Science.gov

Sample records for secure distributed applications

  1. Application distribution model and related security attacks in VANET

    NASA Astrophysics Data System (ADS)

    Nikaein, Navid; Kanti Datta, Soumya; Marecar, Irshad; Bonnet, Christian

    2013-03-01

    In this paper, we present a model for application distribution and related security attacks in dense vehicular ad hoc networks (VANET) and sparse VANET which forms a delay tolerant network (DTN). We study the vulnerabilities of VANET to evaluate the attack scenarios and introduce a new attacker`s model as an extension to the work done in [6]. Then a VANET model has been proposed that supports the application distribution through proxy app stores on top of mobile platforms installed in vehicles. The steps of application distribution have been studied in detail. We have identified key attacks (e.g. malware, spamming and phishing, software attack and threat to location privacy) for dense VANET and two attack scenarios for sparse VANET. It has been shown that attacks can be launched by distributing malicious applications and injecting malicious codes to On Board Unit (OBU) by exploiting OBU software security holes. Consequences of such security attacks have been described. Finally, countermeasures including the concepts of sandbox have also been presented in depth.

  2. Shared and Distributed Memory Parallel Security Analysis of Large-Scale Source Code and Binary Applications

    SciTech Connect

    Quinlan, D; Barany, G; Panas, T

    2007-08-30

    Many forms of security analysis on large scale applications can be substantially automated but the size and complexity can exceed the time and memory available on conventional desktop computers. Most commercial tools are understandably focused on such conventional desktop resources. This paper presents research work on the parallelization of security analysis of both source code and binaries within our Compass tool, which is implemented using the ROSE source-to-source open compiler infrastructure. We have focused on both shared and distributed memory parallelization of the evaluation of rules implemented as checkers for a wide range of secure programming rules, applicable to desktop machines, networks of workstations and dedicated clusters. While Compass as a tool focuses on source code analysis and reports violations of an extensible set of rules, the binary analysis work uses the exact same infrastructure but is less well developed into an equivalent final tool.

  3. An access control model with high security for distributed workflow and real-time application

    NASA Astrophysics Data System (ADS)

    Han, Ruo-Fei; Wang, Hou-Xiang

    2007-11-01

    The traditional mandatory access control policy (MAC) is regarded as a policy with strict regulation and poor flexibility. The security policy of MAC is so compelling that few information systems would adopt it at the cost of facility, except some particular cases with high security requirement as military or government application. However, with the increasing requirement for flexibility, even some access control systems in military application have switched to role-based access control (RBAC) which is well known as flexible. Though RBAC can meet the demands for flexibility but it is weak in dynamic authorization and consequently can not fit well in the workflow management systems. The task-role-based access control (T-RBAC) is then introduced to solve the problem. It combines both the advantages of RBAC and task-based access control (TBAC) which uses task to manage permissions dynamically. To satisfy the requirement of system which is distributed, well defined with workflow process and critically for time accuracy, this paper will analyze the spirit of MAC, introduce it into the improved T&RBAC model which is based on T-RBAC. At last, a conceptual task-role-based access control model with high security for distributed workflow and real-time application (A_T&RBAC) is built, and its performance is simply analyzed.

  4. Cost-Efficient and Multi-Functional Secure Aggregation in Large Scale Distributed Application

    PubMed Central

    Zhang, Ping; Li, Wenjun; Sun, Hua

    2016-01-01

    Secure aggregation is an essential component of modern distributed applications and data mining platforms. Aggregated statistical results are typically adopted in constructing a data cube for data analysis at multiple abstraction levels in data warehouse platforms. Generating different types of statistical results efficiently at the same time (or referred to as enabling multi-functional support) is a fundamental requirement in practice. However, most of the existing schemes support a very limited number of statistics. Securely obtaining typical statistical results simultaneously in the distribution system, without recovering the original data, is still an open problem. In this paper, we present SEDAR, which is a SEcure Data Aggregation scheme under the Range segmentation model. Range segmentation model is proposed to reduce the communication cost by capturing the data characteristics, and different range uses different aggregation strategy. For raw data in the dominant range, SEDAR encodes them into well defined vectors to provide value-preservation and order-preservation, and thus provides the basis for multi-functional aggregation. A homomorphic encryption scheme is used to achieve data privacy. We also present two enhanced versions. The first one is a Random based SEDAR (REDAR), and the second is a Compression based SEDAR (CEDAR). Both of them can significantly reduce communication cost with the trade-off lower security and lower accuracy, respectively. Experimental evaluations, based on six different scenes of real data, show that all of them have an excellent performance on cost and accuracy. PMID:27551747

  5. Cost-Efficient and Multi-Functional Secure Aggregation in Large Scale Distributed Application.

    PubMed

    Zhang, Ping; Li, Wenjun; Sun, Hua

    2016-01-01

    Secure aggregation is an essential component of modern distributed applications and data mining platforms. Aggregated statistical results are typically adopted in constructing a data cube for data analysis at multiple abstraction levels in data warehouse platforms. Generating different types of statistical results efficiently at the same time (or referred to as enabling multi-functional support) is a fundamental requirement in practice. However, most of the existing schemes support a very limited number of statistics. Securely obtaining typical statistical results simultaneously in the distribution system, without recovering the original data, is still an open problem. In this paper, we present SEDAR, which is a SEcure Data Aggregation scheme under the Range segmentation model. Range segmentation model is proposed to reduce the communication cost by capturing the data characteristics, and different range uses different aggregation strategy. For raw data in the dominant range, SEDAR encodes them into well defined vectors to provide value-preservation and order-preservation, and thus provides the basis for multi-functional aggregation. A homomorphic encryption scheme is used to achieve data privacy. We also present two enhanced versions. The first one is a Random based SEDAR (REDAR), and the second is a Compression based SEDAR (CEDAR). Both of them can significantly reduce communication cost with the trade-off lower security and lower accuracy, respectively. Experimental evaluations, based on six different scenes of real data, show that all of them have an excellent performance on cost and accuracy. PMID:27551747

  6. Factors affecting distributed system security

    SciTech Connect

    Nessett, D.M.

    1985-11-13

    Recent work examining distributed system security requirements is critiqued. A notion of trust based on distributed system topology and distributed system node evaluation levels proposed in that work is shown to be deficient. The notion fails to make allowances for the distributed system physical security environment, security factors related to the management of distributed systems by more than one jurisdictive authority and interactions that can occur between nodes supporting different mandatory and discretionary security mechanisms.

  7. Security of Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Lütkenhaus, Norbert

    2007-03-01

    Quantum Key Distribution (QKD) is the most advanced application of Quantum Information Science. It allows extending secret keys over some distances in such a way that the security of the resulting key material can be guaranteed by the laws of quantum mechanics. In contrast to presently used encryption techniques, the security of QKD can be proven in terms of information-theoretic measures. The resulting key can then be used for many tasks, including exchanging secret messages. QKD has been developed in the language of abstract two-level systems, the qubits. They cannot be easily implemented in optical signals. It took some time to bring the protocols and theory of QKD to the point where they fit to the realities of fiber-optical or free-space applications, including lossy channels. Today, QKD schemes can be implemented reliably using standard off-the-shelf components. Information theoretic security is a theoretical concept. Naturally, it is impossible to demonstrate directly that a given experimental set-up indeed creates a secret key. What one can do is to show that the experiment can give data within a certain parameters regime, such as error rate and loss rate, for which a security proof exists. I will discuss what parameter regime gives provable secure key and which parameter regime cannot lead to secret key. It is desirable to prove `unconditional security,' as it is termed in the world of classical cryptography: no assumption is made about the attacks of an eavesdropper on the quantum channel. However, one has to assume that the signal structure and the measurement device are correctly described by the adopted model and that no eavesdropper can intrude the sender or receiver unit. In this talk I will briefly introduce the concept of QKD and optical implementations. Especially I will discuss security aspects of modern approaches of QKD schemes that allow us to increase the covered distance and the achievable rate.

  8. Secure key storage and distribution

    DOEpatents

    Agrawal, Punit

    2015-06-02

    This disclosure describes a distributed, fault-tolerant security system that enables the secure storage and distribution of private keys. In one implementation, the security system includes a plurality of computing resources that independently store private keys provided by publishers and encrypted using a single security system public key. To protect against malicious activity, the security system private key necessary to decrypt the publication private keys is not stored at any of the computing resources. Rather portions, or shares of the security system private key are stored at each of the computing resources within the security system and multiple security systems must communicate and share partial decryptions in order to decrypt the stored private key.

  9. Distributed network of integrated 3D sensors for transportation security applications

    NASA Astrophysics Data System (ADS)

    Hejmadi, Vic; Garcia, Fred

    2009-05-01

    The US Port Security Agency has strongly emphasized the needs for tighter control at transportation hubs. Distributed arrays of miniature CMOS cameras are providing some solutions today. However, due to the high bandwidth required and the low valued content of such cameras (simple video feed), large computing power and analysis algorithms as well as control software are needed, which makes such an architecture cumbersome, heavy, slow and expensive. We present a novel technique by integrating cheap and mass replicable stealth 3D sensing micro-devices in a distributed network. These micro-sensors are based on conventional structures illumination via successive fringe patterns on the object to be sensed. The communication bandwidth between each sensor remains very small, but is of very high valued content. Key technologies to integrate such a sensor are digital optics and structured laser illumination.

  10. Secure quantum key distribution

    NASA Astrophysics Data System (ADS)

    Lo, Hoi-Kwong; Curty, Marcos; Tamaki, Kiyoshi

    2014-08-01

    Secure communication is crucial in the Internet Age, and quantum mechanics stands poised to revolutionize cryptography as we know it today. In this Review, we introduce the motivation and the current state of the art of research in quantum cryptography. In particular, we discuss the present security model together with its assumptions, strengths and weaknesses. After briefly introducing recent experimental progress and challenges, we survey the latest developments in quantum hacking and countermeasures against it.

  11. Secure Distributed Human Computation

    NASA Astrophysics Data System (ADS)

    Gentry, Craig; Ramzan, Zulfikar; Stubblebine, Stuart

    In Peha’s Financial Cryptography 2004 invited talk, he described the Cyphermint PayCash system (see www.cyphermint.com), which allows people without bank accounts or credit cards (a sizeable segment of the U.S. population) to automatically and instantly cash checks, pay bills, or make Internet transactions through publicly-accessible kiosks. Since PayCash offers automated financial transactions and since the system uses (unprotected) kiosks, security is critical. The kiosk must decide whether a person cashing a check is really the person to whom the check was made out, so it takes a digital picture of the person cashing the check and transmits this picture electronically to a central office, where a human worker compares the kiosk’s picture to one that was taken when the person registered with Cyphermint. If both pictures are of the same person, then the human worker authorizes the transaction.

  12. Application Security Automation

    ERIC Educational Resources Information Center

    Malaika, Majid A.

    2011-01-01

    With today's high demand for online applications and services running on the Internet, software has become a vital component in our lives. With every revolutionary technology comes challenges unique to its characteristics; for online applications, security is one huge concern and challenge. Currently, there are several schemes that address…

  13. Quantum key distribution with delayed privacy amplification and its application to the security proof of a two-way deterministic protocol

    NASA Astrophysics Data System (ADS)

    Fung, Chi-Hang Fred; Ma, Xiongfeng; Chau, H. F.; Cai, Qing-Yu

    2012-03-01

    Privacy amplification (PA) is an essential postprocessing step in quantum key distribution (QKD) for removing any information an eavesdropper may have on the final secret key. In this paper, we consider delaying PA of the final key after its use in one-time pad encryption and prove its security. We prove that the security and the key generation rate are not affected by delaying PA. Delaying PA has two applications: it serves as a tool for significantly simplifying the security proof of QKD with a two-way quantum channel, and also it is useful in QKD networks with trusted relays. To illustrate the power of the delayed PA idea, we use it to prove the security of a qubit-based two-way deterministic QKD protocol which uses four states and four encoding operations.

  14. Developing secure Web-based medical applications.

    PubMed

    Gritzalis, S; Iliadis, J; Gritzalis, D; Spinellis, D; Katsikas, S

    1999-01-01

    The EUROMED-ETS pilot system offers a number of security functionalities using off-the-shelf available products, in order to protect Web-based medical applications. The basic concept used by the proposed security architecture is the Trusted Third Party (TTP). A TTP is used in order to generate, distribute and revoke digital certificates to medical practitioners and healthcare organizations that wish to communicate securely. Digital certificates and digital signatures are used to provide peer and data origin authentication and access control. The paper demonstrates how TTPs can be used effectively in order to develop medical applications that run securely over the World Wide Web. PMID:10224220

  15. Security Data Warehouse Application

    NASA Technical Reports Server (NTRS)

    Vernon, Lynn R.; Hennan, Robert; Ortiz, Chris; Gonzalez, Steve; Roane, John

    2012-01-01

    The Security Data Warehouse (SDW) is used to aggregate and correlate all JSC IT security data. This includes IT asset inventory such as operating systems and patch levels, users, user logins, remote access dial-in and VPN, and vulnerability tracking and reporting. The correlation of this data allows for an integrated understanding of current security issues and systems by providing this data in a format that associates it to an individual host. The cornerstone of the SDW is its unique host-mapping algorithm that has undergone extensive field tests, and provides a high degree of accuracy. The algorithm comprises two parts. The first part employs fuzzy logic to derive a best-guess host assignment using incomplete sensor data. The second part is logic to identify and correct errors in the database, based on subsequent, more complete data. Host records are automatically split or merged, as appropriate. The process had to be refined and thoroughly tested before the SDW deployment was feasible. Complexity was increased by adding the dimension of time. The SDW correlates all data with its relationship to time. This lends support to forensic investigations, audits, and overall situational awareness. Another important feature of the SDW architecture is that all of the underlying complexities of the data model and host-mapping algorithm are encapsulated in an easy-to-use and understandable Perl language Application Programming Interface (API). This allows the SDW to be quickly augmented with additional sensors using minimal coding and testing. It also supports rapid generation of ad hoc reports and integration with other information systems.

  16. A secure communications infrastructure for high-performance distributed computing

    SciTech Connect

    Foster, I.; Koenig, G.; Tuecke, S.

    1997-08-01

    Applications that use high-speed networks to connect geographically distributed supercomputers, databases, and scientific instruments may operate over open networks and access valuable resources. Hence, they can require mechanisms for ensuring integrity and confidentially of communications and for authenticating both users and resources. Security solutions developed for traditional client-server applications do not provide direct support for the program structures, programming tools, and performance requirements encountered in these applications. The authors address these requirements via a security-enhanced version of the Nexus communication library; which they use to provide secure versions of parallel libraries and languages, including the Message Passing Interface. These tools permit a fine degree of control over what, where, and when security mechanisms are applied. In particular, a single application can mix secure and nonsecure communication, allowing the programmer to make fine-grained security/performance tradeoffs. The authors present performance results that quantify the performance of their infrastructure.

  17. Software To Secure Distributed Propulsion Simulations

    NASA Technical Reports Server (NTRS)

    Blaser, Tammy M.

    2003-01-01

    Distributed-object computing systems are presented with many security threats, including network eavesdropping, message tampering, and communications middleware masquerading. NASA Glenn Research Center, and its industry partners, has taken an active role in mitigating the security threats associated with developing and operating their proprietary aerospace propulsion simulations. In particular, they are developing a collaborative Common Object Request Broker Architecture (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines

  18. Enhanced Usage of Keys Obtained by Physical, Unconditionally Secure Distributions

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Granqvist, Claes-Göran

    2015-04-01

    Unconditionally secure physical key distribution schemes are very slow, and it is practically impossible to use a one-time-pad based cipher to guarantee unconditional security for the encryption of data because using the key bits more than once gives out statistical information, for example via the known-plain-text-attack or by utilizing known components of the protocol and language statistics. Here, we outline a protocol that reduces this speed problem and allows almost-one-time-pad based communication with an unconditionally secure physical key of finite length. The physical, unconditionally secure key is not used for data encryption but is employed in order to generate and share a new software-based key without any known-plain-text component. The software-only-based key distribution is then changed from computationally secure to unconditionally secure, because the communicated key-exchange data (algorithm parameters, one-way functions of random numbers, etc.) are encrypted in an unconditionally secure way with a one-time-pad. For practical applications, this combined physical/software key distribution based communication looks favorable compared to the software-only and physical-only key distribution based communication whenever the speed of the physical key distribution is much lower than that of the software-based key distribution. A mathematical security proof of this new scheme remains an open problem.

  19. Computer security in DOE distributed computing systems

    SciTech Connect

    Hunteman, W.J.

    1990-01-01

    The modernization of DOE facilities amid limited funding is creating pressure on DOE facilities to find innovative approaches to their daily activities. Distributed computing systems are becoming cost-effective solutions to improved productivity. This paper defines and describes typical distributed computing systems in the DOE. The special computer security problems present in distributed computing systems are identified and compared with traditional computer systems. The existing DOE computer security policy supports only basic networks and traditional computer systems and does not address distributed computing systems. A review of the existing policy requirements is followed by an analysis of the policy as it applies to distributed computing systems. Suggested changes in the DOE computer security policy are identified and discussed. The long lead time in updating DOE policy will require guidelines for applying the existing policy to distributed systems. Some possible interim approaches are identified and discussed. 2 refs.

  20. Integrating security in a group oriented distributed system

    NASA Technical Reports Server (NTRS)

    Reiter, Michael; Birman, Kenneth; Gong, LI

    1992-01-01

    A distributed security architecture is proposed for incorporation into group oriented distributed systems, and in particular, into the Isis distributed programming toolkit. The primary goal of the architecture is to make common group oriented abstractions robust in hostile settings, in order to facilitate the construction of high performance distributed applications that can tolerate both component failures and malicious attacks. These abstractions include process groups and causal group multicast. Moreover, a delegation and access control scheme is proposed for use in group oriented systems. The focus is the security architecture; particular cryptosystems and key exchange protocols are not emphasized.

  1. Security seal. [Patent application

    DOEpatents

    Gobeli, G.W.

    1981-11-17

    Security for a package or verifying seal in plastic material is provided by a print seal with unique thermally produced imprints in the plastic. If tampering is attempted, the material is irreparably damaged and thus detectable. The pattern of the imprints, similar to fingerprints are recorded as a positive identification for the seal, and corresponding recordings made to allow comparison. The integrity of the seal is proved by the comparison of imprint identification records made by laser beam projection.

  2. Security concepts in clinical applications using DICOM

    NASA Astrophysics Data System (ADS)

    Thiel, Andreas; Bernarding, Johannes; Hohmann, Johachim; Cosic, Domagoi; Tolxdorff, Thomas

    1998-07-01

    Local area networks in hospitals with connection to the Internet enable remote access to medical data and the deployment of distributed medical services. The use of standardized protocols like DICOM as required by the heterogeneous hard- and software infrastructure aggravates the problem that intruders can potentially gain access to sensitive data. Different levels of data protection are therefore required depending on the utilization of secured or publicly accessible networks, the use of standardized communication, and the differing national data security regulations. To investigate different speed-optimized data security concepts, we constructed exemplary scenarios with distributed telemedical services utilizing DICOM-conform software systems. The hospital networks are separated from the Internet by firewalls. Communication between the DICOM applications was made possible by integrating a security level between the DICOM upper layer protocol and the TCP/IP interface, while encrypting the whole datastream using the Secure Socket Layer Protocol (SSL). A DICOM-conform encryption of selected parts of the DICOM messages and files was developed, that encodes only patient-relevant data. Additionally a security proposal of the DICOM working group on security was implemented and analyzed. Data were encrypted by using either symmetric (public and private key) or symmetric (secret key) methods. This sped up the overall data transfer rate and allowed the DICOM-conform, off-line data storage.

  3. The security of practical quantum key distribution

    NASA Astrophysics Data System (ADS)

    Scarani, Valerio; Bechmann-Pasquinucci, Helle; Cerf, Nicolas J.; Dušek, Miloslav; Lütkenhaus, Norbert; Peev, Momtchil

    2009-07-01

    Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on an eavesdropper’s power. This article provides a concise up-to-date review of QKD, biased toward the practical side. Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete-variable, continuous-variable, and distributed-phase-reference protocols).

  4. Homeland Security and Defense Applications

    SciTech Connect

    2014-11-06

    Homeland Security and Defense Applications personnel are the best in the world at detecting and locating dirty bombs, loose nukes, and other radiological sources. The site trains the Nation's emergency responders, who would be among the first to confront a radiological or nuclear emergency. Homeland Security and Defense Applications highly training personnel, characterize the threat environment, produce specialized radiological nuclear detection equipment, train personnel on the equipment and its uses, test and evaluate the equipment, and develop different kinds of high-tech equipment to defeat terrorists. In New York City for example, NNSS scientists assisted in characterizing the radiological nuclear environment after 9/11, and produced specialized radiological nuclear equipment to assist local officials in their Homeland Security efforts.

  5. Homeland Security and Defense Applications

    ScienceCinema

    None

    2016-07-12

    Homeland Security and Defense Applications personnel are the best in the world at detecting and locating dirty bombs, loose nukes, and other radiological sources. The site trains the Nation's emergency responders, who would be among the first to confront a radiological or nuclear emergency. Homeland Security and Defense Applications highly training personnel, characterize the threat environment, produce specialized radiological nuclear detection equipment, train personnel on the equipment and its uses, test and evaluate the equipment, and develop different kinds of high-tech equipment to defeat terrorists. In New York City for example, NNSS scientists assisted in characterizing the radiological nuclear environment after 9/11, and produced specialized radiological nuclear equipment to assist local officials in their Homeland Security efforts.

  6. Privacy and Security Research Group workshop on network and distributed system security: Proceedings

    SciTech Connect

    Not Available

    1993-05-01

    This report contains papers on the following topics: NREN Security Issues: Policies and Technologies; Layer Wars: Protect the Internet with Network Layer Security; Electronic Commission Management; Workflow 2000 - Electronic Document Authorization in Practice; Security Issues of a UNIX PEM Implementation; Implementing Privacy Enhanced Mail on VMS; Distributed Public Key Certificate Management; Protecting the Integrity of Privacy-enhanced Electronic Mail; Practical Authorization in Large Heterogeneous Distributed Systems; Security Issues in the Truffles File System; Issues surrounding the use of Cryptographic Algorithms and Smart Card Applications; Smart Card Augmentation of Kerberos; and An Overview of the Advanced Smart Card Access Control System. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  7. CORBASec Used to Secure Distributed Aerospace Propulsion Simulations

    NASA Technical Reports Server (NTRS)

    Blaser, Tammy M.

    2003-01-01

    The NASA Glenn Research Center and its industry partners are developing a Common Object Request Broker (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines. It was developed by Glenn and is being managed by the NASA Ames Research Center as the lead center reporting directly to NASA Headquarters' Aerospace Technology Enterprise. Glenn is an active domain member of the Object Management Group: an open membership, not-for-profit consortium that produces and manages computer industry specifications (i.e., CORBA) for interoperable enterprise applications. When NPSS is deployed, it will assemble a distributed aerospace propulsion simulation scenario from proprietary analytical CORBA servers and execute them with security afforded by the CORBASec implementation. The NPSS CORBASec test bed was initially developed with the TPBroker Security Service product (Hitachi Computer Products (America), Inc., Waltham, MA) using the Object Request Broker (ORB), which is based on the TPBroker Basic Object Adaptor, and using NPSS software across different firewall products. The test bed has been migrated to the Portable Object Adaptor architecture using the Hitachi Security Service product based on the VisiBroker 4.x ORB (Borland, Scotts Valley, CA) and on the Orbix 2000 ORB (Dublin, Ireland, with U.S. headquarters in Waltham, MA). Glenn, GE Aircraft Engines, and Pratt & Whitney Aircraft are the initial industry partners contributing to the NPSS CORBASec test bed. The test bed uses Security SecurID (RSA Security Inc., Bedford, MA) two-factor token-based authentication together with Hitachi Security Service digital-certificate-based authentication to validate the various NPSS users. The test

  8. Secure and Robust Overlay Content Distribution

    ERIC Educational Resources Information Center

    Kang, Hun Jeong

    2010-01-01

    With the success of applications spurring the tremendous increase in the volume of data transfer, efficient and reliable content distribution has become a key issue. Peer-to-peer (P2P) technology has gained popularity as a promising approach to large-scale content distribution due to its benefits including self-organizing, load-balancing, and…

  9. Multimedia Security System for Security and Medical Applications

    ERIC Educational Resources Information Center

    Zhou, Yicong

    2010-01-01

    This dissertation introduces a new multimedia security system for the performance of object recognition and multimedia encryption in security and medical applications. The system embeds an enhancement and multimedia encryption process into the traditional recognition system in order to improve the efficiency and accuracy of object detection and…

  10. Derived virtual devices: a secure distributed file system mechanism

    NASA Technical Reports Server (NTRS)

    VanMeter, Rodney; Hotz, Steve; Finn, Gregory

    1996-01-01

    This paper presents the design of derived virtual devices (DVDs). DVDs are the mechanism used by the Netstation Project to provide secure shared access to network-attached peripherals distributed in an untrusted network environment. DVDs improve Input/Output efficiency by allowing user processes to perform I/O operations directly from devices without intermediate transfer through the controlling operating system kernel. The security enforced at the device through the DVD mechanism includes resource boundary checking, user authentication, and restricted operations, e.g., read-only access. To illustrate the application of DVDs, we present the interactions between a network-attached disk and a file system designed to exploit the DVD abstraction. We further discuss third-party transfer as a mechanism intended to provide for efficient data transfer in a typical NAP environment. We show how DVDs facilitate third-party transfer, and provide the security required in a more open network environment.

  11. Distributed Wind Market Applications

    SciTech Connect

    Forsyth, T.; Baring-Gould, I.

    2007-11-01

    Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations. America pioneered small wind technology in the 1920s, and it is the only renewable energy industry segment that the United States still dominates in technology, manufacturing, and world market share. The series of analyses covered by this report were conducted to assess some of the most likely ways that advanced wind turbines could be utilized apart from large, central station power systems. Each chapter represents a final report on specific market segments written by leading experts in this field. As such, this document does not speak with one voice but rather a compendium of different perspectives, which are documented from a variety of people in the U.S. distributed wind field.

  12. Secure coprocessing applications and research issues

    SciTech Connect

    Smith, S.W.

    1996-08-01

    The potential of secure coprocessing to address many emerging security challenges and to enable new applications has been a long-standing interest of many members of the Computer Research and Applications Group, including this author. The purpose of this paper is to summarize this thinking, by presenting a taxonomy of some potential applications and by summarizing what we regard as some particularly interesting research questions.

  13. Secure voice for mobile satellite applications

    NASA Technical Reports Server (NTRS)

    Vaisnys, Arvydas; Berner, Jeff

    1990-01-01

    The initial system studies are described which were performed at JPL on secure voice for mobile satellite applications. Some options are examined for adapting existing Secure Telephone Unit III (STU-III) secure telephone equipment for use over a digital mobile satellite link, as well as for the evolution of a dedicated secure voice mobile earth terminal (MET). The work has included some lab and field testing of prototype equipment. The work is part of an ongoing study at JPL for the National Communications System (NCS) on the use of mobile satellites for emergency communications. The purpose of the overall task is to identify and enable the technologies which will allow the NCS to use mobile satellite services for its National Security Emergency Preparedness (NSEP) communications needs. Various other government agencies will also contribute to a mobile satellite user base, and for some of these, secure communications will be an essential feature.

  14. Security threats and solutions in distributed, interoperable health information systems using middleware.

    PubMed

    Blobel, B; Holena, M

    1997-01-01

    Increasingly, distributed, interoperable healthcare information systems, which meet the shared care paradigm, work across the boundaries of policy, organisational, and technological domains and are based on middleware concepts. Especially in healthcare with its sensitive personal and medical data, such systems require advanced data security measures. In the paper, a common object-oriented security model for middleware systems and advertisements for implementation are proposed, corresponding the security requirement of both the user and the application environment. PMID:10175374

  15. Improving security in the Fiber Distributed Data Interface (FDDI) protocol

    NASA Astrophysics Data System (ADS)

    Jones, Benjamin E.

    1992-09-01

    The arrival of high speed packet switched fiber optic LAN's has allowed local area design architectures to be used for larger metropolitan area network (MAN) implementations. The current LAN security mechanisms used in larger and faster fiber optic LAN's and MAN's are often inappropriate or unacceptable for use with emerging applications. The protocol of the Fiber Distributed Data Interface (FDDI) standard provides a natural means for message integrity and availability verification. However, privacy in FDDI is facilitated at higher layers through a generic LAN standard. This thesis proposes a modification to the FDDI protocol implemented at the medium access control (MAC) sublayer, which integrates a confidentiality mechanism for data transfer. The modification provides a simple comprehensive security package to meet the high performance needs of current and emerging applications. In the proposed modification, the inherent properties of the ring are exploited using a unique Central Key Translator to distribute initial session keys. A symmetric bit stream cipher based on modulo2 addition is used for encryption/decryption by the transmitting and receiving stations. Part of the plain text from transmitted message frames is used as feedback to generate new session keys.

  16. Semiquantum key distribution with secure delegated quantum computation

    PubMed Central

    Li, Qin; Chan, Wai Hong; Zhang, Shengyu

    2016-01-01

    Semiquantum key distribution allows a quantum party to share a random key with a “classical” party who only can prepare and measure qubits in the computational basis or reorder some qubits when he has access to a quantum channel. In this work, we present a protocol where a secret key can be established between a quantum user and an almost classical user who only needs the quantum ability to access quantum channels, by securely delegating quantum computation to a quantum server. We show the proposed protocol is robust even when the delegated quantum server is a powerful adversary, and is experimentally feasible with current technology. As one party of our protocol is the most quantum-resource efficient, it can be more practical and significantly widen the applicability scope of quantum key distribution. PMID:26813384

  17. Semiquantum key distribution with secure delegated quantum computation.

    PubMed

    Li, Qin; Chan, Wai Hong; Zhang, Shengyu

    2016-01-01

    Semiquantum key distribution allows a quantum party to share a random key with a "classical" party who only can prepare and measure qubits in the computational basis or reorder some qubits when he has access to a quantum channel. In this work, we present a protocol where a secret key can be established between a quantum user and an almost classical user who only needs the quantum ability to access quantum channels, by securely delegating quantum computation to a quantum server. We show the proposed protocol is robust even when the delegated quantum server is a powerful adversary, and is experimentally feasible with current technology. As one party of our protocol is the most quantum-resource efficient, it can be more practical and significantly widen the applicability scope of quantum key distribution. PMID:26813384

  18. Semiquantum key distribution with secure delegated quantum computation

    NASA Astrophysics Data System (ADS)

    Li, Qin; Chan, Wai Hong; Zhang, Shengyu

    2016-01-01

    Semiquantum key distribution allows a quantum party to share a random key with a “classical” party who only can prepare and measure qubits in the computational basis or reorder some qubits when he has access to a quantum channel. In this work, we present a protocol where a secret key can be established between a quantum user and an almost classical user who only needs the quantum ability to access quantum channels, by securely delegating quantum computation to a quantum server. We show the proposed protocol is robust even when the delegated quantum server is a powerful adversary, and is experimentally feasible with current technology. As one party of our protocol is the most quantum-resource efficient, it can be more practical and significantly widen the applicability scope of quantum key distribution.

  19. Implementing a secure client/server application

    SciTech Connect

    Kissinger, B.A.

    1994-08-01

    There is an increasing rise in attacks and security breaches on computer systems. Particularly vulnerable are systems that exchange user names and passwords directly across a network without encryption. These kinds of systems include many commercial-off-the-shelf client/server applications. A secure technique for authenticating computer users and transmitting passwords through the use of a trusted {open_quotes}broker{close_quotes} and public/private keys is described in this paper.

  20. Security for Multimedia Space Data Distribution over the Internet

    NASA Technical Reports Server (NTRS)

    Stone, Thom; Picinich, Lou; Givens, John J. (Technical Monitor)

    1995-01-01

    Distribution of interactive multimedia to remote investigators will be required for high quality science on the International Space Station (ISS). The Internet with the World Wide Web (WWW) and the JAVA environment are a good match for distribution of data, video and voice to remote science centers. Utilizing the "open" Internet in a secure manner is the major hurdle in making use of this cost effective, off-the-shelf, universal resource. This paper examines the major security threats to an Internet distribution system for payload data and the mitigation of these threats. A proposed security environment for the Space Station Biological Research Facility (SSBRP) is presented with a short description of the tools that have been implemented or planned. Formulating and implementing a security policy, firewalls, host hardware and software security are also discussed in this paper. Security is a vast topic and this paper can only give an overview of important issues. This paper postulates that a structured approach is required and stresses that security must be built into a network from the start. Ignoring security issues or putting them off until late in the development cycle can be disastrous.

  1. Security Bounds for Continuous Variables Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Navascués, Miguel; Acín, Antonio

    2005-01-01

    Security bounds for key distribution protocols using coherent and squeezed states and homodyne measurements are presented. These bounds refer to (i)general attacks and (ii)collective attacks where Eve applies the optimal individual interaction to the sent states, but delays her measurement until the end of the reconciliation process. For the case of a lossy line and coherent states, it is first proven that a secure key distribution is possible up to 1.9dB of losses. For the second scenario, the security bounds are the same as for the completely incoherent attack.

  2. Optical Security Card by Three-dimensional Random Phase Distribution

    NASA Astrophysics Data System (ADS)

    Matoba, Osamu; Nitta, Kouichi

    2007-10-01

    An optical security card based on a three-dimensional (3D) phase object is presented. This card enables us to develop a personal authentification system and secure data storage in a highly scattering medium. The authentification is implemented by the correlation between a speckle pattern of the 3D phase object and stored speckle patterns. For secure data storage, absorption distribution is involved in a scattering volume medium. Appropriate user can only reconstruct the absorption distribution by solving inverse problem. Experimental and numerical results are presented to show the effectiveness of the proposed system.

  3. Applications for cyber security - System and application monitoring

    SciTech Connect

    Marron, J. E.

    2006-07-01

    Standard network security measures are adequate for defense against external attacks. However, many experts agree that the greater threat is from internal sources. Insiders with malicious intentions can change controller instructions, change alarm thresholds, and issue commands to equipment which can damage equipment and compromise control system integrity. In addition to strict physical security the state of the system must be continually monitored. System and application monitoring goes beyond the capabilities of network security appliances. It will include active processes, operating system services, files, network adapters and IP addresses. The generation of alarms is a crucial feature of system and application monitoring. The alarms should be integrated to avoid the burden on operators of checking multiple locations for security violations. Tools for system and application monitoring include commercial software, free software, and ad-hoc tools that can be easily created. System and application monitoring is part of a 'defense-in-depth' approach to a control network security plan. Layered security measures prevent an individual security measure failure from being exploited into a successful security breach. Alarming of individual failures is essential for rapid isolation and correction of single failures. System and application monitoring is the innermost layer of this defense strategy. (authors)

  4. Randomness determines practical security of BB84 quantum key distribution.

    PubMed

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-01-01

    Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system. PMID:26552359

  5. Randomness determines practical security of BB84 quantum key distribution

    PubMed Central

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-01-01

    Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system. PMID:26552359

  6. Randomness determines practical security of BB84 quantum key distribution

    NASA Astrophysics Data System (ADS)

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-11-01

    Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system.

  7. Video motion detection for physical security applications

    SciTech Connect

    Matter, J.C.

    1990-01-01

    Physical security specialists have been attracted to the concept of video motion detection for several years. Claimed potential advantages included additional benefit from existing video surveillance systems, automatic detection, improved performance compared to human observers, and cost effectiveness. In recent years significant advances in image processing dedicated hardware and image analysis algorithms and software have accelerated the successful application of video motion detection systems to a variety of physical security applications. Currently Sandia is developing several advanced systems that employ image processing techniques for a broader set of safeguards and security applications. TCATS (Target Cueing and Tracking System) uses a set of powerful, flexible, modular algorithms and software to alarm on purposeful target motion. Custom TCATS hardware optimized for perimeter security applications is currently being evaluated with video input. VISDTA (Video Imaging System for Detection, Tracking, and Assessment) uses some of the same TCATS algorithms and operates with a thermal imager input. In the scan mode, VISDTA detects changes in a scene from the previous image at a given scan point; in the stare mode, VISDTA detects purposeful motion similar to TCATS.

  8. Photonic sensor applications in transportation security

    NASA Astrophysics Data System (ADS)

    Krohn, David A.

    2007-09-01

    There is a broad range of security sensing applications in transportation that can be facilitated by using fiber optic sensors and photonic sensor integrated wireless systems. Many of these vital assets are under constant threat of being attacked. It is important to realize that the threats are not just from terrorism but an aging and often neglected infrastructure. To specifically address transportation security, photonic sensors fall into two categories: fixed point monitoring and mobile tracking. In fixed point monitoring, the sensors monitor bridge and tunnel structural health and environment problems such as toxic gases in a tunnel. Mobile tracking sensors are being designed to track cargo such as shipboard cargo containers and trucks. Mobile tracking sensor systems have multifunctional sensor requirements including intrusion (tampering), biochemical, radiation and explosives detection. This paper will review the state of the art of photonic sensor technologies and their ability to meet the challenges of transportation security.

  9. Security of quantum key distribution with light sources that are not independently and identically distributed

    NASA Astrophysics Data System (ADS)

    Nagamatsu, Yuichi; Mizutani, Akihiro; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki; Tamaki, Kiyoshi

    2016-04-01

    Although quantum key distribution (QKD) is theoretically secure, there is a gap between the theory and practice. In fact, real-life QKD may not be secure because component devices in QKD systems may deviate from the theoretical models assumed in security proofs. To solve this problem, it is necessary to construct the security proof under realistic assumptions on the source and measurement unit. In this paper, we prove the security of a QKD protocol under practical assumptions on the source that accommodate fluctuation of the phase and intensity modulations. As long as our assumptions hold, it does not matter at all how the phase and intensity distribute or whether or not their distributions over different pulses are independently and identically distributed. Our work shows that practical sources can be safely employed in QKD experiments.

  10. Chemical Sniffing Instrumentation for Security Applications.

    PubMed

    Giannoukos, Stamatios; Brkić, Boris; Taylor, Stephen; Marshall, Alan; Verbeck, Guido F

    2016-07-27

    Border control for homeland security faces major challenges worldwide due to chemical threats from national and/or international terrorism as well as organized crime. A wide range of technologies and systems with threat detection and monitoring capabilities has emerged to identify the chemical footprint associated with these illegal activities. This review paper investigates artificial sniffing technologies used as chemical sensors for point-of-use chemical analysis, especially during border security applications. This article presents an overview of (a) the existing available technologies reported in the scientific literature for threat screening, (b) commercially available, portable (hand-held and stand-off) chemical detection systems, and (c) their underlying functional and operational principles. Emphasis is given to technologies that have been developed for in-field security operations, but laboratory developed techniques are also summarized as emerging technologies. The chemical analytes of interest in this review are (a) volatile organic compounds (VOCs) associated with security applications (e.g., illegal, hazardous, and terrorist events), (b) chemical "signatures" associated with human presence, and PMID:27388215

  11. Chemical Sniffing Instrumentation for Security Applications.

    PubMed

    Giannoukos, Stamatios; Brkić, Boris; Taylor, Stephen; Marshall, Alan; Verbeck, Guido F

    2016-07-27

    Border control for homeland security faces major challenges worldwide due to chemical threats from national and/or international terrorism as well as organized crime. A wide range of technologies and systems with threat detection and monitoring capabilities has emerged to identify the chemical footprint associated with these illegal activities. This review paper investigates artificial sniffing technologies used as chemical sensors for point-of-use chemical analysis, especially during border security applications. This article presents an overview of (a) the existing available technologies reported in the scientific literature for threat screening, (b) commercially available, portable (hand-held and stand-off) chemical detection systems, and (c) their underlying functional and operational principles. Emphasis is given to technologies that have been developed for in-field security operations, but laboratory developed techniques are also summarized as emerging technologies. The chemical analytes of interest in this review are (a) volatile organic compounds (VOCs) associated with security applications (e.g., illegal, hazardous, and terrorist events), (b) chemical "signatures" associated with human presence, and

  12. Video motion detection for physical security applications

    SciTech Connect

    Matter, J.C. )

    1990-01-01

    Physical security specialists have been attracted to the concept of video motion detection for several years. Claimed potential advantages included additional benefit from existing video surveillance systems, automatic detection, improved performance compared to human observers, and cost-effectiveness. In recent years, significant advances in image-processing dedicated hardware and image analysis algorithms and software have accelerated the successful application of video motion detection systems to a variety of physical security applications. Early video motion detectors (VMDs) were useful for interior applications of volumetric sensing. Success depended on having a relatively well-controlled environment. Attempts to use these systems outdoors frequently resulted in an unacceptable number of nuisance alarms. Currently, Sandia National Laboratories (SNL) is developing several advanced systems that employ image-processing techniques for a broader set of safeguards and security applications. The Target Cueing and Tracking System (TCATS), the Video Imaging System for Detection, Tracking, and Assessment (VISDTA), the Linear Infrared Scanning Array (LISA); the Mobile Intrusion Detection and Assessment System (MIDAS), and the Visual Artificially Intelligent Surveillance (VAIS) systems are described briefly.

  13. The application of image processing techniques and technology for security and surveillance applications

    NASA Astrophysics Data System (ADS)

    Smith, Moira I.; Hickman, Duncan

    2007-04-01

    The range and scope of EO/IR sensor systems within security and surveillance applications is growing, and this places a corresponding demand on the image processing functionality required to meet the end-users' needs and requirements. Within this paper, the application of different image processing architectures and techniques is reviewed in terms of situational awareness criteria and is illustrated through specific system applications. The concepts and benefits of multimodal and distributed sensor systems are also considered together with the attendant data registration and fusion techniques. Finally, the exploitation of a priori information within the integrated security and surveillance picture is considered from both a processing technology and image display perspective.

  14. Security proof for quantum key distribution using qudit systems

    SciTech Connect

    Sheridan, Lana; Scarani, Valerio

    2010-09-15

    We provide security bounds against coherent attacks for two families of quantum key distribution protocols that use d-dimensional quantum systems. In the asymptotic regime, both the secret key rate for fixed noise and the robustness to noise increase with d. The finite key corrections are found to be almost insensitive to d < or approx. 20.

  15. Drop-in Security for Distributed and Portable Computing Elements.

    ERIC Educational Resources Information Center

    Prevelakis, Vassilis; Keromytis, Angelos

    2003-01-01

    Proposes the use of a special purpose drop-in firewall/VPN gateway called Sieve, that can be inserted between the mobile workstation and the network to provide individualized security services for that particular station. Discusses features and advantages of the system and demonstrates how Sieve was used in various application areas such as at…

  16. 33 CFR 125.55 - Outstanding Port Security Card Applications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Outstanding Port Security Card... WATERFRONT FACILITIES OR VESSELS § 125.55 Outstanding Port Security Card Applications. A person who has filed an application for a Coast Guard Port Security Card and who did not receive such a document prior...

  17. 33 CFR 125.55 - Outstanding Port Security Card Applications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Outstanding Port Security Card... WATERFRONT FACILITIES OR VESSELS § 125.55 Outstanding Port Security Card Applications. A person who has filed an application for a Coast Guard Port Security Card and who did not receive such a document prior...

  18. 33 CFR 125.55 - Outstanding Port Security Card Applications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Outstanding Port Security Card... WATERFRONT FACILITIES OR VESSELS § 125.55 Outstanding Port Security Card Applications. A person who has filed an application for a Coast Guard Port Security Card and who did not receive such a document prior...

  19. 33 CFR 125.55 - Outstanding Port Security Card Applications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Outstanding Port Security Card... WATERFRONT FACILITIES OR VESSELS § 125.55 Outstanding Port Security Card Applications. A person who has filed an application for a Coast Guard Port Security Card and who did not receive such a document prior...

  20. 33 CFR 125.55 - Outstanding Port Security Card Applications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Outstanding Port Security Card... WATERFRONT FACILITIES OR VESSELS § 125.55 Outstanding Port Security Card Applications. A person who has filed an application for a Coast Guard Port Security Card and who did not receive such a document prior...

  1. Accelerators for Discovery Science and Security applications

    NASA Astrophysics Data System (ADS)

    Todd, A. M. M.; Bluem, H. P.; Jarvis, J. D.; Park, J. H.; Rathke, J. W.; Schultheiss, T. J.

    2015-05-01

    Several Advanced Energy Systems (AES) accelerator projects that span applications in Discovery Science and Security are described. The design and performance of the IR and THz free electron laser (FEL) at the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin that is now an operating user facility for physical chemistry research in molecular and cluster spectroscopy as well as surface science, is highlighted. The device was designed to meet challenging specifications, including a final energy adjustable in the range of 15-50 MeV, low longitudinal emittance (<50 keV-psec) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micropulse repetition rate of 1 GHz and a macropulse length of up to 15 μs. Secondly, we will describe an ongoing effort to develop an ultrafast electron diffraction (UED) source that is scheduled for completion in 2015 with prototype testing taking place at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). This tabletop X-band system will find application in time-resolved chemical imaging and as a resource for drug-cell interaction analysis. A third active area at AES is accelerators for security applications where we will cover some top-level aspects of THz and X-ray systems that are under development and in testing for stand-off and portal detection.

  2. Security of quantum key distribution with multiphoton components.

    PubMed

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-01-01

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states. PMID:27383014

  3. Security of quantum key distribution with multiphoton components.

    PubMed

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-07-07

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states.

  4. Security of quantum key distribution with multiphoton components

    PubMed Central

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-01-01

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states. PMID:27383014

  5. Security of quantum key distribution with multiphoton components

    NASA Astrophysics Data System (ADS)

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-07-01

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states.

  6. Restricted access processor - An application of computer security technology

    NASA Technical Reports Server (NTRS)

    Mcmahon, E. M.

    1985-01-01

    This paper describes a security guard device that is currently being developed by Computer Sciences Corporation (CSC). The methods used to provide assurance that the system meets its security requirements include the system architecture, a system security evaluation, and the application of formal and informal verification techniques. The combination of state-of-the-art technology and the incorporation of new verification procedures results in a demonstration of the feasibility of computer security technology for operational applications.

  7. Passive terahertz imaging for security application

    NASA Astrophysics Data System (ADS)

    Guo, Lan-tao; Deng, Chao; Zhao, Yuan-meng; Zhang, Cun-lin

    2013-08-01

    The passive detection is safe for passengers and operators as no radiation. Therefore, passive terahertz (THz) imaging can be applied to human body security check. Imaging in the THz band offers the unique property of being able to identify object through a range of materials. Therefore passive THz imaging is meaningful for security applications. This attribute has always been of interest to both the civil and military marks with applications. We took advantage of a single THz detector and a trihedral scanning mirror to propose another passive THz beam scanning imaging method. This method overcame the deficiencies of the serious decline in image quality due to the movement of the focused mirror. We exploited a THz scanning mirror with a trihedral scanning mirror and an ellipsoidal mirror to streamline the structure of the system and increase the scanning speed. Then the passive THz beam scanning imaging system was developed based on this method. The parameters were set as follows: the best imaging distance was 1.7m, the image height was 2m, the image width was 1m, the minimum imaging time of per frame was 8s, and the minimum resolution was 4cm. We imaged humans with different objects hidden under their clothes, such as fruit knife, belt buckle, mobile phone, screwdriver, bus cards, keys and other items. All the tested stuffs could be detected and recognized from the image.

  8. 26 CFR 1.731-2 - Partnership distributions of marketable securities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... security within five years of the date the security became marketable. (2) Anti-stuffing rule. Paragraph (d...) The partnership distributed the security within five years of either the date the security was...-tier partnership. (f) Basis rules—(1) Partner's basis—(i) Partner's basis in distributed...

  9. 26 CFR 1.731-2 - Partnership distributions of marketable securities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... security within five years of the date the security became marketable. (2) Anti-stuffing rule. Paragraph (d...) The partnership distributed the security within five years of either the date the security was...-tier partnership. (f) Basis rules—(1) Partner's basis—(i) Partner's basis in distributed...

  10. A Secure Distributed Spectrum Sensing Scheme in Cognitive Radio

    NASA Astrophysics Data System (ADS)

    Nhan, Nguyen-Thanh; Koo, Insoo

    Distributed spectrum sensing provides an improvement for primary user detection but leads a new security threat into CR system. The spectrum sensing data falsification malicious users can decrease the cooperative sensing performance. In this paper, we propose a distributed scheme in which the presence and absence hypotheses distribution of primary signal is estimated based on past sensing received power data by robust statistics, and the data fusion are performed according to estimated parameters by Dempster-Shafer theory of evidence. Our scheme can achive a powerful capability of malicious user elimination due to the abnormality of the distribution of malicious users compared with that of other legitimate users. In addition, the performance of our data fusion scheme is enhanced by supplemented nodes’ reliability weight.

  11. Health Information Security in Hospitals: the Application of Security Safeguards

    PubMed Central

    Mehraeen, Esmaeil; Ayatollahi, Haleh; Ahmadi, Maryam

    2016-01-01

    Introduction: A hospital information system has potentials to improve the accessibility of clinical information and the quality of health care. However, the use of this system has resulted in new challenges, such as concerns over health information security. This paper aims to assess the status of information security in terms of administrative, technical and physical safeguards in the university hospitals. Methods: This was a survey study in which the participants were information technology (IT) managers (n=36) who worked in the hospitals affiliated to the top ranked medical universities (university A and university B). Data were collected using a questionnaire. The content validity of the questionnaire was examined by the experts and the reliability of the questionnaire was determined using Cronbach’s coefficient alpha (α=0.75). Results: The results showed that the administrative safeguards were arranged at a medium level. In terms of the technical safeguards and the physical safeguards, the IT managers rated them at a strong level. Conclusion: According to the results, among three types of security safeguards, the administrative safeguards were assessed at the medium level. To improve it, developing security policies, implementing access control models and training users are recommended. PMID:27046944

  12. SMART Sensors for Homeland Security Applications

    SciTech Connect

    Lind, Michael A.; Wright, Bob W.

    2004-02-27

    New SMART approaches to fast, high sensitivity, high selectivity, low false indication, self communicating, distributed sensor networks for detection of chemical, biological and radiation threats are being developed at PNNL. These new sensors have their roots in clever combinations of high affinity ligands, self assembled monolayers, shape-specific receptor surfaces, mesoporous superstructures, rapidly fabricated single-chain antibodies, stabilized enzyme reactors and manipulated micro-beads for optical, mass, and direct electronic transduction. Assemblies of these SMART materials and structures are able to efficiently reject the bulk of highly cluttered physical environmental backgrounds, collect the product of interest with extremely high selectivity, concentrate it and present it for efficient and sensitive detection. The general construction methodology for these structures and examples of new sensor systems for detecting chemical, biological and nuclear materials of concern in the Homeland Security context is presented.

  13. Radiation Detection for Homeland Security Applications

    NASA Astrophysics Data System (ADS)

    Ely, James

    2008-05-01

    In the past twenty years or so, there have been significant changes in the strategy and applications for homeland security. Recently there have been significant at deterring and interdicting terrorists and associated organizations. This is a shift in the normal paradigm of deterrence and surveillance of a nation and the `conventional' methods of warfare to the `unconventional' means that terrorist organizations resort to. With that shift comes the responsibility to monitor international borders for weapons of mass destruction, including radiological weapons. As a result, countries around the world are deploying radiation detection instrumentation to interdict the illegal shipment of radioactive material crossing international borders. These efforts include deployments at land, rail, air, and sea ports of entry in the US and in European and Asian countries. Radioactive signatures of concern include radiation dispersal devices (RDD), nuclear warheads, and special nuclear material (SNM). Radiation portal monitors (RPMs) are used as the main screening tool for vehicles and cargo at borders, supplemented by handheld detectors, personal radiation detectors, and x-ray imaging systems. This talk will present an overview of radiation detection equipment with emphasis on radiation portal monitors. In the US, the deployment of radiation detection equipment is being coordinated by the Domestic Nuclear Detection Office within the Department of Homeland Security, and a brief summary of the program will be covered. Challenges with current generation systems will be discussed as well as areas of investigation and opportunities for improvements. The next generation of radiation portal monitors is being produced under the Advanced Spectroscopic Portal program and will be available for deployment in the near future. Additional technologies, from commercially available to experimental, that provide additional information for radiation screening, such as density imaging equipment, will

  14. Secure distributed genome analysis for GWAS and sequence comparison computation

    PubMed Central

    2015-01-01

    Background The rapid increase in the availability and volume of genomic data makes significant advances in biomedical research possible, but sharing of genomic data poses challenges due to the highly sensitive nature of such data. To address the challenges, a competition for secure distributed processing of genomic data was organized by the iDASH research center. Methods In this work we propose techniques for securing computation with real-life genomic data for minor allele frequency and chi-squared statistics computation, as well as distance computation between two genomic sequences, as specified by the iDASH competition tasks. We put forward novel optimizations, including a generalization of a version of mergesort, which might be of independent interest. Results We provide implementation results of our techniques based on secret sharing that demonstrate practicality of the suggested protocols and also report on performance improvements due to our optimization techniques. Conclusions This work describes our techniques, findings, and experimental results developed and obtained as part of iDASH 2015 research competition to secure real-life genomic computations and shows feasibility of securely computing with genomic data in practice. PMID:26733307

  15. Tools for distributed application management

    NASA Technical Reports Server (NTRS)

    Marzullo, Keith; Wood, Mark; Cooper, Robert; Birman, Kenneth P.

    1990-01-01

    Distributed application management consists of monitoring and controlling an application as it executes in a distributed environment. It encompasses such activities as configuration, initialization, performance monitoring, resource scheduling, and failure response. The Meta system is described: a collection of tools for constructing distributed application management software. Meta provides the mechanism, while the programmer specifies the policy for application management. The policy is manifested as a control program which is a soft real time reactive program. The underlying application is instrumented with a variety of built-in and user defined sensors and actuators. These define the interface between the control program and the application. The control program also has access to a database describing the structure of the application and the characteristics of its environment. Some of the more difficult problems for application management occur when pre-existing, nondistributed programs are integrated into a distributed application for which they may not have been intended. Meta allows management functions to be retrofitted to such programs with a minimum of effort.

  16. Tools for distributed application management

    NASA Technical Reports Server (NTRS)

    Marzullo, Keith; Cooper, Robert; Wood, Mark; Birman, Kenneth P.

    1990-01-01

    Distributed application management consists of monitoring and controlling an application as it executes in a distributed environment. It encompasses such activities as configuration, initialization, performance monitoring, resource scheduling, and failure response. The Meta system (a collection of tools for constructing distributed application management software) is described. Meta provides the mechanism, while the programmer specifies the policy for application management. The policy is manifested as a control program which is a soft real-time reactive program. The underlying application is instrumented with a variety of built-in and user-defined sensors and actuators. These define the interface between the control program and the application. The control program also has access to a database describing the structure of the application and the characteristics of its environment. Some of the more difficult problems for application management occur when preexisting, nondistributed programs are integrated into a distributed application for which they may not have been intended. Meta allows management functions to be retrofitted to such programs with a minimum of effort.

  17. Machine intelligence applications to securities production

    SciTech Connect

    Johnson, C.K.

    1987-01-01

    The production of security documents provides a cache of interesting problems ranging across a broad spectrum. Some of the problems do not have rigorous scientific solutions available at this time and provide opportunities for less structured approaches such as AI. AI methods can be used in conjunction with traditional scientific and computational methods. The most productive applications of AI occur when this marriage of methods can be carried out without motivation to prove that one method is better than the other. Fields such as ink chemistry and technology, and machine inspection of graphic arts printing offer interesting challenges which will continue to intrigue current and future generations of researchers into the 21st century.

  18. Security Applications Of Computer Motion Detection

    NASA Astrophysics Data System (ADS)

    Bernat, Andrew P.; Nelan, Joseph; Riter, Stephen; Frankel, Harry

    1987-05-01

    An important area of application of computer vision is the detection of human motion in security systems. This paper describes the development of a computer vision system which can detect and track human movement across the international border between the United States and Mexico. Because of the wide range of environmental conditions, this application represents a stringent test of computer vision algorithms for motion detection and object identification. The desired output of this vision system is accurate, real-time locations for individual aliens and accurate statistical data as to the frequency of illegal border crossings. Because most detection and tracking routines assume rigid body motion, which is not characteristic of humans, new algorithms capable of reliable operation in our application are required. Furthermore, most current detection and tracking algorithms assume a uniform background against which motion is viewed - the urban environment along the US-Mexican border is anything but uniform. The system works in three stages: motion detection, object tracking and object identi-fication. We have implemented motion detection using simple frame differencing, maximum likelihood estimation, mean and median tests and are evaluating them for accuracy and computational efficiency. Due to the complex nature of the urban environment (background and foreground objects consisting of buildings, vegetation, vehicles, wind-blown debris, animals, etc.), motion detection alone is not sufficiently accurate. Object tracking and identification are handled by an expert system which takes shape, location and trajectory information as input and determines if the moving object is indeed representative of an illegal border crossing.

  19. Lilith: A scalable secure tool for massively parallel distributed computing

    SciTech Connect

    Armstrong, R.C.; Camp, L.J.; Evensky, D.A.; Gentile, A.C.

    1997-06-01

    Changes in high performance computing have necessitated the ability to utilize and interrogate potentially many thousands of processors. The ASCI (Advanced Strategic Computing Initiative) program conducted by the United States Department of Energy, for example, envisions thousands of distinct operating systems connected by low-latency gigabit-per-second networks. In addition multiple systems of this kind will be linked via high-capacity networks with latencies as low as the speed of light will allow. Code which spans systems of this sort must be scalable; yet constructing such code whether for applications, debugging, or maintenance is an unsolved problem. Lilith is a research software platform that attempts to answer these questions with an end toward meeting these needs. Presently, Lilith exists as a test-bed, written in Java, for various spanning algorithms and security schemes. The test-bed software has, and enforces, hooks allowing implementation and testing of various security schemes.

  20. Secure quantum key distribution with an uncharacterized source.

    PubMed

    Koashi, Masato; Preskill, John

    2003-02-01

    We prove the security of the Bennett-Brassard (BB84) quantum key distribution protocol for an arbitrary source whose averaged states are basis independent, a condition that is automatically satisfied if the source is suitably designed. The proof is based on the observation that, to an adversary, the key extraction process is equivalent to a measurement in the sigma(x) basis performed on a pure sigma(z)-basis eigenstate. The dependence of the achievable key length on the bit error rate is the same as that established by Shor and Preskill [Phys. Rev. Lett. 85, 441 (2000)

  1. Acoustic cueing for surveillance and security applications

    NASA Astrophysics Data System (ADS)

    Ferguson, Brian G.; Lo, Kam W.

    2006-05-01

    Acoustic sensing systems are used to detect, localize, track and classify sources of military interest in real time with negligible false alarm rates. Automated acoustic systems are able to cue response systems and devices such as cameras for source identification. Two defense applications are demonstrated: one involves remote land-based surveillance where an array of unattended passive acoustic ground sensors automatically cues a day/night camera to observe the passage of ground vehicles, the landing of air vehicles on an isolated air strip, and the transit of motor-powered watercraft in estuarine waters. The video imagery is compressed and relayed via satellite to a central monitoring facility for input to the decision and intelligence processes. The other application is for in-harbor force protection and port infrastructure security where a high-frequency high-resolution monostatic active sonar automatically detects, localizes and tracks fast inshore surface watercraft in real time. A cavitating propeller forms a bubble wake that lasts several minutes and is highly reflective of the incident sonar energy. The wake, which traces the trajectory of the watercraft, is clearly delineated on the sonar display. The active sonar reliably estimates the instantaneous position of the moving source at each point along its path of travel. The sonar can be used to pan an imaging device to aid identification of the moving source or to vector autonomous response craft for intercept purposes.

  2. Scoring recognizability of faces for security applications

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Ciocca, Gianluigi; Guarnera, Giuseppe Claudio; Scaggiante, Andrea; Schettini, Raimondo

    2014-03-01

    In security applications the human face plays a fundamental role, however we have to assume non-collaborative subjects. A face can be partially visible or occluded due to common-use accessories such as sunglasses, hats, scarves and so on. Also the posture of the head influence the face recognizability. Given a video sequence in input, the proposed system is able to establish if a face is depicted in a frame, and to determine its degree of recognizability in terms of clearly visible facial features. The system implements features filtering scheme combined with a skin-based face detection to improve its the robustness to false positives and cartoon-like faces. Moreover the system takes into account the recognizability trend over a customizable sliding time window to allow a high level analysis of the subject behaviour. The recognizability criteria can be tuned for each specific application. We evaluate our system both in qualitative and quantitative terms, using a data set of manually annotated videos. Experimental results confirm the effectiveness of the proposed system.

  3. Applications of spatially offset Raman spectroscopy to defense and security

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason; Hopkins, Rebecca

    2016-05-01

    Spatially offset Raman spectroscopy (SORS) allows for sub-surface and through barrier detection and has applications in drug analysis, cancer detection, forensic science, as well as defense and security. This paper reviews previous efforts in SORS and other through barrier Raman techniques and presents a discussion on current research in defense and security applications.

  4. 17 CFR 242.102 - Activities by issuers and selling security holders during a distribution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Activities by issuers and selling security holders during a distribution. 242.102 Section 242.102 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) REGULATIONS M, SHO, ATS, AC, AND NMS AND CUSTOMER...

  5. On enabling secure applications through off-line biometric identification

    SciTech Connect

    Davida, G.I.; Frankel, Y.; Matt, B.J.

    1998-04-01

    In developing secure applications and systems, the designers often must incorporate secure user identification in the design specification. In this paper, the authors study secure off line authenticated user identification schemes based on a biometric system that can measure a user`s biometric accurately (up to some Hamming distance). The schemes presented here enhance identification and authorization in secure applications by binding a biometric template with authorization information on a token such as a magnetic strip. Also developed here are schemes specifically designed to minimize the compromise of a user`s private biometrics data, encapsulated in the authorization information, without requiring secure hardware tokens. In this paper the authors furthermore study the feasibility of biometrics performing as an enabling technology for secure system and application design. The authors investigate a new technology which allows a user`s biometrics to facilitate cryptographic mechanisms.

  6. 17 CFR 270.22c-1 - Pricing of redeemable securities for distribution, redemption and repurchase.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) (17 CFR 270.14a-3(b))) from selling or repurchasing Trust units in a secondary market at a price based... securities for distribution, redemption and repurchase. 270.22c-1 Section 270.22c-1 Commodity and Securities... 1940 § 270.22c-1 Pricing of redeemable securities for distribution, redemption and repurchase. (a)...

  7. 17 CFR 270.22c-1 - Pricing of redeemable securities for distribution, redemption and repurchase.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) (17 CFR 270.14a-3(b))) from selling or repurchasing Trust units in a secondary market at a price based... securities for distribution, redemption and repurchase. 270.22c-1 Section 270.22c-1 Commodity and Securities... 1940 § 270.22c-1 Pricing of redeemable securities for distribution, redemption and repurchase. (a)...

  8. Imaging terahertz radar for security applications

    NASA Astrophysics Data System (ADS)

    Semenov, Alexei; Richter, Heiko; Böttger, Ute; Hübers, Heinz-Wilhelm

    2008-04-01

    Detection of concealed threats is a key issue in public security. In short range applications, passive imagers operating at millimeter wavelengths fulfill this task. However, for larger distances, they will suffer from limited spatial resolution. We will describe the design and performance of 0.8-THz imaging radar that is capable to detect concealed objects at a distance of more than 20 meter. The radar highlights the target with the built-in cw transmitter and analyses the returned signal making use of a heterodyne receiver with a single superconducting hot-electron bolometric mixer. With an integration time of 0.3 sec, the receiver distinguishes a temperature difference of 2 K at the 20 m distance. Both the transmitter and the receiver use the same modified Gregorian telescope consisting from two offset elliptic mirrors. The primary mirror defines limits the lateral resolution of the radar to 2 cm at 20 m distance. At this distance, the field of view of the radar has the diameter 0.5 m. It is sampled with a high-speed conical scanner that allows for a frame time less than 5 sec. The transmitter delivers to the target power with a density less than ten microwatt per squared centimeter, which is harmless for human beings. The radar implements a sensor fusion technique that greatly improves the ability to identify concealed objects.

  9. Addressing security issues related to virtual institute distributed activities

    NASA Astrophysics Data System (ADS)

    Stytz, Martin R.; Banks, Sheila B.

    2008-03-01

    One issue confounding the development and experimentation of distributed modeling and simulation environments is the inability of the project team to identify and collaborate with resources, both human and technical, from outside the United States. This limitation is especially significant within the human behavior representation area where areas such as cultural effects research and joint command team behavior modeling require the participation of various cultural and national representatives. To address this limitation, as well as other human behavior representation research issues, NATO Research and Technology Organization initiated a project to develop a NATO virtual institute that enables more effective and more collaborative research into human behavior representation. However, in building and operating a virtual institute one of the chief concerns must be the cyber security of the institute. Because the institute "exists" in cyberspace, all of its activities are susceptible to cyberattacks, subterfuge, denial of service and all of the vulnerabilities that networked computers must face. In our opinion, for the concept of virtual institutes to be successful and useful, their operations and services must be protected from the threats in the cyber environment. A key to developing the required protection is the development and promulgation of standards for cyber security. In this paper, we discuss the types of cyber standards that are required, how new internet technologies can be exploited and can benefit the promulgation, development, maintenance, and robustness of the standards. This paper is organized as follows. Section One introduces the concept of the virtual institutes, the expected benefits, and the motivation for our research and for research in this area. Section Two presents background material and a discussion of topics related to VIs, uman behavior and cultural modeling, and network-centric warfare. Section Three contains a discussion of the

  10. A cooperative model for IS security risk management in distributed environment.

    PubMed

    Feng, Nan; Zheng, Chundong

    2014-01-01

    Given the increasing cooperation between organizations, the flexible exchange of security information across the allied organizations is critical to effectively manage information systems (IS) security in a distributed environment. In this paper, we develop a cooperative model for IS security risk management in a distributed environment. In the proposed model, the exchange of security information among the interconnected IS under distributed environment is supported by Bayesian networks (BNs). In addition, for an organization's IS, a BN is utilized to represent its security environment and dynamically predict its security risk level, by which the security manager can select an optimal action to safeguard the firm's information resources. The actual case studied illustrates the cooperative model presented in this paper and how it can be exploited to manage the distributed IS security risk effectively.

  11. Simple fiber optic sensor for applications in security systems

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Karol, M.; Markowski, P.; Napierala, M. S.

    2014-10-01

    In this paper we demonstrate measurement results of the modalmetric fiber optic sensor used for the monitoring of the fiber optic link integrity to protect it against unauthorized access to classified information. The presented construction is based on the detection of changes of the modes distribution in a multimode fiber. Any mechanical stress on the multimode fiber causes changes of polarization and distribution of propagating modes, hence it changes the distribution of modes at the end of the multimode fiber. Observation of these changes using a narrow core single-mode fiber allows to use the structure as an optical fiber sensor. We used several kilometers long optical links to conduct field tests of laboratory sensor. On this basis the prototype module of modalmetric fiber optic sensor wasbuilt. The modification of optoelectronic part, the variation of sensor length and the change of the method of light reflection at the end of the fiber enable the use of the modalmetric fiber optic sensor in many applications. The sensor finds wide range of applications in security systems. It can be applied to protect the museum's collection, transmission lines and to protect objects of critical infrastructure.

  12. Recent applications of thermal imagers for security assessment

    SciTech Connect

    Bisbee, T.L.

    1997-06-01

    This paper discusses recent applications by Sandia National Laboratories of cooled and uncooled thermal infrared imagers to wide-area security assessment systems. Thermal imagers can solve many security assessment problems associated with the protection of high-value assets at military bases, secure installations, and commercial facilities. Thermal imagers can provide surveillance video from security areas or perimeters both day and night without expensive security lighting. Until fairly recently, thermal imagers required open-loop cryogenic cooling to operate. The high cost of these systems and associated maintenance requirements restricted their widespread use. However, recent developments in reliable, closed-loop, linear drive cryogenic coolers and uncooled infrared imagers have dramatically reduced maintenance requirements, extended MTBF, and are leading to reduced system cost. These technology developments are resulting in greater availability and practicality for military as well as civilian security applications.

  13. Control System Applicable Use Assessment of the Secure Computing Corporation - Secure Firewall (Sidewinder)

    SciTech Connect

    Hadley, Mark D.; Clements, Samuel L.

    2009-01-01

    Battelle’s National Security & Defense objective is, “applying unmatched expertise and unique facilities to deliver homeland security solutions. From detection and protection against weapons of mass destruction to emergency preparedness/response and protection of critical infrastructure, we are working with industry and government to integrate policy, operational, technological, and logistical parameters that will secure a safe future”. In an ongoing effort to meet this mission, engagements with industry that are intended to improve operational and technical attributes of commercial solutions that are related to national security initiatives are necessary. This necessity will ensure that capabilities for protecting critical infrastructure assets are considered by commercial entities in their development, design, and deployment lifecycles thus addressing the alignment of identified deficiencies and improvements needed to support national cyber security initiatives. The Secure Firewall (Sidewinder) appliance by Secure Computing was assessed for applicable use in critical infrastructure control system environments, such as electric power, nuclear and other facilities containing critical systems that require augmented protection from cyber threat. The testing was performed in the Pacific Northwest National Laboratory’s (PNNL) Electric Infrastructure Operations Center (EIOC). The Secure Firewall was tested in a network configuration that emulates a typical control center network and then evaluated. A number of observations and recommendations are included in this report relating to features currently included in the Secure Firewall that support critical infrastructure security needs.

  14. Overview of Accelerator Applications for Security and Defense

    DOE PAGES

    Antolak, Arlyn J.

    2015-01-01

    Particle accelerators play a key role in a broad set of defense and security applications including war-fighter and asset protection, cargo inspection, nonproliferation, materials characterization and stockpile stewardship. Accelerators can replace the high activity radioactive sources that pose a security threat for developing a radiological dispersal device and be used to produce isotopes for medical, industrial, and re-search purposes. Lastly, we present an overview of current and emerging accelerator technologies relevant to addressing the needs of defense and security.

  15. Overview of Accelerator Applications for Security and Defense

    NASA Astrophysics Data System (ADS)

    Antolak, Arlyn J.

    Particle accelerators play a key role in a broad set of defense and security applications, including war-fighter and asset protection, cargo inspection, nonproliferation, materials characterization, and stockpile stewardship. Accelerators can replace the high activity radioactive sources that pose a security threat to developing a radiological dispersal device, and, can be used to produce isotopes for medical, industrial, and research purposes. An overview of current and emerging accelerator technologies relevant to addressing the needs of defense and security is presented.

  16. Evaluation of Secure Computation in a Distributed Healthcare Setting.

    PubMed

    Kimura, Eizen; Hamada, Koki; Kikuchi, Ryo; Chida, Koji; Okamoto, Kazuya; Manabe, Shirou; Kuroda, Tomohiko; Matsumura, Yasushi; Takeda, Toshihiro; Mihara, Naoki

    2016-01-01

    Issues related to ensuring patient privacy and data ownership in clinical repositories prevent the growth of translational research. Previous studies have used an aggregator agent to obscure clinical repositories from the data user, and to ensure the privacy of output using statistical disclosure control. However, there remain several issues that must be considered. One such issue is that a data breach may occur when multiple nodes conspire. Another is that the agent may eavesdrop on or leak a user's queries and their results. We have implemented a secure computing method so that the data used by each party can be kept confidential even if all of the other parties conspire to crack the data. We deployed our implementation at three geographically distributed nodes connected to a high-speed layer two network. The performance of our method, with respect to processing times, suggests suitability for practical use. PMID:27577361

  17. Evaluation of Secure Computation in a Distributed Healthcare Setting.

    PubMed

    Kimura, Eizen; Hamada, Koki; Kikuchi, Ryo; Chida, Koji; Okamoto, Kazuya; Manabe, Shirou; Kuroda, Tomohiko; Matsumura, Yasushi; Takeda, Toshihiro; Mihara, Naoki

    2016-01-01

    Issues related to ensuring patient privacy and data ownership in clinical repositories prevent the growth of translational research. Previous studies have used an aggregator agent to obscure clinical repositories from the data user, and to ensure the privacy of output using statistical disclosure control. However, there remain several issues that must be considered. One such issue is that a data breach may occur when multiple nodes conspire. Another is that the agent may eavesdrop on or leak a user's queries and their results. We have implemented a secure computing method so that the data used by each party can be kept confidential even if all of the other parties conspire to crack the data. We deployed our implementation at three geographically distributed nodes connected to a high-speed layer two network. The performance of our method, with respect to processing times, suggests suitability for practical use.

  18. Improvement of fuzzy vault scheme for securing key distribution in body sensor network.

    PubMed

    Cao, Cun-Zhang; He, Chen-Guang; Bao, Shu-Di; Li, Ye

    2011-01-01

    The security of Body Sensor Network (BSN) has become a vital concern, as the massive development of BSN applications in healthcare. A family of biometrics based security methods has been proposed in the last several years, where the bio-information derived from physiological signals is used as entity identifiers (EIs) for multiple security purposes, including node recognition and keying material protection. Among them, a method named as Physiological Signal based Key Agreement (PSKA) was proposed to use frequency-domain information of physiological signals together with Fuzzy Vault scheme to secure key distribution in BSN. In this study, the PSKA scheme was firstly analyzed and evaluated for its practical usage in terms of fuzzy performance, the result of which indicates that the scheme is not as good as claimed. An improved scheme with the deployment of Fuzzy Vault and error correcting coding was then proposed, followed by simulation analysis. The results indicate that the improved scheme is able to improve the performance of Fuzzy Vault and thus the success rate of authentication or key distribution between genuine nodes of a BSN. PMID:22255109

  19. Realization of security concepts for DICOM-based distributed medical services.

    PubMed

    Bernarding, J; Thiel, A; Tolxdorff, T

    2000-12-01

    Exploiting distributed hard- and software resources for telemedicine requires a fast, secure, and platform-independent data exchange. Standards without inherent security mechanisms such as DICOM may ease non-authorized data access. Therefore, exemplary telemedical data streams were analyzed within the Berlin metropolitan area network using specialized magnetic resonance imaging techniques and distributed resources for data postprocessing. For secure DICOM communication both the Secure Socket Layer Protocol and a DICOM-conform partial encryption of patient-relevant data were implemented. Partial encryption exhibited the highest transfer rate and enabled a secure long-term storage. Different data streams between secured and unsecured networks were realized using partial encryption. PMID:11191705

  20. Consistency and Security in Mobile Real Time Distributed Database (MRTDDB): A Combinational Giant Challenge

    NASA Astrophysics Data System (ADS)

    Gupta, Gyanendra Kr.; Sharma, A. K.; Swaroop, Vishnu

    2010-11-01

    Many type of Information System are widely used in various fields. With the hasty development of computer network, Information System users care more about data sharing in networks. In traditional relational database, data consistency was controlled by consistency control mechanism when a data object is locked in a sharing mode, other transactions can only read it, but can not update it. If the traditional consistency control method has been used yet, the system's concurrency will be inadequately influenced. So there are many new necessities for the consistency control and security in MRTDDB. The problem not limited only to type of data (e.g. mobile or real-time databases). There are many aspects of data consistency problems in MRTDDB, such as inconsistency between attribute and type of data; the inconsistency of topological relations after objects has been modified. In this paper, many cases of consistency are discussed. As the mobile computing becomes well liked and the database grows with information sharing security is a big issue for researchers. Consistency and Security of data is a big challenge for researchers because when ever the data is not consistent and secure no maneuver on the data (e.g. transaction) is productive. It becomes more and more crucial when the transactions are used in non-traditional environment like Mobile, Distributed, Real Time and Multimedia databases. In this paper we raise the different aspects and analyze the available solution for consistency and security of databases. Traditional Database Security has focused primarily on creating user accounts and managing user privileges to database objects. But in the mobility and nomadic computing uses these database creating a new opportunities for research. The wide spread use of databases over the web, heterogeneous client-server architectures, application servers, and networks creates a critical need to amplify this focus. In this paper we also discuss an overview of the new and old

  1. A microwave imaging spectrometer for security applications

    NASA Astrophysics Data System (ADS)

    Jirousek, Matthias; Peichl, Markus; Suess, Helmut

    2010-04-01

    In recent years the security of people and critical infrastructures is of increasing interest. Passive microwave sensors in the range of 1 - 100 GHz are suitable for the detection of concealed objects and wide-area surveillance through poor weather and at day and night time. The enhanced extraction of significant information about an observed object is enabled by the use of a spectral sensitive system. For such a spectral radiometer in the microwave range also some depth information can be extracted. The usable frequency range is thereby dependent on the application. For through-wall imaging or detection of covert objects such as for example landmines, the lower microwave range is best suited. On the other hand a high spatial resolution requires higher frequencies or instruments with larger physical dimensions. The drawback of a large system is the required movement of a mirror or a deflecting plate in the case of a mechanical scanner system, or a huge amount of receivers in a fully-electronic instrument like a focal plane array. An innovative technique to overcome these problems is the application of aperture synthesis using a highly thinned array. The combination of spectral radiometric measurements within a wide frequency band, at a high resolution, and requiring a minimum of receivers and only minor moving parts led to the development of the ANSAS instrument (Abbildendes Niederfrequenz-Spektrometer mit Apertursynthese). ANSAS is a very flexible aperture synthesis technology demonstrator for the analysis of main features and interactions concerning high spatial resolution and spectral sensing within a wide frequency range. It consists of a rotated linear thinned array and thus the spatial frequency spectrum is measured on concentric circles. Hence the number of receivers and correlators is reduced considerably compared to a fully two-dimensional array, and measurements still can be done in a reasonable time. In this paper the basic idea of ANSAS and its setup

  2. Study on Preserving Public Security of Installing 22 kV Distribution Equipment on Pavements

    NASA Astrophysics Data System (ADS)

    Murata, Koichi; Oka, Keisuke; Uemura, Satoshi; Ariga, Yasuo

    To cope with restructuring of electricity market, application of 22kV distribution systems to areas with high load density, is promising. To expand them, it is important to install 22kV distribution equipment on pavements and lots without fences. On the other hand, the neutral grounding method is expected for the 22kV distribution equipment in terms of rationalization of insulation. In this case, one line-to-ground fault current will be large. Therefore, to make safety of people, it is essential to decrease the contact voltage. In this paper, we will perform the simulation of current distribution in the case of one line-to-ground fault and study the security of human from the viewpoint of both step voltage and contact voltage. We will also clarify that we can lower the contact voltage by grounding mutually insulated inner box and outer box separately. Then we will propose the improved grounding method.

  3. Income distribution patterns from a complete social security database

    NASA Astrophysics Data System (ADS)

    Derzsy, N.; Néda, Z.; Santos, M. A.

    2012-11-01

    We analyze the income distribution of employees for 9 consecutive years (2001-2009) using a complete social security database for an economically important district of Romania. The database contains detailed information on more than half million taxpayers, including their monthly salaries from all employers where they worked. Besides studying the characteristic distribution functions in the high and low/medium income limits, the database allows us a detailed dynamical study by following the time-evolution of the taxpayers income. To our knowledge, this is the first extensive study of this kind (a previous Japanese taxpayers survey was limited to two years). In the high income limit we prove once again the validity of Pareto’s law, obtaining a perfect scaling on four orders of magnitude in the rank for all the studied years. The obtained Pareto exponents are quite stable with values around α≈2.5, in spite of the fact that during this period the economy developed rapidly and also a financial-economic crisis hit Romania in 2007-2008. For the low and medium income category we confirmed the exponential-type income distribution. Following the income of employees in time, we have found that the top limit of the income distribution is a highly dynamical region with strong fluctuations in the rank. In this region, the observed dynamics is consistent with a multiplicative random growth hypothesis. Contrarily with previous results obtained for the Japanese employees, we find that the logarithmic growth-rate is not independent of the income.

  4. Secure dissemination of electronic healthcare records in distributed wireless environments.

    PubMed

    Belsis, Petros; Vassis, Dimitris; Skourlas, Christos; Pantziou, Grammati

    2008-01-01

    A new networking paradigm has emerged with the appearance of wireless computing. Among else ad-hoc networks, mobile and ubiquitous environments can boost the performance of systems in which they get applied. Among else, medical environments are a convenient example of their applicability. With the utilisation of wireless infrastructures, medical data may be accessible to healthcare practitioners, enabling continuous access to medical data. Due to the critical nature of medical information, the design and implementation of these infrastructures demands special treatment in order to meet specific requirements; among else, special care should be taken in order to manage interoperability, security, and in order to deal with bandwidth and hardware resource constraints that characterize the wireless topology. In this paper we present an architecture that attempts to deal with these issues; moreover, in order to prove the validity of our approach we have also evaluated the performance of our platform through simulation in different operating scenarios.

  5. A resilient and secure software platform and architecture for distributed spacecraft

    NASA Astrophysics Data System (ADS)

    Otte, William R.; Dubey, Abhishek; Karsai, Gabor

    2014-06-01

    A distributed spacecraft is a cluster of independent satellite modules flying in formation that communicate via ad-hoc wireless networks. This system in space is a cloud platform that facilitates sharing sensors and other computing and communication resources across multiple applications, potentially developed and maintained by different organizations. Effectively, such architecture can realize the functions of monolithic satellites at a reduced cost and with improved adaptivity and robustness. Openness of these architectures pose special challenges because the distributed software platform has to support applications from different security domains and organizations, and where information flows have to be carefully managed and compartmentalized. If the platform is used as a robust shared resource its management, configuration, and resilience becomes a challenge in itself. We have designed and prototyped a distributed software platform for such architectures. The core element of the platform is a new operating system whose services were designed to restrict access to the network and the file system, and to enforce resource management constraints for all non-privileged processes Mixed-criticality applications operating at different security labels are deployed and controlled by a privileged management process that is also pre-configuring all information flows. This paper describes the design and objective of this layer.

  6. Optimal service distribution in WSN service system subject to data security constraints.

    PubMed

    Wu, Zhao; Xiong, Naixue; Huang, Yannong; Gu, Qiong

    2014-08-04

    Services composition technology provides a flexible approach to building Wireless Sensor Network (WSN) Service Applications (WSA) in a service oriented tasking system for WSN. Maintaining the data security of WSA is one of the most important goals in sensor network research. In this paper, we consider a WSN service oriented tasking system in which the WSN Services Broker (WSB), as the resource management center, can map the service request from user into a set of atom-services (AS) and send them to some independent sensor nodes (SN) for parallel execution. The distribution of ASs among these SNs affects the data security as well as the reliability and performance of WSA because these SNs can be of different and independent specifications. By the optimal service partition into the ASs and their distribution among SNs, the WSB can provide the maximum possible service reliability and/or expected performance subject to data security constraints. This paper proposes an algorithm of optimal service partition and distribution based on the universal generating function (UGF) and the genetic algorithm (GA) approach. The experimental analysis is presented to demonstrate the feasibility of the suggested algorithm.

  7. Optimal Service Distribution in WSN Service System Subject to Data Security Constraints

    PubMed Central

    Wu, Zhao; Xiong, Naixue; Huang, Yannong; Gu, Qiong

    2014-01-01

    Services composition technology provides a flexible approach to building Wireless Sensor Network (WSN) Service Applications (WSA) in a service oriented tasking system for WSN. Maintaining the data security of WSA is one of the most important goals in sensor network research. In this paper, we consider a WSN service oriented tasking system in which the WSN Services Broker (WSB), as the resource management center, can map the service request from user into a set of atom-services (AS) and send them to some independent sensor nodes (SN) for parallel execution. The distribution of ASs among these SNs affects the data security as well as the reliability and performance of WSA because these SNs can be of different and independent specifications. By the optimal service partition into the ASs and their distribution among SNs, the WSB can provide the maximum possible service reliability and/or expected performance subject to data security constraints. This paper proposes an algorithm of optimal service partition and distribution based on the universal generating function (UGF) and the genetic algorithm (GA) approach. The experimental analysis is presented to demonstrate the feasibility of the suggested algorithm. PMID:25093346

  8. Enhanced Security-Constrained OPF With Distributed Battery Energy Storage

    SciTech Connect

    Wen, YF; Guo, CX; Kirschen, DS; Dong, SF

    2015-01-01

    This paper discusses how fast-response distributed battery energy storage could be used to implement post-contingency corrective control actions. Immediately after a contingency, the injections of distributed batteries could be adjusted to alleviate overloads and reduce flows below their short-term emergency rating. This ensures that the post-contingency system remains stable until the operator has redispatched the generation. Implementing this form of corrective control would allow operators to take advantage of the difference between the short-and long-term ratings of the lines and would therefore increase the available transmission capacity. This problem is formulated as a two-stage, enhanced security-constrained OPF problem, in which the first-stage optimizes the pre-contingency generation dispatch, while the second-stage minimizes the corrective actions for each contingency. Case studies based on a six-bus test system and on the RTS 96 demonstrate that the proposed method provides effective corrective actions and can guarantee operational reliability and economy.

  9. Part III: AFS - A Secure Distributed File System

    SciTech Connect

    Wachsmann, A.; /SLAC

    2005-06-29

    AFS is a secure distributed global file system providing location independence, scalability and transparent migration capabilities for data. AFS works across a multitude of Unix and non-Unix operating systems and is used at many large sites in production for many years. AFS still provides unique features that are not available with other distributed file systems even though AFS is almost 20 years old. This age might make it less appealing to some but with IBM making AFS available as open-source in 2000, new interest in use and development was sparked. When talking about AFS, people often mention other file systems as potential alternatives. Coda (http://www.coda.cs.cmu.edu/) with its disconnected mode will always be a research project and never have production quality. Intermezzo (http://www.inter-mezzo.org/) is now in the Linux kernel but not available for any other operating systems. NFSv4 (http://www.nfsv4.org/) which picked up many ideas from AFS and Coda is not mature enough yet to be used in serious production mode. This article presents the rich features of AFS and invites readers to play with it.

  10. Secure control systems with application to cyber-physical systems

    SciTech Connect

    Dong, Jin; Djouadi, Seddik M; Nutaro, James J; Kuruganti, Phani Teja

    2014-01-01

    Control systems are computer-based systems with networked units consisting of sensors, actuators, control processing units, and communication devices. The role of control system is to interact, monitor, and control physical processes. Reactive power control is a fundamental issue in ensuring the security of the power network. It is claimed that Synchronous Condensers (SC) have been used at both distribution and transmission voltage levels to improve stability and to maintain voltages within desired limits under changing load conditions and contingency situations. Performance of PI controller corresponding to various tripping faults are analyzed for SC systems. Most of the eort in protecting these systems has been in protection against random failures or reliability. However, besides failures these systems are subject to various signal attacks for which new analysis are discussed here. When a breach does occur, it is necessary to react in a time commensurate with the physical dynamics of the system as it responds to the attack. Failure to act swiftly enough may result in undesirable, and possibly irreversible, physical eects. Therefore, it is meaningful to evaluate the security of a cyber-physical system, especially to protect it from cyber-attack. Illustrative numerical examples are provided together with an application to the SC systems.

  11. 78 FR 4393 - Applications for New Awards; Minorities and Retirement Security Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... SOCIAL SECURITY ADMINISTRATION Applications for New Awards; Minorities and Retirement Security Program... Policy, Social Security Administration. ACTION: Notice. Overview Information: Minorities and Retirement... Education (ED or the Department) and the United States Social Security Administration (SSA). The MRS...

  12. Neutron Detection Alternatives to 3He for National Security Applications

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Lintereur, Azaree T.; Siciliano, Edward R.; Stephens, Daniel L.; Stromswold, David C.; Van Ginhoven, Renee M.; Woodring, Mitchell L.

    2010-11-21

    One of the main uses for 3He is in gas proportional counters for neutron detection. Large radiation detection systems deployed for homeland security and proliferation detection applications use such systems. Due to the large increase in use of 3He for homeland security and basic research, the supply has dwindled, and can no longer meet the demand. This has led to the search for an alternative technology to replace the use of 3He-based neutron detectors. In this paper, we review the testing of currently commercially available alternative technologies for neutron detection in large systems used in various national security applications.

  13. A secure distributed logistic regression protocol for the detection of rare adverse drug events

    PubMed Central

    El Emam, Khaled; Samet, Saeed; Arbuckle, Luk; Tamblyn, Robyn; Earle, Craig; Kantarcioglu, Murat

    2013-01-01

    Background There is limited capacity to assess the comparative risks of medications after they enter the market. For rare adverse events, the pooling of data from multiple sources is necessary to have the power and sufficient population heterogeneity to detect differences in safety and effectiveness in genetic, ethnic and clinically defined subpopulations. However, combining datasets from different data custodians or jurisdictions to perform an analysis on the pooled data creates significant privacy concerns that would need to be addressed. Existing protocols for addressing these concerns can result in reduced analysis accuracy and can allow sensitive information to leak. Objective To develop a secure distributed multi-party computation protocol for logistic regression that provides strong privacy guarantees. Methods We developed a secure distributed logistic regression protocol using a single analysis center with multiple sites providing data. A theoretical security analysis demonstrates that the protocol is robust to plausible collusion attacks and does not allow the parties to gain new information from the data that are exchanged among them. The computational performance and accuracy of the protocol were evaluated on simulated datasets. Results The computational performance scales linearly as the dataset sizes increase. The addition of sites results in an exponential growth in computation time. However, for up to five sites, the time is still short and would not affect practical applications. The model parameters are the same as the results on pooled raw data analyzed in SAS, demonstrating high model accuracy. Conclusion The proposed protocol and prototype system would allow the development of logistic regression models in a secure manner without requiring the sharing of personal health information. This can alleviate one of the key barriers to the establishment of large-scale post-marketing surveillance programs. We extended the secure protocol to account for

  14. Simple Proof of Security of the BB84 Quantum Key Distribution Protocol

    SciTech Connect

    Shor, Peter W.; Preskill, John

    2000-07-10

    We prove that the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution is secure. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chau's proof of security for a similar protocol. We then show that the security of this protocol implies the security of BB84. The entanglement purification based protocol uses Calderbank-Shor-Steane codes, and properties of these codes are used to remove the use of quantum computation from the Lo-Chau protocol. (c) 2000 The American Physical Society.

  15. Simple proof of security of the BB84 quantum key distribution protocol

    PubMed

    Shor; Preskill

    2000-07-10

    We prove that the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution is secure. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chau's proof of security for a similar protocol. We then show that the security of this protocol implies the security of BB84. The entanglement purification based protocol uses Calderbank-Shor-Steane codes, and properties of these codes are used to remove the use of quantum computation from the Lo-Chau protocol. PMID:10991303

  16. Lifetime distributional effects of Social Security retirement benefits.

    PubMed

    Smith, Karen; Toder, Eric; Iams, Howard

    This article presents three measures of the distribution of actual and projected net benefits (benefits minus payroll taxes) from Social Security's Old-Age and Survivors Insurance (OASI) for people born between 1931 and 1960. The results are based on simulations with the Social Security Administration's Model of Income in the Near Term (MINT), which projects retirement income through 2020. The base sample for MINT is the U.S. Census Bureau's Survey of Income and Program Participation panels for 1990 to 1993, matched with Social Security administrative records. The study population is grouped into 5-year birth cohorts and then ranked by economic status in three ways. First, the population is divided into five groups on the basis of individual lifetime covered earnings, and their lifetime present values of OASI benefits received and payroll taxes paid are calculated. By this measure, OASI provides much higher benefits to the lowest quintile of earners than to other groups, but it becomes less redistributive toward lower earners in more recent birth cohorts. Second, people are ranked by shared lifetime covered earnings, and the values of shared benefits received and payroll taxes paid are computed. Individuals are assumed to split covered earnings, benefits, and payroll taxes with their spouses in the years they are married. By the shared covered earnings measure, OASI is still much more favorable to persons in the lower income quintiles, although to a lesser degree than when people are ranked by individual covered earnings. OASI becomes more progressive among recent cohorts, even as net lifetime benefits decline for the entire population. Finally, individuals are ranked on the basis of their shared permanent income from age 62, when they become eligible for early retirement benefits, until death. Their annual Social Security benefits are compared with the benefits they would have received if they had saved their payroll taxes in individual accounts and used the

  17. 76 FR 41829 - J.P. Morgan Securities LLC, et al.; Notice of Application and Temporary Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... COMMISSION J.P. Morgan Securities LLC, et al.; Notice of Application and Temporary Order July 11, 2011... Act, with respect to an injunction entered against J.P. Morgan Securities LLC (``JPMS'') on July 8...) Limited (``JPMAMUK''), JPMorgan Distribution Services, Inc. (``JPMDS''), J.P. Morgan...

  18. Finite-key security analysis for multilevel quantum key distribution

    NASA Astrophysics Data System (ADS)

    Brádler, Kamil; Mirhosseini, Mohammad; Fickler, Robert; Broadbent, Anne; Boyd, Robert

    2016-07-01

    We present a detailed security analysis of a d-dimensional quantum key distribution protocol based on two and three mutually unbiased bases (MUBs) both in an asymptotic and finite-key-length scenario. The finite secret key rates (in bits per detected photon) are calculated as a function of the length of the sifted key by (i) generalizing the uncertainly relation-based insight from BB84 to any d-level 2-MUB QKD protocol and (ii) by adopting recent advances in the second-order asymptotics for finite block length quantum coding (for both d-level 2- and 3-MUB QKD protocols). Since the finite and asymptotic secret key rates increase with d and the number of MUBs (together with the tolerable threshold) such QKD schemes could in principle offer an important advantage over BB84. We discuss the possibility of an experimental realization of the 3-MUB QKD protocol with the orbital angular momentum degrees of freedom of photons.

  19. A Secure Key Distribution System of Quantum Cryptography Based on the Coherent State

    NASA Technical Reports Server (NTRS)

    Guo, Guang-Can; Zhang, Xiao-Yu

    1996-01-01

    The cryptographic communication has a lot of important applications, particularly in the magnificent prospects of private communication. As one knows, the security of cryptographic channel depends crucially on the secrecy of the key. The Vernam cipher is the only cipher system which has guaranteed security. In that system the key must be as long as the message and most be used only once. Quantum cryptography is a method whereby key secrecy can be guaranteed by a physical law. So it is impossible, even in principle, to eavesdrop on such channels. Quantum cryptography has been developed in recent years. Up to now, many schemes of quantum cryptography have been proposed. Now one of the main problems in this field is how to increase transmission distance. In order to use quantum nature of light, up to now proposed schemes all use very dim light pulses. The average photon number is about 0.1. Because of the loss of the optical fiber, it is difficult for the quantum cryptography based on one photon level or on dim light to realize quantum key-distribution over long distance. A quantum key distribution based on coherent state is introduced in this paper. Here we discuss the feasibility and security of this scheme.

  20. Secure and Cost-Effective Distributed Aggregation for Mobile Sensor Networks

    PubMed Central

    Guo, Kehua; Zhang, Ping; Ma, Jianhua

    2016-01-01

    Secure data aggregation (SDA) schemes are widely used in distributed applications, such as mobile sensor networks, to reduce communication cost, prolong the network life cycle and provide security. However, most SDA are only suited for a single type of statistics (i.e., summation-based or comparison-based statistics) and are not applicable to obtaining multiple statistic results. Most SDA are also inefficient for dynamic networks. This paper presents multi-functional secure data aggregation (MFSDA), in which the mapping step and coding step are introduced to provide value-preserving and order-preserving and, later, to enable arbitrary statistics support in the same query. MFSDA is suited for dynamic networks because these active nodes can be counted directly from aggregation data. The proposed scheme is tolerant to many types of attacks. The network load of the proposed scheme is balanced, and no significant bottleneck exists. The MFSDA includes two versions: MFSDA-I and MFSDA-II. The first one can obtain accurate results, while the second one is a more generalized version that can significantly reduce network traffic at the expense of less accuracy loss. PMID:27120599

  1. Secure and Cost-Effective Distributed Aggregation for Mobile Sensor Networks.

    PubMed

    Guo, Kehua; Zhang, Ping; Ma, Jianhua

    2016-01-01

    Secure data aggregation (SDA) schemes are widely used in distributed applications, such as mobile sensor networks, to reduce communication cost, prolong the network life cycle and provide security. However, most SDA are only suited for a single type of statistics (i.e., summation-based or comparison-based statistics) and are not applicable to obtaining multiple statistic results. Most SDA are also inefficient for dynamic networks. This paper presents multi-functional secure data aggregation (MFSDA), in which the mapping step and coding step are introduced to provide value-preserving and order-preserving and, later, to enable arbitrary statistics support in the same query. MFSDA is suited for dynamic networks because these active nodes can be counted directly from aggregation data. The proposed scheme is tolerant to many types of attacks. The network load of the proposed scheme is balanced, and no significant bottleneck exists. The MFSDA includes two versions: MFSDA-I and MFSDA-II. The first one can obtain accurate results, while the second one is a more generalized version that can significantly reduce network traffic at the expense of less accuracy loss. PMID:27120599

  2. Collaborative Knowledge Discovery & Marshalling for Intelligence & Security Applications

    SciTech Connect

    Cowell, Andrew J.; Jensen, Russell S.; Gregory, Michelle L.; Ellis, Peter C.; Fligg, Alan K.; McGrath, Liam R.; O'Hara, Kelly A.; Bell, Eric B.

    2010-05-24

    This paper discusses the Knowledge Encapsulation Framework, a flexible, extensible evidence-marshalling environment built upon a natural language processing pipeline and exposed to users via an open-source semantic wiki. We focus our discussion on applications of the framework to intelligence and security applications, specifically, an instantiation of the KEF environment for researching illicit trafficking in nuclear materials.

  3. Quantum cryptography in real-life applications: Assumptions and security

    NASA Astrophysics Data System (ADS)

    Zhao, Yi

    Quantum cryptography, or quantum key distribution (QKD), provides a means of unconditionally secure communication. The security is in principle based on the fundamental laws of physics. Security proofs show that if quantum cryptography is appropriately implemented, even the most powerful eavesdropper cannot decrypt the message from a cipher. The implementations of quantum crypto-systems in real life may not fully comply with the assumptions made in the security proofs. Such discrepancy between the experiment and the theory can be fatal to the security of a QKD system. In this thesis we address a number of these discrepancies. A perfect single-photon source is often assumed in many security proofs. However, a weak coherent source is widely used in a real-life QKD implementation. Decoy state protocols have been proposed as a novel approach to dramatically improve the performance of a weak coherent source based QKD implementation without jeopardizing its security. Here, we present the first experimental demonstrations of decoy state protocols. Our experimental scheme was later adopted by most decoy state QKD implementations. In the security proof of decoy state protocols as well as many other QKD protocols, it is widely assumed that a sender generates a phase-randomized coherent state. This assumption has been enforced in few implementations. We close this gap in two steps: First, we implement and verify the phase randomization experimentally; second, we prove the security of a QKD implementation without the coherent state assumption. In many security proofs of QKD, it is assumed that all the detectors on the receiver's side have identical detection efficiencies. We show experimentally that this assumption may be violated in a commercial QKD implementation due to an eavesdropper's malicious manipulation. Moreover, we show that the eavesdropper can learn part of the final key shared by the legitimate users as a consequence of this violation of the assumptions.

  4. Privacy and security requirements of distributed computer based patient records.

    PubMed

    Moehr, J R

    1994-02-01

    Privacy and security issues increase in complexity as we move from the conventional patient record to the computer based patient record (CPR) supporting patient care and to cross-institutional networked CPRs. The privacy and security issues surrounding the CPR are outlined. Measures for privacy and security protection are summarized. It is suggested that we lack a key component of an information sharing culture. We need means for semantic indexing in the form of a metadata base at the level of the instantiation of a data base rather than at the level of its schemas.

  5. Security Issues for P2P-Based Voice- and Video-Streaming Applications

    NASA Astrophysics Data System (ADS)

    Seedorf, Jan

    P2P computing offers a new interesting field for security researchers. Being highly distributed and lacking centralised, trusted entities for bootstrapping security mechanisms, these systems demand novel approaches for decentralised security solutions.

  6. Muon Fluence Measurements for Homeland Security Applications

    SciTech Connect

    Ankney, Austin S.; Berguson, Timothy J.; Borgardt, James D.; Kouzes, Richard T.

    2010-08-10

    This report focuses on work conducted at Pacific Northwest National Laboratory to better characterize aspects of backgrounds in RPMs deployed for homeland security purposes. Two polyvinyl toluene scintillators were utilized with supporting NIM electronics to measure the muon coincidence rate. Muon spallation is one mechanism by which background neutrons are produced. The measurements performed concentrated on a broad investigation of the dependence of the muon flux on a) variations in solid angle subtended by the detector; b) the detector inclination with the horizontal; c) depth underground; and d) diurnal effects. These tests were conducted inside at Building 318/133, outdoors at Building 331G, and underground at Building 3425 at Pacific Northwest National Laboratory.

  7. DETECTORS FOR ACCELERATOR-BASED NUCLEAR SECURITY APPLICATIONS

    SciTech Connect

    Warren, Glen A.; Stave, Sean C.; Miller, Erin A.

    2015-08-31

    We present of review of detector systems used in accelerator-based national security applications. In gen-eral, the detectors used for these applications are also used in passive measurements. The critical difference is that detector systems for accelerator-based applications in general need to discriminate beam-generated background from the intended signal. Typical techniques to remove background include shielding, timing, selection of sensitive materials, and choice of accelerator.

  8. Database security and encryption technology research and application

    NASA Astrophysics Data System (ADS)

    Zhu, Li-juan

    2013-03-01

    The main purpose of this paper is to discuss the current database information leakage problem, and discuss the important role played by the message encryption techniques in database security, As well as MD5 encryption technology principle and the use in the field of website or application. This article is divided into introduction, the overview of the MD5 encryption technology, the use of MD5 encryption technology and the final summary. In the field of requirements and application, this paper makes readers more detailed and clearly understood the principle, the importance in database security, and the use of MD5 encryption technology.

  9. ADDE: Application Development for the Distributed Enterprise.

    ERIC Educational Resources Information Center

    Franckson, Marcel; Hall, John; Helmerich, Alfred; Canadas, Rafael; Dehn, Martin

    1998-01-01

    Describes the Application Development for the Distributed Enterprise (ADDE) project, a methodological set that supports the design of distributed business processes and information and communication technologies. Discusses principles behind ADDE, guidance on definition and planning of application development, guidance on distributed application…

  10. X-ray imaging for security applications

    NASA Astrophysics Data System (ADS)

    Evans, J. Paul

    2004-01-01

    The X-ray screening of luggage by aviation security personnel may be badly hindered by the lack of visual cues to depth in an image that has been produced by transmitted radiation. Two-dimensional "shadowgraphs" with "organic" and "metallic" objects encoded using two different colors (usually orange and blue) are still in common use. In the context of luggage screening there are no reliable cues to depth present in individual shadowgraph X-ray images. Therefore, the screener is required to convert the 'zero depth resolution' shadowgraph into a three-dimensional mental picture to be able to interpret the relative spatial relationship of the objects under inspection. Consequently, additional cognitive processing is required e.g. integration, inference and memory. However, these processes can lead to serious misinterpretations of the actual physical structure being examined. This paper describes the development of a stereoscopic imaging technique enabling the screener to utilise binocular stereopsis and kinetic depth to enhance their interpretation of the actual nature of the objects under examination. Further work has led to the development of a technique to combine parallax data (to calculate the thickness of a target material) with the results of a basis material subtraction technique to approximate the target's effective atomic number and density. This has been achieved in preliminary experiments with a novel spatially interleaved dual-energy sensor which reduces the number of scintillation elements required by 50% in comparison to conventional sensor configurations.

  11. Secure, Autonomous, Intelligent Controller for Integrating Distributed Sensor Webs

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2007-01-01

    This paper describes the infrastructure and protocols necessary to enable near-real-time commanding, access to space-based assets, and the secure interoperation between sensor webs owned and controlled by various entities. Select terrestrial and aeronautics-base sensor webs will be used to demonstrate time-critical interoperability between integrated, intelligent sensor webs both terrestrial and between terrestrial and space-based assets. For this work, a Secure, Autonomous, Intelligent Controller and knowledge generation unit is implemented using Virtual Mission Operation Center technology.

  12. Towards secure quantum key distribution protocol for wireless LANs: a hybrid approach

    NASA Astrophysics Data System (ADS)

    Naik, R. Lalu; Reddy, P. Chenna

    2015-12-01

    The primary goals of security such as authentication, confidentiality, integrity and non-repudiation in communication networks can be achieved with secure key distribution. Quantum mechanisms are highly secure means of distributing secret keys as they are unconditionally secure. Quantum key distribution protocols can effectively prevent various attacks in the quantum channel, while classical cryptography is efficient in authentication and verification of secret keys. By combining both quantum cryptography and classical cryptography, security of communications over networks can be leveraged. Hwang, Lee and Li exploited the merits of both cryptographic paradigms for provably secure communications to prevent replay, man-in-the-middle, and passive attacks. In this paper, we propose a new scheme with the combination of quantum cryptography and classical cryptography for 802.11i wireless LANs. Since quantum cryptography is premature in wireless networks, our work is a significant step forward toward securing communications in wireless networks. Our scheme is known as hybrid quantum key distribution protocol. Our analytical results revealed that the proposed scheme is provably secure for wireless networks.

  13. EO/IR sensors for border security applications

    NASA Astrophysics Data System (ADS)

    McDaniel, Robert; Hughes, Robert; Seibel, Edward

    2006-05-01

    Advances in infrared sensors and developments in pointing and stabilization technology, as well as integrated controls and displays have led to mature designs being incorporated in civil as well as military surveillance and security systems. Technical challenges arise in applying electro-optical sensor technology to detect, track and identify individuals and to detect contraband and hidden objects; while at the same time providing positive cost/benefit metrics for both point protection and area surveillance applications. Specific electro-optical sensor modalities, including visible, near-, mid- and far-infrared as well as ultraviolet may be used individually and in combination to perform specific security applications. This presentation will review the current electro-optics technology, its applications, and future developments that will have an influence in homeland defense applications.

  14. Secure and Privacy-Preserving Distributed Information Brokering

    ERIC Educational Resources Information Center

    Li, Fengjun

    2010-01-01

    As enormous structured, semi-structured and unstructured data are collected and archived by organizations in many realms ranging from business to health networks to government agencies, the needs for efficient yet secure inter-organization information sharing naturally arise. Unlike early information sharing approaches that only involve a small…

  15. 17 CFR 230.138 - Publications or distributions of research reports by brokers or dealers about securities other...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dealer publishes or distributes research reports on the types of securities in question in the regular... of research reports by brokers or dealers about securities other than those they are distributing... research reports by brokers or dealers about securities other than those they are distributing....

  16. Tools for monitoring and controlling distributed applications

    NASA Technical Reports Server (NTRS)

    Marzullo, Keith; Wood, Mark D.

    1991-01-01

    The Meta system is a UNIX-based toolkit that assists in the construction of reliable reactive systems, such as distributed monitoring and debugging systems, tool integration systems and reliable distributed applications. Meta provides mechanisms for instrumenting a distributed application and the environment in which it executes, and Meta supplies a service that can be used to monitor and control such an instrumented application. The Meta toolkit is built on top of the ISIS toolkit; they can be used together in order to build fault-tolerant and adaptive, distributed applications.

  17. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOEpatents

    Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen

    2015-01-06

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  18. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOEpatents

    Nordholt, Jane Elizabeth; Hughes, Richard John; Peterson, Charles Glen

    2013-07-09

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  19. 26 CFR 1.731-2 - Partnership distributions of marketable securities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... thus is a marketable security) if it is of a type that is, as of the date of distribution, actively... acquires a significant equity interest (including the provision of advice or consulting services,...

  20. Some physics and system issues in the security analysis of quantum key distribution protocols

    NASA Astrophysics Data System (ADS)

    Yuen, Horace P.

    2014-10-01

    In this paper, we review a number of issues on the security of quantum key distribution (QKD) protocols that bear directly on the relevant physics or mathematical representation of the QKD cryptosystem. It is shown that the cryptosystem representation itself may miss out many possible attacks, which are not accounted for in the security analysis and proofs. Hence, the final security claims drawn from such analysis are not reliable, apart from foundational issues about the security criteria that are discussed elsewhere. The cases of continuous-variable QKD and multi-photon sources are elaborated upon.

  1. Security of quantum key distribution using a simplified trusted relay

    NASA Astrophysics Data System (ADS)

    Stacey, William; Annabestani, Razieh; Ma, Xiongfeng; Lütkenhaus, Norbert

    2015-01-01

    We propose a QKD protocol for trusted node relays. Our protocol shifts the communication and computational weight of classical postprocessing to the end users by reassigning the roles of error correction and privacy amplification, while leaving the exchange of quantum signals untouched. We perform a security analysis for this protocol based on the Bennett-Brassard 1984 protocol on the level of infinite key formulas, taking into account weak coherent implementations involving decoy analysis.

  2. Secure Message Distribution Scheme with Configurable Privacy in Heterogeneous Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Li, Yahui; Ma, Jianfeng; Moon, Sangjae

    Security and privacy of wireless sensor networks are key research issues recently. Most existing researches regarding wireless sensor networks security consider homogenous sensor networks. To achieve better security and performance, we adopt a heterogeneous wireless sensor network (HWSN) model that consists of physically different types of sensor nodes. This paper presents a secure message distribution scheme with configurable privacy for HWSNs, which takes advantage of powerful high-end sensor nodes. The scheme establishes a message distribution topology in an efficient and secure manner. The sensor node only need generate one signature for all the messages for all the users, which can greatly save the communication and computation cost of the sensor node. On the other hand, the user can only know the messages that let him know based on a pre-set policy, which can meet the requirement of the privacy. We show that the scheme has small bandwidth requirements and it is resilient against the node compromise attack.

  3. Security of continuous-variable quantum key distribution against general attacks

    NASA Astrophysics Data System (ADS)

    Leverrier, Anthony

    2013-03-01

    We prove the security of Gaussian continuous-variable quantum key distribution with coherent states against arbitrary attacks in the finite-size regime. In contrast to previously known proofs of principle (based on the de Finetti theorem), our result is applicable in the practically relevant finite-size regime. This is achieved using a novel proof approach, which exploits phase-space symmetries of the protocols as well as the postselection technique introduced by Christandl, Koenig and Renner (Phys. Rev. Lett. 102, 020504 (2009)). This work was supported by the SNF through the National Centre of Competence in Research ``Quantum Science and Technology'' and through Grant No. 200020-135048, the ERC (grant No. 258932), the Humbolt foundation and the F.R.S.-FNRS under project HIPERCOM.

  4. T3: Secure, Scalable, Distributed Data Movement and Remote System Control for Enterprise Level Cyber Security

    SciTech Connect

    Thomas, Gregory S.; Nickless, William K.; Thiede, David R.; Gorton, Ian; Pitre, Bill J.; Christy, Jason E.; Faultersack, Elizabeth M.; Mauth, Jeffery A.

    2009-07-20

    Enterprise level cyber security requires the deployment, operation, and monitoring of many sensors across geographically dispersed sites. Communicating with the sensors to gather data and control behavior is a challenging task when the number of sensors is rapidly growing. This paper describes the system requirements, design, and implementation of T3, the third generation of our transport software that performs this task. T3 relies on open source software and open Internet standards. Data is encoded in MIME format messages and transported via NNTP, which provides scalability. OpenSSL and public key cryptography are used to secure the data. Robustness and ease of development are increased by defining an internal cryptographic API, implemented by modules in C, Perl, and Python. We are currently using T3 in a production environment. It is freely available to download and use for other projects.

  5. Security of quantum key distribution using d-level systems.

    PubMed

    Cerf, Nicolas J; Bourennane, Mohamed; Karlsson, Anders; Gisin, Nicolas

    2002-03-25

    We consider two quantum cryptographic schemes relying on encoding the key into qudits, i.e., quantum states in a d-dimensional Hilbert space. The first cryptosystem uses two mutually unbiased bases (thereby extending the BB84 scheme), while the second exploits all d+1 available such bases (extending the six-state protocol for qubits). We derive the information gained by a potential eavesdropper applying a cloning-based individual attack, along with an upper bound on the error rate that ensures unconditional security against coherent attacks. PMID:11909502

  6. Practical Pocket PC Application w/Biometric Security

    NASA Technical Reports Server (NTRS)

    Logan, Julian

    2004-01-01

    I work in the Flight Software Engineering Branch, where we provide design and development of embedded real-time software applications for flight and supporting ground systems to support the NASA Aeronautics and Space Programs. In addition, this branch evaluates, develops and implements new technologies for embedded real-time systems, and maintains a laboratory for applications of embedded technology. The majority of microchips that are used in modern society have been programmed using embedded technology. These small chips can be found in microwaves, calculators, home security systems, cell phones and more. My assignment this summer entails working with an iPAQ HP 5500 Pocket PC. This top-of-the-line hand-held device is one of the first mobile PC's to introduce biometric security capabilities. Biometric security, in this case a fingerprint authentication system, is on the edge of technology as far as securing information. The benefits of fingerprint authentication are enormous. The most significant of them are that it is extremely difficult to reproduce someone else's fingerprint, and it is equally difficult to lose or forget your own fingerprint as opposed to a password or pin number. One of my goals for this summer is to integrate this technology with another Pocket PC application. The second task for the summer is to develop a simple application that provides an Astronaut EVA (Extravehicular Activity) Log Book capability. The Astronaut EVA Log Book is what an astronaut would use to report the status of field missions, crew physical health, successes, future plans, etc. My goal is to develop a user interface into which these data fields can be entered and stored. The applications that I am developing are created using eMbedded Visual C++ 4.0 with the Pocket PC 2003 Software Development Kit provided by Microsoft.

  7. Potential National Security Applications of Nuclear Resonance Fluorescence Methods

    SciTech Connect

    Warren, Glen A.; Peplowski, Patrick N.; Caggiano, Joseph A.

    2009-06-09

    The objective of this report is to document the initial investigation into the possible research issues related to the development of NRF-based national security applications. The report discusses several potential applications ranging from measuring uranium enrichment in UF6 canisters to characterization of gas samples. While these applications are varied, there are only a few research issues that need to be addressed to understand the limitation of NRF in solving these problems. These research issues range from source and detector development to measuring small samples. The next effort is to determine how best to answer the research issues, followed by a prioritization of those questions to ensure that the most important are addressed. These issues will be addressed through either analytical calculations, computer simulations, analysis of previous data or collection of new measurements. It will also be beneficial to conduct a thorough examination of a couple of the more promising applications in order to develop concrete examples of how NRF may be applied in specific situations. The goals are to develop an understanding of whether the application of NRF is limited by technology or physics in addressing national security applications, to gain a motivation to explore those possible applications, and to develop a research roadmap so that those possibilities may be made reality.

  8. Security in Distributed Collaborative Environments: Limitations and Solutions

    NASA Astrophysics Data System (ADS)

    Saadi, Rachid; Pierson, Jean-Marc; Brunie, Lionel

    The main goal of establishing collaboration between heterogeneous environment is to create such as Pervasive context which provide nomadic users with ubiquitous access to digital information and surrounding resources. However, the constraints of mobility and heterogeneity arise a number of crucial issues related to security, especially authentication access control and privacy. First of all, in this chapter we explore the trust paradigm, specially the transitive capability to enable a trust peer to peer collaboration. In this manner, when each organization sets its own security policy to recognize (authenticate) users members of a trusted community and provide them a local access (access control), the trust transitivity between peers will allows users to gain a broad, larger and controlled access inside the pervasive environment. Next, we study the problem of user's privacy. In fact in pervasive and ubiquitous environments, nomadic users gather and exchange certificates or credential which providing them rights to access by transitivity unknown and trusted environments. These signed documents embeds increasing number of attribute that require to be filtered according to such contextual situation. In this chapter, we propose a new morph signature enabling each certificate owner to preserve his privacy by discloses or blinds some sensitive attributes according to faced situation.

  9. Provably secure time distribution for the electric grid

    SciTech Connect

    Smith IV, Amos M; Evans, Philip G; Williams, Brian P; Grice, Warren P

    2015-01-01

    We demonstrate a quantum time distribution (QTD) method that combines the precision of optical timing techniques with the integrity of quantum key distribution (QKD). Critical infrastructure is dependent on microprocessor- and programmable logic-based monitoring and control systems. The distribution of timing information across the electric grid is accomplished by GPS signals which are known to be vulnerable to spoofing. We demonstrate a method for synchronizing remote clocks based on the arrival time of photons in a modifed QKD system. This has the advantage that the signal can be veried by examining the quantum states of the photons similar to QKD.

  10. Provably secure time distribution for the electric grid

    NASA Astrophysics Data System (ADS)

    Smith, A. M.; Evans, P. G.; Williams, B. P.; Grice, W. P.

    2015-05-01

    We demonstrate a quantum time distribution (QTD) method that combines the precision of optical timing techniques with the integrity of quantum key distribution (QKD). Critical infrastructure is dependent on microprocessor- and programmable logic-based monitoring and control systems. The distribution of timing information across the electric grid is accomplished by GPS signals which are known to be vulnerable to spoofing. We demonstrate a method for synchronizing remote clocks based on the arrival time of photons in a modified QKD system. This has the advantage that the signal can be verified by examining the quantum states of the photons similar to QKD.

  11. NEUTRON AND GAMMA RAY DETECTION FOR BORDER SECURITY APPLICATIONS

    SciTech Connect

    Kouzes, Richard T.

    2010-05-21

    Countries around the world are deploying radiation detection instrumentation to interdict the illegal shipment of radioactive material crossing international borders. These efforts include deployments in the U.S. and in a number of other countries by governments and international organizations. Most deployed radiation portal monitor systems are based on plastic scintillator for gamma-ray detection and 3He tubes for neutron detection. The approach to this homeland security application, and lessons learned, are discussed.

  12. Information Theoretically Secure, Enhanced Johnson Noise Based Key Distribution over the Smart Grid with Switched Filters

    PubMed Central

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164

  13. Information theoretically secure, enhanced Johnson noise based key distribution over the smart grid with switched filters.

    PubMed

    Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions.

  14. Information theoretically secure, enhanced Johnson noise based key distribution over the smart grid with switched filters.

    PubMed

    Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164

  15. Security in the CernVM File System and the Frontier Distributed Database Caching System

    NASA Astrophysics Data System (ADS)

    Dykstra, D.; Blomer, J.

    2014-06-01

    Both the CernVM File System (CVMFS) and the Frontier Distributed Database Caching System (Frontier) distribute centrally updated data worldwide for LHC experiments using http proxy caches. Neither system provides privacy or access control on reading the data, but both control access to updates of the data and can guarantee the authenticity and integrity of the data transferred to clients over the internet. CVMFS has since its early days required digital signatures and secure hashes on all distributed data, and recently Frontier has added X.509-based authenticity and integrity checking. In this paper we detail and compare the security models of CVMFS and Frontier.

  16. Security in the CernVM File System and the Frontier Distributed Database Caching System

    SciTech Connect

    Dykstra, D.; Blomer, J.

    2014-01-01

    Both the CernVM File System (CVMFS) and the Frontier Distributed Database Caching System (Frontier) distribute centrally updated data worldwide for LHC experiments using http proxy caches. Neither system provides privacy or access control on reading the data, but both control access to updates of the data and can guarantee the authenticity and integrity of the data transferred to clients over the internet. CVMFS has since its early days required digital signatures and secure hashes on all distributed data, and recently Frontier has added X.509-based authenticity and integrity checking. In this paper we detail and compare the security models of CVMFS and Frontier.

  17. Semi-device-independent security of one-way quantum key distribution

    SciTech Connect

    Pawlowski, Marcin; Brunner, Nicolas

    2011-07-15

    By testing nonlocality, the security of entanglement-based quantum key distribution (QKD) can be enhanced to being ''device-independent.'' Here we ask whether such a strong form of security could also be established for one-way (prepare and measure) QKD. While fully device-independent security is impossible, we show that security can be guaranteed against individual attacks in a semi-device-independent scenario. In the latter, the devices used by the trusted parties are noncharacterized, but the dimensionality of the quantum systems used in the protocol is assumed to be bounded. Our security proof relies on the analogies between one-way QKD, dimension witnesses, and random-access codes.

  18. A case for avoiding security-enhanced HTTP tools to improve security for Web-based applications

    SciTech Connect

    Wood, B.

    1996-03-01

    This paper describes some of the general weaknesses of the current popular Hypertext Transmission Protocol (HTTP) security standards and products in an effort to show that these standards are not appealing for many applications. The author will then show how one can treat HTTP browsers and servers as untrusted elements in the network so that one can rely on other mechanisms to achieve better overall security than can be attained through today`s security-enhanced HTTP tools.

  19. Security Aspects of Smart Cards vs. Embedded Security in Machine-to-Machine (M2M) Advanced Mobile Network Applications

    NASA Astrophysics Data System (ADS)

    Meyerstein, Mike; Cha, Inhyok; Shah, Yogendra

    The Third Generation Partnership Project (3GPP) standardisation group currently discusses advanced applications of mobile networks such as Machine-to-Machine (M2M) communication. Several security issues arise in these contexts which warrant a fresh look at mobile networks’ security foundations, resting on smart cards. This paper contributes a security/efficiency analysis to this discussion and highlights the role of trusted platform technology to approach these issues.

  20. Supporting secure programming in web applications through interactive static analysis

    PubMed Central

    Zhu, Jun; Xie, Jing; Lipford, Heather Richter; Chu, Bill

    2013-01-01

    Many security incidents are caused by software developers’ failure to adhere to secure programming practices. Static analysis tools have been used to detect software vulnerabilities. However, their wide usage by developers is limited by the special training required to write rules customized to application-specific logic. Our approach is interactive static analysis, to integrate static analysis into Integrated Development Environment (IDE) and provide in-situ secure programming support to help developers prevent vulnerabilities during code construction. No additional training is required nor are there any assumptions on ways programs are built. Our work is motivated in part by the observation that many vulnerabilities are introduced due to failure to practice secure programming by knowledgeable developers. We implemented a prototype interactive static analysis tool as a plug-in for Java in Eclipse. Our technical evaluation of our prototype detected multiple zero-day vulnerabilities in a large open source project. Our evaluations also suggest that false positives may be limited to a very small class of use cases. PMID:25685513

  1. An ethernet/IP security review with intrusion detection applications

    SciTech Connect

    Laughter, S. A.; Williams, R. D.

    2006-07-01

    Supervisory Control and Data Acquisition (SCADA) and automation networks, used throughout utility and manufacturing applications, have their own specific set of operational and security requirements when compared to corporate networks. The modern climate of heightened national security and awareness of terrorist threats has made the security of these systems of prime concern. There is a need to understand the vulnerabilities of these systems and how to monitor and protect them. Ethernet/IP is a member of a family of protocols based on the Control and Information Protocol (CIP). Ethernet/IP allows automation systems to be utilized on and integrated with traditional TCP/IP networks, facilitating integration of these networks with corporate systems and even the Internet. A review of the CIP protocol and the additions Ethernet/IP makes to it has been done to reveal the kind of attacks made possible through the protocol. A set of rules for the SNORT Intrusion Detection software is developed based on the results of the security review. These can be used to monitor, and possibly actively protect, a SCADA or automation network that utilizes Ethernet/IP in its infrastructure. (authors)

  2. Supporting secure programming in web applications through interactive static analysis.

    PubMed

    Zhu, Jun; Xie, Jing; Lipford, Heather Richter; Chu, Bill

    2014-07-01

    Many security incidents are caused by software developers' failure to adhere to secure programming practices. Static analysis tools have been used to detect software vulnerabilities. However, their wide usage by developers is limited by the special training required to write rules customized to application-specific logic. Our approach is interactive static analysis, to integrate static analysis into Integrated Development Environment (IDE) and provide in-situ secure programming support to help developers prevent vulnerabilities during code construction. No additional training is required nor are there any assumptions on ways programs are built. Our work is motivated in part by the observation that many vulnerabilities are introduced due to failure to practice secure programming by knowledgeable developers. We implemented a prototype interactive static analysis tool as a plug-in for Java in Eclipse. Our technical evaluation of our prototype detected multiple zero-day vulnerabilities in a large open source project. Our evaluations also suggest that false positives may be limited to a very small class of use cases. PMID:25685513

  3. Supporting secure programming in web applications through interactive static analysis.

    PubMed

    Zhu, Jun; Xie, Jing; Lipford, Heather Richter; Chu, Bill

    2014-07-01

    Many security incidents are caused by software developers' failure to adhere to secure programming practices. Static analysis tools have been used to detect software vulnerabilities. However, their wide usage by developers is limited by the special training required to write rules customized to application-specific logic. Our approach is interactive static analysis, to integrate static analysis into Integrated Development Environment (IDE) and provide in-situ secure programming support to help developers prevent vulnerabilities during code construction. No additional training is required nor are there any assumptions on ways programs are built. Our work is motivated in part by the observation that many vulnerabilities are introduced due to failure to practice secure programming by knowledgeable developers. We implemented a prototype interactive static analysis tool as a plug-in for Java in Eclipse. Our technical evaluation of our prototype detected multiple zero-day vulnerabilities in a large open source project. Our evaluations also suggest that false positives may be limited to a very small class of use cases.

  4. Integrating CLIPS applications into heterogeneous distributed systems

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1991-01-01

    SOCIAL is an advanced, object-oriented development tool for integrating intelligent and conventional applications across heterogeneous hardware and software platforms. SOCIAL defines a family of 'wrapper' objects called agents, which incorporate predefined capabilities for distributed communication and control. Developers embed applications within agents and establish interactions between distributed agents via non-intrusive message-based interfaces. This paper describes a predefined SOCIAL agent that is specialized for integrating C Language Integrated Production System (CLIPS)-based applications. The agent's high-level Application Programming Interface supports bidirectional flow of data, knowledge, and commands to other agents, enabling CLIPS applications to initiate interactions autonomously, and respond to requests and results from heterogeneous remote systems. The design and operation of CLIPS agents are illustrated with two distributed applications that integrate CLIPS-based expert systems with other intelligent systems for isolating and mapping problems in the Space Shuttle Launch Processing System at the NASA Kennedy Space Center.

  5. 17 CFR 230.139 - Publications or distributions of research reports by brokers or dealers distributing securities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section, a broker's or dealer's publication or distribution of a research report about an issuer or any of... initiation of publication of research reports about such issuer or its securities or reinitiation of such publication following discontinuation of publication of such research reports. (2) Industry reports. (i)...

  6. Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry.

    PubMed

    Zhang, Zheshen; Mower, Jacob; Englund, Dirk; Wong, Franco N C; Shapiro, Jeffrey H

    2014-03-28

    High-dimensional quantum key distribution (HDQKD) offers the possibility of high secure-key rate with high photon-information efficiency. We consider HDQKD based on the time-energy entanglement produced by spontaneous parametric down-conversion and show that it is secure against collective attacks. Its security rests upon visibility data-obtained from Franson and conjugate-Franson interferometers-that probe photon-pair frequency correlations and arrival-time correlations. From these measurements, an upper bound can be established on the eavesdropper's Holevo information by translating the Gaussian-state security analysis for continuous-variable quantum key distribution so that it applies to our protocol. We show that visibility data from just the Franson interferometer provides a weaker, but nonetheless useful, secure-key rate lower bound. To handle multiple-pair emissions, we incorporate the decoy-state approach into our protocol. Our results show that over a 200-km transmission distance in optical fiber, time-energy entanglement HDQKD could permit a 700-bit/sec secure-key rate and a photon information efficiency of 2 secure-key bits per photon coincidence in the key-generation phase using receivers with a 15% system efficiency.

  7. Collective Attacks and Unconditional Security in Continuous Variable Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Grosshans, Frédéric

    2005-01-01

    We present here an information theoretic study of Gaussian collective attacks on the continuous variable key distribution protocols based on Gaussian modulation of coherent states. These attacks, overlooked in previous security studies, give a finite advantage to the eavesdropper in the experimentally relevant lossy channel, but are not powerful enough to reduce the range of the reverse reconciliation protocols. Secret key rates are given for the ideal case where Bob performs optimal collective measurements, as well as for the realistic cases where he performs homodyne or heterodyne measurements. We also apply the generic security proof of Christiandl et al. to obtain unconditionally secure rates for these protocols.

  8. Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel

    SciTech Connect

    Lu Hua; Fung, Chi-Hang Fred; Ma Xiongfeng; Cai Qingyu

    2011-10-15

    In a deterministic quantum key distribution (DQKD) protocol with a two-way quantum channel, Bob sends a qubit to Alice who then encodes a key bit onto the qubit and sends it back to Bob. After measuring the returned qubit, Bob can obtain Alice's key bit immediately, without basis reconciliation. Since an eavesdropper may attack the qubits traveling on either the Bob-Alice channel or the Alice-Bob channel, the security analysis of DQKD protocol with a two-way quantum channel is complicated and its unconditional security has been controversial. This paper presents a security proof of a single-photon four-state DQKD protocol against general attacks.

  9. 17 CFR 242.609 - Registration of securities information processors: form of application and amendments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Registration of securities information processors: form of application and amendments. 242.609 Section 242.609 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) REGULATIONS M, SHO, ATS, AC, AND NMS AND...

  10. Results of European projects improving security of distributed health information systems.

    PubMed

    Blobel, B; Pharow, P

    1998-01-01

    The challenge for improvement of quality and efficiency of health care systems causes the development and promotion of "Shared Care" in all developed countries. Distribution, decentralisation, and specialisation of health care must be joint with an extended communication and co-operation between the different care providers. Fulfilling the shared care paradigm, care supporting health information systems has to be distributed, interoperable, and scaleable too. Communication and co-operation across organisational, regional, and even national boundaries is bearing high threats and risks regarding security and privacy of medical and personal information of both patients and health professionals. Involved in several security projects funded by the European Union, the Medical Informatics Department and the regional Clinical Cancer Registry at the University of Magdeburg are piloting a secure regional distributed medical record system for cancer diseases. Requirements, solutions, and experiences are presented and discussed. PMID:10384633

  11. Verification of secure distributed systems in higher order logic: A modular approach using generic components

    SciTech Connect

    Alves-Foss, J.; Levitt, K.

    1991-01-01

    In this paper we present a generalization of McCullough's restrictiveness model as the basis for proving security properties about distributed system designs. We mechanize this generalization and an event-based model of computer systems in the HOL (Higher Order Logic) system to prove the composability of the model and several other properties about the model. We then develop a set of generalized classes of system components and show for which families of user views they satisfied the model. Using these classes we develop a collection of general system components that are instantiations of one of these classes and show that the instantiations also satisfied the security property. We then conclude with a sample distributed secure system, based on the Rushby and Randell distributed system design and designed using our collection of components, and show how our mechanized verification system can be used to verify such designs. 16 refs., 20 figs.

  12. Intelligent Facial Recognition Systems: Technology advancements for security applications

    SciTech Connect

    Beer, C.L.

    1993-07-01

    Insider problems such as theft and sabotage can occur within the security and surveillance realm of operations when unauthorized people obtain access to sensitive areas. A possible solution to these problems is a means to identify individuals (not just credentials or badges) in a given sensitive area and provide full time personnel accountability. One approach desirable at Department of Energy facilities for access control and/or personnel identification is an Intelligent Facial Recognition System (IFRS) that is non-invasive to personnel. Automatic facial recognition does not require the active participation of the enrolled subjects, unlike most other biological measurement (biometric) systems (e.g., fingerprint, hand geometry, or eye retinal scan systems). It is this feature that makes an IFRS attractive for applications other than access control such as emergency evacuation verification, screening, and personnel tracking. This paper discusses current technology that shows promising results for DOE and other security applications. A survey of research and development in facial recognition identified several companies and universities that were interested and/or involved in the area. A few advanced prototype systems were also identified. Sandia National Laboratories is currently evaluating facial recognition systems that are in the advanced prototype stage. The initial application for the evaluation is access control in a controlled environment with a constant background and with cooperative subjects. Further evaluations will be conducted in a less controlled environment, which may include a cluttered background and subjects that are not looking towards the camera. The outcome of the evaluations will help identify areas of facial recognition systems that need further development and will help to determine the effectiveness of the current systems for security applications.

  13. Secure Multi-party Computation Protocol for Defense Applications in Military Operations Using Virtual Cryptography

    NASA Astrophysics Data System (ADS)

    Pathak, Rohit; Joshi, Satyadhar

    With the advent into the 20th century whole world has been facing the common dilemma of Terrorism. The suicide attacks on US twin towers 11 Sept. 2001, Train bombings in Madrid Spain 11 Mar. 2004, London bombings 7 Jul. 2005 and Mumbai attack 26 Nov. 2008 were some of the most disturbing, destructive and evil acts by terrorists in the last decade which has clearly shown their evil intent that they can go to any extent to accomplish their goals. Many terrorist organizations such as al Quaida, Harakat ul-Mujahidin, Hezbollah, Jaish-e-Mohammed, Lashkar-e-Toiba, etc. are carrying out training camps and terrorist operations which are accompanied with latest technology and high tech arsenal. To counter such terrorism our military is in need of advanced defense technology. One of the major issues of concern is secure communication. It has to be made sure that communication between different military forces is secure so that critical information is not leaked to the adversary. Military forces need secure communication to shield their confidential data from terrorist forces. Leakage of concerned data can prove hazardous, thus preservation and security is of prime importance. There may be a need to perform computations that require data from many military forces, but in some cases the associated forces would not want to reveal their data to other forces. In such situations Secure Multi-party Computations find their application. In this paper, we propose a new highly scalable Secure Multi-party Computation (SMC) protocol and algorithm for Defense applications which can be used to perform computation on encrypted data. Every party encrypts their data in accordance with a particular scheme. This encrypted data is distributed among some created virtual parties. These Virtual parties send their data to the TTP through an Anonymizer layer. TTP performs computation on encrypted data and announces the result. As the data sent was encrypted its actual value can’t be known by TTP

  14. Task Assignment Heuristics for Distributed CFD Applications

    NASA Technical Reports Server (NTRS)

    Lopez-Benitez, N.; Djomehri, M. J.; Biswas, R.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    CFD applications require high-performance computational platforms: 1. Complex physics and domain configuration demand strongly coupled solutions; 2. Applications are CPU and memory intensive; and 3. Huge resource requirements can only be satisfied by teraflop-scale machines or distributed computing.

  15. Secure Large-Scale Airport Simulations Using Distributed Computational Resources

    NASA Technical Reports Server (NTRS)

    McDermott, William J.; Maluf, David A.; Gawdiak, Yuri; Tran, Peter; Clancy, Dan (Technical Monitor)

    2001-01-01

    To fully conduct research that will support the far-term concepts, technologies and methods required to improve the safety of Air Transportation a simulation environment of the requisite degree of fidelity must first be in place. The Virtual National Airspace Simulation (VNAS) will provide the underlying infrastructure necessary for such a simulation system. Aerospace-specific knowledge management services such as intelligent data-integration middleware will support the management of information associated with this complex and critically important operational environment. This simulation environment, in conjunction with a distributed network of supercomputers, and high-speed network connections to aircraft, and to Federal Aviation Administration (FAA), airline and other data-sources will provide the capability to continuously monitor and measure operational performance against expected performance. The VNAS will also provide the tools to use this performance baseline to obtain a perspective of what is happening today and of the potential impact of proposed changes before they are introduced into the system.

  16. 20 CFR 703.203 - Application for security deposit determination; information to be submitted; other requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Application for security deposit...' COMPENSATION ACT AND RELATED STATUTES INSURANCE REGULATIONS Insurance Carrier Security Deposit Requirements § 703.203 Application for security deposit determination; information to be submitted;...

  17. 20 CFR 404.611 - How do I file an application for Social Security benefits?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false How do I file an application for Social Security benefits? 404.611 Section 404.611 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD... § 404.611 How do I file an application for Social Security benefits? (a) General rule. You must...

  18. 20 CFR 422.501 - Applications and other forms used in Social Security Administration programs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Applications and other forms used in Social Security Administration programs. 422.501 Section 422.501 Employees' Benefits SOCIAL SECURITY... used in Social Security Administration programs. This subpart lists the applications and some of...

  19. 20 CFR 404.611 - How do I file an application for Social Security benefits?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false How do I file an application for Social Security benefits? 404.611 Section 404.611 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD... § 404.611 How do I file an application for Social Security benefits? (a) General rule. You must...

  20. 20 CFR 404.611 - How do I file an application for Social Security benefits?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false How do I file an application for Social Security benefits? 404.611 Section 404.611 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD... § 404.611 How do I file an application for Social Security benefits? (a) General rule. You must...

  1. 20 CFR 422.501 - Applications and other forms used in Social Security Administration programs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Applications and other forms used in Social Security Administration programs. 422.501 Section 422.501 Employees' Benefits SOCIAL SECURITY... used in Social Security Administration programs. This subpart lists the applications and some of...

  2. 20 CFR 422.501 - Applications and other forms used in Social Security Administration programs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Applications and other forms used in Social Security Administration programs. 422.501 Section 422.501 Employees' Benefits SOCIAL SECURITY... used in Social Security Administration programs. This subpart lists the applications and some of...

  3. 20 CFR 422.501 - Applications and other forms used in Social Security Administration programs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Applications and other forms used in Social Security Administration programs. 422.501 Section 422.501 Employees' Benefits SOCIAL SECURITY... used in Social Security Administration programs. This subpart lists the applications and some of...

  4. 20 CFR 404.611 - How do I file an application for Social Security benefits?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false How do I file an application for Social Security benefits? 404.611 Section 404.611 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD... § 404.611 How do I file an application for Social Security benefits? (a) General rule. You must...

  5. 20 CFR 422.501 - Applications and other forms used in Social Security Administration programs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Applications and other forms used in Social Security Administration programs. 422.501 Section 422.501 Employees' Benefits SOCIAL SECURITY... used in Social Security Administration programs. This subpart lists the applications and some of...

  6. 20 CFR 404.611 - How do I file an application for Social Security benefits?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false How do I file an application for Social Security benefits? 404.611 Section 404.611 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD... § 404.611 How do I file an application for Social Security benefits? (a) General rule. You must...

  7. Using Science Driven Technologies for the Defense and Security Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Zukor, Dorthy; Ambrose, Stephen D.

    2004-01-01

    For the past three decades, Earth science remote sensing technologies have been providing enormous amounts of useful data and information in broadening our understanding of our home planet as a system. This research, as it has expanded our learning process, has also generated additional questions. This has further resulted in establishing new science requirements, which have culminated in defining and pushing the state-of-the-art technology needs. NASA s Earth science program has deployed 18 highly complex satellites, with a total of 80 sensors, so far and is in a process of defining and launching multiple observing systems in the next decade. Due to the heightened security alert of the nation, researchers and technologists are paying serious attention to the use of these science driven technologies for dual use. In other words, how such sophisticated observing and measuring systems can be used in detecting multiple types of security concerns with a substantial lead time so that the appropriate law enforcement agencies can take adequate steps to defuse any potential risky scenarios. This paper examines numerous NASA technologies such as laser/lidar systems, microwave and millimeter wave technologies, optical observing systems, high performance computational techniques for rapid analyses, and imaging products that can have a tremendous pay off for security applications.

  8. Security of six-state quantum key distribution protocol with threshold detectors

    NASA Astrophysics Data System (ADS)

    Kato, Go; Tamaki, Kiyoshi

    2016-07-01

    The security of quantum key distribution (QKD) is established by a security proof, and the security proof puts some assumptions on the devices consisting of a QKD system. Among such assumptions, security proofs of the six-state protocol assume the use of photon number resolving (PNR) detector, and as a result the bit error rate threshold for secure key generation for the six-state protocol is higher than that for the BB84 protocol. Unfortunately, however, this type of detector is demanding in terms of technological level compared to the standard threshold detector, and removing the necessity of such a detector enhances the feasibility of the implementation of the six-state protocol. Here, we develop the security proof for the six-state protocol and show that we can use the threshold detector for the six-state protocol. Importantly, the bit error rate threshold for the key generation for the six-state protocol (12.611%) remains almost the same as the one (12.619%) that is derived from the existing security proofs assuming the use of PNR detectors. This clearly demonstrates feasibility of the six-state protocol with practical devices.

  9. Security of six-state quantum key distribution protocol with threshold detectors.

    PubMed

    Kato, Go; Tamaki, Kiyoshi

    2016-01-01

    The security of quantum key distribution (QKD) is established by a security proof, and the security proof puts some assumptions on the devices consisting of a QKD system. Among such assumptions, security proofs of the six-state protocol assume the use of photon number resolving (PNR) detector, and as a result the bit error rate threshold for secure key generation for the six-state protocol is higher than that for the BB84 protocol. Unfortunately, however, this type of detector is demanding in terms of technological level compared to the standard threshold detector, and removing the necessity of such a detector enhances the feasibility of the implementation of the six-state protocol. Here, we develop the security proof for the six-state protocol and show that we can use the threshold detector for the six-state protocol. Importantly, the bit error rate threshold for the key generation for the six-state protocol (12.611%) remains almost the same as the one (12.619%) that is derived from the existing security proofs assuming the use of PNR detectors. This clearly demonstrates feasibility of the six-state protocol with practical devices. PMID:27443610

  10. Security of six-state quantum key distribution protocol with threshold detectors

    PubMed Central

    Kato, Go; Tamaki, Kiyoshi

    2016-01-01

    The security of quantum key distribution (QKD) is established by a security proof, and the security proof puts some assumptions on the devices consisting of a QKD system. Among such assumptions, security proofs of the six-state protocol assume the use of photon number resolving (PNR) detector, and as a result the bit error rate threshold for secure key generation for the six-state protocol is higher than that for the BB84 protocol. Unfortunately, however, this type of detector is demanding in terms of technological level compared to the standard threshold detector, and removing the necessity of such a detector enhances the feasibility of the implementation of the six-state protocol. Here, we develop the security proof for the six-state protocol and show that we can use the threshold detector for the six-state protocol. Importantly, the bit error rate threshold for the key generation for the six-state protocol (12.611%) remains almost the same as the one (12.619%) that is derived from the existing security proofs assuming the use of PNR detectors. This clearly demonstrates feasibility of the six-state protocol with practical devices. PMID:27443610

  11. Security of six-state quantum key distribution protocol with threshold detectors.

    PubMed

    Kato, Go; Tamaki, Kiyoshi

    2016-07-22

    The security of quantum key distribution (QKD) is established by a security proof, and the security proof puts some assumptions on the devices consisting of a QKD system. Among such assumptions, security proofs of the six-state protocol assume the use of photon number resolving (PNR) detector, and as a result the bit error rate threshold for secure key generation for the six-state protocol is higher than that for the BB84 protocol. Unfortunately, however, this type of detector is demanding in terms of technological level compared to the standard threshold detector, and removing the necessity of such a detector enhances the feasibility of the implementation of the six-state protocol. Here, we develop the security proof for the six-state protocol and show that we can use the threshold detector for the six-state protocol. Importantly, the bit error rate threshold for the key generation for the six-state protocol (12.611%) remains almost the same as the one (12.619%) that is derived from the existing security proofs assuming the use of PNR detectors. This clearly demonstrates feasibility of the six-state protocol with practical devices.

  12. Establishing security of quantum key distribution without monitoring disturbance

    NASA Astrophysics Data System (ADS)

    Koashi, Masato

    2015-10-01

    In conventional quantum key distribution (QKD) protocols, the information leak to an eavesdropper is estimated through the basic principle of quantum mechanics dictated in the original version of Heisenberg's uncertainty principle. The amount of leaked information on a shared sifted key is bounded from above essentially by using information-disturbance trade-off relations, based on the amount of signal disturbance measured via randomly sampled or inserted probe signals. Here we discuss an entirely different avenue toward the private communication, which does not rely on the information disturbance trade-off relations and hence does not require a monitoring of signal disturbance. The independence of the amount of privacy amplification from that of disturbance tends to give it a high tolerance on the channel noises. The lifting of the burden of precise statistical estimation of disturbance leads to a favorable finite-key-size effect. A protocol based on the novel principle can be implemented by only using photon detectors and classical optics tools: a laser, a phase modulator, and an interferometer. The protocol resembles the differential-phase-shift QKD protocol in that both share a simple binary phase shift keying on a coherent train of weak pulses from a laser. The difference lies in the use of a variable-delay interferometer in the new protocol, which randomly changes the combination of pulse pairs to be superposed. This extra randomness has turned out to be enough to upper-bound the information extracted by the eavesdropper, regardless of how they have disturbed the quantum signal.

  13. Application of infrared imaging systems to maritime security

    NASA Astrophysics Data System (ADS)

    Zeng, Debing

    Enhancing maritime security through video based systems is a very challenging task, not only due to the different scales of vessels to be monitored, but also due to the constantly changing background and environmental conditions. Yet video systems operating in the visible part of the electromagnetic spectrum have established themselves as one of the most crucial tools in maritime security. However, certain inherent limitations such as requirements of proper scene illumination and failure under low visibility weather conditions like fog could be overcome utilizing different spectral regions. Thermal imaging systems present themselves as a good alternative in maritime security. They could overcome these problems and allow for additional detection of local variation of water temperature, yet have been rarely used efficiently in maritime environment evaluated. Here we present a first order study of the advantage of using long-wavelength infrared (LWIR) imaging for diver detection. Within these tasks we study the reasons and effects of bubbles on water surface in laboratory IR imaging study and have determined the changes in infrared emissivity and reflectivity due to the corresponding surface manifestation. This was compared and used to analyze experiments in the Hudson Estuary to the real-world applicability of infrared technology in maritime security application. Utilizing a LWIR camera, we limit ourselves on the detection of the scuba diver as well as the determination of its depth---information normally not obtainable in very low visibility water like the Hudson River. For this purpose we observed the thermal surface signature of the diver and obtained and analyzed its temporal behavior with respect to area, perimeter and infrared brightness. Additional qualitative and quantitative analyses of the area and perimeter growth show different behaviors with more or less pronounced correlation to the diver's depth---yet clearly showing a trend allowing for estimation of

  14. 26 CFR 1.731-2 - Partnership distributions of marketable securities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Partnership distributions of marketable securities. 1.731-2 Section 1.731-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... are eligible for an exception to section 731(c). The examples are as follows: Example 1....

  15. 13 CFR 107.1400 - Dividends or partnership distributions on 4 percent Preferred Securities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Dividends or partnership distributions on 4 percent Preferred Securities. 107.1400 Section 107.1400 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for...

  16. 26 CFR 1.1081-5 - Distribution solely of stock or securities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 11 2012-04-01 2012-04-01 false Distribution solely of stock or securities. 1.1081-5 Section 1.1081-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Exchanges in Obedience to S.e.c. Orders §...

  17. 26 CFR 1.1081-5 - Distribution solely of stock or securities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 11 2011-04-01 2011-04-01 false Distribution solely of stock or securities. 1.1081-5 Section 1.1081-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Exchanges in Obedience to S.e.c. Orders §...

  18. 26 CFR 1.1081-5 - Distribution solely of stock or securities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 11 2014-04-01 2014-04-01 false Distribution solely of stock or securities. 1.1081-5 Section 1.1081-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Exchanges in Obedience to S.e.c. Orders §...

  19. 26 CFR 1.1081-5 - Distribution solely of stock or securities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 11 2013-04-01 2013-04-01 false Distribution solely of stock or securities. 1.1081-5 Section 1.1081-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Exchanges in Obedience to S.e.c. Orders §...

  20. Security applications of a remote electric-field sensor technology

    NASA Astrophysics Data System (ADS)

    Prance, Robert J.; Harland, Christopher J.; Prance, Helen

    2008-10-01

    A new generation of electric field sensors developed at the University of Sussex is enabling an alternative to contact voltage and non-contact magnetic field measurements. We have demonstrated the capability of this technology in a number of areas including ECG through clothing, remote off-body ECG, through wall movement sensing and electric field imaging. Clearly, there are many applications for a generic sensor technology with this capability, including long term vital sign monitoring. The non-invasive nature of the measurement also makes these sensors ideal for man/machine and human/robot interfacing. In addition, there are obvious security and biometric possibilities since we can obtain physiological data remotely, without the knowledge of the subject. This is a clear advantage if such systems are to be used for evaluating the psychological state of a subject. In this paper we report the results obtained with a new version of the sensor which is capable of acquiring electrophysiological signals remotely in an open unshielded laboratory. We believe that this technology opens up a new area of remote biometrics which could have considerable implications for security applications. We have also demonstrated the ability of EPS to function in closely-packed one and two dimensional arrays for real-time imaging.

  1. Current seismic sensor issues for defense and security applications

    NASA Astrophysics Data System (ADS)

    Pakhomov, Alex; Sicignano, Al; Sandy, Matt; Goldburt, Tim

    2004-09-01

    Seismic footstep detection-based systems are very important for various homeland security and military applications. Their performance and usefulness strongly depends on the characteristics of the seismic sensors. Unfortunately, currently available seismic sensors do not provide in satisfactory results. This paper describes the main issues of using seismic sensors for detection purposes and shows the key disadvantages of the most popular commercial seismic sensors/geophones. According to our results, the following are the key issues of poor seismic sensor performance: - Poor response to low frequency signals, leading to decrease of the detection range of targets - Unsatisfactory sensitivity threshold, causing missing low level seismic signals from outlying targets - Long damping signal time and corresponding low accuracy response, leading to problems with outlying target detection in high level noise environments - Low noise immunity from electromagnetic interference making seismic sensor operation in radar installation areas unreliable - Relatively bulky size and high price, which prevents extensive use of seismic sensors In addition, we have formulated objective requirements for seismic sensors to be used in defense and security applications

  2. Nano/micromotors for security/defense applications. A review.

    PubMed

    Singh, Virendra V; Wang, Joseph

    2015-12-14

    The new capabilities of man-made micro/nanomotors open up considerable opportunities for diverse security and defense applications. This review highlights new micromotor-based strategies for enhanced security monitoring and detoxification of chemical and biological warfare agents (CBWA). The movement of receptor-functionalized nanomotors offers great potential for sensing and isolating target bio-threats from complex samples. New mobile reactive materials based on zeolite or activated carbon offer considerable promise for the accelerated removal of chemical warfare agents. A wide range of proof-of-concept motor-based approaches, including the detection and destruction of anthrax spores, 'on-off' nerve-agent detection or effective neutralization of chemical warfare agents have thus been demonstrated. The propulsion of micromotors and their corresponding bubble tails impart significant mixing that greatly accelerates such detoxification processes. These nanomotors will thus empower sensing and destruction where stirring large quantities of decontaminating reagents and controlled mechanical agitation are impossible or undesired. New technological breakthroughs and greater sophistication of micro/nanoscale machines will lead to rapid translation of the micromotor research activity into practical defense applications, addressing the escalating threat of CBWA.

  3. Nano/micromotors for security/defense applications. A review

    NASA Astrophysics Data System (ADS)

    Singh, Virendra V.; Wang, Joseph

    2015-11-01

    The new capabilities of man-made micro/nanomotors open up considerable opportunities for diverse security and defense applications. This review highlights new micromotor-based strategies for enhanced security monitoring and detoxification of chemical and biological warfare agents (CBWA). The movement of receptor-functionalized nanomotors offers great potential for sensing and isolating target bio-threats from complex samples. New mobile reactive materials based on zeolite or activated carbon offer considerable promise for the accelerated removal of chemical warfare agents. A wide range of proof-of-concept motor-based approaches, including the detection and destruction of anthrax spores, `on-off' nerve-agent detection or effective neutralization of chemical warfare agents have thus been demonstrated. The propulsion of micromotors and their corresponding bubble tails impart significant mixing that greatly accelerates such detoxification processes. These nanomotors will thus empower sensing and destruction where stirring large quantities of decontaminating reagents and controlled mechanical agitation are impossible or undesired. New technological breakthroughs and greater sophistication of micro/nanoscale machines will lead to rapid translation of the micromotor research activity into practical defense applications, addressing the escalating threat of CBWA.

  4. Nano/micromotors for security/defense applications. A review.

    PubMed

    Singh, Virendra V; Wang, Joseph

    2015-12-14

    The new capabilities of man-made micro/nanomotors open up considerable opportunities for diverse security and defense applications. This review highlights new micromotor-based strategies for enhanced security monitoring and detoxification of chemical and biological warfare agents (CBWA). The movement of receptor-functionalized nanomotors offers great potential for sensing and isolating target bio-threats from complex samples. New mobile reactive materials based on zeolite or activated carbon offer considerable promise for the accelerated removal of chemical warfare agents. A wide range of proof-of-concept motor-based approaches, including the detection and destruction of anthrax spores, 'on-off' nerve-agent detection or effective neutralization of chemical warfare agents have thus been demonstrated. The propulsion of micromotors and their corresponding bubble tails impart significant mixing that greatly accelerates such detoxification processes. These nanomotors will thus empower sensing and destruction where stirring large quantities of decontaminating reagents and controlled mechanical agitation are impossible or undesired. New technological breakthroughs and greater sophistication of micro/nanoscale machines will lead to rapid translation of the micromotor research activity into practical defense applications, addressing the escalating threat of CBWA. PMID:26554557

  5. InkTag: Secure Applications on an Untrusted Operating System

    PubMed Central

    Hofmann, Owen S.; Kim, Sangman; Dunn, Alan M.; Lee, Michael Z.; Witchel, Emmett

    2014-01-01

    InkTag is a virtualization-based architecture that gives strong safety guarantees to high-assurance processes even in the presence of a malicious operating system. InkTag advances the state of the art in untrusted operating systems in both the design of its hypervisor and in the ability to run useful applications without trusting the operating system. We introduce paraverification, a technique that simplifies the InkTag hypervisor by forcing the untrusted operating system to participate in its own verification. Attribute-based access control allows trusted applications to create decentralized access control policies. InkTag is also the first system of its kind to ensure consistency between secure data and metadata, ensuring recoverability in the face of system crashes. PMID:24429939

  6. Empirical Distributional Semantics: Methods and Biomedical Applications

    PubMed Central

    Cohen, Trevor; Widdows, Dominic

    2009-01-01

    Over the past fifteen years, a range of methods have been developed that are able to learn human-like estimates of the semantic relatedness between terms from the way in which these terms are distributed in a corpus of unannotated natural language text. These methods have also been evaluated in a number of applications in the cognitive science, computational linguistics and the information retrieval literatures. In this paper, we review the available methodologies for derivation of semantic relatedness from free text, as well as their evaluation in a variety of biomedical and other applications. Recent methodological developments, and their applicability to several existing applications are also discussed. PMID:19232399

  7. Application of telecom planar lightwave circuits for homeland security sensing

    NASA Astrophysics Data System (ADS)

    Veldhuis, Gert J.; Elders, Job; van Weerden, Harm; Amersfoort, Martin

    2004-03-01

    Over the past decade, a massive effort has been made in the development of planar lightwave circuits (PLCs) for application in optical telecommunications. Major advances have been made, on both the technological and functional performance front. Highly sophisticated software tools that are used to tailor designs to required functional performance support these developments. In addition extensive know-how in the field of packaging, testing, and failure mode and effects analysis (FMEA) has been built up in the struggle for meeting the stringent Telcordia requirements that apply to telecom products. As an example, silica-on-silicon is now a mature technology available at several industrial foundries around the world, where, on the performance front, the arrayed-waveguide grating (AWG) has evolved into an off-the-shelf product. The field of optical chemical-biological (CB) sensors for homeland security application can greatly benefit from the advances as described above. In this paper we discuss the currently available technologies, device concepts, and modeling tools that have emerged from the telecommunications arena and that can effectively be applied to the field of homeland security. Using this profound telecom knowledge base, standard telecom components can readily be tailored for detecting CB agents. Designs for telecom components aim at complete isolation from the environment to exclude impact of environmental parameters on optical performance. For sensing applications, the optical path must be exposed to the measurand, in this area additional development is required beyond what has already been achieved in telecom development. We have tackled this problem, and are now in a position to apply standard telecom components for CB sensing. As an example, the application of an AWG as a refractometer is demonstrated, and its performance evaluated.

  8. Quantum key distribution for security guarantees over QoS-driven 3D satellite networks

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Zhang, Xi; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2014-06-01

    In recent years, quantum-based communication is emerging as a new technique for ensuring secured communications because it can guarantee absolute security between two different remote entities. Quantum communication performs the transmission and exchange of quantum information among distant nodes within a network. Quantum key distribution (QKD) is a methodology for generating and distributing random encryption keys using the principles of quantum physics. In this paper, we investigate the techniques on how to efficiently use QKD in 3D satellite networks and propose an effective method to overcome its communications-distance limitations. In order to implement secured and reliable communications over wireless satellite links, we develop a free-space quantum channel model in satellite communication networks. To enlarge the communications distances over 3D satellite networks, we propose to employ the intermediate nodes to relay the unconditional keys and guarantee the Quantum Bit Error Rate (QBER) for security requirement over 3D satellite networks. We also propose the communication model for QKD security-Quality of Service (QoS) guarantee and an adaptive cooperative routing selection scheme to optimize the throughput performance of QKD-based satellite communications networks. The obtained simulation results verify our proposed schemes.

  9. An Elliptic Curve Based Schnorr Cloud Security Model in Distributed Environment

    PubMed Central

    Muthurajan, Vinothkumar; Narayanasamy, Balaji

    2016-01-01

    Cloud computing requires the security upgrade in data transmission approaches. In general, key-based encryption/decryption (symmetric and asymmetric) mechanisms ensure the secure data transfer between the devices. The symmetric key mechanisms (pseudorandom function) provide minimum protection level compared to asymmetric key (RSA, AES, and ECC) schemes. The presence of expired content and the irrelevant resources cause unauthorized data access adversely. This paper investigates how the integrity and secure data transfer are improved based on the Elliptic Curve based Schnorr scheme. This paper proposes a virtual machine based cloud model with Hybrid Cloud Security Algorithm (HCSA) to remove the expired content. The HCSA-based auditing improves the malicious activity prediction during the data transfer. The duplication in the cloud server degrades the performance of EC-Schnorr based encryption schemes. This paper utilizes the blooming filter concept to avoid the cloud server duplication. The combination of EC-Schnorr and blooming filter efficiently improves the security performance. The comparative analysis between proposed HCSA and the existing Distributed Hash Table (DHT) regarding execution time, computational overhead, and auditing time with auditing requests and servers confirms the effectiveness of HCSA in the cloud security model creation. PMID:26981584

  10. An Elliptic Curve Based Schnorr Cloud Security Model in Distributed Environment.

    PubMed

    Muthurajan, Vinothkumar; Narayanasamy, Balaji

    2016-01-01

    Cloud computing requires the security upgrade in data transmission approaches. In general, key-based encryption/decryption (symmetric and asymmetric) mechanisms ensure the secure data transfer between the devices. The symmetric key mechanisms (pseudorandom function) provide minimum protection level compared to asymmetric key (RSA, AES, and ECC) schemes. The presence of expired content and the irrelevant resources cause unauthorized data access adversely. This paper investigates how the integrity and secure data transfer are improved based on the Elliptic Curve based Schnorr scheme. This paper proposes a virtual machine based cloud model with Hybrid Cloud Security Algorithm (HCSA) to remove the expired content. The HCSA-based auditing improves the malicious activity prediction during the data transfer. The duplication in the cloud server degrades the performance of EC-Schnorr based encryption schemes. This paper utilizes the blooming filter concept to avoid the cloud server duplication. The combination of EC-Schnorr and blooming filter efficiently improves the security performance. The comparative analysis between proposed HCSA and the existing Distributed Hash Table (DHT) regarding execution time, computational overhead, and auditing time with auditing requests and servers confirms the effectiveness of HCSA in the cloud security model creation. PMID:26981584

  11. An Elliptic Curve Based Schnorr Cloud Security Model in Distributed Environment.

    PubMed

    Muthurajan, Vinothkumar; Narayanasamy, Balaji

    2016-01-01

    Cloud computing requires the security upgrade in data transmission approaches. In general, key-based encryption/decryption (symmetric and asymmetric) mechanisms ensure the secure data transfer between the devices. The symmetric key mechanisms (pseudorandom function) provide minimum protection level compared to asymmetric key (RSA, AES, and ECC) schemes. The presence of expired content and the irrelevant resources cause unauthorized data access adversely. This paper investigates how the integrity and secure data transfer are improved based on the Elliptic Curve based Schnorr scheme. This paper proposes a virtual machine based cloud model with Hybrid Cloud Security Algorithm (HCSA) to remove the expired content. The HCSA-based auditing improves the malicious activity prediction during the data transfer. The duplication in the cloud server degrades the performance of EC-Schnorr based encryption schemes. This paper utilizes the blooming filter concept to avoid the cloud server duplication. The combination of EC-Schnorr and blooming filter efficiently improves the security performance. The comparative analysis between proposed HCSA and the existing Distributed Hash Table (DHT) regarding execution time, computational overhead, and auditing time with auditing requests and servers confirms the effectiveness of HCSA in the cloud security model creation.

  12. Simple proof of the unconditional security of the Bennett 1992 quantum key distribution protocol

    NASA Astrophysics Data System (ADS)

    Quan, Zhang; Chaojing, Tang

    2002-06-01

    It is generally accepted that quantum key distribution (QKD) could supply legitimate users with unconditional security during their communication. Quite a lot of satisfactory efforts have been achieved on experimentations with quantum cryptography. However, when the eavesdropper has extra-powerful computational ability, has access to a quantum computer, for example, and can carry into execution any eavesdropping measurement that is allowed by the laws of physics, the security against such attacks has not been widely studied and rigorously proved for most QKD protocols. Quite recently, Shor and Preskill proved concisely the unconditional security of the Bennett-Brassard 1984 (BB84) protocol. Their method is highly valued for its clarity of concept and concision of form. In order to take advantage of the Shor-Preskill technique in their proof of the unconditional security of the BB84 QKD protocol, we introduced in this paper a transformation that can translate the Bennett 1992 (B92) protocol into the BB84 protocol. By proving that the transformation leaks no more information to the eavesdropper, we proved the unconditional security of the B92 protocol. We also settled the problem proposed by Lo about how to prove the unconditional security of the B92 protocol with the Shor-Preskill method.

  13. Web-Based Training Applications in Safeguards and Security

    SciTech Connect

    Lopez, R.L.

    1999-05-21

    The U.S. Department of Energy (DOE) requires all employees who hold a security clearance and have access to classified information and/or special nuclear material to be trained in the area of Safeguards and Security. Since the advent of the World Wide Web, personnel who are responsible for training have capitalized on this communication medium to develop and deliver Web-based training. Unlike traditional computer based training where the student was required to find a workstation where the training program resided, one of Web-based training strongest advantage is that the training can be delivered right to the workers desk top computer. This paper will address reasons for the driving forces behind the utilization of Web-based training at the Laboratory with a brief explanation of the different types of training conducted. Also discussed briefly is the different types of distance learning used in conjunction with Web-based training. The implementation strategy will be addressed and how the Laboratory utilized a Web-Based Standards Committee to develop standards for Web-based training applications. Web-based problems resulting from little or no communication between training personnel across the Laboratory will be touched on and how this was solved. Also discussed is the development of a ''Virtual Training Center'' where personnel can shop on-line for their training needs. Web-based training programs within the Safeguards and Security arena will be briefly discussed. Specifically, Web-based training in the area of Materials Control and Accountability will be explored. A Web-based example of what a student would experience during a training session is also discussed. A short closing statement of what the future of Web-based Training holds in the future is offered.

  14. A Rich Client-Server Based Framework for Convenient Security and Management of Mobile Applications

    NASA Astrophysics Data System (ADS)

    Badan, Stephen; Probst, Julien; Jaton, Markus; Vionnet, Damien; Wagen, Jean-Frédéric; Litzistorf, Gérald

    Contact lists, Emails, SMS or custom applications on a professional smartphone could hold very confidential or sensitive information. What could happen in case of theft or accidental loss of such devices? Such events could be detected by the separation between the smartphone and a Bluetooth companion device. This event should typically block the applications and delete personal and sensitive data. Here, a solution is proposed based on a secured framework application running on the mobile phone as a rich client connected to a security server. The framework offers strong and customizable authentication and secured connectivity. A security server manages all security issues. User applications are then loaded via the framework. User data can be secured, synchronized, pushed or pulled via the framework. This contribution proposes a convenient although secured environment based on a client-server architecture using external authentications. Several features of the proposed system are exposed and a practical demonstrator is described.

  15. 26 CFR 1.355-7 - Recognition of gain on certain distributions of stock or securities in connection with an...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 4 2011-04-01 2011-04-01 false Recognition of gain on certain distributions of... Shareholders and Security Holders § 1.355-7 Recognition of gain on certain distributions of stock or securities... meaningful voice in the governance of the corporation. For purposes of determining whether a person...

  16. 26 CFR 1.355-7 - Recognition of gain on certain distributions of stock or securities in connection with an...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Recognition of gain on certain distributions of... Shareholders and Security Holders § 1.355-7 Recognition of gain on certain distributions of stock or securities... meaningful voice in the governance of the corporation. For purposes of determining whether a person...

  17. Secure PVM

    SciTech Connect

    Dunigan, T.H.; Venugopal, N.

    1996-09-01

    This research investigates techniques for providing privacy, authentication, and data integrity to PVM (Parallel Virtual Machine). PVM is extended to provide secure message passing with no changes to the user`s PVM application, or, optionally, security can be provided on a message-by message basis. Diffe-Hellman is used for key distribution of a single session key for n-party communication. Keyed MD5 is used for message authentication, and the user may select from various secret-key encryption algorithms for message privacy. The modifications to PVM are described, and the performance of secure PVM is evaluated.

  18. Test of radiation detectors used in homeland security applications.

    PubMed

    Pibida, L; Minniti, R; O'Brien, M; Unterweger, M

    2005-05-01

    This work was performed as part of the National Institute of Standards and Technology (NIST) program to support the development of the new American National Standards Institute (ANSI) standards N42.32-2003 and N42.33-2003 for hand-held detectors, and personal electronic dosimeters, as well as to support the Office of Law Enforcement Standards (OLES) and the Department of Homeland Security (DHS) in testing these types of detectors for their use by first responders. These instruments are required to operate over a photon energy range of 60 keV to 1.33 MeV and over a wide range of air-kerma rates. The performance and response of various radiation detectors, purchased by the NIST, was recorded when placed in 60Co, 137Cs, and x-ray beams at different air-kerma rates. The measurements described in this report were performed at the NIST x-ray and gamma-ray radiation calibration facilities. The instruments' response (exposure or dose rate readings) shows strong energy dependence but almost no dependence to different air-kerma rates. The data here reported provide a benchmark in support of current protocols that are being developed for radiation detection instrumentation used in homeland security applications. A future plan is to test these devices, plus other commercially available detectors, against ANSI standards N42.32-2003 and N42.33-2003.

  19. A secure RFID-based WBAN for healthcare applications.

    PubMed

    Ullah, Sana; Alamri, Atif

    2013-10-01

    A Wireless Body Area Network (WBAN) allows the seamless integration of small and intelligent invasive or non-invasive sensor nodes in, on or around a human body for continuous health monitoring. These nodes are expected to use different power-efficient protocols in order to extend the WBAN lifetime. This paper highlights the power consumption and security issues of WBAN for healthcare applications. Numerous power saving mechanisms are discussed and a secure RFID-based protocol for WBAN is proposed. The performance of the proposed protocol is analyzed and compared with that of IEEE 802.15.6-based CSMA/CA and preamble-based TDMA protocols using extensive simulations. It is shown that the proposed protocol is power-efficient and protects patients' data from adversaries. It is less vulnerable to different attacks compared to that of IEEE 802.15.6-based CSMA/CA and preamble-based TDMA protocols. For a low traffic load and a single alkaline battery of capacity 2.6 Ah, the proposed protocol could extend the WBAN lifetime, when deployed on patients in hospitals or at homes, to approximately five years.

  20. Wireless sensors and sensor networks for homeland security applications

    PubMed Central

    Potyrailo, Radislav A.; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M.; Kelley-Loughnane, Nancy; Naik, Rajesh R.

    2012-01-01

    New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers. PMID:23175590

  1. Synchronizable Objects in Distributed Multimedia Applications

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Feijs, Loe

    In training and gaming systems, distributed multimedia are often used, in which the basic content elements must be conveyed or presented in a synchronized order at synchronized moments over multiple devices and in many cases over a network. These content elements are often presented or represented as "Synchronizable Objects" with which their control and management fall into a design pattern. This paper uses the pattern language to capture the common features of these "Synchronizable Objects", in combination of the formal Object-Z specification to treat the architectural construct. The proposed pattern can be applied for content elements with or without intrinsic timing in distributed multimedia applications. Examples are given to show how this pattern can be applied in distributed applications.

  2. Bio-inspired approaches to sensing for defence and security applications.

    PubMed

    Biggins, Peter D E; Kusterbeck, Anne; Hiltz, John A

    2008-05-01

    Interdisciplinary research in biotechnology and related scientific areas has increased tremendously over the past decade. This rapid pace, in conjunction with advances in microfabricated systems, computer hardware, bioengineering and the availability of low-powered miniature components, has now made it feasible to design bio-inspired materials, sensors and systems with tremendous potential for defence and security applications. To realize the full potential of biotechnology and bio-inspiration, there is a need to define specific requirements to meet the challenges of the changing world and its threats. One approach to assisting the defence and security communities in defining their requirements is through the use of a conceptual model. The distributed or intelligent autonomous sensing (DIAS) system is one such model. The DIAS model is not necessarily aimed at a single component, for instance a sensor, but can include a system, or even a system of systems in the same way that a single organism, a multi-cellular organism or group of organisms is configured. This paper provides an overview of the challenges to and opportunities for bio-inspired sensors and systems together with examples of how they are being implemented. Examples focus on both learning new things from biological organisms that have application to the defence and security forces and adapting known discoveries in biology and biochemistry for practical use by these communities. PMID:18427675

  3. 18 CFR 34.3 - Contents of application for issuance of securities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Contents of application for issuance of securities. 34.3 Section 34.3 Conservation of Power and Water Resources FEDERAL ENERGY... description of the securities proposed to be issued, including: (1) Type and nature of securities; (2)...

  4. Practical Security Bounds Against the Trojan-Horse Attack in Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Lucamarini, M.; Choi, I.; Ward, M. B.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.

    2015-07-01

    In the quantum version of a Trojan-horse attack, photons are injected into the optical modules of a quantum key distribution system in an attempt to read information direct from the encoding devices. To stop the Trojan photons, the use of passive optical components has been suggested. However, to date, there is no quantitative bound that specifies such components in relation to the security of the system. Here, we turn the Trojan-horse attack into an information leakage problem. This allows us to quantify the system security and relate it to the specification of the optical elements. The analysis is supported by the experimental characterization, within the operation regime, of reflectivity and transmission of the optical components most relevant to security.

  5. A Geospatial Integrated Problem Solving Environment for Homeland Security Applications

    SciTech Connect

    Koch, Daniel B

    2010-01-01

    Effective planning, response, and recovery (PRR) involving terrorist attacks or natural disasters come with a vast array of information needs. Much of the required information originates from disparate sources in widely differing formats. However, one common attribute the information often possesses is physical location. The organization and visualization of this information can be critical to the success of the PRR mission. Organizing information geospatially is often the most intuitive for the user. In the course of developing a field tool for the U.S. Department of Homeland Security (DHS) Office for Bombing Prevention, a geospatial integrated problem solving environment software framework was developed by Oak Ridge National Laboratory. This framework has proven useful as well in a number of other DHS, Department of Defense, and Department of Energy projects. An overview of the software architecture along with application examples are presented.

  6. Ultra-wide fast fisheye for security and monitoring applications

    NASA Astrophysics Data System (ADS)

    Samy, Ahmed M.; Gao, Zhishan

    2014-11-01

    A 1.5mm focal length, F/4and F/3.75, miniature fisheye all spherical optical lens systems with 220 degree full field of view are designed in this paper, a brief discussion for a series of limiting factors is achieved, the performance evaluation is done by ZEMAX optical design and analysis software, which shows that the two designed fisheye lenses are perfect lateral color and axial chromatic aberration corrected, the maximum wavefront OPD at the full FOV is 0.6λ and 1.2λ, the RMS spot size is 3.75-3.9microns across the full FOV in both lens systems, and have diffraction encircled energy, as above 80% energy can be included in 4.8 μm radius circle. Finally, the modulation transfer function of these two designs produces a high-resolution projection with uniform in brightness over the entire range of field angles for security, monitoring, and tracking applications.

  7. Pulse-shape discrimination scintillators for homeland security applications

    NASA Astrophysics Data System (ADS)

    Ellis, Mark E.; Duroe, Kirk; Kendall, Paul A.

    2016-09-01

    An extensive programme of research has been conducted for scintillation liquids and plastics capable of neutron-gamma discrimination for deployment in future passive and active Homeland Security systems to provide protection against radiological and nuclear threats. The more established detection materials such as EJ-301 and EJ-309 are compared with novel materials such as EJ-299-33 and p-terphenyl. This research also explores the benefits that can be gained from improvements in the analogue-to-digital sampling rate and sample bit resolution. Results are presented on the Pulse Shape Discrimination performance of various detector and data acquisition combinations and how optimum configurations from these studies have been developed into field-ready detector arrays. Early results from application-specific experimental configurations of multi-element detector arrays are presented.

  8. Applying SOA Concepts to Distributed Industrial Applications Using WCF Technology

    NASA Astrophysics Data System (ADS)

    Stopper, Markus; Gastermann, Bernd

    2010-10-01

    Software Development is subject to a constant process of change. In the meantime web services, access to remote services or distributed applications are already the standard. Simultaneously with their advancement demands on these techniques are rising significantly. Defined support for security issues, coordination of transactions and reliable communications are expected. Windows Communication Foundation (WCF)—as a part of Microsoft Corporation's .NET Framework—supports these requirements in line with wide range interoperability. WCF provides the development of distributed and interconnected software applications by means of a service-oriented programming model. This paper introduces a service-oriented communication concept based on WCF, which is specifically designed for industrial applications within a production environment using a central manufacturing information system (MIS) database. It introduces applied technologies and provides an overview of some important design aspects and base service sets of WCF. Additionally, this paper also shows a factual implementation of the presented service-oriented communication concept in the form of an industrial software application used in plastics industry.

  9. Security engineering: systems engineering of security through the adaptation and application of risk management

    NASA Technical Reports Server (NTRS)

    Gilliam, David P.; Feather, Martin S.

    2004-01-01

    Information Technology (IT) Security Risk Management is a critical task in the organization, which must protect its resources and data against the loss of confidentiality, integrity, and availability. As systems become more complex and diverse, and more vulnerabilities are discovered while attacks from intrusions and malicious content increase, it is becoming increasingly difficult to manage IT security. This paper describes an approach to address IT security risk through risk management and mitigation in both the institution and in the project life cycle.

  10. Security

    ERIC Educational Resources Information Center

    Technology & Learning, 2008

    2008-01-01

    Anytime, anywhere, learning provides opportunities to create digital learning environments for new teaching styles and personalized learning. As part of making sure the program is effective, the safety and security of students and assets are essential--and mandated by law. The Children's Internet Protection Act (CIPA) addresses Internet content…

  11. Security Mechanism Based on Hospital Authentication Server for Secure Application of Implantable Medical Devices

    PubMed Central

    2014-01-01

    After two recent security attacks against implantable medical devices (IMDs) have been reported, the privacy and security risks of IMDs have been widely recognized in the medical device market and research community, since the malfunctioning of IMDs might endanger the patient's life. During the last few years, a lot of researches have been carried out to address the security-related issues of IMDs, including privacy, safety, and accessibility issues. A physician accesses IMD through an external device called a programmer, for diagnosis and treatment. Hence, cryptographic key management between IMD and programmer is important to enforce a strict access control. In this paper, a new security architecture for the security of IMDs is proposed, based on a 3-Tier security model, where the programmer interacts with a Hospital Authentication Server, to get permissions to access IMDs. The proposed security architecture greatly simplifies the key management between IMDs and programmers. Also proposed is a security mechanism to guarantee the authenticity of the patient data collected from IMD and the nonrepudiation of the physician's treatment based on it. The proposed architecture and mechanism are analyzed and compared with several previous works, in terms of security and performance. PMID:25276797

  12. Security mechanism based on Hospital Authentication Server for secure application of implantable medical devices.

    PubMed

    Park, Chang-Seop

    2014-01-01

    After two recent security attacks against implantable medical devices (IMDs) have been reported, the privacy and security risks of IMDs have been widely recognized in the medical device market and research community, since the malfunctioning of IMDs might endanger the patient's life. During the last few years, a lot of researches have been carried out to address the security-related issues of IMDs, including privacy, safety, and accessibility issues. A physician accesses IMD through an external device called a programmer, for diagnosis and treatment. Hence, cryptographic key management between IMD and programmer is important to enforce a strict access control. In this paper, a new security architecture for the security of IMDs is proposed, based on a 3-Tier security model, where the programmer interacts with a Hospital Authentication Server, to get permissions to access IMDs. The proposed security architecture greatly simplifies the key management between IMDs and programmers. Also proposed is a security mechanism to guarantee the authenticity of the patient data collected from IMD and the nonrepudiation of the physician's treatment based on it. The proposed architecture and mechanism are analyzed and compared with several previous works, in terms of security and performance.

  13. The challenge for security and privacy services in distributed health settings.

    PubMed

    Katsikas, Sokratis; Lopez, Javier; Pernul, Günther

    2008-01-01

    The health care sector is quickly exploiting Information and Communication Technologies towards the provision of e-health services. According to recent surveys, one of the most severe restraining factors for the proliferation of e-health is the (lack of) security measures required to assure both service providers and patients that their relationship and transactions will be carried out in privacy, correctly, and timely. A large number of individuals are not willing to engage in e-health (or are only participating at a reduced level) simply because they do not trust the e-health service providers' sites and the underlying information and communication technologies to be secure enough. This paper considers privacy and security issues and challenges for e-health applications.

  14. Secure, Autonomous, Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Paulsen, Phillip E.; Miller, Eric M.; Sage, Steen P.

    2013-01-01

    This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe(Registered TradeMark) satellites to obtain space-based sensor data.

  15. Security issues in healthcare applications using wireless medical sensor networks: a survey.

    PubMed

    Kumar, Pardeep; Lee, Hoon-Jae

    2012-01-01

    Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs.

  16. Security issues in healthcare applications using wireless medical sensor networks: a survey.

    PubMed

    Kumar, Pardeep; Lee, Hoon-Jae

    2012-01-01

    Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs. PMID:22368458

  17. Security Issues in Healthcare Applications Using Wireless Medical Sensor Networks: A Survey

    PubMed Central

    Kumar, Pardeep; Lee, Hoon-Jae

    2012-01-01

    Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs. PMID:22368458

  18. Operation of remote mobile sensors for security of drinking water distribution systems.

    PubMed

    Perelman, By Lina; Ostfeld, Avi

    2013-09-01

    The deployment of fixed online water quality sensors in water distribution systems has been recognized as one of the key components of contamination warning systems for securing public health. This study proposes to explore how the inclusion of mobile sensors for inline monitoring of various water quality parameters (e.g., residual chlorine, pH) can enhance water distribution system security. Mobile sensors equipped with sampling, sensing, data acquisition, wireless transmission and power generation systems are being designed, fabricated, and tested, and prototypes are expected to be released in the very near future. This study initiates the development of a theoretical framework for modeling mobile sensor movement in water distribution systems and integrating the sensory data collected from stationary and non-stationary sensor nodes to increase system security. The methodology is applied and demonstrated on two benchmark networks. Performance of different sensor network designs are compared for fixed and combined fixed and mobile sensor networks. Results indicate that complementing online sensor networks with inline monitoring can increase detection likelihood and decrease mean time to detection.

  19. Modulated digital images for biometric and other security applications

    NASA Astrophysics Data System (ADS)

    McCarthy, Lawry D.; Lee, Robert A.; Swiegers, Gerhard F.

    2004-06-01

    There are, in general, two ways for an observer to deal with light that is incorrect in some way (e.g. which is partially out of focus). One approach is to correct the error (e.g. by using a lens to selectively bend the light). Another approach employs selective masking to block those portions of the light which are unwanted (e.g. out of focus). The principle of selective masking is used in a number of important industries. However it has not found widespread application in the field of optical security devices. This work describes the selective masking, or modulation, of digital images as a means of creating documents and transparent media containing overt or covert biometric and other images. In particular, we show how animation effects, flash-illumination features, color-shifting patches, information concealment devices, and biometric portraiture in various settings can be incorporated in transparent media like plastic packaging materials, credit cards, and plastic banknotes. We also demonstrate the application of modulated digital images to the preparation of optically variable diffractive foils which are readily customized to display biometric portraits and information. Selective masking is shown to be an important means of creating a diverse range of effects useful in authentication. Such effects can be readily and inexpensively produced without the need, for example, to fabricate lenses on materials which may not be conducive in this respect.

  20. Dark states ultra-long fiber laser for practically secure key distribution

    NASA Astrophysics Data System (ADS)

    Kotlicki, Omer; Scheuer, Jacob

    2014-10-01

    We present and demonstrate a novel ultra-long fiber laser key distribution system (UFL-KDS). The scheme quenches the lasing process when in its secure states, thus forming "dark states" which provide simple detection on one hand and increased difficulty of eavesdropping on the other. We analyze the practical aspects of previously studied UFL-KDS schemes as well as those of the one presented here and demonstrate successful key distribution across a 200 km link with bit-rates that can exceed 0.5 kbps. Spectral and temporal passive attack strategies are analyzed and discussed in details.

  1. Communicating Health Risks under Pressure: Homeland Security Applications

    SciTech Connect

    Garrahan, K.G.; Collie, S.L.

    2006-07-01

    The U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) Threat and Consequence Assessment Division (TCAD) within the National Homeland Security Research Center (NHSRC) has developed a tool for rapid communication of health risks and likelihood of exposure in preparation for terrorist incidents. The Emergency Consequence Assessment Tool (ECAT) is a secure web-based tool designed to make risk assessment and consequence management faster and easier for high priority terrorist threat scenarios. ECAT has been designed to function as 'defensive play-book' for health advisors, first responders, and decision-makers by presenting a series of evaluation templates for priority scenarios that can be modified for site-specific applications. Perhaps most importantly, the risk communication aspect is considered prior to an actual release event, so that management or legal advisors can concur on general risk communication content in preparation for press releases that can be anticipated in case of an actual emergency. ECAT serves as a one-stop source of information for retrieving toxicological properties for agents of concern, estimating exposure to these agents, characterizing health risks, and determining what actions need to be undertaken to mitigate the risks. ECAT has the capability to be used at a command post where inputs can be checked and communicated while the response continues in real time. This front-end planning is intended to fill the gap most commonly identified during tabletop exercises: a need for concise, timely, and informative risk communication to all parties. Training and customization of existing chemical and biological release scenarios with modeling of exposure to air and water, along with custom risk communication 'messages' intended for public, press, shareholders, and other partners enable more effective communication during times of crisis. For DOE, the ECAT could serve as a prototype that would be amenable to

  2. Rapid response radiation sensors for homeland security applications

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul

    2014-09-01

    The National Security Technologies, LLC, Remote Sensing Laboratory is developing a rapid response radiation detection system for homeland security field applications. The intelligence-driven system is deployed only when non-radiological information about the target is verifiable. The survey area is often limited, so the detection range is small; in most cases covering a distance of 10 meters or less suffices. Definitive response is required in no more than 3 seconds and should minimize false negative alarms, but can err on the side of positive false alarms. The detection system is rapidly reconfigurable in terms of size, shape, and outer appearance; it is a plug-and-play system. Multiple radiation detection components (viz., two or more sodium iodide scintillators) are used to independently "over-determine" the existence of the threat object. Rapid response electronic dose rate meters are also included in the equipment suite. Carefully studied threat signatures are the basis of the decision making. The use of Rad-Detect predictive modeling provides information on the nature of the threat object. Rad-Detect provides accurate dose rate from heavily shielded large sources; for example those lost in Mexico were Category 1 radiation sources (~3,000 Ci of 60Co), the most dangerous of five categories defined by the International Atomic Energy Agency. Taken out of their shielding containers, Category 1 sources can kill anyone who is exposed to them at close range for a few minutes to an hour. Whenever possible sub-second data acquisition will be attempted, and, when deployed, the system will be characterized for false alarm rates. Although the radiation detection materials selected are fast (viz., faster scintillators), their speed is secondary to sensitivity, which is of primary importance. Results from these efforts will be discussed and demonstrated.

  3. Applications of shape analysis to domestic and international security.

    SciTech Connect

    Prasad, Lakshman; Skourikhine, A. N.; Doak, J. E.

    2002-01-01

    The rapidly growing area of cooperative international security calls for pervasive deployment of smart sensors that render valuable information and reduce operational costs and errors. Among the sensors used, vision sensors are by far the most versatile, tangible, and rich in the information they provide about their environment. On the flip side, they are also the most complex to analyze automatically for the extraction of high-level information. The ability to process imagery in a useful manner requires at least partial functional emulation of human capabilities of visual understanding. Of all visual cues available in image data, shape is perhaps the most important for understanding the content of an image. In this paper we present an overview of ongoing research at LANL on geometric shape analysis. The objective of our research is to develop a computational framework for multiscale characterization, analysis, and recognition of shapes. This framework will enable the development of a comprehensive and connected body of mathematical methods and algorithms, based on the topological, metrical, and morphological properties of shapes. We discuss its potential applications to automated surveillance, monitoring, container tracking and inspection, weapons dismantlement, and treaty verification. The framework will develop a geometric filtering scheme for extracting semantically salient shape features. This effort creates a paradigm for solving shape-related problems in Pattern Recognition, Computer Vision, and Image Understanding in a conceptually cohesive and algorithmically amenable manner. The research aims to develop an advanced image analysis capability at LANL for solving a wide range of problems in automated facility surveillance, nuclear materials monitoring, treaty verification, and container inspection and tracking. The research provides the scientific underpinnings that will enable us to build smart surveillance cameras, with a direct practical impact on LANL

  4. Distributed Computing Framework for Synthetic Radar Application

    NASA Technical Reports Server (NTRS)

    Gurrola, Eric M.; Rosen, Paul A.; Aivazis, Michael

    2006-01-01

    We are developing an extensible software framework, in response to Air Force and NASA needs for distributed computing facilities for a variety of radar applications. The objective of this work is to develop a Python based software framework, that is the framework elements of the middleware that allows developers to control processing flow on a grid in a distributed computing environment. Framework architectures to date allow developers to connect processing functions together as interchangeable objects, thereby allowing a data flow graph to be devised for a specific problem to be solved. The Pyre framework, developed at the California Institute of Technology (Caltech), and now being used as the basis for next-generation radar processing at JPL, is a Python-based software framework. We have extended the Pyre framework to include new facilities to deploy processing components as services, including components that monitor and assess the state of the distributed network for eventual real-time control of grid resources.

  5. Security proof of a three-state quantum-key-distribution protocol without rotational symmetry

    SciTech Connect

    Fung, C.-H.F.; Lo, H.-K.

    2006-10-15

    Standard security proofs of quantum-key-distribution (QKD) protocols often rely on symmetry arguments. In this paper, we prove the security of a three-state protocol that does not possess rotational symmetry. The three-state QKD protocol we consider involves three qubit states, where the first two states |0{sub z}> and |1{sub z}> can contribute to key generation, and the third state |+>=(|0{sub z}>+|1{sub z}>)/{radical}(2) is for channel estimation. This protocol has been proposed and implemented experimentally in some frequency-based QKD systems where the three states can be prepared easily. Thus, by founding on the security of this three-state protocol, we prove that these QKD schemes are, in fact, unconditionally secure against any attacks allowed by quantum mechanics. The main task in our proof is to upper bound the phase error rate of the qubits given the bit error rates observed. Unconditional security can then be proved not only for the ideal case of a single-photon source and perfect detectors, but also for the realistic case of a phase-randomized weak coherent light source and imperfect threshold detectors. Our result in the phase error rate upper bound is independent of the loss in the channel. Also, we compare the three-state protocol with the Bennett-Brassard 1984 (BB84) protocol. For the single-photon source case, our result proves that the BB84 protocol strictly tolerates a higher quantum bit error rate than the three-state protocol, while for the coherent-source case, the BB84 protocol achieves a higher key generation rate and secure distance than the three-state protocol when a decoy-state method is used.

  6. 76 FR 8755 - Privacy Act of 1974; Department of Homeland Security/ALL-032 Official Passport Application and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... SECURITY Office of the Secretary Privacy Act of 1974; Department of Homeland Security/ALL--032 Official... of Homeland Security proposes to establish a new Department of Homeland Security system of records titled, ``Department of Homeland Security/ ALL--032 Official Passport Application and Maintenance......

  7. 12 CFR 350.12 - Disclosure required by applicable banking or securities law or regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Disclosure required by applicable banking or securities law or regulations. 350.12 Section 350.12 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION... STATE NONMEMBER BANKS § 350.12 Disclosure required by applicable banking or securities law...

  8. 12 CFR 350.12 - Disclosure required by applicable banking or securities law or regulations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Disclosure required by applicable banking or securities law or regulations. 350.12 Section 350.12 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION... STATE NONMEMBER BANKS § 350.12 Disclosure required by applicable banking or securities law...

  9. 12 CFR 350.12 - Disclosure required by applicable banking or securities law or regulations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Disclosure required by applicable banking or securities law or regulations. 350.12 Section 350.12 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION... STATE NONMEMBER BANKS § 350.12 Disclosure required by applicable banking or securities law...

  10. 12 CFR 350.12 - Disclosure required by applicable banking or securities law or regulations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Disclosure required by applicable banking or securities law or regulations. 350.12 Section 350.12 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION... STATE NONMEMBER BANKS § 350.12 Disclosure required by applicable banking or securities law...

  11. 12 CFR 350.12 - Disclosure required by applicable banking or securities law or regulations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Disclosure required by applicable banking or securities law or regulations. 350.12 Section 350.12 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION... STATE NONMEMBER BANKS § 350.12 Disclosure required by applicable banking or securities law...

  12. Finite-key security analysis of quantum key distribution with imperfect light sources

    SciTech Connect

    Mizutani, Akihiro; Curty, Marcos; Lim, Charles Ci Wen; Imoto, Nobuyuki; Tamaki, Kiyoshi

    2015-09-09

    In recent years, the gap between theory and practice in quantum key distribution (QKD) has been significantly narrowed, particularly for QKD systems with arbitrarily flawed optical receivers. The status for QKD systems with imperfect light sources is however less satisfactory, in the sense that the resulting secure key rates are often overly dependent on the quality of state preparation. This is especially the case when the channel loss is high. Very recently, to overcome this limitation, Tamaki et al proposed a QKD protocol based on the so-called 'rejected data analysis', and showed that its security in the limit of infinitely long keys is almost independent of any encoding flaw in the qubit space, being this protocol compatible with the decoy state method. Here, as a step towards practical QKD, we show that a similar conclusion is reached in the finite-key regime, even when the intensity of the light source is unstable. More concretely, we derive security bounds for a wide class of realistic light sources and show that the bounds are also efficient in the presence of high channel loss. Our results strongly suggest the feasibility of long distance provably secure communication with imperfect light sources.

  13. Finite-key security analysis of quantum key distribution with imperfect light sources

    DOE PAGES

    Mizutani, Akihiro; Curty, Marcos; Lim, Charles Ci Wen; Imoto, Nobuyuki; Tamaki, Kiyoshi

    2015-09-09

    In recent years, the gap between theory and practice in quantum key distribution (QKD) has been significantly narrowed, particularly for QKD systems with arbitrarily flawed optical receivers. The status for QKD systems with imperfect light sources is however less satisfactory, in the sense that the resulting secure key rates are often overly dependent on the quality of state preparation. This is especially the case when the channel loss is high. Very recently, to overcome this limitation, Tamaki et al proposed a QKD protocol based on the so-called 'rejected data analysis', and showed that its security in the limit of infinitelymore » long keys is almost independent of any encoding flaw in the qubit space, being this protocol compatible with the decoy state method. Here, as a step towards practical QKD, we show that a similar conclusion is reached in the finite-key regime, even when the intensity of the light source is unstable. More concretely, we derive security bounds for a wide class of realistic light sources and show that the bounds are also efficient in the presence of high channel loss. Our results strongly suggest the feasibility of long distance provably secure communication with imperfect light sources.« less

  14. Secure authentication protocol for Internet applications over CATV network

    NASA Astrophysics Data System (ADS)

    Chin, Le-Pond

    1998-02-01

    An authentication protocol is proposed in this paper to implement secure functions which include two way authentication and key management between end users and head-end. The protocol can protect transmission from frauds, attacks such as reply and wiretap. Location privacy is also achieved. A rest protocol is designed to restore the system once when systems fail. The security is verified by taking several security and privacy requirements into consideration.

  15. Application-Oriented Confidentiality and Integrity Dynamic Union Security Model Based on MLS Policy

    NASA Astrophysics Data System (ADS)

    Xue, Mingfu; Hu, Aiqun; He, Chunlong

    We propose a new security model based on MLS Policy to achieve a better security performance on confidentiality, integrity and availability. First, it realizes a combination of BLP model and Biba model through a two-dimensional independent adjustment of integrity and confidentiality. And, the subject's access range is adjusted dynamically according to the security label of related objects and the subject's access history. Second, the security level of the trusted subject is extended to writing and reading privilege range respectively, following the principle of least privilege. Third, it adjusts the objects' security levels after adding confidential information to prevent the information disclosure. Fourth, it uses application-oriented logic to protect specific applications to avoid the degradation of security levels. Thus, it can ensure certain applications operate smoothly. Lastly, examples are presented to show the effectiveness and usability of the proposed model.

  16. DOE integrated safeguards and security (DISS) system a nation-wide distributed information system for personnel security

    SciTech Connect

    Block, B.

    1997-06-05

    DISS uses secure client-server and relational database technology across open networks to address the problems of security clearance request processing and tracking of security clearances for the Department of energy. The system supports the entire process from data entry by the prospective clearance holders through tracking of all DOE clearances, and use of standard DOE badges in automated access control systems throughout the DOE complex.

  17. Laser-induced breakdown spectroscopy in industrial and security applications

    SciTech Connect

    Bol'shakov, Alexander A.; Yoo, Jong H.; Liu Chunyi; Plumer, John R.; Russo, Richard E.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) offers rapid, localized chemical analysis of solid or liquid materials with high spatial resolution in lateral and depth profiling, without the need for sample preparation. Principal component analysis and partial least squares algorithms were applied to identify a variety of complex organic and inorganic samples. This work illustrates how LIBS analyzers can answer a multitude of real-world needs for rapid analysis, such as determination of lead in paint and children's toys, analysis of electronic and solder materials, quality control of fiberglass panels, discrimination of coffee beans from different vendors, and identification of generic versus brand-name drugs. Lateral and depth profiling was performed on children's toys and paint layers. Traditional one-element calibration or multivariate chemometric procedures were applied for elemental quantification, from single laser shot determination of metal traces at {approx}10 {mu}g/g to determination of halogens at 90 {mu}g/g using 50-shot spectral accumulation. The effectiveness of LIBS for security applications was demonstrated in the field by testing the 50-m standoff LIBS rasterizing detector.

  18. Control and Communication for a Secure and Reconfigurable Power Distribution System

    NASA Astrophysics Data System (ADS)

    Giacomoni, Anthony Michael

    A major transformation is taking place throughout the electric power industry to overlay existing electric infrastructure with advanced sensing, communications, and control system technologies. This transformation to a smart grid promises to enhance system efficiency, increase system reliability, support the electrification of transportation, and provide customers with greater control over their electricity consumption. Upgrading control and communication systems for the end-to-end electric power grid, however, will present many new security challenges that must be dealt with before extensive deployment and implementation of these technologies can begin. In this dissertation, a comprehensive systems approach is taken to minimize and prevent cyber-physical disturbances to electric power distribution systems using sensing, communications, and control system technologies. To accomplish this task, an intelligent distributed secure control (IDSC) architecture is presented and validated in silico for distribution systems to provide greater adaptive protection, with the ability to proactively reconfigure, and rapidly respond to disturbances. Detailed descriptions of functionalities at each layer of the architecture as well as the whole system are provided. To compare the performance of the IDSC architecture with that of other control architectures, an original simulation methodology is developed. The simulation model integrates aspects of cyber-physical security, dynamic price and demand response, sensing, communications, intermittent distributed energy resources (DERs), and dynamic optimization and reconfiguration. Applying this comprehensive systems approach, performance results for the IEEE 123 node test feeder are simulated and analyzed. The results show the trade-offs between system reliability, operational constraints, and costs for several control architectures and optimization algorithms. Additional simulation results are also provided. In particular, the

  19. A Secure Scheme for Distributed Consensus Estimation against Data Falsification in Heterogeneous Wireless Sensor Networks.

    PubMed

    Mi, Shichao; Han, Hui; Chen, Cailian; Yan, Jian; Guan, Xinping

    2016-01-01

    Heterogeneous wireless sensor networks (HWSNs) can achieve more tasks and prolong the network lifetime. However, they are vulnerable to attacks from the environment or malicious nodes. This paper is concerned with the issues of a consensus secure scheme in HWSNs consisting of two types of sensor nodes. Sensor nodes (SNs) have more computation power, while relay nodes (RNs) with low power can only transmit information for sensor nodes. To address the security issues of distributed estimation in HWSNs, we apply the heterogeneity of responsibilities between the two types of sensors and then propose a parameter adjusted-based consensus scheme (PACS) to mitigate the effect of the malicious node. Finally, the convergence property is proven to be guaranteed, and the simulation results validate the effectiveness and efficiency of PACS. PMID:26907275

  20. A Secure Scheme for Distributed Consensus Estimation against Data Falsification in Heterogeneous Wireless Sensor Networks

    PubMed Central

    Mi, Shichao; Han, Hui; Chen, Cailian; Yan, Jian; Guan, Xinping

    2016-01-01

    Heterogeneous wireless sensor networks (HWSNs) can achieve more tasks and prolong the network lifetime. However, they are vulnerable to attacks from the environment or malicious nodes. This paper is concerned with the issues of a consensus secure scheme in HWSNs consisting of two types of sensor nodes. Sensor nodes (SNs) have more computation power, while relay nodes (RNs) with low power can only transmit information for sensor nodes. To address the security issues of distributed estimation in HWSNs, we apply the heterogeneity of responsibilities between the two types of sensors and then propose a parameter adjusted-based consensus scheme (PACS) to mitigate the effect of the malicious node. Finally, the convergence property is proven to be guaranteed, and the simulation results validate the effectiveness and efficiency of PACS. PMID:26907275

  1. Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Huang, Peng; Huang, Duan; Lin, Dakai; Zeng, Guihua

    2016-02-01

    Practical security of the continuous-variable quantum key distribution (CVQKD) system with finite sampling bandwidth of analog-to-digital converter (ADC) at the receiver's side is investigated. We find that the finite sampling bandwidth effects may decrease the lower bound of secret key rate without awareness of the legitimate communicators. This leaves security loopholes for Eve to attack the system. In addition, this effect may restrains the linear relationship of secret key bit rate with repetition rate of the system; subsequently, there is a saturation value for the secret key bit rate with the repetition rate. To resist such kind of effects, we propose a dual sampling detection approach in which two ADCs are employed so that the finite sampling bandwidth effects are removed.

  2. Water Budget in the UAE for Applications in Food Security.

    NASA Astrophysics Data System (ADS)

    Gonzalez Sanchez, R.; Ouarda, T.; Marpu, P. R.; Pearson, S.

    2014-12-01

    The current rate of population growth combined with climate change, have increased the impact on natural resources globally, especially water, land and energy, and therefore the food availability. Arid and semi-arid countries are highly vulnerable to these threats being already aware of the scarcity of resources depending mainly on imports. This study focuses on the UAE, with a very low rainfall, high temperatures and a very high rate of growth. It represents the perfect scenario to study the adaptive strategies that would allow to alleviate the effects of changing climate conditions and increase of population. Water is a key factor to food security especially in dry regions like the UAE, therefore, the first step of this approach is to analyze the water budget, first at a global scale (UAE), and after at smaller scales where particular and in-depth studies can be performed. The water budget is represented by the following equation: total precipitation and desalinated water minus the evapotranspiration equals the change in the terrestrial water storage. The UAE is highly dependent on desalinated water, therefore, this factor is included as a water input in the water budget. The procedure adopted in this study is applicable to other Gulf countries where desalination represents a large component of the water budget. Remotely sensed data will be used to obtain the components of the water budget equation performing a preliminary study of the suitability of TRMM data to estimate the precipitation in the UAE by comparison with six ground stations in the country. GRACE and TRMM data will then be used to obtain the terrestrial water storage and the precipitation respectively. The evapotranspiration will be estimated from the water budget equation and maps of these three variables will be obtained. This spatial analysis of the water resources will help to determine the best areas for cultivation and whether it can be planned in a way that increases the agricultural

  3. 17 CFR 230.138 - Publications or distributions of research reports by brokers or dealers about securities other...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dealer publishes or distributes research reports on the types of securities in question in the regular...)); (ii) A shell company, other than a business combination related shell company, each as defined in...

  4. Applications of species distribution modeling to paleobiology

    NASA Astrophysics Data System (ADS)

    Svenning, Jens-Christian; Fløjgaard, Camilla; Marske, Katharine A.; Nógues-Bravo, David; Normand, Signe

    2011-10-01

    Species distribution modeling (SDM: statistical and/or mechanistic approaches to the assessment of range determinants and prediction of species occurrence) offers new possibilities for estimating and studying past organism distributions. SDM complements fossil and genetic evidence by providing (i) quantitative and potentially high-resolution predictions of the past organism distributions, (ii) statistically formulated, testable ecological hypotheses regarding past distributions and communities, and (iii) statistical assessment of range determinants. In this article, we provide an overview of applications of SDM to paleobiology, outlining the methodology, reviewing SDM-based studies to paleobiology or at the interface of paleo- and neobiology, discussing assumptions and uncertainties as well as how to handle them, and providing a synthesis and outlook. Key methodological issues for SDM applications to paleobiology include predictor variables (types and properties; special emphasis is given to paleoclimate), model validation (particularly important given the emphasis on cross-temporal predictions in paleobiological applications), and the integration of SDM and genetics approaches. Over the last few years the number of studies using SDM to address paleobiology-related questions has increased considerably. While some of these studies only use SDM (23%), most combine them with genetically inferred patterns (49%), paleoecological records (22%), or both (6%). A large number of SDM-based studies have addressed the role of Pleistocene glacial refugia in biogeography and evolution, especially in Europe, but also in many other regions. SDM-based approaches are also beginning to contribute to a suite of other research questions, such as historical constraints on current distributions and diversity patterns, the end-Pleistocene megafaunal extinctions, past community assembly, human paleobiogeography, Holocene paleoecology, and even deep-time biogeography (notably, providing

  5. How secure is the Internet for healthcare applications?

    PubMed

    Campbell, L A

    1996-01-01

    The Internet has grown faster than any other communications medium or consumer electronics technology--including the fax machine and personal computer. It offers new possibilities for providing economical and good quality patient care, but how secure is it? Is it prudent to communicate patient information over the Internet? For confidential patient information to be transmitted appropriately on the Internet, the originator must be clearly identified without any chance of impersonation; the information must be transmitted without any possibility of corruption or alteration; and the process must be secure. Many experts recognize the need to secure privacy of information, and there are some standards for electronic signatures and data encryption. However, no one has yet come up with a plan that offers a comprehensive solution. Appropriate confidentiality and security legislation has not yet been passed by the U.S. Congress. The following security technologies are currently available and are described in this article: cryptography, authentication devices, electronic signature systems, firewalls, secure hypertext transfer protocol and secure sockets layer protocol. Until proper standards are developed and accepted, providers should use available technologies to protect both patient records and themselves. The legal consequences of mishandling confidential patient information can be disastrous.

  6. 3D Imaging with Structured Illumination for Advanced Security Applications

    SciTech Connect

    Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.; Smith, Collin S.

    2015-09-01

    Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capability are discussed.

  7. Comparative study of key exchange and authentication methods in application, transport and network level security mechanisms

    NASA Astrophysics Data System (ADS)

    Fathirad, Iraj; Devlin, John; Jiang, Frank

    2012-09-01

    The key-exchange and authentication are two crucial elements of any network security mechanism. IPsec, SSL/TLS, PGP and S/MIME are well-known security approaches in providing security service to network, transport and application layers; these protocols use different methods (based on their requirements) to establish keying materials and authenticates key-negotiation and participated parties. This paper studies and compares the authenticated key negotiation methods in mentioned protocols.

  8. Water Security Toolkit

    SciTech Connect

    2012-09-11

    The Water Security Toolkit (WST) provides software for modeling and analyzing water distribution systems to minimize the potential impact of contamination incidents. WST wraps capabilities for contaminant transport, impact assessment, and sensor network design with response action plans, including source identification, rerouting, and decontamination, to provide a range of water security planning and real-time applications.

  9. Microholographic computer generated holograms for security applications: Microtags

    SciTech Connect

    Sweatt, W.C.; Warren, M.E.; Kravitz, S.H.

    1998-01-01

    We have developed a method for encoding phase and amplitude in microscopic computer-generated holograms (microtags) for security applications. Eight-by-eight-cell and 12 x 12-cell phase-only and phase-and-amplitude microtag designs has been exposed in photoresist using the extreme-ultraviolet (13.4 nm) lithography (EUVL) tool developed at Sandia National Laboratories. Using EUVL, we have also fabricated microtags consisting of 150-nm lines arranged to form 300-nm-period gratings. The microtags described in this report were designed for readout at 632.8 nm and 442 nm. The smallest microtag measures 56 {mu}m x 80 {mu}m when viewed at normal incidence. The largest microtag measures 80 by 160 microns and contains features 0.2 {mu}m wide. The microtag design process uses a modified iterative Fourier-transform algorithm to create either phase-only or phase-and-amplitude microtags. We also report on a simple and compact readout system for recording the diffraction pattern formed by a microtag. The measured diffraction patterns agree very well with predictions. We present the results of a rigorous coupled-wave analysis (RCWA) of microtags. Microtags are CD modeled as consisting of sub-wavelength gratings of a trapezoidal profile. Transverse-electric (TE) and TM readout polarizations are modeled. The objective of our analysis is the determination of optimal microtag-grating design parameter values and tolerances on those parameters. The parameters are grating wall-slope angle, grating duty cycle, grating depth, and metal-coating thickness. Optimal microtag-grating parameter values result in maximum diffraction efficiency. Maximum diffraction efficiency is calculated at 16% for microtag gratings in air and 12% for microtag gratings underneath a protective dielectric coating, within fabrication constraints. TM-microtag gratings. Finally, we suggest several additional microtag concepts, such as two-dimensional microtags and pixel-code microtags.

  10. Finite-key security analysis of quantum key distribution with imperfect light sources

    NASA Astrophysics Data System (ADS)

    Mizutani, Akihiro; Curty, Marcos; Lim, Charles Ci Wen; Imoto, Nobuyuki; Tamaki, Kiyoshi

    2015-09-01

    In recent years, the gap between theory and practice in quantum key distribution (QKD) has been significantly narrowed, particularly for QKD systems with arbitrarily flawed optical receivers. The status for QKD systems with imperfect light sources is however less satisfactory, in the sense that the resulting secure key rates are often overly dependent on the quality of state preparation. This is especially the case when the channel loss is high. Very recently, to overcome this limitation, Tamaki et al proposed a QKD protocol based on the so-called ‘rejected data analysis’, and showed that its security—in the limit of infinitely long keys—is almost independent of any encoding flaw in the qubit space, being this protocol compatible with the decoy state method. Here, as a step towards practical QKD, we show that a similar conclusion is reached in the finite-key regime, even when the intensity of the light source is unstable. More concretely, we derive security bounds for a wide class of realistic light sources and show that the bounds are also efficient in the presence of high channel loss. Our results strongly suggest the feasibility of long distance provably secure communication with imperfect light sources.

  11. Detector-device-independent quantum key distribution: Security analysis and fast implementation

    NASA Astrophysics Data System (ADS)

    Boaron, Alberto; Korzh, Boris; Houlmann, Raphael; Boso, Gianluca; Lim, Charles Ci Wen; Martin, Anthony; Zbinden, Hugo

    2016-08-01

    One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant "time-reversal" QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. However, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) has been proposed to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. Here, we analyze the security of DDI-QKD and elucidate its security assumptions. We find that DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.

  12. NASA guidelines for assuring the adequacy and appropriateness of security safeguards in sensitive applications

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1984-01-01

    The Office of Management and Budget (OMB) Circular A-71, transmittal Memorandum No. 1, requires that each agency establish a management control process to assure that appropriate administrative, physical and technical safeguards are incorporated into all new computer applications. In addition to security specifications, the management control process should assure that the safeguards are adequate for the application. The security activities that should be integral to the system development process are examined. The software quality assurance process to assure that adequate and appropriate controls are incorporated into sensitive applications is also examined. Security for software packages is also discussed.

  13. Reviews of computing technology: Securing network applications, Kerberos and RSA

    SciTech Connect

    Johnson, S.M.

    1992-06-01

    This paper will focus on the first step in establishing network security, authentication, and describe the basic function of both RSA and Kerberos as used to provide authentication and confidential data transfer services. It will also discuss the Digital Signature Standard and the market acceptance of each. Proper identification of the principals involved in a network dialog is a necessary first step in providing network-wide security comparable to that of stand-alone systems.

  14. Lower bound for the security of differential phase shift quantum key distribution against a one-pulse-attack

    NASA Astrophysics Data System (ADS)

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Bao, Wan-Su; Guo, Guang-Can; Han, Zheng-Fu

    2011-10-01

    Quantum key distribution is the art of sharing secret keys between two distant parties, and has attracted a lot of attention due to its unconditional security. Compared with other quantum key distribution protocols, the differential phase shift quantum key distribution protocol has higher efficiency and simpler apparatus. Unfortunately, the unconditional security of differential phase shift quantum key distribution has not been proved. Utilizing the sharp continuity of the von Neuman entropy and some basic inequalities, we estimate the upper bound for the eavesdropper Eve's information. We then prove the lower bound for the security of the differential phase shift quantum key distribution protocol against a one-pulse attack with Devatak—Winter's secret key rate formula.

  15. 31 CFR 354.0 - Applicability; maintenance of Sallie Mae Securities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Applicability; maintenance of Sallie Mae Securities. 354.0 Section 354.0 Money and Finance: Treasury Regulations Relating to Money and... GOVERNING BOOK-ENTRY SECURITIES OF THE STUDENT LOAN MARKETING ASSOCIATION (SALLIE MAE) § 354.0...

  16. 20 CFR 703.203 - Application for security deposit determination; information to be submitted; other requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Application for security deposit determination; information to be submitted; other requirements. 703.203 Section 703.203 Employees' Benefits... AND RELATED STATUTES INSURANCE REGULATIONS Insurance Carrier Security Deposit Requirements §...

  17. Active Millimeter-Wave and Sub-Millimeter-Wave Imaging for Security Applications

    SciTech Connect

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2011-09-02

    Active imaging at millimeter and sub-millimeter wavelengths has been developed for security applications including concealed weapon detection. The physical properties that affect imaging performance are discussed along with a review of the current state-of-the-art and future potential for security imaging systems.

  18. Securing Location Services Infrastructures: Practical Criteria for Application Developers and Solutions Architects

    ERIC Educational Resources Information Center

    Karamanian, Andre

    2013-01-01

    This qualitative, exploratory, normative study examined the security and privacy of location based services in mobile applications. This study explored risk, and controls to implement privacy and security. This study was addressed using components of the FIPS Risk Management Framework. This study found that risk to location information was…

  19. Temporal steering and security of quantum key distribution with mutually unbiased bases against individual attacks

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Černoch, Antonín; Lemr, Karel; Miranowicz, Adam; Nori, Franco

    2016-06-01

    Temporal steering, which is a temporal analog of Einstein-Podolsky-Rosen steering, refers to temporal quantum correlations between the initial and final state of a quantum system. Our analysis of temporal steering inequalities in relation to the average quantum bit error rates reveals the interplay between temporal steering and quantum cloning, which guarantees the security of quantum key distribution based on mutually unbiased bases against individual attacks. The key distributions analyzed here include the Bennett-Brassard 1984 protocol and the six-state 1998 protocol by Bruss. Moreover, we define a temporal steerable weight, which enables us to identify a kind of monogamy of temporal correlation that is essential to quantum cryptography and useful for analyzing various scenarios of quantum causality.

  20. Laser Applications to Chemical, Security, and Environmental Analysis: introduction to the feature issue

    SciTech Connect

    Dreizler, Andreas; Fried, Alan; Gord, James R

    2007-07-01

    This Applied Optics feature issue on Laser Applications to Chemical, Security,and Environmental Analysis (LACSEA) highlights papers presented at theLACSEA 2006 Tenth Topical Meeting sponsored by the Optical Society ofAmerica.

  1. Application of Lightweight Formal Methods to Software Security

    NASA Technical Reports Server (NTRS)

    Gilliam, David P.; Powell, John D.; Bishop, Matt

    2005-01-01

    Formal specification and verification of security has proven a challenging task. There is no single method that has proven feasible. Instead, an integrated approach which combines several formal techniques can increase the confidence in the verification of software security properties. Such an approach which species security properties in a library that can be reused by 2 instruments and their methodologies developed for the National Aeronautics and Space Administration (NASA) at the Jet Propulsion Laboratory (JPL) are described herein The Flexible Modeling Framework (FMF) is a model based verijkation instrument that uses Promela and the SPIN model checker. The Property Based Tester (PBT) uses TASPEC and a Text Execution Monitor (TEM). They are used to reduce vulnerabilities and unwanted exposures in software during the development and maintenance life cycles.

  2. 26 CFR 1.355-7 - Recognition of gain on certain distributions of stock or securities in connection with an...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 4 2014-04-01 2014-04-01 false Recognition of gain on certain distributions of...) Effects on Shareholders and Security Holders § 1.355-7 Recognition of gain on certain distributions of... meaningful voice in the governance of the corporation. For purposes of determining whether a person...

  3. 26 CFR 1.355-7 - Recognition of gain on certain distributions of stock or securities in connection with an...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 4 2012-04-01 2012-04-01 false Recognition of gain on certain distributions of...) Effects on Shareholders and Security Holders § 1.355-7 Recognition of gain on certain distributions of... meaningful voice in the governance of the corporation. For purposes of determining whether a person...

  4. 26 CFR 1.355-7 - Recognition of gain on certain distributions of stock or securities in connection with an...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 4 2013-04-01 2013-04-01 false Recognition of gain on certain distributions of...) Effects on Shareholders and Security Holders § 1.355-7 Recognition of gain on certain distributions of... meaningful voice in the governance of the corporation. For purposes of determining whether a person...

  5. Construction and operation of a system for secure and precise medical material distribution in disaster areas after Wenchuan earthquake.

    PubMed

    Cheng, Yongzhong; Xu, Jiankang; Ma, Jian; Cheng, Shusen; Shi, Yingkang

    2009-11-01

    After the Wenchuan Earthquake on May 12th , 2008, under the strong leadership of the Sichuan Provincial Party Committee, the People's Government of Sichuan Province, and the Ministry of Health of the People's Republic of China, the Medical Security Team working at the Sichuan Provincial Headquarters for Wenchuan Earthquake and Disaster Relief Work constructed a secure medical material distribution system through coordination and interaction among and between regions, systems, and departments.

  6. 76 FR 39447 - J.P. Morgan Securities LLC, et al.; Notice of Application and Temporary Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... COMMISSION J.P. Morgan Securities LLC, et al.; Notice of Application and Temporary Order June 29, 2011... Act, with respect to an injunction entered against J.P. Morgan Securities LLC (``J.P. Morgan... also have applied for a permanent order. Applicants: J.P. Morgan Securities; Bear Stearns...

  7. 76 FR 28482 - Notice of an Application of BF Enterprises, Inc. Under Section 12(h) of the Securities Exchange...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Notice of an Application of BF Enterprises, Inc. Under Section 12(h) of the Securities Exchange Act of 1934 May 12, 2011. The Securities and Exchange Commission gives notice that BF Enterprises, Inc. has filed an application under Section...

  8. 78 FR 14847 - Topaz Exchange, LLC; Notice of Filing of Application for Registration as a National Securities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... COMMISSION Topaz Exchange, LLC; Notice of Filing of Application for Registration as a National Securities Exchange Under Section 6 of the Securities Exchange Act of 1934 March 1, 2013. On July 3, 2012, Topaz Exchange, LLC (``Topaz Exchange'' or ``Applicant'') submitted to the Securities and Exchange...

  9. Security of the differential-quadrature-phase-shift quantum key distribution

    NASA Astrophysics Data System (ADS)

    Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato

    2016-08-01

    One of the simplest methods for implementing quantum key distribution over fiber-optic communication is the Bennett-Brassard 1984 protocol with phase encoding (PE-BB84 protocol), in which the sender uses phase modulation over double pulses from a laser and the receiver uses a passive delayed interferometer. Using essentially the same setup and by regarding a train of many pulses as a single block, one can carry out the so-called differential-quadrature-phase-shift (DQPS) protocol, which is a variant of differential-phase-shift (DPS) protocols. Here we prove the security of the DQPS protocol based on an adaptation of proof techniques for the BB84 protocol, which inherits the advantages arising from the simplicity of the protocol, such as accommodating the use of threshold detectors and simple off-line calibration methods for the light source. We show that the secure key rate of the DQPS protocol in the proof is eight-thirds as high as the rate of the PE-BB84 protocol.

  10. Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices

    NASA Astrophysics Data System (ADS)

    Liang, Lin-Mei; Sun, Shi-Hai; Jiang, Mu-Sheng; Li, Chun-Yan

    2014-10-01

    In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].

  11. Necessary detection efficiencies for secure quantum key distribution and bound randomness

    NASA Astrophysics Data System (ADS)

    Acín, Antonio; Cavalcanti, Daniel; Passaro, Elsa; Pironio, Stefano; Skrzypczyk, Paul

    2016-01-01

    In recent years, several hacking attacks have broken the security of quantum cryptography implementations by exploiting the presence of losses and the ability of the eavesdropper to tune detection efficiencies. We present a simple attack of this form that applies to any protocol in which the key is constructed from the results of untrusted measurements performed on particles coming from an insecure source or channel. Because of its generality, the attack applies to a large class of protocols, from standard prepare-and-measure to device-independent schemes. Our attack gives bounds on the critical detection efficiencies necessary for secure quantum key distribution, which show that the implementation of most partly device-independent solutions is, from the point of view of detection efficiency, almost as demanding as fully device-independent ones. We also show how our attack implies the existence of a form of bound randomness, namely nonlocal correlations in which a nonsignalling eavesdropper can find out a posteriori the result of any implemented measurement.

  12. Evaluating data distribution and drift vulnerabilities of machine learning algorithms in secure and adversarial environments

    NASA Astrophysics Data System (ADS)

    Nelson, Kevin; Corbin, George; Blowers, Misty

    2014-05-01

    Machine learning is continuing to gain popularity due to its ability to solve problems that are difficult to model using conventional computer programming logic. Much of the current and past work has focused on algorithm development, data processing, and optimization. Lately, a subset of research has emerged which explores issues related to security. This research is gaining traction as systems employing these methods are being applied to both secure and adversarial environments. One of machine learning's biggest benefits, its data-driven versus logic-driven approach, is also a weakness if the data on which the models rely are corrupted. Adversaries could maliciously influence systems which address drift and data distribution changes using re-training and online learning. Our work is focused on exploring the resilience of various machine learning algorithms to these data-driven attacks. In this paper, we present our initial findings using Monte Carlo simulations, and statistical analysis, to explore the maximal achievable shift to a classification model, as well as the required amount of control over the data.

  13. IDCDACS: IDC's Distributed Application Control System

    NASA Astrophysics Data System (ADS)

    Ertl, Martin; Boresch, Alexander; Kianička, Ján; Sudakov, Alexander; Tomuta, Elena

    2015-04-01

    The Preparatory Commission for the CTBTO is an international organization based in Vienna, Austria. Its mission is to establish a global verification regime to monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), which bans all nuclear explosions. For this purpose time series data from a global network of seismic, hydro-acoustic and infrasound (SHI) sensors are transmitted to the International Data Centre (IDC) in Vienna in near-real-time, where it is processed to locate events that may be nuclear explosions. We newly designed the distributed application control system that glues together the various components of the automatic waveform data processing system at the IDC (IDCDACS). Our highly-scalable solution preserves the existing architecture of the IDC processing system that proved successful over many years of operational use, but replaces proprietary components with open-source solutions and custom developed software. Existing code was refactored and extended to obtain a reusable software framework that is flexibly adaptable to different types of processing workflows. Automatic data processing is organized in series of self-contained processing steps, each series being referred to as a processing pipeline. Pipelines process data by time intervals, i.e. the time-series data received from monitoring stations is organized in segments based on the time when the data was recorded. So-called data monitor applications queue the data for processing in each pipeline based on specific conditions, e.g. data availability, elapsed time or completion states of preceding processing pipelines. IDCDACS consists of a configurable number of distributed monitoring and controlling processes, a message broker and a relational database. All processes communicate through message queues hosted on the message broker. Persistent state information is stored in the database. A configurable processing controller instantiates and monitors all data processing

  14. Experimental quantum key distribution with finite-key security analysis for noisy channels.

    PubMed

    Bacco, Davide; Canale, Matteo; Laurenti, Nicola; Vallone, Giuseppe; Villoresi, Paolo

    2013-01-01

    In quantum key distribution implementations, each session is typically chosen long enough so that the secret key rate approaches its asymptotic limit. However, this choice may be constrained by the physical scenario, as in the perspective use with satellites, where the passage of one terminal over the other is restricted to a few minutes. Here we demonstrate experimentally the extraction of secure keys leveraging an optimal design of the prepare-and-measure scheme, according to recent finite-key theoretical tight bounds. The experiment is performed in different channel conditions, and assuming two distinct attack models: individual attacks or general quantum attacks. The request on the number of exchanged qubits is then obtained as a function of the key size and of the ambient quantum bit error rate. The results indicate that viable conditions for effective symmetric, and even one-time-pad, cryptography are achievable.

  15. Experimental quantum key distribution with finite-key security analysis for noisy channels.

    PubMed

    Bacco, Davide; Canale, Matteo; Laurenti, Nicola; Vallone, Giuseppe; Villoresi, Paolo

    2013-01-01

    In quantum key distribution implementations, each session is typically chosen long enough so that the secret key rate approaches its asymptotic limit. However, this choice may be constrained by the physical scenario, as in the perspective use with satellites, where the passage of one terminal over the other is restricted to a few minutes. Here we demonstrate experimentally the extraction of secure keys leveraging an optimal design of the prepare-and-measure scheme, according to recent finite-key theoretical tight bounds. The experiment is performed in different channel conditions, and assuming two distinct attack models: individual attacks or general quantum attacks. The request on the number of exchanged qubits is then obtained as a function of the key size and of the ambient quantum bit error rate. The results indicate that viable conditions for effective symmetric, and even one-time-pad, cryptography are achievable. PMID:24008848

  16. MDPHnet: secure, distributed sharing of electronic health record data for public health surveillance, evaluation, and planning.

    PubMed

    Vogel, Joshua; Brown, Jeffrey S; Land, Thomas; Platt, Richard; Klompas, Michael

    2014-12-01

    Electronic health record systems contain clinically detailed data from large populations of patients that could significantly enrich public health surveillance. Clinical practices' security, privacy, and proprietary concerns, however, have limited their willingness to share these data with public health agencies. We describe a novel distributed network for public health surveillance called MDPHnet. The system allows the Massachusetts Department of Public Health (MDPH) to initiate custom queries against participating practices' electronic health records while the data remain behind each practice's firewall. Practices can review proposed queries before execution and approve query results before releasing them to the health department. MDPH is using the system for routine surveillance for priority conditions and to evaluate the impact of public health interventions. PMID:25322301

  17. Lowering social security's duration-of-marriage requirement: distributional effects for future female retirees.

    PubMed

    Tamborini, Christopher R; Whitman, Kevin

    2010-01-01

    A number of alternatives to Social Security's auxiliary benefit system have been proposed in the context of changes in American family and work patterns. This article focuses on one modification therein-lowering the 10-year duration-of-marriage requirement for divorced spouses. Using a powerful microsimulation model (MINT), we examine the distributional effects of extending spouse and survivor benefit eligibility to 5- and 7-year marriages ending in divorce among female retirees in 2030, a population largely comprised of baby boomers. Results show that the options would increase benefits for a small share of female retirees, around 2 to 4%, and would not affect the vast majority of low-income divorced older women. However, of those affected, the options would substantially increase benefits and lower incidence of poverty and near poor. Low-income divorced retirees with marriages between 5 and 9 years in length and a deceased former spouse face the greatest potential gains.

  18. Quantum key distribution based on orthogonal states allows secure quantum bit commitment

    NASA Astrophysics Data System (ADS)

    He, Guang Ping

    2011-11-01

    For more than a decade, it was believed that unconditionally secure quantum bit commitment (QBC) is impossible. But based on a previously proposed quantum key distribution scheme using orthogonal states, here we build a QBC protocol in which the density matrices of the quantum states encoding the commitment do not satisfy a crucial condition on which the no-go proofs of QBC are based. Thus, the no-go proofs could be evaded. Our protocol is fault-tolerant and very feasible with currently available technology. It reopens the venue for other ‘post-cold-war’ multi-party cryptographic protocols, e.g. quantum bit string commitment and quantum strong coin tossing with an arbitrarily small bias. This result also has a strong influence on the Clifton-Bub-Halvorson theorem which suggests that quantum theory could be characterized in terms of information-theoretic constraints.

  19. Image-based electronic patient records for secured collaborative medical applications.

    PubMed

    Zhang, Jianguo; Sun, Jianyong; Yang, Yuanyuan; Liang, Chenwen; Yao, Yihong; Cai, Weihua; Jin, Jin; Zhang, Guozhen; Sun, Kun

    2005-01-01

    We developed a Web-based system to interactively display image-based electronic patient records (EPR) for secured intranet and Internet collaborative medical applications. The system consists of four major components: EPR DICOM gateway (EPR-GW), Image-based EPR repository server (EPR-Server), Web Server and EPR DICOM viewer (EPR-Viewer). In the EPR-GW and EPR-Viewer, the security modules of Digital Signature and Authentication are integrated to perform the security processing on the EPR data with integrity and authenticity. The privacy of EPR in data communication and exchanging is provided by SSL/TLS-based secure communication. This presentation gave a new approach to create and manage image-based EPR from actual patient records, and also presented a way to use Web technology and DICOM standard to build an open architecture for collaborative medical applications. PMID:17282930

  20. A Topology Visualization Early Warning Distribution Algorithm for Large-Scale Network Security Incidents

    PubMed Central

    He, Hui; Fan, Guotao; Ye, Jianwei; Zhang, Weizhe

    2013-01-01

    It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system's emergency response capabilities, alleviate the cyber attacks' damage, and strengthen the system's counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system's plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks' topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology. PMID:24191145

  1. A topology visualization early warning distribution algorithm for large-scale network security incidents.

    PubMed

    He, Hui; Fan, Guotao; Ye, Jianwei; Zhang, Weizhe

    2013-01-01

    It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system's emergency response capabilities, alleviate the cyber attacks' damage, and strengthen the system's counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system's plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks' topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  2. A topology visualization early warning distribution algorithm for large-scale network security incidents.

    PubMed

    He, Hui; Fan, Guotao; Ye, Jianwei; Zhang, Weizhe

    2013-01-01

    It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system's emergency response capabilities, alleviate the cyber attacks' damage, and strengthen the system's counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system's plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks' topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology. PMID:24191145

  3. Neural networks and their applications to computer data security

    NASA Astrophysics Data System (ADS)

    Barua, Susamma

    1992-12-01

    The paper presented here explores the possibility of applying neural networks to identify authorized users of a computer system. Computer security can be ensured only by restricting access to a computer system. This in turn requires a sure means of identifying authorized users. The related research is based on the fact that every human being is distinguished by many unique physical characteristics. It has been known even before the age of computers that no two individuals sign their names identically. Signature samples collected from a group of individuals are analyzed and a neural network-based system that can recognize these signatures is designed.

  4. 10 CFR 61.20 - Filing and distribution of application.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... RADIOACTIVE WASTE Licenses § 61.20 Filing and distribution of application. (a) An application for a license... license covering the receipt and disposal of radioactive wastes in a land disposal facility are...

  5. 10 CFR 61.20 - Filing and distribution of application.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... RADIOACTIVE WASTE Licenses § 61.20 Filing and distribution of application. (a) An application for a license... license covering the receipt and disposal of radioactive wastes in a land disposal facility are...

  6. 10 CFR 61.20 - Filing and distribution of application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... RADIOACTIVE WASTE Licenses § 61.20 Filing and distribution of application. (a) An application for a license... license covering the receipt and disposal of radioactive wastes in a land disposal facility are...

  7. 10 CFR 61.20 - Filing and distribution of application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RADIOACTIVE WASTE Licenses § 61.20 Filing and distribution of application. (a) An application for a license... license covering the receipt and disposal of radioactive wastes in a land disposal facility are...

  8. 10 CFR 61.20 - Filing and distribution of application.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... RADIOACTIVE WASTE Licenses § 61.20 Filing and distribution of application. (a) An application for a license... license covering the receipt and disposal of radioactive wastes in a land disposal facility are...

  9. The Role of Earnings and Financial Risk in Distributional Analyses of Social Security Reform Measures

    ERIC Educational Resources Information Center

    Hungerford, Thomas L.

    2006-01-01

    The Social Security Trustees project that the Social Security program faces longterm financing difficulties. Several proposals that have been offered to shore-up the finances of the Social Security program would create individual retirement accounts funded with part of the payroll tax. The authors of many of these proposals claim that future…

  10. Ultra Wideband (UWB) communication vulnerability for security applications.

    SciTech Connect

    Cooley, H. Timothy

    2010-07-01

    RF toxicity and Information Warfare (IW) are becoming omnipresent posing threats to the protection of nuclear assets, and within theatres of hostility or combat where tactical operation of wireless communication without detection and interception is important and sometimes critical for survival. As a result, a requirement for deployment of many security systems is a highly secure wireless technology manifesting stealth or covert operation suitable for either permanent or tactical deployment where operation without detection or interruption is important The possible use of ultra wideband (UWB) spectrum technology as an alternative physical medium for wireless network communication offers many advantages over conventional narrowband and spread spectrum wireless communication. UWB also known as fast-frequency chirp is nonsinusoidal and sends information directly by transmitting sub-nanosecond pulses without the use of mixing baseband information upon a sinusoidal carrier. Thus UWB sends information using radar-like impulses by spreading its energy thinly over a vast spectrum and can operate at extremely low-power transmission within the noise floor where other forms of RF find it difficult or impossible to operate. As a result UWB offers low probability of detection (LPD), low probability of interception (LPI) as well as anti-jamming (AJ) properties in signal space. This paper analyzes and compares the vulnerability of UWB to narrowband and spread spectrum wireless network communication.

  11. Shor-Preskill-type security proof for concatenated Bennett-Brassard 1984 quantum-key-distribution protocol

    SciTech Connect

    Hwang, Won-Young; Matsumoto, Keiji; Imai, Hiroshi; Kim, Jaewan; Lee, Hai-Woong

    2003-02-01

    We discuss a long code problem in the Bennett-Brassard 1984 (BB84) quantum-key-distribution protocol and describe how it can be overcome by concatenation of the protocol. Observing that concatenated modified Lo-Chau protocol finally reduces to the concatenated BB84 protocol, we give the unconditional security of the concatenated BB84 protocol.

  12. Studies in Income Distribution. Estimation of Social Security Taxes on the March Current Population Survey. No. 4.

    ERIC Educational Resources Information Center

    Bridges, Benjamin, Jr.; Johnston, Mary P.

    The impact of the tax-transfer system on the distribution of income among economic units is the subject of a number of studies by the Office of Research and Statistics of the Social Security Administration. One of the most important data sources for the work is the Census Bureau's March Current Population Survey (CPS). To conduct such studies, the…

  13. Passive 350 GHz Video Imaging Systems for Security Applications

    NASA Astrophysics Data System (ADS)

    Heinz, E.; May, T.; Born, D.; Zieger, G.; Anders, S.; Zakosarenko, V.; Meyer, H.-G.; Schäffel, C.

    2015-10-01

    Passive submillimeter-wave imaging is a concept that has been in the focus of interest as a promising technology for personal security screening for a number of years. In contradiction to established portal-based millimeter-wave scanning techniques, it allows for scanning people from a distance in real time with high throughput and without a distinct inspection procedure. This opens up new possibilities for scanning, which directly address an urgent security need of modern societies: protecting crowds and critical infrastructure from the growing threat of individual terror attacks. Considering the low radiometric contrast of indoor scenes in the submillimeter range, this objective calls for an extremely high detector sensitivity that can only be achieved using cooled detectors. Our approach to this task is a series of passive standoff video cameras for the 350 GHz band that represent an evolving concept and a continuous development since 2007. Arrays of superconducting transition-edge sensors (TES), operated at temperatures below 1 K, are used as radiation detectors. By this means, background limited performance (BLIP) mode is achieved, providing the maximum possible signal to noise ratio. At video rates, this leads to a temperature resolution well below 1 K. The imaging system is completed by reflector optics based on free-form mirrors. For object distances of 5-25 m, a field of view up to 2 m height and a diffraction-limited spatial resolution in the order of 1-2 cm is provided. Opto-mechanical scanning systems are part of the optical setup and capable of frame rates of up to 25 frames per second.

  14. Fiber optic security systems for land- and sea-based applications

    NASA Astrophysics Data System (ADS)

    Crickmore, Roger I.; Nash, Phillip J.; Wooler, John P. F.

    2004-11-01

    QinetiQ have been developing security systems for land and sea applications using interferometric based fiber optic sensors. We have constructed and tested a multi-channel fiber-optic hydrophone seabed array, which is designed for maritime surveillance and harbor security applications. During a recent trial it was deployed in a coastal location for an 8 day period during which it successfully detected and tracked a wide variety of traffic. The array can be interfaced with an open architecture processing system that carries out automatic detection and tracking of targets. For land based applications we have developed a system that uses high sensitivity fiber optic accelerometers and buried fiber optic cable as sensor elements. This uses the same opto-electronic interrogator as the seabed array, so a combined land and sea security system for coastal assets could be monitored using a single interrogator.

  15. 12 CFR 303.203 - Applications for capital distributions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Applications for capital distributions. 303.203 Section 303.203 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION PROCEDURE AND RULES OF PRACTICE FILING PROCEDURES Prompt Corrective Action § 303.203 Applications for capital distributions. (a)...

  16. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks.

    PubMed

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman

    2015-01-01

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components. PMID:26514280

  17. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

    NASA Astrophysics Data System (ADS)

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman

    2015-10-01

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

  18. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

    PubMed Central

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman

    2015-01-01

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein–Podolsky–Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components. PMID:26514280

  19. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks.

    PubMed

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman

    2015-10-30

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

  20. 17 CFR 240.6a-1 - Application for registration as a national securities exchange or exemption from registration...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... as a national securities exchange or exemption from registration based on limited volume. 240.6a-1... national securities exchange or exemption from registration based on limited volume. (a) An application for registration as a national securities exchange, or for exemption from such registration based on limited...

  1. 17 CFR 240.6a-1 - Application for registration as a national securities exchange or exemption from registration...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... as a national securities exchange or exemption from registration based on limited volume. 240.6a-1... national securities exchange or exemption from registration based on limited volume. (a) An application for registration as a national securities exchange, or for exemption from such registration based on limited...

  2. 17 CFR 240.6a-1 - Application for registration as a national securities exchange or exemption from registration...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... as a national securities exchange or exemption from registration based on limited volume. 240.6a-1... national securities exchange or exemption from registration based on limited volume. (a) An application for registration as a national securities exchange, or for exemption from such registration based on limited...

  3. 17 CFR 240.6a-1 - Application for registration as a national securities exchange or exemption from registration...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... as a national securities exchange or exemption from registration based on limited volume. 240.6a-1... national securities exchange or exemption from registration based on limited volume. (a) An application for registration as a national securities exchange, or for exemption from such registration based on limited...

  4. 17 CFR 240.6a-1 - Application for registration as a national securities exchange or exemption from registration...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... as a national securities exchange or exemption from registration based on limited volume. 240.6a-1... national securities exchange or exemption from registration based on limited volume. (a) An application for registration as a national securities exchange, or for exemption from such registration based on limited...

  5. How policy variables influence the timing of applications for Social Security Disability Insurance.

    PubMed

    Burkhauser, R V; Butler, J S; Weathers, R R

    This article analyzes the impact of policy variables--employer accommodations, state Social Security Disability Insurance (DI) allowance rates, and DI benefits--on the timing of an application for DI benefits by workers with a work-limiting health condition starting when their health condition first begins to bother them. The analysis uses a rich mixture of personal and employer characteristics from the Health and Retirement Study linked to Social Security administrative records. We find that most workers do not apply immediately for DI benefits when they are first bothered by a health condition. On the contrary, the median working-age man with a work-limiting condition waits 7 years after that time before applying, and the median working-age woman waits 8 years. Although the risk of applying for benefits is greatest in the year following onset, only 16 percent of men and 13 percent of women in our sample apply within the first year, and the risk of application falls thereafter. That finding suggests that institutional factors, in addition to health factors, may play a role in the timing of DI applications. Using kernel density estimates of the distribution of application and nonapplication ordered by state allowance rates (the rate of acceptance per DI determination in each state), we find that both men and women who live in states with high allowance rates are disproportionately more likely to apply for benefits in the first year after their condition begins to bother them than are those in states with low allowance rates. Using life-table analysis, we also find that men and women who are accommodated by their employers are significantly less likely to apply for DI benefits in each of the first few years after their condition begins to bother them than are those who are not accommodated. On the basis of this evidence, we include these policy variables in a model of the timing of DI application that controls for other socioeconomic variables as well as health

  6. Distribution automation applications of fiber optics

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold; Johnston, A.; Friend, H.

    1989-01-01

    Motivations for interest and research in distribution automation are discussed. The communication requirements of distribution automation are examined and shown to exceed the capabilities of power line carrier, radio, and telephone systems. A fiber optic based communication system is described that is co-located with the distribution system and that could satisfy the data rate and reliability requirements. A cost comparison shows that it could be constructed at a cost that is similar to that of a power line carrier system. The requirements for fiber optic sensors for distribution automation are discussed. The design of a data link suitable for optically-powered electronic sensing is presented. Empirical results are given. A modeling technique that was used to understand the reflections of guided light from a variety of surfaces is described. An optical position-indicator design is discussed. Systems aspects of distribution automation are discussed, in particular, the lack of interface, communications, and data standards. The economics of distribution automation are examined.

  7. "Glitch Logic" and Applications to Computing and Information Security

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Katkoori, Srinivas

    2009-01-01

    This paper introduces a new method of information processing in digital systems, and discusses its potential benefits to computing and information security. The new method exploits glitches caused by delays in logic circuits for carrying and processing information. Glitch processing is hidden to conventional logic analyses and undetectable by traditional reverse engineering techniques. It enables the creation of new logic design methods that allow for an additional controllable "glitch logic" processing layer embedded into a conventional synchronous digital circuits as a hidden/covert information flow channel. The combination of synchronous logic with specific glitch logic design acting as an additional computing channel reduces the number of equivalent logic designs resulting from synthesis, thus implicitly reducing the possibility of modification and/or tampering with the design. The hidden information channel produced by the glitch logic can be used: 1) for covert computing/communication, 2) to prevent reverse engineering, tampering, and alteration of design, and 3) to act as a channel for information infiltration/exfiltration and propagation of viruses/spyware/Trojan horses.

  8. COAMPS Application to Global and Homeland Security Threat Problems

    SciTech Connect

    Chin, H S; Glascoe, L G

    2004-09-14

    Atmospheric dispersion problems have received more attention with regard to global and homeland security than their conventional roles in air pollution and local hazard assessment in the post 9/11 era. Consequently, there is growing interest to characterize meteorology uncertainty at both low and high altitudes (below and above 30 km, respectively). A 3-D Coupled Ocean Atmosphere Prediction System (COAMPS, developed by Naval Research Laboratory; Hodur, 1997) is used to address LLNL's task. The objective of this report is focused on the effort at the improvement of COAMPS forecast to address the uncertainty issue, and to provide new capability for high-altitude forecast. To assess the atmospheric dispersion behavior in a wider range of meteorological conditions and to expand its vertical scope for the potential threat at high altitudes, several modifications of COAMPS are needed to meet the project goal. These improvements include (1) the long-range forecast capability to show the variability of meteorological conditions at a much larger time scale (say, a year), and (2) the model physics enhancement to provide new capability for high-altitude forecast.

  9. Applications of Photonuclear Physics for International Safeguards and Security

    SciTech Connect

    Johnson, M S; Hall, J M; McNabb, D P; McFarland, J; Norman, E; Bertozzi, W; Korbly, S; Ledoux, R; Park, W

    2010-04-16

    Studies of nuclear resonance fluorescence based applications are presented. Important for these applications are data for isotopes such as {sup 239}Pu. Nuclear resonance fluorescence measurements of {sup 239}Pu were performed at the free electron laser facility at UC Santa Barbara using photons from a bremsstrahlung beam with an endpoint energies between 4.0 MeV and 5.5 MeV. Though no discrete states with significant confidence level were measured, we have excluded the region above 27(3) eV-barns, or 4-sigma, where we would expect only a small chance of false positives. Details of the measurements and the results are presented here.

  10. Securing Ground Data System Applications for Space Operations

    NASA Technical Reports Server (NTRS)

    Pajevski, Michael J.; Tso, Kam S.; Johnson, Bryan

    2014-01-01

    The increasing prevalence and sophistication of cyber attacks has prompted the Multimission Ground Systems and Services (MGSS) Program Office at Jet Propulsion Laboratory (JPL) to initiate the Common Access Manager (CAM) effort to protect software applications used in Ground Data Systems (GDSs) at JPL and other NASA Centers. The CAM software provides centralized services and software components used by GDS subsystems to meet access control requirements and ensure data integrity, confidentiality, and availability. In this paper we describe the CAM software; examples of its integration with spacecraft commanding software applications and an information management service; and measurements of its performance and reliability.

  11. Distributed resource applications at San Diego Gas & Electric

    SciTech Connect

    Figueroa, R.A.

    1995-12-01

    This paper describes some of the activities San Diego Gas & Electric (SDG&E) is conducting in distributed resources (DR). Proposed changes in regulation of investor owned utilities in California by the California Public Utilities Commission (CPUC) have prompted SDG&E and other utilities to consider their role in development of generation power technologies. SDG&E continues to perform activities in technology and product development of generation technologies applicable specifically to distributed resources. These activities include application assessments and demonstration of DR applications. Preliminary results from application assessments and economic evaluations indicate that for the near-term, DR applications in SDG&E system may fit as a peak displacement option in discrete locations to defer distribution system upgrades from one to three years. This application option may be used as an integrated resource planning strategy, however, additional work is needed to improve the acceptance of this technology application within traditional utility operations.

  12. 77 FR 1965 - Central Securities Corporation; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... Bonus Stock to Non-employee Directors without restrictions. Immediately following each annual meeting of... continues as a director after, that annual meeting shall receive an award of 500 Shares of Bonus Stock. In... common stock granted as a bonus, and awards denominated in cash. Applicant: Central...

  13. REAL-TIME ENVIRONMENTAL MONITORING: APPLICATIONS FOR HOMELAND SECURITY

    EPA Science Inventory

    Real-time monitoring technology developed as part of the EMPACT program has a variety of potential applications. These tools can measure a variety of potential contaminants in the air, water, in buildings, or in the soil. Real-time monitoring technology allows these detection sys...

  14. Applications of nuclear techniques relevant for civil security

    NASA Astrophysics Data System (ADS)

    Valkovi, Vlado

    2006-05-01

    The list of materials which are subject to inspection with the aim of reducing the acts of terrorism includes explosives, narcotics, chemical weapons, hazardous chemicals and radioactive materials. To this we should add also illicit trafficking with human beings. The risk of nuclear terrorism carried out by sub-national groups is considered not only in construction and/or use of nuclear device, but also in possible radioactive contamination of large urban areas. Modern personnel, parcel, vehicle and cargo inspection systems are non-invasive imaging techniques based on the use of nuclear analytical techniques. The inspection systems use penetrating radiations: hard x-rays (300 keV or more) or gamma-rays from radioactive sources (137Cs and 60Co with energies from 600 to 1300 keV) that produce a high resolution radiograph of the load. Unfortunately, this information is ''non-specific'' in that it gives no information on the nature of objects that do not match the travel documents and are not recognized by a visual analysis of the radiographic picture. Moreover, there are regions of the container where x and gamma-ray systems are ''blind'' due to the high average atomic number of the objects irradiated that appear as black spots in the radiographic image. Contrary to that is the use of neutrons; as results of the bombardment, nuclear reactions occur and a variety of nuclear particles, gamma and x-ray radiation is emitted, specific for each element in the bombarded material. The problem of material (explosive, drugs, chemicals, etc.) identification can be reduced to the problem of measuring elemental concentrations. Neutron scanning technology offers capabilities far beyond those of conventional inspection systems. The unique automatic, material specific detection of terrorist threats can significantly increase the security at ports, border-crossing stations, airports, and even within the domestic transportation infrastructure of potential urban targets as well as

  15. Lifetime earnings patterns, the distribution of future Social Security benefits, and the impact of pension reform.

    PubMed

    Bosworth, B; Burtless, G; Steuerle, E

    2000-01-01

    In order to assess the effect of Social Security reform on current and future workers, it is essential to accurately characterize the initial situations of representative workers affected by reform. For the purpose of analyzing typical reforms, the most important characteristic of a worker is the level and pattern of his or her preretirement earnings. Under the current system, pensions are determined largely by the level of the workers' earnings averaged over their work life. However, several reform proposals would create individual retirement accounts for which the pension would depend on the investment accumulation within the account. Thus, the pension would also depend on the timing of the contributions into the account and hence on the exact shape of the worker's lifetime earnings profile. Most analysis of the distributional impact of reform has focused, however, on calculating benefit changes among a handful of hypothetical workers whose relative earnings are constant over their work life. The earnings levels are not necessarily chosen to represent the situations of workers who have typical or truly representative earnings patterns. Consequently, the results of such analysis can be misleading, especially if reform involves introducing a fundamentally new kind of pension formula. This article presents two broad approaches to creating representative earnings profiles for policy evaluation. First, we use standard econometric methods to predict future earnings for a representative sample of workers drawn from the Survey of Income and Program Participation (SIPP). Our statistical estimates are based on a simple representation of typical career earnings paths and a fixed-effect statistical specification. Because our estimation file contains information on each worker's annual earnings from 1951 through 1996 as reported in the Social Security Administration's earnings files, we have a record (though an incomplete one) of the actual earnings that will be used to

  16. Lifetime earnings patterns, the distribution of future Social Security benefits, and the impact of pension reform.

    PubMed

    Bosworth, B; Burtless, G; Steuerle, E

    2000-01-01

    In order to assess the effect of Social Security reform on current and future workers, it is essential to accurately characterize the initial situations of representative workers affected by reform. For the purpose of analyzing typical reforms, the most important characteristic of a worker is the level and pattern of his or her preretirement earnings. Under the current system, pensions are determined largely by the level of the workers' earnings averaged over their work life. However, several reform proposals would create individual retirement accounts for which the pension would depend on the investment accumulation within the account. Thus, the pension would also depend on the timing of the contributions into the account and hence on the exact shape of the worker's lifetime earnings profile. Most analysis of the distributional impact of reform has focused, however, on calculating benefit changes among a handful of hypothetical workers whose relative earnings are constant over their work life. The earnings levels are not necessarily chosen to represent the situations of workers who have typical or truly representative earnings patterns. Consequently, the results of such analysis can be misleading, especially if reform involves introducing a fundamentally new kind of pension formula. This article presents two broad approaches to creating representative earnings profiles for policy evaluation. First, we use standard econometric methods to predict future earnings for a representative sample of workers drawn from the Survey of Income and Program Participation (SIPP). Our statistical estimates are based on a simple representation of typical career earnings paths and a fixed-effect statistical specification. Because our estimation file contains information on each worker's annual earnings from 1951 through 1996 as reported in the Social Security Administration's earnings files, we have a record (though an incomplete one) of the actual earnings that will be used to

  17. 17 CFR 242.609 - Registration of securities information processors: form of application and amendments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... application for the registration of a securities information processor shall be filed on Form SIP (§ 249.1001... reported in items 1-13 or item 21 of Form SIP or in any amendment thereto is or becomes inaccurate for any... shall promptly file an amendment on Form SIP correcting such information. (c) The Commission, upon...

  18. Development of Standardized Clinical Training Cases for Diagnosis of Sexual Abuse using a Secure Telehealth Application

    ERIC Educational Resources Information Center

    Frasier, Lori D.; Thraen, Ioana; Kaplan, Rich; Goede, Patricia

    2012-01-01

    Objectives: The training of physicians, nurse examiners, social workers and other health professional on the evidentiary findings of sexual abuse in children is challenging. Our objective was to develop peer reviewed training cases for medical examiners of child sexual abuse, using a secure web based telehealth application (TeleCAM). Methods:…

  19. 7 CFR 765.403 - Transfer of security to and assumption of debt by eligible applicants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... eligible applicants. (a) Transfer of real estate and chattel security. The Agency may approve transfers of... of this chapter may assume Non-program loans made for real estate purposes if the Agency determines... as an FO loan. (c) Loan types that the Agency no longer makes. Real estate loan types the Agency...

  20. 7 CFR 765.404 - Transfer of security to and assumption of debt by ineligible applicants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ineligible applicants. (a) General. (1) The Agency will allow the transfer of real estate and chattel... lesser of the market value or unpaid debt. (e) Interest rate. The interest rate will be the Non-program interest rate in effect at the time of loan approval. (f) Loan terms. (1) For a Non-program loan secured...

  1. 49 CFR 1572.17 - Applicant information required for TWIC security threat assessment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in accordance with 49 CFR 1572.201 and not to access secure areas of a facility or vessel, must... employer, or is self-employed, must provide the primary vessel or port location(s) where the applicant... credentialed mariner, proof of citizenship as required in 46 CFR chapter I, subchapter B. (12) Social...

  2. 49 CFR 1572.17 - Applicant information required for TWIC security threat assessment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... in accordance with 49 CFR 1572.201 and not to access secure areas of a facility or vessel, must... employer, or is self-employed, must provide the primary vessel or port location(s) where the applicant... credentialed mariner, proof of citizenship as required in 46 CFR chapter I, subchapter B. (12) Social...

  3. 49 CFR 1572.17 - Applicant information required for TWIC security threat assessment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in accordance with 49 CFR 1572.201 and not to access secure areas of a facility or vessel, must... employer, or is self-employed, must provide the primary vessel or port location(s) where the applicant... credentialed mariner, proof of citizenship as required in 46 CFR chapter I, subchapter B. (12) Social...

  4. 78 FR 72132 - RBS Securities Inc. and Citizens Investment Advisors; Notice of Application and Temporary Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ..., controlled by, or under common control, with the other person. ] Applicants state that RBS Securities is an... knowledge (i) none of the current directors, officers, or employees of Citizens IA that are involved in... Complaint) had knowledge of or participated in the conduct alleged in the Complaint to have constituted...

  5. 7 CFR 765.403 - Transfer of security to and assumption of debt by eligible applicants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... eligible applicants. (a) Transfer of real estate and chattel security. The Agency may approve transfers of... of this chapter may assume Non-program loans made for real estate purposes if the Agency determines... as an FO loan. (c) Loan types that the Agency no longer makes. Real estate loan types the Agency...

  6. Securing While Sampling in Wireless Body Area Networks With Application to Electrocardiography.

    PubMed

    Dautov, Ruslan; Tsouri, Gill R

    2016-01-01

    Stringent resource constraints and broadcast transmission in wireless body area network raise serious security concerns when employed in biomedical applications. Protecting data transmission where any minor alteration is potentially harmful is of significant importance in healthcare. Traditional security methods based on public or private key infrastructure require considerable memory and computational resources, and present an implementation obstacle in compact sensor nodes. This paper proposes a lightweight encryption framework augmenting compressed sensing with wireless physical layer security. Augmenting compressed sensing to secure information is based on the use of the measurement matrix as an encryption key, and allows for incorporating security in addition to compression at the time of sampling an analog signal. The proposed approach eliminates the need for a separate encryption algorithm, as well as the predeployment of a key thereby conserving sensor node's limited resources. The proposed framework is evaluated using analysis, simulation, and experimentation applied to a wireless electrocardiogram setup consisting of a sensor node, an access point, and an eavesdropper performing a proximity attack. Results show that legitimate communication is reliable and secure given that the eavesdropper is located at a reasonable distance from the sensor node and the access point.

  7. An RFID-based luggage and passenger tracking system for airport security control applications

    NASA Astrophysics Data System (ADS)

    Vastianos, George E.; Kyriazanos, Dimitris M.; Kountouriotis, Vassilios I.; Thomopoulos, Stelios C. A.

    2014-06-01

    Market analysis studies of recent years have shown a steady and significant increase in the usage of RFID technology. Key factors for this growth were the decreased costs of passive RFIDs and their improved performance compared to the other identification technologies. Besides the benefits of RFID technologies into the supply chains, warehousing, traditional inventory and asset management applications, RFID has proven itself worth exploiting on experimental, as well as on commercial level in other sectors, such as healthcare, transport and security. In security sector, airport security is one of the biggest challenges. Airports are extremely busy public places and thus prime targets for terrorism, with aircraft, passengers, crew and airport infrastructure all subject to terrorist attacks. Inside this labyrinth of security challenges, the long range detection capability of the UHF passive RFID technology can be turned into a very important tracking tool that may outperform all the limitations of the barcode tracking inside the current airport security control chain. The Integrated Systems Lab of NCSR Demokritos has developed an RFID based Luggage and Passenger tracking system within the TASS (FP7-SEC-2010-241905) EU research project. This paper describes application scenarios of the system categorized according to the structured nature of the environment, the system architecture and presents evaluation results extracted from measurements with a group of different massive production GEN2 UHF RFID tags that are widely available in the world market.

  8. Secure E-Business applications based on the European Citizen Card

    NASA Astrophysics Data System (ADS)

    Zipfel, Christian; Daum, Henning; Meister, Gisela

    The introduction of ID cards enhanced with electronic authentication services opens up the possibility to use these for identification and authentication in e-business applications. To avoid incompatible national solutions, the specification of the European Citizen Card aims at defining interoperable services for such use cases. Especially the given device authentication methods can help to eliminate security problems with current e-business and online banking applications.

  9. Wireless video monitoring and robot control in security applications

    NASA Astrophysics Data System (ADS)

    Nurkkala, Eero A.; Pyssysalo, Tino; Roning, Juha

    1998-10-01

    This research focuses on applications based on wireless monitoring and robot control, utilizing motion image and augmented reality. These applications include remote services and surveillance-related functions such as remote monitoring. A remote service can be, for example, a way to deliver products at a hospital or old people's home. Due to the mobile nature of the system, monitoring at places with privacy concerns is possible. On the other hand, mobility demands wireless communications. Suitable and present technologies for wireless video transfer are weighted. Identification of objects with the help of Radio Frequency Identifying (RFID) technology and facial recognition results in intelligent actions, for example, where the control of a robot does not require extensive workload from the user. In other words, tasks can be partially autonomous, RFID can be also used in augmentation of the video view with virtual objects. As a real-life experiment, a prototype environment is being constructed that consists of a robot equipped with a video camera and wireless links to the network and multimedia computer.

  10. 17 CFR 249.801 - Form X-15AA-1, for application for registration as a national securities association or...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...). Editorial Note: For Federal Register citations affecting Form X-15AA-1, see the List of CFR Sections... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Form X-15AA-1, for application....801 Form X-15AA-1, for application for registration as a national securities association or...

  11. 17 CFR 249.801 - Form X-15AA-1, for application for registration as a national securities association or...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...). Editorial Note: For Federal Register citations affecting Form X-15AA-1, see the List of CFR Sections... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Form X-15AA-1, for application....801 Form X-15AA-1, for application for registration as a national securities association or...

  12. 17 CFR 249.801 - Form X-15AA-1, for application for registration as a national securities association or...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...). Editorial Note: For Federal Register citations affecting Form X-15AA-1, see the List of CFR Sections... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Form X-15AA-1, for application....801 Form X-15AA-1, for application for registration as a national securities association or...

  13. 17 CFR 249.1001 - Form SIP, for application for registration as a securities information processor or to amend such...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Note: For Federal Register citations affecting Form SIP, see the List of CFR Sections Affected, which... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Form SIP, for application for... § 249.1001 Form SIP, for application for registration as a securities information processor or to...

  14. 17 CFR 249.1001 - Form SIP, for application for registration as a securities information processor or to amend such...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Note: For Federal Register citations affecting Form SIP, see the List of CFR Sections Affected, which... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Form SIP, for application for... § 249.1001 Form SIP, for application for registration as a securities information processor or to...

  15. 17 CFR 249.801 - Form X-15AA-1, for application for registration as a national securities association or...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...). Editorial Note: For Federal Register citations affecting Form X-15AA-1, see the List of CFR Sections... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Form X-15AA-1, for application....801 Form X-15AA-1, for application for registration as a national securities association or...

  16. Geospatial Applications on Different Parallel and Distributed Systems in enviroGRIDS Project

    NASA Astrophysics Data System (ADS)

    Rodila, D.; Bacu, V.; Gorgan, D.

    2012-04-01

    The execution of Earth Science applications and services on parallel and distributed systems has become a necessity especially due to the large amounts of Geospatial data these applications require and the large geographical areas they cover. The parallelization of these applications comes to solve important performance issues and can spread from task parallelism to data parallelism as well. Parallel and distributed architectures such as Grid, Cloud, Multicore, etc. seem to offer the necessary functionalities to solve important problems in the Earth Science domain: storing, distribution, management, processing and security of Geospatial data, execution of complex processing through task and data parallelism, etc. A main goal of the FP7-funded project enviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is the development of a Spatial Data Infrastructure targeting this catchment region but also the development of standardized and specialized tools for storing, analyzing, processing and visualizing the Geospatial data concerning this area. For achieving these objectives, the enviroGRIDS deals with the execution of different Earth Science applications, such as hydrological models, Geospatial Web services standardized by the Open Geospatial Consortium (OGC) and others, on parallel and distributed architecture to maximize the obtained performance. This presentation analysis the integration and execution of Geospatial applications on different parallel and distributed architectures and the possibility of choosing among these architectures based on application characteristics and user requirements through a specialized component. Versions of the proposed platform have been used in enviroGRIDS project on different use cases such as: the execution of Geospatial Web services both on Web and Grid infrastructures [2] and the execution of SWAT hydrological models both on Grid and Multicore architectures [3]. The current

  17. Minimalist identification system based on venous map for security applications

    NASA Astrophysics Data System (ADS)

    Jacinto G., Edwar; Martínez S., Fredy; Martínez S., Fernando

    2015-07-01

    This paper proposes a technique and an algorithm used to build a device for people identification through the processing of a low resolution camera image. The infrared channel is the only information needed, sensing the blood reaction with the proper wave length, and getting a preliminary snapshot of the vascular map of the back side of the hand. The software uses this information to extract the characteristics of the user in a limited area (region of interest, ROI), unique for each user, which applicable to biometric access control devices. This kind of recognition prototypes functions are expensive, but in this case (minimalist design), the biometric equipment only used a low cost camera and the matrix of IR emitters adaptation to construct an economic and versatile prototype, without neglecting the high level of effectiveness that characterizes this kind of identification method.

  18. Image-Based Vehicle Identification Technology for Homeland Security Applications

    SciTech Connect

    Clark, G A

    2002-10-08

    The threat of terrorist attacks against US civilian populations is a very real, near-term problem that must be addressed, especially in response to possible use of Weapons of Mass Destruction. Several programs are now being funded by the US Government to put into place means by which the effects of a terrorist attack could be averted or limited through the use of sensors and monitoring technology. Specialized systems that detect certain threat materials, while effective within certain performance limits, cannot generally be used efficiently to track a mobile threat such as a vehicle over a large urban area. The key elements of an effective system are an image feature-based vehicle identification technique and a networked sensor system. We have briefly examined current uses of image and feature recognition techniques to the urban tracking problem and set forth the outlines of a proposal for application of LLNL technologies to this critical problem. The primary contributions of the proposed work lie in filling important needs not addressed by the current program: (1) The ability to create vehicle ''fingerprints,'' or feature information from images to allow automatic identification of vehicles. Currently, the analysis task is done entirely by humans. The goal is to aid the analyst by reducing the amount of data he/she must analyze and reduce errors caused by inattention or lack of training. This capability has broad application to problems associated with extraction of useful features from large data sets. (2) Improvements in the effectiveness of LLNL's WATS (Wide Area Tracking System) by providing it accurate threat vehicle location and velocity. Model predictability is likely to be enhanced by use of more information related to different data sets. We believe that the LLNL can accomplish the proposed tasks and enhance the effectiveness of the system now under development.

  19. 2012 Market Report on Wind Technologies in Distributed Applications

    SciTech Connect

    Orrell, Alice C.

    2013-08-01

    An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.

  20. Application of classification methods in assessment of NATO member countries' economic, security and political risks

    NASA Astrophysics Data System (ADS)

    Odehnal, Jakub

    2013-10-01

    The aim of this paper is to attempt possible quantification of determinants of military expenditure and their application to current NATO member countries. To analyse the economic, security and political risks of NATO member countries, author employ multivariate statistical techniques which take into consideration the multivariate properties of the data sets used as input variables. Classification of countries based on cluster analysis has made it possible to identify disparities between NATO member countries, and thus to describe diverse economic or security environment affecting the amount of military expenditure as a percentage of the respective countries' gross domestic product.

  1. Commodity Tracker: Mobile Application for Food Security Monitoring in Haiti

    NASA Astrophysics Data System (ADS)

    Chiu, M. T.; Huang, X.; Baird, J.; Gourley, J. R.; Morelli, R.; de Lanerolle, T. R.; Haiti Food Security Monitoring Mobile App Team

    2011-12-01

    Megan Chiu, Jason Baird, Xu Huang, Trishan de Lanerolle, Ralph Morelli, Jonathan Gourley Trinity College, Computer Science Department and Environmental Science Program, 300 Summit Street, Hartford, CT 06106 megan.chiu@trincoll.edu, Jason.baird@trincoll.edu, xu.huang@trincoll.edu, trishan.delanerolle@trincoll.edu, ralph.morelli@trincoll.edu, jonathan.gourley@trincoll.edu Price data for Haiti commodities such as rice and potatoes have been traditionally recorded by hand on paper forms for many years. The information is then entered onto computer manually, thus making the process a long and arduous one. With the development of the Haiti Commodity Tracker mobile app, we are able to make this commodity price data recording process more efficient. Officials may use this information for making inferences about the difference in commodity prices and for food distribution during critical time after natural disasters. This information can also be utilized by governments and aid agencies on their food assistance programs. Agronomists record the item prices from several sample sites in a marketplace and compare those results from other markets across the region. Due to limited connectivity in rural areas, data is first saved to the phone's database and then retransmitted to a central server via SMS messaging. The mobile app is currently being field tested by an international NGO providing agricultural aid and support in rural Haiti.

  2. 78 FR 35043 - Aviation Security Advisory Committee Charter Renewal and Request for Applicants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... SECURITY Transportation Security Administration Aviation Security Advisory Committee Charter Renewal and... (TSA) announces the renewal of the charter for the Aviation Security Advisory Committee (ASAC). The... the Aviation Security Advisory Committee Charter Renewal section below. Comments, identified by...

  3. Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications.

    PubMed

    Kumar, Pawan; Singh, Satbir; Gupta, Bipin Kumar

    2016-07-28

    Counterfeiting of valuable documents, currency and branded products is a challenging problem that has serious economic, security and health ramifications for governments, businesses and consumers all over the world. It is estimated that counterfeiting represents a multi-billion dollar underground economy with counterfeit products being produced on a large scale every year. Counterfeiting is an increasingly high-tech crime and calls for high-tech solutions to prevent and deter the acts of counterfeiting. The present review briefly outlines and addresses the key challenges in this area, including the above mentioned concerns for anti-counterfeiting applications. This article describes a unique combination of all possible kinds of security ink formulations based on lanthanide doped luminescent nanomaterials, quantum dots (semiconductor and carbon based), metal organic frameworks as well as plasmonic nanomaterials for their possible use in anti-counterfeiting applications. Moreover, in this review, we have briefly discussed and described the historical background of luminescent nanomaterials, basic concepts and detailed synthesis methods along with their characterization. Furthermore, we have also discussed the methods adopted for the fabrication and design of luminescent security inks, various security printing techniques and their anti-counterfeiting applications. PMID:27424665

  4. Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications.

    PubMed

    Kumar, Pawan; Singh, Satbir; Gupta, Bipin Kumar

    2016-07-28

    Counterfeiting of valuable documents, currency and branded products is a challenging problem that has serious economic, security and health ramifications for governments, businesses and consumers all over the world. It is estimated that counterfeiting represents a multi-billion dollar underground economy with counterfeit products being produced on a large scale every year. Counterfeiting is an increasingly high-tech crime and calls for high-tech solutions to prevent and deter the acts of counterfeiting. The present review briefly outlines and addresses the key challenges in this area, including the above mentioned concerns for anti-counterfeiting applications. This article describes a unique combination of all possible kinds of security ink formulations based on lanthanide doped luminescent nanomaterials, quantum dots (semiconductor and carbon based), metal organic frameworks as well as plasmonic nanomaterials for their possible use in anti-counterfeiting applications. Moreover, in this review, we have briefly discussed and described the historical background of luminescent nanomaterials, basic concepts and detailed synthesis methods along with their characterization. Furthermore, we have also discussed the methods adopted for the fabrication and design of luminescent security inks, various security printing techniques and their anti-counterfeiting applications.

  5. Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Singh, Satbir; Gupta, Bipin Kumar

    2016-07-01

    Counterfeiting of valuable documents, currency and branded products is a challenging problem that has serious economic, security and health ramifications for governments, businesses and consumers all over the world. It is estimated that counterfeiting represents a multi-billion dollar underground economy with counterfeit products being produced on a large scale every year. Counterfeiting is an increasingly high-tech crime and calls for high-tech solutions to prevent and deter the acts of counterfeiting. The present review briefly outlines and addresses the key challenges in this area, including the above mentioned concerns for anti-counterfeiting applications. This article describes a unique combination of all possible kinds of security ink formulations based on lanthanide doped luminescent nanomaterials, quantum dots (semiconductor and carbon based), metal organic frameworks as well as plasmonic nanomaterials for their possible use in anti-counterfeiting applications. Moreover, in this review, we have briefly discussed and described the historical background of luminescent nanomaterials, basic concepts and detailed synthesis methods along with their characterization. Furthermore, we have also discussed the methods adopted for the fabrication and design of luminescent security inks, various security printing techniques and their anti-counterfeiting applications.

  6. Iodine-129 AMS for Earth Science, Biomedical, and National Security Applications

    SciTech Connect

    Nimz, G; Brown, T; Tumey, S; Marchetti, A; Vu, A

    2007-02-20

    This Laboratory Directed Research and Development project created the capability to analyze the radionuclide iodine-129 ({sup 129}I) by accelerator mass spectrometry (AMS) in the CAMS facility at LLNL, and enhanced our scientific foundation for its application through development of sample preparation technology required for environmental, biomedical, and national security applications. The project greatly improved our environmental iodine extraction and concentration methodology, and developed new techniques for the analysis of small quantities of {sup 129}I. The project can be viewed as having two phases, one in which the basic instrumental and chemical extraction methods necessary for general {sup 129}I analysis were developed, and a second in which these techniques were improved and new techniques were developed to enable broader and more sophisticated applications. The latter occurred through the mechanism of four subprojects that also serve as proof-of-principle demonstrations of our newly developed {sup 129}I capabilities. The first subproject determined the vertical distribution of bomb-pulse {sup 129}I ({sup 129}Iv distributed globally as fallout from 1950's atmospheric nuclear testing) through 5 meters in the upper vadose zone in the arid southwestern United States. This characterizes migration mechanisms of contaminant {sup 129}I, or {sup 129}I released by nuclear fuel reprocessing, as well as the migration of labile iodine in soils relative to moisture flux, permitting a determination of nutrient cycling. The second subproject minimized the amount of iodine required in an AMS sample target. Because natural iodine abundances are very low in almost all environments, many areas of research had been precluded or made extremely difficult by the demands of sample size. Also, certain sample types of potential interest to national security are intrinsically small - for example iodine on air filters. The result of this work is the ability to measure the {sup 129

  7. 78 FR 79298 - Securities Exempted; Distribution of Shares by Registered Open-End Management Investment Company...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... Business Investment Companies, 23 FR 10484 (Dec. 30, 1958). \\2\\ Amendments to the Offering Exemption Under Regulation E of the Securities Act of 1933, 49 FR 35342 (Sept. 7, 1984). As part of Regulation E, rule...

  8. Automatic Data Distribution for CFD Applications on Structured Grids

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1999-01-01

    Development of HPF versions of NPB and ARC3D showed that HPF has potential to be a high level language for parallelization of CFD applications. The use of HPF requires an intimate knowledge of the applications and a detailed analysis of data affinity, data movement and data granularity. Since HPF hides data movement from the user even with this knowledge it is easy to overlook pieces of the code causing low performance of the application. In order to simplify and accelerate the task of developing HPF versions of existing CFD applications we have designed and partially implemented ADAPT (Automatic Data Distribution and Placement Tool). The ADAPT analyzes a CFD application working on a single structured grid and generates HPF TEMPLATE, (RE)DISTRIBUTION, ALIGNMENT and INDEPENDENT directives. The directives can be generated on the nest level, subroutine level, application level or inter application level. ADAPT is designed to annotate existing CFD FORTRAN application performing computations on single or multiple grids. On each grid the application can considered as a sequence of operators each applied to a set of variables defined in a particular grid domain. The operators can be classified as implicit, having data dependences, and explicit, without data dependences. In order to parallelize an explicit operator it is sufficient to create a template for the domain of the operator, align arrays used in the operator with the template, distribute the template, and declare the loops over the distributed dimensions as INDEPENDENT. In order to parallelize an implicit operator, the distribution of the operator's domain should be consistent with the operator's dependences. Any dependence between sections distributed on different processors would preclude parallelization if compiler does not have an ability to pipeline computations. If a data distribution is "orthogonal" to the dependences of an implicit operator then the loop which implements the operator can be declared as

  9. Distributed expert systems for ground and space applications

    NASA Technical Reports Server (NTRS)

    Buckley, Brian; Wheatcraft, Louis

    1992-01-01

    Presented here is the Spacecraft Command Language (SCL) concept of the unification of ground and space operations using a distributed approach. SCL is a hybrid software environment borrowing from expert system technology, fifth generation language development, and multitasking operating system environments. Examples of potential uses for the system and current distributed applications of SCL are given.

  10. Concepts and applications of wireless security systems for tactical, portable, and fixed sites

    SciTech Connect

    Harrington, J.J.

    1997-06-01

    Intrusion detection systems sometimes use radio signals to convey sensor status in areas that wire conduits do not service or as a redundant path to wired systems. Some applications benefit from radio technology by minimizing setup time and reducing installation and operation costs. In recent years with the explosion in wireless communications, these radio-based security systems have become more capable while lowering costs, size, and power consumption. However, the very nature of radio communication raises issues regarding setup, operation, and security of these systems. Sandia National Laboratories, in cooperation with government and industry, has addressed many of these issues through the analysis and development of security systems, communications protocols, and operational procedures. Message encryption and frequent channel supervision are used to enhance security. Installation and maintenance of these systems are simplified by incorporating built-in radio link analysis, menu-driven configuration equipment, and other techniques. Commercial communications satellites and spread-spectrum radios are also being integrated to provide unique capabilities to the security community. The status of this work is presented here along with details of its development.

  11. 10 CFR 63.22 - Filing and distribution of application.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses License Application § 63.22 Filing and distribution... waste repository at a geologic repository operations area at Yucca Mountain, and an application for a... operations area at the Yucca Mountain site that has been characterized, any amendments to the...

  12. 10 CFR 63.22 - Filing and distribution of application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses License Application § 63.22 Filing and distribution... waste repository at a geologic repository operations area at Yucca Mountain, and an application for a... operations area at the Yucca Mountain site that has been characterized, any amendments to the...

  13. 10 CFR 63.22 - Filing and distribution of application.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses License Application § 63.22 Filing and distribution... waste repository at a geologic repository operations area at Yucca Mountain, and an application for a... operations area at the Yucca Mountain site that has been characterized, any amendments to the...

  14. 10 CFR 63.22 - Filing and distribution of application.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses License Application § 63.22 Filing and distribution... waste repository at a geologic repository operations area at Yucca Mountain, and an application for a... operations area at the Yucca Mountain site that has been characterized, any amendments to the...

  15. 10 CFR 60.22 - Filing and distribution of application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Filing and distribution of application. 60.22 Section 60.22 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN... application for a construction authorization for a high-level radioactive waste repository at a...

  16. 10 CFR 60.22 - Filing and distribution of application.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Filing and distribution of application. 60.22 Section 60.22 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN... application for a construction authorization for a high-level radioactive waste repository at a...

  17. 10 CFR 60.22 - Filing and distribution of application.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Filing and distribution of application. 60.22 Section 60.22 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN... application for a construction authorization for a high-level radioactive waste repository at a...

  18. 10 CFR 60.22 - Filing and distribution of application.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Filing and distribution of application. 60.22 Section 60.22 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN... application for a construction authorization for a high-level radioactive waste repository at a...

  19. Stable and generalized-t distributions and applications

    NASA Astrophysics Data System (ADS)

    Rathie, P. N.; Coutinho, M.; Sousa, T. R.; Rodrigues, G. S.; Carrijo, T. B.

    2012-12-01

    In this paper a generalized-t distribution is introduced and used as an alternative to the symmetric stable distribution. To do so, the χ2-divergence is presented and minimized to approximate the symmetric stable distribution, as accurately as possible, by the generalized-t distribution. Kth moments for the generalized-t distribution function are given. The stable distribution is defined in terms of generalized hypergeometric functions. Five applications with natural data (sunspots activity), and financial data (stock exchange in Brazil, South Africa and Venezuela, and daily variation of Petrobras stock market) are analyzed. A time series analysis is used to eliminate data correlation in each data set, and then the distributions are used to fit the residuals of these models.

  20. Efficient security mechanisms for mHealth applications using wireless body sensor networks.

    PubMed

    Sahoo, Prasan Kumar

    2012-01-01

    Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme.

  1. Efficient Security Mechanisms for mHealth Applications Using Wireless Body Sensor Networks

    PubMed Central

    Sahoo, Prasan Kumar

    2012-01-01

    Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme. PMID:23112734

  2. Analysis on the threats and spatiotemporal distribution pattern of security in World Natural Heritage Sites.

    PubMed

    Wang, Zhaoguo; Yang, Zhaoping; Du, Xishihui

    2015-01-01

    World Natural Heritage Sites (WNHS) are treasures that need human protection and invite appreciation, which makes conservation of WNHS an urgent task. This paper assesses where in the world threats are most pressing and which WNHS require emergency assistance. Using an analysis of "hot spots" and inverse distance weighting, it finds that Africa is the region where WNHS are least secure. Reports of the state of the conservation of WNHS describe the many threats that exist. Of these, management activities and institutional factors are the primary threats. The paper suggests relevant measures to improve the WNHS security.

  3. International and national security applications of cryogenic detectors - mostly nuclear safeguards

    SciTech Connect

    Rabin, Michael W

    2009-01-01

    As with science, so with security - in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma ray, neutron, and alpha particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invi sible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  4. Energy-efficient key distribution using electrocardiograph biometric set for secure communications in wireless body healthcare networks.

    PubMed

    Shi, Jinyang; Lam, Kwok-Yan; Gu, Ming; Li, Mingze; Chung, Siu-Leung

    2011-10-01

    Wireless body sensor network (WBSN) has gained significant interests as an important infrastructure for real-time biomedical healthcare systems, while the security of the sensitive health information becomes one of the main challenges. Due to the constraints of limited power, traditional cryptographic key distribution schemes are not suitable for WBSN. This paper proposes a novel energy-efficient approach, BodyKey, which can distribute the keys using the electrocardiograph biometrics. BodyKey represents the biometric features as ordered set, and deals with the biometric variations using set reconciliation. In this way, only limited necessary information needs to be communicated for key agreement, and the total energy consumption for key distribution can thus be reduced. Experiments on the PhysioBank Database show that BodyKey can perform an energy consumption rate of 0.01 mJ/bit with an equal accuracy rate of 97.28%, allowing the system to be used as an energy-efficient key distribution scheme for secure communications in WBSN. PMID:20703727

  5. Energy-efficient key distribution using electrocardiograph biometric set for secure communications in wireless body healthcare networks.

    PubMed

    Shi, Jinyang; Lam, Kwok-Yan; Gu, Ming; Li, Mingze; Chung, Siu-Leung

    2011-10-01

    Wireless body sensor network (WBSN) has gained significant interests as an important infrastructure for real-time biomedical healthcare systems, while the security of the sensitive health information becomes one of the main challenges. Due to the constraints of limited power, traditional cryptographic key distribution schemes are not suitable for WBSN. This paper proposes a novel energy-efficient approach, BodyKey, which can distribute the keys using the electrocardiograph biometrics. BodyKey represents the biometric features as ordered set, and deals with the biometric variations using set reconciliation. In this way, only limited necessary information needs to be communicated for key agreement, and the total energy consumption for key distribution can thus be reduced. Experiments on the PhysioBank Database show that BodyKey can perform an energy consumption rate of 0.01 mJ/bit with an equal accuracy rate of 97.28%, allowing the system to be used as an energy-efficient key distribution scheme for secure communications in WBSN.

  6. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference.

    PubMed

    Gleim, A V; Egorov, V I; Nazarov, Yu V; Smirnov, S V; Chistyakov, V V; Bannik, O I; Anisimov, A A; Kynev, S M; Ivanova, A E; Collins, R J; Kozlov, S A; Buller, G S

    2016-02-01

    A quantum key distribution system based on the subcarrier wave modulation method has been demonstrated which employs the BB84 protocol with a strong reference to generate secure bits at a rate of 16.5 kbit/s with an error of 0.5% over an optical channel of 10 dB loss, and 18 bits/s with an error of 0.75% over 25 dB of channel loss. To the best of our knowledge, these results represent the highest channel loss reported for secure quantum key distribution using the subcarrier wave approach. A passive unidirectional scheme has been used to compensate for the polarization dependence of the phase modulators in the receiver module, which resulted in a high visibility of 98.8%. The system is thus fully insensitive to polarization fluctuations and robust to environmental changes, making the approach promising for use in optical telecommunication networks. Further improvements in secure key rate and transmission distance can be achieved by implementing the decoy states protocol or by optimizing the mean photon number used in line with experimental parameters. PMID:26906834

  7. Understanding performance of distributed data-intensive applications.

    PubMed

    Miceli, Christopher; Miceli, Michael; Rodriguez-Milla, Bety; Jha, Shantenu

    2010-09-13

    Grids, clouds and cloud-like infrastructures are capable of supporting a broad range of data-intensive applications. There are interesting and unique performance issues that appear as the volume of data and degree of distribution increases. New scalable data-placement and management techniques, as well as novel approaches to determine the relative placement of data and computational workload, are required. We develop and study a genome sequence matching application that is simple to control and deploy, yet serves as a prototype of a data-intensive application. The application uses a SAGA-based implementation of the All-Pairs pattern. This paper aims to understand some of the factors that influence the performance of this application and the interplay of those factors. We also demonstrate how the SAGA approach can enable data-intensive applications to be extensible and interoperable over a range of infrastructure. This capability enables us to compare and contrast two different approaches for executing distributed data-intensive applications-simple application-level data-placement heuristics versus distributed file systems.

  8. 75 FR 4595 - BATS Y-Exchange, Inc.; Notice of Filing of Application for Registration as a National Securities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... COMMISSION BATS Y-Exchange, Inc.; Notice of Filing of Application for Registration as a National Securities... Y-Exchange, Inc. (``BATS Y Exchange'') submitted to the Securities and Exchange Commission... publishing this notice to solicit comments on BATS Y Exchange's Form 1. The Commission will take...

  9. 78 FR 3042 - J.P. Morgan Securities LLC, et al.; Notice of Application and Temporary Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... COMMISSION J.P. Morgan Securities LLC, et al.; Notice of Application and Temporary Order January 9, 2013... Act, with respect to an injunction entered against J.P. Morgan Securities LLC (``JPMS''), EMC Mortgage... Investments II, Inc. (``SAMI''), SACO I Inc. (``SACO'') and J.P. Morgan Acceptance Corporation I...

  10. 76 FR 42767 - Application for Issuance of Subordinated Debt Securities/Notice of Issuance of Subordinated Debt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... Office of Thrift Supervision Application for Issuance of Subordinated Debt Securities/Notice of Issuance of Subordinated Debt or Mandatorily Redeemable Preferred Stock AGENCY: Office of Thrift Supervision... Debt Securities/Notice of Issuance of Subordinated Debt or Mandatory Redeemable Preferred Stock....

  11. Chaos Synchronization of Chen System and its Application to Secure Communication

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Wu, Xiangjun; He, Yijie; Aniwar, Gulzila

    This paper describes the chaos synchronization of two identical Chen systems theoretically and numerically. Based on Lyapunov stability theory, the controllers for achieving synchronization of two identical Chen systems using the PC method, active control method, and feedback method are designed. Numerical simulations show the correctness of the results. Moreover, as an application, the well-known PC method is applied to chaos-synchronization-based secure communication. Simulation results verify the proposed scheme's effectiveness in the communication application and also show its well robustness.

  12. Applications Analysis: Principles and Examples from Various Distributed Computer Applications at Sandia National Laboratories New Mexico

    SciTech Connect

    Bateman, Dennis; Evans, David; Jensen, Dal; Nelson, Spencer

    1999-08-01

    As information systems have become distributed over many computers within the enterprise, managing those applications has become increasingly important. This is an emerging area of work, recognized as such by many large organizations as well as many start-up companies. In this report, we present a summary of the move to distributed applications, some of the problems that came along for the ride, and some specific examples of the tools and techniques we have used to analyze distributed applications and gain some insight into the mechanics and politics of distributed computing.

  13. High-Resolution Laser-Induced Breakdown Spectroscopy used in Homeland Security and Forensic Applications

    SciTech Connect

    Martin, Madhavi Z; Wullschleger, Stan D; Vass, Arpad Alexander; Martin, Rodger Carl; Grissino-Mayer, Henri

    2006-01-01

    The technique of laser-induced breakdown spectroscopy (LIBS) to detect elements for a variety of homeland security applications such as nuclear materials identification and inventory,and forensic applications has been demonstrated. For nuclear materials applications, we detected and profiled metals in coatings that were used to encapsulate nuclear fuel. Multivariate analysis has been successfully employed in the quantification of elements present in treated wood and engineered wood composites. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications related to homeland security. Three key advantages are evident: (1) small samples (mg) are sufficient; (2) samples can be analyzed by LIBS very rapidly, and (3) biological materials such as human and animal bones and wood can be analyzed with minimal sample preparation. For forensic applications they have used LIBS to determine differences in animal and human bones. They have also applied this technique in the determination of counterfeit and non-counterfeit currency. They recently applied LIBS in helping to solve a murder case.

  14. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm

    PubMed Central

    Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239

  15. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm.

    PubMed

    Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.

  16. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm.

    PubMed

    Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239

  17. Neutron Generators Developed at LBNL for Homeland Security andImaging Applications

    SciTech Connect

    Reijonen, Jani

    2006-08-13

    The Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory has developed various types of advanced D-D (neutron energy 2.5 MeV), D-T (14 MeV) and T-T (0-9 MeV) neutron generators for wide range of applications. These applications include medical (Boron Neutron Capture Therapy), homeland security (Prompt Gamma Activation Analysis, Fast Neutron Activation Analysis and Pulsed Fast Neutron Transmission Spectroscopy) and planetary exploration with a sub-surface material characterization on Mars. These neutron generators utilize RF induction discharge to ionize the deuterium/tritium gas. This discharge method provides high plasma density for high output current, high atomic species from molecular gases, long life operation and versatility for various discharge chamber geometries. Four main neutron generator developments are discussed here: high neutron output co-axial neutron generator for BNCT applications, point neutron generator for security applications, compact and sub-compact axial neutron generator for elemental analysis applications. Current status of the neutron generator development with experimental data will be presented.

  18. The application of artificial intelligence techniques to large distributed networks

    NASA Technical Reports Server (NTRS)

    Dubyah, R.; Smith, T. R.; Star, J. L.

    1985-01-01

    Data accessibility and transfer of information, including the land resources information system pilot, are structured as large computer information networks. These pilot efforts include the reduction of the difficulty to find and use data, reducing processing costs, and minimize incompatibility between data sources. Artificial Intelligence (AI) techniques were suggested to achieve these goals. The applicability of certain AI techniques are explored in the context of distributed problem solving systems and the pilot land data system (PLDS). The topics discussed include: PLDS and its data processing requirements, expert systems and PLDS, distributed problem solving systems, AI problem solving paradigms, query processing, and distributed data bases.

  19. A Component-based Programming Model for Composite, Distributed Applications

    NASA Technical Reports Server (NTRS)

    Eidson, Thomas M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The nature of scientific programming is evolving to larger, composite applications that are composed of smaller element applications. These composite applications are more frequently being targeted for distributed, heterogeneous networks of computers. They are most likely programmed by a group of developers. Software component technology and computational frameworks are being proposed and developed to meet the programming requirements of these new applications. Historically, programming systems have had a hard time being accepted by the scientific programming community. In this paper, a programming model is outlined that attempts to organize the software component concepts and fundamental programming entities into programming abstractions that will be better understood by the application developers. The programming model is designed to support computational frameworks that manage many of the tedious programming details, but also that allow sufficient programmer control to design an accurate, high-performance application.

  20. Mobile, portable lightweight wireless video recording solutions for homeland security, defense, and law enforcement applications

    NASA Astrophysics Data System (ADS)

    Sandy, Matt; Goldburt, Tim; Carapezza, Edward M.

    2015-05-01

    It is desirable for executive officers of law enforcement agencies and other executive officers in homeland security and defense, as well as first responders, to have some basic information about the latest trend on mobile, portable lightweight wireless video recording solutions available on the market. This paper reviews and discusses a number of studies on the use and effectiveness of wireless video recording solutions. It provides insights into the features of wearable video recording devices that offer excellent applications for the category of security agencies listed in this paper. It also provides answers to key questions such as: how to determine the type of video recording solutions most suitable for the needs of your agency, the essential features to look for when selecting a device for your video needs, and the privacy issues involved with wearable video recording devices.

  1. Development of passive submillimeter-wave video imaging systems for security applications

    NASA Astrophysics Data System (ADS)

    Heinz, Erik; May, Torsten; Born, Detlef; Zieger, Gabriel; Brömel, Anika; Anders, Solveig; Zakosarenko, Vyacheslav; Krause, Torsten; Krüger, André; Schulz, Marco; Bauer, Frank; Meyer, Hans-Georg

    2012-10-01

    Passive submillimeter-wave imaging is a concept that has been in the focus of interest as a promising technology for security applications for a number of years. It utilizes the unique optical properties of submillimeter waves and promises an alternative to millimeter-wave and X-ray backscattering portals for personal security screening in particular. Possible application scenarios demand sensitive, fast, and flexible high-quality imaging techniques. Considering the low radiometric contrast of indoor scenes in the submillimeter range, this objective calls for an extremely high detector sensitivity that can only be achieved using cooled detectors. Our approach to this task is a series of passive standoff video cameras for the 350 GHz band that represent an evolving concept and a continuous development since 2007. The cameras utilize arrays of superconducting transition-edge sensors (TES), i. e. cryogenic microbolometers, as radiation detectors. The TES are operated at temperatures below 1 K, cooled by a closed-cycle cooling system, and coupled to superconducting readout electronics. By this means, background limited photometry (BLIP) mode is achieved providing the maximum possible signal to noise ratio. At video rates, this leads to a pixel NETD well below 1K. The imaging system is completed by reflector optics based on free-form mirrors. For object distances of 3-10 m, a field of view up to 2m height and a diffraction-limited spatial resolution in the order of 1-2 cm is provided. Opto-mechanical scanning systems are part of the optical setup and capable frame rates up to 25 frames per second. Both spiraliform and linear scanning schemes have been developed. Several electronic and software components are used for system control, signal amplification, and data processing. Our objective is the design of an application-ready and user-friendly imaging system. For application in real world security screening scenarios, it can be extended using image processing and

  2. 10 CFR 60.22 - Filing and distribution of application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Filing and distribution of application. 60.22 Section 60.22 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN..., and any amendments thereto, and an accompanying environmental impact statement and any...

  3. Occupational impairment and disability among applicants for Social Security disability benefits in Pennsylvania.

    PubMed Central

    Bresnitz, E A; Frumkin, H; Goldstein, L; Neumark, D; Hodgson, M; Needleman, C

    1994-01-01

    OBJECTIVE. The study goal was to assess the extent of workplace-related disease and injury among Social Security Disability Insurance applicants. METHODS. A convenience sample of 240 consecutive applicants to the Pennsylvania Bureau of Disability Determination was studied to assess the prevalence of work-related disorders. An applicant had a work-related condition if there was a clear statement of a workplace illness or injury associated with the impairment, or if the applicant had worked at an occupation with a high likelihood of exposures known or suspected to contribute to the condition of interest. RESULTS. Of the 240 applicants, 166 (69%) were awarded disability insurance benefits; a total of 27 (11%) had work-related conditions, including 14 of the 166 (8%) who were found to be disabled. Forty percent of the 27 had a disorder that was musculoskeletal in origin. Of 59 applicants with cancer, 10.2% had some work-related etiological component. Of an estimated 71,680 adult disability insurance applicants in Pennsylvania in 1990, 5134 new insurance beneficiaries had a projected occupationally related disability. CONCLUSIONS. A substantial number of applicants for disability insurance benefits suffer from an impairment caused or exacerbated by prior workplace exposures. These individuals may serve as sentinel events for initiating follow-up surveillance and prevention activities. PMID:7977918

  4. Coordinating complex decision support activities across distributed applications

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1994-01-01

    Knowledge-based technologies have been applied successfully to automate planning and scheduling in many problem domains. Automation of decision support can be increased further by integrating task-specific applications with supporting database systems, and by coordinating interactions between such tools to facilitate collaborative activities. Unfortunately, the technical obstacles that must be overcome to achieve this vision of transparent, cooperative problem-solving are daunting. Intelligent decision support tools are typically developed for standalone use, rely on incompatible, task-specific representational models and application programming interfaces (API's), and run on heterogeneous computing platforms. Getting such applications to interact freely calls for platform independent capabilities for distributed communication, as well as tools for mapping information across disparate representations. Symbiotics is developing a layered set of software tools (called NetWorks! for integrating and coordinating heterogeneous distributed applications. he top layer of tools consists of an extensible set of generic, programmable coordination services. Developers access these services via high-level API's to implement the desired interactions between distributed applications.

  5. Coding techniques for secure digital communications for unit protection of distribution feeders

    SciTech Connect

    Redfern, M.A.; McGuinness, D.P.; Ormondroyd, R.F.

    1996-04-01

    The dramatic growth in new designs of microprocessor relays has led to a growth in the use digital communications for protection. Unfortunately in any communication system there will always be some corruption of the received data. Part of the art and science of relay design is therefore to take this into account. This paper examines coding techniques designed to minimize the probability of corrupted data being declared as healthy. Message size, coding techniques and interleaving are examined with respect to the choice of a coding strategy for a secure data communication system for unit protection.

  6. Heritability Across the Distribution: An Application of Quantile Regression

    PubMed Central

    Petrill, Stephen A.; Hart, Sara A.; Schatschneider, Christopher; Thompson, Lee A.; Deater-Deckard, Kirby; DeThorne, Laura S.; Bartlett, Christopher

    2016-01-01

    We introduce a new method for analyzing twin data called quantile regression. Through the application presented here, quantile regression is able to assess the genetic and environmental etiology of any skill or ability, at multiple points in the distribution of that skill or ability. This method is compared to the Cherny et al. (Behav Genet 22:153–162, 1992) method in an application to four different reading-related outcomes in 304 pairs of first-grade same sex twins enrolled in the Western Reserve Reading Project. Findings across the two methods were similar; both indicated some variation across the distribution of the genetic and shared environmental influences on non-word reading. However, quantile regression provides more details about the location and size of the measured effect. Applications of the technique are discussed. PMID:21877231

  7. Sensor-enabled chem/bio contamination detection system dedicated to situational awareness of water distribution security status

    NASA Astrophysics Data System (ADS)

    Ginsberg, Mark D.; Smith, Eddy D.; VanBlaricum, Vicki; Hock, Vincent F.; Kroll, Dan; Russell, Kevin J.

    2010-04-01

    Both real events and models have proven that drinking water systems are vulnerable to deliberate and/or accidental contamination. Additionally, homeland security initiatives and modeling efforts have determined that it is relatively easy to orchestrate the contamination of potable water supplies. Such contamination can be accomplished with classic and non-traditional chemical agents, toxic industrial chemicals (TICs), and/or toxic industrial materials (TIMs). Subsequent research and testing has developed a proven network for detection and response to these threats. The method uses offthe- shelf, broad-spectrum analytical instruments coupled with advanced interpretive algorithms. The system detects and characterizes any backflow events involving toxic contaminants by employing unique chemical signature (fingerprint) response data. This instrumentation has been certified by the Office of Homeland Security for detecting deliberate and/or accidental contamination of critical water infrastructure. The system involves integration of several mature technologies (sensors, SCADA, dynamic models, and the HACH HST Guardian Blue instrumentation) into a complete, real-time, management system that also can be used to address other water distribution concerns, such as corrosion. This paper summarizes the reasons and results for installing such a distribution-based detection and protection system.

  8. A novel strategy for load balancing of distributed medical applications.

    PubMed

    Logeswaran, Rajasvaran; Chen, Li-Choo

    2012-04-01

    Current trends in medicine, specifically in the electronic handling of medical applications, ranging from digital imaging, paperless hospital administration and electronic medical records, telemedicine, to computer-aided diagnosis, creates a burden on the network. Distributed Service Architectures, such as Intelligent Network (IN), Telecommunication Information Networking Architecture (TINA) and Open Service Access (OSA), are able to meet this new challenge. Distribution enables computational tasks to be spread among multiple processors; hence, performance is an important issue. This paper proposes a novel approach in load balancing, the Random Sender Initiated Algorithm, for distribution of tasks among several nodes sharing the same computational object (CO) instances in Distributed Service Architectures. Simulations illustrate that the proposed algorithm produces better network performance than the benchmark load balancing algorithms-the Random Node Selection Algorithm and the Shortest Queue Algorithm, especially under medium and heavily loaded conditions.

  9. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    NASA Astrophysics Data System (ADS)

    Vaz, Pedro

    2015-11-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed.

  10. Some applications of the fractional Poisson probability distribution

    SciTech Connect

    Laskin, Nick

    2009-11-15

    Physical and mathematical applications of the recently invented fractional Poisson probability distribution have been presented. As a physical application, a new family of quantum coherent states has been introduced and studied. As mathematical applications, we have developed the fractional generalization of Bell polynomials, Bell numbers, and Stirling numbers of the second kind. The appearance of fractional Bell polynomials is natural if one evaluates the diagonal matrix element of the evolution operator in the basis of newly introduced quantum coherent states. Fractional Stirling numbers of the second kind have been introduced and applied to evaluate the skewness and kurtosis of the fractional Poisson probability distribution function. A representation of the Bernoulli numbers in terms of fractional Stirling numbers of the second kind has been found. In the limit case when the fractional Poisson probability distribution becomes the Poisson probability distribution, all of the above listed developments and implementations turn into the well-known results of the quantum optics and the theory of combinatorial numbers.

  11. An efficient wireless power transfer system with security considerations for electric vehicle applications

    SciTech Connect

    Zhang, Zhen; Chau, K. T. Liu, Chunhua; Qiu, Chun; Lin, Fei

    2014-05-07

    This paper presents a secure inductive wireless power transfer (WPT) system for electric vehicle (EV) applications, such as charging the electric devices inside EVs and performing energy exchange between EVs. The key is to employ chaos theory to encrypt the wirelessly transferred energy which can then be decrypted by specific receptors in the multi-objective system. In this paper, the principle of encrypted WPT is first revealed. Then, computer simulation is conducted to validate the feasibility of the proposed system. Moreover, by comparing the WPT systems with and without encryption, the proposed energy encryption scheme does not involve noticeable power consumption.

  12. Chaos Synchronization via Unidirectional Coupling and its Application to Secure Communication

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Wang, Mingjun

    This paper studies chaos synchronization via unidirectional coupling. The self-synchronization of Lorenz systems, modified coupled dynamos systems and hyperchaotic Chen systems is studied by three methods: the Lyapunov function method, the global synchronization method and the numerical calculation of the largest Lyapunov exponent method. In regard to application to communication, we show that via transmitting single signal the synchronization of the drive system and the response system can be achieved. An example of applying self-synchronization of hyperchaotic Chen systems to chaotic masking secure communication is presented in this paper. Simulation results show the effectiveness of the method.

  13. Design of 95 GHz, 2 MW Gyrotron for Communication and Security Applications

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Singh, T. P.; Sinha, A. K.

    2011-02-01

    The design and the numerical simulation of the 95 GHz, 2 MW gyrotron for various kinds of communication, sensing and security applications is presented. The gyrotron is designed for the TE24,8 operating mode. Various in-house developed and commercially available computer codes are used for the design purpose. A 4.25 MW electron gun is designed for the 2 MW of output power. The mode selection, cold cavity and the beam-wave interaction analysis are discussed for the design of weakly tapered open resonator type of interaction cavity. The parametric analysis of the interaction cavity and the electron gun is also presented.

  14. Making Wireless Networks Secure for NASA Mission Critical Applications Using Virtual Private Network (VPN) Technology

    NASA Technical Reports Server (NTRS)

    Nichols, Kelvin F.; Best, Susan; Schneider, Larry

    2004-01-01

    With so many security issues involved with wireless networks, the technology has not been fully utilized in the area of mission critical applications. These applications would include the areas of telemetry, commanding, voice and video. Wireless networking would allow payload operators the mobility to take computers outside of the control room to their off ices and anywhere else in the facility that the wireless network was extended. But the risk is too great of having someone sit just inside of your wireless network coverage and intercept enough of your network traffic to steal proprietary data from a payload experiment or worse yet hack back into your system and do even greater harm by issuing harmful commands. Wired Equivalent Privacy (WEP) is improving but has a ways to go before it can be trusted to protect mission critical data. Today s hackers are becoming more aggressive and innovative, and in order to take advantage of the benefits that wireless networking offer, appropriate security measures need to be in place that will thwart hackers. The Virtual Private Network (VPN) offers a solution to the security problems that have kept wireless networks from being used for mission critical applications. VPN provides a level of encryption that will ensure that data is protected while it is being transmitted over a wireless local area network (LAN). The VPN allows a user to authenticate to the site that the user needs to access. Once this authentication has taken place the network traffic between that site and the user is encapsulated in VPN packets with the Triple Data Encryption Standard (3DES). 3DES is an encryption standard that uses a single secret key to encrypt and decrypt data. The length of the encryption key is 168 bits as opposed to its predecessor DES that has a 56-bit encryption key. Even though 3DES is the common encryption standard for today, the Advance Encryption Standard (AES), which provides even better encryption at a lower cycle cost is growing

  15. Making Wireless Networks Secure for NASA Mission Critical Applications using Virtual Private Network (VPN) Technology

    NASA Technical Reports Server (NTRS)

    Nichols, Kelvin F.; Best, Susan; Schneider, Larry

    2004-01-01

    With so many security issues involved with wireless networks, the technology has not been fully utilized in the area of mission critical applications. These applications would include the areas of telemetry, commanding, voice and video. Wireless networking would allow payload operators the mobility to take computers outside of the control room to their offices and anywhere else in the facility that the wireless network was extended. But the risk is too great of having someone sit just inside of your wireless network coverage and intercept enough of your network traffic to steal proprietary data from a payload experiment or worse yet hack back into your system and do even greater harm by issuing harmful commands. Wired Equivalent Privacy (WEP) is improving but has a ways to go before it can be trusted to protect mission critical data. Today s hackers are becoming more aggressive and innovative, and in order to take advantage of the benefits that wireless networking offer, appropriate security measures need to be in place that will thwart hackers. The Virtual Private Network (VPN) offers a solution to the security problems that have kept wireless networks from being used for mission critical applications. VPN provides a level of encryption that will ensure that data is protected while it is being transmitted over a wireless local area network (IAN). The VPN allows a user to authenticate to the site that the user needs to access. Once this authentication has taken place the network traffic between that site and the user is encapsulated in VPN packets with the Triple Data Encryption Standard (3DES). 3DES is an encryption standard that uses a single secret key to encrypt and decrypt data. The length of the encryption key is 168 bits as opposed to its predecessor DES that has a 56-bit encryption key. Even though 3DES is the common encryption standard for today, the Advance Encryption Standard (AES), which provides even better encryption at a lower cycle cost is growing

  16. Two-photon polarization data storage in bacteriorhodopsin films and its potential use in security applications

    SciTech Connect

    Imhof, Martin; Hampp, Norbert; Rhinow, Daniel

    2014-02-24

    Bacteriorhodopsin (BR) films allow write-once-read-many recording of polarization data by a two-photon-absorption (TPA) process. The optical changes in BR films induced by the TPA recording were measured and the Müller matrix of a BR film was determined. A potential application of BR films in security technology is shown. Polarization data can be angle-selective retrieved with high signal-to-noise ratio. The BR film does not only carry optical information but serves also as a linear polarizer. This enables that polarization features recorded in BR films may be retrieved by merely using polarized light from a mobile phone display.

  17. Security Technologies for Open Networking Environments (STONE)

    SciTech Connect

    Muftic, Sead

    2005-03-31

    -domain scenarios is supported by a set of security engines that represent the core of the Federated Identities Management Server, which is also an extension of the Domain Security Server. The Federated Identity Management server allows users to federate their identities or terminate the federation between the service provider and the identity provider. At the service provider web site, the users are offered a list of identity providers to which they can choose to federate their identities. After users federate their identity, they can perform Single Sign-On protocol in an environment of federated domains. The group security system consists of a number of security technologies under a unified architecture, which supports creation of secure groups and execution of secure group transactions and applications in an open networking environment. The system is based on extensions of the GSAKMP standard for group key distribution and management. The Top layer is the Security Infrastructure with the Security Management and Administration System components and protocols that provide security functions common to all secure network applications The Middle layer is the Secure Group Protocols and Applications layer, consisting of the Policy and Group Key Distribution Server and Web-based (thin) Client. The Bottom layer is the supporting Middleware Security Platform, the cryptographic platform already described above. The group security system is designed to perform the functions necessary to create secure groups and enable secure group applications. Specifically, the system can manage group roles, create and disseminate a group security policy, perform authentication and authorization of users using PKI certificates and Web services security, generate group keys, and recover from compromises. In accordance with the GSAKMP standard, the group security system must perform all the required group life-cycle functions: group definition, group establishment, group maintenance, and group removal. The

  18. Application of parallel distributed processing to space based systems

    NASA Technical Reports Server (NTRS)

    Macdonald, J. R.; Heffelfinger, H. L.

    1987-01-01

    The concept of using Parallel Distributed Processing (PDP) to enhance automated experiment monitoring and control is explored. Recent very large scale integration (VLSI) advances have made such applications an achievable goal. The PDP machine has demonstrated the ability to automatically organize stored information, handle unfamiliar and contradictory input data and perform the actions necessary. The PDP machine has demonstrated that it can perform inference and knowledge operations with greater speed and flexibility and at lower cost than traditional architectures. In applications where the rule set governing an expert system's decisions is difficult to formulate, PDP can be used to extract rules by associating the information an expert receives with the actions taken.

  19. Kalman filter application for distributed parameter estimation in reactor systems

    SciTech Connect

    Martin, R.P.; Edwards, R.M.

    1996-07-01

    An application of the Kalman filter has been developed for the real-time identification of a distributed parameter in a nuclear power plant. This technique can be used to improve numerical method-based best-estimate simulation of complex systems such as nuclear power plants. The application to a reactor system involves a unique modal model that approximates physical components, such as the reactor, as a coupled oscillator, i.e., a modal model with coupled modes. In this model both states and parameters are described by an orthogonal expansion. The Kalman filter with the sequential least-squares parameter estimation algorithm was used to estimate the modal coefficients of all states and one parameter. Results show that this state feedback algorithm is an effective way to parametrically identify a distributed parameter system in the presence of uncertainties.

  20. Applicability of the FASTBUS standard to distributed control

    SciTech Connect

    Deiss, S.R.; Downing, R.W.; Gustavson, D.B.; Larsen, R.S.; Logg, C.A.; Paffrath, L.

    1981-03-01

    The new FASTBUS standard has been designed to provide a framework for distributed processing in both experimental data acquisition and accelerator control. The features of FASTBUS which support distributed control are a priority arbitration scheme which allows intercrate as well as intracrate message flow between processors and slave devices; and a high bandwidth to permit efficient sharing of the data paths by high-speed devices. Sophisticated diagnostic aids permit system-wide error checking and/or correction. Software has been developed for large distributed systems. This consists of a system data base description, and initialization algorithms to allocate address space and establish preferred message routes. A diagnostics package is also being developed, based on an independent Ethernet-like serial link. The paper describes available hardware and software, on-going developments, and current applications.

  1. Determining Global Population Distribution: Methods, Applications and Data

    PubMed Central

    Balk, D.L.; Deichmann, U.; Yetman, G.; Pozzi, F.; Hay, S.I.; Nelson, A.

    2011-01-01

    Evaluating the total numbers of people at risk from infectious disease in the world requires not just tabular population data, but data that are spatially explicit and global in extent at a moderate resolution. This review describes the basic methods for constructing estimates of global population distribution with attention to recent advances in improving both spatial and temporal resolution. To evaluate the optimal resolution for the study of disease, the native resolution of the data inputs as well as that of the resulting outputs are discussed. Assumptions used to produce different population data sets are also described, with their implications for the study of infectious disease. Lastly, the application of these population data sets in studies to assess disease distribution and health impacts is reviewed. The data described in this review are distributed in the accompanying DVD. PMID:16647969

  2. Practical secure quantum communications

    NASA Astrophysics Data System (ADS)

    Diamanti, Eleni

    2015-05-01

    We review recent advances in the field of quantum cryptography, focusing in particular on practical implementations of two central protocols for quantum network applications, namely key distribution and coin flipping. The former allows two parties to share secret messages with information-theoretic security, even in the presence of a malicious eavesdropper in the communication channel, which is impossible with classical resources alone. The latter enables two distrustful parties to agree on a random bit, again with information-theoretic security, and with a cheating probability lower than the one that can be reached in a classical scenario. Our implementations rely on continuous-variable technology for quantum key distribution and on a plug and play discrete-variable system for coin flipping, and necessitate a rigorous security analysis adapted to the experimental schemes and their imperfections. In both cases, we demonstrate the protocols with provable security over record long distances in optical fibers and assess the performance of our systems as well as their limitations. The reported advances offer a powerful toolbox for practical applications of secure communications within future quantum networks.

  3. Field Measurements and Guidelines for the Application of Wireless Sensor Networks to the Environment and Security

    PubMed Central

    Gil Jiménez, Víctor P.; Armada, Ana García

    2009-01-01

    Frequently, Wireless Sensor Networks (WSN) are designed focusing on applications and omitting transmission problems in these wireless networks. In this paper, we present a measurement campaign that has been carried out using one of the most commonly used WSN platforms, the micaZ from Crossbow©. Based on these measurements, some guidelines to deploy a robust and reliable WSN are provided. The results are focused on security and environmental applications but can also be extrapolated to other scenarios. A main conclusion that can be extracted is that, from the transmission point of view, a dense WSN is one of the best choices to overcome many of the transmission problems such as the existence of a transitional region, redundance, forwarding, obstructions or interference with other systems. PMID:22303175

  4. Synchronization of hyperchaotic harmonics in time-delay systems and its application to secure communication

    PubMed

    Yaowen; Guangming; Hong; Yinghai; Liang

    2000-12-01

    We present a predictor-feedback method for synchronizing chaotic systems in this paper. By using this method, two structurally equivalent or nonequivalent systems can be synchronized very effectively and quickly. Moreover, the feedback perturbation can be switched on even if trajectories of the two systems are far from each other. Therefore, this method is applicable to real-world experimental systems, especially to some fast experimental systems. The validity of this method is demonstrated by synchronizing hyperchaotic harmonics in a time-delay system. As an application, we introduce how messages can be encoded, transmitted, and decoded using this technique. We suggest taking use of the multistability of time-delay systems to improve the performance of the secure communication.

  5. Security of quantum key distribution with a laser reference coherent state, resistant to loss in the communication channel

    NASA Astrophysics Data System (ADS)

    Molotkov, S. N.; Potapova, T. A.

    2015-06-01

    The problem of quantum key distribution security in channels with large losses is still open. Quasi-single-photon sources of quantum states with losses in the quantum communication channel open up the possibility of attacking with unambiguous state discrimination (USD) measurements, resulting in a loss of privacy. In this letter, the problem is solved by counting the classic reference pulses. Conservation of the number of counts of intense coherent pulses makes it impossible to conduct USD measurements. Moreover, the losses in the communication channel are considered to be unknown in advance and are subject to change throughout the series parcels. Unlike other protocols, differential phase shift (Inoue et al 2002 Phys. Rev. Lett. 89 037902, Inoue et al 2003 Phys. Rev. A 68 022317, Takesue et al 2007 Nat. Photon. 1 343, Wen et al 2009 Phys. Rev. Lett. 103 170503) and coherent one way (Stucki et al 2005 Appl. Phys. Lett. 87 194108, Branciard et al 2005 Appl. Phys. Lett. 87 194108, Branciard et al 2008 New J. Phys. 10 013031, Stucki et al 2008 Opt. Express 17 13326), the simplicity of the protocol makes it possible to carry out a complete analysis of its security.

  6. Microstructure encryption and decryption techniques in optical variable and invariable devices in printed documents for security and forensic applications

    NASA Astrophysics Data System (ADS)

    Ambadiyil, Sajan; K. G, Jayan; Prabhu, Radhakrishna; Mahadevan Pillai, V. P.

    2015-05-01

    Today, document counterfeiting is a global menace because of the advanced technologies available at ever decreasing prices. Instead of eschew the paper documents; applying efficient cost effective security methodologies are the feasible solutions. This paper reports a novel cost effective and simple optical technique using micro text encrypted optical variable device (OVD) threads, ultra-violet (UV) based optical invariable device (OID) patterns and artistic fonts for secure preparation of the documents and its forensic application. Applying any one of the above technique or together can effectively enhance the level of security of the most valuable document. The genuineness of the documents can be verified using simple decryption techniques.

  7. Distributed beamforming designs to improve physical layer security in wireless relay networks

    NASA Astrophysics Data System (ADS)

    Qian, Mujun; Liu, Chen; Fu, Youhua

    2014-12-01

    This paper investigates security-oriented beamforming designs in a relay network composed of a source-destination pair, multiple relays, and a passive eavesdropper. Unlike most of the earlier works, we assume that only statistical information of the relay-eavesdropper channels is known to the relays. We propose beamforming solutions for amplify-and-forward (AF) and decode-and-forward (DF) relay networks to improve secrecy capacity. In an AF network, the beamforming design is obtained by approximating a product of two correlated Rayleigh quotients to a single Rayleigh quotient using the Taylor series expansion. Our study reveals that in an AF network, the secrecy capacity does not always grow as the eavesdropper moves away from the relays or as total relay transmit power increases. Moreover, if the destination is nearer to the relays than the eavesdropper is, a suboptimal power is derived in closed form through monotonicity analysis of secrecy capacity. While in a DF network, secrecy capacity is a single Rayleigh quotient problem which can be easily solved. We also found that if the relay-eavesdropper distances are about the same, it is unnecessary to consider the eavesdropper in a DF network. Numerical results show that for either AF or DF relaying protocol, the proposed beamforming scheme provides higher secrecy capacity than traditional approaches.

  8. The use of stimulated electron emission (SEE) in homeland security applications

    NASA Astrophysics Data System (ADS)

    Ing, H.; Andrews, H. R.; Facina, M.; Lee, W. T.; Niu, H. W.

    2012-06-01

    Certain insulating solids can store a fraction of the absorbed energy when irradiated by ionizing radiation. The stored energy can be released subsequently by heating or optical stimulation. As a result, light may be emitted through Thermoluminescence (TL) or Optically-Stimulated Luminescence (OSL) and electrons may be emitted through Thermally-Stimulated Electron Emission (TSEE) or Optically-Stimulated Electron Emission (OSEE). TL and OSL are widely used in current radiation dosimetry systems. However, despite considerable research effort during the early 1970s, SEE was not commonly adopted for dosimetry applications. One of the main reasons is that SEE is a surface phenomenon, while luminescence is a bulk phenomenon, making SEE more susceptible to humidity, absorption of gases, minor physical defects and handling, both before and after irradiation. Nevertheless, it has been recognized that SEE may be useful for homeland security applications in nuclear forensics, where dose accuracy is not the primary performance metric. In this research, we are investigating the use of SEE for nuclear forensic applications. Many common materials, both natural and man-made, exhibit the phenomenon, providing an opportunity to use the environment itself as an in-situ radiation detector. We have designed and constructed a unique prototype reader for conducting SEE measurements. We have demonstrated that the SEE measurements from a variety of materials are quantitatively reproducible and correlated to radiation exposure. Due to the broad applicability of SEE, significant additional studies are warranted to optimize this novel technique for nuclear forensic and other applications.

  9. An optimized encoding method for secure key distribution by swapping quantum entanglement and its extension

    NASA Astrophysics Data System (ADS)

    Gao, Gan

    2015-08-01

    Song [Song D 2004 Phys. Rev. A 69 034301] first proposed two key distribution schemes with the symmetry feature. We find that, in the schemes, the private channels which Alice and Bob publicly announce the initial Bell state or the measurement result through are not needed in discovering keys, and Song’s encoding methods do not arrive at the optimization. Here, an optimized encoding method is given so that the efficiencies of Song’s schemes are improved by 7/3 times. Interestingly, this optimized encoding method can be extended to the key distribution scheme composed of generalized Bell states. Project supported by the National Natural Science Foundation of China (Grant No. 11205115), the Program for Academic Leader Reserve Candidates in Tongling University (Grant No. 2014tlxyxs30), and the 2014-year Program for Excellent Youth Talents in University of Anhui Province, China.

  10. Kochen-Specker theorem as a precondition for secure quantum key distribution

    SciTech Connect

    Nagata, Koji

    2005-07-15

    We show that (1) the violation of the Ekert 1991 inequality is a sufficient condition for certification of the Kochen-Specker (KS) theorem, and (2) the violation of the Bennett-Brassard-Mermin 1992 (BBM92) inequality is, also, a sufficient condition for certification of the KS theorem. Therefore the success in each quantum key distribution protocol reveals the nonclassical feature of quantum theory, in the sense that the KS realism is violated. Further, it turned out that the Ekert inequality and the BBM inequality are depictured by distillable entanglement witness inequalities. Here, we connect the success in these two key distribution processes into the no-hidden-variables theorem and into witness on distillable entanglement. We also discuss the explicit difference between the KS realism and Bell's local realism in the Hilbert space formalism of quantum theory.

  11. Quantum circuit for the proof of the security of quantum key distribution without encryption of error syndrome and noisy processing

    SciTech Connect

    Tamaki, Kiyoshi; Kato, Go

    2010-02-15

    One of the simplest security proofs of quantum key distribution is based on the so-called complementarity scenario, which involves the complementarity control of an actual protocol and a virtual protocol [M. Koashi, e-print arXiv:0704.3661 (2007)]. The existing virtual protocol has a limitation in classical postprocessing, i.e., the syndrome for the error-correction step has to be encrypted. In this paper, we remove this limitation by constructing a quantum circuit for the virtual protocol. Moreover, our circuit with a shield system gives an intuitive proof of why adding noise to the sifted key increases the bit error rate threshold in the general case in which one of the parties does not possess a qubit. Thus, our circuit bridges the simple proof and the use of wider classes of classical postprocessing.

  12. Development of an UltraNet Based Distributed Visualization Application

    NASA Technical Reports Server (NTRS)

    Krystynak, John

    1991-01-01

    The example application is a distributed visualization involving a supercomputer and a graphics workstation. The visualization computation is performed on a Connection Machine, end the results are rendered using a Silicon Graphics Workstations The UltraNet network installed at NAB allows high-bandwidth communication between the computers. Ideally, taking advantage of the UltraNet is no more complex than developing TCP/IP and Unix BSD socket-type applications on a single machine. In practice, there are several problems in developing an Application using the UltraNet. This paper identifies potential problems and discusses techniques for overcoming them. Performance of UltraNet communication is measured and found to be 10 MB/sec for SGI VGX workstations.

  13. Distribution System Reliability Analysis for Smart Grid Applications

    NASA Astrophysics Data System (ADS)

    Aljohani, Tawfiq Masad

    Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. To address its reliability concerns, the power utilities and interested parties have spent extensive amount of time and effort to analyze and study the reliability of the generation and transmission sectors of the power grid. Only recently has attention shifted to be focused on improving the reliability of the distribution network, the connection joint between the power providers and the consumers where most of the electricity problems occur. In this work, we will examine the effect of the smart grid applications in improving the reliability of the power distribution networks. The test system used in conducting this thesis is the IEEE 34 node test feeder, released in 2003 by the Distribution System Analysis Subcommittee of the IEEE Power Engineering Society. The objective is to analyze the feeder for the optimal placement of the automatic switching devices and quantify their proper installation based on the performance of the distribution system. The measures will be the changes in the reliability system indices including SAIDI, SAIFI, and EUE. The goal is to design and simulate the effect of the installation of the Distributed Generators (DGs) on the utility's distribution system and measure the potential improvement of its reliability. The software used in this work is DISREL, which is intelligent power distribution software that is developed by General Reliability Co.

  14. Efficient Use of Distributed Systems for Scientific Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Valerie; Chen, Jian; Canfield, Thomas; Richard, Jacques

    2000-01-01

    Distributed computing has been regarded as the future of high performance computing. Nationwide high speed networks such as vBNS are becoming widely available to interconnect high-speed computers, virtual environments, scientific instruments and large data sets. One of the major issues to be addressed with distributed systems is the development of computational tools that facilitate the efficient execution of parallel applications on such systems. These tools must exploit the heterogeneous resources (networks and compute nodes) in distributed systems. This paper presents a tool, called PART, which addresses this issue for mesh partitioning. PART takes advantage of the following heterogeneous system features: (1) processor speed; (2) number of processors; (3) local network performance; and (4) wide area network performance. Further, different finite element applications under consideration may have different computational complexities, different communication patterns, and different element types, which also must be taken into consideration when partitioning. PART uses parallel simulated annealing to partition the domain, taking into consideration network and processor heterogeneity. The results of using PART for an explicit finite element application executing on two IBM SPs (located at Argonne National Laboratory and the San Diego Supercomputer Center) indicate an increase in efficiency by up to 36% as compared to METIS, a widely used mesh partitioning tool. The input to METIS was modified to take into consideration heterogeneous processor performance; METIS does not take into consideration heterogeneous networks. The execution times for these applications were reduced by up to 30% as compared to METIS. These results are given in Figure 1 for four irregular meshes with number of elements ranging from 30,269 elements for the Barth5 mesh to 11,451 elements for the Barth4 mesh. Future work with PART entails using the tool with an integrated application requiring

  15. Security for the digital information age of medicine: issues, applications, and implementation

    NASA Astrophysics Data System (ADS)

    Epstein, Michael A.; Pasieka, Michael S.; Lord, William P.; Wong, Stephen T. C.; Mankovich, Nicholas J.

    1997-05-01

    Privacy and integrity of medical records is expected by patients. This privacy and integrity is often mandated by regulations. Traditionally, the security of medical records has been based on physical lock and key. As the storage of patient record information shifts from paper to digital, new security concerns arise. Digital cryptographic methods provide solutions to many of these new concerns. In this paper we overview new security concerns, new legislation mandating secure medical records and solutions providing security.

  16. Security for the digital information age of medicine: issues, applications, and implementation.

    PubMed

    Epstein, M A; Pasieka, M S; Lord, W P; Wong, S T; Mankovich, N J

    1998-02-01

    Privacy and integrity of medical records is expected by patients. This privacy and integrity is often mandated by regulations. Traditionally, the security of medical records has been based on physical lock and key. As the storage of patient record information shifts from paper to digital, new security concerns arise. Digital cryptographic methods provide solutions to many of these new concerns. In this article we give an overview of new security concerns, new legislation mandating secure medical records and solutions providing security.

  17. Security for the digital information age of medicine: issues, applications, and implementation.

    PubMed

    Epstein, M A; Pasieka, M S; Lord, W P; Mankovich, N J

    1997-08-01

    Privacy and integrity of medical records is expected by patients. This privacy and integrity is often mandated by regulations. Traditionally, the security of medical records has been based on physical lock and key. As the storage of patient record information shifts from paper to digital, we find new security concerns. Digital cryptographic methods provide solutions to many of these new concerns. In this paper we discuss the new security concerns, new legislation mandating secure medical records, and solutions providing this security.

  18. Highly purified mussel adhesive protein to secure biosafety for in vivo applications

    PubMed Central

    2014-01-01

    Background Unique adhesive and biocompatibility properties of mussel adhesive proteins (MAPs) are known for their great potential in many tissue engineering and biomedical applications. Previously, it was successfully demonstrated that redesigned hybrid type MAP, fp-151, mass-produced in Gram-negative bacterium Escherichia coli, could be utilized as a promising adhesive biomaterial. However, purification of recombinant fp-151 has been unsatisfactory due to its adhesive nature and polarity which make separation of contaminants (especially, lipopolysaccharide, a toxic Gram-negative cell membrane component) very difficult. Results In the present work, we devised a high resolution purification approach to secure safety standards of recombinant fp-151 for the successful use in in vivo applications. Undesirable impurities were remarkably eliminated as going through sequential steps including treatment with multivalent ion and chelating agent for cell membrane washing, mechanical cell disruption, non-ionic surfactant treatment for isolated inclusion body washing, acid extraction of washed inclusion body, and ion exchange chromatography purification of acid extracted sample. Through various analyses, such as high performance liquid chromatographic purity assay, limulus amoebocyte lysate endotoxin assay, and in vitro mouse macrophage cell tests on inflammation, viability, cytotoxicity, and apoptosis, we confirmed the biological safety of bacterial-derived purified recombinant fp-151. Conclusions Through this purification design, recombinant fp-151 achieved 99.90% protein purity and 99.91% endotoxin reduction that nearly no inflammation response was observed in in vitro experiments. Thus, the highly purified recombinant MAP would be successfully used as a safety-secured in vivo bioadhesive for tissue engineering and biomedical applications. PMID:24725543

  19. Image sensor for security applications with on-chip data authentication

    NASA Astrophysics Data System (ADS)

    Stifter, P.; Eberhardt, K.; Erni, A.; Hofmann, K.

    2006-04-01

    Sensors in a networked environment which are used for security applications could be jeopardized by man-in-the-middle or address spoofing attacks. By authentication and secure data transmission of the sensor's data stream, this can be thwart by fusing the image sensor with the necessary digital encryption and authentication circuit, which fulfils the three standard requirements of cryptography: data integrity, confidentiality and non-repudiation. This paper presents the development done by AIM, which led to the unique sensor SECVGA, a high performance monochrome (B/W) CMOS active pixel image sensor. The device captures still and motion images with a resolution of 800x600 active pixels and converts them into a digital data stream. Additional to a standard imaging sensor there is the capability of the on-chip cryptographic engine to provide the authentication of the sensor to the host, based on a one-way challenge/response protocol. The protocol that has been realized uses the exchange of a session key to secure the following video data transmission. To achieve this, we calculate a cryptographic checksum derived from a message authentication code (MAC) for a complete image frame. The imager is equipped with an EEPROM to give it the capability to personalize it with a unique and unchangeable identity. A two-wire I2C compatible serial interface allows to program the functions of the imager, i.e. various operating modes, including the authentication procedure, the control of the integration time, sub-frames and the frame rate.

  20. Homeland security application of the Army Soft Target Exploitation and Fusion (STEF) system

    NASA Astrophysics Data System (ADS)

    Antony, Richard T.; Karakowski, Joseph A.

    2010-04-01

    A fusion system that accommodates both text-based extracted information along with more conventional sensor-derived input has been developed and demonstrated in a terrorist attack scenario as part of the Empire Challenge (EC) 09 Exercise. Although the fusion system was developed to support Army military analysts, the system, based on a set of foundational fusion principles, has direct applicability to department of homeland security (DHS) & defense, law enforcement, and other applications. Several novel fusion technologies and applications were demonstrated in EC09. One such technology is location normalization that accommodates both fuzzy semantic expressions such as behind Library A, across the street from the market place, as well as traditional spatial representations. Additionally, the fusion system provides a range of fusion products not supported by traditional fusion algorithms. Many of these additional capabilities have direct applicability to DHS. A formal test of the fusion system was performed during the EC09 exercise. The system demonstrated that it was able to (1) automatically form tracks, (2) help analysts visualize behavior of individuals over time, (3) link key individuals based on both explicit message-based information as well as discovered (fusion-derived) implicit relationships, and (4) suggest possible individuals of interest based on their association with High Value Individuals (HVI) and user-defined key locations.

  1. The AIRS Applications Pipeline, from Identification to Visualization to Distribution

    NASA Astrophysics Data System (ADS)

    Ray, S. E.; Pagano, T. S.; Fetzer, E. J.; Lambrigtsen, B.; Teixeira, J.

    2014-12-01

    The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. AIRS provides observations of temperature and water vapor along the atmospheric column and is sensitive to many atmospheric constituents in the mid-troposphere, including carbon monoxide, carbon dioxide and ozone. With a 12-year data record and daily, global observations in near real-time, we are finding that AIRS data can play a role in applications that fall under most of the NASA Applied Sciences focus areas. Currently in development are temperature inversion maps that can potentially correlate to respiratory health problems, dengue fever and West Nile virus outbreak prediction maps, maps that can be used to make assessments of air quality, and maps of volcanic ash burden. This poster will communicate the Project's approach and efforts to date of its applications pipeline, which includes identifying applications, utilizing science expertise, hiring outside experts to assist with development and dissemination, visualization along application themes, and leveraging existing NASA data frameworks and organizations to facilitate archiving and distribution. In addition, a new web-based browse tool being developed by the AIRS Project for easy access to application product imagery will also be described.

  2. Analyzing comprehensive QoS with security constraints for services composition applications in wireless sensor networks.

    PubMed

    Xiong, Naixue; Wu, Zhao; Huang, Yannong; Xu, Degang

    2014-12-01

    Services composition is fundamental to software development in multi-service wireless sensor networks (WSNs). The quality of service (QoS) of services composition applications (SCAs) are confronted with severe challenges due to the open, dynamic, and complex natures of WSNs. Most previous research separated various QoS indices into different fields and studied them individually due to the computational complexity. This approach ignores the mutual influence between these QoS indices, and leads to a non-comprehensive and inaccurate analysis result. The universal generating function (UGF) shows the speediness and precision in QoS analysis. However, only one QoS index at a time can be analyzed by the classic UGF. In order to efficiently analyze the comprehensive QoS of SCAs, this paper proposes an improved UGF technique-vector universal generating function (VUGF)-which considers the relationship between multiple QoS indices, including security, and can simultaneously analyze multiple QoS indices. The numerical examples demonstrate that it can be used for the evaluation of the comprehensive QoS of SCAs subjected to the security constraint in WSNs. Therefore, it can be effectively applied to the optimal design of multi-service WSNs.

  3. Analyzing Comprehensive QoS with Security Constraints for Services Composition Applications in Wireless Sensor Networks

    PubMed Central

    Xiong, Naixue; Wu, Zhao; Huang, Yannong; Xu, Degang

    2014-01-01

    Services composition is fundamental to software development in multi-service wireless sensor networks (WSNs). The quality of service (QoS) of services composition applications (SCAs) are confronted with severe challenges due to the open, dynamic, and complex natures of WSNs. Most previous research separated various QoS indices into different fields and studied them individually due to the computational complexity. This approach ignores the mutual influence between these QoS indices, and leads to a non-comprehensive and inaccurate analysis result. The universal generating function (UGF) shows the speediness and precision in QoS analysis. However, only one QoS index at a time can be analyzed by the classic UGF. In order to efficiently analyze the comprehensive QoS of SCAs, this paper proposes an improved UGF technique—vector universal generating function (VUGF)—which considers the relationship between multiple QoS indices, including security, and can simultaneously analyze multiple QoS indices. The numerical examples demonstrate that it can be used for the evaluation of the comprehensive QoS of SCAs subjected to the security constraint in WSNs. Therefore, it can be effectively applied to the optimal design of multi-service WSNs. PMID:25470488

  4. Distributed analysis environment for HEP and interdisciplinary applications

    NASA Astrophysics Data System (ADS)

    Mościcki, J. T.

    2003-04-01

    Huge data volumes of Larger Hadron Collider experiment require parallel end-user analysis on clusters of hundreds of machines. While the focus of end-user High-Energy Physics analysis is on ntuples, the master-worker model of parallel processing may be also used in other contexts such as detector simulation. The aim of DIANE R&D project ( http://cern.ch/it-proj-diane) currently held by CERN IT/API group is to create a generic, component-based framework for distributed, parallel data processing in master-worker model. Pre-compiled user analysis code is loaded dynamically at runtime in component libraries and called back when appropriate. Such application-oriented framework must be flexible enough to integrate with the emerging GRID technologies as they become available in the time to come. Therefore, common services such as environment reconstruction, code distribution, load balancing and authentication are designed and implemented as pluggable modules. This approach allows to easily replace them with modules implemented with newer technology as necessary. The paper gives an overview of DIANE architecture and explains the main design choices. Selected examples of diverse applications from a variety of domains applicable to DIANE are presented. As well as preliminary benchmarking results.

  5. Research into a distributed fault diagnosis system and its application

    NASA Astrophysics Data System (ADS)

    Qian, Suxiang; Jiao, Weidong; Lou, Yongjian; Shen, Xiaomei

    2005-12-01

    CORBA (Common Object Request Broker Architecture) is a solution to distributed computing methods over heterogeneity systems, which establishes a communication protocol between distributed objects. It takes great emphasis on realizing the interoperation between distributed objects. However, only after developing some application approaches and some practical technology in monitoring and diagnosis, can the customers share the monitoring and diagnosis information, so that the purpose of realizing remote multi-expert cooperation diagnosis online can be achieved. This paper aims at building an open fault monitoring and diagnosis platform combining CORBA, Web and agent. Heterogeneity diagnosis object interoperate in independent thread through the CORBA (soft-bus), realizing sharing resource and multi-expert cooperation diagnosis online, solving the disadvantage such as lack of diagnosis knowledge, oneness of diagnosis technique and imperfectness of analysis function, so that more complicated and further diagnosis can be carried on. Take high-speed centrifugal air compressor set for example, we demonstrate a distributed diagnosis based on CORBA. It proves that we can find out more efficient approaches to settle the problems such as real-time monitoring and diagnosis on the net and the break-up of complicated tasks, inosculating CORBA, Web technique and agent frame model to carry on complemental research. In this system, Multi-diagnosis Intelligent Agent helps improve diagnosis efficiency. Besides, this system offers an open circumstances, which is easy for the diagnosis objects to upgrade and for new diagnosis server objects to join in.

  6. The application of PLC distributed input/output technology offshore

    SciTech Connect

    Glendening, J.A.

    1995-12-01

    The Programmable Logic Controller is becoming a familiar part of the Process Controls on Offshore Facilities. The current evolution of this expanding technology is Distributed I/O Blocks, and this paper is concerned with the benefits and applications this new technology brings to the Offshore Industry. The advent of the Programmable Logic Controller to the Gulf of Mexico brought greater process control flexibility to Offshore facilities. The offshore control philosophy went from independent pneumatic control of each skid unit to PLC distributed control with field panels that contained the local controls for several skid units and interfaced with control room based PLC visual display stations. The Distributed I/O Block concept allows offshore control systems to eliminate the large field interface panel, along with the associated wiring and hardware cost. This is accomplished by installing Distributed 1/0 Blocks inside the individual skid control panels and then communicating back to the control room based PLC via redundant communication cables. The control wiring between each skid control panel and the control room is now reduced to one power cable and redundant communication cables.

  7. Update on NRF Measurements on ^237Np for National Security and Safeguards Applications

    NASA Astrophysics Data System (ADS)

    Angell, C. T.; Joshi, T.; Yee, R.; Swanberg, E.; Norman, E. B.; Kulp, W. D.; Warren, G.; Hicks, C. L., Jr.; Korbly, S.; Klimenko, A.; Wilson, C.; Bray, T. H.; Copping, R.; Shuh, D. K.

    2010-11-01

    Nuclear resonance fluorescence (NRF) uses γ rays to excite nuclear levels and measure their properties. This provides a unique isotopic signature, and can be used to identify and assay material. This is particularly important for applications that detect the smuggling of nuclear material or the diversion of fissile material for covert weapon programs, both of which present grave risks to world security. ^237Np presents significant safeguard challenges; it is fissile yet currently has fewer safeguard restrictions potentially making it an attractive material for covert weapon programs. This talk will present the final results of two measurements of NRF on ^237Np using a bremsstrahlung photon source. 15 NRF states have been identified between 1.5 and 2.5 MeV excitation energy.

  8. Evaluation of mHealth Applications Security Based on Application Permissions.

    PubMed

    Pustozerov, Evgenii; von Jan, Ute; Albrecht, Urs-Vito

    2016-01-01

    The presented study covers the evaluation of ratings of a set of 1080 applications classified as "top apps" for the two categories "Medicine" and "Health & Fitness" as they are available on Google's Play Store. Within the evaluation, the manifest files and source code of the applications were analyzed in order to reveal whether the requested set of permissions correspond to the ones really utilized by the apps and whether they surpass what is necessary. For many apps, the declarations in the manifest file do not match what is specified in the source code, raising the question of whether this may be an indication of questionable app quality with a potentially negative impact on the safety and reliability of mHealth related apps. PMID:27350515

  9. New distributed radar technology based on UAV or UGV application

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo A.; Contarino, Vincent M.

    2013-05-01

    Regular micro and nano radars cannot provide reliable tracking of low altitude low profile aerial targets in urban and mountain areas because of reflection and re-reflections from buildings and terrain. They become visible and vulnerable to guided missiles if positioned on a tower or blimp. Doppler radar cannot distinguish moving cars and small low altitude aerial targets in an urban area. A new concept of pocket size distributed radar technology based on the application of UAV (Unmanned Air Vehicles), UGV (Unmanned Ground Vehicles) is proposed for tracking of low altitude low profile aerial targets at short and medium distances for protection of stadium, camp, military facility in urban or mountain areas.

  10. Secure Data Network System (SDNS) network, transport, and message security protocols

    NASA Astrophysics Data System (ADS)

    Dinkel, C.

    1990-03-01

    The Secure Data Network System (SDNS) project, implements computer to computer communications security for distributed applications. The internationally accepted Open Systems Interconnection (OSI) computer networking architecture provides the framework for SDNS. SDNS uses the layering principles of OSI to implement secure data transfers between computer nodes of local area and wide area networks. Four security protocol documents developed by the National Security Agency (NSA) as output from the SDNS project are included. SDN.301 provides the framework for security at layer 3 of the OSI Model. Cryptographic techniques to provide data protection for transport connections or for connectionless-mode transmission are described in SDN.401. Specifications for message security service and protocol are contained in SDN.701. Directory System Specifications for Message Security Protocol are covered in SDN.702.

  11. Integrated luminescent chemical microsensors based on GaN LEDs for security applications using smartphones

    NASA Astrophysics Data System (ADS)

    Orellana, Guillermo; Muñoz, Elias; Gil-Herrera, Luz K.; Muñoz, Pablo; Lopez-Gejo, Juan; Palacio, Carlos

    2012-09-01

    Development of PCB-integrateable microsensors for monitoring chemical species is a goal in areas such as lab-on-a-chip analytical devices, diagnostics medicine and electronics for hand-held instruments where the device size is a major issue. Cellular phones have pervaded the world inhabitants and their usefulness has dramatically increased with the introduction of smartphones due to a combination of amazing processing power in a confined space, geolocalization and manifold telecommunication features. Therefore, a number of physical and chemical sensors that add value to the terminal for health monitoring, personal safety (at home, at work) and, eventually, national security have started to be developed, capitalizing also on the huge number of circulating cell phones. The chemical sensor-enabled "super" smartphone provides a unique (bio)sensing platform for monitoring airborne or waterborne hazardous chemicals or microorganisms for both single user and crowdsourcing security applications. Some of the latest ones are illustrated by a few examples. Moreover, we have recently achieved for the first time (covalent) functionalization of p- and n-GaN semiconductor surfaces with tuneable luminescent indicator dyes of the Ru-polypyridyl family, as a key step in the development of innovative microsensors for smartphone applications. Chemical "sensoring" of GaN-based blue LED chips with those indicators has also been achieved by plasma treatment of their surface, and the micrometer-sized devices have been tested to monitor O2 in the gas phase to show their full functionality. Novel strategies to enhance the sensor sensitivity such as changing the length and nature of the siloxane buffer layer are discussed in this paper.

  12. Network Security Validation Using Game Theory

    NASA Astrophysics Data System (ADS)

    Papadopoulou, Vicky; Gregoriades, Andreas

    Non-functional requirements (NFR) such as network security recently gained widespread attention in distributed information systems. Despite their importance however, there is no systematic approach to validate these requirements given the complexity and uncertainty characterizing modern networks. Traditionally, network security requirements specification has been the results of a reactive process. This however, limited the immunity property of the distributed systems that depended on these networks. Security requirements specification need a proactive approach. Networks' infrastructure is constantly under attack by hackers and malicious software that aim to break into computers. To combat these threats, network designers need sophisticated security validation techniques that will guarantee the minimum level of security for their future networks. This paper presents a game-theoretic approach to security requirements validation. An introduction to game theory is presented along with an example that demonstrates the application of the approach.

  13. Water security: continuous monitoring of water distribution systems for chemical agents by SERS

    NASA Astrophysics Data System (ADS)

    Inscore, Frank; Shende, Chetan; Sengupta, Atanu; Farquharson, Stuart

    2007-04-01

    Ensuring safe water supplies requires continuous monitoring for potential poisons and portable analyzers to map distribution in the event of an attack. In the case of chemical warfare agents (CWAs) analyzers are needed that have sufficient sensitivity (part-per-billion), selectivity (differentiate the CWA from its hydrolysis products), and speed (less than 10 minutes) to be of value. We have been investigating the ability of surface-enhanced Raman spectroscopy (SERS) to meet these requirements by detecting CWAs and their hydrolysis products in water. The expected success of SERS is based on reported detection of single molecules, the one-to-one relationship between a chemical and its Raman spectrum, and the minimal sample preparation requirements. Recently, we have developed a simple sampling device designed to optimize the interaction of the target molecules with the SERS-active material with the goal of increasing sensitivity and decreasing sampling times. This sampling device employs a syringe to draw the water sample containing the analyte into a capillary filled with the SERS-active material. Recently we used such SERS-active capillaries to measure 1 ppb cyanide in water. Here we extend these measurements to nerve agent hydrolysis products using a portable Raman analyzer.

  14. Security and privacy issues in wireless sensor networks for healthcare applications.

    PubMed

    Al Ameen, Moshaddique; Liu, Jingwei; Kwak, Kyungsup

    2012-02-01

    The use of wireless sensor networks (WSN) in healthcare applications is growing in a fast pace. Numerous applications such as heart rate monitor, blood pressure monitor and endoscopic capsule are already in use. To address the growing use of sensor technology in this area, a new field known as wireless body area networks (WBAN or simply BAN) has emerged. As most devices and their applications are wireless in nature, security and privacy concerns are among major areas of concern. Due to direct involvement of humans also increases the sensitivity. Whether the data gathered from patients or individuals are obtained with the consent of the person or without it due to the need by the system, misuse or privacy concerns may restrict people from taking advantage of the full benefits from the system. People may not see these devices safe for daily use. There may also possibility of serious social unrest due to the fear that such devices may be used for monitoring and tracking individuals by government agencies or other private organizations. In this paper we discuss these issues and analyze in detail the problems and their possible measures.

  15. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    SciTech Connect

    Badwan, Faris M.; Demuth, Scott F

    2015-01-06

    UNFSF. The framework for integration of safeguards and security into the UNFSF will include 1) identification of applicable regulatory requirements, 2) selection of a common system that share dual safeguard and security functions, 3) development of functional design criteria and design requirements for the selected system, 4) identification and integration of the dual safeguards and security design requirements, and 5) assessment of the integration and potential benefit.

  16. Compact, rugged, and intuitive thermal imaging cameras for homeland security and law enforcement applications

    NASA Astrophysics Data System (ADS)

    Hanson, Charles M.

    2005-05-01

    Low cost, small size, low power uncooled thermal imaging sensors have completely changed the way the world views commercial law enforcement and military applications. Key applications include security, medical, automotive, power generation monitoring, manufacturing and process control, aerospace application, defense, environmental and resource monitoring, maintenance monitoring and night vision. Commercial applications also include law enforcement and military special operations. Each application drives a unique set of requirements that include similar fundamental infrared technologies. Recently, in the uncooled infrared camera and microbolometer detector areas, major strides have been made in the design and manufacture of personal military and law enforcement sensors. L-3 Communications Infrared Products (L-3 IP) is producing a family of new products based on the amorphous silicon microbolometer with low cost, low power, high volume, wafer-level vacuum packaged silicon focal plane array technologies. These bolometer systems contain no choppers or thermoelectric coolers, require no manual calibration, and use readily available commercial off-the-shelf components. One such successful product is the Thermal-Eye X100xp. Extensive market needs analysis for these small hand held sensors has been validated by the quick acceptability into the Law Enforcement and Military Segments. As well as this product has already been received, L-3 IP has developed a strategic roadmap to improve and enhance the features and function of this product to include upgrades such as the new 30-Hz, 30-μm pitch detector. This paper describes advances in bolometric focal plane arrays, optical and circuit card technologies while providing a glimpse into the future of micro hand held sensor growth. Also, technical barriers are addressed in light of constraints, lessons learned and boundary conditions. One conclusion is that the Thermal Eye Silicon Bolometer technology simultaneously drives weight

  17. Programming environment for distributed applications design in artificial intelligence

    NASA Astrophysics Data System (ADS)

    Baujard, Olivier; Pesty, Sylvie; Garbay, Catherine

    1992-03-01

    Complex applications in artificial intelligence need a multiple representation of knowledge and tasks in terms of abstraction levels and points of view. The integration of numerous resources (knowledge-based systems, real-time systems, data bases, etc.), often geographically distributed on different machines connected into a network, is moreover a necessity for the development of real scale systems. The distributed artificial intelligence (DAI) approach is thus becoming important to solve problems in complex situations. There are several currents in DAI research and we are involved in the design of DAI programming platforms for large and complex real-world problem solving systems. Blackboard systems constitute the earlier architecture. It is based on a shared memory which permits the communication among a collection of specialists and an external and unique control structure. Blackboard architectures have been extended, especially to introduce parallelism. Multi-agent architectures are based on coordinated agents (problem-solvers) communicating most of the time via message passing. A solution is found through the cooperation between several agents, each of them being in charge of a specific task, but no one having sufficient resources to obtain a solution. Coordination, cooperation, knowledge, goal, plan, exchanges are then necessary to reach a global solution. Our own research is along this last line. The current presentation describes Multi-Agent Problem Solver (MAPS) which is an agent-oriented language for a DAI system design embedded in a full programming environment. An agent is conceived as an autonomous entity with specific goals, roles, skills, and resources. Knowledge (descriptive and operative) is distributed among agents organized into networks (agents communicate through message sending). Agents are moreover geographically distributed and run in a parallel mode. Our purpose is to build a powerful environment for DAI applications design that not only

  18. DAVE: A plug and play model for distributed multimedia application development

    SciTech Connect

    Mines, R.F.; Friesen, J.A.; Yang, C.L.

    1994-07-01

    This paper presents a model being used for the development of distributed multimedia applications. The Distributed Audio Video Environment (DAVE) was designed to support the development of a wide range of distributed applications. The implementation of this model is described. DAVE is unique in that it combines a simple ``plug and play`` programming interface, supports both centralized and fully distributed applications, provides device and media extensibility, promotes object reuseability, and supports interoperability and network independence. This model enables application developers to easily develop distributed multimedia applications and create reusable multimedia toolkits. DAVE was designed for developing applications such as video conferencing, media archival, remote process control, and distance learning.

  19. On Barnes Beta Distributions and Applications to the Maximum Distribution of the 2D Gaussian Free Field

    NASA Astrophysics Data System (ADS)

    Ostrovsky, Dmitry

    2016-09-01

    A new family of Barnes beta distributions on (0, ∞) is introduced and its infinite divisibility, moment determinacy, scaling, and factorization properties are established. The Morris integral probability distribution is constructed from Barnes beta distributions of types (1, 0) and (2, 2), and its moment determinacy and involution invariance properties are established. For application, the maximum distributions of the 2D gaussian free field on the unit interval and circle with a non-random logarithmic potential are conjecturally related to the critical Selberg and Morris integral probability distributions, respectively, and expressed in terms of sums of Barnes beta distributions of types (1, 0) and (2, 2).

  20. Monitoring and controlling distributed applications using Lomita (position paper)

    NASA Technical Reports Server (NTRS)

    Marzullo, Keith; Szafranska, Ida M.

    1992-01-01

    Over the last four years, the Meta toolkit was developed for controlling distributed applications. This toolkit has been publicly available as part of the academic ISIS release, and has been used for building various system monitoring and control applications. One major stumbling block with using Meta has been the language (called NPL) it supports. NPL is very low-level and using it is difficult, in the same way it is difficult to write machine language programs or raw Postscript programs. Hence, a higher level language was built along with a runtime environment. The hope is that with this higher-level approach, more complicated Meta applications will be written and thereby concentrate more on the use (and limitations) of Meta as an architecture. The Meta toolkit is reviewed with its intended use. Next, the goals with Lomita and an overview is given of its architecture and language syntax. A detailed example is given of Lomita's use by presenting a complete program for a load-adaptable service.

  1. Implementing Network Video for Traditional Security and Innovative Applications: Best Practices and Uses for Network Video in K-12 Schools

    ERIC Educational Resources Information Center

    Wren, Andrew

    2008-01-01

    Administrators are constantly seeking ways to cost-effectively and adequately increase security and improve efficiency in K-12 schools. While video is not a new tool to schools, the shift from analog to network technology has increased the accessibility and usability in a variety of applications. Properly installed and used, video is a powerful…

  2. Spectroelectrochemistry as a Strategy for Improving Selectivity of Sensors for Security and Defense Applications

    SciTech Connect

    Heineman, William R.; Seliskar, Carl J.; Morris, Laura K.; Bryan, Samuel A.

    2012-12-19

    Spectroelectrochemistry provides improved selectivity for sensors by electrochemically modulating the optical signal associated with the analyte. The sensor consists of an optically transparent electrode (OTE) coated with a film that preconcentrates the target analyte. The OTE functions as an optical waveguide for attenuated total reflectance (ATR) spectroscopy, which detects the analyte by absorption. Alternatively, the OTE can serve as the excitation light for fluorescence detection, which is generally more sensitive than absorption. The analyte partitions into the film, undergoes an electrochemical redox reaction at the OTE surface, and absorbs or emits light in its oxidized or reduced state. The change in the optical response associated with electrochemical oxidation or reduction at the OTE is used to quantify the analyte. Absorption sensors for metal ion complexes such as [Fe(CN)6]4- and [Ru(bpy)3]2+ and fluorescence sensors for [Ru(bpy)3]2+ and the polycyclic aromatic hydrocarbon 1-hydroxypyrene have been developed. The sensor concept has been extended to binding assays for a protein using avidin–biotin and 17β-estradiol–anti-estradiol antibodies. The sensor has been demonstrated to measure metal complexes in complex samples such as nuclear waste and natural water. This sensor has qualities needed for security and defense applications that require a high level of selectivity and good detection limits for target analytes in complex samples. Quickly monitoring and designating intent of a nuclear program by measuring the Ru/Tc fission product ratio is such an application.

  3. Current state of commercial radiation detection equipment for homeland security applications.

    SciTech Connect

    Klann, R. T.; Shergur, J.; Mattesich, G.; Nuclear Engineering Division; DHS

    2009-10-01

    With the creation of the U.S. Department of Homeland Security (DHS) came the increased concern that terrorist groups would attempt to manufacture and use an improvised nuclear device or radiological dispersal device. As such, a primary mission of DHS is to protect the public against the use of these devices and to assist state and local responders in finding, locating, and identifying these types of devices and materials used to manufacture these devices. This assistance from DHS to state and local responders comes in the form of grant money to procure radiation detection equipment. In addition to this grant program, DHS has supported the development of American National Standards Institute standards for radiation detection equipment and has conducted testing of commercially available instruments. This paper identifies the types and kinds of commercially available equipment that can be used to detect and identify radiological material - for use in traditional search applications as well as primary and secondary screening of personnel, vehicles, and cargo containers. In doing so, key considerations for the conduct of operations are described as well as critical features of the instruments for specific applications. The current state of commercial instruments is described for different categories of detection equipment including personal radiation detectors, radioisotope identifiers, man-portable detection equipment, and radiation portal monitors. In addition, emerging technologies are also discussed, such as spectroscopic detectors and advanced spectroscopic portal monitors.

  4. Proposed New Accelerator Design for Homeland Security X-Ray Applications

    NASA Astrophysics Data System (ADS)

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G. J.; Bharadwaj, Vinod; Nosochkov, Yuri

    Two goals for security scanning of cargo and freight are the ability to determine the type of material that is being imaged, and to do so at low radiation dose. One commonly used technique to determine the effective Z of the cargo is dual-energy imaging, i.e. imaging with different x-ray energy spectra. Another technique uses the fact that the transmitted x-ray spectrum itself also depends on the effective Z. Spectroscopy is difficult because the energy of individual x rays needs to be measured in a very high count-rate environment. Typical accelerators for security applications offer large but short bursts of x-rays, suitable for current-mode integrated imaging. In order to perform x-ray spectroscopy, a new accelerator design is desired that has the following features: 1)increased duty factor in order to spread out the arrival of x-rays at the detector array over time; 2)x-ray intensitymodulation from one delivered pulse to the next by adjusting the accelerator electron beam instantaneous current so as to deliveradequate signal without saturating the spectroscopic detector; and 3)the capability to direct the (forward peaked) x-ray intensity towards high-attenuation areas in the cargo ("fan-beam-steering"). Current sources are capable of 0.1% duty factor, although usually they are operated at significantly lower duty factors (∼0.04%), but duty factors in the range 0.4-1.0% are desired. The higher duty factor can be accomplished, e.g., by moving from 300 pulses per second (pps) to 1000 pps and/or increasing the pulse duration from a typical 4 μs to 10 μs. This paper describes initial R&D to examine cost effective modifications that could be performed on a typical accelerator for these purposes, as well as R&D for fan-beam steering.

  5. Proposed new accelerator design for homeland security x-ray applications

    SciTech Connect

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; Bharadwaj, Vinod; Nosochkov, Yuri

    2015-01-01

    Two goals for security scanning of cargo and freight are the ability to determine the type of material that is being imaged, and to do so at low radiation dose. One commonly used technique to determine the effective Z of the cargo is dual-energy imaging, i.e. imaging with different x-ray energy spectra. Another technique uses the fact that the transmitted x-ray spectrum itself also depends on the effective Z. Spectroscopy is difficult because the energy of individual x rays needs to be measured in a very high count-rate environment. Typical accelerators for security applications offer large but short bursts of x-rays, suitable for current-mode integrated imaging. In order to perform x-ray spectroscopy, a new accelerator design is desired that has the following features: 1) increased duty factor in order to spread out the arrival of x-rays at the detector array over time; 2) x-ray intensity modulation from one delivered pulse to the next by adjusting the accelerator electron beam instantaneous current so as to deliver adequate signal without saturating the spectroscopic detector; and 3) the capability to direct the (forward peaked) x-ray intensity towards high-attenuation areas in the cargo (“fan-beam-steering”). Current sources are capable of 0.1% duty factor, although usually they are operated at significantly lower duty factors (~0.04%), but duty factors in the range 0.4-1.0% are desired. The higher duty factor can be accomplished, e.g., by moving from 300 pulses per second (pps) to 1000 pps and/or increasing the pulse duration from a typical 4 μs to 10 μs. This paper describes initial R&D to examine cost effective modifications that could be performed on a typical accelerator for these purposes, as well as R&D for fan-beam steering.

  6. Design and develop a video conferencing framework for real-time telemedicine applications using secure group-based communication architecture.

    PubMed

    Mat Kiah, M L; Al-Bakri, S H; Zaidan, A A; Zaidan, B B; Hussain, Muzammil

    2014-10-01

    One of the applications of modern technology in telemedicine is video conferencing. An alternative to traveling to attend a conference or meeting, video conferencing is becoming increasingly popular among hospitals. By using this technology, doctors can help patients who are unable to physically visit hospitals. Video conferencing particularly benefits patients from rural areas, where good doctors are not always available. Telemedicine has proven to be a blessing to patients who have no access to the best treatment. A telemedicine system consists of customized hardware and software at two locations, namely, at the patient's and the doctor's end. In such cases, the video streams of the conferencing parties may contain highly sensitive information. Thus, real-time data security is one of the most important requirements when designing video conferencing systems. This study proposes a secure framework for video conferencing systems and a complete management solution for secure video conferencing groups. Java Media Framework Application Programming Interface classes are used to design and test the proposed secure framework. Real-time Transport Protocol over User Datagram Protocol is used to transmit the encrypted audio and video streams, and RSA and AES algorithms are used to provide the required security services. Results show that the encryption algorithm insignificantly increases the video conferencing computation time.

  7. Design and develop a video conferencing framework for real-time telemedicine applications using secure group-based communication architecture.

    PubMed

    Mat Kiah, M L; Al-Bakri, S H; Zaidan, A A; Zaidan, B B; Hussain, Muzammil

    2014-10-01

    One of the applications of modern technology in telemedicine is video conferencing. An alternative to traveling to attend a conference or meeting, video conferencing is becoming increasingly popular among hospitals. By using this technology, doctors can help patients who are unable to physically visit hospitals. Video conferencing particularly benefits patients from rural areas, where good doctors are not always available. Telemedicine has proven to be a blessing to patients who have no access to the best treatment. A telemedicine system consists of customized hardware and software at two locations, namely, at the patient's and the doctor's end. In such cases, the video streams of the conferencing parties may contain highly sensitive information. Thus, real-time data security is one of the most important requirements when designing video conferencing systems. This study proposes a secure framework for video conferencing systems and a complete management solution for secure video conferencing groups. Java Media Framework Application Programming Interface classes are used to design and test the proposed secure framework. Real-time Transport Protocol over User Datagram Protocol is used to transmit the encrypted audio and video streams, and RSA and AES algorithms are used to provide the required security services. Results show that the encryption algorithm insignificantly increases the video conferencing computation time. PMID:25199651

  8. Fast layout processing methodologies for scalable distributed computing applications

    NASA Astrophysics Data System (ADS)

    Kang, Chang-woo; Shin, Jae-pil; Durvasula, Bhardwaj; Seo, Sang-won; Jung, Dae-hyun; Lee, Jong-bae; Park, Young-kwan

    2012-06-01

    As the feature size shrinks to sub-20nm, more advanced OPC technologies such as ILT and the new lithographic resolution by EUV become the key solutions for device fabrication. These technologies leads to the file size explosion of up to hundreds of gigabytes of GDSII and OASIS files mainly due to the addition of complicated scattering bars and flattening of the design to compensate for long range effects. Splitting and merging layout files have been done sequentially in typical distributed computing layout applications. This portion becomes the bottle neck, causing the scalability to become poor. According to the Amdahl's law, minimizing the portion of sequential part is the key to get the maximum speed up. In this paper, we present scalable layout dividing and merging methodologies: Skeleton file based querying and direct OASIS file merging. These methods not only use a very minimum memory footprint but also achieve remarkable speed improvement. The skeleton file concept is very novel for a distributed application requiring geometrical processing, as it allows almost pseudo-random access into the input GDSII or OASIS file. Client machines can make use of the random access and perform fast query operations. The skeleton concept also works very well for flat input layouts, which is often the case of post-OPC data. Also, our OASIS file merging scheme is a smart approach which is equivalent of a binary file concatenation scheme. The merging method for OASIS files concatenates shape information in binary format with basic interpretation of bits with very low memory usage. We have observed that the skeleton file concept achieved 13.5 times speed improvement and used only 3.78% of memory on the master, over the conventional concept of converting into an internal format. Also, the merging speed is very fast, 28MB/sec and it is 44.5 times faster than conventional method. On top of the fast merging speed, it is very scalable since the merging time grows in linear fashion

  9. Communicating Uncertainty about Climate Change for Application to Security Risk Management

    NASA Astrophysics Data System (ADS)

    Gulledge, J. M.

    2011-12-01

    -management framework for climate security. The IPCC's Fourth Assessment Report concluded that "Responding to climate change involves an iterative risk management process that includes both adaptation and mitigation and takes into account climate change damages, co-benefits, sustainability, equity and attitudes to risk." In risk management, key uncertainties guide action aimed at reducing risk and cannot be ignored or used to justify inaction. Security policies such as arms control and counter-terrorism demonstrate that high-impact outcomes matter to decision makers even if they are likely to be rare events. In spite of this fact, the long tail on the probability distribution of climate sensitivity was largely ignored by the climate science community until recently and its implications for decision making are still not receiving adequate attention. Informing risk management requires scientists to shift from a singular aversion to type I statistical error (i.e. false positive) to a balanced presentation of both type I error and type II error (i.e. false negative) when the latter may have serious consequences. Examples from national security, extreme weather, and economics illustrate these concepts.

  10. Distributed feedback interband cascade lasers for applications in research and industry

    NASA Astrophysics Data System (ADS)

    Koeth, J.; von Edlinger, M.; Scheuermann, J.; Nähle, L.; Hildebrandt, L.; Fischer, M.; Weih, R.; Kamp, M.

    2015-03-01

    In recent years, the use of laser sources in gas sensing applications has been increasing continuously. Tunable Laser Absorption Spectroscopy (TLAS) has proven to be a versatile tool in a variety of sectors including industry, health and security and modern environmental analysis. Especially the mid-infrared wavelength range is of great interest for high accuracy gas sensing applications, since many technologically and industrially relevant gas species have their strongest absorption features in the spectral region between 3 and 6 μm. These include, e. g., important hydrocarbons like methane or propane, as well as nitric oxide and formaldehyde. Interband cascade lasers (ICL) provide mono mode continuous wave (CW) operation above room temperature in this wavelength range. Application-grade complex coupled distributed feedback (DFB) laser devices based on the ICL concept are presented, using lateral metal gratings as wavelength selective elements. The fabricated devices operate at specific, technologically relevant, emission wavelengths in the spectral region from 3 to 6 μm. CW operation up to 80 °C and mono mode wavelength tuning ranges above 20 nm were achieved with low energy consumption. Application examples in industry and research are presented that demonstrate the high potential of DFB ICLs for the use in TLAS. E. g., formaldehyde gas sensor systems based on DFB ICL devices operating around 3.6 μm can provide realtime in-situ measurements with resolution limits in the low ppb range, even in dense background atmospheres. The low power consumption of ICL based devices makes them especially favorable for battery-powered or portable sensor applications.

  11. Performance characteristics of a silicon photomultiplier based compact radiation detector for Homeland Security applications

    NASA Astrophysics Data System (ADS)

    Park, Hye Min; Joo, Koan Sik

    2015-05-01

    A next-generation compact radiation detector was studied for more accurate measurement of radiation and for improvement of detector reliability for the purpose of developing radiation protection technology and military applications. The previously used radiation detector had some limitations due to its bulky size, limited range and its environment for radiation measurement. On the other hand, the compact radiation detector examined in this study utilizes a silicon photomultiplier which appears to be more suitable for this application because of its physical superiority characterized by its small size, high sensitivity, and durability. Accordingly, a SiPM based scintillation detector has been developed as part of this basic study of military radiation detectors. The detector has been tested for its ability to obtain the operating characteristics of a sensor and analyzed with variations of parameter values and for efficiency of detection in accordance with its ability to measure radiation in the environment. Two SiPM based Scintillation detectors with LYSO, BGO and CsI:Tl scintillators were developed and the detectors were analyzed by a number of operating characteristics such as reverse bias, operating temperature and high magnetic field, that depend on environmental changes in radiation measurement. The Photon count rate and spectra were compared for these three scintillators. We found that there were variations in the radiation detection which were characterized by reverse bias, temperature and high magnetic field. It was also found that there was an 11.9% energy resolution for the LYSO, 15.5% for BGO and 13.5% for CsI:Tl using Array SiPM, and 18% for CsI:Tl energy resolution using single SiPM when we measured energy resolution of 511 keV for 22Na. These results demonstrate the potential widespread use of SiPM based compact radiation detectors for Homeland Security applications.

  12. Security and privacy issues of personal health.

    PubMed

    Blobel, Bernd; Pharow, Peter

    2007-01-01

    While health systems in developed countries and increasingly also in developing countries are moving from organisation-centred to person-centred health service delivery, the supporting communication and information technology is faced with new risks regarding security and privacy of stakeholders involved. The comprehensively distributed environment puts special burden on guaranteeing communication security services, but even more on guaranteeing application security services dealing with privilege management, access control and audit regarding social implication and connected sensitivity of personal information recorded, processed, communicated and stored in an even internationally distributed environment.

  13. Modeling and simulation for cyber-physical system security research, development and applications.

    SciTech Connect

    Pollock, Guylaine M.; Atkins, William Dee; Schwartz, Moses Daniel; Chavez, Adrian R.; Urrea, Jorge Mario; Pattengale, Nicholas; McDonald, Michael James; Cassidy, Regis H.; Halbgewachs, Ronald D.; Richardson, Bryan T.; Mulder, John C.

    2010-02-01

    This paper describes a new hybrid modeling and simulation architecture developed at Sandia for understanding and developing protections against and mitigations for cyber threats upon control systems. It first outlines the challenges to PCS security that can be addressed using these technologies. The paper then describes Virtual Control System Environments (VCSE) that use this approach and briefly discusses security research that Sandia has performed using VCSE. It closes with recommendations to the control systems security community for applying this valuable technology.

  14. Information Security and Integrity Systems

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Viewgraphs from the Information Security and Integrity Systems seminar held at the University of Houston-Clear Lake on May 15-16, 1990 are presented. A tutorial on computer security is presented. The goals of this tutorial are the following: to review security requirements imposed by government and by common sense; to examine risk analysis methods to help keep sight of forest while in trees; to discuss the current hot topic of viruses (which will stay hot); to examine network security, now and in the next year to 30 years; to give a brief overview of encryption; to review protection methods in operating systems; to review database security problems; to review the Trusted Computer System Evaluation Criteria (Orange Book); to comment on formal verification methods; to consider new approaches (like intrusion detection and biometrics); to review the old, low tech, and still good solutions; and to give pointers to the literature and to where to get help. Other topics covered include security in software applications and development; risk management; trust: formal methods and associated techniques; secure distributed operating system and verification; trusted Ada; a conceptual model for supporting a B3+ dynamic multilevel security and integrity in the Ada runtime environment; and information intelligence sciences.

  15. TRAJECTORY SENSITIVITY ANALYSIS FOR DYNAMIC SECURITY ASSESSMENT AND OTHER APPLICATIONS IN POWER SYSTEMS

    SciTech Connect

    Nguyen, Tony B.; Pai, M. A.

    2014-07-10

    Real time stability evaluation and preventive scheduling in power systems offer many challenges in a stressed power system. Trajectory sensitivity analysis (TSA) is a useful tool for this and other applications in the emerging smart grid area. In this chapter we outline the basic approach of TSA, to extract suitable information from the data and develop reliable metrics or indices to evaluate proximity of the system to an unstable condition. Trajectory sensitivities can be used to compute critical parameters such as clearing time of circuit breakers, tie line flow, etc. in a power system by developing suitable norms for ease of interpretation. The TSA technique has the advantage that model complexity is not a limitation, and the sensitivities can be computed numerically. Suitable metrics are developed from these sensitivities. The TSA technique can be extended to do preventive rescheduling. A brief discussion of other applications of TSA in placement of distributed generation is indicated.

  16. Distributed optical microsensors for hydrogen leak detection and related applications

    SciTech Connect

    Hunter, Scott Robert; Patton, James; Sepaniak, Michael; Datskos, Panos G; Smith, Barton

    2010-01-01

    Significant advances have recently been made to develop optically interrogated microsensor based chemical sensors with specific application to hydrogen vapor sensing and leak detection in the hydrogen economy. We have developed functionalized polymer-film and palladium/silver alloy coated microcantilever arrays with nanomechanical sensing for this application. The uniqueness of this approach is in the use of independent component analysis (ICA) and the classi cation techniques of neural networks to analyze the signals produced by an array of microcantilever sensors. This analysis identifies and quantifies the amount of hydrogen and other trace gases physisorbed on the arrays. Selectivity is achieved by using arrays of functionalized sensors with a moderate distribution of specificity among the sensing elements. The device consists of an array of beam-shaped transducers with molecular recognition phases (MRPs) applied to one surface of the transducers. Bending moments on the individual transducers can be detected by illuminating them with a laser or an LED and then reading the reflected light with an optical position sensitive detector (PSD) such as a CCD. Judicious selection of MRPs for the array provides multiple isolated interaction surfaces for sensing the environment. When a particular chemical agent binds to a transducer, the effective surface stresses of its modified and uncoated sides change unequally and the transducer begins to bend. The extent of bending depends upon the specific interactions between the microcantilever s MRP and the analyte. Thus, the readout of a multi-MRP array is a complex multi-dimensional signal that can be analyzed to deconvolve a multicomponent gas mixture. The use of this sensing and analysis technique in unattended networked arrays of sensors for various monitoring and surveillance applications is discussed.

  17. Distributed optical microsensors for hydrogen leak detection and related applications

    NASA Astrophysics Data System (ADS)

    Hunter, Scott R.; Patton, James F.; Sepaniak, Michael J.; Datskos, Panos G.; Smith, D. Barton

    2010-04-01

    Significant advances have recently been made to develop optically interrogated microsensor based chemical sensors with specific application to hydrogen vapor sensing and leak detection in the hydrogen economy. We have developed functionalized polymer-film and palladium/silver alloy coated microcantilever arrays with nanomechanical sensing for this application. The uniqueness of this approach is in the use of independent component analysis (ICA) and the classification techniques of neural networks to analyze the signals produced by an array of microcantilever sensors. This analysis identifies and quantifies the amount of hydrogen and other trace gases physisorbed on the arrays. Selectivity is achieved by using arrays of functionalized sensors with a moderate distribution of specificity among the sensing elements. The device consists of an array of beam-shaped transducers with molecular recognition phases (MRPs) applied to one surface of the transducers. Bending moments on the individual transducers can be detected by illuminating them with a laser or an LED and then reading the reflected light with an optical position sensitive detector (PSD) such as a CCD. Judicious selection of MRPs for the array provides multiple isolated interaction surfaces for sensing the environment. When a particular chemical agent binds to a transducer, the effective surface stresses of its modified and uncoated sides change unequally and the transducer begins to bend. The extent of bending depends upon the specific interactions between the microcantilever's MRP and the analyte. Thus, the readout of a multi-MRP array is a complex multidimensional signal that can be analyzed to deconvolve a multicomponent gas mixture. The use of this sensing and analysis technique in unattended networked arrays of sensors for various monitoring and surveillance applications is discussed.

  18. A priori discretization quality metrics for distributed hydrologic modeling applications

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Tolson, Bryan; Craig, James; Shafii, Mahyar; Basu, Nandita

    2016-04-01

    modification. The metrics for the first time provides quantification of the routing relevant information loss due to discretization according to the relationship between in-channel routing length and flow velocity. Moreover, it identifies and counts the spatial pattern changes of dominant hydrological variables by overlaying candidate discretization schemes upon input data and accumulating variable changes in area-weighted way. The metrics are straightforward and applicable to any semi-distributed or fully distributed hydrological model with grid scales are greater than input data resolutions. The discretization metrics and decision-making approach are applied to the Grand River watershed located in southwestern Ontario, Canada where discretization decisions are required for a semi-distributed modelling application. Results show that discretization induced information loss monotonically increases as discretization gets rougher. With regards to routing information loss in subbasin discretization, multiple interesting points rather than just the watershed outlet should be considered. Moreover, subbasin and HRU discretization decisions should not be considered independently since subbasin input significantly influences the complexity of HRU discretization result. Finally, results show that the common and convenient approach of making uniform discretization decisions across the watershed domain performs worse compared to a metric informed non-uniform discretization approach as the later since is able to conserve more watershed heterogeneity under the same model complexity (number of computational units).

  19. Feasibility studies on explosive detection and homeland security applications using a neutron and x-ray combined computed tomography system

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Srivastava, A.; Lee, H. K.; Liu, X.

    2013-05-01

    The successful creation and operation of a neutron and X-ray combined computed tomography (NXCT) system has been demonstrated by researchers at the Missouri University of Science and Technology. The NXCT system has numerous applications in the field of material characterization and object identification in materials with a mixture of atomic numbers represented. Presently, the feasibility studies have been performed for explosive detection and homeland security applications, particularly in concealed material detection and determination of the light atomic number materials. These materials cannot be detected using traditional X-ray imaging. The new system has the capability to provide complete structural and compositional information due to the complementary nature of X-ray and neutron interactions with materials. The design of the NXCT system facilitates simultaneous and instantaneous imaging operation, promising enhanced detection capabilities of explosive materials, low atomic number materials and illicit materials for homeland security applications. In addition, a sample positioning system allowing the user to remotely and automatically manipulate the sample makes the system viable for commercial applications. Several explosives and weapon simulants have been imaged and the results are provided. The fusion algorithms which combine the data from the neutron and X-ray imaging produce superior images. This paper is a compete overview of the NXCT system for feasibility studies of explosive detection and homeland security applications. The design of the system, operation, algorithm development, and detection schemes are provided. This is the first combined neutron and X-ray computed tomography system in operation. Furthermore, the method of fusing neutron and X-ray images together is a new approach which provides high contrast images of the desired object. The system could serve as a standardized tool in nondestructive testing of many applications, especially in

  20. Through-barrier detection of explosive components for security screening applications

    NASA Astrophysics Data System (ADS)

    Lee, Linda; Frisby, Alex; Mansson, Ralph; Hopkins, Rebecca J.

    2011-11-01

    The detection of materials through containers is a vital capability for security screening applications at high risk locations, such as airports and checkpoints. Current detection procedures require suspect containers to be opened and the contents sampled, which is laborious and potentially hazardous to the operator. The capability to detect through-barrier would overcome these issues. Spatially Offset Raman Spectroscopy (SORS) is an innovative spectroscopic technique that avoids fluorescence and Raman scatter from containers, which can mask the Raman signature from the sample. This novel approach enables noninvasive detection of hazardous and benign materials through a wider range of container materials than is possible using conventional Raman spectroscopy. SORS spectra were acquired from explosive compounds and benign materials within a range of coloured glass and plastic containers. The SORS spectra were compared to the reference Raman signatures of the materials studied. Two data analysis methods were then applied to the resultant data to investigate the ability of SORS to detect the target materials through the barriers tested. Furthermore, the potential for reduction of sample fluorescence was investigated by using longer excitation wavelength (1064 nm) than is typically used in commercially available Raman instruments that use silicon detector technology. For some fluorescent samples, Raman spectral features that were masked by fluorescence at 785 nm were revealed at 1064 nm.

  1. Compact Dielectric Wall Accelerator Development For Intensity Modulated Proton Therapy And Homeland Security Applications

    SciTech Connect

    Chen, Y -; Caporaso, G J; Guethlein, G; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Cook, E; Falabella, S; Gower, E; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Stanley, J; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-06-17

    Compact dielectric wall (DWA) accelerator technology is being developed at the Lawrence Livermore National Laboratory. The DWA accelerator uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. Its high electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The DWA concept can be applied to accelerate charge particle beams with any charge to mass ratio and energy. Based on the DWA system, a novel compact proton therapy accelerator is being developed. This proton therapy system will produce individual pulses that can be varied in intensity, energy and spot width. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources. Applications of the DWA accelerator to problems in homeland security will also be discussed.

  2. 49 CFR 1572.9 - Applicant information required for HME security threat assessment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... reason of insanity, of a disqualifying crime listed in 49 CFR 1572.103(b), in a civilian or military... applying to transfer an HME from one State to another, 49 CFR 1572.13(e) applies. (a) Except as provided in... transfer an HME or for a waiver. (12) Social security number. Providing the social security number...

  3. 78 FR 46622 - Application of Topaz Exchange, LLC for Registration as a National Securities Exchange; Findings...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    .... See Securities Exchange Act Release No. 69011, 78 FR 14844 (March 7, 2013). Because Topaz Exchange's... Exchange. \\5\\ See Securities Exchange Act Release No. 69012 (March 1, 2013), 78 FR 14847 (``Notice''). \\6... Exchange Act Release No. 56955 (December 13, 2007), 72 FR 71979 (December 19, 2007) (File No....

  4. The Concepts of Risk, Safety, and Security: Applications in Everyday Language.

    PubMed

    Boholm, Max; Möller, Niklas; Hansson, Sven Ove

    2016-02-01

    The concepts of risk, safety, and security have received substantial academic interest. Several assumptions exist about their nature and relation. Besides academic use, the words risk, safety, and security are frequent in ordinary language, for example, in media reporting. In this article, we analyze the concepts of risk, safety, and security, and their relation, based on empirical observation of their actual everyday use. The "behavioral profiles" of the nouns risk, safety, and security and the adjectives risky, safe, and secure are coded and compared regarding lexical and grammatical contexts. The main findings are: (1) the three nouns risk, safety, and security, and the two adjectives safe and secure, have widespread use in different senses, which will make any attempt to define them in a single unified manner extremely difficult; (2) the relationship between the central risk terms is complex and only partially confirms the distinctions commonly made between the terms in specialized terminology; (3) whereas most attempts to define risk in specialized terminology have taken the term to have a quantitative meaning, nonquantitative meanings dominate in everyday language, and numerical meanings are rare; and (4) the three adjectives safe, secure, and risky are frequently used in comparative form. This speaks against interpretations that would take them as absolute, all-or-nothing concepts.

  5. Good Manufacturing Practices (GMP) / Good Laboratory Practices (GLP) Review and Applicability for Chemical Security Enhancements

    SciTech Connect

    Iveson, Steven W.

    2014-11-01

    Global chemical security has been enhanced through the determined use and integration of both voluntary and legislated standards. Many popular standards contain components that specifically detail requirements for the security of materials, facilities and other vital assets. In this document we examine the roll of quality management standards and how they affect the security culture within the institutions that adopt these standards in order to conduct business within the international market place. Good manufacturing practices and good laboratory practices are two of a number of quality management systems that have been adopted as law in many nations. These standards are designed to protect the quality of drugs, medicines, foods and analytical test results in order to provide the world-wide consumer with safe and affective products for consumption. These standards provide no established security protocols and yet manage to increase the security of chemicals, materials, facilities and the supply chain via the effective and complete control over the manufacturing, the global supply chains and testing processes. We discuss the means through which these systems enhance security and how nations can further improve these systems with additional regulations that deal specifically with security in the realm of these management systems. We conclude with a discussion of new technologies that may cause disruption within the industries covered by these standards and how these issues might be addressed in order to maintain or increase the level of security within the industries and nations that have adopted these standards.

  6. Proposed new accelerator design for homeland security x-ray applications

    DOE PAGES

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; Bharadwaj, Vinod; Nosochkov, Yuri

    2015-01-01

    Two goals for security scanning of cargo and freight are the ability to determine the type of material that is being imaged, and to do so at low radiation dose. One commonly used technique to determine the effective Z of the cargo is dual-energy imaging, i.e. imaging with different x-ray energy spectra. Another technique uses the fact that the transmitted x-ray spectrum itself also depends on the effective Z. Spectroscopy is difficult because the energy of individual x rays needs to be measured in a very high count-rate environment. Typical accelerators for security applications offer large but short bursts ofmore » x-rays, suitable for current-mode integrated imaging. In order to perform x-ray spectroscopy, a new accelerator design is desired that has the following features: 1) increased duty factor in order to spread out the arrival of x-rays at the detector array over time; 2) x-ray intensity modulation from one delivered pulse to the next by adjusting the accelerator electron beam instantaneous current so as to deliver adequate signal without saturating the spectroscopic detector; and 3) the capability to direct the (forward peaked) x-ray intensity towards high-attenuation areas in the cargo (“fan-beam-steering”). Current sources are capable of 0.1% duty factor, although usually they are operated at significantly lower duty factors (~0.04%), but duty factors in the range 0.4-1.0% are desired. The higher duty factor can be accomplished, e.g., by moving from 300 pulses per second (pps) to 1000 pps and/or increasing the pulse duration from a typical 4 μs to 10 μs. This paper describes initial R&D to examine cost effective modifications that could be performed on a typical accelerator for these purposes, as well as R&D for fan-beam steering.« less

  7. Fuel cell power plants in a distributed generator application

    SciTech Connect

    Smith, M.J.

    1996-12-31

    ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

  8. Production, distribution and applications of californium-252 neutron sources.

    PubMed

    Martin, R C; Knauer, J B; Balo, P A

    2000-01-01

    The radioisotope 252Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-yr half-life. A source the size of a person's little finger can emit up to 10(11) neutrons s(-1). Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement and minerals, as well as for detection and identification of explosives, land mines and unexploded military ordinance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 yr of experience and by US Bureau of Mines tests of source survivability during explosions. The production and distribution center for the US Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells 252Cf to commercial reencapsulators domestically and internationally. Sealed 252Cf sources are also available for loan to agencies and subcontractors of the US government and to universities for educational, research and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of 252Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments and irradiation of rice to induce genetic mutations.

  9. Development of colorless distributed combustion for gas turbine application

    NASA Astrophysics Data System (ADS)

    Arghode, Vaibhav Kumar

    Colorless Distributed Combustion (CDC) is investigated for gas turbine engine application due to its benefit for ultra-low pollutant emission, improved pattern factor, low noise emission, stable combustion and low pressure drop, alleviation of combustion instabilities and increased life of turbine blades with less air cooling requirements. The CDC is characterized by discrete and direct injection of fuel and air at high velocity and the reaction zone is stabilized due to controlled aerodynamics inside the combustor and wider (radially) shear layer mixing. Mixing between the injected air and product gases to form hot and diluted oxidant is required followed by rapid mixing with the fuel. This results in distributed reaction zone instead of a concentrated flame front as observed in conventional diffusion flames and hence, to avoid hot spot regions and provide reduced NOx and CO emissions. The focus of this dissertation is to develop and demonstrate CDC for application to stationary gas turbine combustors which generally operate at thermal intensity of 15MW/m3-atm. However, higher thermal intensity is desirable to reduce hardware costs due to smaller weight and volume of the combustors. Design of high thermal intensity CDC combustor requires careful control of critical parameters, such as, gas recirculation, fuel/oxidizer mixing and residence time characteristics via careful selection of different air and fuel injection configurations to achieve desirable combustion characteristics. This dissertation examines sequential development of low emission colorless distributed combustor operating from thermal intensity of 5MW/m3-atm up to 198MW/m3-atm. Initially, various fuel and air injection configurations were investigated at a low thermal intensity of 5MW/m 3-atm. Further investigations were performed for a simpler combustor having single air and fuel injection ports for medium thermal intensity range of 28-57MW/m3-atm. Among the flow configurations investigated, reverse

  10. COMPARATIVE ASSESSMENT OF TWO DISTRIBUTED WATERSHED MODELS WITH APPLICATION TO A SMALL WATERSHED

    EPA Science Inventory

    Distributed watershed models are beneficial tools for assessment of management practices on runoff and water-induced erosion. This paper evaluates, by application to an experimental watershed, two promising distributed watershed-scale sediment models in detail: The Kinematic Runo...

  11. From Secure Memories to Smart Card Security

    NASA Astrophysics Data System (ADS)

    Handschuh, Helena; Trichina, Elena

    Non-volatile memory is essential in most embedded security applications. It will store the key and other sensitive materials for cryptographic and security applications. In this chapter, first an overview is given of current flash memory architectures. Next the standard security features which form the basis of so-called secure memories are described in more detail. Smart cards are a typical embedded application that is very vulnerable to attacks and that at the same time has a high need for secure non-volatile memory. In the next part of this chapter, the secure memories of so-called flash-based high-density smart cards are described. It is followed by a detailed analysis of what the new security challenges for such objects are.

  12. Some properties of Gamma Burr type X distribution with application

    NASA Astrophysics Data System (ADS)

    Khaleel, Mundher Abdullah; Ibrahim, Noor Akma; Shitan, Mahendran; Merovci, Faton

    2016-06-01

    We develop a new continuous distribution called the Gamma-Burr type X (GBX) distribution that extends the Burr type X distribution that has increasing, decreasing and bathtub shapes for the hazard function. Various structural properties of this new distribution are provide, that includes the limit behavior, Quantile function and sub-models. From the generalization of the probability density function and cumulative distribution function of this distribution, the expression for the rth moment, moment generating function, Rényi entropy, and the order statistics can be established. We considered the maximum likelihood estimation to estimate the parameters. A real data set is applied to illustrate the usefulness of the GBX distribution. This new distribution will serve as an alternative model to other models available in the literature for modeling positive real data in many areas.

  13. Accurate Modeling of the Terrestrial Gamma-Ray Background for Homeland Security Applications

    SciTech Connect

    Sandness, Gerald A.; Schweppe, John E.; Hensley, Walter K.; Borgardt, James D.; Mitchell, Allison L.

    2009-10-24

    Abstract–The Pacific Northwest National Laboratory has developed computer models to simulate the use of radiation portal monitors to screen vehicles and cargo for the presence of illicit radioactive material. The gamma radiation emitted by the vehicles or cargo containers must often be measured in the presence of a relatively large gamma-ray background mainly due to the presence of potassium, uranium, and thorium (and progeny isotopes) in the soil and surrounding building materials. This large background is often a significant limit to the detection sensitivity for items of interest and must be modeled accurately for analyzing homeland security situations. Calculations of the expected gamma-ray emission from a disk of soil and asphalt were made using the Monte Carlo transport code MCNP and were compared to measurements made at a seaport with a high-purity germanium detector. Analysis revealed that the energy spectrum of the measured background could not be reproduced unless the model included gamma rays coming from the ground out to distances of at least 300 m. The contribution from beyond about 50 m was primarily due to gamma rays that scattered in the air before entering the detectors rather than passing directly from the ground to the detectors. These skyshine gamma rays contribute tens of percent to the total gamma-ray spectrum, primarily at energies below a few hundred keV. The techniques that were developed to efficiently calculate the contributions from a large soil disk and a large air volume in a Monte Carlo simulation are described and the implications of skyshine in portal monitoring applications are discussed.

  14. Bivariate Kumaraswamy distribution with an application on earthquake data

    SciTech Connect

    Özel, Gamze

    2015-03-10

    Bivariate Kumaraswamy (BK) distribution whose marginals are Kumaraswamy distributions has been recently introduced. However, its statistical properties are not studied in detail. In this study, statistical properties of the BK distribution are investigated. We suggest that the BK could provide suitable description for the earthquakes characteristics of Turkey. We support this argument using earthquakesoccurred in Turkey between 1900 and 2009. We also find that the BK distribution simulates earthquakes well.

  15. Production, Distribution, and Applications of Californium-252 Neutron Sources

    SciTech Connect

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-10-03

    The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10{sup 11} neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6- year half-life. A source the size of a person's little finger can emit up to 10 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory(ORNL). DOE sells {sup 252}Cf to commercial

  16. Final report and documentation for the security enabled programmable switch for protection of distributed internetworked computers LDRD.

    SciTech Connect

    Van Randwyk, Jamie A.; Robertson, Perry J.; Durgin, Nancy Ann; Toole, Timothy J.; Kucera, Brent D.; Campbell, Philip LaRoche; Pierson, Lyndon George

    2010-02-01

    An increasing number of corporate security policies make it desirable to push security closer to the desktop. It is not practical or feasible to place security and monitoring software on all computing devices (e.g. printers, personal digital assistants, copy machines, legacy hardware). We have begun to prototype a hardware and software architecture that will enforce security policies by pushing security functions closer to the end user, whether in the office or home, without interfering with users' desktop environments. We are developing a specialized programmable Ethernet network switch to achieve this. Embodied in this device is the ability to detect and mitigate network attacks that would otherwise disable or compromise the end user's computing nodes. We call this device a 'Secure Programmable Switch' (SPS). The SPS is designed with the ability to be securely reprogrammed in real time to counter rapidly evolving threats such as fast moving worms, etc. This ability to remotely update the functionality of the SPS protection device is cryptographically protected from subversion. With this concept, the user cannot turn off or fail to update virus scanning and personal firewall filtering in the SPS device as he/she could if implemented on the end host. The SPS concept also provides protection to simple/dumb devices such as printers, scanners, legacy hardware, etc. This report also describes the development of a cryptographically protected processor and its internal architecture in which the SPS device is implemented. This processor executes code correctly even if an adversary holds the processor. The processor guarantees both the integrity and the confidentiality of the code: the adversary cannot determine the sequence of instructions, nor can the adversary change the instruction sequence in a goal-oriented way.

  17. Synchronizing modified van der Pol Duffing oscillators with offset terms using observer design: application to secure communications

    NASA Astrophysics Data System (ADS)

    Fodjouong, G. J.; Fotsin, H. B.; Woafo, P.

    2007-05-01

    This study addresses the adaptive synchronization of the modified van der Pol-Duffing (MVDPD) oscillator with offset terms. From our investigations of the system dynamics, we obtain that the system presents a chaotic behaviour at weak values of the offset parameters. Routh-Hurwitz criteria are used to study the asymptotic stability of the steady states. An adaptive observer design method is applied to achieve synchronization of two identical MVDPD oscillators with offset. Numerical simulations are given to validate the proposed synchronization approach. Moreover, as an application, the proposed scheme is applied to secure communication. Also, simulation results verify the proposed scheme's success in the communication application.

  18. Micro-optical Distributed Sensors for Aero Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Arnold, S.; Otugen, V.; Seasholtz, Richard G. (Technical Monitor)

    2003-01-01

    The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.

  19. Towards Resilient Critical Infrastructures: Application of Type-2 Fuzzy Logic in Embedded Network Security Cyber Sensor

    SciTech Connect

    Ondrej Linda; Todd Vollmer; Jim Alves-Foss; Milos Manic

    2011-08-01

    Resiliency and cyber security of modern critical infrastructures is becoming increasingly important with the growing number of threats in the cyber-environment. This paper proposes an extension to a previously developed fuzzy logic based anomaly detection network security cyber sensor via incorporating Type-2 Fuzzy Logic (T2 FL). In general, fuzzy logic provides a framework for system modeling in linguistic form capable of coping with imprecise and vague meanings of words. T2 FL is an extension of Type-1 FL which proved to be successful in modeling and minimizing the effects of various kinds of dynamic uncertainties. In this paper, T2 FL provides a basis for robust anomaly detection and cyber security state awareness. In addition, the proposed algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental cyber-security test-bed.

  20. Multiplexed Signal Distribution Using Fiber Network For Radar Applications

    NASA Astrophysics Data System (ADS)

    Meena, D.; Prakasam, L. G. M.; Pandey, D. C.; Shivaleela, E. S.; Srinivas, T.

    2011-10-01

    Most of the modern Active phased Array Radars consist of multiple receive modules in an Antenna array. This demands the distribution of various Local Oscillator Signals (LOs) for the down conversion of received signals to the Intermediate Frequency (IF) band signals. This is normally achieved through Radio Frequency (RF) cables with Complex distribution networks which adds additional weight to the Arrays. Similarly these kinds of receivers require Control/Clock signals which are digital in nature, for the synchronization of all receive modules of the radar system which are also distributed through electrical cables. In addition some of the control messages (Digital in nature) are distributed through Optical interfaces. During Transmit operation, the RF transmit Signal is also distributed through the same receiver modules which will in turn distribute to all the elements of the Array which require RF cables which are bulky in nature. So it is very essential to have a multiplexed Signal distribution scheme through the existing Optical Interface for distribution of these signals which are RF and Digital in nature. This paper discusses about various distribution schemes for the realization in detail. We propose a distribution network architecture where existing fibers can be further extended for the distribution of other types of signals also. In addition, it also briefs about a comparative analysis done on these schemes by considering the complexity and space constraint factors. Thus we bring out an optimum scheme which will lead to the reduction in both hardware complexity and weight of the array systems. In addition, being an Optical network it is free from Electromagnetic interference which is a crucial requirement in an array environment.