer tax, and a carbon trading scheme using farm data from the Scottish farm account survey (FAS) and emissions and transaction cost data from literature metadata survey. Model simulations show that none of the three schemes could be considered the most cost effective in all circumstances. The cost effectiveness depends both on the tax rate and the amount of free permits allocated to farmers. However, the emissions trading scheme appears to outperform both other policies in realistic scenarios. Copyright © 2012 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-25
...-growing (yet extremely volatile) semiconductor industry. When investors want information and investment... Number of Components in the PHLX Semiconductor Sector\\SM\\ Known as SOX\\SM\\, on Which Options Are Listed... Commission a proposal to expand the number of components in the PHLX Semiconductor Sector\\SM\\ known as SOX\\SM...
NASA Astrophysics Data System (ADS)
Wassmann, Reiner; Sander, Bjoern Ole
2016-04-01
After the successful conclusion of the COP21 in Paris, many developing countries are now embracing the task of reducing emissions with much vigor than previously. In many countries of South and South-East Asia, the agriculture sector constitutes a vast share of the national GHG budget which can mainly be attributed to methane emissions from flooded rice production. Thus, rice growing countries are now looking for tangible and easily accessible information as to how to reduce emissions from rice production in an efficient manner. Given present and future food demand, mitigation options will have to comply with aim of increasing productivity. At the same time, limited financial resources demand for strategic planning of potential mitigation projects based on cost-benefit ratios. At this point, the most promising approach for mitigating methane emissions from rice is an irrigation technique called Alternate Wetting and Drying (AWD). AWD was initially developed for saving water and subsequently, represents an adaptation strategy in its own right by coping with less rainfall. Moreover, AWD also reduces methane emissions in a range from 30-70%. However, AWD is not universally suitable. It is attractive to farmers who have to pump water and may save fuel under AWD, but renders limited incentives in situations where there is no real pressing water scarcity. Thus, planning for AWD adoption at larger scale, e.g. for country-wide programs, should be based on a systematic prioritization of target environments. This presentation encompasses a new methodology for mapping suitability of water-saving in rice production - as a means for planning adaptation and mitigation programs - alongside with preliminary results. The latter comprises three new GIS maps on climate-driven suitability of AWD in major rice growing countries (Philippines, Vietnam, Bangladesh). These maps have been derived from high-resolution data of the areal and temporal extent of rice production that are now available for most Asian countries. These GIS maps have been expanded by adding relevant data on climate and soil texture to assess the water balance at any given point (in space and time). In the next step, these water balances (available in 10d intervals) have been integrated over the entire season to determine the climate-driven suitability for AWD implementation. These new GIS maps are vital for policy makers and other stakeholders who are now faced with the challenge of developing mitigation programs. The GIS data bases could further be expanded by more GIS layers on irrigation specific information (e.g. use of pumps) as well as on other mitigation approaches such as improved post-harvest technologies for preventing straw burning.
Status of national CO{sub 2}-mitigation projects and initiatives in the Philippine energy sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tupas, C.T.
1996-12-31
The Philippines has a huge energy requirement for the next 30 years in order to achieve its economic growth target. Based on an expected annual GDP growth rate of 6.9 percent, the Philippines total energy requirement is estimated to increase at an average of 6.6 percent annually from 1996 to 2025. Gross energy demand shall increase from 219.0 million barrels of fuel oil equivalent (MMBFOE) in 1996 to 552.4 MMBFOE in 2010 and 1,392.6 MMBFOE by 2025. These energy demand levels shall be driven primarily by the substantial increase in fuel requirements for power generation whose share of total energymore » requirement is 28.3 percent in 1996, 48.0 percent in 2010 and 55.0 percent in 2025. With the expected increase in energy demand, there will necessarily be adverse impacts on the environment. Energy projects and their supporting systems - from fuel extraction and storage to distribution - can and will be major contributors not only to local but also to regional and global environmental pollution and degradation. International experiences and trends in greenhouse gas (GHG) emissions inventory have shown that the energy sector has always been the dominant source of carbon dioxide (CO{sub 2}) - the principal contributor to global climate change. The energy sector`s CO{sub 2} emissions come primarily from fossil fuels combustion. Since energy use is the dominant source of CO{sub 2} emissions, efforts should therefore be concentrated on designing a mitigation strategy in this sector.« less
NASA Astrophysics Data System (ADS)
Waddell, K.
2015-12-01
Middle-skilled workers are those whose jobs require considerable skill but not an advanced degree. Nationwide, one-third of the projected job growth for 2010-2020 will require middle-skilled workers. The educational paths to these jobs include career and technical education (CTE), certificates and associate's degrees from community colleges, apprenticeship programs, and training provided by employers. In the oil industry, the demand is expected to about 150,000 jobs. In environmental restoration and monitoring, there will be a need for at least 15,000 middle-skilled workers. Examples of the types of jobs include geological and petroleum technicians, derrick and drill operators, and pump system and refinery operators for the oil and gas sector. For the environmental restoration and monitoring sector, the types of jobs include environmental science technicians, and forest (and coastal) conservation technicians and workers. However, all of these numbers will be influenced by the growth and contraction of the regional or national economy that is not uncommon in the private sector. Over the past year, for example, the oil and gas industry has shed approximately 75,000 jobs (out of a workforce of 600,000) here in the United States, due almost exclusively to the drop of oil prices globally. A disproportionate number of the lost jobs were among the middle-skilled workforce. Meanwhile, the recent settlements stemming from the Deepwater Horizon oil spill are expected to create a surge of environmental restoration activity in the Gulf of Mexico region that has the potential to create thousands of new jobs over the next decade and beyond. Consequently, there is a need to develop education, training and apprenticeship programs that will help develop flexibility and complementary skill sets among middle-skilled workers that could help reduce the impacts of economic downturns and meet the needs of newly expanding sectors such as the environmental restoration field. This presentation will discuss the programs, activities, and frameworks needed to build this capacity in the middle-skilled workforce over the coming years.
Wood, Alison; Blackhurst, Michael; Hawkins, Troy; Xue, Xiaobo; Ashbolt, Nicholas; Garland, Jay
2015-03-01
Household wastewater, especially from conventional septic systems, is a major contributor to nitrogen pollution. Alternative household wastewater management technologies provide similar sewerage management services but their life cycle costs and nitrogen flow implications remain uncertain. This paper addresses two key questions: (1) what are the total costs, nitrogen mitigation potential, and cost-effectiveness of a range of conventional and alternative municipal wastewater treatment technologies, and (2) what uncertainties influence these outcomes and how can we improve our understanding of these technologies? We estimate a household nitrogen mass balance for various household wastewater treatment systems and combine this mass balance with life cycle cost assessment to calculate the cost-effectiveness of nitrogen mitigation, which we define as nitrogen removed from the local watershed. We apply our methods to Falmouth, MA, where failing septic systems have caused heightened eutrophication in local receiving water bodies. We find that flushing and dry (composting) urine-diversion toilets paired with conventional septic systems for greywater management demonstrate the lowest life cycle cost and highest cost-effectiveness (dollars per kilogram of nitrogen removed from the watershed). Composting toilets are also attractive options in some cases, particularly best-case nitrogen mitigation. Innovative/advanced septic systems designed for high-level nitrogen removal are cost-competitive options for newly constructed homes, except at their most expensive. A centralized wastewater treatment plant is the most expensive and least cost-effective option in all cases. Using a greywater recycling system with any treatment technology increases the cost without adding any nitrogen removal benefits. Sensitivity analysis shows that these results are robust considering a range of cases and uncertainties. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Neftel, Albrecht; Calanca, Pierluigi; Felber, Raphael; Grant, Robert; Conen, Franz
2014-05-01
A general principle in all proposed N2O mitigation options is the fertilization according to plants' requirements. Meanwhile the amount of N fertilization allowed is regulated in many countries. Due to the high pressure from food security and the need for economic efficiency the given limits are generally used up. In mown grassland systems a simple mitigation option is to optimize the timing of the fertilizer applications. Application of fertilizer, both organic manure and mineral fertilizer, is generally scheduled after each cut in a narrow time window. In practice, the delay between cut and fertilizer application is determined by weather conditions, management conditions and most important by the planning and experience of the individual farmer. Many field experiments have shown that enhanced N2O emissions tend to occur after cuts but before the application of fertilizer, especially when soils are characterized by a high WFPS. These findings suggest that the time of fertilizer application has an important implications for the N2O emission rate and that scheduling fertilization according to soil conditions might be a simple, cheap and efficient measure to mitigate N2O emissions. In this paper we report on results from a sensitivity analysis aiming at quantifying the effects of the timing of the fertilizer applications on N2O emissions from intensively managed, mown grasslands. Simulations for different time schedules were carried out with the comprehensive ecosystem model "ECOSYS" . To our knowledge this aspect has not been systematically investigated from a scientific point of view, but might have been always there within the experiences of attentive environmentally concerned farmers.
Historical and projected emissions of HCFC-22 and HFC-410A from China's room air conditioning sector
NASA Astrophysics Data System (ADS)
Wang, Ziyuan; Fang, Xuekun; Li, Li; Bie, Pengju; Li, Zhifang; Hu, Jianxin; Zhang, Boya; Zhang, Jianbo
2016-05-01
Recent decades witnessed the increase in production and uses of HCFC-22 (chlorodifluoromethane, CHClF2) and its alternative, HFC-410A (a blend of difluoromethane and pentafluoroethane), in China in response to the booming of room air conditioners (RACs) for both domestic use and exports. HCFC-22 is an ozone-depleting substance under the Montreal Protocol, while both HCFC-22 and HFC-410A are greenhouse gases (GHGs). This study provides a most comprehensive consumption and emission inventory of refrigerants emissions (HCFC-22 and HFC-410A) from RAC sector during 1995-2014, for the first time. Our estimates show that HCFC-22 emissions increased from 0.7 Gg/yr in 1995 to 48.2 Gg/yr in 2014. The accumulative emissions contributed to global total HCFCs emissions by 4.4% (3.3%-6.1%) CFC-11-equivalent (CFC-11-eq) and 5.4% (4.1%-7.5%) CO2-equivalent (CO2-eq) during 1995-2012. If left uncontrolled, accumulative emissions of HFC-410A will be12.4 (7.1-20.2) CO2-eq Pg during 2015-2050, which can offset the global climate benefits achieved by the Montreal Protocol. The HFC-410A emissions from China's RAC sector are estimated to be of importance to both global HFCs emissions and China's GHG emissions. Further, we probed the emission mitigation performances of the current 2014 North American Proposal scenario and a modified more ambitious scenario. The emissions of two mitigation scenarios are only 28% and 22% of the emissions without mitigation actions, respectively. This study is the first effort to map the transition of eliminated substance HCFC-22 and its alternative HFC-410A in RAC sector. Therefore, alternative chemicals should be scrutinized with cautions before they are promoted and applied.
Mitigation of Greenhouse Gases in the Southeast USA
Kenneth L. Mitchell; Kimberly M. Adelberg; Marilyn Brown; Ryan Brown; Diana Burk; Cort Cooper; Jeffrey S. Gaffney; Garry P. Garrett; Daniel Garver; Stephen A. Smith; Ge Sun; Thomas Wells
2013-01-01
Key IssuesContinued investment in clean energy, including energy efficiency and clean energy supply options, including for transportation.Maintenance of carbon sinks in the face of development pressures.
The social cost of methane: theory and applications.
Shindell, D T; Fuglestvedt, J S; Collins, W J
2017-08-24
Methane emissions contribute to global warming, damage public health and reduce the yield of agricultural and forest ecosystems. Quantifying these damages to the planetary commons by calculating the social cost of methane (SCM) facilitates more comprehensive cost-benefit analyses of methane emissions control measures and is the first step to potentially incorporating them into the marketplace. Use of a broad measure of social welfare is also an attractive alternative or supplement to emission metrics focused on a temperature target in a given year as it incentivizes action to provide benefits over a broader range of impacts and timescales. Calculating the SCM using consistent temporal treatment of physical and economic processes and incorporating climate- and air quality-related impacts, we find large SCM values, e.g. ∼$2400 per ton and ∼$3600 per ton with 5% and 3% discount rates respectively. These values are ∼100 and 50 times greater than corresponding social costs for carbon dioxide. Our results suggest that ∼110 of 140 Mt of identified methane abatement via scaling up existing technology and policy options provide societal benefits that outweigh implementation costs. Within the energy sector, renewables compare far better against use of natural gas in electricity generation when incorporating these social costs for methane. In the agricultural sector, changes in livestock management practices, promoting healthy diets including reduced beef and dairy consumption, and reductions in food waste have been promoted as ways to mitigate emissions, and these are shown here to indeed have the potential to provide large societal benefits (∼$50-150 billion per year). Examining recent trends in methane and carbon dioxide, we find that increases in methane emissions may have offset much of the societal benefits from a slowdown in the growth rate of carbon dioxide emissions. The results indicate that efforts to reduce methane emissions via policies spanning a wide range of technical, regulatory and behavioural options provide benefits at little or negative net cost. Recognition of the full SCM, which has typically been undervalued, may help catalyze actions to reduce emissions and thereby provide a broad set of societal benefits.
Nutrient pollution mitigation measures across Europe are resilient under future climate
NASA Astrophysics Data System (ADS)
Wade, Andrew; Skeffington, Richard; Couture, Raoul; Erlandsson, Martin; Groot, Simon; Halliday, Sarah; Harezlak, Valesca; Hejzlar, Joseph; Jackson-Blake, Leah; Lepistö, Ahti; Papastergiadou, Eva; Psaltopoulos, Demetrios; Riera, Joan; Rankinen, Katri; Skuras, Dimitris; Trolle, Dennis; Whitehead, Paul; Dunn, Sarah; Bucak, Tuba
2016-04-01
The key results from the application of catchment-scale biophysical models to assess the likely effectiveness of nutrient pollution mitigation measures set in the context of projected land management and climate change are presented. The assessment is based on the synthesis of modelled outputs of daily river flow, river and lake nitrogen and phosphorus concentrations, and lake chlorophyll-a, for baseline (1981-2010) and scenario (2031-2060) periods for nine study sites across Europe. Together the nine sites represent a sample of key climate and land management types. The robustness and uncertainty in the daily, seasonal and long-term modelled outputs was assessed prior to the scenario runs. Credible scenarios of land-management changes were provided by social scientists and economists familiar with each study site, whilst likely mitigation measures were derived from local stakeholder consultations and cost-effectiveness assessments. Modelled mitigation options were able to reduce nutrient concentrations, and there was no evidence here that they were less effective under future climate. With less certainty, mitigation options could affect the ecological status of waters at these sites in a positive manner, leading to improvement in Water Framework Directive status at some sites. However, modelled outcomes for sites in southern Europe highlighted that increased evaporation and decreased precipitation will cause much lower flows leading to adverse impacts of river and lake ecology. Uncertainties in the climate models, as represented by three GCM-RCM combinations, did not affect this overall picture much.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
... Brazil Index Fund (``EWZ''), the Market Vectors Gold Miners ETF (``GDX''), and the Energy Select Sector... volatility.\\6\\ \\6\\ CBOE will be the reporting authority for any Vol Index. CBOE will compute values for Vol... price or the calculated forward value of the respective Vol index. Transactions in Vol Index options may...
NASA Technical Reports Server (NTRS)
1983-01-01
The economic factors involved in the design and utilization of the space station are investigated. Topics include the economic benefits associated with research and production, the orbit transfer vehicle, and satellite servicing. Program costs and design options are examined. The possibilities of financing from the private sector are discussed.
Implications of climate change damage for agriculture: sectoral evidence from Pakistan.
Ahmed, Adeel; Devadason, Evelyn S; Al-Amin, Abul Quasem
2016-10-01
This paper gives a projection of the possible damage of climate change on the agriculture sector of Pakistan for the period 2012-2037, based on a dynamic approach, using an environment-related applied computable general equilibrium model (CGE). Climate damage projections depict an upward trend for the period of review and are found to be higher than the global average. Further, the damage to the agricultural sector exceeds that for the overall economy. By sector, climatic damage disproportionately affects the major and minor crops, livestock and fisheries. The largest losses following climate change, relative to the other agricultural sectors, are expected for livestock. The reason for this is the orthodox system of production for livestock, with a low adaptability to negative shocks of climate change. Overall, the findings reveal the high exposure of the agriculture sector to climate damage. In this regard, policymakers in Pakistan should take seriously the effects of climate change on agriculture and consider suitable technology to mitigate those damages.
Forman, S; Plante, C; Murray, G; Rey, B; Belton, D; Evans, B; Steinmetz, P
2012-08-01
Livestock contributes significantly to the world economy. However, animal diseases and food safety are still major constraints on livestock-sector productivity, economic growth, the reduction of poverty and food security. Efficient and effective governance of Veterinary Services throughout the world is a fundamental requirement for addressing the global animal health and related public health threats. Recent work by the World Organisation for Animal Health (OIE) through the application of the Tool for the Evaluation of Performance of Veterinary Services (PVS Tool) and related Gap Analysis (both of which form part of the PVS Pathway) has indicated that a significant proportion of the national Veterinary Services worldwide do not meet the essential requirements for good governance. This shortcoming poses a significant risk for many developing countries and their trading partners when considered in the context of the growing trade in animal-source foods, and the burgeoning global livestock population. Well-managed, transparent and credible Veterinary Services, in both the public and private sector, are essential for mitigating animal disease risks and ensuring sustainable incomes for vulnerable producers. They are also vital for limiting the public health risks posed by zoonotic diseases. This paper is intended to highlight the impact of governance on the delivery of veterinary services in a development context and the benefits generated by improving veterinary governance. It recognises 'global public good' elements embedded in the good governance of Veterinary Services, and it could also provide an operational development investment roadmap that builds on the OIE PVS Pathway, and innovative financing options based on government commitments supported by donor programmes.
Drill cuttings mount formation study
NASA Astrophysics Data System (ADS)
Teh, Su Yean; Koh, Hock Lye
2014-07-01
Oil, Gas and Energy sector has been identified as an essential driving force in the Malaysian Economic Transformation Programs (ETP). Recently confirmed discovery of many offshore oil and gas deposits in Malaysian waters has ignited new confidence in this sector. However, this has also spurred intense interest on safeguarding the health and environment of coastal waters in Malaysia from adverse impact resulting from offshore oil and gas production operation. Offshore discharge of spent drilling mud and rock cuttings is the least expensive and simplest option to dispose of large volumes of drilling wastes. But this onsite offshore disposal may have adverse environmental impacts on the water column and the seabed. It may also pose occupational health hazards to the workers living in the offshore platforms. It is therefore important to model the transport and deposition of drilling mud and rock cuttings in the sea to enable proper assessment of their adverse impacts on the environment and the workers. Further, accumulation of drill particles on the seabed may impede proper operation of pipelines on the seabed. In this paper, we present an in-house application model TUNA-PT developed to cater to local oil and gas industry needs to simulate the dispersion and mount formation of drill cuttings by offshore oil and gas exploration and production platforms. Using available data on Malaysian coastal waters, simulation analyses project a pile formation on the seabed with a maximum height of about 1 m and pile radius of around 30 to 50 m. Simulated pile heights are not sensitive to the heights of release of the cuttings as the sensitivity has been mitigated by the depth of water.
Climate change and health: impacts, vulnerability, adaptation and mitigation.
Kjellstrom, Tord; Weaver, Haylee J
2009-01-01
Global climate change is progressing and health impacts have been observed in a number of countries, including Australia. The main health impacts will be due to direct heat exposure, extreme weather, air pollution, reduced local food production, food- and vectorborne infectious diseases and mental stress. The issue is one of major public health importance. Adaptation to reduce the effects of climate change involves many different sectors to minimise negative health outcomes. Wide-scale mitigation is also required, in order to reduce the effects of climate change. In addition, future urban design must be modified to mitigate and adapt to the effects of climate change. Strategies for mitigation and adaptation can create co-benefits for both individual and community health, by reducing non-climate-related health hazard exposures and by encouraging health promoting behaviours and lifestyles.
ERIC Educational Resources Information Center
Catt, Andrew D.; Rhinesmith, Evan
2017-01-01
In this report, the authors examine the responses of Indiana school parents from all sectors to a survey--developed by EdChoice and conducted by Hanover Research--that aims to measure what motivates them to choose schools, their children's schooling experiences, their awareness of school choice options, their satisfaction levels, and the goals…
Choice menus will serve up more private sector options.
McLellan, Alastair
2005-03-17
The independent sector's contribution to NHS patient choice is to be significantly extended through an invitation to bid for inclusion on PCT choice menus. In an exclusive interview, NHS chief executive Sir Nigel Crisp reveals that 'the BUPAs of this world' will be encouraged to supply care in all areas of elective care where choice is to be offered.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-17
... index composed of fifteen companies that provide oil drilling and production services, oil field... Number of Components in the PHLX Oil Service Sector\\SM\\ Known as OSX \\SM\\, on Which Options Are Listed... Commission a proposal to expand the number of components in the PHLX Oil Service Sector\\SM\\ (the ``Index'' or...
Carbon sequestration in managed temperate coniferous forests under climate change
NASA Astrophysics Data System (ADS)
Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.
2016-03-01
Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... management uncertainty to recommend ACTs for the commercial and recreational fishing sectors as part of the... sources of management uncertainty that were considered, technical approaches to mitigating these sources..., DEPARTMENT OF COMMERCE FISHERIES OF THE NORTHEASTERN UNITED STATES Management Measures for the Scup Fishery...
Arino, Yosuke; Akimoto, Keigo; Sano, Fuminori; Homma, Takashi; Oda, Junichiro; Tomoda, Toshimasa
2016-05-24
Although solar radiation management (SRM) might play a role as an emergency geoengineering measure, its potential risks remain uncertain, and hence there are ethical and governance issues in the face of SRM's actual deployment. By using an integrated assessment model, we first present one possible methodology for evaluating the value arising from retaining an SRM option given the uncertainty of climate sensitivity, and also examine sensitivities of the option value to SRM's side effects (damages). Reflecting the governance challenges on immediate SRM deployment, we assume scenarios in which SRM could only be deployed with a limited degree of cooling (0.5 °C) only after 2050, when climate sensitivity uncertainty is assumed to be resolved and only when the sensitivity is found to be high (T2x = 4 °C). We conduct a cost-effectiveness analysis with constraining temperature rise as the objective. The SRM option value is originated from its rapid cooling capability that would alleviate the mitigation requirement under climate sensitivity uncertainty and thereby reduce mitigation costs. According to our estimates, the option value during 1990-2049 for a +2.4 °C target (the lowest temperature target level for which there were feasible solutions in this model study) relative to preindustrial levels were in the range between $2.5 and $5.9 trillion, taking into account the maximum level of side effects shown in the existing literature. The result indicates that lower limits of the option values for temperature targets below +2.4 °C would be greater than $2.5 trillion.
Arino, Yosuke; Akimoto, Keigo; Sano, Fuminori; Homma, Takashi; Oda, Junichiro; Tomoda, Toshimasa
2016-01-01
Although solar radiation management (SRM) might play a role as an emergency geoengineering measure, its potential risks remain uncertain, and hence there are ethical and governance issues in the face of SRM’s actual deployment. By using an integrated assessment model, we first present one possible methodology for evaluating the value arising from retaining an SRM option given the uncertainty of climate sensitivity, and also examine sensitivities of the option value to SRM’s side effects (damages). Reflecting the governance challenges on immediate SRM deployment, we assume scenarios in which SRM could only be deployed with a limited degree of cooling (0.5 °C) only after 2050, when climate sensitivity uncertainty is assumed to be resolved and only when the sensitivity is found to be high (T2x = 4 °C). We conduct a cost-effectiveness analysis with constraining temperature rise as the objective. The SRM option value is originated from its rapid cooling capability that would alleviate the mitigation requirement under climate sensitivity uncertainty and thereby reduce mitigation costs. According to our estimates, the option value during 1990–2049 for a +2.4 °C target (the lowest temperature target level for which there were feasible solutions in this model study) relative to preindustrial levels were in the range between $2.5 and $5.9 trillion, taking into account the maximum level of side effects shown in the existing literature. The result indicates that lower limits of the option values for temperature targets below +2.4 °C would be greater than $2.5 trillion. PMID:27162346
Sensitivity of climate mitigation strategies to natural disturbances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Page, Yannick LB; Hurtt, George; Thomson, Allison M.
2013-02-19
The present and future concentration of atmospheric carbon dioxide depends on both anthropogenic and natural sources and sinks of carbon. Most proposed climate mitigation strategies rely on a progressive transition to carbon12 efficient technologies to reduce industrial emissions, substantially supported by policies to maintain or enhance the terrestrial carbon stock in forests and other ecosystems. This strategy may be challenged if terrestrial sequestration capacity is affected by future climate feedbacks, but how and to what extent is little understood. Here, we show that climate mitigation strategies are highly sensitive to future natural disturbance rates (e.g. fires, hurricanes, droughts), because ofmore » potential effect of disturbances on the terrestrial carbon balance. Generally, altered disturbance rates affect the pace of societal and technological transitions required to achieve the mitigation target, with substantial consequences on the energy sector and on the global economy. Understanding the future dynamics and consequences of natural disturbances on terrestrial carbon balance is thus essential for developing robust climate mitigation strategies and policies« less
Climate change and forests of the future: Managing in the face of uncertainty
Millar, C.I.; Stephenson, N.L.; Stephens, S.L.
2007-01-01
We offer a conceptual framework for managing forested ecosystems under an assumption that future environments will be different from present but that we cannot be certain about the specifics of change. We encourage flexible approaches that promote reversible and incremental steps, and that favor ongoing learning and capacity to modify direction as situations change. We suggest that no single solution fits all future challenges, especially in the context of changing climates, and that the best strategy is to mix different approaches for different situations. Resources managers will be challenged to integrate adaptation strategies (actions that help ecosystems accommodate changes adaptively) and mitigation strategies (actions that enable ecosystems to reduce anthropogenic influences on global climate) into overall plans. Adaptive strategies include resistance options (forestall impacts and protect highly valued resources), resilience options (improve the capacity of ecosystems to return to desired conditions after disturbance), and response options (facilitate transition of ecosystems from current to new conditions). Mitigation strategies include options to sequester carbon and reduce overall greenhouse gas emissions. Priority-setting approaches (e.g., triage), appropriate for rapidly changing conditions and for situations where needs are greater than available capacity to respond, will become increasingly important in the future. ?? 2007 by the Ecological Society of America.
Potential GHG mitigation options for agriculture in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erda, Lin; Yue, Li; Hongmin, Dong
1996-12-31
Agriculture contributes more or less to anthropogenic emissions of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and nitrous oxide (N{sub 2}O). China`s agriculture accounts for about 5-15% of total emissions for these gases. Land-use changes related to agriculture are not major contributors in China. Mitigation options are available that could result in significant decrease in CH{sub 4} and N{sub 2}O emissions from agricultural systems. If implemented, they are likely to increase crop and animal productivity. Implementation has the potential to decrease CH{sub 4} emissions from rice, ruminants, and animal waste by 4-40%. The key to decreasing N{sub 2}O emissions ismore » improving the efficiency of plant utilization of fertilizer N. This could decrease N{sub 2}O emissions from agriculture by almost 20%. Using animal waste to produce CH{sub 4} for energy and digested manure for fertilizer may at some time be cost effective. Economic analyses of options proposed should show positive economic as well as environmental benefits.« less
Cost and risk assessment for spacecraft operation decisions caused by the space debris environment
NASA Astrophysics Data System (ADS)
Schaub, Hanspeter; Jasper, Lee E. Z.; Anderson, Paul V.; McKnight, Darren S.
2015-08-01
Space debris is a topic of concern among many in the space community. Most forecasting analyses look centuries into the future to attempt to predict how severe debris densities and fluxes will become in orbit regimes of interest. Conversely, space operators currently do not treat space debris as a major mission hazard. This survey paper outlines the range of cost and risk evaluations a space operator must consider when determining a debris-related response. Beyond the typical direct costs of performing an avoidance maneuver, the total cost including indirect costs, political costs and space environmental costs are discussed. The weights on these costs can vary drastically across mission types and orbit regimes flown. The operator response options during a mission are grouped into four categories: no action, perform debris dodging, follow stricter mitigation, and employ ADR. Current space operations are only considering the no action and debris dodging options, but increasing debris risk will eventually force the stricter mitigation and ADR options. Debris response equilibria where debris-related risks and costs settle on a steady-state solution are hypothesized.
York, L; Heffernan, C; Rymer, C; Panda, N
2017-05-01
In the global South, dairying is often promoted as a means of poverty alleviation. Yet, under conditions of climate warming, little is known regarding the ability of small-scale dairy producers to maintain production and/or the robustness of possible adaptation options in meeting the challenges presented, particularly heat stress. The authors created a simple, deterministic model to explore the influence of breed and heat stress relief options on smallholder dairy farmers in Odisha, India. Breeds included indigenous Indian (non-descript), low-grade Jersey crossbreed and high-grade Jersey crossbreed. Relief strategies included providing shade, fanning and bathing. The impact of predicted critical global climate parameters, a 2°C and 4°C temperature rise were explored. A feed price scenario was modelled to illustrate the importance of feed in impact estimation. Feed costs were increased by 10% to 30%. Across the simulations, high-grade Jersey crossbreeds maintained higher milk yields, despite being the most sensitive to the negative effects of temperature. Low-capital relief strategies were the most effective at reducing heat stress impacts on household income. However, as feed costs increased the lower-grade Jersey crossbreed became the most profitable breed. The high-grade Jersey crossbreed was only marginally (4.64%) more profitable than the indigenous breed. The results demonstrate the importance of understanding the factors and practical trade-offs that underpin adaptation. The model also highlights the need for hot-climate dairying projects and programmes to consider animal genetic resources alongside environmentally sustainable adaptation measures for greatest poverty impact.
Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems
NASA Astrophysics Data System (ADS)
Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.
2014-12-01
Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.
NASA Astrophysics Data System (ADS)
Karstensen, Jonas; Peters, Glen
2018-01-01
Pricing carbon is one of the most important tools to reduce emissions and mitigate climate change. Already, about 40 nations have implemented explicit or implicit carbon prices, and a carbon price was explicitly stated as a mitigation strategy by many nations in their emission pledges submitted to the Paris Agreement. The coverage of carbon prices varies significantly between nations though, often only covering a subset of sectors in the economy. We investigate the propagation of carbon prices along the global supply-chain when the carbon price is applied at the point where carbon is removed from the ground (extraction), is combusted (production), or where goods and services are consumed (consumption). We consider both the regional and sectoral effects, and compare the carbon price income and costs relative to economic output. We find that implementation using different accounting systems makes a significant difference to revenues and increased expenditure, and that domestic and global trade plays a significant role in spreading the carbon price between sectors and countries. A few single sectors experience the largest relative price increases (especially electricity and transport), but most of the carbon price is ultimately paid by households for goods and services due to the large expenditure and indirect supply chain impacts. We finally show that a global carbon price will generate a larger share of revenue relative to GDP in non-OECD nations than OECD nations, independent on the point of implementation.
Private Education in the Absence of a Public Option: The Cases of the United Arab Emirates and Qatar
ERIC Educational Resources Information Center
Ridge, Natasha Y.; Shami, Soha; Kippels, Susan M.
2016-01-01
In the face of rising demand for private schooling in the United Arab Emirates (UAE) and Qatar, a lack of affordable schooling options, monopolistic behavior of private education providers, and unpredictable government regulations have created a complex and unequal education sector. This research employs a mixed methods comparative approach to…
Guo, Yang; Tian, Jinping; Chertow, Marian; Chen, Lujun
2016-10-03
Mitigating greenhouse gas (GHG) emissions in China's industrial sector is crucial for addressing climate change. We developed a vintage stock model to quantify the GHG mitigation potential and cost effectiveness in Chinese eco-industrial parks by targeting energy infrastructure with five key measures. The model, integrating energy efficiency assessments, GHG emission accounting, cost-effectiveness analyses, and scenario analyses, was applied to 548 units of energy infrastructure in 106 parks. The results indicate that two measures (shifting coal-fired boilers to natural gas-fired boilers and replacing coal-fired units with natural gas combined cycle units) present a substantial potential to mitigate GHGs (42%-46%) compared with the baseline scenario. The other three measures (installation of municipal solid waste-to-energy units, replacement of small-capacity coal-fired units with large units, and implementation of turbine retrofitting) present potential mitigation values of 6.7%, 0.3%, and 2.1%, respectively. In most cases, substantial economic benefits also can be achieved by GHG emission mitigation. An uncertainty analysis showed that enhancing the annual working time or serviceable lifetime levels could strengthen the GHG mitigation potential at a lower cost for all of the measures.
Del Prado, A; Crosson, P; Olesen, J E; Rotz, C A
2013-06-01
The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quantify GHG emissions and explore climate change mitigation strategies for livestock systems. This paper analyses the limitations and strengths of the different existing approaches for modelling GHG mitigation by considering basic model structures, approaches for simulating GHG emissions from various farm components and the sensitivity of GHG outputs and mitigation measures to different approaches. Potential challenges for linking existing models with the simulation of impacts and adaptation measures under climate change are explored along with a brief discussion of the effects on other ecosystem services.
Dave Bielen Photo of Dave Bielen Dave Bielen Energy and Environmental Policy Analyst David.Bielen Energy Analysis Center. Areas of Expertise Environmental policy design Dynamic programming Time series energy policy GHG emissions mitigation in the electricity and transportation sectors Optimal control of
Research, Development, Demonstration and Deployment Issues in the Power Sector
For Frank Princiotta’s book, Global Climate Change—The Technology Challenge In this chapter we explore the challenges in developing and deploying technology for mitigation of CO2 emissions associated with power generation. Past successes with controlling other pollutants (notab...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, Pavit, E-mail: pramachandran@adb.org; Linde, Lothar, E-mail: lothar.linde@yahoo.de
The GMS countries, supported by the Asian Development Bank, have adopted a holistic, multidimensional approach to strengthen infrastructural linkages and facilitate cross border trade through (i) the establishment of a trans-boundary road connecting two economic nodes across marginalised areas, followed by 2) facilitation of environmentally and socially sound investments in these newly connected areas as a means to develop livelihoods. The North-South Economic Corridor is currently in its second phase of development, with investment opportunities to be laid out in the NSEC Strategy and Action Plan (SAP). It targets the ecologically and culturally sensitive border area between PR China's Yunnanmore » Province, Northern Lao PDR, and Thailand. A trans-boundary, cross-sectoral Strategic Environmental Assessment was conducted to support the respective governments in assessing potential environmental and social impacts, developing alternatives and mitigation options, and feeding the findings back into the SAP writing process. Given the spatial dimension of corridor development-both with regard to opportunities and risks-particular emphasis was put in the application of spatial modelling tools to help geographically locate and quantify impacts as a means to guide interventions and set priorities.« less
NASA Astrophysics Data System (ADS)
Gao, M.; Song, S.; Beig, G.; Zhang, H.; Hu, J.; Ying, Q.; McElroy, M. B.
2017-12-01
Fast urbanization and industrialization in China and India have led to severe ozone pollution, threatening public health in these densely populated countries. We show the spatial and seasonal characteristics of ozone concentrations using nation-wide observations for these two countries in 2013. We used the Weather Research and Forecasting model coupled to chemistry (WRF-Chem) to conduct one-year simulations and to evaluate how current models capture the important photochemical processes using the exhaustive available datasets in China and India, including surface measurements, ozonesonde data and satellite retrievals. We also employed the factor separation approach to distinguish the contributions of different sectors to ozone during different seasons. The back trajectory model FLEXPART was applied to investigate the role of transport in highly polluted regions (e.g., North China Plain, Yangtze River delta, and Pearl River Delta) during different seasons. Preliminary results indicate that the WRF-Chem model provides a satisfactory representation of the temporal and spatial variations of ozone for both China and India. The factor separation approach offers valuable insights into relevant sources of ozone for both countries providing valuable guidance for policy options designed to mitigate the related problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshmukh, Ranjit; Bharvirkar, Ranjit; Gambhir, Ashwin
Although solar costs are dropping rapidly, solar power is still more expensive than conventional and other renewable energy options. The solar sector still needs continuing government policy support. These policies are driven by objectives that go beyond the goal of achieving grid parity. The need to achieve multiple objectives and ensure sufficient political support for solar power makes it diffi cult for policy makers to design the optimal solar power policy. The dynamic and uncertain nature of the solar industry, combined with the constraints offered by broader economic, political and social conditions further complicates the task of policy making. Thismore » report presents an analysis of solar promotion policies in seven countries - Germany, Spain, the United States, Japan, China, Taiwan, and India - in terms of their outlook, objectives, policy mechanisms and outcomes. The report presents key insights, primarily in qualitative terms, and recommendations for two distinct audiences. The first audience consists of global policy makers who are exploring various mechanisms to increase the penetration of solar power in markets to mitigate climate change. The second audience consists of key Indian policy makers who are developing a long-term implementation plan under the Jawaharlal Nehru National Solar Mission and various state initiatives.« less
Biogenic CH4 and N2O emissions overwhelm land CO2 sink in Asia: Toward a full GHG budget
NASA Astrophysics Data System (ADS)
Tian, H.
2017-12-01
The recent global assessment indicates the terrestrial biosphere as a net source of greenhouse gases to the atmosphere (Tian et al Nature 2016). The fluxes of greenhouse gases (GHG) vary by region. Both TD and BU approaches indicate that human-caused biogenic fluxes of CO2, CH4 and N2O in the biosphere of Southern Asia led to a large net climate warming effect, because the 100-year cumulative effects of CH4 and N2O emissions together exceed that of the terrestrial CO2 sink. Southern Asia has about 90% of the global rice fields and represents more than 60% of the world's nitrogen fertilizer consumption, with 64%-81% of CH4 emissions and 36%-52% of N2O emissions derived from the agriculture and waste sectors. Given the large footprint of agriculture in Southern Asia, improved fertilizer use efficiency, rice management and animal diets could substantially reduce global agricultural N2O and CH4 emissions. This study highlights the importance of including all three major GHGs in regional climate impact assessments, mitigation option and climate policy development.
Bodirsky, Benjamin Leon; Popp, Alexander; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Rolinski, Susanne; Weindl, Isabelle; Schmitz, Christoph; Müller, Christoph; Bonsch, Markus; Humpenöder, Florian; Biewald, Anne; Stevanovic, Miodrag
2014-05-13
Reactive nitrogen (Nr) is an indispensable nutrient for agricultural production and human alimentation. Simultaneously, agriculture is the largest contributor to Nr pollution, causing severe damages to human health and ecosystem services. The trade-off between food availability and Nr pollution can be attenuated by several key mitigation options, including Nr efficiency improvements in crop and animal production systems, food waste reduction in households and lower consumption of Nr-intensive animal products. However, their quantitative mitigation potential remains unclear, especially under the added pressure of population growth and changes in food consumption. Here we show by model simulations, that under baseline conditions, Nr pollution in 2050 can be expected to rise to 102-156% of the 2010 value. Only under ambitious mitigation, does pollution possibly decrease to 36-76% of the 2010 value. Air, water and atmospheric Nr pollution go far beyond critical environmental thresholds without mitigation actions. Even under ambitious mitigation, the risk remains that thresholds are exceeded.
ERIC Educational Resources Information Center
West, Martin R.; Peterson, Paul E.; Barrows, Samuel
2017-01-01
Over the past 25 years, charter schools have offered an increasing number of families an alternative to their local district schools. The charter option has proven particularly popular in large cities, but charter-school growth is often constrained by state laws that limit the number of students the sector can serve. The charter sector is the most…
Tait, Peter W
2011-07-01
Increasing heat may impede peoples' ability to be active outdoors thus limiting active transport options. Co-benefits from mitigation of and adaptation to global warming should not be assumed but need to be actively designed into strategies.
A Decision Support System for Mitigating Stream Temperature Impacts in the Sacramento River
NASA Astrophysics Data System (ADS)
Caldwell, R. J.; Zagona, E. A.; Rajagopalan, B.
2014-12-01
Increasing demands on the limited and variable water supply across the West can result in insufficient streamflow to sustain healthy fish habitat. We develop an integrated decision support system (DSS) for modeling and mitigating stream temperature impacts and demonstrate it on the Sacramento River system in California. Water management in the Sacramento River is a complex task with a diverse set of demands ranging from municipal supply to mitigation of fisheries impacts due to high water temperatures. Current operations utilize the temperature control device (TCD) structure at Shasta Dam to mitigate these high water temperatures downstream at designated compliance points. The TCD structure at Shasta Dam offers a rather unique opportunity to mitigate water temperature violations through adjustments to both release volume and temperature. In this study, we develop and evaluate a model-based DSS with four broad components that are coupled to produce the decision tool for stream temperature mitigation: (i) a suite of statistical models for modeling stream temperature attributes using hydrology and climate variables of critical importance to fish habitat; (ii) a reservoir thermal model for modeling the thermal structure and, consequently, the water release temperature, (iii) a stochastic weather generator to simulate weather sequences consistent with seasonal outlooks; and, (iv) a set of decision rules (i.e., 'rubric') for reservoir water releases in response to outputs from the above components. Multiple options for modifying releases at Shasta Dam were considered in the DSS, including mixing water from multiple elevations through the TCD and using different acceptable levels of risk. The DSS also incorporates forecast uncertainties and reservoir operating options to help mitigate stream temperature impacts for fish habitat, while efficiently using the reservoir water supply and cold pool storage. The use of these coupled tools in simulating impacts of future climate on stream temperature variability is also demonstrated. Results indicate that the DSS could substantially reduce the number of violations of thermal criteria, while ensuring maintenance of the cold pool storage throughout the summer.
Salt as a mitigation option for decreasing nitrogen leaching losses from grazed pastures.
Ledgard, Stewart F; Welten, Brendon; Betteridge, Keith
2015-12-01
The main source of nitrogen (N) leaching from grazed pastures is animal urine with a high N deposition rate (i.e. per urine patch), particularly between late summer and early winter. Salt is a potential mitigation option as a diuretic to induce greater drinking-water intake, increase urination frequency, decrease urine N concentration and urine N deposition rate, and thereby potentially decrease N leaching. This hypothesis was tested in three phases: a cattle metabolism stall study to examine effects of salt supplementation rate on water consumption, urination frequency and urine N concentration; a grazing trial to assess effects of salt (150 g per heifer per day) on urination frequency; and a lysimeter study on effects of urine N rate on N leaching. Salt supplementation increased cattle water intake. Urination frequency increased by up to 69%, with a similar decrease in urine N deposition rate and no change in individual urination volume. Under field grazing, sensors showed increased urination frequency by 17%. Lysimeter studies showed a proportionally greater decrease in N leaching with decreased urine N rate. Modelling revealed that this could decrease per-hectare N leaching by 10-22%. Salt supplementation increases cattle water intake and urination frequency, resulting in a lower urine N deposition rate and proportionally greater decrease in urine N leaching. Strategic salt supplementation in autumn/early winter with feed is a practical mitigation option to decrease N leaching in grazed pastures. © 2015 Society of Chemical Industry.
Investigating options for attenuating methane emission from Indian rice fields.
Singh, S N; Verma, Amitosh; Tyagi, Larisha
2003-08-01
The development of methods and strategies to reduce the emission of methane from paddy fields is a central component of ongoing efforts to protect the Earth's atmosphere and to avert a possible climate change. It appears from this investigation that there can be more than one strategy to contain methane emission from paddy fields, which are thought to be a major source of methane emission in tropical Asia. Promising among the mitigating options may be water management, organic amendments, fertilizer application and selection of rice cultivars. It is always better to adopt multi-pronged strategies to contain CH4 efflux from rice wetlands. Use of fermented manures with low C/N ratio, application of sulfate-containing chemical fertilizers, selection of low CH4 emitting rice cultivars, and implementation of one or two short aeration periods before the heading stage can be effective options to minimize CH4 emission from paddy fields. Among these strategies, water management, which appears to be the best cost-effective and eco-friendly way for methane mitigation, is only possible when excess water is available for reflooding after short soil drying at the right timing and stage. However, in tropical Asia, rice fields are naturally flooded during the monsoonal rainy season and fully controlled drainage is often impossible. In such situation, water deficits during the vegetative and reproductive stage may drastically affect the rice yields. Thus, care must be taken to mitigate methane emission without affecting rice yields.
Estimating European soil organic carbon mitigation potential in a global integrated land use model
NASA Astrophysics Data System (ADS)
Frank, Stefan; Böttcher, Hannes; Schneider, Uwe; Schmid, Erwin; Havlík, Petr
2013-04-01
Several studies have shown the dynamic interaction between soil organic carbon (SOC) sequestration rates, soil management decisions and SOC levels. Management practices such as reduced and no-tillage, improved residue management and crop rotations as well as the conversion of marginal cropland to native vegetation or conversion of cultivated land to permanent grassland offer the potential to increase SOC content. Even though dynamic interactions are widely acknowledged in literature, they have not been implemented in most existing land use decision models. A major obstacle is the high data and computing requirements for an explicit representation of alternative land use sequences since a model has to be able to track all different management decision paths. To our knowledge no study accounted so far for SOC dynamics explicitly in a global integrated land use model. To overcome these conceptual difficulties described above we apply an approach capable of accounting for SOC dynamics in GLOBIOM (Global Biosphere Management Model), a global recursive dynamic partial equilibrium bottom-up model integrating the agricultural, bioenergy and forestry sectors. GLOBIOM represents all major land based sectors and therefore is able to account for direct and indirect effects of land use change as well as leakage effects (e.g. through trade) implicitly. Together with the detailed representation of technologies (e.g. tillage and fertilizer management systems), these characteristics make the model a highly valuable tool for assessing European SOC emissions and mitigation potential. Demand and international trade are represented in this version of the model at the level of 27 EU member states and 23 aggregated world regions outside Europe. Changes in the demand on the one side, and profitability of the different land based activities on the other side, are the major determinants of land use change in GLOBIOM. In this paper we estimate SOC emissions from cropland for the EU until 2050 explicitly considering SOC dynamics due to land use and land management in a global integrated land use model. Moreover, we calculate the EU SOC mitigation potential taking into account leakage effects outside Europe as well as related feed backs from other sectors. In sensitivity analysis, we disaggregate the SOC mitigation potential i.e. we quantify the impact of different management systems and crop rotations to identify most promising mitigation strategies.
Assessing global fossil fuel availability in a scenario framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Nico; Hilaire, Jérôme; Brecha, Robert J.
This study assesses global, long-term economic availability of coal, oil and gas within the Shared Socio-economic Pathway (SSP) scenario framework considering alternative assumptions as to highly uncertain future developments of technology, policy and the economy. Diverse sets of trajectories are formulated varying the challenges to mitigation and adaptation of climate change. The potential CO2 emissions from fossil fuels make it a crucial element subject to deep uncertainties. The analysis is based on a well-established data set of cost-quantity combinations that assumes favorable techno-economic developments, but ignores additional constraints on the extraction sector. This study significantly extends that analysis to includemore » alternative assumptions for the fossil fuel sector consistent with the SSP scenario families and applies these filters to the original data set, thus resulting in alternative cumulative fossil fuel availability curves. In a Middle-of-the-Road scenario, low cost fossil fuels embody carbon consistent with a RCP6.0 emission profile, if all the CO2 were emitted freely during the 21st century. In scenarios with high challenges to mitigation, the assumed embodied carbon in low-cost fossil fuels can trigger a RCP8.5 scenario; low mitigation challenges scenarios are still consistent with a RCP4.5 scenario.« less
Summary for Policymakers IPCC Fourth Assessment Report, WorkingGroup III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Terry; Bashmakov, Igor; Bernstein, Lenny
2007-04-30
A. Introduction 1. The Working Group III contribution to theIPCC Fourth Assessment Report (AR4) focuses on new literature on thescientific, technological, environmental, economic and social aspects ofmitigation of climate change, published since the IPCC Third AssessmentReport (TAR) and the Special Reports on COB2B Capture and Storage (SRCCS)and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The following summary is organised into six sections after thisintroduction: - Greenhouse gas (GHG) emission trends, - Mitigation in theshort and medium term, across different economic sectors (until 2030), -Mitigation in the long-term (beyond 2030), - Policies, measures andinstruments to mitigate climate change,more » - Sustainable development andclimate change mitigation, - Gaps in knowledge. References to thecorresponding chapter sections are indicated at each paragraph in squarebrackets. An explanation of terms, acronyms and chemical symbols used inthis SPM can be found in the glossary to the main report.« less
Overview of Risk Mitigation for Safety-Critical Computer-Based Systems
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo
2015-01-01
This report presents a high-level overview of a general strategy to mitigate the risks from threats to safety-critical computer-based systems. In this context, a safety threat is a process or phenomenon that can cause operational safety hazards in the form of computational system failures. This report is intended to provide insight into the safety-risk mitigation problem and the characteristics of potential solutions. The limitations of the general risk mitigation strategy are discussed and some options to overcome these limitations are provided. This work is part of an ongoing effort to enable well-founded assurance of safety-related properties of complex safety-critical computer-based aircraft systems by developing an effective capability to model and reason about the safety implications of system requirements and design.
Agriculture and climate change: Potential for mitigation in Spain.
Albiac, Jose; Kahil, Taher; Notivol, Eduardo; Calvo, Elena
2017-08-15
Agriculture and forestry activities are one of the many sources of greenhouse gas (GHG) emissions, but they are also sources of low-cost opportunities to mitigate these emissions compared to other economic sectors. This paper provides a first estimate of the potential for mitigation in the whole Spanish agriculture. A set of mitigation measures are selected for their cost-effectiveness and abatement potential and an efficient mix of these measures is identified with reference to a social cost of carbon of 40 €/tCO 2 e. This mix of measures includes adjusting crop fertilization and managing forests for carbon sequestration. Results indicate that by using the efficient mix of mitigation measures the annual abatement potential could reach 10 million tCO 2 e, which represents 28% of current agricultural emissions in Spain. This potential could further increase if the social cost of carbon rises covering the costs of applying manure to crops. Results indicate also that economic instruments such as input and emission taxes could be only ancillary measures to address mitigation in agriculture. These findings can be used to support the mitigation efforts in Spain and guide policymakers in the design of country-level mitigation strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Griscom, Bronson W.; Adams, Justin; Ellis, Peter W.; Houghton, Richard A.; Lomax, Guy; Miteva, Daniela A.; Schlesinger, William H.; Shoch, David; Siikamäki, Juha V.; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T.; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R.; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M.; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E.; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph
2017-10-01
Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify “natural climate solutions” (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS—when constrained by food security, fiber security, and biodiversity conservation—is 23.8 petagrams of CO2 equivalent (PgCO2e) y‑1 (95% CI 20.3–37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y‑1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e‑1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2‑1. Most NCS actions—if effectively implemented—also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.
Griscom, Bronson W; Adams, Justin; Ellis, Peter W; Houghton, Richard A; Lomax, Guy; Miteva, Daniela A; Schlesinger, William H; Shoch, David; Siikamäki, Juha V; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph
2017-10-31
Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify "natural climate solutions" (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS-when constrained by food security, fiber security, and biodiversity conservation-is 23.8 petagrams of CO 2 equivalent (PgCO 2 e) y -1 (95% CI 20.3-37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO 2 e y -1 ) represents cost-effective climate mitigation, assuming the social cost of CO 2 pollution is ≥100 USD MgCO 2 e -1 by 2030. Natural climate solutions can provide 37% of cost-effective CO 2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO 2 -1 Most NCS actions-if effectively implemented-also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.
Adams, Justin; Ellis, Peter W.; Houghton, Richard A.; Lomax, Guy; Miteva, Daniela A.; Schlesinger, William H.; Shoch, David; Siikamäki, Juha V.; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T.; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R.; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M.; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E.; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph
2017-01-01
Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify “natural climate solutions” (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS—when constrained by food security, fiber security, and biodiversity conservation—is 23.8 petagrams of CO2 equivalent (PgCO2e) y−1 (95% CI 20.3–37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y−1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e−1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2−1. Most NCS actions—if effectively implemented—also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change. PMID:29078344
NASA Astrophysics Data System (ADS)
Bauer, Susanne E.; Menon, Surabi
2012-01-01
The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m2, with the largest contribution from the direct effect (-0.5 W/m2). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m2) and semidirect effects (-0.10 W/m2) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m2), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying impacts by geographical region. For example, the single sector most responsible for a net positive radiative forcing is the transportation sector in the United States, agricultural burning and transportation in Europe, and the domestic emission sector in Asia. These sectors are attractive mitigation targets.
NASA Technical Reports Server (NTRS)
Bauer, Susanne E.; Menon, Surabi
2012-01-01
The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying impacts by geographical region. For example, the single sector most responsible for a net positive radiative forcing is the transportation sector in the United States, agricultural burning and transportation in Europe, and the domestic emission sector in Asia. These sectors are attractive mitigation targets.
NASA Astrophysics Data System (ADS)
Letendre, Steven Emery
The U.S. electric utility sector in its current configuration is unsustainable. The majority of electricity in the United States is produced using finite fossil fuels. In addition, significant potential exists to improve the nation's efficient use of energy. A sustainable electric utility sector will be characterized by increased use of renewable energy sources and high levels of end-use efficiency. This dissertation analyzes two alternative policy approaches designed to move the U.S. electric utility sector toward sustainability. One approach is labeled incremental which involves maintaining the centralized structure of the electric utility sector but facilitating the introduction of renewable energy and efficiency into the electrical system through the pricing mechanism. A second policy approach was described in which structural changes are encouraged based on the emerging distributed utility (DU) concept. A structural policy orientation attempts to capture the unique localized benefits that distributed renewable resources and energy efficiency offer to electric utility companies and their customers. A market penetration analysis of PV in centralized energy supply and distributed peak-shaving applications is conducted for a case-study electric utility company. Sensitivity analysis was performed based on incremental and structural policy orientations. The analysis provides compelling evidence which suggests that policies designed to bring about structural change in the electric utility sector are needed to move the industry toward sustainability. Specifically, the analysis demonstrates that PV technology, a key renewable energy option likely to play an important role in a renewable energy future, will begin to penetrate the electrical system in distributed peak-shaving applications long before the technology is introduced as a centralized energy supply option. Most policies to date, which I term incremental, attempt to encourage energy efficiency and renewables through the pricing system. Based on past policy experience, it is unlikely that such an approach would allow PV to compete in Delaware as an energy supply option in the next ten to twenty years. Alternatively, a market-based, or green pricing, approach will not create significant market opportunities for PV as a centralized energy supply option. However, structural policies designed to encourage the explicit recognition of the localized benefits of distributed resources could result in PV being introduced into the electrical system early in the next century.
Towards greener environment: Energy efficient pathways for the transportation sector in Malaysia
NASA Astrophysics Data System (ADS)
Indati, M. S.; Ghate, A. T.; Leong, Y. P.
2013-06-01
Transportation sector is the second most energy consuming sector after industrial sector, accounting for 40% of total energy consumption in Malaysia. The transportation sector is one of the most energy intensive sectors in the country and relies primarily on petroleum products, which in total account for nearly 98% of the total consumption in the sector. Since it is heavily reliant on petroleum based fuels, the sector contributes significantly to the greenhouse gas (GHG) emissions. The need to reduce the greenhouse gas emission is paramount as Malaysia at Conference of the Parties (COP15) pledged to reduce its carbon intensity by 40% by 2020 from 2005 level subject to availability of technology and finance. Transport sector will be among the first sectors that need to be addressed to achieve this goal, as two-thirds of the emissions come from fuel combustion in transport sector. This paper will analyse the factors influencing the transport sector's growth and energy consumption trends and discuss the key issues and challenges for greener environment and sustainable transportation in Malaysia. The paper will also discuss the policy and strategic options aimed towards energy efficient pathways in Malaysia.
Assessing the INDCs' land use, land use change, and forest emission projections.
Forsell, Nicklas; Turkovska, Olga; Gusti, Mykola; Obersteiner, Michael; Elzen, Michel den; Havlik, Petr
2016-12-01
In preparation for the 2015 international climate negotiations in Paris, Parties submitted Intended Nationally Determined Contributions (INDCs) to the United Nations Framework Convention on Climate Change (UNFCCC) expressing each countries' respective post-2020 climate actions. In this paper we assess individual Parties' expected reduction of emissions/removals from land use, land use change, and forest (LULUCF) sector for reaching their INDC target, and the aggregate global effect on the INDCs on the future development of emission and removals from the LULUCF sector. This has been done through analysis Parties' official information concerning the role of LULUCF mitigation efforts for reaching INDC targets as presented in National Communications, Biennial Update Reports, and Additional file 1. On the aggregate global level, the Parties themselves perceive that net LULUCF emissions will increase over time. Overall, the net LULUCF emissions are estimated to increase by 0.6 Gt CO 2 e year -1 (range: 0.1-1.1) in 2020 and 1.3 Gt CO 2 e year -1 (range: 0.7-2.1) in 2030, both compared to 2010 levels. On the other hand, the full implementation of the INDCs is estimated to lead to a reduction of net LULUCF emissions in 2030 compared to 2010 levels. It is estimated that if all conditional and unconditional INDCs are implemented, net LULUCF emissions would decrease by 0.5 Gt CO 2 e year -1 (range: 0.2-0.8) by 2020 and 0.9 Gt CO 2 e year -1 (range: 0.5-1.3) by 2030, both compared to 2010 levels. The largest absolute reductions of net LULUCF emissions (compared to 2010 levels) are expected from Indonesia and Brazil, followed by China and Ethiopia. The results highlights that countries are expecting a significant contribution from the LULUCF sector to meet their INDC mitigation targets. At the global level, the LULUCF sector is expected to contribute to as much as 20% of the full mitigation potential of all the conditional and unconditional INDC targets. However, large uncertainties still surround how Parties estimate, project and account for emissions and removals from the LULUCF sector. While INDCs represent a new source of land-use information, further information and updates of the INDCs will be required to reduce uncertainty of the LULUCF projections.
Transitions to material efficiency in the UK steel economy.
Allwood, Julian M
2013-03-13
Steel production is energy intensive so already has achieved impressive levels of energy efficiency. If the emissions associated with steel must be reduced in line with the requirements of the UK Climate Change Act, demand for new steel must be reduced. The strategies of 'material efficiency' aim to achieve such a reduction, while delivering the same final services. To meet the emissions targets set into UK law, UK consumption of steel must be reduced to 30 per cent of present levels by 2050. Previous work has revealed six strategies that could contribute to this target, and this paper presents an approximate analysis of the required transition. A macro-economic analysis of steel in the UK shows that while the steel industry is relatively small, the construction and manufacturing sectors are large, and it would be politically unacceptable to pursue options that lead to a major contraction in other sectors. Alternative business models are therefore required, and these are explored through four representative products--one for each final sector with particular emphasis given to options for reducing product weight, and extending product life. Preliminary evidence on the triggers that would lead to customers preferring these options is presented and organized in order to predict required policy measures. The estimated analysis of transitions explored in this paper is used to define target questions for future research in the area.
USDA Northeast climate hub greenhouse gas mitigation workshop technical report
USDA-ARS?s Scientific Manuscript database
In April 2015, USDA Secretary Vilsack announced the Greenhouse Gas Building Blocks for Climate Smart Agriculture and Forestry in an effort to reduce greenhouse gas emissions, increase carbon sequestration, and expand renewable energy production in the agricultural and forestry sectors. This initiati...
The quest for a true One Health perspective of brucellosis
USDA-ARS?s Scientific Manuscript database
One Health is an interdisciplinary collaboration aiming at mitigating risks to human health arising from microorganisms present in non-human animal species, which have the potential to be transmitted and cause disease in humans. Different degrees of scientific collaboration and sectoral integration ...
Mexico's Geothermal Market Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores-Espino, Francisco; Booth, Sarah; Graves, Andrew
This report is intended to help U.S. companies in the geothermal sector understand potential business opportunities created by recent changes in the Mexican energy market and regulatory environment. can also provide a variety of technology products and services for export into the Mexican market. This report will help U.S. companies identify the many public and private sector stakeholders in the United States and Mexico, which can help U.S. companies navigate the new regulatory and permitting environment, build new partnerships, and identify vehicles for financial assistance and risk mitigation.
NASA Astrophysics Data System (ADS)
Chang, Kelly M.; Hess, Jeremy J.; Balbus, John M.; Buonocore, Jonathan J.; Cleveland, David A.; Grabow, Maggie L.; Neff, Roni; Saari, Rebecca K.; Tessum, Christopher W.; Wilkinson, Paul; Woodward, Alistair; Ebi, Kristie L.
2017-11-01
Background: Significant mitigation efforts beyond the Nationally Determined Commitments (NDCs) coming out of the 2015 Paris Climate Agreement are required to avoid warming of 2 °C above pre-industrial temperatures. Health co-benefits represent selected near term, positive consequences of climate policies that can offset mitigation costs in the short term before the beneficial impacts of those policies on the magnitude of climate change are evident. The diversity of approaches to modeling mitigation options and their health effects inhibits meta-analyses and syntheses of results useful in policy-making. Methods/Design: We evaluated the range of methods and choices in modeling health co-benefits of climate mitigation to identify opportunities for increased consistency and collaboration that could better inform policy-making. We reviewed studies quantifying the health co-benefits of climate change mitigation related to air quality, transportation, and diet published since the 2009 Lancet Commission ‘Managing the health effects of climate change’ through January 2017. We documented approaches, methods, scenarios, health-related exposures, and health outcomes. Results/Synthesis: Forty-two studies met the inclusion criteria. Air quality, transportation, and diet scenarios ranged from specific policy proposals to hypothetical scenarios, and from global recommendations to stakeholder-informed local guidance. Geographic and temporal scope as well as validity of scenarios determined policy relevance. More recent studies tended to use more sophisticated methods to address complexity in the relevant policy system. Discussion: Most studies indicated significant, nearer term, local ancillary health benefits providing impetus for policy uptake and net cost savings. However, studies were more suited to describing the interaction of climate policy and health and the magnitude of potential outcomes than to providing specific accurate estimates of health co-benefits. Modeling the health co-benefits of climate policy provides policy-relevant information when the scenarios are reasonable, relevant, and thorough, and the model adequately addresses complexity. Greater consistency in selected modeling choices across the health co-benefits of climate mitigation research would facilitate evaluation of mitigation options particularly as they apply to the NDCs and promote policy uptake.
Hegney, Desley; Tuckett, Anthony; Parker, Deborah; Eley, Robert M
2010-04-01
Nurses are at high risk of incurring workplace violence during their working life. This paper reports the findings on a cross-sectional, descriptive, self-report, postal survey in 2007. A stratified random sample of 3000 of the 29 789 members of the Queensland Nurses Union employed in the public, private and aged care sectors resulted in 1192 responses (39.7%). This paper reports the differences: between those nurses who experienced workplace violence and those who did not; across employment sectors. The incidence of workplace violence is highest in public sector nursing. Patients/clients/residents were the major perpetrators of workplace violence and the existence of a workplace policy did not decrease levels of workplace violence. Nurses providing clinical care in the private and aged care sectors experienced more workplace violence than more senior nurses. Although workplace violence was associated with high work stress, teamwork and a supportive workplace mitigated workplace violence. The perception of workplace safety was inversely related to workplace violence. With the exception of public sector nursing, nurses reported an inverse relationship with workplace violence and morale.
Preventing type 2 diabetes: Changing the food industry
Popkin, Barry M.; Kenan, W. R.
2016-01-01
Improving our global diet by working with the food industry is a fairly complex task. Previously the global food manufacturing companies and governments were the major players. However, matters have shifted rapidly so that food retailers, food manufacturers, the restaurant–food service sector, and agribusinesses are now the major players. The current modern system of packaged processed food has now penetrated the globe—rich and poor, rural and urban are all in reach of this food system. Consequently, working with this complex sector when possible and an array of governmental regulatory large-scale options to improve our diet have increased in importance. Taxation of unhealthy foods and beverages, marketing controls, and front of the package labeling are the primary current options. Evaluations of the impacts of both public and industry initiatives are needed. PMID:27432072
Impacts of Groundwater Constraints on Saudi Arabia's Low-Carbon Electricity Supply Strategy.
Parkinson, Simon C; Djilali, Ned; Krey, Volker; Fricko, Oliver; Johnson, Nils; Khan, Zarrar; Sedraoui, Khaled; Almasoud, Abdulrahman H
2016-02-16
Balancing groundwater depletion, socioeconomic development and food security in Saudi Arabia will require policy that promotes expansion of unconventional freshwater supply options, such as wastewater recycling and desalination. As these processes consume more electricity than conventional freshwater supply technologies, Saudi Arabia's electricity system is vulnerable to groundwater conservation policy. This paper examines strategies for adapting to long-term groundwater constraints in Saudi Arabia's freshwater and electricity supply sectors with an integrated modeling framework. The approach combines electricity and freshwater supply planning models across provinces to provide an improved representation of coupled infrastructure systems. The tool is applied to study the interaction between policy aimed at a complete phase-out of nonrenewable groundwater extraction and concurrent policy aimed at achieving deep reductions in electricity sector carbon emissions. We find that transitioning away from nonrenewable groundwater use by the year 2050 could increase electricity demand by more than 40% relative to 2010 conditions, and require investments similar to strategies aimed at transitioning away from fossil fuels in the electricity sector. Higher electricity demands under groundwater constraints reduce flexibility of supply side options in the electricity sector to limit carbon emissions, making it more expensive to fulfill climate sustainability objectives. The results of this analysis underscore the importance of integrated long-term planning approaches for Saudi Arabia's electricity and freshwater supply systems.
NASA Astrophysics Data System (ADS)
Zhao, F.; Frieler, K.; Warszawski, L.; Lange, S.; Schewe, J.; Reyer, C.; Ostberg, S.; Piontek, F.; Betts, R. A.; Burke, E.; Ciais, P.; Deryng, D.; Ebi, K. L.; Emanuel, K.; Elliott, J. W.; Galbraith, E. D.; Gosling, S.; Hickler, T.; Hinkel, J.; Jones, C.; Krysanova, V.; Lotze-Campen, H.; Mouratiadou, I.; Popp, A.; Tian, H.; Tittensor, D.; Vautard, R.; van Vliet, M. T. H.; Eddy, T.; Hattermann, F.; Huber, V.; Mengel, M.; Stevanovic, M.; Kirsten, T.; Mueller Schmied, H.; Denvil, S.; Halladay, K.; Suzuki, T.; Lotze, H. K.
2016-12-01
In Paris, France, December 2015 the Conference of Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the IPCC to provide a "special report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016 the IPCC panel accepted the invitation. Here we describe the model simulations planned within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to address the request by providing tailored cross-sectoral consistent impacts projections. The protocol is designed to allow for 1) a separation of the impacts of the historical warming starting from pre-industrial conditions from other human drivers such as historical land use changes (based on pre-industrial and historical impact model simulations), 2) a quantification of the effects of an additional warming to 1.5°C including a potential overshoot and long term effects up to 2300 in comparison to a no-mitigation scenario (based on the low emissions Representative Concentration Pathway RCP2.6 and a no-mitigation scenario RCP6.0) keeping socio-economic conditions fixed at year 2005 levels, and 3) an assessment of the climate effects based on the same climate scenarios but accounting for parallel changes in socio-economic conditions following the middle of the road Shared Socioeconomic Pathway (SSP2) and differential bio-energy requirements associated with the transformation of the energy system to reach RCP2.6 compared to RCP6.0. To provide the scientific basis for an aggregation of impacts across sectors and an analysis of cross-sectoral interactions potentially damping or amplifying sectoral impacts the protocol is designed to provide consistent impacts projections across a range of impact models from different sectors (global and regional hydrological models, global gridded crop models, global vegetation models, regional forestry models, global and regional marine ecosystem and fisheries models, global and regional coastal infrastructure models, energy models, health models, and agro-economic models).
NASA Astrophysics Data System (ADS)
Frieler, Katja; Warszawski, Lila; Zhao, Fang
2017-04-01
In Paris, France, December 2015 the Conference of Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the IPCC to provide a "special report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016 the IPCC panel accepted the invitation. Here we describe the model simulations planned within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to address the request by providing tailored cross-sectoral consistent impacts projections. The protocol is designed to allow for 1) a separation of the impacts of the historical warming starting from pre-industrial conditions from other human drivers such as historical land use changes (based on pre-industrial and historical impact model simulations), 2) a quantification of the effects of an additional warming to 1.5°C including a potential overshoot and long term effects up to 2300 in comparison to a no-mitigation scenario (based on the low emissions Representative Concentration Pathway RCP2.6 and a no-mitigation scenario RCP6.0) keeping socio-economic conditions fixed at year 2005 levels, and 3) an assessment of the climate effects based on the same climate scenarios but accounting for parallel changes in socio-economic conditions following the middle of the road Shared Socioeconomic Pathway (SSP2) and differential bio-energy requirements associated with the transformation of the energy system to reach RCP2.6 compared to RCP6.0. To provide the scientific basis for an aggregation of impacts across sectors and an analysis of cross-sectoral interactions potentially damping or amplifying sectoral impacts the protocol is designed to provide consistent impacts projections across a range of impact models from different sectors (global and regional hydrological models, global gridded crop models, global vegetation models, regional forestry models, global and regional marine ecosystem and fisheries models, global and regional coastal infrastructure models, energy models, health models, and agro-economic models).
Global health and climate change: moving from denial and catastrophic fatalism to positive action.
Costello, Anthony; Maslin, Mark; Montgomery, Hugh; Johnson, Anne M; Ekins, Paul
2011-05-13
The health effects of climate change have had relatively little attention from climate scientists and governments. Climate change will be a major threat to population health in the current century through its potential effects on communicable disease, heat stress, food and water security, extreme weather events, vulnerable shelter and population migration. This paper addresses three health-sector strategies to manage the health effects of climate change-promotion of mitigation, tackling the pathways that lead to ill-health and strengthening health systems. Mitigation of greenhouse gas (GHG) emissions is affordable, and low-carbon technologies are available now or will be in the near future. Pathways to ill-health can be managed through better information, poverty reduction, technological innovation, social and cultural change and greater coordination of national and international institutions. Strengthening health systems requires increased investment in order to provide effective public health responses to climate-induced threats to health, equitable treatment of illness, promotion of low-carbon lifestyles and renewable energy solutions within health facilities. Mitigation and adaptation strategies will produce substantial benefits for health, such as reductions in obesity and heart disease, diabetes, stress and depression, pneumonia and asthma, as well as potential cost savings within the health sector. The case for mitigating climate change by reducing GHGs is overwhelming. The need to build population resilience to the global health threat from already unavoidable climate change is real and urgent. Action must not be delayed by contrarians, nor by catastrophic fatalists who say it is all too late. © 2011 Royal Society
NASA Technical Reports Server (NTRS)
Krisko, Paula H.; Opiela, John N.; Liou, Jer-Chyi; Anz-Meador, Phillip D.; Theall, Jeffrey R.
1999-01-01
The latest update of the NASA orbital debris environment model, EVOLVE 4.0, has been used to study the effect of various proposed debris mitigation measures, including the NASA 25-year guideline. EVOLVE 4.0, which includes updates of the NASA breakup, solar activity, and the orbit propagator models, a GEO analysis option, and non-fragmentation debris source models, allows for the statistical modeling and predicted growth of the particle population >1 mm in characteristic length in LEO and GEO orbits. The initial implementation of this &odel has been to study the sensitivity of the overall LEO debris environment to mitigation measures designed to limit the lifetime of intact objects in LEO orbits. The mitigation measures test matrix for this study included several commonly accepted testing schemes, i.e., the variance of the maximum LEO lifetime from 10 to 50 years, the date of the initial implementation of this policy, the shut off of all explosions at some specified date, and the inclusion of disposal orbits. All are timely studies in that all scenarios have been suggested by researchers and satellite operators as options for the removal of debris from LEO orbits.
Improved mitigation of fugitive emissions of hazardous air pollutants (HAPs), volatile organic compounds (VOCs), and greenhouse gas (GHG) emissions is an important emerging topic in many industrial sectors. Efficacious leak detection and repair (LDAR) programs of the future yiel...
Community-based programs for assessing and mitigating nvironmental risks represent a challenge to participants because each brings a different level of understanding of the issues affecting the community. These programs often require the collaboration of several community sectors...
Mechanistic modeling & effectiveness of buffer strips for pesticide regulatory frameworks
USDA-ARS?s Scientific Manuscript database
Vegetative Filter Strips (VFS) have been used as an effective conservation practice in agricultural areas for controlling and mitigate the effect of sediment, nutrients and pesticides loads into water bodies. In addition to the agricultural sector, another important use of VFS for controlling plague...
REPORT TO CONGRESS ON BLACK CARBON
The Report to Congress on Black Carbon describes domestic and international sources of black carbon emissions, and summarizes available scientific information on the climate effects of black carbon. Further, the Report evaluates available black carbon mitigation options and thei...
The use of direct-fed microbials for mitigation of ruminant methane emissions: a review.
Jeyanathan, J; Martin, C; Morgavi, D P
2014-02-01
Concerns about the environmental effect and the economic burden of methane (CH4) emissions from ruminants are driving the search for ways to mitigate rumen methanogenesis. The use of direct-fed microbials (DFM) is one possible option to decrease CH4 emission from ruminants. Direct-fed microbials are already used in ruminants mainly to increase productivity and to improve health, and are readily accepted by producers and consumers alike. However, studies on the use of DFM as rumen CH4 mitigants are scarce. A few studies using Saccharomyces cerevisiae have shown a CH4-decreasing effect but, to date, there has not been a systematic exploration of DFM as modulators of rumen methanogenesis. In this review, we explored biochemical pathways competing with methanogenesis that, potentially, could be modulated by the use of DFM. Pathways involving the redirection of H2 away from methanogenesis and pathways producing less H2 during feed fermentation are the preferred options. Propionate formation is an example of the latter option that in addition to decrease CH4 formation increases the retention of energy from the diet. Homoacetogenesis is a pathway using H2 to produce acetate, however up to now no acetogen has been shown to efficiently compete with methanogens in the rumen. Nitrate and sulphate reduction are pathways competing with methanogenesis, but the availability of these substances in the rumen is limited. Although there were studies using nitrate and sulphate as chemical additives, use of DFM for improving these processes and decrease the accumulation of toxic metabolites needs to be explored more. There are some other pathways such as methanotrophy and capnophily or modes of action such as inhibition of methanogens that theoretically could be provided by DFM and affect methanogenesis. We conclude that DFM is a promising alternative for rumen methane mitigation that should be further explored for their practical usage.
Santalla, Estela; Córdoba, Verónica; Blanco, Gabriel
2013-08-01
The objective of this work was the application of 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for the estimation of methane and nitrous oxide emissions from the waste sector in Argentina as a preliminary exercise for greenhouse gas (GHG) inventory development and to compare with previous inventories based on 1996 IPCC Guidelines. Emissions projections to 2030 were evaluated under two scenarios--business as usual (BAU), and mitigation--and the calculations were done by using the ad hoc developed IPCC software. According to local activity data, in the business-as-usual scenario, methane emissions from solid waste disposal will increase by 73% by 2030 with respect to the emissions of year 2000. In the mitigation scenario, based on the recorded trend of methane captured in landfills, a decrease of 50% from the BAU scenario should be achieved by 2030. In the BAU scenario, GHG emissions from domestic wastewater will increase 63% from 2000 to 2030. Methane emissions from industrial wastewater, calculated from activity data of dairy, swine, slaughterhouse, citric, sugar, and wine sectors, will increase by 58% from 2000 to 2030 while methane emissions from domestic will increase 74% in the same period. Results show that GHG emissions calculated from 2006 IPCC Guidelines resulted in lower levels than those reported in previous national inventories for solid waste disposal and domestic wastewater categories, while levels were 18% higher for industrial wastewater. The implementation of the 2006 IPCC Guidelines for National Greenhouse Inventories is now considering by the UNFCCC for non-Annex I countries in order to enhance the compilation of inventories based on comparable good practice methods. This work constitutes the first GHG emissions estimation from the waste sector of Argentina applying the 2006 IPCC Guidelines and the ad doc developed software. It will contribute to identifying the main differences between the models applied in the estimation of methane emissions on the key categories of waste emission sources and to comparing results with previous inventories based on 1996 IPCC Guidelines.
Assessment of GHG mitigation and CDM technology in urban transport sector of Chandigarh, India.
Bhargava, Nitin; Gurjar, Bhola Ram; Mor, Suman; Ravindra, Khaiwal
2018-01-01
The increase in number of vehicles in metropolitan cities has resulted in increase of greenhouse gas (GHG) emissions in urban environment. In this study, emission load of GHGs (CO, N 2 O, CO 2 ) from Chandigarh road transport sector has been estimated using Vehicular Air Pollution Inventory (VAPI) model, which uses emission factors prevalent in Indian cities. Contribution of 2-wheelers (2-w), 3-wheelers (3-w), cars, buses, and heavy commercial vehicles (HCVs) to CO, N 2 O, CO 2 , and total GHG emissions was calculated. Potential for GHG mitigation through clean development mechanism (CDM) in transport sector of Chandigarh under two scenarios, i.e., business as usual (BAU) and best estimate scenario (BES) using VAPI model, has been explored. A major contribution of GHG load (~ 50%) in Chandigarh was from four-wheelers until 2011; however, it shows a declining trend after 2011 until 2020. The estimated GHG emission from motor vehicles in Chandigarh has increased more than two times from 1065 Gg in 2005 to 2486 Gg by 2011 and is expected to increase to 4014 Gg by 2020 under BAU scenario. Under BES scenario, 30% of private transport has been transformed to public transport; GHG load was possibly reduced by 520 Gg. An increase of 173 Gg in GHGs load is projected from additional scenario (ADS) in Chandigarh city if all the diesel buses are transformed to CNG buses by 2020. Current study also offers potential for other cities to plan better GHG reduction strategies in transport sector to reduce their climate change impacts.
Toward Identifying Needed Investments in Modeling and Simulation Tools for NEO Deflection Planning
NASA Technical Reports Server (NTRS)
Adams, Robert B.
2009-01-01
Its time: a) To bring planetary scientists, deflection system investigators and vehicle designers together on the characterization/mitigation problem. b) To develop a comprehensive trade space of options. c) To trade options under a common set of assumptions and see what comparisons on effectiveness can be made. d) To explore the synergy that can be had with proposed scientific and exploration architectures while interest in NEO's are at an all time high.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Sbroiavacca, Nicolás; Nadal, Gustavo; Lallana, Francisco
Here in this paper the LEAP, TIAM-ECN, and GCAM models were applied to evaluate the impact of a variety of climate change control policies (including carbon pricing and emission constraints relative to a base year) on primary energy consumption, final energy consumption, electricity sector development, and CO 2 emission savings of the energy sector in Argentina over the 2010-2050 period. The LEAP model results indicate that if Argentina fully implements the most feasible mitigation measures currently under consideration by official bodies and key academic institutions on energy supply and demand, such as the ProBiomass program, a cumulative incremental economic costmore » of 22.8 billion US$(2005) to 2050 is expected, resulting in a 16% reduction in GHG emissions compared to a business-as-usual scenario. These measures also bring economic co-benefits, such as a reduction of energy imports improving the balance of trade. A Low CO 2 price scenario in LEAP results in the replacement of coal by nuclear and wind energy in electricity expansion. A High CO 2 price leverages additional investments in hydropower. An emission cap scenario (2050 emissions 20% lower than 2010 emissions) is feasible by including such measures as CCS and Bio CCS, but at a significant cost. By way of cross-model comparison with the TIAM-ECN and GCAM global integrated assessment models, significant variation in projected emissions reductions in the carbon price scenarios was observed, which illustrates the inherent uncertainties associated with such long-term projections. These models predict approximately 37% and 94% reductions under the High CO 2 price scenario, respectively. By comparison, the LEAP model, using an approach based on the assessment of a limited set of mitigation options, predicts a 11.3% reduction under the ‘high’ carbon tax. The main reasons for this difference are differences in assumptions about technology cost and availability, CO 2 storage capacity, and the ability to import bioenergy. In terms of technology pathways, the models agree that fossil fuels, in particular natural gas, will remain an important part of the electricity mix in the core baseline scenario. Finally, according to the models there is agreement that the introduction of a carbon price will lead to a decline in absolute and relative shares of aggregate fossil fuel generation. However, predictions vary as to the extent to which coal, nuclear and renewable energy play a role.« less
NASA Astrophysics Data System (ADS)
Solheim, Anders; Time, Berit; Kvande, Tore; Sivertsen, Edvard; Cepeda, Jose; Lappegard Hauge, Åshild; Bygballe, Lena; Almås, Anders-Johan
2016-04-01
Klima 2050 - Risk reduction through climate adaptation of buildings and infrastructure is a Centre for Research based Innovation (SFI), funded jointly by the Research Council of Norway (RCN) and the partners of the centre. The aim of Klima 2050 is to reduce the societal risks associated with climate changes, including enhanced precipitation and flood water exposure within the built environment. The Centre will strengthen companies' innovation capacity through a focus on long-term research. It is also a clear objective to facilitate close cooperation between Research & Development, performing companies, public entities, and prominent research groups. Emphasis will be placed on development of moisture-resilient buildings, storm-water management, blue-green solutions, mitigation measures for water-triggered landslides, socio-economic incentives and decision-making processes. Both extreme weather and gradual climatic changes will be addressed. The Centre consists of a consortium of 18 partners from three sectors: industry, public entities and research/education organizations. The partners from the industry/private sector include a variety of companies from the building industry. The public entities comprise the most important infrastructure owners in Norway (public roads, railroads, buildings, airports), as well as the directorate for water and energy. The research and education partners are SINTEF Building and Infrastructure, the Norwegian Business School, the Norwegian University of Science and Technology, the Norwegian Meteorological Institute, and the Norwegian Geotechnical Institute. This contribution presents the main research plans and activities of this Centre, which was started in 2015 and will run for 8 years, until 2023. The presentation also includes options for international cooperation in the Centre via PhD and postdoctoral positions, MSc projects and guest-researcher stays with Klima 2050 partners.
Downs, Shauna M; Thow, Anne-Marie; Ghosh-Jerath, Suparna; Leeder, Stephen R
2015-05-01
The World Health Organization recommends replacement of trans fat with polyunsaturated fat to reduce cardiovascular disease risk. Although several high-income countries have been successful in reducing trans fat in the food supply, low- and middle-income countries such as India may face additional contextual challenges such as the large informal sector, lack of consumer awareness, less enforcement capacity and low availability and affordability of healthier unsaturated fats. The objective of this study was to examine the feasibility and acceptability of multisectoral policy options aimed at supporting trans fat reduction and its replacement with polyunsaturated fats in India. Multisectoral policy options examined in this study were identified using food supply chain analysis. Semi-structured interviews (n = 17) were conducted with key informants from agriculture, trade, finance, retail, industry, food standards, non-governmental organizations and the health professions to gain their views on the feasibility and acceptability of the policy options. Purposive sampling was used to identify key informants. Data were coded and organized based on key themes. There was support for policies aimed at improving the quality of seeds, supporting farmer co-operatives and developing affordable farming equipment suited to smallholders to improve the production of healthier oils. Increasing the role of the private sector to improve links among producers, processors and retailers may help to streamline the fats supply chain in India. Blending healthier oils with oils high in saturated fat, which are currently readily available, could help to improve the quality of fat in the short term. Improving consumer awareness through mass media campaigns and improved labelling may help increase consumer demand for healthier products. Reorienting agricultural policies to support production of healthier oils will help increase their uptake by industry. Policy coherence across sectors will be critical to reduce trans fat intakes and could be improved by increasing engagement among researchers, the private sector and government. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2014; all rights reserved.
Stevanović, Miodrag; Popp, Alexander; Bodirsky, Benjamin Leon; Humpenöder, Florian; Müller, Christoph; Weindl, Isabelle; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Kreidenweis, Ulrich; Rolinski, Susanne; Biewald, Anne; Wang, Xiaoxi
2017-01-03
The land use sector of agriculture, forestry, and other land use (AFOLU) plays a central role in ambitious climate change mitigation efforts. Yet, mitigation policies in agriculture may be in conflict with food security related targets. Using a global agro-economic model, we analyze the impacts on food prices under mitigation policies targeting either incentives for producers (e.g., through taxes) or consumer preferences (e.g., through education programs). Despite having a similar reduction potential of 43-44% in 2100, the two types of policy instruments result in opposite outcomes for food prices. Incentive-based mitigation, such as protecting carbon-rich forests or adopting low-emission production techniques, increase land scarcity and production costs and thereby food prices. Preference-based mitigation, such as reduced household waste or lower consumption of animal-based products, decreases land scarcity, prevents emissions leakage, and concentrates production on the most productive sites and consequently lowers food prices. Whereas agricultural emissions are further abated in the combination of these mitigation measures, the synergy of strategies fails to substantially lower food prices. Additionally, we demonstrate that the efficiency of agricultural emission abatement is stable across a range of greenhouse-gas (GHG) tax levels, while resulting food prices exhibit a disproportionally larger spread.
Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: A System Analysis.
Wang, Yue; Dong, Hongmin; Zhu, Zhiping; Gerber, Pierre J; Xin, Hongwei; Smith, Pete; Opio, Carolyn; Steinfeld, Henning; Chadwick, Dave
2017-04-18
Gaseous emissions from animal manure are considerable contributor to global ammonia (NH 3 ) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH 3 , methane (CH 4 ), and nitrous oxide (N 2 O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH 3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH 3 emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH 3 emissions is equivalent to 40% of the total NH 3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.
Land Use and Management Change in the U.S. with Adaptation and Mitigation under Climate Change
NASA Astrophysics Data System (ADS)
Mu, J. E.; McCarl, B.
2011-12-01
Land use and management change interact with climate change. Land uses such as forestry, cropping and grazing depend on specific ecosystems that will be affected by climate change. Furthermore, this change will not be uniform across land uses or regions. Consequently, land use productivity will change as will the mix of land uses (Mendelsohn and Dinar 2009). On the other hand, land use has been a major contributor to greenhouse gas emissions (IPCC 2007). Therefore, research focusing on land use change, climate change and greenhouse gas mitigation should consider the interaction between these effects. The research to be reported in this presentation investigates how agricultural and forestry land use and management decisions change across the coterminous U.S. under climate change with and without adaptation plus how a carbon price policy influences decisions, mitigates GHG emissions and alters carbon sequestration. Our approach is to simulate behavior under climate scenarios by 2030 using data from alternative two climate and two vegetation models while allowing for adaptive responses and imposing carbon prices. To do this, we use the Forest and Agricultural Optimization model with Greenhouse Gases (FASOMGHG) (Adams et al. 2005). In total, 16 scenarios are considered involving climate change and GHG prices relative to a base case with no climate change and no adaptation or mitigation. After analyzing results across regions and sectors, our findings include: 1.More land is converted to forestry use and less land is used for agricultural purposes under both the adaptation and mitigation strategies. 2. Harvest rotation of hardwood is lengthened and harvest of softwood and hardwood are reduced when a carbon price is included. However, such management changes were insignificant when only the adaptation strategy is used. 3. The total GHG emissions from agricultural and forestry sector are increased by 2-3 millions tones CO2 equivalent under climate change and adaptation in the absence of GHG prices, but when those prices are introduced emissions are reduced by 6 millions tones CO2 equivalent. Similarly, under climate change, GHG prices stimulate a gain in carbon sequestration in the agricultural and forestry sectors. 4. Forest sector welfare and crop producer surplus is reduced under the adaption policy by a small amount, that is -0.02 and 0.14-0.2 billion dollars respectively. However, forest welfare, agricultural welfare, crop producer surplus and livestock producer surplus all increased, by 0.62, 0.67, 0.84 and 1.48 billion dollars, respectively when GHG prices are introduced. References Adams DM, Alig RJ, McCarl BA et al., 2005. FASOMGHG conceptual structure, and specification: documentation. Texas A&M University, (http://agecon2.tamu.edu/people/faculty/mccarl-bruce/papers/ 1212FASOMGHG_doc.pdf) IPCC (Intergovernmental Panel on Climate Change), 2007. Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge, UK Mendelsohn R, Dinar A. 2009. Land Use and Climate Change Interactions. Annual Review of Resource Economics. 1: 309-332.
NASA Astrophysics Data System (ADS)
Rudenko, I.; Bekchanov, M.; Djanibekov, U.; Lamers, J. P. A.
2013-11-01
Since independence from the former Soviet Union in 1991, Uzbekistan is challenged to consolidate its efforts and identify and introduce suitable agricultural policies to ease the threat of advancing land, water and ecosystem deterioration. On the one hand, irrigated cotton production provides income, food and energy sources for a large part of the rural households, which accounts for about 70% of the total population. On the other hand, this sector is considered a major driver of the on-going environmental degradation. Due to this dual nature, an integrated approach is needed that allows the analyses of the cotton sector at different stages and, consequently, deriving comprehensive options for action. The findings of the economic based value chain analysis and ecologically-oriented water footprint analysis on regional level were complemented with the findings of an input-output model on national level. This combination gave an added value for better-informed decision-making to reach land, water and ecosystem sustainability, compared to the individual results of each approach. The synergy of approaches pointed at various options for actions, such as to (i) promote the shift of water use from the high water consuming agricultural sector to a less water consuming cotton processing sector, (ii) increase overall water use efficiency by expanding the highly water productive industrial sectors and concurrently decreasing sectors with inefficient water use, and (iii) reduce agricultural water use by improving irrigation and conveyance efficiencies. The findings showed that increasing water use efficiency, manufacturing products with higher value added and raising water users' awareness of the real value of water are essential for providing water security in Uzbekistan.
Climate Change Education for Mitigation and Adaptation
ERIC Educational Resources Information Center
Anderson, Allison
2012-01-01
This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…
Global Climate Change Impacts in the United States
USDA-ARS?s Scientific Manuscript database
Climate change impacts on the United States vary by region and sector of the economy. Responses to climate change fall into two major categories. Mitigation focuses on the reducing emissions of heat-trapping gases or increasing their uptake to reduce the amount and speed of climate change. Adaptatio...
DOT National Transportation Integrated Search
2012-03-01
Currently, strategies are being examined with regard to their potential for mitigating the negative impacts of the surface transportation sector on the environment. The focus of this study is to evaluate an ITS (intelligent transportation systems)-ba...
Forest carbon calculators: a review for managers, policymakers, and educators
Harold S.J. Zald; Thomas A. Spies; Mark E. Harmon; Mark J. Twery
2016-01-01
Forests play a critical role sequestering atmospheric carbon dioxide, partially offsetting greenhouse gas emissions, and thereby mitigating climate change. Forest management, natural disturbances, and the fate of carbon in wood products strongly influence carbon sequestration and emissions in the forest sector. Government policies, carbon offset and trading programs,...
ERIC Educational Resources Information Center
Oleksiyenko, Anatoly
2015-01-01
Universities traverse epistemic, sectoral and geopolitical boundaries with increasing frequency, but along the way encounter challenges in mitigating unequal capacities, soaring costs and proprietary concerns. The bridging of disparate stakeholder interests requires an enormous effort, as research policies, institutional norms and organizational…
Improving Empirical Approaches to Estimating Local Greenhouse Gas Emissions
NASA Astrophysics Data System (ADS)
Blackhurst, M.; Azevedo, I. L.; Lattanzi, A.
2016-12-01
Evidence increasingly indicates our changing climate will have significant global impacts on public health, economies, and ecosystems. As a result, local governments have become increasingly interested in climate change mitigation. In the U.S., cities and counties representing nearly 15% of the domestic population plan to reduce 300 million metric tons of greenhouse gases over the next 40 years (or approximately 1 ton per capita). Local governments estimate greenhouse gas emissions to establish greenhouse gas mitigation goals and select supporting mitigation measures. However, current practices produce greenhouse gas estimates - also known as a "greenhouse gas inventory " - of empirical quality often insufficient for robust mitigation decision making. Namely, current mitigation planning uses sporadic, annual, and deterministic estimates disaggregated by broad end use sector, obscuring sources of emissions uncertainty, variability, and exogeneity that influence mitigation opportunities. As part of AGU's Thriving Earth Exchange, Ari Lattanzi of City of Pittsburgh, PA recently partnered with Dr. Inez Lima Azevedo (Carnegie Mellon University) and Dr. Michael Blackhurst (University of Pittsburgh) to improve the empirical approach to characterizing Pittsburgh's greenhouse gas emissions. The project will produce first-order estimates of the underlying sources of uncertainty, variability, and exogeneity influencing Pittsburgh's greenhouse gases and discuss implications of mitigation decision making. The results of the project will enable local governments to collect more robust greenhouse gas inventories to better support their mitigation goals and improve measurement and verification efforts.
The radiative forcing potential of different climate geoengineering options
NASA Astrophysics Data System (ADS)
Lenton, T. M.; Vaughan, N. E.
2009-01-01
Climate geoengineering proposals seek to rectify the Earth's current radiative imbalance, either by reducing the absorption of incoming solar (shortwave) radiation, or by removing CO2 from the atmosphere and transferring it to long-lived reservoirs, thus increasing outgoing longwave radiation. A fundamental criterion for evaluating geoengineering options is their climate cooling effectiveness, which we quantify here in terms of radiative forcing potential. We use a simple analytical approach, based on the global energy balance and pulse response functions for the decay of CO2 perturbations. This aids transparency compared to calculations with complex numerical models, but is not intended to be definitive. Already it reveals some significant errors in existing calculations, and it allows us to compare the relative effectiveness of a range of proposals. By 2050, only stratospheric aerosol injections or sunshades in space have the potential to cool the climate back toward its pre-industrial state, but some land carbon cycle geoengineering options are of comparable magnitude to mitigation "wedges". Strong mitigation, i.e. large reductions in CO2 emissions, combined with global-scale air capture and storage, afforestation, and bio-char production, i.e. enhanced CO2 sinks, might be able to bring CO2 back to its pre-industrial level by 2100, thus removing the need for other geoengineering. Alternatively, strong mitigation stabilising CO2 at 500 ppm, combined with geoengineered increases in the albedo of marine stratiform clouds, grasslands, croplands and human settlements might achieve a patchy cancellation of radiative forcing. Ocean fertilisation options are only worthwhile if sustained on a millennial timescale and phosphorus addition probably has greater long-term potential than iron or nitrogen fertilisation. Enhancing ocean upwelling or downwelling have trivial effects on any meaningful timescale. Our approach provides a common framework for the evaluation of climate geoengineering proposals, and our results should help inform the prioritisation of further research into them.
NASA Astrophysics Data System (ADS)
Reisinger, Andy; Ledgard, Stewart
2013-06-01
Agriculture emits a range of greenhouse gases. Greenhouse gas metrics allow emissions of different gases to be reported in a common unit called CO2-equivalent. This enables comparisons of the efficiency of different farms and production systems and of alternative mitigation strategies across all gases. The standard metric is the 100 year global warming potential (GWP), but alternative metrics have been proposed and could result in very different CO2-equivalent emissions, particularly for CH4. While significant effort has been made to reduce uncertainties in emissions estimates of individual gases, little effort has been spent on evaluating the implications of alternative metrics on overall agricultural emissions profiles and mitigation strategies. Here we assess, for a selection of New Zealand dairy farms, the effect of two alternative metrics (100 yr GWP and global temperature change potentials, GTP) on farm-scale emissions and apparent efficiency and cost effectiveness of alternative mitigation strategies. We find that alternative metrics significantly change the balance between CH4 and N2O; in some cases, alternative metrics even determine whether a specific management option would reduce or increase net farm-level emissions or emissions intensity. However, the relative ranking of different farms by profitability or emissions intensity, and the ranking of the most cost-effective mitigation options for each farm, are relatively unaffected by the metric. We conclude that alternative metrics would change the perceived significance of individual gases from agriculture and the overall cost to farmers if a price were applied to agricultural emissions, but the economically most effective response strategies are unaffected by the choice of metric.
Green noise wall construction and evaluation.
DOT National Transportation Integrated Search
2011-09-01
This report details the research performed under Phase I of a research study titled Green Noise Wall Construction and Evaluation that looks into the feasibility of using green noise barriers as a noise mitigation option in Ohio. This phase incl...
Integrated Analysis of Greenhouse Gas Mitigation Options and Related Impacts
Increased concerns over air pollution (combined with detrimental health effects) and climate change have called for more stringent emission reduction strategies for criteria air pollutants and greenhouse gas emissions. However, stringent regulatory policies can possibly have a...
USDA-EPA Collaborative Ammonia Research
In 2014, a work group was formed between USDA and EPA to facilitate information exchange on ammonia emissions from agriculture, air quality impacts and emission mitigation options and to identify opportunities for collaboration. This document provides background on the work grou...
GHG Mitigation Options Database (GMOD) and Analysis Tool
There is a growing consensus among scientists, agencies, and nonprofit organizations that the primary cause of climate change is anthropogenic (resulting from human activity) greenhouse gas (GHG) emissions (Figueroa et al., 2008). Given the strengthening science behind the human ...
NASA Astrophysics Data System (ADS)
Alderman, Rachael; Hobday, Alistair J.
2017-06-01
Conservation of marine species typically focuses on monitoring and mitigating demonstrated stressors where possible. Evidence is accumulating that some species will be negatively affected in the future by climate change and that reduction of existing stressors may not be sufficient to offset these impacts. Recent work suggests the shy albatross (Thalassarche cauta) will be adversely affected by projected changes in environmental conditions under plausible climate change scenarios. Furthermore, modelling shows that elimination of the principal present-day threat to albatrosses, fisheries bycatch, an achievable and critical priority, may not be sufficient to reverse projected population declines due to climate impacts, which cannot be directly eliminated. Here, a case study is presented in which a range of intervention options, in preparation for predicted climate change impacts, are identified and evaluated. A suite of 24 plausible climate adaptation options is first assessed using a semi-quantitative cost-benefit-risk tool, leading to a relative ranking of actions. Of these options, increasing chick survival via reduction of disease prevalence through control of vectors, was selected for field trials. Avian insecticide was applied to chicks' mid-way through their development and the effect on subsequent survival was evaluated. Survival of treated chicks after six weeks was significantly higher (92.7%) than those in control areas (82.1%). This approach shows that options to enhance albatross populations exist and we argue that testing interventions prior to serious impacts can formalise institutional processes and allow refinement of actions that offer some chance of mitigating the impacts of climate change on iconic marine species.
NASA Astrophysics Data System (ADS)
Jakariya, M.; Bhattacharya, P.; Bromssen, M. V.
2008-05-01
Access to safe drinking water is a basic human right. Several millions of people, mainly in developing countries are affected by arsenic in drinking water and the global impact now makes it a top priority water quality issue. A wide gap between the number of exposed people and the pace of mitigation programmes in rural areas of developing countries is the main problem in providing safe drinking water. The main challenge is to develop a sustainable mitigation option that rural and disadvantaged people can adopt and implement themselves to overcome possible public heath hazards. During the recent years, new approaches have emerged in Bangladesh, primarily emerging out of people's own initiative. The local drillers target presumed safe aquifers on the basis of colour and texture of the sediments. A recent study by our research group revealed a distinct correlation between the colour characteristics of the sediments and the groundwater redox conditions. The coupling between the colour of sediments and the redox characteristics of groundwater may thus be used as a tool to assess the risk for As mobilization from the aquifers. The study showed that it is possible to assess the relative risk of high concentrations of As in aquifers if the colour characteristics of the sediments are known and thus, local drillers may target safe aquifers. For validating the sustainability of this mitigation option geological, hydrogeological and microbiological investigations are needed. The sustainability of the aquifers needs to be assessed by combining results from various field and laboratory investigations and by running predictive models. There is also a need to raise the awareness and thereby create a platform for motivating the local drillers to be educated in installing safe tubewells. Awareness raising and community mobilisation are two top priorities for implementing a sustainable safe water project in rural village areas. Significant preparation, attention, and focus must be given to the human resource development stage of any project implementation. Local drillers need to be trained on how to handle and disseminate the invented method of installing safe tube wells. Capacity of the local level stakeholders and end users must be improved by providing training and conducting awareness campaigns. Based on the experiences and multidisciplinary research, Water Safety Plans needs to be formulated as well as adopted for long term monitoring and management of implemented mitigation options.
NASA Astrophysics Data System (ADS)
Kumar, Vikas; Schuhmacher, Marta
2016-04-01
Water-Energy-Land (WEL) Nexus management is one of those complex decision problems where holistic approach to supply-demand management considering different criteria would be valuable. However, multi-criteria decision making with diverse indicators measured on different scales and uncertainty levels is difficult to solve. On the other hand, climate adaptation and mitigation need to be integrated, and resource sensitive regions like Mediterranean provide ample opportunities towards that end. While the water sector plays a key role in climate adaptation, mitigation focuses on the energy and agriculture sector. Recent studies on the so-called WEL nexus confirm the potential synergies to be derived from mainstreaming climate adaptation in the water sector, while simultaneously addressing opportunities for co-management with energy (and also land use). Objective of this paper is to develop scenarios for the future imbalances in water & energy supply and demand for a water stressed Mediterranean area of Northern Spain (Catalonia) and to test the scenario based climate adaptation & mitigation strategy for WEL management policies. Resource sensitive area of Catalonia presents an interesting nexus problem to study highly stressed water demand scenario (representing all major demand sectors), very heterogeneous land use including intensive agriculture to diversified urban and industrial uses, and mixed energy supply including hydro, wind, gas turbine to nuclear energy. Different energy sectors have different water and land requirements. Inter-river basin water transfer is another factor which is considered for this area. The water-energy link is multifaceted. Energy production can affect water quality, while energy is used in water treatment and to reduce pollution. Similarly, hydropower - producing energy from water - and desalination - producing freshwater using energy - both play important role in economic growth by supplying large and secure amounts of 'green' energy or water where it is a scarce resource. Linkage of water & Energy to the land has been established through irrigated agriculture which has seen an increasing trend in the case study area. A detail scenario planning for regional water-energy demand and supply in conjunction with different climate change and economic growth scenarios are considered. For each future scenario of climate change, the goal is to obtain a ranking of a set of possible actions with regards to different types of indicators (costs, environmental etc.). The analytical method used is based on outranking models for decision aid with hierarchical structures of criteria and ranking alternatives using partial preorders based on pairwise preference relations. The proposed method has several advantages such as the management of heterogeneous scales of measurement without requiring any artificial transformation and the management of uncertainty by means of comparisons at a qualitative level in terms of the decision maker preferences. Result shows that such an integrated ("nexus") approach is likely to build resilience and reduces vulnerability to the combination of pressures acting upon the Mediterranean region's water systems, including climate-related shocks.
Nutritional and host effects on methanogenesis in the grazing ruminant.
Clark, H
2013-03-01
Concentrations of methane (CH(4)) in the atmosphere have almost doubled since the mid 1700s, and it is estimated that ~30% of the global warming experienced by the planet in the last century and a half can be attributed to CH(4). Between 25% and 40% of anthropogenic CH(4), emissions are estimated to arise from livestock farming. Mitigating absolute emissions from livestock is extremely challenging technically and is made more difficult because of the need to increase food production to meet the demands of a burgeoning world population. Opportunities for manipulating the diet of intensively managed ruminant to reduce absolute CH(4) exist, but in grazing livestock the opportunities are constrained practically and economically. Mitigating emissions per unit of product is more tractable, especially in the short term. Although the formation of CH(4) is an anaerobic microbiological process, the host animal does seem to exert an influence, as animals differ in the quantity of CH(4) they emit when fed the same diet. The reasons for this are not yet clear, but evidence is accumulating that these differences are consistent and have a genetic basis. Exploiting these between animal differences by animal breeding is an attractive mitigation option as it is potentially applicable to all animals and is open to continuous improvement. However, identifying the desired phenotype poses severe practical constraints. Vaccinating the host animal to produce antibodies that can modulate the activities of the organisms responsible for CH(4) formation also presents a novel mitigation option.
El Haimar, Amine; Santos, Joost R
2014-03-01
Influenza pandemic is a serious disaster that can pose significant disruptions to the workforce and associated economic sectors. This article examines the impact of influenza pandemic on workforce availability within an interdependent set of economic sectors. We introduce a simulation model based on the dynamic input-output model to capture the propagation of pandemic consequences through the National Capital Region (NCR). The analysis conducted in this article is based on the 2009 H1N1 pandemic data. Two metrics were used to assess the impacts of the influenza pandemic on the economic sectors: (i) inoperability, which measures the percentage gap between the as-planned output and the actual output of a sector, and (ii) economic loss, which quantifies the associated monetary value of the degraded output. The inoperability and economic loss metrics generate two different rankings of the critical economic sectors. Results show that most of the critical sectors in terms of inoperability are sectors that are related to hospitals and health-care providers. On the other hand, most of the sectors that are critically ranked in terms of economic loss are sectors with significant total production outputs in the NCR such as federal government agencies. Therefore, policy recommendations relating to potential mitigation and recovery strategies should take into account the balance between the inoperability and economic loss metrics. © 2013 Society for Risk Analysis.
Preventing type 2 diabetes: Changing the food industry.
Popkin, Barry M; Kenan, W R
2016-06-01
Improving our global diet by working with the food industry is a fairly complex task. Previously the global food manufacturing companies and governments were the major players. However, matters have shifted rapidly so that food retailers, food manufacturers, the restaurant-food service sector, and agribusinesses are now the major players. The current modern system of packaged processed food has now penetrated the globe-rich and poor, rural and urban are all in reach of this food system. Consequently, working with this complex sector when possible and an array of governmental regulatory large-scale options to improve our diet have increased in importance. Taxation of unhealthy foods and beverages, marketing controls, and front of the package labeling are the primary current options. Evaluations of the impacts of both public and industry initiatives are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vrontisi, Zoi; Luderer, Gunnar; Saveyn, Bert; Keramidas, Kimon; Reis Lara, Aleluia; Baumstark, Lavinia; Bertram, Christoph; Sytze de Boer, Harmen; Drouet, Laurent; Fragkiadakis, Kostas; Fricko, Oliver; Fujimori, Shinichiro; Guivarch, Celine; Kitous, Alban; Krey, Volker; Kriegler, Elmar; Broin, Eoin Ó.; Paroussos, Leonidas; van Vuuren, Detlef
2018-04-01
The Paris Agreement is a milestone in international climate policy as it establishes a global mitigation framework towards 2030 and sets the ground for a potential 1.5 °C climate stabilization. To provide useful insights for the 2018 UNFCCC Talanoa facilitative dialogue, we use eight state-of-the-art climate-energy-economy models to assess the effectiveness of the Intended Nationally Determined Contributions (INDCs) in meeting high probability 1.5 and 2 °C stabilization goals. We estimate that the implementation of conditional INDCs in 2030 leaves an emissions gap from least cost 2 °C and 1.5 °C pathways for year 2030 equal to 15.6 (9.0–20.3) and 24.6 (18.5–29.0) GtCO2eq respectively. The immediate transition to a more efficient and low-carbon energy system is key to achieving the Paris goals. The decarbonization of the power supply sector delivers half of total CO2 emission reductions in all scenarios, primarily through high penetration of renewables and energy efficiency improvements. In combination with an increased electrification of final energy demand, low-carbon power supply is the main short-term abatement option. We find that the global macroeconomic cost of mitigation efforts does not reduce the 2020–2030 annual GDP growth rates in any model more than 0.1 percentage points in the INDC or 0.3 and 0.5 in the 2 °C and 1.5 °C scenarios respectively even without accounting for potential co-benefits and avoided climate damages. Accordingly, the median GDP reductions across all models in 2030 are 0.4%, 1.2% and 3.3% of reference GDP for each respective scenario. Costs go up with increasing mitigation efforts but a fragmented action, as implied by the INDCs, results in higher costs per unit of abated emissions. On a regional level, the cost distribution is different across scenarios while fossil fuel exporters see the highest GDP reductions in all INDC, 2 °C and 1.5 °C scenarios.
Wireless security in mobile health.
Osunmuyiwa, Olufolabi; Ulusoy, Ali Hakan
2012-12-01
Mobile health (m-health) is an extremely broad term that embraces mobile communication in the health sector and data packaging. The four broad categories of wireless networks are wireless personal area network, wireless metropolitan area network, wireless wide area network, and wireless local area network. Wireless local area network is the most notable of the wireless networking tools obtainable in the health sector. Transfer of delicate and critical information on radio frequencies should be secure, and the right to use must be meticulous. This article covers the business opportunities in m-health, threats faced by wireless networks in hospitals, and methods of mitigating these threats.
NASA Astrophysics Data System (ADS)
Moore, F. C.; Lobell, D. B.
2013-12-01
Agriculture is one of the economic sectors most exposed to climate change and estimating the sensitivity of food production to these changes is critical for determining the severity of climate change impacts and for informing both adaptation and mitigation policy. While climate change might have adverse effects in many areas, it has long been recognized that farmers have a suite of adaptation options at their disposal including, inter alia, changing planting date, varieties, crops, or the mix and quantity of inputs applied. These adaptations may significantly reduce the adverse impacts of climate change but the potential effectiveness of these options and the speed with which farmers will adopt them remain uncertain. We estimate the sensitivity of crop yields and farm profits in western Europe to climate change with and without the adoption of on-farm adaptations. We use cross-sectional variation across farms to define the long-run response function that includes adaptation and inter-annual variation within farms to define the short-run response function without adaptation. The difference between these can be interpreted as the potential for adaptation. We find that future warming will have a large adverse impact on wheat and barley yields and that adaptation will only be able to mitigate a small fraction of this. Maize, oilseed and sugarbeet yields are more modestly affected and adaptation is more effective for these crops. Farm profits could increase slightly under moderate amounts of warming if adaptations are adopted but will decline in the absence of adaptation. A decomposition of variance gives the relative importance of different sources of uncertainty in projections of climate change impacts. We find that in most cases uncertainty over future adaptation pathways (whether farmers will or will not adopt beneficial adaptations) is the most important source of uncertainty in projecting the effect of temperature changes on crop yields and farm profits. This source of uncertainty dominates both uncertainty over temperature projections (climate uncertainty) and uncertainty over how sensitive crops or profits are to changes in temperature (response uncertainty). Therefore, constraining how quickly farmers are likely to adapt will be essential for improving our understanding of how climate change will affect food production over the next few decades.
Conceptualizing an economically, legally, and politically viable active debris removal option
NASA Astrophysics Data System (ADS)
Emanuelli, M.; Federico, G.; Loughman, J.; Prasad, D.; Chow, T.; Rathnasabapathy, M.
2014-11-01
It has become increasingly clear in recent years that the issue of space debris, particularly in low-Earth orbit, can no longer be ignored or simply mitigated. Orbital debris currently threatens safe space flight for both satellites and humans aboard the International Space Station. Additionally, orbital debris might impact Earth upon re-entry, endangering human lives and damaging the environment with toxic materials. In summary, orbital debris seriously jeopardizes the future not only of human presence in space, but also of human safety on Earth. While international efforts to mitigate the current situation and limit the creation of new debris are useful, recent studies predicting debris evolution have indicated that these will not be enough to ensure humanity's access to and use of the near-Earth environment in the long-term. Rather, active debris removal (ADR) must be pursued if we are to continue benefiting from and conducting space activities. While the concept of ADR is not new, it has not yet been implemented. This is not just because of the technical feasibility of such a scheme, but also because of the host of economic, legal/regulatory, and political issues associated with debris remediation. The costs of ADR are not insignificant and, in today's restrictive fiscal climate, are unlikely/to be covered by any single actor. Similarly, ADR concepts bring up many unresolved questions about liability, the protection of proprietary information, safety, and standards. In addition, because of the dual use nature of ADR technologies, any venture will necessarily require political considerations. Despite the many unanswered questions surrounding ADR, it is an endeavor worth pursuing if we are to continue relying on space activities for a variety of critical daily needs and services. Moreover, we cannot ignore the environmental implications that an unsustainable use of space will imply for life on Earth in the long run. This paper aims to explore some of these challenges and propose an economically, politically, and legally viable ADR option. Much like waste management on Earth, cleaning up space junk will likely lie somewhere between a public good and a private sector service. An international, cooperative, public-private partnership concept can address many of these issues and be economically sustainable, while also driving the creation of a proper set of regulations, standards and best practices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tallis, Heather, E-mail: htallis@tnc.org; Kennedy, Christina M., E-mail: ckennedy@tnc.org; Ruckelshaus, Mary
Emerging development policies and lending standards call for consideration of ecosystem services when mitigating impacts from development, yet little guidance exists to inform this process. Here we propose a comprehensive framework for advancing both biodiversity and ecosystem service mitigation. We have clarified a means for choosing representative ecosystem service targets alongside biodiversity targets, identified servicesheds as a useful spatial unit for assessing ecosystem service avoidance, impact, and offset options, and discuss methods for consistent calculation of biodiversity and ecosystem service mitigation ratios. We emphasize the need to move away from area- and habitat-based assessment methods for both biodiversity and ecosystemmore » services towards functional assessments at landscape or seascape scales. Such comprehensive assessments more accurately reflect cumulative impacts and variation in environmental quality, social needs and value preferences. The integrated framework builds on the experience of biodiversity mitigation while addressing the unique opportunities and challenges presented by ecosystem service mitigation. These advances contribute to growing potential for economic development planning and execution that will minimize impacts on nature and maximize human wellbeing. - Highlights: • This is the first framework for biodiversity and ecosystem service mitigation. • Functional, landscape scale assessments are ideal for avoidance and offsets. • Servicesheds define the appropriate spatial extent for ecosystem service mitigation. • Mitigation ratios should be calculated consistently and based on standard factors. • Our framework meets the needs of integrated mitigation assessment requirements.« less
NASA Astrophysics Data System (ADS)
Sheffield, John; Obenschain, Stephen; Conover, David; Bajura, Rita; Greene, David; Brown, Marilyn; Boes, Eldon; McCarthy, Kathyrn; Christian, David; Dean, Stephen; Kulcinski, Gerald; Denholm, P. L.
2004-06-01
This paper summarizes the presentations and discussion at the Energy Options for the Future meeting held at the Naval Research Laboratory in March of 2004. The presentations covered the present status and future potential for coal, oil, natural gas, nuclear, wind, solar, geothermal, and biomass energy sources and the effect of measures for energy conservation. The longevity of current major energy sources, means for resolving or mitigating environmental issues, and the role to be played by yet to be deployed sources, like fusion, were major topics of presentation and discussion.
Climate change and agricultural risk management: the role of the family-farm characteristics
NASA Astrophysics Data System (ADS)
Quaranta, G.; Salvia, R.
2009-04-01
During recent years, water-related anomalies (drought, water scarcity, flood) have become a common occurrence in most areas and especially in the arid and semiarid regions of Mediterranean areas. There are evidences of increasing inter-annual variability, as increasing deviation from the long-term mean. This could be the main reason for the increasing incidence of drought, rather than any decline in long-term rainfall, also if a decrease of total amount of water is expected by the IPCC scenarios. Another reason for increasing drought and water scarcity conditions is growing demand for water needed by different productive sectors. These anomalies greatly increase the uncertainties of the agricultural sector affecting performance and management and leading to substantial augment in agricultural risk and destabilization of farm incomes. Agricultural adaptation to drought and climate change at the farm level as well as changes in activity level strongly depend on the technological potential (different varieties of crops, irrigation technologies); soil, water, and biological response; and the capability of farmers to detect changes and undertake any necessary actions as result of perception of the problem and capacity/willingness to react. Farm characteristics (size, technological level and other characteristics) and the social economic features of the family running those farms (number of components, age, education level, etc) act as important variables influencing, at farm level, the capacity and rate of adaptation/mitigation options implementation. The ability or inability to avoid/react from a risk could be interpreted as a social resilience of an area, deriving mainly from its socio-demographic features. The shift from a paradigm mainly focuses upon the physical agents in the natural or human-modified environment, which cause a threat to society, to a new approach where the social, economical and political conditions are overcoming and gaining importance in the incidence and distribution of natural events, constitutes the theoretical background of the emphasis posed on social agents. Innovative interpretative frameworks, derived from this paradigm, are necessary in order to reshape both management approaches and policy elaboration. Local authorities and local actors should increase awareness and have suitable and new tools to improve the management and to mitigate the risks impacts on agro-natural resources where the role of the social agents is explicitly acknowledged. Mitigation and adaptation strategies should be shaped mainly taking in account the end-users characteristics. The framework presented and discussed in this paper internalizes the social agents perspective recognizing that perception of the risks in the agricultural sector may affect the farmers compliance decision and the level of management practices undertaken. Therefore the intensity of management practices both structural and non-structural has captured in two participatory stages: a model of perception in the first stage and a model of adoption (compliance) and the level of adoption of management practices. In the first stage the factors that condition the farmer perception of the risk linked to water availability are examined. The factors considered are household-specific elements that influence diffusion of information, social capital, farm assets, labour force characteristics. The second stage is finalized to examine the factors that determine the rate of adoption. The methodology has been used in a pilot area of Southern Italy and it has demonstrated to be very effective in depicting farm behaviours definitely showing a great attitude to be utilized for policies ex-ante evaluation and rural policies formulation.
NASA Astrophysics Data System (ADS)
Brown, Casey; Carriquiry, Miguel
2007-11-01
This paper explores the performance of a system of economic instruments designed to facilitate the reduction of hydroclimatologic variability-induced impacts on stakeholders of shared water supply. The system is composed of bulk water option contracts between urban water suppliers and agricultural users and insurance indexed on reservoir inflows. The insurance is designed to cover the financial needs of the water supplier in situations where the option is likely to be exercised. Insurance provides the irregularly needed funds for exercising the water options. The combined option contract - reservoir index insurance system creates risk sharing between sectors that is currently lacking in many shared water situations. Contracts are designed for a shared agriculture - urban water system in Metro Manila, Philippines, using optimization and Monte Carlo analysis. Observed reservoir inflows are used to simulate contract performance. Results indicate the option - insurance design effectively smooths water supply costs of hydrologic variability for both agriculture and urban water.
Water conservation benefits of urban heat mitigation.
Vahmani, Pouya; Jones, Andrew D
2017-10-20
Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we use a suite of satellite-supported regional climate simulations in California to show that broad implementation of cool roofs, a heat mitigation strategy, not only results in significant cooling, but can also meaningfully decrease outdoor water consumption by reducing evaporative and irrigation water demands. Irrigation water consumption across the major metropolitan areas is reduced by up to 9% and irrigation water savings per capita range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings are found to be the highest in Los Angeles county, reaching about 83 million gallons per day. Cool roofs are a valuable solution for addressing the adaptation and mitigation challenges faced by multiple sectors in California.
Pain management and opioid risk mitigation in the military.
Sharpe Potter, Jennifer; Bebarta, Vikhyat S; Marino, Elise N; Ramos, Rosemarie G; Turner, Barbara J
2014-05-01
Opioid analgesics misuse is a significant military health concern recognized as a priority issue by military leadership. Opioids are among those most commonly prescribed medications in the military for pain management. The military has implemented opioid risk mitigation strategies, including the Sole Provider Program and the Controlled Drug Management Analysis and Reporting Tool, which are used to identify and monitor for risk and misuse. However, there are substantial opportunities to build on these existing systems to better ensure safer opioid prescribing and monitor for misuse. Opioid risk mitigation strategies implemented by the civilian sector include establishing clinical guidelines for opioid prescribing and prescription monitoring programs. These strategies may help to inform opioid risk mitigation in the military health system. Reducing the risk of opioid misuse and improving quality of care for our Warfighters is necessary. This must be done through evidence-based approaches with an investment in research to improve patient care and prevent opioid misuse as well as its sequelae. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
Water conservation benefits of urban heat mitigation
Vahmani, Pouya; Jones, Andrew D.
2017-10-20
Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we use a suite of satellite-supported regional climate simulations in California to show that broad implementation of cool roofs, a heat mitigation strategy, not only results in significant cooling, but can also meaningfully decrease outdoor water consumption by reducing evaporative and irrigation water demands. Irrigation water consumption across the major metropolitan areasmore » is reduced by up to 9% and irrigation water savings per capita range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings are found to be the highest in Los Angeles county, reaching about 83 million gallons per day. Cool roofs are a valuable solution for addressing the adaptation and mitigation challenges faced by multiple sectors in California.« less
Water conservation benefits of urban heat mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vahmani, Pouya; Jones, Andrew D.
Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we use a suite of satellite-supported regional climate simulations in California to show that broad implementation of cool roofs, a heat mitigation strategy, not only results in significant cooling, but can also meaningfully decrease outdoor water consumption by reducing evaporative and irrigation water demands. Irrigation water consumption across the major metropolitan areasmore » is reduced by up to 9% and irrigation water savings per capita range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings are found to be the highest in Los Angeles county, reaching about 83 million gallons per day. Cool roofs are a valuable solution for addressing the adaptation and mitigation challenges faced by multiple sectors in California.« less
Evaluation of treatment options for ASR-affected concrete : final report, December 11, 2009.
DOT National Transportation Integrated Search
2009-12-11
This research project was undertaken to evaluate the potential of using surface treatments including lithium nitrate, : sodium tartarate, siloxanes, silane, and boiled linseed oil to mitigate or slow the rate of concrete deterioration : associated wi...
SWALE RESEARCH AT NRMRL’S URBAN WATERSHED RESEARCH FACILITY
Swales are “engineered ditches” that provide stable routing for stormwater runoff. Swales are green infrastructure, a low-cost drainage option for highways, farms, industrial, and commercial areas. Beyond enhancing local aesthetics, swales mitigate the pollutants carried by the...
APPROACHES FOR DETERMINING SWALE PERFORMANCE FOR STORMWATER RUNOFF
Swales are “engineered vegetated ditches” that provide stable routing for stormwater runoff and a low-cost drainage option for highways, farms, industrial sites, and commercial areas. It is reported in the literature that swales mitigate runoff-carried pollutants, red...
A carbon footprint simulation model for the cork oak sector.
Demertzi, Martha; Paulo, Joana Amaral; Arroja, Luís; Dias, Ana Cláudia
2016-10-01
In the present study, a simulation model for the calculation of the carbon footprint of the cork oak sector (CCFM) is developed for the first time. A life cycle approach is adopted including the forest management, manufacturing, use and end-of-life stages. CCFM allows the user to insert the cork type used as raw material and its respective quantity and the distances in-between the various stages. The user can choose among different end-of-life destination options for the used cork products. The option of inserting different inputs, allows the use of the present simulation model for different cork oak systems, in different countries and with different conditions. CCFM allows the identification of the stages and products with the greatest carbon footprint and thus, a better management of the sector from an environmental perspective. The Portuguese cork oak sector is used as an application example of the model. The results obtained showed that the agglomeration industry is the hotspot for the carbon footprint of the cork sector mainly due to the production of the resins that are mixed with the cork granules for the production of agglomerated cork products. The consideration of the biogenic carbon emissions and sequestration of carbon at the forest in the carbon footprint, resulted to a great decrease of the sector's carbon footprint. Future actions for improvement are suggested in order to decrease the carbon footprint of the entire cork sector. It was found that by decreasing by 10% the emission factor of the agglomeration and transformation industries, substituting the transport trucks by more recent ones and by decreasing by 10% the cork products reaching the landfilling end-of-life destinations (while increasing the quantities reaching incineration and recycling), a decrease of the total CF (excluding the biogenic emissions and sequestration) of the entire cork industry by 10% can be achieved. Copyright © 2016 Elsevier B.V. All rights reserved.
Lydon, Patrick; Raubenheimer, Ticky; Arnot-Krüger, Michelle; Zaffran, Michel
2015-06-26
With few exceptions, immunization supply chains in developing countries continue to face chronic difficulties in providing uninterrupted availability of potent vaccines up to service delivery levels, and in the most efficient manner possible. As these countries struggle to keep pace with an ever growing number of vaccines, more and more Ministries of Health are considering options of engaging the private sector to manage vaccine storage, handling and distribution on their behalf. Despite this emerging trend, there is limited evidence on the benefits or challenges of this option to improve public supply chain performance for national immunization programmes. To bridge this knowledge gap, this study aims to shed light on the value proposition of outsourcing by documenting the specific experience of the Western Cape Province of South Africa. The methodology for this review rested on conducting two key supply chain assessments which allowed juxtaposing the performance of the government managed segments of the vaccine supply chain against those managed by the private sector. In particular, measures of effective vaccine management best practice and temperature control in the cold chain were analysed. In addition, the costs of engaging the private sector were analysed to get a better understanding of the economics underpinning outsourcing vaccine logistics. The results from this analysis confirmed some of the theoretical benefits of outsourcing to the private sector. Yet, if the experience in the Western Cape can be deemed a successful one, there are several policy and practice implications that developing countries should be mindful of when considering engaging the private sector. While outsourcing can help improve the performance of the vaccine supply chain, it has the potential to do the reverse if done incorrectly. The findings and lessons learnt from the Western Cape experience can serve as a step towards understanding the role of the private sector in immunization supply chain and logistics systems for developing countries. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
The Effects of Saltwater Intrusion to Flood Mitigation Project
NASA Astrophysics Data System (ADS)
Azida Abu Bakar, Azinoor; Khairudin Khalil, Muhammad
2018-03-01
The objective of this study is to determine the effects of saltwater intrusion to flood mitigation project located in the flood plains in the district of Muar, Johor. Based on the studies and designs carried out, one of the effective flood mitigation options identified is the Kampung Tanjung Olak bypass and Kampung Belemang bypass at the lower reaches of Sungai Muar. But, the construction of the Kampung Belemang and Tanjung Olak bypass, while speeding up flood discharges, may also increase saltwater intrusion during drought low flows. Establishing the dynamics of flooding, including replicating the existing situation and the performance with prospective flood mitigation interventions, is most effectively accomplished using computer-based modelling tools. The finding of this study shows that to overcome the problem, a barrage should be constructed at Sungai Muar to solve the saltwater intrusion and low yield problem of the river.
Global change - Geoengineering and space exploration
NASA Technical Reports Server (NTRS)
Jenkins, Lyle M.
1992-01-01
Geoengineering options and alternatives are proposed for mitigating the effects of global climate change and depletion of the ozone layer. Geoengineering options were discussed by the National Academy of Science Panel on the Policy Implications of Greenhouse Warming. Several of the ideas conveyed in their published report are space-based or depend on space systems for implementation. Among the geoengineering options using space that are discussed include the use of space power systems as an alternative to fossil fuels for generating electricity, the use of lunar He-3 to aid in the development of fusion energy, and the establishment of a lunar power system for solar energy conversion and electric power beaming back to earth. Other geoengineering options are discussed. They include the space-based modulation of hurricane forces and two space-based approaches in dealing with ozone layer depletion. The engineering challenges and policy implementation issues are discussed for these geongineering options.
2014-01-01
objectives. This report reviews the approaches used in the private sector and in government organizations for tackling Steps 2a and 2b of the work- force... unemployment rate). Separation rates may also reflect early retirement incentive packages offered by the company because of reduced staffing needs...depending on their objectives. Purpose This report provides a review of analytical approaches used in the pri- vate sector and in government organizations
Managing risk selection incentives in health sector reforms.
Puig-Junoy, J
1999-01-01
The object of the paper is to review theoretical and empirical contributions to the optimal management of risk selection incentives ('cream skimming') in health sector reforms. The trade-off between efficiency and risk selection is fostered in health sector reforms by the introduction of competitive mechanisms such as price competition or prospective payment systems. The effects of two main forms of competition in health sector reforms are observed when health insurance is mandatory: competition in the market for health insurance, and in the market for health services. Market and government failures contribute to the assessment of the different forms of risk selection employed by insurers and providers, as the effects of selection incentives on efficiency and their proposed remedies to reduce the impact of these perverse incentives. Two European (Netherlands and Spain) and two Latin American (Chile and Colombia) case studies of health sector reforms are examined in order to observe selection incentives, their effects on efficiency and costs in the health system, and regulation policies implemented in each country to mitigate incentives to 'cream skim' good risks.
Economic Drought Impact on Agriculture: analysis of all agricultural sectors affected
NASA Astrophysics Data System (ADS)
Gil, M.; Garrido, A.; Hernández-Mora, N.
2012-04-01
The analysis of drought impacts is essential to define efficient and sustainable management and mitigation. In this paper we present a detailed analysis of the impacts of the 2004-2008 drought in the agricultural sector in the Ebro river basin (Spain). An econometric model is applied in order to determine the magnitude of the economic loss attributable to water scarcity. Both the direct impacts of drought on agricultural productivity and the indirect impacts of drought on agricultural employment and agroindustry in the Ebro basin are evaluated. The econometric model measures losses in the economic value of irrigated and rainfed agricultural production, of agricultural employment and of Gross Value Added both from the agricultural sector and the agro-industrial sector. The explanatory variables include an index of water availability (reservoir storage levels for irrigated agriculture and accumulated rainfall for rainfed agriculture), a price index representative of the mix of crops grown in each region, and a time variable. The model allows for differentiating the impacts due to water scarcity from other sources of economic losses. Results show how the impacts diminish as we approach the macro-economic indicators from those directly dependent on water abstractions and precipitation. Sectors directly dependent on water are the most affected with identifiable economic losses resulting from the lack of water. From the management perspective implications of these findings are key to develop mitigation measures to reduce drought risk exposure. These results suggest that more open agricultural markets, and wider and more flexible procurement strategies of the agro-industry reduces the socio-economic exposure to drought cycles. This paper presents the results of research conducted under PREEMPT project (Policy relevant assessment of the socioeconomic effects of droughts and floods, ECHO - grant agreement # 070401/2010/579119/SUB/C4), which constitutes an effort to provide a comprehensive assessment of the socioeconomic impacts of the 2004-2008 drought in the Ebro river basin
Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from nat...
ERIC Educational Resources Information Center
Kim, Minkyun; Sharman, Raj; Cook-Cottone, Catherine P.; Rao, H. Raghav; Upadhyaya, Shambhu J.
2012-01-01
Emergency management systems are a critical factor in successful mitigation of natural and man-made disasters, facilitating responder decision making in complex situations. Based on socio-technical systems, have which four components (people, technology, structure and task), this study develops a research framework of factors affecting effective…
DOT National Transportation Integrated Search
1997-01-01
The advent of global markets elevates the role and importance of culture as a mitigating factor in the diffusion of knowledge and technology and in product and process innovation. This is especially true in the large commercial aircraft (LCA) sector ...
The Public Good in English Private School Governance
ERIC Educational Resources Information Center
Boyask, Ruth
2015-01-01
There exist some rare private schools that attempt to mitigate the anti-democratic qualities of the private schooling sector in England. This article reports on a study of private schools that aim to promote equality and participation through some aspects of their operations. It considers to what extent the governance structures within the schools…
Novel ultrasonic real-time scanner featuring servo controlled transducers displaying a sector image.
Matzuk, T; Skolnick, M L
1978-07-01
This paper describes a new real-time servo controlled sector scanner that produces high resolution images and has functionally programmable features similar to phased array systems, but possesses the simplicity of design and low cost best achievable in a mechanical sector scanner. The unique feature is the transducer head which contains a single moving part--the transducer--enclosed within a light-weight, hand held, and vibration free case. The frame rate, sector width, stop action angle, are all operator programmable. The frame rate can be varied from 12 to 30 frames s-1 and the sector width from 0 degrees to 60 degrees. Conversion from sector to time motion (T/M) modes are instant and two options are available, a freeze position high density T/M and a low density T/M obtainable simultaneously during sector visualization. Unusual electronic features are: automatic gain control, electronic recording of images on video tape in rf format, and ability to post-process images during video playback to extract T/M display and to change time gain control (tgc) and image size.
18 CFR 806.23 - Standards for water withdrawals.
Code of Federal Regulations, 2010 CFR
2010-04-01
... of groundwater or stream flow levels; rendering competing supplies unreliable; affecting other water..., at its own expense, an alternate water supply or other mitigating measures. (iii) Require the project... deficiencies, identify alternative water supply options, and support existing and proposed future withdrawals. ...
EPA'S PHOTOVOLTAIC DEMAND-SIDE MANAGEMENT COST-SHARED DEMONSTRATIONS
The paper discusses an investigation of how photovoltaics (PV) may be used as both a pollution-mitigating energy replacement for fossil fuels and a demand-side management (DSM) option to reduce peak electrical demands of commercial and residential buildings. leven electric utilit...
U.S. EPA'S PHOTOVOLTAIC DEMAND-SIDE MANAGEMENT PROJECT
The paper discusses an investigation of how photovoltaic (PV) may be used as both a pollution-mitigating energy replacement for fossil fuels and a demand-side management (DSM) option to reduce peak electrical demands of commercial and residential buildings. leven electric utiliti...
APPROACHES FOR DETERMINING SWALE PERFORMANCE FOR STORMWATER RUNOFF
Swales are “engineered vegetated ditches” that provide stable routing for stormwater runoff and a low-cost drainage option for highways, farms, industrial sites, and commercial areas. It is reported in the literature that swales mitigate runoff-carried pollutants, reduce runoff v...
APPROACHES FOR DETERMINING SWALE PERFORMANCE FOR STORMWATER RUNOFF - Wilmington, NC
Swales are “engineered vegetated ditches” that provide stable routing for stormwater runoff and a low-cost drainage option for highways, farms, industrial sites, and commercial areas. It is reported in the literature that swales mitigate runoff-carried pollutants, reduce runoff ...
A Complex Systems Approach to Energy Poverty in sub-Saharan Africa: Nigeria as a Case Study
NASA Astrophysics Data System (ADS)
Chidebell Emordi, Chukwunonso
Energy poverty is pervasive in sub-Saharan Africa. Nigeria, located in sub-Saharan West Africa, is the world's seventh largest oil exporting country and is a resource-rich nation. It however experiences the same levels of energy poverty as most of its neighboring countries. Attributing this paradox only to corruption or the "Dutch Disease", where one sector booms at the expense of other sectors of the economy, is simplistic and enervates attempts at reform. In addition, data on energy consumption is aggregated at the national level via estimates, disaggregated data is virtually non-existent. Finally, the wave of decentralization of vertically integrated national utilities sweeping the developing world has caught on in sub-Saharan Africa. However, little is known of the economic and social implications of these transitions within the unique socio-technical system of the region's electricity sector, especially as it applies to energy poverty. This dissertation proposes a complex systems approach to measuring and mitigating energy poverty in Nigeria due to its multi-dimensional nature. This is done via a three-fold approach: the first section of the study delves into causation by examining the governance institutions that create and perpetuate energy poverty; the next section proposes a context-specific minimum energy poverty line based on field data collected on energy consumption; and the paper concludes with an indicator-based transition management framework encompassing institutional, economic, social, and environmental themes of sustainable transition within the electricity sector. This work contributes to intellectual discourse on systems-based mitigation strategies for energy poverty that are widely applicable within the sub-Saharan region, as well as adds to the knowledge-base of decision-support tools for addressing energy poverty in its complexity.
Metal Dissipation and Inefficient Recycling Intensify Climate Forcing.
Ciacci, Luca; Harper, E M; Nassar, N T; Reck, Barbara K; Graedel, T E
2016-10-07
In the metals industry, recycling is commonly included among the most viable options for climate change mitigation, because using secondary (recycled) instead of primary sources in metal production carries both the potential for significant energy savings and for greenhouse gas emissions reduction. Secondary metal production is, however, limited by the relative quantity of scrap available at end-of-life for two reasons: long product lifespans during use delay the availability of the material for reuse and recycling; and end-of-life recycling rates are low, a result of inefficient collection, separation, and processing. For a few metals, additional losses exist in the form of in-use dissipation. The sum of these lost material flows forms the theoretical maximum potential for future efficiency improvements. Based on a dynamic material flow analysis, we have evaluated these factors from an energy perspective for 50 metals and calculated the corresponding greenhouse gas emissions associated with the supply of lost material from primary sources that would otherwise be used to satisfy demand. A use-by-use examination demonstrates the potential emission gains associated with major application sectors. The results show that minimizing in-use dissipation and constraints to metal recycling have the potential to reduce greenhouse gas emissions from the metal industry by about 13-23%, corresponding to 1% of global anthropogenic greenhouse gas emissions.
Managing carbon emissions in China through building energy efficiency.
Li, Jun; Colombier, Michel
2009-06-01
This paper attempts to analyse the role of building energy efficiency (BEE) in China in addressing climate change mitigation. It provides an analysis of the current situation and future prospects for the adoption of BEE technologies in Chinese cities. It outlines the economic and institutional barriers to large-scale deployment of the sustainable, low-carbon, and even carbon-free construction techniques. Based on a comprehensive overview of energy demand characteristics and development trends driven by economic and demographic growth, different policy tools for cost-effective CO(2) emission reduction in the Chinese construction sector are described. We propose a comprehensive approach combining building design and construction, and the urban planning and building material industries, in order to drastically improve BEE during this period of rapid urban development. A coherent institutional framework needs to be established to ensure the implementation of efficiency policies. Regulatory and incentive options should be integrated into the policy portfolios of BEE to minimise the efficiency gap and to realise sizeable carbon emissions cuts in the next decades. We analyse in detail several policies and instruments, and formulate relevant policy proposals fostering low-carbon construction technology in China. Specifically, Our analysis shows that improving building energy efficiency can generate considerable carbon emissions reduction credits with competitive price under the CDM framework.
Nurse Migration from a Source Country Perspective: Philippine Country Case Study
Lorenzo, Fely Marilyn E; Galvez-Tan, Jaime; Icamina, Kriselle; Javier, Lara
2007-01-01
Objectives To describe nurse migration patterns in the Philippines and their benefits and costs. Principal Findings The Philippines is a job-scarce environment and, even for those with jobs in the health care sector, poor working conditions often motivate nurses to seek employment overseas. The country has also become dependent on labor migration to ease the tight domestic labor market. National opinion has generally focused on the improved quality of life for individual migrants and their families, and on the benefits of remittances to the nation. However, a shortage of highly skilled nurses and the massive retraining of physicians to become nurses elsewhere has created severe problems for the Filipino health system, including the closure of many hospitals. As a result, policy makers are debating the need for new policies to manage migration such that benefits are also returned to the educational institutions and hospitals that are producing the emigrant nurses. Conclusions and Recommendations There is new interest in the Philippines in identifying ways to mitigate the costs to the health system of nurse emigration. Many of the policy options being debated involve collaboration with those countries recruiting Filipino nurses. Bilateral agreements are essential for managing migration in such a way that both sending and receiving countries derive benefit from the exchange. PMID:17489922
Nurse migration from a source country perspective: Philippine country case study.
Lorenzo, Fely Marilyn E; Galvez-Tan, Jaime; Icamina, Kriselle; Javier, Lara
2007-06-01
To describe nurse migration patterns in the Philippines and their benefits and costs. The Philippines is a job-scarce environment and, even for those with jobs in the health care sector, poor working conditions often motivate nurses to seek employment overseas. The country has also become dependent on labor migration to ease the tight domestic labor market. National opinion has generally focused on the improved quality of life for individual migrants and their families, and on the benefits of remittances to the nation. However, a shortage of highly skilled nurses and the massive retraining of physicians to become nurses elsewhere has created severe problems for the Filipino health system, including the closure of many hospitals. As a result, policy makers are debating the need for new policies to manage migration such that benefits are also returned to the educational institutions and hospitals that are producing the emigrant nurses. There is new interest in the Philippines in identifying ways to mitigate the costs to the health system of nurse emigration. Many of the policy options being debated involve collaboration with those countries recruiting Filipino nurses. Bilateral agreements are essential for managing migration in such a way that both sending and receiving countries derive benefit from the exchange.
Greenhouse gas emission reduction: A case study of Sri Lanka
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, P.; Munasinghe, M.
1995-12-31
In this paper we describe a case study for Sri Lanka that explores a wide range of options for reducing greenhouse gas (GHG) emissions. Options range from renewable technologies to carbon taxes and transportation sector initiatives. We find that setting electricity prices to reflect long-run marginal cost has a significant beneficial impact on the environment, and the expected benefits predicted on theoretical grounds are confirmed by the empirical results. Pricing reform also has a much broader impact than physical approaches to demand side management, although several options such as compact fluorescent lighting appear to have great potential. Options to reducemore » GHG emissions are limited as Sri Lanka lacks natural gas, and nuclear power is not practical until the system reaches a much larger size. Building the few remaining large hydro facilities would significantly reduce GHG emissions, but these would require costly resettlement programs. Given the inevitability for fossil-fuel base load generation, both clean coal technologies such as pressurized fluidized bed combustion, as well as steam-cycle residual oil fueled plants merit consideration as alternatives to the conventional pulverized coal-fired plants currently being considered. Transportation sector measures necessary to ameliorate local urban air pollution problems, such as vehicle inspection and maintenance programs, also bring about significant reductions of GHG emissions. 51 refs., 10 figs., 3 tabs.« less
Concept Overview & Preliminary Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, Mark
2017-07-12
'H2@Scale' is an opportunity for wide-scale use of hydrogen as an intermediate that carries energy from various production options to multiple uses. It is based on identifying and developing opportunities for low-cost hydrogen production and investigating opportunities for using that hydrogen across the electricity, industrial, and transportation sectors. One of the key production opportunities is use of low-cost electricity that may be generated under high penetrations of variable renewable generators such as wind and solar photovoltaics. The technical potential demand for hydrogen across the sectors is 60 million metric tons per year. The U.S. has sufficient domestic renewable resources somore » that each could meet that demand and could readily meet the demand using a portfolio of generation options. This presentation provides an overview of the concept and the technical potential demand and resources. It also motivates analysis and research on H2@Scale.« less
NASA Astrophysics Data System (ADS)
Telsnig, Thomas; Potz, Christian; Haas, Jannik; Eltrop, Ludger; Palma-Behnke, Rodrigo
2017-06-01
The arid northern regions of Chile are characterized by an intensive mineral mining industry and high solar irradiance levels. Besides Chile's main mining products, copper, molybdenum and iron, the production of lithium carbonate from lithium containing brines has become strategically important due to the rising demand for battery technologies worldwide. Its energy-intensive production may affect the ecological footprint of the product and the country's climate targets. Thus, the use of solar technologies for electricity and heat production might constitute an interesting option for CO2 mitigation. This study aims to quantify the impacts of the lithium carbonate production processes in Chile on climate change, and to identify site-specific integration options of solar energy technologies to reduce GHG life-cycle emissions. The considered solar integration options include a parabolic trough power plant with a molten salt storage, a solar tower power plant with molten salt receiver and molten salt storage, a one-axis tracking photovoltaic energy system for electricity, and two solar thermal power plants with Ruths storage (steam accumulator) for thermal heat production. CSP plants were identified as measures with the highest GHG mitigation potential reducing the CO2 emissions for the entire production chain and the lithium production between 16% and 33%. In a scenario that combines solar technologies for electricity and thermal energy generation, up to 59% of the CO2 emissions at the lithium production sites in Chile can be avoided. A comparison of the GHG abatement costs of the proposed solar integration options indicates that the photovoltaic system, the solar thermal plant with limited storage and the solar tower power plant are the most cost effective options.
2004-06-01
ecommerce architecture is the business—it is the company’s competitive advantage. (Morgan, 1998:40) Morgan goes on to illustrate this point by...396 JONES APPAREL GROUP INC 896 NATIONAL RURAL UTILITIES COOPERATIVE 397 COX COMMUNICATIONS INC 897 TRANS WORLD ENTERTAINMENT 398 MELLON FINANCIAL...It Can Work in the Public Sector,” MIS Quarterly, Dec:435-448, 1990. Morgan, T.P. “ Ecommerce Options,” Global Technology Business, Sept:40-42
Science-based approach for credible accounting of mitigation in managed forests.
Grassi, Giacomo; Pilli, Roberto; House, Jo; Federici, Sandro; Kurz, Werner A
2018-05-17
The credibility and effectiveness of country climate targets under the Paris Agreement requires that, in all greenhouse gas (GHG) sectors, the accounted mitigation outcomes reflect genuine deviations from the type and magnitude of activities generating emissions in the base year or baseline. This is challenging for the forestry sector, as the future net emissions can change irrespective of actual management activities, because of age-related stand dynamics resulting from past management and natural disturbances. The solution implemented under the Kyoto Protocol (2013-2020) was accounting mitigation as deviation from a projected (forward-looking) "forest reference level", which considered the age-related dynamics but also allowed including the assumed future implementation of approved policies. This caused controversies, as unverifiable counterfactual scenarios with inflated future harvest could lead to credits where no change in management has actually occurred, or conversely, failing to reflect in the accounts a policy-driven increase in net emissions. Instead, here we describe an approach to set reference levels based on the projected continuation of documented historical forest management practice, i.e. reflecting age-related dynamics but not the future impact of policies. We illustrate a possible method to implement this approach at the level of the European Union (EU) using the Carbon Budget Model. Using EU country data, we show that forest sinks between 2013 and 2016 were greater than that assumed in the 2013-2020 EU reference level under the Kyoto Protocol, which would lead to credits of 110-120 Mt CO 2 /year (capped at 70-80 Mt CO 2 /year, equivalent to 1.3% of 1990 EU total emissions). By modelling the continuation of management practice documented historically (2000-2009), we show that these credits are mostly due to the inclusion in the reference levels of policy-assumed harvest increases that never materialized. With our proposed approach, harvest is expected to increase (12% in 2030 at EU-level, relative to 2000-2009), but more slowly than in current forest reference levels, and only because of age-related dynamics, i.e. increased growing stocks in maturing forests. Our science-based approach, compatible with the EU post-2020 climate legislation, helps to ensure that only genuine deviations from the continuation of historically documented forest management practices are accounted toward climate targets, therefore enhancing the consistency and comparability across GHG sectors. It provides flexibility for countries to increase harvest in future reference levels when justified by age-related dynamics. It offers a policy-neutral solution to the polarized debate on forest accounting (especially on bioenergy) and supports the credibility of forest sector mitigation under the Paris Agreement.
Geoengineering: An Idea Whose Time Has Come?
Resnik, David B; Vallero, Daniel A
2011-12-17
Some engineers and scientists recently have suggested that it would be prudent to consider engaging in geoengineering to mitigate global warming. Geoengineering differs from other methods for mitigating global warming because it involves a deliberate effort to affect the climate at a global scale. Although geoengineering is not a new idea, it has taken on added significance as a result of difficulties with implementing other proposals to mitigate climate change. While proponents of geoengineering admit that it can have significant risks for the environment and public health, many maintain that it is worth pursuing, given the failure of other means of mitigating global warming. Some environmental groups have voiced strong opposition to all forms of geoengineering. In this article, we examine arguments for and against geoengineering and discuss some policy options. We argue that specific geoengineering proposals should not be implemented until there is good evidence concerning their safety, efficacy, and feasibility, as well as a plan for oversight. International cooperation and public input should also be sought. Other methods for mitigating global warming should be aggressively pursued while geoengineering is under consideration. The promise of an engineering solution to global warming should not be used as an excuse to abandon or cut back current, climate mitigation efforts.
Restoration planting options for limber pines in the southern Rocky Mountains
Anne Marie Casper; William R. Jacobi; Anna W. Schoettle; Kelly S. Burns
2011-01-01
Limber Pine (Pinus flexilis) populations in the southern Rocky Mountains are severely threatened by the combined impacts of mountain pine beetles and white pine blister rust. Limber pine's critical role in these high elevation ecosystems heightens the importance of mitigating these impacts.
Benjamin S. Gimeno; Fengming Yuan; Mark E. Fenn; Thomas Meixner
2009-01-01
Mixed-conifer forests of southern California are exposed to nitrogen (N) deposition levels that impair carbon (C) and N cycling, enhance forest flammability, increase the risk of fire occurrence and air pollution emissions in fire, and increase nitrate...
GHG Mitigation Options Database (GMOD) and Analysis Tools.
There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Given the strengthening science behind the human influence on climate change, it will be necessary for the global community to use low-carbon te...
Paying the pipers: Mitigating the impact of anticoagulant rodenticides on predators and scavengers
Elliott, John E.; Rattner, Barnett A.; Shore, Richard F.; van den Brink, Nico W.
2016-01-01
Anticoagulant rodenticides, mainly second-generation forms, or SGARs, dominate the global market for rodent control. Introduced in the 1970s to counter genetic resistance in rodent populations to first-generation compounds such as warfarin, SGARs are extremely toxic and highly effective killers. However, their tendency to persist and accumulate in the body has led to the widespread contamination of terrestrial predators and scavengers. Commercial chemicals that are classified by regulators as persistent, bio-accumulative, and toxic (PBT) chemicals and that are widely used with potential environmental release, such as dichloro-diphenyl-trichloroethane (DDT) or polychlorinated biphenyls (PCBs), have been removed from commerce. However, despite consistently failing ecological risk assessments, SGARs remain in use because of the demand for effective rodent-control options and the lack of safe and humane alternatives. Although new risk-mitigation measures for rodenticides are now in effect in some countries, the contamination and poisoning of nontarget wildlife are expected to continue. Here, we suggest options to further attenuate this problem.
Potential and cost of carbon sequestration in the Tanzanian forest sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makundi, Willy R.
2001-01-01
The forest sector in Tanzania offers ample opportunities to reduce greenhouse gas emissions (GHG) and sequestered carbon (C) in terrestrial ecosystems. More than 90% of the country's demand for primary energy is obtained from biomass mostly procured unsustainably from natural forests. This study examines the potential to sequester C through expansion of forest plantations aimed at reducing the dependence on natural forest for wood fuel production, as well as increase the country's output of industrial wood from plantations. These were compared ton conservation options in the tropical and miombo ecosystems. Three sequestration options were analyzed, involving the establishment of shortmore » rotation and long rotation plantations on about 1.7 x 106 hectares. The short rotation community forest option has a potential to sequester an equilibrium amount of 197.4 x 106 Mg C by 2024 at a net benefit of $79.5 x 106, while yielding a NPV of $0.46 Mg-1 C. The long rotation options for softwood and hardwood plantations will reach an equilibrium sequestration of 5.6 and 11.8 x 106 Mg C at a negative NPV of $0.60 Mg-1 C and $0.32 Mg-1 C. The three options provide cost competitive opportunities for sequestering about 7.5 x 106 Mg C yr -1 while providing desired forest products and easing the pressure on the natural forests in Tanzania. The endowment costs of the sequestration options were all found to be cheaper than the emission avoidance cost for conservation options which had an average cost of $1.27 Mg-1 C, rising to $ 7.5 Mg-1 C under some assumptions on vulnerability to encroachment. The estimates shown here may represent the upper bound, because the actual potential will be influenced by market prices for inputs and forest products, land use policy constraints and the structure of global C transactions.« less
Issues and options in addressing the environmental consequences of livestock sector's growth.
Gerber, P J; Vellinga, T V; Steinfeld, H
2010-02-01
The growth of the livestock sector is being achieved at substantial environmental costs. Today, livestock are a major stressor of the global environmental, occupying a quarter of emerged land (including a third of arable land), contributing close to a fifth of the anthropogenic greenhouse gas emissions, using eight percent of all water resources and threatening a wide range of endangered species. At the same time, livestock are also a crucial engine of rural growth and a tool for improving food security. Policies are required to guide the sector in achieving sometimes conflicting development objectives. Potential pathways include encouraging resource use efficiency, correcting for environmental externalities and accelerating technological change.
Integrated power sector efficiency analysis: A case study of Costa Rica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waddle, D.B.; MacDonald, J.M.
1990-03-01
In an effort to analyze and document the potential for power sector efficiency improvements from generation to end-use, the Agency for International Development and the Government of Costa Rica are jointly conducting an integrated power sector efficiency analysis. Potential for energy and cost savings in power plants, transmission and distribution, and demand-side management programs are being evaluated. The product of this study will be an integrated investment plan for the Instituto Costarricense de Electricidad, incorporating both supply and demand side investment options. This paper presents the methodology employed in the study, as well as preliminary estimates of the results ofmore » the study. 14 refs., 2 figs., 5 tabs.« less
Paerl, Hans W; Gardner, Wayne S; Havens, Karl E; Joyner, Alan R; McCarthy, Mark J; Newell, Silvia E; Qin, Boqiang; Scott, J Thad
2016-04-01
Mitigating the global expansion of cyanobacterial harmful blooms (CyanoHABs) is a major challenge facing researchers and resource managers. A variety of traditional (e.g., nutrient load reduction) and experimental (e.g., artificial mixing and flushing, omnivorous fish removal) approaches have been used to reduce bloom occurrences. Managers now face the additional effects of climate change on watershed hydrologic and nutrient loading dynamics, lake and estuary temperature, mixing regime, internal nutrient dynamics, and other factors. Those changes favor CyanoHABs over other phytoplankton and could influence the efficacy of control measures. Virtually all mitigation strategies are influenced by climate changes, which may require setting new nutrient input reduction targets and establishing nutrient-bloom thresholds for impacted waters. Physical-forcing mitigation techniques, such as flushing and artificial mixing, will need adjustments to deal with the ramifications of climate change. Here, we examine the suite of current mitigation strategies and the potential options for adapting and optimizing them in a world facing increasing human population pressure and climate change. Copyright © 2015 Elsevier B.V. All rights reserved.
An Assessment of Institutional Capacity for Integrated Landscape Management in Eastern Cameroon.
Brown, H Carolyn Peach
2018-07-01
Landscape approaches have become prominent in efforts to address issues of conservation and development through bringing together different actors and sectors, to reconcile diverse land uses, and promote synergies. Some have suggested that integrated landscape management approaches are consistent with the goals of REDD+ and offer a strategy to address multiple goals of climate change mitigation, biodiversity conservation, maintenance of ecosystem services, and socio-economic development. Institutional or governance arrangements have been shown to be a critical component in influencing outcomes in landscapes. Using diverse methodologies, this study investigated the capacity of institutions to support the planning, implementation, and resource mobilization needed to integrate climate change mitigation, conservation, and livelihood goals in a forest mosaic landscape in East Cameroon. Results showed that diverse institutions are present in the landscape, including institutions of relevant government agencies, local government, local non-government, the private sector, and hybrid institutions of conservation, development and research institutions. However, the overall institutional capacity for integrated landscape planning and management in the study area is limited, although some institutions exhibit increased capacity in some areas over others. Multiple strategies can be employed to build the necessary human, financial, and leadership capacity, and facilitate the institutional planning and coordination that is foundational to multi-stakeholder landscape governance. Given the complexity of integrating climate change mitigation, conservation and livelihood goals in a landscape, building such institutional capacity is a long term endeavour that requires sustained effort and ongoing financial, technical and human resource support.
NASA Astrophysics Data System (ADS)
Voisin, Nathalie; Hejazi, Mohamad I.; Leung, L. Ruby; Liu, Lu; Huang, Maoyi; Li, Hong-Yi; Tesfa, Teklu
2017-05-01
Realistic representations of sectoral water withdrawals and consumptive demands and their allocation to surface and groundwater sources are important for improving modeling of the integrated water cycle. To inform future model development, we enhance the representation of water management in a regional Earth system (ES) model with a spatially distributed allocation of sectoral water demands simulated by a regional integrated assessment (IA) model to surface and groundwater systems. The integrated modeling framework (IA-ES) is evaluated by analyzing the simulated regulated flow and sectoral supply deficit in major hydrologic regions of the conterminous U.S, which differ from ES studies looking at water storage variations. Decreases in historical supply deficit are used as metrics to evaluate IA-ES model improvement in representating the complex sectoral human activities for assessing future adaptation and mitigation strategies. We also assess the spatial changes in both regulated flow and unmet demands, for irrigation and nonirrigation sectors, resulting from the individual and combined additions of groundwater and return flow modules. Results show that groundwater use has a pronounced regional and sectoral effect by reducing water supply deficit. The effects of sectoral return flow exhibit a clear east-west contrast in the hydrologic patterns, so the return flow component combined with the IA sectoral demands is a major driver for spatial redistribution of water resources and water deficits in the US. Our analysis highlights the need for spatially distributed sectoral representation of water management to capture the regional differences in interbasin redistribution of water resources and deficits.
Regional impacts of a program for private forest carbon offset sales
Darius M. Adams; Ralph Alig; Greg Latta; Eric M. White
2011-01-01
Policymakers are examining wide range of alternatives for climate change mitigation, including carbon offset sales programs, to enhance sequestration in the forest sector. Under an offset sales program, on-the-ground forestry could change as result of both afforestation and modifications in the management of existing forests. These effects could vary markedly by region...
Mitigation activities in the forest sector to reduce emissions and enhance sinks of greenhouse gases
Richard Birdsey; Ralph Alig; Darius Adams
2000-01-01
In June 1992, representatives from 172 countries gathered at the "Earth Summit" in Rio de Janeiro to discuss environmental issues. The United Nations Framework Convention on Climate Change (FCCC) was adopted to achieve ". . . stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic...
Net farm income and land use under a U.S. greenhouse gas cap and trade
Justin S. Baker; Bruce A. McCarl; Brian C. Murray; Steven K. Rose; Ralph J. Alig; Darius Adams; Greg Latta; Robert Beach; Adam Daigneault
2010-01-01
During recent years, the U.S. agricultural sector has experienced high prices for energy related inputs and commodities, and a rapidly developing bioenergy market. Greenhouse gas (GHG) emissions mitigation would further alter agricultural markets and increase land competition in forestry and agriculture by shifting input costs, creating an agricultural GHG abatement...
ERIC Educational Resources Information Center
Mochizuki, Yoko; Bryan, Audrey
2015-01-01
Although the role of education in addressing the challenges of climate change is increasingly recognized, the education sector remains underutilized as a strategic resource to mitigate and adapt to climate change. Education stakeholders in many countries have yet to develop a coherent framework for climate change education (CCE). This article…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beenstock, M.; Goldin, E.; Haitovsky, Y.
1997-05-01
The economic cost of power outages is a central parameter in the cost-benefit analysis of electric power reliability and the design of electric power systems. The authors present a new methodology for estimating the cost of power outages in the business and public sections and illustrate with data for Israel. The methodology is based on the principle of revealed preference, the cost of an outage may be inferred from the actions taken by consumers to mitigate losses induced by unsupplied electricity. If outages impose costs on businesses, managers are likely to invest in back-up power to mitigate the losses thatmore » are incurred when electricity is not supplied. Investment in back-up generators may then be used to impute the mitigated and unmitigated damage from outages. 12 refs., 3 figs., 7 tabs.« less
2014-05-01
Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including...SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY...private-sector entity or public utility. When no lease proposals were submitted, the Air Force pursued the option to close the plant, finding that the
Tordrup, David; Angelis, Aris; Kanavos, Panos
2013-12-01
Universal access to health care in most western European countries has been a given for many decades; however, macroeconomic developments and increased pressure on health care budgets could mean the status quo cannot be maintained. As populations age, a declining proportion of economically active citizens are being required to support a larger burden of health and social care, while increasing availability of novel technologies for extending and improving life continues to push health care costs upwards. With health expenditure continuing to rise as a proportion of national income, concerns are raised about the current and future financial sustainability of Organisation for Economic Co-Operation and Development (OECD) health care systems. Against this backdrop, a discussion about options to fund health care in the future, including whether to raise additional health care finance (and the ways to do so), reallocate resources and/or ration services becomes very pertinent. This study elicits preferences among a group of key stakeholders (payers, providers, government, academia and health-related industry) on the issue of health care financial sustainability and the future funding of health care services, with a view to understanding the different degrees of acceptability between policy interventions and future funding options as well as their feasibility. We invited 842 individuals from academia, other research organisations (eg. think tanks), national health services, providers, health insurance organisations, government representatives and health-related industry and related advisory stakeholders to participate in an online survey collecting preferences on a variety of revenue-generating mechanisms and cost/demand reducing policies. Respondents represented the 28 EU member states as well as Norway, Iceland, Switzerland, Australia, Russian Federation, Canada and New Zealand. We received 494 responses to our survey from all stakeholder groups. Across all groups, the highest preference was for policies to modify lifestyle and implement more extensive screening within risk groups for high burden illnesses. There was a broad consensus not to reallocate resources from social security/education. Between stakeholders, there were differences of opinion between industry/advisory and a range of other groups, with industry being generally more in favour of market-based interventions and an increased role for the private sector in health care financing/delivery. Conversely, stakeholders from academia, government, national health services and insurance were relatively more in favour of more restrictive purchasing of new and expensive technologies, and (to varying extent) of higher income/corporate taxes. Taxes on cigarettes/alcohol were by far considered the most politically feasible option. According to this study, policy options that are broadly acceptable across stakeholder groups with different inherent interests exist but are limited to lifestyle modification, screening interventions and excise taxes on harmful products. Representatives from the private sector tend to view solutions rooted in the private sector as both effective and politically feasible options, while stakeholders from academia and the public sector seem to place more emphasis on solutions that do not disproportionately impact certain population groups.
75 FR 22416 - Statement of Organization, Functions, and Delegations of Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-28
... Document Management System; (13) develops and distributes leadership reports, including the Secretary's 90... principal advisor to the Director, CDC, on internal and external affairs of CDC; (2) convenes key leadership for assessment, management, mitigation options, and resolution of issues and initiatives affecting CDC...
Slash application reduces soil erosion in steep-sloped piñon-juniper woodlands
USDA-ARS?s Scientific Manuscript database
Mitigating runoff and associated erosion is a fundamental challenge for sustainable management of rangelands. Hillslope runoff and erosion are strongly influenced by ground cover, thus, a strategic management option exists to increase cover with slash from woody plant removal activities particularl...
Xing, Zhencheng; Wang, Jigan; Zhang, Jie
2018-09-01
Due to the increasing environmental burdens caused by dramatic economic expansion, eco-efficiency indicating how efficient the economic activity is with respect to its environmental impacts has become a topic of considerable interest in China. In this context, Economic Input-output Life Cycle Assessment (EIO-LCA) and Data Envelopment Analysis (DEA) are combined to assess the environmental impacts and eco-efficiency of China's 26 economic sectors. The EIO-LCA results indicate that Electricity Production and Supply sector is the largest net exporter in energy usage, CO 2 emission and exhaust emission categories, while Construction sector is the largest net importer for five impact categories except for water withdrawal. Moreover, Construction sector is found to be the destination of the largest sector-to-sector environmental impact flows for the five impact categories and make the most contributions to the total environmental impacts. Another key finding is that Agriculture sector is both the largest net exporter and the greatest contributor for water withdrawal category. DEA results indicate that seven sectors are eco-efficient while over 70% of China's economic sectors are inefficient and require significant improvements. The average target improvements range between 23.30% and 35.06% depending on the impact category. Further sensitivity analysis reveals that the average sensitivity ratios vary from 7.7% to 15.7% among the six impact categories, which are found to be negatively correlated with their improvement potentials. Finally, several policy recommendations are made to mitigate environmental impacts of China's economic sectors and improve their eco-efficiency levels. Copyright © 2018 Elsevier B.V. All rights reserved.
Qureshi, Mohammed Owais; Syed, Rumaiya Sajjad
2014-01-01
Background The economy is being lifted by the new concept of robotics, but we cannot be sure of all the possible benefits. At this early stage, it therefore becomes important to find out the possible benefits/limitations associated with robotics, so that the positives can be capitalized, established, and developed further for the employment and motivation of employees in the health care sector, for overall economic development. The negatives should also be further studied and mitigated. Methods This study is an exploratory research, based on secondary data, such as books on topics related to robotics, websites, public websites of concerned departments for data and statistics, journals, newspapers and magazines, websites of health care providers, and different printed materials (brochures, etc). Results The impact of robotics has both positive and negative impacts on the employment and motivation of employees in the retail sector. So far, there has been no substantial research done into robotics, especially in the health care sector. Conclusion Replacing employees with robots is an inevitable choice for organizations in the service sector, more so in the health care sector because of the challenging and sometimes unhealthy working environments, but, at the same time, the researchers propose that it should be done in a manner that helps in improving the employment and motivation of employees in this sector. PMID:25516812
Qureshi, Mohammed Owais; Syed, Rumaiya Sajjad
2014-12-01
The economy is being lifted by the new concept of robotics, but we cannot be sure of all the possible benefits. At this early stage, it therefore becomes important to find out the possible benefits/limitations associated with robotics, so that the positives can be capitalized, established, and developed further for the employment and motivation of employees in the health care sector, for overall economic development. The negatives should also be further studied and mitigated. This study is an exploratory research, based on secondary data, such as books on topics related to robotics, websites, public websites of concerned departments for data and statistics, journals, newspapers and magazines, websites of health care providers, and different printed materials (brochures, etc). The impact of robotics has both positive and negative impacts on the employment and motivation of employees in the retail sector. So far, there has been no substantial research done into robotics, especially in the health care sector. Replacing employees with robots is an inevitable choice for organizations in the service sector, more so in the health care sector because of the challenging and sometimes unhealthy working environments, but, at the same time, the researchers propose that it should be done in a manner that helps in improving the employment and motivation of employees in this sector.
Exposing the dark sector with future Z factories
NASA Astrophysics Data System (ADS)
Liu, Jia; Wang, Lian-Tao; Wang, Xiao-Ping; Xue, Wei
2018-05-01
We investigate the prospects of searching dark sector models via exotic Z -boson decay at future e+e- colliders with Giga Z and Tera Z options. Four general categories of dark sector models, Higgs portal dark matter, vector-portal dark matter, inelastic dark matter, and axionlike particles, are considered. Focusing on channels motivated by the dark sector models, we carry out a model-independent study of the sensitivities of Z factories in probing exotic decays. The limits on branching ratios of the exotic Z decay are typically O (10-6- 10-8.5) for the Giga Z and O (10-7.5- 10-11) for the Tera Z , and they are compared with the projection for the high luminosity LHC. We demonstrate that future Z factories can provide its unique and leading sensitivity and highlight the complementarity with other experiments, including the indirect and direct dark matter search limits and the existing collider limits. Future Z factories will play a leading role in uncovering the hidden sector of the Universe in the future.
NASA Astrophysics Data System (ADS)
Perkins, Matthew J.; Ng, Terence P. T.; Dudgeon, David; Bonebrake, Timothy C.; Leung, Kenneth M. Y.
2015-12-01
Globally, coastlines are under pressure as coastal human population growth and urbanization continues, while climatic change leads to stormier seas and rising tides. These trends create a strong and sustained demand for land reclamation and infrastructure protection in coastal areas, requiring engineered coastal defence structures such as sea walls. Here, we review the nature of ecological impacts of coastal structures on intertidal ecosystems, seek to understand the extent to which ecological engineering can mitigate these impacts, and evaluate the effectiveness of mitigation as a tool to contribute to conservation of intertidal habitats. By so doing, we identify critical knowledge gaps to inform future research. Coastal structures alter important physical, chemical and biological processes of intertidal habitats, and strongly impact community structure, inter-habitat linkages and ecosystem services while also driving habitat loss. Such impacts occur diffusely across localised sites but scale to significant regional and global levels. Recent advances in ecological engineering have focused on developing habitat complexity on coastal structures to increase biodiversity. 'Soft' engineering options maximise habitat complexity through inclusion of natural materials, species and processes, while simultaneously delivering engineering objectives such as coastal protection. Soft options additionally sustain multiple services, providing greater economic benefits for society, and resilience to climatic change. Currently however, a lack of inclusion and economic undervaluation of intertidal ecosystem services may undermine best practice in coastline management. Importantly, reviewed evidence shows mitigation and even restoration do not support intertidal communities or processes equivalent to pre-disturbance conditions. Crucially, an absence of comprehensive empirical baseline biodiversity data, or data comprising additional ecological parameters such as ecosystem functions and services, prohibits quantification of absolute and relative magnitudes of ecological impacts due to coastal structures or effectiveness of mitigation interventions. This knowledge deficit restricts evaluation of the potential of ecological engineering to contribute to conservation policies for intertidal habitats. To improve mitigation design and effectiveness, a greater focus on in-situ research is needed, requiring stronger and timely collaboration between government agencies, construction partners and research scientists.
The Impact Imperative: A Space Infrastructure Enabling a Multi-Tiered Earth Defense
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W.; Phipps, Claude; Smalley, Larry; Reilly, James; Boccio, Dona
2003-01-01
Impacting at hypervelocity, an asteroid struck the Earth approximately 65 million years ago in the Yucatan Peninsula a m . This triggered the extinction of almost 70% of the species of life on Earth including the dinosaurs. Other impacts prior to this one have caused even greater extinctions. Preventing collisions with the Earth by hypervelocity asteroids, meteoroids, and comets is the most important immediate space challenge facing human civilization. This is the Impact Imperative. We now believe that while there are about 2000 earth orbit crossing rocks greater than 1 kilometer in diameter, there may be as many as 200,000 or more objects in the 100 m size range. Can anything be done about this fundamental existence question facing our civilization? The answer is a resounding yes! By using an intelligent combination of Earth and space based sensors coupled with an infrastructure of high-energy laser stations and other secondary mitigation options, we can deflect inbound asteroids, meteoroids, and comets and prevent them &om striking the Earth. This can be accomplished by irradiating the surface of an inbound rock with sufficiently intense pulses so that ablation occurs. This ablation acts as a small rocket incrementally changing the shape of the rock's orbit around the Sun. One-kilometer size rocks can be moved sufficiently in about a month while smaller rocks may be moved in a shorter time span. We recommend that space objectives be immediately reprioritized to start us moving quickly towards an infrastructure that will support a multiple option defense capability. Planning and development for a lunar laser facility should be initiated immediately in parallel with other options. All mitigation options are greatly enhanced by robust early warning, detection, and tracking resources to find objects sufficiently prior to Earth orbit passage in time to allow significant intervention. Infrastructure options should include ground, LEO, GEO, Lunar, and libration point laser and sensor stations for providing early warning, tracking, and deflection. Other options should include space interceptors that will carry both laser and nuclear ablators for close range work. Response options must be developed to deal with the consequences of an impact should we move too slowly.
Islam, Syed Faiz-Ul; van Groenigen, Jan Willem; Jensen, Lars Stoumann; Sander, Bjoern Ole; de Neergaard, Andreas
2018-01-15
Global rice production systems face two opposing challenges: the need to increase production to accommodate the world's growing population while simultaneously reducing greenhouse gas (GHG) emissions. Adaptations to drainage regimes are one of the most promising options for methane mitigation in rice production. Whereas several studies have focused on mid-season drainage (MD) to mitigate GHG emissions, early-season drainage (ED) varying in timing and duration has not been extensively studied. However, such ED periods could potentially be very effective since initial available C levels (and thereby the potential for methanogenesis) can be very high in paddy systems with rice straw incorporation. This study tested the effectiveness of seven drainage regimes varying in their timing and duration (combinations of ED and MD) to mitigate CH 4 and N 2 O emissions in a 101-day growth chamber experiment. Emissions were considerably reduced by early-season drainage compared to both conventional continuous flooding (CF) and the MD drainage regime. The results suggest that ED+MD drainage may have the potential to reduce CH 4 emissions and yield-scaled GWP by 85-90% compared to CF and by 75-77% compared to MD only. A combination of (short or long) ED drainage and one MD drainage episode was found to be the most effective in mitigating CH 4 emissions without negatively affecting yield. In particular, compared with CF, the long early-season drainage treatments LE+SM and LE+LM significantly (p<0.01) decreased yield-scaled GWP by 85% and 87% respectively. This was associated with carbon being stabilised early in the season, thereby reducing available C for methanogenesis. Overall N 2 O emissions were small and not significantly affected by ED. It is concluded that ED+MD drainage might be an effective low-tech option for small-scale farmers to reduce GHG emissions and save water while maintaining yield. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Grzywacz, Joseph G; Lipscomb, Hester J; Casanova, Vanessa; Neis, Barbara; Fraser, Clermont; Monaghan, Paul; Vallejos, Quirina M
2013-08-01
There is widespread agreement that work organization is an important element of occupational safety and health, but the health effects of many aspects of work organization are likely to vary considerably across different sectors of work and geographies. We examined existing employment policies and work organization-related research relevant specifically to immigrant workers in the Agriculture, Forestry, and Fishing (AgFF) Sector of the US workforce focusing, when possible, on the southeastern US. A number of specific aspects of work organization within AgFF subsectors have been described, but most of this literature exists outside the purview of occupational health. There are few studies that directly examine how attributes of work organization relevant to the AgFF Sector affect workers', much less immigrant workers', occupational health exposures and outcomes. In contrast to the broader literature, research linking occupational health outcomes to work organization in the AgFF Sector is limited and weak. A systematic program of research and intervention is needed to develop strategies that eliminate or substantially mitigate the deleterious health effects of occupational exposures whose origins likely lie in the organization of AgFF work. Copyright © 2013 Wiley Periodicals, Inc.
Virtual Water Scarcity Risk to the Global Trade System.
Qu, Shen; Liang, Sai; Konar, Megan; Zhu, Zeqi; Chiu, Anthony S F; Jia, Xiaoping; Xu, Ming
2018-01-16
Local water scarcity risk (LWSR, meaning potential economic output losses in water-using sectors due to physical water scarcity) can be transmitted to downstream economies through the globalized supply chains. To understand the vulnerability of the global economy to water scarcity, we examine the impacts of local water scarcity risk on the global trade system from 1995 to 2009. We observe increasingly intensified geographical separation between physical water scarcity and production losses due to water scarcity. We identify top nation-sectors in virtual water scarcity risk (VWSR) exports (indicating local water scarcity risk in each nation transmitted to foreign nations through its exports), including agriculture and utilities in major economies such as China, India, Spain, France, and Turkey. These nation-sectors are critical to the resilience of the global economy to water scarcity. We also identify top nation-sectors in virtual water scarcity risk imports (indicating each nation's vulnerability to foreign water scarcity risk through the global trade system), highlighting their vulnerability to distant water scarcity. Our findings reveal the need for nations to collaboratively manage and conserve water resources, and lay the foundation for firms in high VWSR-importing sectors to develop strategies to mitigate such risk.
Designing effective power sector reform: A road map for the republic of Georgia
NASA Astrophysics Data System (ADS)
Kurdgelashvili, Lado
Around the world, network utilities (i.e., electricity, natural gas, railway, telecommunications, and water supply industries) are undergoing major structural transformation. A new wave of market liberalization, together with rapid technological changes, has challenged the previously dominant monopoly organization of these industries. A global trend toward deregulation and restructuring is evident in countries at different levels of social and economic development. The challenges of transition from a monopolistic to an open market competitive structure are numerous. Understanding these problems and finding solutions are essential to successful restructuring. In developing countries and economies in transition (i.e., the Eastern Europe and the former Soviet Union), government-owned utilities are often considered to be highly inefficient. The dominant power sector restructuring strategies seek to promote economic efficiency through a gradual introduction of competition into the power sector. Five components of power sector reform are commonly proposed by the World Bank and others for these countries: commercialization, privatization, establishment of an independent regulatory agency, unbundling and gradual introduction of competition in generation and retail markets. The Republic of Georgia, like many economies in transition (e.g., Hungary, Ukraine, and Kazakhstan) has followed this reform model. However, outcomes of the reform have not been as promised. The acute economic problems facing Georgia after it regained independence have compounded problems in the power sector. A review of Georgia's utility reforms reveals that the country has undertaken electricity industry restructuring without giving substantial consideration to the problems that these reforms might have created within the industry or society. The main task of this dissertation is to find the restructuring model, which can best serve economic, social and environmental goals under circumstances similar to those in economies of transition. The dissertation provides a guide for policy makers in the energy sector for implementing power sector reform. At first the dissertation offers a general overview of different models of power sector organization, regulatory frameworks and market arrangements, and the potential impact of reform on social welfare. This knowledge is then applied for analysis of power sector reform in the Republic of Georgia. Social welfare analysis (SWA) is a major analytical tool used in the research for assessing the potential impacts of different power sector organization models on various stakeholders. Through the research it was identified that power industry arrangements in different countries have their particularities; however, after some level of simplification, power sector organization models can fit into one of three broad categories: (1) Government control and regulation of generation and retail segments of the power industry. (2) Full scale competition in the generation segment and retail choice. (3) Partial government control of the generation segment and limited retail choice. For SWA of different power market arrangement scenarios, electricity supply and demand curves had to be derived; for this purpose electricity demand forecasting and power supply evaluation methodologies were developed. This dissertation combines SWA, accepted demand forecasting methods and established power supply evaluation techniques to assess power sector performance under specified policy scenarios relevant to the circumstances of economies in transition such as the Republic of Georgia. Detailed analyses are performed for understanding possible outcomes with the introduction of different reform models. In addition, specific options for incorporating sustainable energy alternatives in the energy planning process are identified and assessed in economic, environmental and social terms. Special attention is given to market-based instruments for promoting sustainable energy options (e.g., renewable portfolio standards, energy conservation and energy efficiency programs) and social policies (e.g., lifeline rates, local employment). Results obtained from the detailed analysis of policy options for Georgia guide recommendations for a reform of the power sector.
There is a growing need for developing mitigation strategies for near-road air pollution. Roadway design is being considered as one of the potential options. Particularly, it has been suggested that sound barriers, erected to reduce noise, may prove effective at decreasing pollut...
Decision support: Vulnerability, conservation, and restoration (Chapter 8)
Megan M. Friggens; Jeremiah R. Pinto; R. Kasten Dumroese; Nancy L. Shaw
2012-01-01
Current predictive tools, management options, restoration paradigms, and conservation programs are insufficient to meet the challenges of climate change in western North America. Scientific and management capabilities and resources will be sapped trying to identify risks to genetic resources and ecosystems and determine new approaches for mitigating and managing...
Net carbon uptake by establishing biofuel crops in Central Illinois
USDA-ARS?s Scientific Manuscript database
Clean and renewable sources of energy as wind, solar or biofuels comprise a valuable set of options available to deal with the pressing topics of energy security and mitigation of climate change effects. However, the efficiency in energy conversion and the environmental impacts of each new source of...
Development of Open Textbooks Learning Analytics System
ERIC Educational Resources Information Center
Prasad, Deepak; Totaram, Rajneel; Usagawa, Tsuyoshi
2016-01-01
Textbook costs have skyrocketed in recent years, putting them beyond the reach of many students, but there are options which can mitigate this problem. Open textbooks, an open educational resource, have proven capable of making textbooks affordable to students. There have been few educational development as promising as the development of open…
75 FR 39273 - Energy Independence and Security Act (Pub. L. 110-140)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... DEPARTMENT OF THE INTERIOR U.S. Geological Survey Energy Independence and Security Act (Pub. L... Resource Assessment Methodology. SUMMARY: In 2007, the Energy Independence and Security Act (Pub. L. 110... provide important information to evaluate the potential for CO 2 storage as a mitigation option for global...
Afforestation effects on soil carbon storage in the United States: a synthesis
L.E. Nave; C.W. Swanston; U. Mishra; K.J. Nadelhoffer
2013-01-01
Afforestation (tree establishment on nonforested land) is a management option for increasing terrestrial C sequestration and mitigating rising atmospheric carbon dioxide because, compared to nonforested land uses, afforestation increases C storage in aboveground pools. However, because terrestrial ecosystems typically store most of their C in soils, afforestation...
Using EnviroAtlas to Identify Locations for Urban Heat Island Abatement
For the metropolitan region of Portland, Oregon, this use case demonstrates how city planners could use EnviroAtlas data with a map of the UHI to identify areas that might benefit from heat mitigation through additional street trees. Street trees are one option, and other solutio...