Multi-band transmission color filters for multi-color white LEDs based visible light communication
NASA Astrophysics Data System (ADS)
Wang, Qixia; Zhu, Zhendong; Gu, Huarong; Chen, Mengzhu; Tan, Qiaofeng
2017-11-01
Light-emitting diodes (LEDs) based visible light communication (VLC) can provide license-free bands, high data rates, and high security levels, which is a promising technique that will be extensively applied in future. Multi-band transmission color filters with enough peak transmittance and suitable bandwidth play a pivotal role for boosting signal-noise-ratio in VLC systems. In this paper, multi-band transmission color filters with bandwidth of dozens nanometers are designed by a simple analytical method. Experiment results of one-dimensional (1D) and two-dimensional (2D) tri-band color filters demonstrate the effectiveness of the multi-band transmission color filters and the corresponding analytical method.
The design and application of a multi-band IR imager
NASA Astrophysics Data System (ADS)
Li, Lijuan
2018-02-01
Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.
A Multi-Band Uncertainty Set Based Robust SCUC With Spatial and Temporal Budget Constraints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Chenxi; Wu, Lei; Wu, Hongyu
2016-11-01
The dramatic increase of renewable energy resources in recent years, together with the long-existing load forecast errors and increasingly involved price sensitive demands, has introduced significant uncertainties into power systems operation. In order to guarantee the operational security of power systems with such uncertainties, robust optimization has been extensively studied in security-constrained unit commitment (SCUC) problems, for immunizing the system against worst uncertainty realizations. However, traditional robust SCUC models with single-band uncertainty sets may yield over-conservative solutions in most cases. This paper proposes a multi-band robust model to accurately formulate various uncertainties with higher resolution. By properly tuning band intervalsmore » and weight coefficients of individual bands, the proposed multi-band robust model can rigorously and realistically reflect spatial/temporal relationships and asymmetric characteristics of various uncertainties, and in turn could effectively leverage the tradeoff between robustness and economics of robust SCUC solutions. The proposed multi-band robust SCUC model is solved by Benders decomposition (BD) and outer approximation (OA), while taking the advantage of integral property of the proposed multi-band uncertainty set. In addition, several accelerating techniques are developed for enhancing the computational performance and the convergence speed. Numerical studies on a 6-bus system and the modified IEEE 118-bus system verify the effectiveness of the proposed robust SCUC approach for enhancing uncertainty modeling capabilities and mitigating conservativeness of the robust SCUC solution.« less
Machine-learned Identification of RR Lyrae Stars from Sparse, Multi-band Data: The PS1 Sample
NASA Astrophysics Data System (ADS)
Sesar, Branimir; Hernitschek, Nina; Mitrović, Sandra; Ivezić, Željko; Rix, Hans-Walter; Cohen, Judith G.; Bernard, Edouard J.; Grebel, Eva K.; Martin, Nicolas F.; Schlafly, Edward F.; Burgett, William S.; Draper, Peter W.; Flewelling, Heather; Kaiser, Nick; Kudritzki, Rolf P.; Magnier, Eugene A.; Metcalfe, Nigel; Tonry, John L.; Waters, Christopher
2017-05-01
RR Lyrae stars may be the best practical tracers of Galactic halo (sub-)structure and kinematics. The PanSTARRS1 (PS1) 3π survey offers multi-band, multi-epoch, precise photometry across much of the sky, but a robust identification of RR Lyrae stars in this data set poses a challenge, given PS1's sparse, asynchronous multi-band light curves (≲ 12 epochs in each of five bands, taken over a 4.5 year period). We present a novel template fitting technique that uses well-defined and physically motivated multi-band light curves of RR Lyrae stars, and demonstrate that we get accurate period estimates, precise to 2 s in > 80 % of cases. We augment these light-curve fits with other features from photometric time-series and provide them to progressively more detailed machine-learned classification models. From these models, we are able to select the widest (three-fourths of the sky) and deepest (reaching 120 kpc) sample of RR Lyrae stars to date. The PS1 sample of ˜45,000 RRab stars is pure (90%) and complete (80% at 80 kpc) at high galactic latitudes. It also provides distances that are precise to 3%, measured with newly derived period-luminosity relations for optical/near-infrared PS1 bands. With the addition of proper motions from Gaia and radial velocity measurements from multi-object spectroscopic surveys, we expect the PS1 sample of RR Lyrae stars to become the premier source for studying the structure, kinematics, and the gravitational potential of the Galactic halo. The techniques presented in this study should translate well to other sparse, multi-band data sets, such as those produced by the Dark Energy Survey and the upcoming Large Synoptic Survey Telescope Galactic plane sub-survey.
Optimization of a Circularly Polarized Patch Antenna for Two Frequency Bands
2015-09-01
the various techniques that can be used to improve the performance of a circularly polarized microstrip patch antenna . These adjustments include... microstrip antenna . 15. SUBJECT TERMS Patch Antenna , Circular Polarization 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...Frequency Structural Simulator (HFSS) has allowed engineers to create scalable multiband microstrip antennas . Several factors were taken into
PERIODOGRAMS FOR MULTIBAND ASTRONOMICAL TIME SERIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanderPlas, Jacob T.; Ivezic, Željko
This paper introduces the multiband periodogram, a general extension of the well-known Lomb–Scargle approach for detecting periodic signals in time-domain data. In addition to advantages of the Lomb–Scargle method such as treatment of non-uniform sampling and heteroscedastic errors, the multiband periodogram significantly improves period finding for randomly sampled multiband light curves (e.g., Pan-STARRS, DES, and LSST). The light curves in each band are modeled as arbitrary truncated Fourier series, with the period and phase shared across all bands. The key aspect is the use of Tikhonov regularization which drives most of the variability into the so-called base model common tomore » all bands, while fits for individual bands describe residuals relative to the base model and typically require lower-order Fourier series. This decrease in the effective model complexity is the main reason for improved performance. After a pedagogical development of the formalism of least-squares spectral analysis, which motivates the essential features of the multiband model, we use simulated light curves and randomly subsampled SDSS Stripe 82 data to demonstrate the superiority of this method compared to other methods from the literature and find that this method will be able to efficiently determine the correct period in the majority of LSST’s bright RR Lyrae stars with as little as six months of LSST data, a vast improvement over the years of data reported to be required by previous studies. A Python implementation of this method, along with code to fully reproduce the results reported here, is available on GitHub.« less
NASA Technical Reports Server (NTRS)
Wallace, R. E.
1969-01-01
Nine-frame multiband aerial photography of a sample area 4500 feet on a side was processed to enhance spectral contrasts. The area concerned is in the Carrizo Plain, 45 miles west of Bakersfield, California, in sec. 29, T 31 S., R. 21 E., as shown on the Panorama Hills quadrangle topographic map published by the U. S. Geological Survey. The accompany illustrations include an index map showing the location of the Carrizo Plain area; a geologic map of the area based on field studies and examination of black and white aerial photographs; an enhanced multiband aerial photograph; an Aero Ektachrome photograph; black and white aerial photographs; and infrared image in the 8-13 micron band.
NASA Technical Reports Server (NTRS)
Matolak, David W.
2017-01-01
NASA's Aeronautics Research Mission Directorate (ARMD) has recently solicited proposals and awarded funds for research and development to achieve and exceed the goals envisioned in the ARMD Strategic Implementation Plan (SIP). The Hyper-Spectral Communications and Networking for Air Traffic Management (ATM) (HSCNA) project is the only University Leadership Initiative (ULI) program to address communications and networking (and to a degree, navigation and surveillance). This paper will provide an overview of the HSCNA project, and specifically describe two of the project's technical challenges: comprehensive aviation communications and networking assessment, and proposed multi-band and multimode communications and networking. The primary goals will be described, as will be research and development aimed to achieve and exceed these goals. Some example initial results are also provided.
Ground state, collective mode, phase soliton and vortex in multiband superconductors.
Lin, Shi-Zeng
2014-12-10
This article reviews theoretical and experimental work on the novel physics in multiband superconductors. Multiband superconductors are characterized by multiple superconducting energy gaps in different bands with interaction between Cooper pairs in these bands. The discovery of prominent multiband superconductors MgB2 and later iron-based superconductors, has triggered enormous interest in multiband superconductors. The most recently discovered superconductors exhibit multiband features. The multiband superconductors possess novel properties that are not shared with their single-band counterpart. Examples include: the time-reversal symmetry broken state in multiband superconductors with frustrated interband couplings; the collective oscillation of number of Cooper pairs between different bands, known as the Leggett mode; and the phase soliton and fractional vortex, which are the main focus of this review. This review presents a survey of a wide range of theoretical exploratory and experimental investigations of novel physics in multiband superconductors. A vast amount of information derived from these studies is shown to highlight unusual and unique properties of multiband superconductors and to reveal the challenges and opportunities in the research on the multiband superconductivity.
NASA Astrophysics Data System (ADS)
Huijse, Pablo; Estévez, Pablo A.; Förster, Francisco; Daniel, Scott F.; Connolly, Andrew J.; Protopapas, Pavlos; Carrasco, Rodrigo; Príncipe, José C.
2018-05-01
The Large Synoptic Survey Telescope (LSST) will produce an unprecedented amount of light curves using six optical bands. Robust and efficient methods that can aggregate data from multidimensional sparsely sampled time-series are needed. In this paper we present a new method for light curve period estimation based on quadratic mutual information (QMI). The proposed method does not assume a particular model for the light curve nor its underlying probability density and it is robust to non-Gaussian noise and outliers. By combining the QMI from several bands the true period can be estimated even when no single-band QMI yields the period. Period recovery performance as a function of average magnitude and sample size is measured using 30,000 synthetic multiband light curves of RR Lyrae and Cepheid variables generated by the LSST Operations and Catalog simulators. The results show that aggregating information from several bands is highly beneficial in LSST sparsely sampled time-series, obtaining an absolute increase in period recovery rate up to 50%. We also show that the QMI is more robust to noise and light curve length (sample size) than the multiband generalizations of the Lomb–Scargle and AoV periodograms, recovering the true period in 10%–30% more cases than its competitors. A python package containing efficient Cython implementations of the QMI and other methods is provided.
Momentum dependence of the superconducting gap and in-gap states in MgB 2 multiband superconductor
Mou, Daixiang; Jiang, Rui; Taufour, Valentin; ...
2015-06-29
We use tunable laser-based angle-resolved photoemission spectroscopy to study the electronic structure of the multiband superconductor MgB 2. These results form the baseline for detailed studies of superconductivity in multiband systems. We find that the magnitude of the superconducting gap on both σ bands follows a BCS-like variation with temperature with Δ 0 ~ 7meV. Furthermore, the value of the gap is isotropic within experimental uncertainty and in agreement with a pure s-wave pairing symmetry. We observe in-gap states confined to k F of the σ band that occur at some locations of the sample surface. As a result, themore » energy of this excitation, ~ 3 meV, was found to be somewhat larger than the previously reported gap on π Fermi sheet and therefore we cannot exclude the possibility of interband scattering as its origin.« less
Sampling Frequency Optimisation and Nonlinear Distortion Mitigation in Subsampling Receiver
NASA Astrophysics Data System (ADS)
Castanheira, Pedro Xavier Melo Fernandes
Subsampling receivers utilise the subsampling method to down convert signals from radio frequency (RF) to a lower frequency location. Multiple signals can also be down converted using the subsampling receiver, but using the incorrect subsampling frequency could result in signals aliasing one another after down conversion. The existing method for subsampling multiband signals focused on down converting all the signals without any aliasing between the signals. The case considered initially was a dual band signal, and then it was further extended to a more general multiband case. In this thesis, a new method is proposed with the assumption that only one signal is needed to not overlap the other multiband signals that are down converted at the same time. The proposed method will introduce unique formulas using the said assumption to calculate the valid subsampling frequencies, ensuring that the target signal is not aliased by the other signals. Simulation results show that the proposed method will provide lower valid subsampling frequencies for down conversion compared to the existing methods.
NASA Astrophysics Data System (ADS)
Ganetis, Sara Anne
Mesoscale precipitation bands within Northeast U.S. (NEUS) winter storms result in heterogeneous spatial and temporal snowfall. Several studies have provided analysis of snowbands focusing on larger, meso-beta scale bands with lengths (L) > 200 km known as single bands. NEUS winter storms can also exhibit multiple bands with meso-beta scale (L < 200 km) and similar spatial orientation and when ≥ 3 occur are termed multi-bands; however, the genesis and evolution of multi-bands is less well understood. Unlike single bands, there is no multi-bands climatological study. In addition, there has been little detailed thermodynamic analysis of snowbands. This dissertation utilizes radar observations, reanalyses, and high-resolution model simulations to explore the thermodynamic evolution of single and multi-bands. Bands are identified within 20 cool season (October-April) NEUS storms. The 110-case dataset was classified using a combination of automated and manual methods into: single band only (SINGLE), multi-bands only (MULTI), both single and multi-bands (BOTH), and non-banded (NONE). Multi-bands occur with the presence of a single band in 55.4% of times used in this study, without the presence of a single band 18.1% of the time, and precipitation exhibits no banded characteristics 23.8% of the time. Most MULTI events occur in the northeast quadrant of a developing cyclone poleward of weak-midlevel forcing along a warm front, whereas multi-bands associated with BOTH events mostly occur in the northwest quadrant of mature cyclones associated with strong mid-level frontogenesis and conditional symmetric instability. The non-banded precipitation associated with NONE events occur in the eastern quadrants of developing and mature cyclones lacking mid-level forcing to concentrate the precipitation into bands. A high-resolution mesoscale model is used to explore the evolution of single and multi-bands based on two case studies, one of a single band and one of multi-bands. The multi-bands form in response to intermittent mid-level frontogenetical forcing in a conditionally unstable environment. The bands within their genesis location southeast of the single band move northwest towards the single band by 700-hPa steering flow. This allows for the formation of new multi-bands within the genesis region, unlike the single band that remains fixed to a 700-hPa frontogenesis maximum. Latent heating within the band is shown to increase the intensity and duration of single and multi-bands through decreased geopotential height below the heating maximum that leads to increased convergence within the band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, N. E.; Soderberg, A. M.; Chornock, R.
2015-02-01
In recent years, wide-field sky surveys providing deep multiband imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SNe): systematic light-curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4 yr and classified using both spectroscopy and machine-learning-based photometric techniques. We develop and apply a new Bayesian model for the full multiband evolution of each light curve in the sample. We find no evidence of a subpopulation of fast-declining explosions (historically referred to as ''Type IIL'' SNe). However, we identify a highly significantmore » relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for SN cosmology, offering a standardizable candle good to an intrinsic scatter of ≲ 0.2 mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light-curve properties and an expanded grid of progenitor properties are needed to enable robust progenitor inferences from multiband light-curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide-field transient searches.« less
Lander and rover exploration on the lunar surface: A study for SELENE-B mission
NASA Astrophysics Data System (ADS)
Selene-B Rover Science Group; Sasaki, S.; Sugihara, T.; Saiki, K.; Akiyama, H.; Ohtake, M.; Takeda, H.; Hasebe, N.; Kobayashi, M.; Haruyama, J.; Shirai, K.; Kato, M.; Kubota, T.; Kunii, Y.; Kuroda, Y.
The SELENE-B, a lunar landing mission, has been studied in Japan, where a scientific investigation plan is proposed using a robotic rover and a static lander. The main theme to be investigated is to clarify the lunar origin and evolution, especially for early crustal formation process probably from the ancient magma ocean. The highest priority is placed on a direct in situ geology at a crater central peak, “a window to the interior”, where subcrustal materials are exposed and directly accessed without drilling. As a preliminary study was introduced by Sasaki et al. [Sasaki, S., Kubota, T., Okada, T. et al. Scientific exploration of lunar surface using a rover in Japanse future lunar mission. Adv. Space Res. 30, 1921 1926, 2002.], the rover and lander are jointly used, where detailed analyses of the samples collected by the rover are conducted at the lander. Primary scientific instruments are a multi-band stereo imager, a gamma-ray spectrometer, and a sampling tool on the rover, and a multi-spectral telescopic imager, a sampling system, and a sample analysis package with an X-ray spectrometer/diffractometer, a multi-band microscope as well as a sample cleaning and grinding device on the lander.
Army Communicator. Volume 33, Number 4, Fall 2008
2008-01-01
and Army LOS data pa.chgo’ (’imilar to tho MR C 142) woro ,ot up at tho,o locations. Tho WPPL, and MRC- 142’, ""’" tonninatod at oilhortho north or...bandwidth antonnao, allowing two 8 MB lino of ’ight path, to Al A"ad and Fallujah, which ""camo tho primary path out. Lo ..on. L.anI.d Tho mi"ion of Bravo...Multiband Satellite Terminal LOS - Iine-of-sight LSWAN - Logistics Support Wide Area Network NIPR - Non-secure Internet Routing Protocol OSPF - open
Improved colour matching technique for fused nighttime imagery with daytime colours
NASA Astrophysics Data System (ADS)
Hogervorst, Maarten A.; Toet, Alexander
2016-10-01
Previously, we presented a method for applying daytime colours to fused nighttime (e.g., intensified and LWIR) imagery (Toet and Hogervorst, Opt.Eng. 51(1), 2012). Our colour mapping not only imparts a natural daylight appearance to multiband nighttime images but also enhances the contrast and visibility of otherwise obscured details. As a result, this colourizing method leads to increased ease of interpretation, better discrimination and identification of materials, faster reaction times and ultimately improved situational awareness (Toet e.a., Opt.Eng.53(4), 2014). A crucial step in this colouring process is the choice of a suitable colour mapping scheme. When daytime colour images and multiband sensor images of the same scene are available the colour mapping can be derived from matching image samples (i.e., by relating colour values to sensor signal intensities). When no exact matching reference images are available the colour transformation can be derived from the first-order statistical properties of the reference image and the multiband sensor image (Toet, Info. Fus. 4(3), 2003). In the current study we investigated new colour fusion schemes that combine the advantages of the both methods, using the correspondence between multiband sensor values and daytime colours (1st method) in a smooth transformation (2nd method). We designed and evaluated three new fusion schemes that focus on: i) a closer match with the daytime luminances, ii) improved saliency of hot targets and iii) improved discriminability of materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, R. M. da; Milošević, M. V.; Peeters, F. M.
Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements ofmore » the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors.« less
RRI-GBT MULTI-BAND RECEIVER: MOTIVATION, DESIGN, AND DEVELOPMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maan, Yogesh; Deshpande, Avinash A.; Chandrashekar, Vinutha
2013-01-15
We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100-1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bandsmore » pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.« less
NASA Astrophysics Data System (ADS)
Li, Jianqiang; Yin, Chunjing; Chen, Hao; Yin, Feifei; Dai, Yitang; Xu, Kun
2014-11-01
The envisioned C-RAN concept in wireless communication sector replies on distributed antenna systems (DAS) which consist of a central unit (CU), multiple remote antenna units (RAUs) and the fronthaul links between them. As the legacy and emerging wireless communication standards will coexist for a long time, the fronthaul links are preferred to carry multi-band multi-standard wireless signals. Directly-modulated radio-over-fiber (ROF) links can serve as a lowcost option to make fronthaul connections conveying multi-band wireless signals. However, directly-modulated radioover- fiber (ROF) systems often suffer from inherent nonlinearities from directly-modulated lasers. Unlike ROF systems working at the single-band mode, the modulation nonlinearities in multi-band ROF systems can result in both in-band and cross-band nonlinear distortions. In order to address this issue, we have recently investigated the multi-band nonlinear behavior of directly-modulated DFB lasers based on multi-dimensional memory polynomial model. Based on this model, an efficient multi-dimensional baseband digital predistortion technique was developed and experimentally demonstrated for linearization of multi-band directly-modulated ROF systems.
Adaptively loaded SP-offset-QAM OFDM for IM/DD communication systems.
Zhao, Jian; Chan, Chun-Kit
2017-09-04
In this paper, we propose adaptively loaded set-partitioned offset quadrature amplitude modulation (SP-offset-QAM) orthogonal frequency division multiplexing (OFDM) for low-cost intensity-modulation direct-detection (IM/DD) communication systems. We compare this scheme with multi-band carrier-less amplitude phase modulation (CAP) and conventional OFDM, and demonstrate >40 Gbit/s transmission over 50-km single-mode fiber. It is shown that the use of SP-QAM formats, together with the adaptive loading algorithm specifically designed to this group of formats, results in significant performance improvement for all these three schemes. SP-offset-QAM OFDM exhibits greatly reduced complexity compared to SP-QAM based multi-band CAP, via parallelized implementation and minimized memory length for spectral shaping. On the other hand, this scheme shows better performance than SP-QAM based conventional OFDM at both back-to-back and after transmission. We also characterize the proposed scheme in terms of enhanced tolerance to fiber intra-channel nonlinearity and the potential to increase the communication security. The studies show that adaptive SP-offset-QAM OFDM is a promising IM/DD solution for medium- and long-reach optical access networks and data center connections.
NASA Technical Reports Server (NTRS)
Lee, K. (Principal Investigator); Raines, G. L.
1974-01-01
The author has identified the following significant results. With the advent of ERTS and Skylab satellites, multiband imagery and photography have become readily available to geologists. The ability of multiband photography to discriminate sedimentary rocks was examined. More than 8600 in situ measurements of band reflectance of the sedimentary rocks of the Front Range, Colorado, were acquired. Statistical analysis of these measurements showed that: (1) measurements from one site can be used at another site 100 miles away; (2) there is basically only one spectral reflectance curve for these rocks, with constant amplitude differences between the curves; and (3) the natural variation is so large that at least 150 measurements per formation are required to select best filters. These conclusions are supported by subjective tests with aerial multiband photography. The designed multiband photography concept for rock discrimination is not a practical method of improving sedimentary rock discrimination capabilities.
Signal processing for passive detection and classification of underwater acoustic signals
NASA Astrophysics Data System (ADS)
Chung, Kil Woo
2011-12-01
This dissertation examines signal processing for passive detection, classification and tracking of underwater acoustic signals for improving port security and the security of coastal and offshore operations. First, we consider the problem of passive acoustic detection of a diver in a shallow water environment. A frequency-domain multi-band matched-filter approach to swimmer detection is presented. The idea is to break the frequency contents of the hydrophone signals into multiple narrow frequency bands, followed by time averaged (about half of a second) energy calculation over each band. Then, spectra composed of such energy samples over the chosen frequency bands are correlated to form a decision variable. The frequency bands with highest Signal/Noise ratio are used for detection. The performance of the proposed approach is demonstrated for experimental data collected for a diver in the Hudson River. We also propose a new referenceless frequency-domain multi-band detector which, unlike other reference-based detectors, does not require a diver specific signature. Instead, our detector matches to a general feature of the diver spectrum in the high frequency range: the spectrum is roughly periodic in time and approximately flat when the diver exhales. The performance of the proposed approach is demonstrated by using experimental data collected from the Hudson River. Moreover, we present detection, classification and tracking of small vessel signals. Hydroacoustic sensors can be applied for the detection of noise generated by vessels, and this noise can be used for vessel detection, classification and tracking. This dissertation presents recent improvements aimed at the measurement and separation of ship DEMON (Detection of Envelope Modulation on Noise) acoustic signatures in busy harbor conditions. Ship signature measurements were conducted in the Hudson River and NY Harbor. The DEMON spectra demonstrated much better temporal stability compared with the full ship spectra and were measured at distances up to 7 km. The combination of cross-correlation and DEMON methods allows separation of the acoustic signatures of ships in busy urban environments. Finally, we consider the extension of this algorithm for vessel tracking using phase measurement of the DEMON signal recorded by two or more hydrophones. Tests conducted in the Hudson River and NY Bay confirmed opportunity of Direction of Arrival (DOA) funding using the phase DEMON method.
NASA Astrophysics Data System (ADS)
Saha, Abhijit; Vivas, A. Katherina
2017-12-01
Ongoing and future surveys with repeat imaging in multiple bands are producing (or will produce) time-spaced measurements of brightness, resulting in the identification of large numbers of variable sources in the sky. A large fraction of these are periodic variables: compilations of these are of scientific interest for a variety of purposes. Unavoidably, the data sets from many such surveys not only have sparse sampling, but also have embedded frequencies in the observing cadence that beat against the natural periodicities of any object under investigation. Such limitations can make period determination ambiguous and uncertain. For multiband data sets with asynchronous measurements in multiple passbands, we wish to maximally use the information on periodicity in a manner that is agnostic of differences in the light-curve shapes across the different channels. Given large volumes of data, computational efficiency is also at a premium. This paper develops and presents a computationally economic method for determining periodicity that combines the results from two different classes of period-determination algorithms. The underlying principles are illustrated through examples. The effectiveness of this approach for combining asynchronously sampled measurements in multiple observables that share an underlying fundamental frequency is also demonstrated.
Hwang, Jungseek
2016-03-31
We introduce an approximate method which can be used to simulate the optical conductivity data of correlated multiband systems for normal and superconducting cases by taking advantage of a reversed process in comparison to a usual optical data analysis, which has been used to extract the electron-boson spectral density function from measured optical spectra of single-band systems, like cuprates. We applied this method to optical conductivity data of two multiband pnictide systems (Ba0.6K0.4Fe2As2 and LiFeAs) and obtained the electron-boson spectral density functions. The obtained electron-boson spectral density consists of a sharp mode and a broad background. The obtained spectral density functions of the multiband systems show similar properties as those of cuprates in several aspects. We expect that our method helps to reveal the nature of strong correlations in the multiband pnictide superconductors.
The evolution of temperature and bolometric luminosity in Type II supernovae
NASA Astrophysics Data System (ADS)
Faran, T.; Nakar, E.; Poznanski, D.
2018-01-01
In this work, we present a uniform analysis of the temperature evolution and bolometric luminosity of a sample of 29 Type II supernovae (SNe), by fitting a blackbody model to their multiband photometry. Our sample includes only SNe with high quality multiband data and relatively well-sampled time coverage. Most of the SNe in our sample were detected less than a week after explosion so their light curves cover the evolution both before and after recombination starts playing a role. We use this sample to study the signature of hydrogen recombination, which is expected to appear once the observed temperature drops to ≈7000 K. Theory predicts that before recombination starts affecting the light curve, both the luminosity and the temperature should drop relatively fast, following a power law in time. Once the recombination front reaches inner parts of the outflow, it sets the observed temperature to be nearly constant, and slows the decline of the luminosity (or even leads to a re-brightening). We compare our data to analytic studies and find strong evidence for the signature of recombination. We also find that the onset of the optical plateau in a given filter, is effectively the time at which the blackbody peak reaches the central wavelength of the filter, as it cools, and it does not correspond to the time at which recombination starts affecting the emission.
Compact CPW-fed spiral-patch monopole antenna with tuneable frequency for multiband applications
NASA Astrophysics Data System (ADS)
Beigi, P.; Nourinia, J.; Zehforoosh, Y.
2018-04-01
A frequency reconfigurable monopole antenna with coplanar waveguide-fed with four switchable for multiband application is reported. The monopole antenna includes square-spiral patch and two L-shaped elements. The number of frequency resonances are increased by adding square spiral. In the reported antenna, two PIN diodes are used to achieve the multiband operation. PIN diodes embedded on the spiral patch can control the frequency resonance when they are forward-biased or in those off-state. The final designed antenna, with compact size of 20 × 20 ×1 mm3, has been fabricated on an inexpensive FR4 substrate. All experimental and simulation results are acceptable suggesting that the reported antenna is a good candidate for multiband applications.
Fair comparison of complexity between a multi-band CAP and DMT for data center interconnects.
Wei, J L; Sanchez, C; Giacoumidis, E
2017-10-01
We present, to the best of our knowledge, the first known detailed analysis and fair comparison of complexity of a 56 Gb/s multi-band carrierless amplitude and phase (CAP) and discrete multi-tone (DMT) over 80 km dispersion compensation fiber-free single-mode fiber links based on intensity modulation and direct detection for data center interconnects. We show that the matched finite impulse response filters and inverse fast Fourier transform (IFFT)/FFT take the majority of the complexity of the multi-band CAP and DMT, respectively. The choice of the multi-band CAP sub-band count and the DMT IFFT/FFT size makes significant impact on the system complexity or performance, and trade-off must be considered.
Hyper-Spectral Networking Concept of Operations and Future Air Traffic Management Simulations
NASA Technical Reports Server (NTRS)
Davis, Paul; Boisvert, Benjamin
2017-01-01
The NASA sponsored Hyper-Spectral Communications and Networking for Air Traffic Management (ATM) (HSCNA) project is conducting research to improve the operational efficiency of the future National Airspace System (NAS) through diverse and secure multi-band, multi-mode, and millimeter-wave (mmWave) wireless links. Worldwide growth of air transportation and the coming of unmanned aircraft systems (UAS) will increase air traffic density and complexity. Safe coordination of aircraft will require more capable technologies for communications, navigation, and surveillance (CNS). The HSCNA project will provide a foundation for technology and operational concepts to accommodate a significantly greater number of networked aircraft. This paper describes two of the HSCNA projects technical challenges. The first technical challenge is to develop a multi-band networking concept of operations (ConOps) for use in multiple phases of flight and all communication link types. This ConOps will integrate the advanced technologies explored by the HSCNA project and future operational concepts into a harmonized vision of future NAS communications and networking. The second technical challenge discussed is to conduct simulations of future ATM operations using multi-bandmulti-mode networking and technologies. Large-scale simulations will assess the impact, compared to todays system, of the new and integrated networks and technologies under future air traffic demand.
NASA Astrophysics Data System (ADS)
Bagci, Fulya; Akaoglu, Baris
2017-08-01
We present a metamaterial configuration exhibiting single and multi-band electromagnetic induced transparency (EIT)-like properties. The unit cell of the single band EIT-like metamaterial consists of a multi-split ring resonator surrounded by a split ring resonator. The multi-split ring resonator acts as a quasi-dark or dark resonator, depending on the polarization of the incident wave, and the split ring resonator serves as the bright resonator. Combination of these two resonators results in a single band EIT-like transmission inside the stop band. EIT-like transmission phenomenon is also clearly observed in the measured transmission spectrum at almost the same frequencies for vertical and horizontal polarized waves, and the numerical results are verified for normal incidence. Moreover, multi-band transmission windows are created within a wide band by combining the two slightly different single band EIT-like metamaterial unit cells that exhibit two different coupling strengths inside a supercell configuration. Group indices as high as 123 for single band and 488 for tri-band transmission, accompanying with high transmission rates (over 80%), are achieved, rendering the metamaterial very suitable for multi-band slow light applications. It is shown that the group delay of the propagating wave can be increased and dynamically controlled by changing the polarization angle. Multi-band EIT-like transmission is also verified experimentally, and a good agreement with simulations is obtained. The proposed novel methodology for obtaining multi-band EIT, which takes advantage of a supercell configuration by hosting slightly different configured unit cells, can be utilized for easily formation and manipulation of multi-band transmission windows inside a stop band.
Chiral anomaly enhancement and photoirradiation effects in multiband touching fermion systems
NASA Astrophysics Data System (ADS)
Ezawa, Motohiko
2017-05-01
Multiband touchings together with the emergence of fermions exhibiting linear dispersions have recently been predicted and realized in various materials. We first investigate the Adler-Bell-Jackiw chiral anomaly in these multiband touching semimetals when they are described by the pseudospin operator in high-dimensional representation. By evaluating the Chern number, we show that the anomalous Hall effect is enhanced depending on the magnitude of the pseudospin. It is also confirmed by the analysis of the Landau levels when magnetic field is applied. Namely, charge pumping occurs from one multiband touching point to another through multichannel Landau levels in the presence of parallel electric and magnetic fields. We also show a pair annihilation of two multiband touching points by photoirradiation. Furthermore, we propose generalizations of Dirac semimetals, multiple Weyl semimetals, and loop-nodal semimetals to those composed of fermions carrying pseudospins in high-dimensional representation. Finally we investigate the three-band touching protected by the C3 symmetry. We show that the three-band touching point is broken into two Weyl points by photoirradiation.
High-order multiband encoding in the heart.
Cunningham, Charles H; Wright, Graham A; Wood, Michael L
2002-10-01
Spatial encoding with multiband selective excitation (e.g., Hadamard encoding) has been restricted to a small number of slices because the RF pulse becomes unacceptably long when more than about eight slices are encoded. In this work, techniques to shorten multiband RF pulses, and thus allow larger numbers of slices, are investigated. A method for applying the techniques while retaining the capability of adaptive slice thickness is outlined. A tradeoff between slice thickness and pulse duration is shown. Simulations and experiments with the shortened pulses confirmed that motion-induced excitation profile blurring and phase accrual were reduced. The connection between gradient hardware limitations, slice thickness, and flow sensitivity is shown. Excitation profiles for encoding 32 contiguous slices of 1-mm thickness were measured experimentally, and the artifact resulting from errors in timing of RF pulse relative to gradient was investigated. A multiband technique for imaging 32 contiguous 2-mm slices, with adaptive slice thickness, was developed and demonstrated for coronary artery imaging in healthy subjects. With the ability to image high numbers of contiguous slices, using relatively short (1-2 ms) RF pulses, multiband encoding has been advanced further toward practical application. Copyright 2002 Wiley-Liss, Inc.
Fabrication and characterization of multiband solar cells based on highly mismatched alloys
NASA Astrophysics Data System (ADS)
López, N.; Braña, A. F.; García Núñez, C.; Hernández, M. J.; Cervera, M.; Martínez, M.; Yu, K. M.; Walukiewicz, W.; García, B. J.
2015-10-01
Multiband solar cells are one type of third generation photovoltaic devices in which an increase of the power conversion efficiency is achieved through the absorption of low energy photons while preserving a large band gap that determines the open circuit voltage. The ability to absorb photons from different parts of the solar spectrum originates from the presence of an intermediate energy band located within the band gap of the material. This intermediate band, acting as a stepping stone allows the absorption of low energy photons to transfer electrons from the valence band to the conduction band by a sequential two photons absorption process. It has been demonstrated that highly mismatched alloys offer a potential to be used as a model material system for practical realization of multiband solar cells. Dilute nitride GaAs1-xNx highly mismatched alloy with low mole fraction of N is a prototypical multiband semiconductor with a well-defined intermediate band. Currently, we are using chemical beam epitaxy to synthesize dilute nitride highly mismatched alloys. The materials are characterized by a variety of structural and optical methods to optimize their properties for multiband photovoltaic devices.
A TYPE Ia SUPERNOVA AT REDSHIFT 1.55 IN HUBBLE SPACE TELESCOPE INFRARED OBSERVATIONS FROM CANDELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodney, Steven A.; Riess, Adam G.; Jones, David O.
2012-02-10
We report the discovery of a Type Ia supernova (SN Ia) at redshift z = 1.55 with the infrared detector of the Wide Field Camera 3 (WFC3-IR) on the Hubble Space Telescope (HST). This object was discovered in CANDELS imaging data of the Hubble Ultra Deep Field and followed as part of the CANDELS+CLASH Supernova project, comprising the SN search components from those two HST multi-cycle treasury programs. This is the highest redshift SN Ia with direct spectroscopic evidence for classification. It is also the first SN Ia at z > 1 found and followed in the infrared, providing amore » full light curve in rest-frame optical bands. The classification and redshift are securely defined from a combination of multi-band and multi-epoch photometry of the SN, ground-based spectroscopy of the host galaxy, and WFC3-IR grism spectroscopy of both the SN and host. This object is the first of a projected sample at z > 1.5 that will be discovered by the CANDELS and CLASH programs. The full CANDELS+CLASH SN Ia sample will enable unique tests for evolutionary effects that could arise due to differences in SN Ia progenitor systems as a function of redshift. This high-z sample will also allow measurement of the SN Ia rate out to z Almost-Equal-To 2, providing a complementary constraint on SN Ia progenitor models.« less
MIPS - The Multiband Imaging Photometer for SIRTF. [Multiband Imaging Photometer for SIRTF
NASA Technical Reports Server (NTRS)
Rieke, G. H.; Lada, C.; Lebofsky, M.; Low, F.; Strittmatter, P.; Young, E.; Arens, J.; Beichman, C.; Gautier, T. N.; Werner, M.
1986-01-01
The Multiband Imaging Photometer for SIRTF (MIPS) is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700 micron spectral region. It will use high performance photoconductive detectors from 3 to 200 micron with integrating JFET amplifiers. From 200 to 700 microns, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution.
Evaluation of slice accelerations using multiband echo planar imaging at 3 Tesla
Xu, Junqian; Moeller, Steen; Auerbach, Edward J.; Strupp, John; Smith, Stephen M.; Feinberg, David A.; Yacoub, Essa; Uğurbil, Kâmil
2013-01-01
We evaluate residual aliasing among simultaneously excited and acquired slices in slice accelerated multiband (MB) echo planar imaging (EPI). No in-plane accelerations were used in order to maximize and evaluate achievable slice acceleration factors at 3 Tesla. We propose a novel leakage (L-) factor to quantify the effects of signal leakage between simultaneously acquired slices. With a standard 32-channel receiver coil at 3 Tesla, we demonstrate that slice acceleration factors of up to eight (MB = 8) with blipped controlled aliasing in parallel imaging (CAIPI), in the absence of in-plane accelerations, can be used routinely with acceptable image quality and integrity for whole brain imaging. Spectral analyses of single-shot fMRI time series demonstrate that temporal fluctuations due to both neuronal and physiological sources were distinguishable and comparable up to slice-acceleration factors of nine (MB = 9). The increased temporal efficiency could be employed to achieve, within a given acquisition period, higher spatial resolution, increased fMRI statistical power, multiple TEs, faster sampling of temporal events in a resting state fMRI time series, increased sampling of q-space in diffusion imaging, or more quiet time during a scan. PMID:23899722
Multiband electronic transport in α-Yb 1₋xSr x AlB 4 [ x = 0, 0.19(3)] single crystals
Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil; ...
2016-08-19
Here we report on the evidence for the multiband electronic transport in α- YbAlB 4 and α-Yb 0.81(2)Sr 0.19(3)AlB 4. Multiband transport reveals itself below 10 K in both compounds via Hall effect measurements, whereas anisotropic magnetic ground state sets in below 3 K in α-Yb 0.81(2)Sr 0.19(3)AlB 4. Our results show that Sr 2+ substitution enhances conductivity, but does not change the quasiparticle mass of bands induced by heavy fermion hybridization.
Chang, Hing-Chiu; Guhaniyogi, Shayan; Chen, Nan-kuei
2014-01-01
Purpose We report a series of techniques to reliably eliminate artifacts in interleaved echo-planar imaging (EPI) based diffusion weighted imaging (DWI). Methods First, we integrate the previously reported multiplexed sensitivity encoding (MUSE) algorithm with a new adaptive Homodyne partial-Fourier reconstruction algorithm, so that images reconstructed from interleaved partial-Fourier DWI data are free from artifacts even in the presence of either a) motion-induced k-space energy peak displacement, or b) susceptibility field gradient induced fast phase changes. Second, we generalize the previously reported single-band MUSE framework to multi-band MUSE, so that both through-plane and in-plane aliasing artifacts in multi-band multi-shot interleaved DWI data can be effectively eliminated. Results The new adaptive Homodyne-MUSE reconstruction algorithm reliably produces high-quality and high-resolution DWI, eliminating residual artifacts in images reconstructed with previously reported methods. Furthermore, the generalized MUSE algorithm is compatible with multi-band and high-throughput DWI. Conclusion The integration of the multi-band and adaptive Homodyne-MUSE algorithms significantly improves the spatial-resolution, image quality, and scan throughput of interleaved DWI. We expect that the reported reconstruction framework will play an important role in enabling high-resolution DWI for both neuroscience research and clinical uses. PMID:24925000
Properties of young massive clusters obtained with different massive-star evolutionary models
NASA Astrophysics Data System (ADS)
Wofford, Aida; Charlot, Stéphane
We undertake a comprehensive comparative test of seven widely-used spectral synthesis models using multi-band HST photometry of a sample of eight YMCs in two galaxies. We provide a first quantitative estimate of the accuracies and uncertainties of new models, show the good progress of models in fitting high-quality observations, and highlight the need of further comprehensive comparative tests.
The Key Ingredients of the Electronic Structure of FeSe
NASA Astrophysics Data System (ADS)
Coldea, Amalia I.; Watson, Matthew D.
2018-03-01
FeSe is a fascinating superconducting material at the frontier of research in condensed matter physics. Here, we provide an overview of the current understanding of the electronic structure of FeSe, focusing in particular on its low-energy electronic structure as determined from angle-resolved photoemission spectroscopy, quantum oscillations, and magnetotransport measurements of single-crystal samples. We discuss the unique place of FeSe among iron-based superconductors, as it is a multiband system exhibiting strong orbitally dependent electronic correlations and unusually small Fermi surfaces and is prone to different electronic instabilities. We pay particular attention to the evolution of the electronic structure that accompanies the tetragonal-orthorhombic structural distortion of the lattice around 90 K, which stabilizes a unique nematic electronic state. Finally, we discuss how the multiband multiorbital nematic electronic structure impacts our understanding of the superconductivity, and show that the tunability of the nematic state with chemical and physical pressure helps to disentangle the role of different competing interactions relevant for enhancing superconductivity.
Passband switchable microwave photonic multiband filter
Ge, Jia; Fok, Mable P.
2015-01-01
A reconfigurable microwave photonic (MWP) multiband filter with selectable and switchable passbands is proposed and experimentally demonstrated, with a maximum of 12 simultaneous passbands evenly distributed from 0 to 10 GHz. The scheme is based on the generation of tunable optical comb lines using a two-stage Lyot loop filter, such that various filter tap spacings and spectral combinations are obtained for the configuration of the MWP filter. Through polarization state adjustment inside the Lyot loop filter, an optical frequency comb with 12 different comb spacings is achieved, which corresponds to a MWP filter with 12 selectable passbands. Center frequencies of the filter passbands are switchable, while the number of simultaneous passbands is tunable from 1 to 12. Furthermore, the MWP multiband filter can either work as an all-block, single-band or multiband filter with various passband combinations, which provide exceptional operation flexibility. All the passbands have over 30 dB sidelobe suppression and 3-dB bandwidth of 200 MHz, providing good filter selectivity. PMID:26521693
Passband switchable microwave photonic multiband filter.
Ge, Jia; Fok, Mable P
2015-11-02
A reconfigurable microwave photonic (MWP) multiband filter with selectable and switchable passbands is proposed and experimentally demonstrated, with a maximum of 12 simultaneous passbands evenly distributed from 0 to 10 GHz. The scheme is based on the generation of tunable optical comb lines using a two-stage Lyot loop filter, such that various filter tap spacings and spectral combinations are obtained for the configuration of the MWP filter. Through polarization state adjustment inside the Lyot loop filter, an optical frequency comb with 12 different comb spacings is achieved, which corresponds to a MWP filter with 12 selectable passbands. Center frequencies of the filter passbands are switchable, while the number of simultaneous passbands is tunable from 1 to 12. Furthermore, the MWP multiband filter can either work as an all-block, single-band or multiband filter with various passband combinations, which provide exceptional operation flexibility. All the passbands have over 30 dB sidelobe suppression and 3-dB bandwidth of 200 MHz, providing good filter selectivity.
Multiband Photonic Phased-Array Antenna
NASA Technical Reports Server (NTRS)
Tang, Suning
2015-01-01
A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.
Multi-band phase shifter design using modified slotline configuration
NASA Astrophysics Data System (ADS)
Kulandhaisamy, Indhumathi; Rajendran, Dinesh Babu; Kanagasabai, Malathi; Gurusamy, Gunasekaran; Moorthy, Balaji; George, Jithila V.; Lawrance, Livya
2017-01-01
In this paper, an analog multiband phase shifter using slotline configuration is proposed. To implement the design, a pair of modified Split Ring Resonator (SRR) is employed. The periodic property of SRR provides multiband characteristics, whether the coupling slot gives the phase variations over the bands. The operation is well explained with an equivalent circuit model and its characteristics have been studied both in simulation and measurement. The prototype operates in 1.77-2.16, 3.5-3.97, 5.08-5.33, 6.43-6.93, and 8.01-8.59 GHz frequency bands which can be utilized for GSM, GPS, WLAN, C-band, and X-band applications, respectively.
NASA Astrophysics Data System (ADS)
He, Jing; Dai, Min; Chen, Qinghui; Deng, Rui; Xiang, Changqing; Chen, Lin
2017-07-01
In this paper, an effective bit-loading combined with adaptive LDPC code rate algorithm is proposed and investigated in software reconfigurable multiband UWB over fiber system. To compensate the power fading and chromatic dispersion for the high frequency of multiband OFDM UWB signal transmission over standard single mode fiber (SSMF), a Mach-Zehnder modulator (MZM) with negative chirp parameter is utilized. In addition, the negative power penalty of -1 dB for 128 QAM multiband OFDM UWB signal are measured at the hard-decision forward error correction (HD-FEC) limitation of 3.8 × 10-3 after 50 km SSMF transmission. The experimental results show that, compared to the fixed coding scheme with the code rate of 75%, the signal-to-noise (SNR) is improved by 2.79 dB for 128 QAM multiband OFDM UWB system after 100 km SSMF transmission using ALCR algorithm. Moreover, by employing bit-loading combined with ALCR algorithm, the bit error rate (BER) performance of system can be further promoted effectively. The simulation results present that, at the HD-FEC limitation, the value of Q factor is improved by 3.93 dB at the SNR of 19.5 dB over 100 km SSMF transmission, compared to the fixed modulation with uncoded scheme at the same spectrum efficiency (SE).
LARSPEC spectroradiometer-multiband radiometer data formats
NASA Technical Reports Server (NTRS)
Biehl, L. L.
1982-01-01
The data base software system, LARSPEC, is discussed and the data base format for agronomic, meteorological, spectroradiometer, and multiband radiometer data is described. In addition, the contents and formats of each record of data and the wavelength tables are listed and the codes used for some of the parameters are described.
Multi-band gap and new solar cell options workshop
NASA Technical Reports Server (NTRS)
Hutchby, J.; Timmons, M.; Olson, J. M.
1993-01-01
Discussions of the multi-band gap (MBG) and new solar cell options workshop are presented. Topics discussed include: greater than 2 terminal cells; radiation damage preventing development of MBG cells for space; lattice matching; measurement of true performance; future of II-VI materials in MBG devices; and quaternaries.
Evaluation of one-step luminescent cyanoacrylate fuming.
Khuu, Alicia; Chadwick, Scott; Spindler, Xanthe; Lam, Rolanda; Moret, Sébastien; Roux, Claude
2016-06-01
One-step luminescent cyanoacrylates have recently been introduced as an alternative to the conventional cyanoacrylate fuming methods. These new techniques do not require the application of a luminescent post-treatment in order to enhance cyanoacrylate-developed fingermarks. In this study, three one-step polymer cyanoacrylates: CN Yellow Crystals (Aneval Inc.), PolyCyano UV (Foster+Freeman Ltd.) and PECA Multiband (BVDA), and one monomer cyanoacrylate: Lumikit™ (Crime Scene Technology), were evaluated against a conventional two-step cyanoacrylate fuming method (Cyanobloom (Foster+Freeman Ltd.) with rhodamine 6G stain). The manufacturers' recommended conditions or conditions compatible with the MVC™ 1000/D (Foster+Freeman Ltd.) were assessed with fingermarks aged for up to 8 weeks on non-porous and semi-porous substrates. Under white light, Cyanobloom generally gave better development than the one-step treatments across the substrates. Similarly when viewed under the respective luminescent conditions, Cyanobloom with rhodamine 6G stain resulted in improved contrast against the one-step treatments except on polystyrene, where PolyCyano UV and PECA Multiband gave better visualisation. Rhodamine 6G post-treatment of one-step samples did not significantly enhance the contrast of any of the one-step treatments against Cyanobloom/rhodamine 6G-treated samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.
Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue
2014-12-15
We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.
Moridsadat, Maryam; Golmohammadi, Saeed; Baghban, Hamed
2018-06-01
In this paper, we propose a terahertz (THz) plasmonic structure that supports three resonance modes, including the charge transfer plasmon (CTP), the bonding dipole-dipole plasmon, and the antibonding dipole-dipole plasmon, which can be strongly tuned by geometrical parameters, passively, and the temperature, actively. The structure exhibits a considerable thermal sensitivity of more than 0.01 THz/K. The introduced multiband and tunable THz plasmonic structures offer important applications in thermal switches, thermo-optical modulators, broadband filters, design of multifunctional molecules originating from the multiband specification of the proposed structure, and improvement in plasmonic sensor applications stemming from a detailed study of the CTP mode.
The optical counterpart of IGR J00291+5934 in quiescence
NASA Astrophysics Data System (ADS)
D'Avanzo, P.; Campana, S.; Covino, S.; Israel, G. L.; Stella, L.; Andreuzzi, G.
2007-09-01
Aims:The recent (December 2004) discovery of the sixth accretion-powered millisecond X-ray pulsar IGR J00291+5934 provides a very good chance to deepen our knowledge of such systems. Although these systems are well studied at high energies, poor informations are available for their optical/NIR counterparts during quiescence. Up to now, only for SAX J1808.4-3658, the first discovered system of this type, we have a secure multiband detection of its optical counterpart in quiescence. Among the seven known system IGR J00291+5934 is the one that resembles SAX J1808.4-3658 more closely. Methods: With the Italian 3.6 m TNG telescope, we have performed deep optical and NIR photometry of the field of IGR J00291+5934 during quiescence in order to look for the presence of a variable counterpart. Results: We present here the first multiband (VRIJH) detection of the optical and NIR counterpart of IGR J00291+5934 in quiescence as well as a deep upper limit in the K-band. We obtain an optical light curve that shows variability consistent with a sinusoidal modulation at the known 2.46 h orbital period and present evidence for a strongly irradiated companion. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.
Larson, Peder E. Z.; Hu, Simon; Lustig, Michael; Kerr, Adam B.; Nelson, Sarah J.; Kurhanewicz, John; Pauly, John M.; Vigneron, Daniel B.
2010-01-01
Hyperpolarized 13C MRSI can detect not only the uptake of the pre-polarized molecule but also its metabolic products in vivo, thus providing a powerful new method to study cellular metabolism. Imaging the dynamic perfusion and conversion of these metabolites provides additional tissue information but requires methods for efficient hyperpolarization usage and rapid acquisitions. In this work, we have developed a time-resolved 3D MRSI method for acquiring hyperpolarized 13C data by combining compressed sensing methods for acceleration and multiband excitation pulses to efficiently use the magnetization. This method achieved a 2 sec temporal resolution with full volumetric coverage of a mouse, and metabolites were observed for up to 60 sec following injection of hyperpolarized [1-13C]-pyruvate. The compressed sensing acquisition used random phase encode gradient blips to create a novel random undersampling pattern tailored to dynamic MRSI with sampling incoherency in four (time, frequency and two spatial) dimensions. The reconstruction was also tailored to dynamic MRSI by applying a temporal wavelet sparsifying transform in order to exploit the inherent temporal sparsity. Customized multiband excitation pulses were designed with a lower flip angle for the [1-13C]-pyruvate substrate given its higher concentration than its metabolic products ([1-13C]-lactate and [1-13C]-alanine), thus using less hyperpolarization per excitation. This approach has enabled the monitoring of perfusion and uptake of the pyruvate, and the conversion dynamics to lactate and alanine throughout a volume with high spatial and temporal resolution. PMID:20939089
Tunable multi-band absorption in metasurface of graphene ribbons based on composite structure
NASA Astrophysics Data System (ADS)
Ning, Renxia; Jiao, Zheng; Bao, Jie
2017-05-01
A tunable multiband absorption based on a graphene metasurface of composite structure at mid-infrared frequency was investigated by the finite difference time domain method. The composite structure were composed of graphene ribbons and a gold-MgF2 layer which was sandwiched in between two dielectric slabs. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. And the absorption of the composite structure can be tuned by the chemical potential of graphene at certain frequencies. The impedance matching was used to study the perfect absorption of the structure in our paper. The results show that multi-band absorption can be obtained and some absorption peaks of the composite structure can be tuned through the changing not only of the width of graphene ribbons and gaps, but also the dielectric and the chemical potential of graphene. However, another peak was hardly changed by parameters due to a different resonant mechanism in proposed structure. This flexibily tunable multiband absorption may be applied to optical communications such as optical absorbers, mid infrared stealth devices and filters.
Aboutabikh, Kamal; Aboukerdah, Nader
2015-07-01
In this paper, we propose a practical way to synthesize and filter an ECG signal in the presence of four types of interference signals: (1) those arising from power networks with a fundamental frequency of 50Hz, (2) those arising from respiration, having a frequency range from 0.05 to 0.5Hz, (3) muscle signals with a frequency of 25Hz, and (4) white noise present within the ECG signal band. This was done by implementing a multiband digital filter (seven bands) of type FIR Multiband Least Squares using a digital programmable device (Cyclone II EP2C70F896C6 FPGA, Altera), which was placed on an education and development board (DE2-70, Terasic). This filter was designed using the VHDL language in the Quartus II 9.1 design environment. The proposed method depends on Direct Digital Frequency Synthesizers (DDFS) designed to synthesize the ECG signal and various interference signals. So that the synthetic ECG specifications would be closer to actual ECG signals after filtering, we designed in a single multiband digital filter instead of using three separate digital filters LPF, HPF, BSF. Thus all interference signals were removed with a single digital filter. The multiband digital filter results were studied using a digital oscilloscope to characterize input and output signals in the presence of differing sinusoidal interference signals and white noise. Copyright © 2015 Elsevier Ltd. All rights reserved.
Design and analysis of a multi-passband complex filter for the multiband cognitive radar system
NASA Astrophysics Data System (ADS)
Lee, Hua-Chin; Ting, Der-Hong; Tsao, Ya-Lan
2017-05-01
Multiband cognitive radar systems, operating in a variety of frequency bands and combining the different channels into a joint system, can provide significant flexibility and capability to detect and track hostile targets. This paper proposes a multi-passband complex filter (MPCF) architecture and the related circuit design for a multiband cognitive radar system. By operating under the 5.8GHz UNII band, the sensing part detects the current usage of frequency bands from 5.15GHz to 5.825GHz and provides the information of unused channels. The multiband cognitive radar system uses the whole unused channels and eliminates the used channels by using an on-chip MPCF in order to be coexistent with the Wi-Fi standard. The MPCF filters out the unwanted channels and leave the wanted channels. It dynamically changes the bandwidth of frequency from 20MHz to 80MHz using the 0.18μm CMOS technology. The MPCF is composed of the combination of 5th-order Chebyshev low-pass filters and high-pass filters, and the overall inband ripple of the MPCF is 1.2dB. The consuming current is 21.7mA at 1.8V power supply and the 20MHz bandwidth noise is 55.5nV. The total harmonic distortion (THD) is 45dB at 25MHz and the adjacent channel rejection is 24dB. The result of the MPCF guarantees the performance requirements of the multiband cognitive radar system.
Hogervorst, Maarten A.; Pinkus, Alan R.
2016-01-01
The fusion and enhancement of multiband nighttime imagery for surveillance and navigation has been the subject of extensive research for over two decades. Despite the ongoing efforts in this area there is still only a small number of static multiband test images available for the development and evaluation of new image fusion and enhancement methods. Moreover, dynamic multiband imagery is also currently lacking. To fill this gap we present the TRICLOBS dynamic multi-band image data set containing sixteen registered visual (0.4–0.7μm), near-infrared (NIR, 0.7–1.0μm) and long-wave infrared (LWIR, 8–14μm) motion sequences. They represent different military and civilian surveillance scenarios registered in three different scenes. Scenes include (military and civilian) people that are stationary, walking or running, or carrying various objects. Vehicles, foliage, and buildings or other man-made structures are also included in the scenes. This data set is primarily intended for the development and evaluation of image fusion, enhancement and color mapping algorithms for short-range surveillance applications. The imagery was collected during several field trials with our newly developed TRICLOBS (TRI-band Color Low-light OBServation) all-day all-weather surveillance system. This system registers a scene in the Visual, NIR and LWIR part of the electromagnetic spectrum using three optically aligned sensors (two digital image intensifiers and an uncooled long-wave infrared microbolometer). The three sensor signals are mapped to three individual RGB color channels, digitized, and stored as uncompressed RGB (false) color frames. The TRICLOBS data set enables the development and evaluation of (both static and dynamic) image fusion, enhancement and color mapping algorithms. To allow the development of realistic color remapping procedures, the data set also contains color photographs of each of the three scenes. The color statistics derived from these photographs can be used to define color mappings that give the multi-band imagery a realistic color appearance. PMID:28036328
Toet, Alexander; Hogervorst, Maarten A; Pinkus, Alan R
2016-01-01
The fusion and enhancement of multiband nighttime imagery for surveillance and navigation has been the subject of extensive research for over two decades. Despite the ongoing efforts in this area there is still only a small number of static multiband test images available for the development and evaluation of new image fusion and enhancement methods. Moreover, dynamic multiband imagery is also currently lacking. To fill this gap we present the TRICLOBS dynamic multi-band image data set containing sixteen registered visual (0.4-0.7μm), near-infrared (NIR, 0.7-1.0μm) and long-wave infrared (LWIR, 8-14μm) motion sequences. They represent different military and civilian surveillance scenarios registered in three different scenes. Scenes include (military and civilian) people that are stationary, walking or running, or carrying various objects. Vehicles, foliage, and buildings or other man-made structures are also included in the scenes. This data set is primarily intended for the development and evaluation of image fusion, enhancement and color mapping algorithms for short-range surveillance applications. The imagery was collected during several field trials with our newly developed TRICLOBS (TRI-band Color Low-light OBServation) all-day all-weather surveillance system. This system registers a scene in the Visual, NIR and LWIR part of the electromagnetic spectrum using three optically aligned sensors (two digital image intensifiers and an uncooled long-wave infrared microbolometer). The three sensor signals are mapped to three individual RGB color channels, digitized, and stored as uncompressed RGB (false) color frames. The TRICLOBS data set enables the development and evaluation of (both static and dynamic) image fusion, enhancement and color mapping algorithms. To allow the development of realistic color remapping procedures, the data set also contains color photographs of each of the three scenes. The color statistics derived from these photographs can be used to define color mappings that give the multi-band imagery a realistic color appearance.
An Overview of SBIR Phase 2 Communications Technology and Development
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are eighteen technologies featured with emphasis on a wide spectrum of applications such as with a security-enhanced autonomous network management, secure communications using on-demand single photons, cognitive software-defined radio, spacesuit audio systems, multiband photonic phased-array antenna, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.
VizieR Online Data Catalog: 25 parsec local white dwarf population (Holberg+, 2016)
NASA Astrophysics Data System (ADS)
Holberg, J. B.; Oswalt, T. D.; Sion, E. M.; McCook, G. P.
2018-02-01
Table 1 presents the basic properties of the 232 WDs in the LS25 identified by WD number and alternate name. Existing multiband photometry for each star in our LS25 sample is listed in Table 2. Table 3 provides the adapted distances calculated from the trigonometric parallaxes (see Table 1) or photometric distances calculated from the adapted Teff and logg photometry in Table 2. (3 data files).
Dynamic reflectance of tin shocked from its beta to BCT phase
NASA Astrophysics Data System (ADS)
Stevens, Gerald; La Lone, Brandon; Veeser, Lynn; Turley, Dale
2015-06-01
Shock-induced phase transitions have historically been inferred by features in loading/unloading velocity wave profiles, which arise due to volume or sound speed differences between phases. In 2010, we used a flash-lamp illuminated multi-band reflectometer to demonstrate that iron, tin, cerium, and gallium have measureable reflectance changes at phase boundaries. We have improved upon our prior technique, utilizing an integrating sphere with an internal xenon flash lamp to illuminate a shocked metal beneath a LiF window. The new reflectance system is insensitive to motion, tilt, or curvature and measures the absolute (not relative) reflectance within five bands centered at 500, 700, 850, 1300, and 1550 nm. We have made dynamic reflectance measurements of tin samples shocked to pressures above and below the beta-bct phase transition using either high explosives or a gas gun. Below the transition, the visible reflectance decreases with pressure. At and above the transition, the visible reflectance increases to values higher than the ambient values. Reflectance can therefore be used to locate the beta-bct phase transition boundary for tin, independent of the velocity wave profile. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy, and supported by the Site-Directed Research and Development Program.
Analysis of remote sensing data for evaluation of vegetation resources
NASA Technical Reports Server (NTRS)
1970-01-01
Research has centered around: (1) completion of a study on the use of remote sensing techniques as an aid to multiple use management; (2) determination of the information transfer at various image resolution levels for wildland areas; and (3) determination of the value of small scale multiband, multidate photography for the analysis of vegetation resources. In addition, a substantial effort was made to upgrade the automatic image classification and spectral signature acquisition capabilities of the laboratory. It was found that: (1) Remote sensing techniques should be useful in multiple use management to provide a first-cut analysis of an area. (2) Imagery with 400-500 feet ground resolvable distance (GRD), such as that expected from ERTS-1, should allow discriminations to be made between woody vegetation, grassland, and water bodies with approximately 80% accuracy. (3) Barley and wheat acreages in Maricopa County, Arizona could be estimated with acceptable accuracies using small scale multiband, multidate photography. Sampling errors for acreages of wheat, barley, small grains (wheat and barley combined), and all cropland were 13%, 11%, 8% and 3% respectively.
Portable real-time color night vision
NASA Astrophysics Data System (ADS)
Toet, Alexander; Hogervorst, Maarten A.
2008-03-01
We developed a simple and fast lookup-table based method to derive and apply natural daylight colors to multi-band night-time images. The method deploys an optimal color transformation derived from a set of samples taken from a daytime color reference image. The colors in the resulting colorized multiband night-time images closely resemble the colors in the daytime color reference image. Also, object colors remain invariant under panning operations and are independent of the scene content. Here we describe the implementation of this method in two prototype portable dual band realtime night vision systems. One system provides co-aligned visual and near-infrared bands of two image intensifiers, the other provides co-aligned images from a digital image intensifier and an uncooled longwave infrared microbolometer. The co-aligned images from both systems are further processed by a notebook computer. The color mapping is implemented as a realtime lookup table transform. The resulting colorised video streams can be displayed in realtime on head mounted displays and stored on the hard disk of the notebook computer. Preliminary field trials demonstrate the potential of these systems for applications like surveillance, navigation and target detection.
The Design and Analysis of a Novel Split-H-Shaped Metamaterial for Multi-Band Microwave Applications
Islam, Sikder Sunbeam; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2014-01-01
This paper presents the design and analysis of a novel split-H-shaped metamaterial unit cell structure that is applicable in a multi-band frequency range and that exhibits negative permeability and permittivity in those frequency bands. In the basic design, the separate split-square resonators are joined by a metal link to form an H-shaped unit structure. Moreover, an analysis and a comparison of the 1 × 1 array and 2 × 2 array structures and the 1 × 1 and 2 × 2 unit cell configurations were performed. All of these configurations demonstrate multi-band operating frequencies (S-band, C-band, X-band and Ku-band) with double-negative characteristics. The equivalent circuit model and measured result for each unit cell are presented to validate the resonant behavior. The commercially available finite-difference time-domain (FDTD)-based simulation software, Computer Simulation Technology (CST) Microwave Studio, was used to obtain the reflection and transmission parameters of each unit cell. This is a novel and promising design in the electromagnetic paradigm for its simplicity, scalability, double-negative characteristics and multi-band operation. PMID:28788116
Islam, Sikder Sunbeam; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2014-07-02
This paper presents the design and analysis of a novel split-H-shaped metamaterial unit cell structure that is applicable in a multi-band frequency range and that exhibits negative permeability and permittivity in those frequency bands. In the basic design, the separate split-square resonators are joined by a metal link to form an H-shaped unit structure. Moreover, an analysis and a comparison of the 1 × 1 array and 2 × 2 array structures and the 1 × 1 and 2 × 2 unit cell configurations were performed. All of these configurations demonstrate multi-band operating frequencies (S-band, C-band, X-band and K u -band) with double-negative characteristics. The equivalent circuit model and measured result for each unit cell are presented to validate the resonant behavior. The commercially available finite-difference time-domain (FDTD)-based simulation software, Computer Simulation Technology (CST) Microwave Studio, was used to obtain the reflection and transmission parameters of each unit cell. This is a novel and promising design in the electromagnetic paradigm for its simplicity, scalability, double-negative characteristics and multi-band operation.
Homogenization limit for a multiband effective mass model in heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morandi, O., E-mail: morandi@ipcms.unistra.fr
We study the homogenization limit of a multiband model that describes the quantum mechanical motion of an electron in a quasi-periodic crystal. In this approach, the distance among the atoms that constitute the material (lattice parameter) is considered a small quantity. Our model include the description of materials with variable chemical composition, intergrowth compounds, and heterostructures. We derive the effective multiband evolution system in the framework of the kp approach. We study the well posedness of the mathematical problem. We compare the effective mass model with the standard kp models for uniform and non-uniforms crystals. We show that in themore » limit of vanishing lattice parameter, the particle density obtained by the effective mass model, converges to the exact probability density of the particle.« less
Waveguide transition with vacuum window for multiband dynamic nuclear polarization systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy
2016-05-15
A low loss waveguide transition section and oversized microwave vacuum window covering several frequency bands (94 GHz, 140 GHz, 188 GHz) is presented. The transition is compact and was optimized for multiband Dynamic Nuclear Polarization (DNP) systems in a full-wave simulator. The window is more broadband than commercially available windows, which are usually optimized for single band operation. It is demonstrated that high-density polyethylene with urethane adhesive can be used as a low loss microwave vacuum window in multiband DNP systems. The overall assembly performance and dimensions are found using full-wave simulations. The practical aspects of the window implementation inmore » the waveguide are discussed. To verify the design and simulation results, the window is tested experimentally at the three frequencies of interest.« less
Multiband phase-modulated radio over IsOWC link with balanced coherent homodyne detection
NASA Astrophysics Data System (ADS)
Zong, Kang; Zhu, Jiang
2017-11-01
In this paper, we present a multiband phase-modulated radio over intersatellite optical wireless communication (IsOWC) link with balanced coherent homodyne detection. The proposed system can provide high linearity for transparent transport of multiband radio frequency (RF) signals and better receiver sensitivity than intensity modulated with direct detection (IM/DD) system. The exact analytical expression of signal to noise and distortion ratio (SNDR) is derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. Numerical results of SNDR with various number of subchannels and modulation index are given. Results indicate that the optimal modulation index exists to maximize the SNDR. With the same system parameters, the value of the optimal modulation index will decrease with the increase of number of subchannels.
Stellar Populations and Nearby Galaxies with the LSST
NASA Astrophysics Data System (ADS)
Saha, Abhijit; Olsen, K.; Monet, D. G.; LSST Stellar Populations Collaboration
2009-01-01
The LSST will produce a multi-color map and photometric object catalog of half the sky to r=27.6 (AB mag; 5-sigma). Time-space sampling of each field spanning ten years will allow variability, proper motion and parallax measurements for objects brighter than r=24.7. As part of providing an unprecedented map of the Galaxy, the accurate multi-band photometry will permit photometric parallaxes, chemical abundances and a handle on ages via colors at turn-off for main-sequence (MS) stars at all distances within the Galaxy as well as in the Magellanic Clouds, and dwarf satellites of the Milky Way. This will support comprehensive studies of star formation histories and chemical evolution for field stars. The structures of the Clouds and dwarf spheroidals will be traced with the MS stars, to equivalent surface densities fainter than 35 mag/square arc-second. With geometric parallax accuracy of 1 milli-arc-sec, comparable to HIPPARCOS but reaching more than 10 magnitudes fainter, a robust complete sample of solar neighborhood stars will be obtained. The LSST time sampling will identify and characterize variable stars of all types, from time scales of 1 hr to several years, a feast for variable star astrophysics. The combination of wide coverage, multi-band photometry, time sampling and parallax taken together will address several key problems: e.g. fine tuning the extragalactic distance scale by examining properties of RR Lyraes and Cepheids as a function of parent populations, extending the faint end of the galaxy luminosity function by discovering them using star count density enhancements on degree scales tracing, and indentifying inter-galactic stars through novae and Long Period Variables.
Superconductivity between standard types: Multiband versus single-band materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vagov, A.; Shanenko, A. A.; Milošević, M. V.
In the nearest vicinity of the critical temperature, types I and II of conventional single-band superconductors interchange at the Ginzburg-Landau parameter κ = 1/√2. At lower temperatures this point unfolds into a narrow but finite interval of κ’s, shaping an intertype (transitional) domain in the (κ,T ) plane. In the present work, based on the extended Ginzburg-Landau formalism, we show that the same picture of the two standard types with the transitional domain in between applies also to multiband superconductors. However, the intertype domain notably widens in the presence of multiple bands and can become extremely large when the systemmore » has a significant disparity between the band parameters. It is concluded that many multiband superconductors, such as recently discovered borides and iron-based materials, can belong to the intertype regime.« less
Remote sensing of vigor loss in conifers due to dwarf mistletoe
NASA Technical Reports Server (NTRS)
Meyer, M. P.; French, D. W.; Latham, R. P.; Nelson, C. A.; Douglass, R. W.
1971-01-01
The initial operation of a multiband/multidate tower-tramway test site in northeastern Minnesota for the development of specifications for subsequent multiband aerial photography of more extensive study areas was completed. Multiband/multidate configurations suggested by the tower-tramway studies were and will be flown with local equipment over the Togo test site. This site was photographed by the NASA RB57F aircraft in August and September 1971. It appears that, of all the film/filter combinations attempted to date (including optical recombining of several spectral band images via photo enhancement techniques), Ektachrome infrared film with a Wratten 12 filter is the best for detecting dwarf mistletoe, and other tree diseases as well. Using this film/filter combination, infection centers are easily detectable even on the smallest photo scale (1:100,000) obtained on the Togo site.
VizieR Online Data Catalog: Spitzer obs. of warm dust in 83 debris disks (Ballering+, 2017)
NASA Astrophysics Data System (ADS)
Ballering, N. P.; Rieke, G. H.; Su, K. Y. L.; Gaspar, A.
2018-04-01
For our sample, we used the systems with a warm component found by Ballering+ (2013, J/ApJ/775/55), where "warm" was defined as warmer than 130K. All of these systems have data available from the Multiband Imaging Photometer for Spitzer (MIPS) at 24 and 70um and from the Spitzer Infrared Spectrograph (IRS). The selected 83 targets used for our analysis are listed in Table 1. (5 data files).
[Algorithms of multiband remote sensing for coastal red tide waters].
Mao, Xianmou; Huang, Weigen
2003-07-01
The spectral characteristics of the coastal waters in East China Sea was studied using in situ measurements, and the multiband algorithms of remote sensing for bloom waters was discussed and developed. Examples of red tide detection using the algorithms in the East China Sea were presented. The results showed that the algorithms could provide information about the location and the area coverage of the red tide events.
NASA Astrophysics Data System (ADS)
Proklov, V. V.; Rezvov, Yu. G.
2018-01-01
An analytical solution for the transmission function of noncoherent wideband radiation is obtained under acousto-optic (AO) filtering using a discrete set of monochromatic AO waves with a small spectral overlap. We studied characteristics of the AO transformation of a continuous spectrum of noncoherent radiation into a given set of discrete narrow bands of spectral transmission by excitation of a discrete set of sound frequencies. We carried out the analysis of transmission functions of individual channels taking into account a partial overlap of their spectra and possible intermodulation distortions. It is shown that a stationary value of the root-mean-square light power is found at the electronic output due to the photoelectric transformation and detecting diffracted light. Based on this, a necessary stationary, multiband, and nearly equidistant transmission function of a device can be formed by using a relevant spectrum of acoustic excitation. Peculiarities of this way of forming the multiband transmission function are revealed: the limitation of diffraction efficiency for an individual channel, the possibility of decoupling side lobes of adjacent channels, etc. A multiband acousto-optic filter (MAOF) was simulated that was based on a paratellurite monocrystal (TeO2), which was previously used for experimental optical encoding. The theoretical and experimental results are in gratifying agreement.
A multi-band environment-adaptive approach to noise suppression for cochlear implants.
Saki, Fatemeh; Mirzahasanloo, Taher; Kehtarnavaz, Nasser
2014-01-01
This paper presents an improved environment-adaptive noise suppression solution for the cochlear implants speech processing pipeline. This improvement is achieved by using a multi-band data-driven approach in place of a previously developed single-band data-driven approach. Seven commonly encountered noisy environments of street, car, restaurant, mall, bus, pub and train are considered to quantify the improvement. The results obtained indicate about 10% improvement in speech quality measures.
A Matrix Pencil Algorithm Based Multiband Iterative Fusion Imaging Method
NASA Astrophysics Data System (ADS)
Zou, Yong Qiang; Gao, Xun Zhang; Li, Xiang; Liu, Yong Xiang
2016-01-01
Multiband signal fusion technique is a practicable and efficient way to improve the range resolution of ISAR image. The classical fusion method estimates the poles of each subband signal by the root-MUSIC method, and some good results were get in several experiments. However, this method is fragile in noise for the proper poles could not easy to get in low signal to noise ratio (SNR). In order to eliminate the influence of noise, this paper propose a matrix pencil algorithm based method to estimate the multiband signal poles. And to deal with mutual incoherent between subband signals, the incoherent parameters (ICP) are predicted through the relation of corresponding poles of each subband. Then, an iterative algorithm which aimed to minimize the 2-norm of signal difference is introduced to reduce signal fusion error. Applications to simulate dada verify that the proposed method get better fusion results at low SNR.
A Matrix Pencil Algorithm Based Multiband Iterative Fusion Imaging Method
Zou, Yong Qiang; Gao, Xun Zhang; Li, Xiang; Liu, Yong Xiang
2016-01-01
Multiband signal fusion technique is a practicable and efficient way to improve the range resolution of ISAR image. The classical fusion method estimates the poles of each subband signal by the root-MUSIC method, and some good results were get in several experiments. However, this method is fragile in noise for the proper poles could not easy to get in low signal to noise ratio (SNR). In order to eliminate the influence of noise, this paper propose a matrix pencil algorithm based method to estimate the multiband signal poles. And to deal with mutual incoherent between subband signals, the incoherent parameters (ICP) are predicted through the relation of corresponding poles of each subband. Then, an iterative algorithm which aimed to minimize the 2-norm of signal difference is introduced to reduce signal fusion error. Applications to simulate dada verify that the proposed method get better fusion results at low SNR. PMID:26781194
NASA Astrophysics Data System (ADS)
Zong, Kang; Zhu, Jiang
2018-04-01
In this paper, we present a multiband phase-modulated (PM) radio over intersatellite optical wireless communication (IsOWC) link with balanced coherent homodyne detection. The proposed system can provide the transparent transport of multiband radio frequency (RF) signals with higher linearity and better receiver sensitivity than intensity modulated with direct detection (IM/DD) system. The expressions of RF gain, noise figure (NF) and third-order spurious-free dynamic range (SFDR) are derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. The optimal power of local oscillator (LO) optical signal is also derived theoretically. Numerical results for RF gain, NF and third-order SFDR are given for demonstration. Results indicate that the gain of the optical preamplifier and the power of LO optical signal should be optimized to obtain the satisfactory performance.
Multiband DSB-SC modulated radio over IsOWC link with coherent homodyne detection
NASA Astrophysics Data System (ADS)
Kang, Zong; Zhu, Jiang
2018-02-01
In this paper, we present a multiband double sideband-suppressed carrier (DSB-SC) modulated radio over intersatellite optical wireless communication (IsOWC) link with coherent homodyne detection. The proposed system can provide the transparent transport of multiband radio frequency (RF) signals with higher linearity and better receiver sensitivity than the intensity modulated with direct detection (IM/DD) scheme. The full system model and the exactly analytical expression of signal to noise and distortion ratio (SNDR) are derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. The finite extinction ratio (ER) of Mach-Zehnder Modulator (MZM) and the saturation property of erbium doped fiber amplifier (EDFA) are also considered. Numerical results of SNDR with various numbers of subchannels and ERs are given. Results indicate that the optimal modulation index exists to maximize the SNDR and the power of local oscillator (LO) carrier should be within an appropriate range.
Multiband product rule and consonant identification.
Li, Feipeng; Allen, Jont B
2009-07-01
The multiband product rule, also known as band-independence, is a basic assumption of articulation index and its extension, the speech intelligibility index. Previously Fletcher showed its validity for a balanced mix of 20% consonant-vowel (CV), 20% vowel-consonant (VC), and 60% consonant-vowel-consonant (CVC) sounds. This study repeats Miller and Nicely's version of the hi-/lo-pass experiment with minor changes to study band-independence for the 16 Miller-Nicely consonants. The cut-off frequencies are chosen such that the basilar membrane is evenly divided into 12 segments from 250 to 8000 Hz with the high-pass and low-pass filters sharing the same six cut-off frequencies in the middle. Results show that the multiband product rule is statistically valid for consonants on average. It also applies to subgroups of consonants, such as stops and fricatives, which are characterized by a flat distribution of speech cues along the frequency. It fails for individual consonants.
Interband interference effects at the edge of a multiband chiral p -wave superconductor
NASA Astrophysics Data System (ADS)
Zhang, Jia-Long; Huang, Wen; Sigrist, Manfred; Yao, Dao-Xin
2017-12-01
Chiral superconductors support chiral edge modes and potentially spontaneous edge currents at their boundaries. Motivated by the putative multiband chiral p -wave superconductor Sr2RuO4 , we study the influence of the interference between different bands at the edges, which may appear in the presence of moderate edge disorder or in edge tunneling measurements. We show that interband interference can strongly modify the measurable quantities at the edges when the order parameter exhibits phase difference between the bands. This is illustrated by investigating the edge dispersion and the edge current distribution in the presence of interband mixing, as well as the conductance at a tunneling junction. The results are discussed in connection with the putative chiral p -wave superconductor Sr2RuO4 . In passing, we also discuss similar interference effects in multiband models with other pairing symmetries.
Multiband super-resolution imaging of graded-index photonic crystal flat lens
NASA Astrophysics Data System (ADS)
Xie, Jianlan; Wang, Junzhong; Ge, Rui; Yan, Bei; Liu, Exian; Tan, Wei; Liu, Jianjun
2018-05-01
Multiband super-resolution imaging of point source is achieved by a graded-index photonic crystal flat lens. With the calculations of six bands in common photonic crystal (CPC) constructed with scatterers of different refractive indices, it can be found that the super-resolution imaging of point source can be realized by different physical mechanisms in three different bands. In the first band, the imaging of point source is based on far-field condition of spherical wave while in the second band, it is based on the negative effective refractive index and exhibiting higher imaging quality than that of the CPC. However, in the fifth band, the imaging of point source is mainly based on negative refraction of anisotropic equi-frequency surfaces. The novel method of employing different physical mechanisms to achieve multiband super-resolution imaging of point source is highly meaningful for the field of imaging.
Chen, Jun; Quan, Wenting; Cui, Tingwei
2015-01-01
In this study, two sample semi-analytical algorithms and one new unified multi-band semi-analytical algorithm (UMSA) for estimating chlorophyll-a (Chla) concentration were constructed by specifying optimal wavelengths. The three sample semi-analytical algorithms, including the three-band semi-analytical algorithm (TSA), four-band semi-analytical algorithm (FSA), and UMSA algorithm, were calibrated and validated by the dataset collected in the Yellow River Estuary between September 1 and 10, 2009. By comparing of the accuracy of assessment of TSA, FSA, and UMSA algorithms, it was found that the UMSA algorithm had a superior performance in comparison with the two other algorithms, TSA and FSA. Using the UMSA algorithm in retrieving Chla concentration in the Yellow River Estuary decreased by 25.54% NRMSE (normalized root mean square error) when compared with the FSA algorithm, and 29.66% NRMSE in comparison with the TSA algorithm. These are very significant improvements upon previous methods. Additionally, the study revealed that the TSA and FSA algorithms are merely more specific forms of the UMSA algorithm. Owing to the special form of the UMSA algorithm, if the same bands were used for both the TSA and UMSA algorithms or FSA and UMSA algorithms, the UMSA algorithm would theoretically produce superior results in comparison with the TSA and FSA algorithms. Thus, good results may also be produced if the UMSA algorithm were to be applied for predicting Chla concentration for datasets of Gitelson et al. (2008) and Le et al. (2009).
Selective coherent perfect absorption in metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Guangyu; Shi, Quanchao; Zhu, Zheng
2014-11-17
We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.
VizieR Online Data Catalog: KiDS-ESO-DR3 multi-band source catalog (de Jong+, 2017)
NASA Astrophysics Data System (ADS)
de Jong, J. T. A.; Verdoes Kleijn, G. A.; Erben, T.; Hildebrandt, H.; Kuijken, K.; Sikkema, G.; Brescia, M.; Bilicki, M.; Napolitano, N. R.; Amaro, V.; Begeman, K. G.; Boxhoorn, D. R.; Buddelmeijer, H.; Cavuoti, S.; Getman, F.; Grado, A.; Helmich, E.; Huang, Z.; Irisarri, N.; La Barbera, F.; Longo, G.; McFarland, J. P.; Nakajima, R.; Paolillo, M.; Puddu, E.; Radovich, M.; Rifatto, A.; Tortora, C; Valentijn, E. A.; Vellucci, C.; Vriend, W-J.; Amon, A.; Blake, C.; Choi, A.; Fenech, Conti I.; Herbonnet, R.; Heymans, C.; Hoekstra, H.; Klaes, D.; Merten, J.; Miller, L.; Schneider, P.; Viola, M.
2017-04-01
KiDS-ESO-DR3 contains a multi-band source catalogue encompassing all publicly released tiles, a total of 440 survey tiles including the coadded images, weight maps, masks and source lists of 292 survey tiles of KiDS-ESO-DR3, adding to the 148 tiles released previously (50 in KiDS-ESO-DR1 and 98 in KiDS-ESO-DR2). (1 data file).
Marco-Rius, Irene; Cao, Peng; von Morze, Cornelius; Merrit, Matthew; Moreno, Karlos X; Chang, Gene-Yuan; Ohliger, Michael A.; Pearce, David; Kurhanewicz, John; Larson, Peder E. Z.; Vigneron, Daniel B.
2016-01-01
Purpose To develop a specialized multislice, single-acquisition approach to detect the metabolites of hyperpolarized [2-13C]dihydroxyacetone (DHAc) to probe gluconeogenesis in vivo, which have a broad 144 ppm spectral range (~4.6 KHz at 3T). A novel multiband RF excitation pulse was designed for independent flip angle control over 5-6 spectral-spatial (SPSP) excitation bands, each corrected for chemical shift misregistration effects. Methods Specialized multi-band SPSP RF pulses were designed, tested and applied to investigate hyperpolarized [2-13C]DHAc metabolism in kidney and liver of fasted rats with dynamic 13C-MRS and an optimal flip angle scheme. For comparison, experiments were also performed with narrow-band slice-selective RF pulses and a sequential change of the frequency offset to cover the five frequency bands of interest. Results The SPSP pulses provided a controllable spectral profile free of baseline distortion with improved signal to noise of the metabolite peaks, allowing for quantification of the metabolic products. We observed organ-specific differences in DHAc metabolism. There was 2-5 times more [2-13C]phosphoenolpyruvate and about 19 times more [2-13C]glycerol 3-phosphate in the liver than in the kidney. Conclusion A multiband SPSP RF pulse covering a spectral range over 144 ppm enabled in vivo characterization of HP [2-13C]dihydroxyacetone metabolism in rat liver and kidney. PMID:27017966
Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array.
Aguilar, Suzette M; Al-Joumayly, Mudar A; Burfeindt, Matthew J; Behdad, Nader; Hagness, Susan C
2013-12-18
We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems.
Vitamin D synthesis measured with a multiband filter radiometer in Río Gallegos, Argentina
NASA Astrophysics Data System (ADS)
Orte, Facundo; Wolfram, Elian; Salvador, Jacobo; D'Elia, Raúl; Bulnes, Daniela; Leme, N. Paes; Quel, Eduardo
2013-05-01
Vitamin D plays an important role in human health. Vitamin D production from the sun is affected by UVB solar radiation. This paper presents a simple method for retrieving vitamin D-weighted UV by using a multiband filter radiometer GUV-541 installed at the Atmospheric Observatory of Southern Patagonia (OAPA) (51 ° 33' S, 69° 19' W), Río Gallegos. The methodology used combines irradiance measurements from a multiband filter radiometer with spectral irradiance modeled by the SOS radiative transfer code (developed by Lille University of Science and Technology (USTL)). The spectrum modeled is weighted with vitamin D action spectra published by the International Commission on Illumination (CIE), which describes the relative effectiveness of different wavelengths in the generation of this particular biological response. This method is validated using the vitamin D-weighted UV derived from a Brewer MKIII spectrophotometer (SN 124) belonging to the National Institute for Spatial Research (INPE), Brazil, which is able to measure solar spectra between 290 and 325nm. The method presents a good correlation between the two independent instruments. This procedure increases the instrumental capabilities of the multiband filter radiometer. Moreover, it evaluates the annual variation of vitamin D-weighted UV doses from exposure to ultraviolet radiation. These values are likely to be lower than suitable levels of vitamin D during winter and part of spring and autumn at these latitudes.
Nearby Type Ia Supernova Follow-up at the Thacher Observatory
NASA Astrophysics Data System (ADS)
Swift, Jonathan; O'Neill, Katie; Kilpatrick, Charles; Foley, Ryan
2018-06-01
Type Ia supernovae (SN Ia) provide an effective way to study the expansion of the universe through analyses of their photometry and spectroscopy. The interpretation of high-redshift SN Ia is dependent on accurate characterization of nearby, low-redshift targets. To help build up samples of nearby SN Ia, the Thacher Observatory has begun a photometric follow-up program in 4 photometric bands. Here we present the observations and analysis of multi-band photometry for several recent supernovae as well as FLOYDS spectra from the Las Cumbres Observatory.
NASA Technical Reports Server (NTRS)
Driscoll, R. S.; Francis, R. E.
1970-01-01
A description of space and supporting aircraft photography for the interpretation and analyses of non-forest (shrubby and herbaceous) native vegetation is presented. The research includes the development of a multiple sampling technique to assign quantitative area values of specific plant community types included within an assigned space photograph map unit. Also, investigations of aerial film type, scale, and season of photography for identification and quantity measures of shrubby and herbaceous vegetation were conducted. Some work was done to develop automated interpretation techniques with film image density measurement devices.
Multiband rectenna for microwave applications
NASA Astrophysics Data System (ADS)
Okba, Abderrahim; Takacs, Alexandru; Aubert, Hervé; Charlot, Samuel; Calmon, Pierre-François
2017-02-01
This paper reports a multiband rectenna (rectifier + antenna) suitable for the electromagnetic energy harvesting of the spill-over loss of microwave antennas placed on board of geostationary satellites. Such rectenna is used for powering autonomous wireless sensors for satellite health monitoring. The topology of the rectenna is presented. The experimental results demonstrate that the proposed compact rectenna can harvest efficiently the incident electromagnetic energy at three different frequencies that are close to the resonant frequencies of the cross-dipoles implemented in the antenna array. xml:lang="fr"
1992-12-01
RECEIVE ANTENNAS FOR AN IONOSPHERIC COMMUNICATIONS PROBE SYSTEM: A. MULTIBAND DIPOLE ANTENNA by Sotirios Georgios Perros December, 1992 Thesis Advisor...PROBE SYSTEM: A. MULTIBANDDIPOLE ANTENNA 12 PERSONAL AUTHOR(S) PERROS , Sotirios Georgios 13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year...Sotirios Georgios Perros By Lieutenant, Hellenic Navy Dist! ibution I B.S., Hellenic Naval Academy, 1984 Availabiity des Avail i•,(lior Submitted in
Multi-Band Received Signal Strength Fingerprinting Based Indoor Location System
NASA Astrophysics Data System (ADS)
Sertthin, Chinnapat; Fujii, Takeo; Ohtsuki, Tomoaki; Nakagawa, Masao
This paper proposes a new multi-band received signal strength (MRSS) fingerprinting based indoor location system, which employs the frequency diversity on the conventional single-band received signal strength (RSS) fingerprinting based indoor location system. In the proposed system, the impacts of frequency diversity on the enhancements of positioning accuracy are analyzed. Effectiveness of the proposed system is proved by experimental approach, which was conducted in non line-of-sight (NLOS) environment under the area of 103m2 at Yagami Campus, Keio University. WLAN access points, which simultaneously transmit dual-band signal of 2.4 and 5.2GHz, are utilized as transmitters. Likewise, a dual-band WLAN receiver is utilized as a receiver. Signal distances calculated by both Manhattan and Euclidean were classified by K-Nearest Neighbor (KNN) classifier to illustrate the performance of the proposed system. The results confirmed that Frequency diversity attributions of multi-band signal provide accuracy improvement over 50% of the conventional single-band.
Chen, Cheng-Kuang; Chang, Ming-Hsuan; Wu, Hsieh-Ting; Lee, Yao-Chang; Yen, Ta-Jen
2014-10-15
In this study, we report a multiband plasmonic-antenna array that bridges optical biosensing and intracellular bioimaging without requiring a labeling process or coupler. First, a compact plasmonic-antenna array is designed exhibiting a bandwidth of several octaves for use in both multi-band plasmonic resonance-enhanced vibrational spectroscopy and refractive index probing. Second, a single-element plasmonic antenna can be used as a multifunctional sensing pixel that enables mapping the distribution of targets in thin films and biological specimens by enhancing the signals of vibrational signatures and sensing the refractive index contrast. Finally, using the fabricated plasmonic-antenna array yielded reliable intracellular observation was demonstrated from the vibrational signatures and intracellular refractive index contrast requiring neither labeling nor a coupler. These unique features enable the plasmonic-antenna array to function in a label-free manner, facilitating bio-sensing and imaging development. Copyright © 2014 Elsevier B.V. All rights reserved.
Generation of Multi-band Chorus by Lower Band Cascade in the Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Gao, X.; Lu, Q.; Chen, L.; Bortnik, J.; Li, W.; Wang, S.
2016-12-01
Chorus waves are intense electromagnetic whistler-mode emissions in the magnetosphere, typically falling into two distinct frequency bands: a lower band (0.1-0.5fce) and an upper band (0.5-0.8fce) with a power gap at about 0.5fce. In this letter, with the THEMIS satellite, we observed two special chorus events, which are called as multi-band chorus because upper band chorus is located at harmonics of lower band chorus. We propose a new potential generation mechanism for multi-band chorus, which is called as lower band cascade. In this scenario, a density mode with a frequency equal to that of lower band chorus is caused by the ponderomotive effect (inhomogeneity of the electric amplitude) along the wave vector, and then upper band chorus with the frequency twice that of lower band chorus is generated through wave-wave couplings between lower band chorus and the density mode. The mechanism provides a new insight into the evolution of whistler-mode chorus in the Earth's magnetosphere.
NASA Astrophysics Data System (ADS)
Joseph, R.; Courbin, F.; Starck, J.-L.
2016-05-01
We introduce a new algorithm for colour separation and deblending of multi-band astronomical images called MuSCADeT which is based on Morpho-spectral Component Analysis of multi-band images. The MuSCADeT algorithm takes advantage of the sparsity of astronomical objects in morphological dictionaries such as wavelets and their differences in spectral energy distribution (SED) across multi-band observations. This allows us to devise a model independent and automated approach to separate objects with different colours. We show with simulations that we are able to separate highly blended objects and that our algorithm is robust against SED variations of objects across the field of view. To confront our algorithm with real data, we use HST images of the strong lensing galaxy cluster MACS J1149+2223 and we show that MuSCADeT performs better than traditional profile-fitting techniques in deblending the foreground lensing galaxies from background lensed galaxies. Although the main driver for our work is the deblending of strong gravitational lenses, our method is fit to be used for any purpose related to deblending of objects in astronomical images. An example of such an application is the separation of the red and blue stellar populations of a spiral galaxy in the galaxy cluster Abell 2744. We provide a python package along with all simulations and routines used in this paper to contribute to reproducible research efforts. Codes can be found at http://lastro.epfl.ch/page-126973.html
High resolution multispectral photogrammetric imagery: enhancement, interpretation and evaluations
NASA Astrophysics Data System (ADS)
Roberts, Arthur; Haefele, Martin; Bostater, Charles; Becker, Thomas
2007-10-01
A variety of aerial mapping cameras were adapted and developed into simulated multiband digital photogrammetric mapping systems. Direct digital multispectral, two multiband cameras (IIS 4 band and Itek 9 band) and paired mapping and reconnaissance cameras were evaluated for digital spectral performance and photogrammetric mapping accuracy in an aquatic environment. Aerial films (24cm X 24cm format) tested were: Agfa color negative and extended red (visible and near infrared) panchromatic, and; Kodak color infrared and B&W (visible and near infrared) infrared. All films were negative processed to published standards and digitally converted at either 16 (color) or 10 (B&W) microns. Excellent precision in the digital conversions was obtained with scanning errors of less than one micron. Radiometric data conversion was undertaken using linear density conversion and centered 8 bit histogram exposure. This resulted in multiple 8 bit spectral image bands that were unaltered (not radiometrically enhanced) "optical count" conversions of film density. This provided the best film density conversion to a digital product while retaining the original film density characteristics. Data covering water depth, water quality, surface roughness, and bottom substrate were acquired using different measurement techniques as well as different techniques to locate sampling points on the imagery. Despite extensive efforts to obtain accurate ground truth data location errors, measurement errors, and variations in the correlation between water depth and remotely sensed signal persisted. These errors must be considered endemic and may not be removed through even the most elaborate sampling set up. Results indicate that multispectral photogrammetric systems offer improved feature mapping capability.
NIMBUS: A Near-Infrared Multi-Band Ultraprecise Spectroimager for SOFIA
NASA Technical Reports Server (NTRS)
McElwain, Michael W.; Mandell, Avi; Woodgate, Bruce E.; Spiegel, David S.; Madhusudhan, Nikku; Amatucci, Edward; Blake, Cullen; Budinoff, Jason; Burgasser, Adam; Burrows, Adam;
2012-01-01
We present a new and innovative near-infrared multi-band ultraprecise spectroimager (NIMBUS) for SOFIA. This instrument will enable many exciting observations in the new age of precision astronomy. This optical design splits the beam into 8 separate spectral bandpasses, centered around key molecular bands from 1 to 4 microns. Each spectral channel has a wide field of view for simultaneous observations of a reference star that can decorrelate time-variable atmospheric and optical assembly effects, allowing the instrument to achieve ultraprecise photometry for a wide variety of astrophysical sources
MIPS - The Multiband Imaging Photometer for SIRTF
NASA Technical Reports Server (NTRS)
Rieke, G. H.; Lada, C.; Lebofsky, M.; Low, F.; Strittmatter, P.; Young, E.; Beichman, C.; Gautier, T. N.; Mould, J.; Werner, M.
1986-01-01
The Multiband Imaging Photometer System (MIPS) for SIRTF is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700 microns spectral region. It will use high performance photoconductive detectors from 3 to 200 microns with integrating JFET amplifiers. From 200 to 700 microns, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution.
NASA Astrophysics Data System (ADS)
Silaev, Mihail; Winyard, Thomas; Babaev, Egor
2018-05-01
The London model describes strongly type-2 superconductors as massive vector field theories, where the magnetic field decays exponentially at the length scale of the London penetration length. This also holds for isotropic multiband extensions, where the presence of multiple bands merely renormalizes the London penetration length. We show that, by contrast, the magnetic properties of anisotropic multiband London models are not this simple, and the anisotropy leads to the interband phase differences becoming coupled to the magnetic field. This results in the magnetic field in such systems having N +1 penetration lengths, where N is the number of field components or bands. That is, in a given direction, the magnetic field decay is described by N +1 modes with different amplitudes and different decay length scales. For certain anisotropies we obtain magnetic modes with complex masses. That means that magnetic field decay is not described by a monotonic exponential increment set by a real penetration length but instead is oscillating. Some of the penetration lengths are shown to diverge away from the superconducting phase transition when the mass of the phase-difference mode vanishes. Finally the anisotropy-driven hybridization of the London mode with the Leggett modes can provide an effectively nonlocal magnetic response in the nominally local London model. Focusing on the two-component model, we discuss the magnetic field inversion that results from the effective nonlocality, both near the surface of the superconductor and around vortices. In the regime where the magnetic field decay becomes nonmonotonic, the multiband London superconductor is shown to form weakly-bound states of vortices.
Stereo Imaging Miniature Endoscope with Single Imaging Chip and Conjugated Multi-Bandpass Filters
NASA Technical Reports Server (NTRS)
Shahinian, Hrayr Karnig (Inventor); Bae, Youngsam (Inventor); White, Victor E. (Inventor); Shcheglov, Kirill V. (Inventor); Manohara, Harish M. (Inventor); Kowalczyk, Robert S. (Inventor)
2018-01-01
A dual objective endoscope for insertion into a cavity of a body for providing a stereoscopic image of a region of interest inside of the body including an imaging device at the distal end for obtaining optical images of the region of interest (ROI), and processing the optical images for forming video signals for wired and/or wireless transmission and display of 3D images on a rendering device. The imaging device includes a focal plane detector array (FPA) for obtaining the optical images of the ROI, and processing circuits behind the FPA. The processing circuits convert the optical images into the video signals. The imaging device includes right and left pupil for receiving a right and left images through a right and left conjugated multi-band pass filters. Illuminators illuminate the ROI through a multi-band pass filter having three right and three left pass bands that are matched to the right and left conjugated multi-band pass filters. A full color image is collected after three or six sequential illuminations with the red, green and blue lights.
Circular Microstrip Antenna with Fractal Slots for Multiband Applications
NASA Astrophysics Data System (ADS)
Singh, Sivia Jagtar; Singh, Gurpreet; Bharti, Gurpreet
2017-10-01
In this paper, a multiband, fractal, slotted, Circular Microstrip Patch Antenna for GSM, WiMAX, C and X bands (satellite communication applications) is presented. A cantor set theory is used to make fractal slots for obtaining the desired multiband. The projected antenna is simulated using Ansys HFSS v13.0 software. Simulation test of this antenna has been carried out for a frequency range of 1 GHz-10 GHz and a peak gain of 9.19 dB at a resonance frequency of 1.9 GHz is obtained. The antenna also resonates at 3.7 GHz, 6.06 GHz and 7.9 GHz with gains of 3.04 dB, 5.19 dB and 5.39 dB respectively. Parameters like voltage standing wave ratio, return loss, and gain are used to compare the results of the projected antenna with conventional CMPA's of same dimensions with full and defective grounds. The projected antenna is fabricated on a glass epoxy material and is tested using Vector Network Analyzer. The performance parameters of the antenna are found to in good agreement with each both using simulated and measured data.
Quasiparticle interference in multiband superconductors with strong coupling
NASA Astrophysics Data System (ADS)
Dutt, A.; Golubov, A. A.; Dolgov, O. V.; Efremov, D. V.
2017-08-01
We develop a theory of the quasiparticle interference (QPI) in multiband superconductors based on the strong-coupling Eliashberg approach within the Born approximation. In the framework of this theory, we study dependencies of the QPI response function in the multiband superconductors with the nodeless s -wave superconductive order parameter. We pay special attention to the difference in the quasiparticle scattering between the bands having the same and opposite signs of the order parameter. We show that at the momentum values close to the momentum transfer between two bands, the energy dependence of the quasiparticle interference response function has three singularities. Two of these correspond to the values of the gap functions and the third one depends on both the gaps and the transfer momentum. We argue that only the singularity near the smallest band gap may be used as a universal tool to distinguish between the s++ and s± order parameters. The robustness of the sign of the response function peak near the smaller gap value, irrespective of the change in parameters, in both the symmetry cases is a promising feature that can be harnessed experimentally.
NASA Astrophysics Data System (ADS)
Tanaka, Mio; Morita, Katsuaki; Kimura, Shigeo; Sakaue, Hirotaka
2012-11-01
Icing occurs by a collision of a supercooled-water droplet on a surface. It can be seen in any cold area. A great attention is paid in an aircraft icing. To understand the icing process on an aircraft, it is necessary to give the temperature information of the supercooled water. A conventional technique, such as a thermocouple, is not valid, because it becomes a collision surface that accumulates ice. We introduce a dual-luminescent imaging to capture a global temperature distribution of supercooled water under the icing conditions. It consists of two-color luminescent probes and a multi-band filter. One of the probes is sensitive to the temperature and the other is independent of the temperature. The latter is used to cancel the temperature-independent luminescence of a temperature-dependent image caused by an uneven illumination and a camera location. The multi-band filter only selects the luminescent peaks of the probes to enhance the temperature sensitivity of the imaging system. By applying the system, the time-resolved temperature information of a supercooled-water droplet is captured.
Generation of multiband chorus by lower band cascade in the Earth's magnetosphere
NASA Astrophysics Data System (ADS)
Gao, Xinliang; Lu, Quanming; Bortnik, Jacob; Li, Wen; Chen, Lunjin; Wang, Shui
2016-03-01
Chorus waves are intense electromagnetic whistler mode emissions in the magnetosphere, typically falling into two distinct frequency bands: a lower band (0.1-0.5fce) and an upper band (0.5-0.8fce) with a power gap at about 0.5fce. In this letter, with the Time History of Events and Macroscale Interactions during Substorms satellite, we observed two special chorus events, which are called as multiband chorus because upper band chorus is located at harmonics of lower band chorus. We propose a new potential generation mechanism for multiband chorus, which is called as lower band cascade. In this scenario, a density mode with a frequency equal to that of lower band chorus is generated by the ponderomotive effect (inhomogeneity of the electric amplitude) along the wave vector, and then upper band chorus with the frequency twice that of lower band chorus is generated through wave-wave couplings between lower band chorus and the density mode. The mechanism provides a new insight into the evolution of whistler mode chorus in the Earth's magnetosphere.
Analysis on the electromagnetic scattering properties of crops at multi-band
NASA Astrophysics Data System (ADS)
Wu, Tao; Wu, Zhensen; Liu, Xiaoyi
2014-12-01
The vector radiative transfer (VRT) theory for active microwave remote sensing and Rayleigh-Gans approximation (GRG) are applied in the study, and an iterative algorithm is used to solve the RT equations, thus we obtain the zeroorder and first-order equation for numerical results. The Michigan Microwave Canopy Scattering (MIMICS) model is simplified to adapt to the crop model, by analyzing body-surface bistatic scattering and backscattering properties between a layer of soybean or wheat consisting of stems and leaves and different underlying soil surface at multi-band (i.e. P, L, S, X, Ku-band), we obtain microwave scattering mechanisms of crop components and the effect of underlying ground on total crop scattering. Stem and leaf are regard as a needle and a circular disk, respectively. The final results are compared with some literature data to verify our calculating method, numerical results show multi-band crop microwave scattering properties differ from scattering angle, azimuth angle and moisture of vegetation and soil, which offer the part needed information for the design of future bistatic radar systems for crop sensing applications.
Precision limits of the twin-beam multiband URSULA
NASA Technical Reports Server (NTRS)
Debiase, G. A.; Paterno, L.; Fedel, B.; Santagati, G.; Ventura, R.
1988-01-01
URSULA is a multiband astronomical photoelectric photometer which minimizes errors introduced by the presence of the atmosphere. It operates with two identical channels, one for the star to be measured and the other for a reference star. After a technical description of the present version of the apparatus, some measurements of stellar sources of different brightness, and in different atmospheric conditions are presented. These measurements, based on observations made with the 91 cm Cassegrain telescope of the Catania Astrophysical Observatory, are used to check the photometer accuracy and compare its performance with that of standard photometers.
Multi-band description of the specific heat and thermodynamic critical field in MgB2 superconductor
NASA Astrophysics Data System (ADS)
Szcześniak, R.; Jarosik, M. W.; Tarasewicz, P.; Durajski, A. P.
2018-05-01
The thermodynamic properties of MgB2 superconductor can be explained using the multi-band models. In the present paper we have examined the experimental data available in literature and we have found out that it is possible to reproduce the measured values of the superconducting energy gaps, the thermodynamic critical magnetic field and specific heat jump within the framework of two-band Eliashberg formalism and appropriate defined free energy difference between superconducting and normal state. Moreover, we found that the obtained results differ significantly from the predictions of the conventional Bardeen-Cooper-Schrieffer theory.
Star Observations by Asteroid Multiband Imaging Camera (AMICA) on Hayabusa (MUSES-C) Cruising Phase
NASA Astrophysics Data System (ADS)
Saito, J.; Hashimoto, T.; Kubota, T.; Hayabusa AMICA Team
Muses-C is the first Japanese asteroid mission and also a technology demonstration one to the S-type asteroid, 25143 Itokawa (1998SF36). It was launched at May 9, 2003, and renamed Hayabusa after the spacecraft was confirmed to be on the interplanetary orbit. This spacecraft has the event of the Earth-swingby for gravitational assist in the way to Itokawa on 2004 May. The arrival to Itokawa is scheduled on 2005 summer. During the visit to Itokawa, the remote-sensing observation with AMICA, NIRS (Near Infrared Spectrometer), XRS (X-ray Fluorescence Spectrometer), and LIDAR are performed, and the spacecraft descends and collects the surface samples at the touch down to the surface. The captured asteroid sample will be returned to the Earth in the middle of 2007. The telescopic optical navigation camera (ONC-T) with seven bandpass filters (and one wide-band filter) and polarizers is called AMICA (Asteroid Multiband Imaging CAmera) when ONC-T is used for scientific observations. The AMICA's seven bandpass filters are nearly equivalent to the seven filters of the ECAS (Eight Color Asteroid Survey) system. Obtained spectroscopic data will be compared with previously obtained ECAS observations. AMICA also has four polarizers, which are located on one edge of the CCD chip (covering 1.1 x 1.1 degrees each). Using the polarizers of AMICA, we can obtain polarimetric information of the target asteroid's surface. Since last November, we planned the test observations of some stars and planets by AMICA and could successfully obtain these images. Here, we briefly report these observations and its calibration by the ground-based observational data. In addition, we also present a current status of AMICA.
NASA Astrophysics Data System (ADS)
Musella, I.; Marconi, M.; Stetson, P. B.; Raimondo, G.; Brocato, E.; Molinaro, R.; Ripepi, V.; Carini, R.; Coppola, G.; Walker, A. R.; Welch, D. L.
2016-04-01
We present the analysis of multiband time series data for a sample of 24 Cepheids in the field of the Large Magellanic Cloud cluster NGC 1866. Very accurate BVI Very Large Telescope photometry is combined with archival UBVI data, covering a large temporal window, to obtain precise mean magnitudes and periods with typical errors of 1-2 per cent and of 1 ppm, respectively. These results represent the first accurate and homogeneous data set for a substantial sample of Cepheid variables belonging to a cluster and hence sharing common distance, age and original chemical composition. Comparisons of the resulting multiband period-luminosity and Wesenheit relations to both empirical and theoretical results for the Large Magellanic Cloud are presented and discussed to derive the distance of the cluster and to constrain the mass-luminosity relation of the Cepheids. The adopted theoretical scenario is also tested by comparison with independent calibrations of the Cepheid Wesenheit zero-point based on trigonometric parallaxes and Baade-Wesselink techniques. Our analysis suggests that a mild overshooting and/or a moderate mass-loss can affect intermediate-mass stellar evolution in this cluster and gives a distance modulus of 18.50 ± 0.01 mag. The obtained V,I colour-magnitude diagram is also analysed and compared with both synthetic models and theoretical isochrones for a range of ages and metallicities and for different efficiencies of core overshooting. As a result, we find that the age of NGC 1866 is about 140 Myr, assuming Z = 0.008 and the mild efficiency of overshooting suggested by the comparison with the pulsation models.
Deep-learning derived features for lung nodule classification with limited datasets
NASA Astrophysics Data System (ADS)
Thammasorn, P.; Wu, W.; Pierce, L. A.; Pipavath, S. N.; Lampe, P. D.; Houghton, A. M.; Haynor, D. R.; Chaovalitwongse, W. A.; Kinahan, P. E.
2018-02-01
Only a few percent of indeterminate nodules found in lung CT images are cancer. However, enabling earlier diagnosis is important to avoid invasive procedures or long-time surveillance to those benign nodules. We are evaluating a classification framework using radiomics features derived with a machine learning approach from a small data set of indeterminate CT lung nodule images. We used a retrospective analysis of 194 cases with pulmonary nodules in the CT images with or without contrast enhancement from lung cancer screening clinics. The nodules were contoured by a radiologist and texture features of the lesion were calculated. In addition, sematic features describing shape were categorized. We also explored a Multiband network, a feature derivation path that uses a modified convolutional neural network (CNN) with a Triplet Network. This was trained to create discriminative feature representations useful for variable-sized nodule classification. The diagnostic accuracy was evaluated for multiple machine learning algorithms using texture, shape, and CNN features. In the CT contrast-enhanced group, the texture or semantic shape features yielded an overall diagnostic accuracy of 80%. Use of a standard deep learning network in the framework for feature derivation yielded features that substantially underperformed compared to texture and/or semantic features. However, the proposed Multiband approach of feature derivation produced results similar in diagnostic accuracy to the texture and semantic features. While the Multiband feature derivation approach did not outperform the texture and/or semantic features, its equivalent performance indicates promise for future improvements to increase diagnostic accuracy. Importantly, the Multiband approach adapts readily to different size lesions without interpolation, and performed well with relatively small amount of training data.
Modeling of multi-band drift in nanowires using a full band Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Hathwar, Raghuraj; Saraniti, Marco; Goodnick, Stephen M.
2016-07-01
We report on a new numerical approach for multi-band drift within the context of full band Monte Carlo (FBMC) simulation and apply this to Si and InAs nanowires. The approach is based on the solution of the Krieger and Iafrate (KI) equations [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986)], which gives the probability of carriers undergoing interband transitions subject to an applied electric field. The KI equations are based on the solution of the time-dependent Schrödinger equation, and previous solutions of these equations have used Runge-Kutta (RK) methods to numerically solve the KI equations. This approach made the solution of the KI equations numerically expensive and was therefore only applied to a small part of the Brillouin zone (BZ). Here we discuss an alternate approach to the solution of the KI equations using the Magnus expansion (also known as "exponential perturbation theory"). This method is more accurate than the RK method as the solution lies on the exponential map and shares important qualitative properties with the exact solution such as the preservation of the unitary character of the time evolution operator. The solution of the KI equations is then incorporated through a modified FBMC free-flight drift routine and applied throughout the nanowire BZ. The importance of the multi-band drift model is then demonstrated for the case of Si and InAs nanowires by simulating a uniform field FBMC and analyzing the average carrier energies and carrier populations under high electric fields. Numerical simulations show that the average energy of the carriers under high electric field is significantly higher when multi-band drift is taken into consideration, due to the interband transitions allowing carriers to achieve higher energies.
Isotope and multiband effects in layered superconductors.
Bussmann-Holder, Annette; Keller, Hugo
2012-06-13
In this review we consider three classes of superconductors, namely cuprate superconductors, MgB(2) and the new Fe based superconductors. All of these three systems are layered materials and multiband compounds. Their pairing mechanisms are under discussion with the exception of MgB(2), which is widely accepted to be a 'conventional' electron-phonon interaction mediated superconductor, but extending the Bardeen-Cooper-Schrieffer (BCS) theory to account for multiband effects. Cuprates and Fe based superconductors have higher superconducting transition temperatures and more complex structures. Superconductivity is doping dependent in these material classes unlike in MgB(2) which, as a pure compound, has the highest values of T(c) and a rapid suppression of superconductivity with doping takes place. In all three material classes isotope effects have been observed, including exotic ones in the cuprates, and controversial ones in the Fe based materials. Before the area of high-temperature superconductivity, isotope effects on T(c) were the signature for phonon mediated superconductivity-even when deviations from the BCS value to smaller values were observed. Since the discovery of high T(c) materials this is no longer evident since competing mechanisms might exist and other mediating pairing interactions are discussed which are of purely electronic origin. In this work we will compare the three different material classes and especially discuss the experimentally observed isotope effects of all three systems and present a rather general analysis of them. Furthermore, we will concentrate on multiband signatures which are not generally accepted in cuprates even though they are manifest in various experiments, the evidence for those in MgB(2), and indications for them in the Fe based compounds. Mostly we will consider experimental data, but when possible also discuss theoretical models which are suited to explain the data.
Djiongo Kenfack, Cedrigue Boris; Monga, Olivier; Mpong, Serge Moto; Ndoundam, René
2018-03-01
Within the last decade, several approaches using quaternion numbers to handle and model multiband images in a holistic manner were introduced. The quaternion Fourier transform can be efficiently used to model texture in multidimensional data such as color images. For practical application, multispectral satellite data appear as a primary source for measuring past trends and monitoring changes in forest carbon stocks. In this work, we propose a texture-color descriptor based on the quaternion Fourier transform to extract relevant information from multiband satellite images. We propose a new multiband image texture model extraction, called FOTO++, in order to address biomass estimation issues. The first stage consists in removing noise from the multispectral data while preserving the edges of canopies. Afterward, color texture descriptors are extracted thanks to a discrete form of the quaternion Fourier transform, and finally the support vector regression method is used to deduce biomass estimation from texture indices. Our texture features are modeled using a vector composed with the radial spectrum coming from the amplitude of the quaternion Fourier transform. We conduct several experiments in order to study the sensitivity of our model to acquisition parameters. We also assess its performance both on synthetic images and on real multispectral images of Cameroonian forest. The results show that our model is more robust to acquisition parameters than the classical Fourier Texture Ordination model (FOTO). Our scheme is also more accurate for aboveground biomass estimation. We stress that a similar methodology could be implemented using quaternion wavelets. These results highlight the potential of the quaternion-based approach to study multispectral satellite images.
NASA Astrophysics Data System (ADS)
Nyland, Kristina; Lacy, Mark; Sajina, Anna; Pforr, Janine; Farrah, Duncan; Wilson, Gillian; Surace, Jason; Häußler, Boris; Vaccari, Mattia; Jarvis, Matt
2017-05-01
We apply The Tractor image modeling code to improve upon existing multi-band photometry for the Spitzer Extragalactic Representative Volume Survey (SERVS). SERVS consists of post-cryogenic Spitzer observations at 3.6 and 4.5 μm over five well-studied deep fields spanning 18 deg2. In concert with data from ground-based near-infrared (NIR) and optical surveys, SERVS aims to provide a census of the properties of massive galaxies out to z ≈ 5. To accomplish this, we are using The Tractor to perform “forced photometry.” This technique employs prior measurements of source positions and surface brightness profiles from a high-resolution fiducial band from the VISTA Deep Extragalactic Observations survey to model and fit the fluxes at lower-resolution bands. We discuss our implementation of The Tractor over a square-degree test region within the XMM Large Scale Structure field with deep imaging in 12 NIR/optical bands. Our new multi-band source catalogs offer a number of advantages over traditional position-matched catalogs, including (1) consistent source cross-identification between bands, (2) de-blending of sources that are clearly resolved in the fiducial band but blended in the lower resolution SERVS data, (3) a higher source detection fraction in each band, (4) a larger number of candidate galaxies in the redshift range 5 < z < 6, and (5) a statistically significant improvement in the photometric redshift accuracy as evidenced by the significant decrease in the fraction of outliers compared to spectroscopic redshifts. Thus, forced photometry using The Tractor offers a means of improving the accuracy of multi-band extragalactic surveys designed for galaxy evolution studies. We will extend our application of this technique to the full SERVS footprint in the future.
NASA Astrophysics Data System (ADS)
Song, Shichao; Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Zhang, Zuojun; Gao, Ping; Luo, Xiangang
2018-04-01
Tunable multiband polarization conversion and manipulation are achieved by introducing vanadium dioxide (VO2) into a planar spiral asymmetric chiral metamaterial. Numerical simulations demonstrate that when VO2 is in the insulating state, circularly polarized electromagnetic waves are emitted at two distinct resonant frequencies. When VO2 is in the metallic state, the number of resonant frequencies changes from two to four. In addition, the initial left-handed and right-handed circularly polarized transmitted waves correspondingly transform into right and left ones. Moreover, the surface current distributions are studied in order to investigate the transformation behaviors of both the insulating and metallic states.
Byrne, Margaret; Hankinson, Margaret; Sampson, Jane F; Stankowski, Sean
2008-11-01
Atriplex nummularia is a polyploid Australian saltbush which has been identified as a suitable species for use in the rehabilitation of agricultural land affected by salinity. We isolated 12 polymorphic loci for a preliminary assessment of genetic variability and structure within the species as a basis for a breeding programme. Preliminary screening of loci in 40 individuals from two populations revealed multibanded genotypes consisting of up to seven alleles in a single individual, with up to 29 alleles observed at a single locus. The multibanded patterns are consistent with the polyploid status of this species. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.
Multi-wavelength and multiband RE-doped optical fiber source array for WDM-GPON applications
NASA Astrophysics Data System (ADS)
Perez-Sanchez, G. G.; Bertoldi-Martins, I.; Gallion, P.; Gosset, C.; Álvarez-Chávez, J. A.
2013-12-01
In this paper, a multiband, multi-wavelength, all-fibre source array consisting of an 810nm pump laser diode, thretwo fiber splitters and three segments of Er-, Tm- and Nd-doped fiber is proposed for PON applications. In the set-up, cascaded pairs of standard fiber gratings are used for extracting the required multiple wavelengths within their corresponding bands. A thorough design parameter description, optical array details and full simulation results, such as: full multi-wavelength spectrum, peak and average powers for each generated wavelength, linewidth at FWHM for each generated signal, and individual and overall conversion efficiency, will be included in the manuscript.
Isotope effect on electron-phonon interaction in the multiband superconductor MgB 2
Mou, Daixiang; Manni, Soham; Taufour, Valentin; ...
2016-04-07
We investigate the effect of isotope substitution on the electron-phonon interaction in the multiband superconductor MgB 2 using tunable laser-based angle-resolved photoemission spectroscopy. The kink structure around 70 meV in the σ band, which is caused by electron coupling to the E 2g phonon mode, is shifted to higher binding energy by ~3.5 meV in Mg 10B 2 and the shift is not affected by superconducting transition. Furthermore, these results serve as the benchmark for investigations of isotope effects in known, unconventional superconductors and newly discovered superconductors where the origin of pairing is unknown.
Duan, Ran; Semouchkina, Elena; Pandey, Ravi
2014-11-03
The geometric optics principles are used to develop a unidirectional transmission cloak for hiding objects with dimensions substantially exceeding the incident radiation wavelengths. Invisibility of both the object and the cloak is achieved without metamaterials, so that significant widths of the cloaking bands are provided. For the preservation of wave phases, the λ-multiple delays of waves passing through the cloak are realized. Suppression of reflection losses is achieved by using half-λ multiple thicknesses of optical elements. Due to periodicity of phase delay and reflection suppression conditions, the cloak demonstrates efficient multiband performance confirmed by full-wave simulations.
Multiband guided-mode resonance filter in bilayer asymmetric metallic gratings
NASA Astrophysics Data System (ADS)
Wang, Yanhui; Li, Xiangjun; Lang, Tingting; Jing, Xufeng; Hong, Zhi
2018-07-01
In this paper, a guided-mode resonances (GMRs) based multiband filter in bilayer asymmetric metallic gratings is presented. Four sharp dips are generated in the frequency range of 1.4-2.0 THz, which are induced by the split of two GMR modes (TE0 and TM0) due to the break of the structure's symmetry. This symmetry of the structure depends on the relative position between the upper layer and lower layer gratings. Therefore, by choosing proper lateral displacement, the split of TE0 or/and TM0 modes can be eliminated. Two-, three-, and four- GMRs based polarization insensitive or sensitive filters are demonstrated numerically.
Evaluation of multiband photography for rock discrimination
NASA Technical Reports Server (NTRS)
Raines, G. L.
1974-01-01
An evaluation is presented of the multiband photography concept that tonal differences between rock formations on aerial photography can be improved through the selection of the appropriate bands. The concept involves: (1) acquiring band reference data for the rocks being considered; (2) selecting the best combination of bands to discriminate the rocks using these reference data; (3) acquiring aerial photography using these selected bands; and (4) extracting the desired geologic information in an optimum manner. The test site geology and rock reflectance are discussed in detail. The evaluation found that the differences in contrast ratios are not statistically significant, and the spectral information in different bands is not advantageous.
High-precision multiband spectroscopy of ultracold fermions in a nonseparable optical lattice
NASA Astrophysics Data System (ADS)
Fläschner, Nick; Tarnowski, Matthias; Rem, Benno S.; Vogel, Dominik; Sengstock, Klaus; Weitenberg, Christof
2018-05-01
Spectroscopic tools are fundamental for the understanding of complex quantum systems. Here, we demonstrate high-precision multiband spectroscopy in a graphenelike lattice using ultracold fermionic atoms. From the measured band structure, we characterize the underlying lattice potential with a relative error of 1.2 ×10-3 . Such a precise characterization of complex lattice potentials is an important step towards precision measurements of quantum many-body systems. Furthermore, we explain the excitation strengths into different bands with a model and experimentally study their dependency on the symmetry of the perturbation operator. This insight suggests the excitation strengths as a suitable observable for interaction effects on the eigenstates.
Optical frequency comb based multi-band microwave frequency conversion for satellite applications.
Yang, Xinwu; Xu, Kun; Yin, Jie; Dai, Yitang; Yin, Feifei; Li, Jianqiang; Lu, Hua; Liu, Tao; Ji, Yuefeng
2014-01-13
Based on optical frequency combs (OFC), we propose an efficient and flexible multi-band frequency conversion scheme for satellite repeater applications. The underlying principle is to mix dual coherent OFCs with one of which carrying the input signal. By optically channelizing the mixed OFCs, the converted signal in different bands can be obtained in different channels. Alternatively, the scheme can be configured to generate multi-band local oscillators (LO) for widely distribution. Moreover, the scheme realizes simultaneous inter- and intra-band frequency conversion just in a single structure and needs only three frequency-fixed microwave sources. We carry out a proof of concept experiment in which multiple LOs with 2 GHz, 10 GHz, 18 GHz, and 26 GHz are generated. A C-band signal of 6.1 GHz input to the proposed scheme is successfully converted to 4.1 GHz (C band), 3.9 GHz (C band) and 11.9 GHz (X band), etc. Compared with the back-to-back (B2B) case measured at 0 dBm input power, the proposed scheme shows a 9.3% error vector magnitude (EVM) degradation at each output channel. Furthermore, all channels satisfy the EVM limit in a very wide input power range.
Generalized multiband typical medium dynamical cluster approximation: Application to (Ga,Mn)N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yi; Nelson, R.; Siddiqui, Elisha
We generalize the multiband typical medium dynamical cluster approximation and the formalism introduced by Blackman, Esterling, and Berk so that it can deal with localization in multiband disordered systems with both diagonal and off-diagonal disorder with complicated potentials. We also introduce an ansatz for the momentum-resolved typical density of states that greatly improves the numerical stability of the method while preserving the independence of scattering events at different frequencies. Starting from the first-principles effective Hamiltonian, we apply this method to the diluted magnetic semiconductor Ga 1 - x Mn x N , and find the impurity band is completely localizedmore » for Mn concentrations x < 0.03 , while for 0.03 < x < 0.10 the impurity band has delocalized states but the chemical potential resides at or above the mobility edge. So, the system is always insulating within the experimental compositional limit ( x ≈ 0.10 ) due to Anderson localization. But, for 0.03 < x < 0.10 hole doping could make the system metallic, allowing double-exchange mediated, or enhanced, ferromagnetism. Finally, this developed method is expected to have a large impact on first-principles studies of Anderson localization.« less
NASA Astrophysics Data System (ADS)
Liu, Bo; Tang, Chaojun; Chen, Jing; Xie, Ningyan; Tang, Huang; Zhu, Xiaoqin; Park, Gun-sik
2018-05-01
It is well known that a suspended monolayer graphene has a weak light absorption efficiency of about 2.3% at normal incidence, which is disadvantageous to some applications in optoelectronic devices. In this work, we will numerically study multiband and broadband absorption enhancement of monolayer graphene over the whole visible spectrum, due to multiple magnetic dipole resonances in metamaterials. The unit cell of the metamaterials is composed of a graphene monolayer sandwiched between four Ag nanodisks with different diameters and a SiO2 spacer on an Ag substrate. The near-field plasmon hybridizations between individual Ag nanodisks and the Ag substrate form four independent magnetic dipole modes, which result into multiband absorption enhancement of monolayer graphene at optical frequencies. When the resonance wavelengths of the magnetic dipole modes are tuned to approach one another by changing the diameters of the Ag nanodisks, a broadband absorption enhancement can be achieved. The position of the absorption band in monolayer graphene can be also controlled by varying the thickness of the SiO2 spacer or the distance between the Ag nanodisks. Our designed graphene light absorber may find some potential applications in optoelectronic devices, such as photodetectors.
High-order modes of spoof surface plasmonic wave transmission on thin metal film structure.
Liu, Xiaoyong; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian
2013-12-16
Recently, conformal surface plasmon (CSP) structure has been successfully proposed that could support spoof surface plasmon polaritons (SPPs) on corrugated metallic strip with ultrathin thickness [Proc. Natl. Acad. Sci. U.S.A. 110, 40-45 (2013)]. Such concept provides a flexible, conformal, and ultrathin wave-guiding element, very promising for application of plasmonic devices, and circuits in the frequency ranging from microwave to mid-infrared. In this work, we investigated the dispersions and field patterns of high-order modes of spoof SPPs along CSP structure of thin metal film with corrugated edge of periodic array of grooves, and carried out direct measurement on the transmission spectrum of multi-band of surface wave propagation at microwave frequency. It is found that the mode number and mode bands are mainly determined by the depth of the grooves, providing a way to control the multi-band transmission spectrum. We have also experimentally verified the high-order mode spoof SPPs propagation on curved CSP structure with acceptable bending loss. The multi-band propagation of spoof surface wave is believed to be applicable for further design of novel planar devices such as filters, resonators, and couplers, and the concept can be extended to terahertz frequency range.
Generalized multiband typical medium dynamical cluster approximation: Application to (Ga,Mn)N
Zhang, Yi; Nelson, R.; Siddiqui, Elisha; ...
2016-12-29
We generalize the multiband typical medium dynamical cluster approximation and the formalism introduced by Blackman, Esterling, and Berk so that it can deal with localization in multiband disordered systems with both diagonal and off-diagonal disorder with complicated potentials. We also introduce an ansatz for the momentum-resolved typical density of states that greatly improves the numerical stability of the method while preserving the independence of scattering events at different frequencies. Starting from the first-principles effective Hamiltonian, we apply this method to the diluted magnetic semiconductor Ga 1 - x Mn x N , and find the impurity band is completely localizedmore » for Mn concentrations x < 0.03 , while for 0.03 < x < 0.10 the impurity band has delocalized states but the chemical potential resides at or above the mobility edge. So, the system is always insulating within the experimental compositional limit ( x ≈ 0.10 ) due to Anderson localization. But, for 0.03 < x < 0.10 hole doping could make the system metallic, allowing double-exchange mediated, or enhanced, ferromagnetism. Finally, this developed method is expected to have a large impact on first-principles studies of Anderson localization.« less
Vortex motion and flux-flow resistivity in dirty multiband superconductors
NASA Astrophysics Data System (ADS)
Silaev, Mihail; Vargunin, Artjom
2016-12-01
The conductivity of vortex lattices in multiband superconductors with high concentration of impurities is calculated based on microscopic kinetic theory at temperatures significantly smaller than the critical one. Both the limits of high and low fields are considered, when the magnetic induction is close to or much smaller than the critical field strength Hc 2, respectively. It is shown that in contrast to single-band superconductors, the resistive properties are not universal but depend on the pairing constants and ratios of diffusivities in different bands. The low-field magnetoresistance can strongly exceed the Bardeen-Stephen estimation in a quantitative agreement with experimental data for the two-band superconductor MgB2.
Collation of earth resources data collected by ERIM airborne sensors
NASA Technical Reports Server (NTRS)
Hasell, P. G., Jr.
1975-01-01
Earth resources imagery from nine years of data collection with developmental airborne sensors is cataloged for reference. The imaging sensors include single and multiband line scanners and side-looking radars. The operating wavelengths of the sensors include ultraviolet, visible and infrared band scanners, and X- and L-band radar. Imagery from all bands (radar and scanner) were collected at some sites and many sites had repeated coverage. The multiband scanner data was radiometrically calibrated. Illustrations show how the data can be used in earth resource investigations. References are made to published reports which have made use of the data in completed investigations. Data collection sponsors are identified and a procedure described for gaining access to the data.
NASA Technical Reports Server (NTRS)
Robinson, B. F.; Buckley, R. E.; Burgess, J. A. (Principal Investigator)
1982-01-01
A multiband radiometer suitable for operation from helicopter, small plane, truck, or tripod platforms was developed. The standard unit is equipped with the seven thematic mapper spectral bands with an added band from 1.5 to 1.30 microns; however, up to eight user specified bands from 0.4 to 15 microns may be installed under clean field conditions. Results of prototype tests of the spectral responsivity of the detectors, the transmittance of the optical filters as a function of wavelength, the fields of view, and the system linearity, temperature stability, noise performance, and dynamic range were evaluated. Minor modifications were made to the instrument and the results of final testing are reported.
Multi-band asymmetric acoustic transmission in a bended waveguide with multiple mechanisms
NASA Astrophysics Data System (ADS)
Huang, Yu-lei; Sun, Hong-xiang; Xia, Jian-ping; Yuan, Shou-qi; Ding, Xin-lei
2016-07-01
We report the realization of a multi-band device of the asymmetric acoustic transmission by placing a phononic crystal inside a bended waveguide immersed in water, as determined both experimentally and numerically. The asymmetric acoustic transmission exists in three frequency bands below 500 kHz induced by multiple mechanisms. Besides the band gap of the phononic crystal, we also introduce the deaf mode and interaction between the phononic crystal and waveguide. More importantly, this asymmetric transmission can be systematically controlled by mechanically rotating the square rods of the phononic crystal. The device has the advantages of multiple band, broader bandwidth, and adjustable property, showing promising applications in ultrasonic devices.
Hall viscosity of a chiral two-orbital superconductor at finite temperatures
NASA Astrophysics Data System (ADS)
Yazdani-Hamid, Meghdad; Shahzamanian, Mohammad Ali
2018-06-01
The Hall viscosity known as the anti-symmetric part of the viscosity fourth-rank tensor. Such dissipationless response which appears for systems with broken time reversal symmetry. We calculate this non-dissipative quantity for a chiral two-orbital superconductor placed in a viscoelastic magnetic field using the linear response theory and apply our calculations to the putative multiband chiral superconductor Sr2RuO4. The chirality origin of a multiband superconductor arises from the interorbital coupling of the superconducting state. This feature leads to the robustness of the Hall viscosity against temperature and impurity effects. We study the temperature effect on the Hall viscosity at the one-loop approximation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yanxia; Ma He; Peng Nanbo
We apply one of the lazy learning methods, the k-nearest neighbor (kNN) algorithm, to estimate the photometric redshifts of quasars based on various data sets from the Sloan Digital Sky Survey (SDSS), the UKIRT Infrared Deep Sky Survey (UKIDSS), and the Wide-field Infrared Survey Explorer (WISE; the SDSS sample, the SDSS-UKIDSS sample, the SDSS-WISE sample, and the SDSS-UKIDSS-WISE sample). The influence of the k value and different input patterns on the performance of kNN is discussed. kNN performs best when k is different with a special input pattern for a special data set. The best result belongs to the SDSS-UKIDSS-WISEmore » sample. The experimental results generally show that the more information from more bands, the better performance of photometric redshift estimation with kNN. The results also demonstrate that kNN using multiband data can effectively solve the catastrophic failure of photometric redshift estimation, which is met by many machine learning methods. Compared with the performance of various other methods of estimating the photometric redshifts of quasars, kNN based on KD-Tree shows superiority, exhibiting the best accuracy.« less
Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean -Christophe; ...
2017-11-15
In this paper, connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered CH 3NH 3more » + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R- and M-point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean -Christophe
In this paper, connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered CH 3NH 3more » + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R- and M-point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.« less
NASA Astrophysics Data System (ADS)
Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean-Christophe; Even, Jacky; Mohite, Aditya D.; Sfeir, Matthew Y.
2017-11-01
Connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered C H3N H3 + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R - and M -point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.
NASA Astrophysics Data System (ADS)
Ramos, António L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald
2013-06-01
Acoustical sniper positioning is based on the detection and direction-of-arrival estimation of the shockwave and the muzzle blast acoustical signals. In real-life situations, the detection and direction-of-arrival estimation processes is usually performed under the influence of background noise sources, e.g., vehicles noise, and might result in non-negligible inaccuracies than can affect the system performance and reliability negatively, specially when detecting the muzzle sound under long range distance and absorbing terrains. This paper introduces a multi-band spectral subtraction based algorithm for real-time noise reduction, applied to gunshot acoustical signals. The ballistic shockwave and the muzzle blast signals exhibit distinct frequency contents that are affected differently by additive noise. In most real situations, the noise component is colored and a multi-band spectral subtraction approach for noise reduction contributes to reducing the presence of artifacts in denoised signals. The proposed algorithm is tested using a dataset generated by combining signals from real gunshots and real vehicle noise. The noise component was generated using a steel tracked military tank running on asphalt and includes, therefore, the sound from the vehicle engine, which varies slightly in frequency over time according to the engine's rpm, and the sound from the steel tracks as the vehicle moves.
Bansal, Arjun K; Truccolo, Wilson; Vargas-Irwin, Carlos E; Donoghue, John P
2012-03-01
Neural activity in motor cortex during reach and grasp movements shows modulations in a broad range of signals from single-neuron spiking activity (SA) to various frequency bands in broadband local field potentials (LFPs). In particular, spatiotemporal patterns in multiband LFPs are thought to reflect dendritic integration of local and interareal synaptic inputs, attentional and preparatory processes, and multiunit activity (MUA) related to movement representation in the local motor area. Nevertheless, the relationship between multiband LFPs and SA, and their relationship to movement parameters and their relative value as brain-computer interface (BCI) control signals, remain poorly understood. Also, although this broad range of signals may provide complementary information channels in primary (MI) and ventral premotor (PMv) areas, areal differences in information have not been systematically examined. Here, for the first time, the amount of information in SA and multiband LFPs was compared for MI and PMv by recording from dual 96-multielectrode arrays while monkeys made naturalistic reach and grasp actions. Information was assessed as decoding accuracy for 3D arm end point and grip aperture kinematics based on SA or LFPs in MI and PMv, or combinations of signal types across areas. In contrast with previous studies with ≤16 simultaneous electrodes, here ensembles of >16 units (on average) carried more information than multiband, multichannel LFPs. Furthermore, reach and grasp information added by various LFP frequency bands was not independent from that in SA ensembles but rather typically less than and primarily contained within the latter. Notably, MI and PMv did not show a particular bias toward reach or grasp for this task or for a broad range of signal types. For BCIs, our results indicate that neuronal ensemble spiking is the preferred signal for decoding, while LFPs and combined signals from PMv and MI can add robustness to BCI control.
Truccolo, Wilson; Vargas-Irwin, Carlos E.; Donoghue, John P.
2012-01-01
Neural activity in motor cortex during reach and grasp movements shows modulations in a broad range of signals from single-neuron spiking activity (SA) to various frequency bands in broadband local field potentials (LFPs). In particular, spatiotemporal patterns in multiband LFPs are thought to reflect dendritic integration of local and interareal synaptic inputs, attentional and preparatory processes, and multiunit activity (MUA) related to movement representation in the local motor area. Nevertheless, the relationship between multiband LFPs and SA, and their relationship to movement parameters and their relative value as brain-computer interface (BCI) control signals, remain poorly understood. Also, although this broad range of signals may provide complementary information channels in primary (MI) and ventral premotor (PMv) areas, areal differences in information have not been systematically examined. Here, for the first time, the amount of information in SA and multiband LFPs was compared for MI and PMv by recording from dual 96-multielectrode arrays while monkeys made naturalistic reach and grasp actions. Information was assessed as decoding accuracy for 3D arm end point and grip aperture kinematics based on SA or LFPs in MI and PMv, or combinations of signal types across areas. In contrast with previous studies with ≤16 simultaneous electrodes, here ensembles of >16 units (on average) carried more information than multiband, multichannel LFPs. Furthermore, reach and grasp information added by various LFP frequency bands was not independent from that in SA ensembles but rather typically less than and primarily contained within the latter. Notably, MI and PMv did not show a particular bias toward reach or grasp for this task or for a broad range of signal types. For BCIs, our results indicate that neuronal ensemble spiking is the preferred signal for decoding, while LFPs and combined signals from PMv and MI can add robustness to BCI control. PMID:22157115
Simultaneous Multislice Accelerated Free-Breathing Diffusion-Weighted Imaging of the Liver at 3T.
Obele, Chika C; Glielmi, Christopher; Ream, Justin; Doshi, Ankur; Campbell, Naomi; Zhang, Hoi Cheung; Babb, James; Bhat, Himanshu; Chandarana, Hersh
2015-10-01
To perform image quality comparison between accelerated multiband diffusion acquisition (mb2-DWI) and conventional diffusion acquisition (c-DWI) in patients undergoing clinically indicated liver MRI. In this prospective study 22 consecutive patients undergoing clinically indicated liver MRI on a 3-T scanner equipped to perform multiband diffusion-weighed imaging (mb-DWI) were included. DWI was performed with single-shot spin-echo echo-planar technique with fat-suppression in free breathing with matching parameters when possible using c-DWI, mb-DWI, and multiband DWI with a twofold acceleration (mb2-DWI). These diffusion sequences were compared with respect to various parameters of image quality, lesion detectability, and liver ADC measurements. Accelerated mb2-DWI was 40.9% faster than c-DWI (88 vs. 149 s). Various image quality parameter scores were similar or higher on mb2-DWI when compared to c-DWI. The overall image quality score (averaged over the three readers) was significantly higher for mb-2 compared to c-DWI for b = 0 s/mm(2) (3.48 ± 0.52 vs. 3.21 ± 0.54; p = 0.001) and for b = 800 s/mm(2) (3.24 ± 0.76 vs. 3.06 ± 0.86; p = 0.010). Total of 25 hepatic lesions were visible on mb2-DWI and c-DWI, with identical lesion detectability. There was no significant difference in liver ADC between mb2-DWI and c-DWI (p = 0.12). Bland-Altman plot demonstrates lower mean liver ADC with mb2-DWI compared to c-DWI (by 0.043 × 10(-3) mm(2)/s or 3.7% of the average ADC). Multiband technique can be used to increase acquisition speed nearly twofold for free-breathing DWI of the liver with similar or improved overall image quality and similar lesion detectability compared to conventional DWI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyland, Kristina; Lacy, Mark; Sajina, Anna
We apply The Tractor image modeling code to improve upon existing multi-band photometry for the Spitzer Extragalactic Representative Volume Survey (SERVS). SERVS consists of post-cryogenic Spitzer observations at 3.6 and 4.5 μ m over five well-studied deep fields spanning 18 deg{sup 2}. In concert with data from ground-based near-infrared (NIR) and optical surveys, SERVS aims to provide a census of the properties of massive galaxies out to z ≈ 5. To accomplish this, we are using The Tractor to perform “forced photometry.” This technique employs prior measurements of source positions and surface brightness profiles from a high-resolution fiducial band from themore » VISTA Deep Extragalactic Observations survey to model and fit the fluxes at lower-resolution bands. We discuss our implementation of The Tractor over a square-degree test region within the XMM Large Scale Structure field with deep imaging in 12 NIR/optical bands. Our new multi-band source catalogs offer a number of advantages over traditional position-matched catalogs, including (1) consistent source cross-identification between bands, (2) de-blending of sources that are clearly resolved in the fiducial band but blended in the lower resolution SERVS data, (3) a higher source detection fraction in each band, (4) a larger number of candidate galaxies in the redshift range 5 < z < 6, and (5) a statistically significant improvement in the photometric redshift accuracy as evidenced by the significant decrease in the fraction of outliers compared to spectroscopic redshifts. Thus, forced photometry using The Tractor offers a means of improving the accuracy of multi-band extragalactic surveys designed for galaxy evolution studies. We will extend our application of this technique to the full SERVS footprint in the future.« less
VizieR Online Data Catalog: Defining photometric peculiar SNe Ia (Gonzalez-Gaitan+, 2014)
NASA Astrophysics Data System (ADS)
Gonzalez-Gaitan, S.; Hsiao, E. Y.; Pignata, G.; Forster, F.; Gutierrez, C. P.; Bufano, F.; Galbany, L.; Folatelli, G.; Phillips, M. M.; Hamuy, M.; Anderson, J. P.; de Jaeger, T.
2017-05-01
In this work, we make use of several large, low-redshift (z<0.1) SN Ia samples from the literature. Multi-band photometry is available for more than 500 SNe Ia obtained through the effort of several teams, including the Calan/Tololo survey (Hamuy et al. 1996, J/AJ/112/2408), the Carnegie Supernova Project CSP (Contreras et al. 2010, J/AJ/139/519; Stritzinger et al. 2011, J/AJ/142/156), the Center for Astrophysics CfA (Hicken et al. 2009, J/ApJ/700/331; 2012, J/ApJS/200/12), the Lick Observatory Supernova Search (Ganeshalingam et al. 2010, J/ApJS/190/418), and many more. (3 data files).
Nanostructuring superconductors by ion beams: A path towards materials engineering
NASA Astrophysics Data System (ADS)
Gerbaldo, Roberto; Ghigo, Gianluca; Gozzelino, Laura; Laviano, Francesco; Amato, Antonino; Rovelli, Alberto; Cherubini, Roberto
2013-07-01
The paper deals with nanostructuring of superconducting materials by means of swift heavy ion beams. The aim is to modify their structural, optical and electromagnetic properties in a controlled way, to provide possibility of making them functional for specific applications. Results are presented concerning flux pinning effects (implantation of columnar defects with nanosize cross section to enhance critical currents and irreversibility fields), confined flux-flow and vortex guidance, design of devices by locally tailoring the superconducting material properties, analysis of disorder-induced effects in multi-band superconductors. These studies were carried out on different kinds of superconducting samples, from single crystals to thin films, from superconducting oxides to magnesium diboride, to recently discovered iron-based superconductors.
NASA Astrophysics Data System (ADS)
Ryan, Colan Graeme Matthew
Focused on the quad-band generalized negative-refractive-index transmission line (G-NRI-TL), this thesis presents a variety of novel printed G-NRI-TL multi-band microwave device and antenna prototypes. A dual-band coupled-line coupler, an all-pass G-NRI-TL bridged-T circuit, a dual-band metamaterial leaky-wave antenna, and a multi-band G-NRI-TL resonant antenna are all new developments resulting from this research. In addition, to continue the theme of multi-band components, negative-refractive-index transmission lines are used to create a dual-band circularly polarized transparent patch antenna and a two-element wideband decoupled meander antenna system. High coupling over two independently-specified frequency bands is the hallmark of the G-NRI-TL coupler: it is 0.35lambda0 long but achieves approximately -3 dB coupling over both bands with a maximum insertion loss of 1 dB. This represents greater design flexibility than conventional coupled-line couplers and less loss than subsequent G-NRI-TL couplers. The single-ended bridged-T G-NRI-TL offers a metamaterial unit cell with an all-pass magnitude response up to 8 GHz, while still preserving the quad-band phase response of the original circuit. It is shown how the all-pass response leads to wider bandwidths and improved matching in quad-band inverters, power dividers, and hybrid couplers. The dual-band metamaterial leaky-wave antenna presented here was the first to be reported in the literature, and it allows broadside radiation at both 2 GHz and 6 GHz without experiencing the broadside stopband common to conventional periodic antennas. Likewise, the G-NRI-TL resonant antenna is the first reported instance of such a device, achieving quad-band operation between 2.5 GHz and 5.6 GHz, with a minimum radiation efficiency of 80%. Negative-refractive-index transmission line loading is applied to two devices: an NRI-TL meander antenna achieves a measured 52% impedance bandwidth, while a square patch antenna incorporates NRI-TL elements to achieve circular polarization at 2.3 GHz and 2.7 GHz, with radiation efficiencies of 70% and 78%, respectively. Optical transparency of 50% is then realized by cutting a grid through the antenna and substrate, making the device suitable for direct integration with solar panels. Therefore, this research provides several proof-of-concept devices to highlight the flexibility and multi-band properties of the G-NRI-TL which extend the capabilities of microwave transceiver systems.
Temperature dependence of lower critical field of YBCO superconductor
NASA Astrophysics Data System (ADS)
Rani, Poonam; Hafiz, A. K.; Awana, V. P. S.
2018-05-01
We report the detailed study of the temperature dependence of the lower critical field (Hc1) of the YBa2Cu3O7 superconductor by magnetization measurements. The curve shows the multiband gap behavior of the sample. It is found that the sample is not a single BCS type superconductor. Hc1 is measured as the point at which the curve deviates from a Meissner-like linear M(H) curve to a nonlinear path. The Hc1 for YBCO at different temperatures from 10K to 85K has been determined by magnetization measurements M(H) with applied field parallel to the c-axis. The sample phase purity has been confirmed by Rietveld fitted X-ray diffraction data. The amplitude (1-17Oe) dependent AC susceptibility confirms the granular nature of superconducting compound. Using Bean model we calculated the temperature dependency of inter-grain critical current density and Jc(0) is found as 699.14kAcm-2.
Multiband superconductivity and nanoscale inhomogeneity at oxide interfaces
NASA Astrophysics Data System (ADS)
Caprara, S.; Biscaras, J.; Bergeal, N.; Bucheli, D.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R. C.; Lesueur, J.; Grilli, M.
2013-07-01
The two-dimensional electron gas at the LaTiO3/SrTiO3 or LaAlO3/SrTiO3 oxide interfaces becomes superconducting when the carrier density is tuned by gating. The measured resistance and superfluid density reveal an inhomogeneous superconductivity resulting from percolation of filamentary structures of superconducting “puddles” with randomly distributed critical temperatures, embedded in a nonsuperconducting matrix. Following the evidence that superconductivity is related to the appearance of high-mobility carriers, we model intrapuddle superconductivity by a multiband system within a weak coupling BCS scheme. The microscopic parameters, extracted by fitting the transport data with a percolative model, yield a consistent description of the dependence of the average intrapuddle critical temperature and superfluid density on the carrier density.
Tunable multiband directional electromagnetic scattering from spoof Mie resonant structure.
Wu, Hong-Wei; Chen, Hua-Jun; Xu, Hua-Feng; Fan, Ren-Hao; Li, Yang
2018-06-11
We demonstrate that directional electromagnetic scattering can be realized in an artificial Mie resonant structure that supports electric and magnetic dipole modes simultaneously. The directivity of the far-field radiation pattern can be switched by changing wavelength of the incident light as well as tailoring the geometric parameters of the structure. In addition, we further design a quasiperiodic spoof Mie resonant structure by alternately inserting two materials into the slits. The results show that multi-band directional light scattering is realized by exciting multiple electric and magnetic dipole modes with different frequencies in the quasiperiodic structure. The presented design concept is suitable for microwave to terahertz region and can be applied to various advanced optical devices, such as antenna, metamaterial and metasurface.
Mou, Daixiang; Jiang, Rui; Taufour, Valentin; ...
2015-04-08
We use a tunable laser angle-resolved photoemission spectroscopy to study the electronic properties of the prototypical multiband BCS superconductor MgB 2. Our data reveal a strong renormalization of the dispersion (kink) at ~65meV, which is caused by the coupling of electrons to the E 2g phonon mode. In contrast to cuprates, the 65 meV kink in MgB 2 does not change significantly across T c. More interestingly, we observe strong coupling to a second, lower energy collective mode at a binding energy of 10 meV. As a result, this excitation vanishes above T c and is likely a signature ofmore » the elusive Leggett mode.« less
Multi-band optical variability studies of Blazars
NASA Astrophysics Data System (ADS)
Agarwal, Aditi
2018-04-01
To search for optical variability on a wide range of timescales, we have carried out photometric monitoring of a dozen blazars. CCD magnitudes in B, V, R and I pass-bands were determined for > 10,000f new optical observations from 300 nights made during 2011 – 2016, with an average length of 4 h each, using seven optical telescopes: four in Bulgaria, one in Greece, and two in India. We measured multiband optical flux and colour variations on diverse timescales. Blazar variability studies helped us in understanding their nature and extreme conditions within the emission region. To explain possible physical causes of the observed spectral variability, we also investigated spectral energy distributions using B, V, R, I, J and K pass-band data.
NASA Astrophysics Data System (ADS)
Lucey, P. G.; Lemelin, M.; Ohtake, M.; Gaddis, L. R.; Greenhagen, B. T.; Yamamoto, S.; Hare, T. M.; Taylor, J.; Martel, L.; Norman, J.
2016-12-01
We combine visible and near-IR multispectral data from the Kaguya Multiband Imager (MI) with thermal infrared multispectral data from the LRO Diviner Lunar Radiometer Experiment to produce global mineral abundance data at 60-m resolution. The base data set applies a radiative transfer mixing model to the Kaguya MI data to produce global maps of plagioclase, low-Ca pyroxene, high-Ca pyroxene and olivine. Diviner thermal multispectral data are highly sensitive to the ratio of plagioclase to mafic minerals and provide independent data to both validate and improve confidence in the derived mineral abundances. The data set is validated using a new set of mineral abundances derived for lunar soils from all lunar sampling sites resolvable using MI data. Modal abundances are derived using X-ray diffraction patterns analyzed with quantitative Rietveldt analysis. Modal abundances were derived from 124 soils from 47 individual Apollo sampling stations. Some individual soil locations within sampling stations can be resolved increasing the total number of resolved locations to 56. With quantitative mineral abundances we can examine the distribution of classically defined lunar rock types in unprecedented detail. In the Feldspathic Highlands Terrane (FHT) the crust is dominated in surface area by noritic anorthosite consistent with a highly mixed composition. Classically defined anorthosite is widespread in the FHT, but much less abundant than the mafic anorthosites. The Procellarum KREEP Terrane and the South Pole Aitken Basin are more noritic than the FHT as previously recognized with abundant norite exposed. While dunite is not found, varieties of troctolitic rocks are widespread in basin rings, especially Crisium, Humorum and Moscoviense, and also occur in the core of the FHT. Only troctolites and anorthosites appear consistently concentrated in basin rings. We have barely scratched the surface of the full resolution data, but have completed an inventory of rock types on basin rings and find in most cases they are dominated by mixed anorthositic rocks similar to the rest of the crust suggesting the rings may be partly mantled by background noritic anorthosite. The major exception is Orientale with its highly anorthositic inner ring.
All-optical central-frequency-programmable and bandwidth-tailorable radar
Zou, Weiwen; Zhang, Hao; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping
2016-01-01
Radar has been widely used for military, security, and rescue purposes, and modern radar should be reconfigurable at multi-bands and have programmable central frequencies and considerable bandwidth agility. Microwave photonics or photonics-assisted radio-frequency technology is a unique solution to providing such capabilities. Here, we demonstrate an all-optical central-frequency-programmable and bandwidth-tailorable radar architecture that provides a coherent system and utilizes one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates a wideband linearly chirped radar signal. The working bands can be flexibly tailored with the desired bandwidth at a user-preferred carrier frequency. Radar echoes are first modulated onto the pre-chirped optical pulse, which is also used for signal generation, and then stretched in time or compressed in frequency several fold based on the time-stretch principle. Thus, digitization is facilitated without loss of detection ability. We believe that our results demonstrate an innovative radar architecture with an ultra-high-range resolution. PMID:26795596
NASA Astrophysics Data System (ADS)
Gagnon, Daniel
Detection of sulfur by optical emission spectroscopy generally presents difficulties because the strongest lines are in the vacuum ultraviolet and therefore are readily absorbed by oxygen molecules in air. A novel concept for a low cost and efficient system to detect sulfur using near infrared lines by Laser-Induced Breakdown Spectroscopy is proposed in this thesis. The concept proposes to use customized thick holographic gratings, also referred as Volume Bragg Grating, for spectral filtering of the plasma light, and built-in custom electronics that amplify and integrate photodiodes output signals. In this work, the optomechanical design, manufacturing and trials of a multiband sensor's prototype is reviewed. Preliminary results has been presented at NASLIBS 2011 and showed a limit of detection comparable to that of a conventional high-end system. An article describing the concept and results has been published in a special issue of the Applied Optics journal. To turn this newly patented concept into commercial success, the management of the innovation has been performed by proposing strategic and tactic alliances for commercialisation purposes applied to strategic business positioning structured along the 3 axis Technology -- Product -- Market. Open innovation is here acting as the paradigm to efficiently reach the market. Discussion relative to strategic and tactic alliance is actually taking place for deployment of the LIBS multiband sensor in the mining industry.
Takanashi, N.; Doi, M.; Yasuda, N.; ...
2016-12-06
We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takanashi, N.; Doi, M.; Yasuda, N.
We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less
A reconfigurable frequency-selective surface for dual-mode multi-band filtering applications
NASA Astrophysics Data System (ADS)
Majidzadeh, Maryam; Ghobadi, Changiz; Nourinia, Javad
2017-03-01
A reconfigurable single-layer frequency-selective surface (FSS) with dual-mode multi-band modes of operation is presented. The proposed structure is printed on a compact 10 × 10 mm2 FR4 substrate with the thickness of 1.6 mm. A simple square loop is printed on the front side while another one along with two defected vertical arms is deployed on the backside. To realise the reconfiguration, two pin diodes are embedded on the backside square loop. Suitable insertion of conductive elements along with pin diodes yields in dual-mode multi-band rejection of applicable in service frequency ranges. The first operating mode due to diodes' 'ON' state provides rejection of 2.4 GHz WLAN in 2-3 GHz, 5.2/5.8 GHz WLAN and X band in 5-12 GHz, and a part of Ku band in 13.9-16 GHz. In diodes 'OFF' state, the FSS blocks WLAN in 4-7.3 GHz, X band in 8-12.7 GHz as well as part of Ku band in 13.7-16.7 GHz. As well, high attenuation of incident waves is observed by a high shielding effectiveness (SE) in the blocked frequency bands. Also, a stable behaviour against different polarisations and angles of incidence is obtained. Comprehensive studies are conducted on a fabricated prototype to assess its performance from which encouraging results are obtained.
Atomically flat superconducting nanofilms: multiband properties and mean-field theory
NASA Astrophysics Data System (ADS)
Shanenko, A. A.; Aguiar, J. Albino; Vagov, A.; Croitoru, M. D.; Milošević, M. V.
2015-05-01
Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Pérot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.
Mathematical analysis of the multiband BCS gap equations in superconductivity
NASA Astrophysics Data System (ADS)
Yang, Yisong
2005-01-01
In this paper, we present a mathematical analysis for the phonon-dominated multiband isotropic and anisotropic BCS gap equations at any finite temperature T. We establish the existence of a critical temperature T so that, when T
Spectroscopy of Luminous Compact Blue Galaxies in Distant Clusters. I. Spectroscopic Data
NASA Astrophysics Data System (ADS)
Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A.; Hon, Kimo
2011-11-01
We used the DEIMOS spectrograph on the Keck II Telescope to obtain spectra of galaxies in the fields of five distant, rich galaxy clusters over the redshift range 0.5 < z < 0.9 in a search for luminous compact blue galaxies (LCBGs). Unlike traditional studies of galaxy clusters, we preferentially targeted blue cluster members identified via multi-band photometric pre-selection based on imaging data from the WIYN telescope. Of the 1288 sources that we targeted, we determined secure spectroscopic redshifts for 848 sources, yielding a total success rate of 66%. Our redshift measurements are in good agreement with those previously reported in the literature, except for 11 targets which we believe were previously in error. Within our sample, we confirm the presence of 53 LCBGs in the five galaxy clusters. The clusters all stand out as distinct peaks in the redshift distribution of LCBGs with the average number density of LCBGs ranging from 1.65 ± 0.25 Mpc-3 at z = 0.55 to 3.13 ± 0.65 Mpc-3 at z = 0.8. The number density of LCBGs in clusters exceeds the field density by a factor of 749 ± 116 at z = 0.55; at z = 0.8, the corresponding ratio is E = 416 ± 95. At z = 0.55, this enhancement is well above that seen for blue galaxies or the overall cluster population, indicating that LCBGs are preferentially triggered in high-density environments at intermediate redshifts. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.
Multi-Band Multi-Tone Tunable Millimeter-Wave Frequency Synthesizer For Satellite Beacon Transmitter
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2016-01-01
This paper presents the design and test results of a multi-band multi-tone tunable millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a satellite beacon transmitter for radio wave propagation studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). In addition, the architecture for a compact beacon transmitter, which includes the multi-tone synthesizer, polarizer, horn antenna, and power/control electronics, has been investigated for a notional space-to-ground radio wave propagation experiment payload on a small satellite. The above studies would enable the design of robust high throughput multi-Gbps data rate future space-to-ground satellite communication links.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2014-01-01
This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.
Photonic arbitrary waveform generation applicable to multiband UWB communications.
Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José
2010-12-06
A novel photonic structure for arbitrary waveform generation (AWG) is proposed based on the electrooptical intensity modulation of a broadband optical signal which is transmitted by a dispersive element and the optoelectrical processing is realized by combining an interferometric structure with balanced photodetection. The generated waveform can be fully reconfigured through the control of the optical source power spectrum and the interferometric structure. The use of balanced photodetection permits to remove the baseband component of the generated signal which is relevant in certain applications. We have theoretically described and experimentally demonstrated the feasibility of the system by means of the generation of different pulse shapes. Specifically, the proposed structure has been applicable to generate Multiband UWB signaling formats regarding to the FCC requirements in order to show the flexibility of the system.
Multiband superconductivity in BiS2-based layered compounds
NASA Astrophysics Data System (ADS)
Griffith, M. A.; Puel, T. O.; Continentino, M. A.; Martins, G. B.
2017-08-01
A mean-field treatment is presented of a square lattice two-orbital-model for \\text{Bi}{{\\text{S}}2} taking into account intra- and inter-orbital superconductivity. A rich phase diagram involving both types of superconductivity is presented as a function of the ratio between the couplings of electrons in the same and different orbitals (η ={{\\text{V}}\\text{XX}}/{{\\text{V}}\\text{XY}} ) and electron doping x. With the help of a quantity we call orbital-mixing ratio, denoted as R(φ ) , the phase diagram is analyzed using a simple and intuitive picture based on how R(φ ) varies as electron doping increases. The predictive power of R(φ ) suggests that it could be a useful tool in qualitatively (or even semi-quantitatively) analyzing multiband superconductivity in BCS-like superconductors.
Poly-Pattern Compressive Segmentation of ASTER Data for GIS
NASA Technical Reports Server (NTRS)
Myers, Wayne; Warner, Eric; Tutwiler, Richard
2007-01-01
Pattern-based segmentation of multi-band image data, such as ASTER, produces one-byte and two-byte approximate compressions. This is a dual segmentation consisting of nested coarser and finer level pattern mappings called poly-patterns. The coarser A-level version is structured for direct incorporation into geographic information systems in the manner of a raster map. GIs renderings of this A-level approximation are called pattern pictures which have the appearance of color enhanced images. The two-byte version consisting of thousands of B-level segments provides a capability for approximate restoration of the multi-band data in selected areas or entire scenes. Poly-patterns are especially useful for purposes of change detection and landscape analysis at multiple scales. The primary author has implemented the segmentation methodology in a public domain software suite.
NASA Astrophysics Data System (ADS)
He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu
2015-01-01
To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Da Rio, Nicola; Robberto, Massimo, E-mail: ndario@rssd.esa.int
We present the Tool for Astrophysical Data Analysis (TA-DA), a new software aimed to greatly simplify and improve the analysis of stellar photometric data in comparison with theoretical models, and allow the derivation of stellar parameters from multi-band photometry. Its flexibility allows one to address a number of such problems: from the interpolation of stellar models, or sets of stellar physical parameters in general, to the computation of synthetic photometry in arbitrary filters or units; from the analysis of observed color-magnitude diagrams to a Bayesian derivation of stellar parameters (and extinction) based on multi-band data. TA-DA is available as amore » pre-compiled Interactive Data Language widget-based application; its graphical user interface makes it considerably user-friendly. In this paper, we describe the software and its functionalities.« less
Zak phase induced multiband waveguide by two-dimensional photonic crystals.
Yang, Yuting; Xu, Tao; Xu, Yun Fei; Hang, Zhi Hong
2017-08-15
Interface states in photonic crystals provide efficient approaches to control the flow of light. Photonic Zak phase determines the bulk band properties of photonic crystals, and, by assembling two photonic crystals with different bulk band properties together, deterministic interface states can be realized. By translating each unit cell of a photonic crystal by half the lattice constant, another photonic crystal with identical common gaps but a different Zak phase at each photonic band can be created. By assembling these two photonic crystals together, multiband waveguide can thus be easily created and then experimentally characterized. Our experimental results have good agreement with numerical simulations, and the propagation properties of these measured interface states indicate that this new type of interface state will be a good candidate for future applications of optical communications.
NASA Astrophysics Data System (ADS)
Avdeev, S. M.; Erofeev, M. V.; Skakun, V. S.; Sosnin, E. A.; Suslov, A. I.; Tarasenko, V. F.; Schitz, D. V.
2008-07-01
The spectral and energy characteristics of multiband barrier-discharge coaxial KrBr excilamps are studied experimentally at pressures from a few tens of Torr to 0.4 atm. It is shown that an increase in the Br2 concentration reduces the emission intensity of KrBr* molecules with respect to the emission intensity of Br2* molecules and reduces the total emission power of the excilamp. This can be explained by the nonradiative decay of exciplex KrBr* molecules caused by their quenching by molecular bromine. The emission power and efficiency in the Kr:Br2 = 400:1 mixture at a pressure of ≈230 Torr and a discharge gap of 8.5 mm were 4.8 W and 2.4%, respectively.
Ferroelectric thin film acoustic devices with electrical multiband switching ability.
Ptashnik, Sergey V; Mikhailov, Anatoliy K; Yastrebov, Alexander V; Petrov, Peter K; Liu, Wei; Alford, Neil McN; Hirsch, Soeren; Kozyrev, Andrey B
2017-11-10
Design principles of a new class of microwave thin film bulk acoustic resonators with multiband resonance frequency switching ability are presented. The theory of the excitation of acoustic eigenmodes in multilayer ferroelectric structures is considered, and the principle of selectivity for resonator with an arbitrary number of ferroelectric layers is formulated. A so called "criterion function" is suggested that allows to determine the conditions for effective excitation at one selected resonance mode with suppression of other modes. The proposed theoretical approach is verifiedusing thepreexisting experimental data published elsewhere. Finally, the possible application of the two ferroelectric layers structures for switchable microwave overtone resonators, binary and quadrature phase-shift keying modulators are discussed. These devices could play a pivotal role in the miniaturization of microwave front-end antenna circuits.
Energy transfer by radiation in non-grey atomic gases in isothermal and non-isothermal slabs
NASA Technical Reports Server (NTRS)
Poon, P. T. Y.
1975-01-01
A multiband model for the absorption coefficient of atomic hydrogen-helium plasmas is constructed which includes continuum and line contributions. Emission from 28 stronger lines of 106 that have been screened is considered, of which 21 are from hydrogen and 7 belong to helium, with reabsorption due to line-line, line-continuum overlap accurately accounted for. The model is utilized in the computation of intensities and fluxes from shock-heated slabs of 85% H2-15% He mixtures for slab thicknesses from 1 to 30 cm, temperature from 10,000 to 20,000 K, and for different densities. In conjunction with the multiband model, simple numerical schemes have been devised which provide a quick and comprehensive way of computing radiative energy transfer in nonisothermal and nongrey gases.
The phase transition in VO 2 probed using x-ray, visible and infrared radiations
Kumar, Suhas; Strachan, John Paul; Kilcoyne, A. L. David; ...
2016-02-15
Vanadium dioxide (VO 2) is a model system that has been used to understand closely occurring multiband electronic (Mott) and structural (Peierls) transitions for over half a century due to continued scientific and technological interests. Among the many techniques used to study VO 2, the most frequently used involve electromagnetic radiation as a probe. Understanding of the distinct physical information provided by different probing radiations is incomplete, mostly owing to the complicated nature of the phase transitions. Here, we use transmission of spatially averaged infrared (λ = 1.5 μm) and visible (λ = 500 nm) radiations followed by spectroscopy andmore » nanoscale imaging using x-rays (λ = 2.25–2.38 nm) to probe the same VO 2 sample while controlling the ambient temperature across its hysteretic phase transitions and monitoring its electrical resistance. We directly observed nanoscale puddles of distinct electronic and structural compositions during the transition. The two main results are that, during both heating and cooling, the transition of infrared and visible transmission occurs at significantly lower temperatures than the Mott transition, and the electronic (Mott) transition occurs before the structural (Peierls) transition in temperature. We use our data to provide insights into possible microphysical origins of the different transition characteristics. We highlight that it is important to understand these effects because small changes in the nature of the probe can yield quantitatively, and even qualitatively, different results when applied to a non-trivial multiband phase transition. Our results guide more judicious use of probe type and interpretation of the resulting data.« less
Compact full-motion video hyperspectral cameras: development, image processing, and applications
NASA Astrophysics Data System (ADS)
Kanaev, A. V.
2015-10-01
Emergence of spectral pixel-level color filters has enabled development of hyper-spectral Full Motion Video (FMV) sensors operating in visible (EO) and infrared (IR) wavelengths. The new class of hyper-spectral cameras opens broad possibilities of its utilization for military and industry purposes. Indeed, such cameras are able to classify materials as well as detect and track spectral signatures continuously in real time while simultaneously providing an operator the benefit of enhanced-discrimination-color video. Supporting these extensive capabilities requires significant computational processing of the collected spectral data. In general, two processing streams are envisioned for mosaic array cameras. The first is spectral computation that provides essential spectral content analysis e.g. detection or classification. The second is presentation of the video to an operator that can offer the best display of the content depending on the performed task e.g. providing spatial resolution enhancement or color coding of the spectral analysis. These processing streams can be executed in parallel or they can utilize each other's results. The spectral analysis algorithms have been developed extensively, however demosaicking of more than three equally-sampled spectral bands has been explored scarcely. We present unique approach to demosaicking based on multi-band super-resolution and show the trade-off between spatial resolution and spectral content. Using imagery collected with developed 9-band SWIR camera we demonstrate several of its concepts of operation including detection and tracking. We also compare the demosaicking results to the results of multi-frame super-resolution as well as to the combined multi-frame and multiband processing.
NASA Astrophysics Data System (ADS)
Kajikawa, Y.
2016-02-01
The experimental data on the temperature dependence of the four transport coefficients, i.e., the electrical conductivity (σ), Hall coefficient (RH), Seebeck coefficient (S), and Nernst coefficient (Q), of n-type Co0.999Ni0.001Sb3 reported by Sun et al. [Nat. Commun. 6, 7475 (2015)] have been analyzed in a multi-band model, especially focusing on the low temperature data. The multi-band model includes not only the lowest valley of the conduction band at the Γ point but also satellite valleys at the second minima together with an impurity band. The lowest valley at the Γ point is assumed to split into the c1 band and the spin-orbit split-off (so) band. For the analysis, the general expression of the Nernst coefficient in the multi-band model is derived. At such low temperatures that the other bands than the c1 and the impurity band can be neglected, this expression is shown to be approximated as the sum of three terms: the intrinsic terms due to the Nernst coefficients in the two bands themselves and a cross term proportional to the difference of Seebeck coefficients between the two bands. As a result of the analysis, it is proved that the anomalous positive peak of S(T) observed around T = 20 K as well as the sharp rise of the Hall mobility observed from 15 K to 40 K are due to the transition from hopping conduction in the impurity band to conduction in the c1 band. On the other hand, the pronounced peak of Q(T) observed slightly below 40 K is proved to be due to the cross term between the impurity band and the c1 band. In addition, a shoulder of Q(T) appeared around T = 80 K lends clear evidence of the existence of the so band, while the increase in both of σ(T) and | S ( T ) | above 150 K suggests the existence of the satellite valleys.
2005-12-22
Newborn stars, hidden behind thick dust, are revealed in this image of a section of the Christmas Tree cluster from NASA Spitzer Space Telescope, created in joint effort between Spitzer infrared array camera and multiband imaging photometer instrument
A multiband radiometer and data acquisition system for remote sensing field research
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator); Robinson, B. F.; Dewitt, D. P.; Silva, L. F.; Vanderbilt, V. C.
1981-01-01
Specifications are described for a recently developed prototype multispectral data acquisition system which consists of multiband radiometer with 8 bands between 0.4 and 12.5 micrometers and a data recording module to record data from the radometer and ancillary sources. The systems is adaptable to helicopter, truck, or tripod platforms, as well as hand-held operation. The general characteristics are: (1) comparatively inexpensive to acquire, maintain and operate; (2) simple to operate and calibrate; (3) complete with data hardware and software; and (4) well documented for use by researchers. The instrument system is to be commercially available and can be utilized by many researchers to obtain large numbers of accurate, calibrated spectral measurements. It can be a key element in improving and advancing the capability for field research in remote sensing.
Simplified radio-over-fiber transport systems with a low-cost multiband light source.
Chang, Ching-Hung; Peng, Peng-Chun; Lu, Hai-Han; Shih, Chine-Liang; Chen, Hwan-Wen
2010-12-01
In this Letter, low-cost radio-over-fiber (ROF) transport systems are proposed and experimentally demonstrated. By utilizing a laser diode (LD) and a local oscillator (LO) to generate coherent multiband optical carriers, as well as a self-composed wavelength selector to separate every two carriers for different ROF transport systems, no any other dedicated LD or electrical frequency upconverting circuit/process is needed in the central station (CS). Compared with current ROF systems, the required numbers of LDs, LOs, and mixers in a CS are significantly reduced. Reducing the number of components not only can simplify the network structure but can also reduce the volume and complexity of the relative logistics. To demonstrate the practice of the proposed ROF transport systems, clear eye diagrams and error-free transmission performance are experimentally presented.
NASA Astrophysics Data System (ADS)
She, Yuchen; Li, Shuang
2018-01-01
The planning algorithm to calculate a satellite's optimal slew trajectory with a given keep-out constraint is proposed. An energy-optimal formulation is proposed for the Space-based multiband astronomical Variable Objects Monitor Mission Analysis and Planning (MAP) system. The innovative point of the proposed planning algorithm lies in that the satellite structure and control limitation are not considered as optimization constraints but are formulated into the cost function. This modification is able to relieve the burden of the optimizer and increases the optimization efficiency, which is the major challenge for designing the MAP system. Mathematical analysis is given to prove that there is a proportional mapping between the formulation and the satellite controller output. Simulations with different scenarios are given to demonstrate the efficiency of the developed algorithm.
Study of multiband disordered systems using the typical medium dynamical cluster approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yi; Terletska, Hanna; Moore, C.
We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to K xFe 2-ySe 2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator.more » Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less
Study of multiband disordered systems using the typical medium dynamical cluster approximation
Zhang, Yi; Terletska, Hanna; Moore, C.; ...
2015-11-06
We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to K xFe 2-ySe 2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator.more » Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less
Multiband supercontinuum generation in an air-core revolver fibre
NASA Astrophysics Data System (ADS)
Yatsenko, Yu P.; Pleteneva, E. N.; Okhrimchuk, A. G.; Gladyshev, A. V.; Kosolapov, A. F.; Kolyadin, A. N.; Bufetov, I. A.
2017-06-01
Multiband supercontinuum generation in an air-core revolver fibre having a large number of transmission bands in a wide spectral range has been studied experimentally and theoretically for the first time. The fibre fabricated by us possesses unique dispersion and guidance characteristics for radiation transfer from one band to another despite the high losses at the band boundaries. In our experiments, launching 205-fs laser pulses of 110 μJ energy at 1028 nm into the fibre we have obtained a supercontinuum spanning the spectral range from 415 to 1593 nm, with 11 transmission bands. Numerical simulation suggests that, in the case of singlemode propagation of pulses with such energy in the fibre, the supercontinuum may span 14 transmission bands and have a spectral width above three octaves, with a long-wavelength edge at 4200 nm.
NASA Astrophysics Data System (ADS)
Aperis, Alex; Oppeneer, Peter M.
2018-02-01
We examine the impact of interfacial phonons on the superconducting state of FeSe /SrTiO3 developing a material's specific multiband, full bandwidth, and anisotropic Eliashberg theory for this system. Our self-consistent calculations highlight the importance of the interfacial electron-phonon interaction, which is hidden behind the seemingly weak-coupling constant λm=0.4 , in mediating the high Tc, and explain other puzzling experimental observations, such as the s -wave symmetry and replica bands. We discover that the formation of replica bands has a Tc decreasing effect that is nevertheless compensated by deep Fermi-sea Cooper pairing which has a Tc enhancing effect. We predict a strong-coupling dip-hump signature in the tunneling spectra due to the interfacial coupling.
3D Display Using Conjugated Multiband Bandpass Filters
NASA Technical Reports Server (NTRS)
Bae, Youngsam; White, Victor E.; Shcheglov, Kirill
2012-01-01
Stereoscopic display techniques are based on the principle of displaying two views, with a slightly different perspective, in such a way that the left eye views only by the left eye, and the right eye views only by the right eye. However, one of the major challenges in optical devices is crosstalk between the two channels. Crosstalk is due to the optical devices not completely blocking the wrong-side image, so the left eye sees a little bit of the right image and the right eye sees a little bit of the left image. This results in eyestrain and headaches. A pair of interference filters worn as an optical device can solve the problem. The device consists of a pair of multiband bandpass filters that are conjugated. The term "conjugated" describes the passband regions of one filter not overlapping with those of the other, but the regions are interdigitated. Along with the glasses, a 3D display produces colors composed of primary colors (basis for producing colors) having the spectral bands the same as the passbands of the filters. More specifically, the primary colors producing one viewpoint will be made up of the passbands of one filter, and those of the other viewpoint will be made up of the passbands of the conjugated filter. Thus, the primary colors of one filter would be seen by the eye that has the matching multiband filter. The inherent characteristic of the interference filter will allow little or no transmission of the wrong side of the stereoscopic images.
Multiple kernel SVR based on the MRE for remote sensing water depth fusion detection
NASA Astrophysics Data System (ADS)
Wang, Jinjin; Ma, Yi; Zhang, Jingyu
2018-03-01
Remote sensing has an important means of water depth detection in coastal shallow waters and reefs. Support vector regression (SVR) is a machine learning method which is widely used in data regression. In this paper, SVR is used to remote sensing multispectral bathymetry. Aiming at the problem that the single-kernel SVR method has a large error in shallow water depth inversion, the mean relative error (MRE) of different water depth is retrieved as a decision fusion factor with single kernel SVR method, a multi kernel SVR fusion method based on the MRE is put forward. And taking the North Island of the Xisha Islands in China as an experimentation area, the comparison experiments with the single kernel SVR method and the traditional multi-bands bathymetric method are carried out. The results show that: 1) In range of 0 to 25 meters, the mean absolute error(MAE)of the multi kernel SVR fusion method is 1.5m,the MRE is 13.2%; 2) Compared to the 4 single kernel SVR method, the MRE of the fusion method reduced 1.2% (1.9%) 3.4% (1.8%), and compared to traditional multi-bands method, the MRE reduced 1.9%; 3) In 0-5m depth section, compared to the single kernel method and the multi-bands method, the MRE of fusion method reduced 13.5% to 44.4%, and the distribution of points is more concentrated relative to y=x.
FIR filters for hardware-based real-time multi-band image blending
NASA Astrophysics Data System (ADS)
Popovic, Vladan; Leblebici, Yusuf
2015-02-01
Creating panoramic images has become a popular feature in modern smart phones, tablets, and digital cameras. A user can create a 360 degree field-of-view photograph from only several images. Quality of the resulting image is related to the number of source images, their brightness, and the used algorithm for their stitching and blending. One of the algorithms that provides excellent results in terms of background color uniformity and reduction of ghosting artifacts is the multi-band blending. The algorithm relies on decomposition of image into multiple frequency bands using dyadic filter bank. Hence, the results are also highly dependant on the used filter bank. In this paper we analyze performance of the FIR filters used for multi-band blending. We present a set of five filters that showed the best results in both literature and our experiments. The set includes Gaussian filter, biorthogonal wavelets, and custom-designed maximally flat and equiripple FIR filters. The presented results of filter comparison are based on several no-reference metrics for image quality. We conclude that 5/3 biorthogonal wavelet produces the best result in average, especially when its short length is considered. Furthermore, we propose a real-time FPGA implementation of the blending algorithm, using 2D non-separable systolic filtering scheme. Its pipeline architecture does not require hardware multipliers and it is able to achieve very high operating frequencies. The implemented system is able to process 91 fps for 1080p (1920×1080) image resolution.
NASA Astrophysics Data System (ADS)
Saylam, Kutalmis; Brown, Rebecca A.; Hupp, John R.
2017-06-01
Airborne Lidar bathymetry (ALB) is an effective and a rapidly advancing technology for mapping and characterizing shallow coastal water zones as well as inland fresh-water basins such as rivers and lakes. The ability of light beams to detect and traverse shallow water columns has provided valuable information about unmapped and often poorly understood coastal and inland water bodies of the world. Estimating ALB survey results at varying water clarity and depth conditions is essential for realizing project expectations and preparing budgets accordingly. In remote locations of the world where in situ water clarity measurements are not feasible or possible, using multiband satellite imagery can be an effective tool for estimating and addressing such considerations. For this purpose, we studied and classified reflected electromagnetic energy from selected water bodies acquired by RapidEye sensor and then correlated findings with ALB survey results. This study was focused not on accurately measuring depth from optical bathymetry but rather on using multiband satellite imagery to quickly predict ALB survey results and identify potentially turbid water bodies with limited depth penetration. For this study, we constructed an in-house algorithm to confirm ALB survey findings using bathymetric waveform information. The study findings are expected to contribute to the ongoing understanding of forecasting ALB survey expectations in unknown and varying water conditions, especially in remote and inaccessible parts of the world.
Evolution of London penetration depth with scattering in single crystals of K1-xNaxFe2As2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Tanatar, M A; Liu, Yong
2014-05-01
London penetration depth, λ(T), was measured in single crystals of K1-xNaxFe2As2, x=0 and 0.07, down to temperatures of 50 mK, ~Tc/50. Isovalent substitution of Na for K significantly increases impurity scattering, with ρ(Tc) rising from 0.2 to 2.2 μΩ cm, and leads to a suppression of Tc from 3.5 to 2.8 K. At the same time, a close to T-linear Δλ(T) in pure samples changes to almost T2 in the substituted samples. The behavior never becomes exponential as expected for the accidental nodes, as opposed to T2 dependence in superconductors with symmetry imposed line nodes. The superfluid density in themore » full temperature range follows a simple clean and dirty d-wave dependence, for pure and substituted samples, respectively. This result contradicts suggestions of multiband scenarios with strongly different gap structure on four sheets of the Fermi surface.« less
Automated site characterization for robotic sample acquisition systems
NASA Astrophysics Data System (ADS)
Scholl, Marija S.; Eberlein, Susan J.
1993-04-01
A mobile, semiautonomous vehicle with multiple sensors and on-board intelligence is proposed for performing preliminary scientific investigations on extraterrestrial bodies prior to human exploration. Two technologies, a hybrid optical-digital computer system based on optical correlator technology and an image and instrument data analysis system, provide complementary capabilities that might be part of an instrument package for an intelligent robotic vehicle. The hybrid digital-optical vision system could perform real-time image classification tasks using an optical correlator with programmable matched filters under control of a digital microcomputer. The data analysis system would analyze visible and multiband imagery to extract mineral composition and textural information for geologic characterization. Together these technologies would support the site characterization needs of a robotic vehicle for both navigational and scientific purposes.
RCSLenS: The Red Cluster Sequence Lensing Survey
NASA Astrophysics Data System (ADS)
Hildebrandt, H.; Choi, A.; Heymans, C.; Blake, C.; Erben, T.; Miller, L.; Nakajima, R.; van Waerbeke, L.; Viola, M.; Buddendiek, A.; Harnois-Déraps, J.; Hojjati, A.; Joachimi, B.; Joudaki, S.; Kitching, T. D.; Wolf, C.; Gwyn, S.; Johnson, N.; Kuijken, K.; Sheikhbahaee, Z.; Tudorica, A.; Yee, H. K. C.
2016-11-01
We present the Red Cluster Sequence Lensing Survey (RCSLenS), an application of the methods developed for the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) to the ˜785 deg2, multi-band imaging data of the Red-sequence Cluster Survey 2. This project represents the largest public, sub-arcsecond seeing, multi-band survey to date that is suited for weak gravitational lensing measurements. With a careful assessment of systematic errors in shape measurements and photometric redshifts, we extend the use of this data set to allow cross-correlation analyses between weak lensing observables and other data sets. We describe the imaging data, the data reduction, masking, multi-colour photometry, photometric redshifts, shape measurements, tests for systematic errors, and a blinding scheme to allow for more objective measurements. In total, we analyse 761 pointings with r-band coverage, which constitutes our lensing sample. Residual large-scale B-mode systematics prevent the use of this shear catalogue for cosmic shear science. The effective number density of lensing sources over an unmasked area of 571.7 deg2 and down to a magnitude limit of r ˜ 24.5 is 8.1 galaxies per arcmin2 (weighted: 5.5 arcmin-2) distributed over 14 patches on the sky. Photometric redshifts based on four-band griz data are available for 513 pointings covering an unmasked area of 383.5 deg2. We present weak lensing mass reconstructions of some example clusters as well as the full survey representing the largest areas that have been mapped in this way. All our data products are publicly available through Canadian Astronomy Data Centre at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/rcslens/query.html in a format very similar to the CFHTLenS data release.
Multicolor emission from intermediate band semiconductor ZnO 1-xSe x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welna, M.; Baranowski, M.; Linhart, W. M.
Photoluminescence and photomodulated reflectivity measurements of ZnOSe alloys are used to demonstrate a splitting of the valence band due to the band anticrossing interaction between localized Se states and the extended valence band states of the host ZnO matrix. A strong multiband emission associated with optical transitions from the conduction band to lower E - and upper E + valence subbands has been observed at room temperature. The composition dependence of the optical transition energies is well explained by the electronic band structure calculated using the kp method combined with the band anticrossing model. The observation of the multiband emissionmore » is possible because of relatively long recombination lifetimes. Longer than 1 ns lifetimes for holes photoexcited to the lower valence subband offer a potential of using the alloy as an intermediate band semiconductor for solar power conversion applications.« less
Large magnetoresistance in the type-II Weyl semimetal WP 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Aifeng; Graf, D.; Liu, Yu
In this paper, we report a magnetotransport study on type-II Weyl semimetal WP 2 single crystals. Magnetoresistance exhibits a nonsaturating H n field dependence (14 300% at 2 K and 9 T), whereas systematic violation of Kohler's rule was observed. Quantum oscillations reveal a complex multiband electronic structure. The cyclotron effective mass close to the mass of free electron m e was observed in quantum oscillations along the b axis, while a reduced effective mass of about 0.5 m e was observed in α-axis quantum oscillations, suggesting Fermi surface anisotropy. The temperature dependence of the resistivity shows a large upturnmore » that cannot be explained by the multiband magnetoresistance of conventional metals. Finally, even though the crystal structure of WP 2 is not layered as in transition-metal dichalcogenides, quantum oscillations suggest partial two-dimensional character.« less
Multicolor emission from intermediate band semiconductor ZnO 1-xSe x
Welna, M.; Baranowski, M.; Linhart, W. M.; ...
2017-03-13
Photoluminescence and photomodulated reflectivity measurements of ZnOSe alloys are used to demonstrate a splitting of the valence band due to the band anticrossing interaction between localized Se states and the extended valence band states of the host ZnO matrix. A strong multiband emission associated with optical transitions from the conduction band to lower E - and upper E + valence subbands has been observed at room temperature. The composition dependence of the optical transition energies is well explained by the electronic band structure calculated using the kp method combined with the band anticrossing model. The observation of the multiband emissionmore » is possible because of relatively long recombination lifetimes. Longer than 1 ns lifetimes for holes photoexcited to the lower valence subband offer a potential of using the alloy as an intermediate band semiconductor for solar power conversion applications.« less
Multi-band magnetotransport in exfoliated thin films of Cu x Bi2Se3
NASA Astrophysics Data System (ADS)
Alexander-Webber, J. A.; Huang, J.; Beilsten-Edmands, J.; Čermák, P.; Drašar, Č.; Nicholas, R. J.; Coldea, A. I.
2018-04-01
We report magnetotransport studies in thin (<100 nm) exfoliated films of Cu x Bi2Se3 and we detect an unusual electronic transition at low temperatures. Bulk crystals show weak superconductivity with T_c∼3.5 K and a possible electronic phase transition around 200 K. Following exfoliation, superconductivity is supressed and a strongly temperature dependent multi-band conductivity is observed for T < 30 K. This transition between competing conducting channels may be enhanced due to the presence of electronic ordering, and could be affected by the presence of an effective internal stress due to Cu intercalation. By fitting to the weak antilocalisation conductivity correction at low magnetic fields we confirm that the low temperature regime maintains a quantum phase coherence length Lφ> 100 nm indicating the presence of topologically protected surface states.
Large magnetoresistance in the type-II Weyl semimetal WP 2
Wang, Aifeng; Graf, D.; Liu, Yu; ...
2017-09-11
In this paper, we report a magnetotransport study on type-II Weyl semimetal WP 2 single crystals. Magnetoresistance exhibits a nonsaturating H n field dependence (14 300% at 2 K and 9 T), whereas systematic violation of Kohler's rule was observed. Quantum oscillations reveal a complex multiband electronic structure. The cyclotron effective mass close to the mass of free electron m e was observed in quantum oscillations along the b axis, while a reduced effective mass of about 0.5 m e was observed in α-axis quantum oscillations, suggesting Fermi surface anisotropy. The temperature dependence of the resistivity shows a large upturnmore » that cannot be explained by the multiband magnetoresistance of conventional metals. Finally, even though the crystal structure of WP 2 is not layered as in transition-metal dichalcogenides, quantum oscillations suggest partial two-dimensional character.« less
VizieR Online Data Catalog: KiDS-ESO-DR2 multi-band source catalog (de Jong+, 2015)
NASA Astrophysics Data System (ADS)
de Jong, J. T. A.; Verdoes Kleijn, G. A.; Boxhoorn, D. R.; Buddelmeijer, H.; Capaccioli, M.; Getman, F.; Grado, A.; Helmich, E.; Huang, Z.; Irisarri, N.; Kuijken, K.; La Barbera, F.; McFarland, J. P.; Napolitano, N. R.; Radovich, M.; Sikkema, G.; Valentijn, E. A.; Begeman, K. G.; Brescia, M.; Cavuoti, S.; Choi, A.; Cordes, O.-M.; Covone, G.; Dall'Ora, M.; Hildebrandt, H.; Longo, G.; Nakajima, R.; Paolillo, M.; Puddu, E.; Rifatto, A.; Tortora, C.; van Uitert, E.; Buddendiek, A.; Harnois-Deraps, J.; Erben, T.; Eriksen, M. B.; Heymans, C.; Hoekstra, H.; Joachimi, B.; Kitching, T. D.; Klaes, D.; Koopmans, L. V. E.; Koehlinger, F.; Roy, N.; Sifon, C.; Schneider, P.; Sutherland, W. J.; Viola, M.; Vriend, W.-J.
2016-10-01
KiDS data releases consist of ~1 square degree tiles that have been successfully observed in all four survey filters (u,g,r,i). The second data release (KiDS-ESO-DR2) was available in February 2015 and contains imaging data, masks and single-band source lists for all tiles observed in all four filters for which observations were completed during the second year of regular operations (1 October 2012 to 31 September 2013), a total of 98 tiles. Apart from the data products mentioned above, KiDS-ESO-DR2 also provides a multi-band source catalogue based on the combined set of 148 tiles released in the first two data releases. A complete list of all tiles with data quality parameters can be found on the KiDS website: http://kids.strw.leidenuniv.nl/DR2/ (1 data file).
Radio Telescope Focal Container for the Russian VLBI Network of New Generation
NASA Technical Reports Server (NTRS)
Ipatov, Alexander; Mardyshkin, Vyacheslav; Cherepanov, Andrey; Chernov, Vitaly; Diky, Dmitry; Khvostov, Evgeny; Yevstigneyev, Alexander
2010-01-01
This article considers the development of the structure of receivers for Russian radio telescopes. The development of these radio telescopes is undertaken within the project for creating a Russian small-antenna-based radio interferometer of new generation. It is shown that for small antennas (10. 12 meter) the principal unit, which provides the best SNR, is the so-called focal container placed at primary focus. It includes the primary feed, HEMT LNA, and cryogenic cooling system down to 20. K. A new multi-band feed based on traveling wave resonators is used. It has small dimensions, low weight, and allows working with circular polarizations. Thus it can be placed into focal container and cooled with the LNA. A sketch of the focal container, with traveling-wave-resonator feed, and calculations of the expected parameters of the multi-band receiver are presented.
Multiband selection with linear array detectors
NASA Technical Reports Server (NTRS)
Richard, H. L.; Barnes, W. L.
1985-01-01
Several techniques that can be used in an earth-imaging system to separate the linear image formed after the collecting optics into the desired spectral band are examined. The advantages and disadvantages of the Multispectral Linear Array (MLA) multiple optics, the MLA adjacent arrays, the imaging spectrometer, and the MLA beam splitter are discussed. The beam-splitter design approach utilizes, in addition to relatively broad spectral region separation, a movable Multiband Selection Device (MSD), placed between the exit ports of the beam splitter and a linear array detector, permitting many bands to be selected. The successful development and test of the MSD is described. The device demonstrated the capacity to provide a wide field of view, visible-to-near IR/short-wave IR and thermal IR capability, and a multiplicity of spectral bands and polarization measuring means, as well as a reasonable size and weight at minimal cost and risk compared to a spectrometer design approach.
SAND: an automated VLBI imaging and analysing pipeline - I. Stripping component trajectories
NASA Astrophysics Data System (ADS)
Zhang, M.; Collioud, A.; Charlot, P.
2018-02-01
We present our implementation of an automated very long baseline interferometry (VLBI) data-reduction pipeline that is dedicated to interferometric data imaging and analysis. The pipeline can handle massive VLBI data efficiently, which makes it an appropriate tool to investigate multi-epoch multiband VLBI data. Compared to traditional manual data reduction, our pipeline provides more objective results as less human interference is involved. The source extraction is carried out in the image plane, while deconvolution and model fitting are performed in both the image plane and the uv plane for parallel comparison. The output from the pipeline includes catalogues of CLEANed images and reconstructed models, polarization maps, proper motion estimates, core light curves and multiband spectra. We have developed a regression STRIP algorithm to automatically detect linear or non-linear patterns in the jet component trajectories. This algorithm offers an objective method to match jet components at different epochs and to determine their proper motions.
Alternative route to charge density wave formation in multiband systems
Eiter, Hans-Martin; Lavagnini, Michela; Hackl, Rudi; Nowadnick, Elizabeth A.; Kemper, Alexander F.; Devereaux, Thomas P.; Chu, Jiun-Haw; Analytis, James G.; Fisher, Ian R.; Degiorgi, Leonardo
2013-01-01
Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron–lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe3. Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron–phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors. PMID:23248317
Traffic placement policies for a multi-band network
NASA Technical Reports Server (NTRS)
Maly, Kurt J.; Foudriat, E. C.; Game, David; Mukkamala, R.; Overstreet, C. Michael
1990-01-01
Recently protocols were introduced that enable the integration of synchronous traffic (voice or video) and asynchronous traffic (data) and extend the size of local area networks without loss in speed or capacity. One of these is DRAMA, a multiband protocol based on broadband technology. It provides dynamic allocation of bandwidth among clusters of nodes in the total network. A number of traffic placement policies for such networks are proposed and evaluated. Metrics used for performance evaluation include average network access delay, degree of fairness of access among the nodes, and network throughput. The feasibility of the DRAMA protocol is established through simulation studies. DRAMA provides effective integration of synchronous and asychronous traffic due to its ability to separate traffic types. Under the suggested traffic placement policies, the DRAMA protocol is shown to handle diverse loads, mixes of traffic types, and numbers of nodes, as well as modifications to the network structure and momentary traffic overloads.
NASA Astrophysics Data System (ADS)
Bratkovsky, A. M.; Alexandrov, A. S.
2002-03-01
The semiclassical Lifshitz-Kosevich-type description is given for the angular dependence of quantum oscillations with combination frequencies in a multiband quasi-two-dimensional Fermi liquid with a constant number of electrons. The analytical expressions are found for the Dingle, thermal, spin, and amplitude (Yamaji) reduction factors of the novel combination harmonics, where the latter two strongly oscillate with the direction of the field [1]. At the magic angles those factors reduce to the purely two-dimensional expressions given earlier. The combination harmonics are suppressed in the presence of the nonquantized background states, and they decay exponentially faster with temperature and/or disorder compared to the standard harmonics, providing an additional tool for electronic structure determination. The theory is applied to Sr2RuO4. [1] A.M. Bratkovsky and A.S. Alexandrov, Phys. Rev. B 65, xxxx (2002); cond-mat/0104520.
NASA Astrophysics Data System (ADS)
Park, Wan Kyu; Hunt, C. R.; Arham, H. Z.; Lu, X.; Greene, L. H.; Xu, Z. J.; Wen, J. S.; Lin, Z. W.; Li, Q.; Gu, G.
2010-03-01
We report point-contact conductance measurements on the iron chalcogenide superconductors, Fe1+yTe1-xSex. The excess Fe atoms are known to occupy the interstitial sites in the Te-Se plane, affecting the superconductivity as well as the magnetism in this family. For a compound having nominal values of y=0 and x=0.45, a single superconducting transition is observed at 14.2 K. In the superconducting state, BTK-like double peak structures due to Andreev reflection are observed. However, the peak position of different point contacts falls to a wide voltage range, 1.5 -- 4 mV. Additional multiple humps are sometimes observed in a much higher bias voltage range, 8 -- 15 mV. Most strikingly, conductance enhancement persists well above Tc. We will present possible interpretations of these experimental observations in terms of multiband superconductivity and the interplay between superconductivity and magnetism.
Multi-band Electronic Structure of Ferromagnetic CeRuPO
NASA Astrophysics Data System (ADS)
Takahashi, Masaya; Ootsuki, Daiki; Horio, Masafumi; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Saini, Naurang L.; Sugawara, Hitoshi; Mizokawa, Takashi
2018-04-01
We have studied the multi-band electronic structure of ferromagnetic CeRuPO (TC = 15 K) by means of angle-resolved photoemission spectroscopy (ARPES). The ARPES results show that three hole bands exist around the zone center and two of them cross the Fermi level (EF). Around the zone corner, two electron bands are observed and cross EF. These hole and electron bands, which can be assigned to the Ru 4d bands, are basically consistent with the band-structure calculation including their orbital characters. However, one of the electron bands with Ru 4d 3z2 - r2 character is strongly renormalized indicating correlation effect due to hybridization with the Ce 4f orbitals. The Ru 4d 3z2 - r2 band changes across TC suggesting that the out-of-plane 3z2 - r2 orbital channel plays essential roles in the ferromagnetism.
Modeling direct interband tunneling. I. Bulk semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Andrew, E-mail: pandrew@ucla.edu; Chui, Chi On; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095
Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority ofmore » the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.« less
Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC.
Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Liu, Yen-Liang
2015-01-26
To increase the traffic rate in phosphor-LED visible light communication (VLC), a multi-band orthogonal frequency division multiplexed (OFDM) modulation is first proposed and demonstrated. In the measurement, we do not utilize optical blue filter to increase modulation bandwidth of phosphor-LED in the VLC system. In this proposed scheme, different bands of OFDM signals are applied to different LED chips in a LED lamp, this can avoid the power fading and nonlinearity issue by applying the same OFDM signal to all the LED chips in a LED lamp. Here, the maximum increase percentages of traffic rates are 41.1%, 17.8% and 17.8% under received illuminations of 200, 500 and 1000 Lux, respectively, when the proposed three-band OFDM modulation is used in the VLC system. In addition, the analysis and verification by experiments are also performed.
Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses
NASA Astrophysics Data System (ADS)
Wang, Guo-Dong; Liu, Ming-Hai; Hu, Xi-Wei; Kong, Ling-Hua; Cheng, Li-Li; Chen, Zhao-Quan
2014-01-01
The influence of the gap on the absorption performance of the conventional split ring resonator (SRR) absorber is investigated at microwave frequencies. Our simulated results reveal that the geometry of the square SRR can be equivalent to a Jerusalem cross (JC) resonator and its corresponding metamaterial absorber (MA) is changed to a JC absorber. The JC MA exhibits an experimental absorption peak of 99.1% at 8.72 GHz, which shows an excellent agreement with our simulated results. By simply assembling several JCs with slightly different geometric parameters next to each other into a unit cell, a perfect multi-band absorption can be effectively obtained. The experimental results show that the MA has four distinct and strong absorption peaks at 8.32 GHz, 9.8 GHz, 11.52 GHz and 13.24 GHz. Finally, the multi-reflection interference theory is introduced to interpret the absorption mechanism.
Modified Sierpenski Antenna With Metamaterial For Wireless Applications
NASA Astrophysics Data System (ADS)
Aggarwal, Ishita; Pandey, Sujata
2017-08-01
This paper presents a multiband antenna based on modified sierpenski fractal structure along with metamaterials for wireless applications. Multi bands are obtained at 2.1 GHz, 5.73 GHz, 7.6 GHz and 8.4 GHz with return losses -21.49 dB,-36.36 dB,-45dB, and -23.46 dBrespectively. The dimension of the substrate used for this antenna is 52 x 60 x 1.6 mm3 and dielectric constant is 4.4 with tanδ of 0.002. The peak gain of 6.6 dB, return loss of -45 dB and VSWR of 1 are obtained at 7.6 GHz. Metamaterial unit cells are loaded on ground to improve the antenna parameters. This is a simple and compact design and has multiband features suitable for WIMAX, WLAN, C-band and X-band applications. This design is simulated by using HFSS 14.
NASA Astrophysics Data System (ADS)
Hossain, Mohammad Jakir; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2017-12-01
In this paper, a miniaturized wideband left-handed (LH) meta-atom based on planar modified multiple hexagonal split ring resonators was designed, simulated, fabricated and tested that can maintain a left-handed property. An analysis and comparison of the different array structures were performed that obtained better effective medium ratio (EMR) and wideband (5.54 GHz) for multi band operations in the microwave regime. Finite-difference time-domain (FDTD) method based Computer Simulation Technology was implemented to design the meta-atom. The meta-atom showed multi-band response in conjunction with wideband and LH property over the certain frequency bands in the microwave spectra. The EMR was considerably improved compared to previously reported meta-atoms. The measured results showed good agreement with the simulated results. The dimensions, S-parameters and EMR parameters of the proposed miniaturized LH meta-atom are appropriate for L-, S-, C-, X-, and Ku-band applications.
Alternative route to charge density wave formation in multiband systems.
Eiter, Hans-Martin; Lavagnini, Michela; Hackl, Rudi; Nowadnick, Elizabeth A; Kemper, Alexander F; Devereaux, Thomas P; Chu, Jiun-Haw; Analytis, James G; Fisher, Ian R; Degiorgi, Leonardo
2013-01-02
Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron-lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe(3). Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron-phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors.
NASA Astrophysics Data System (ADS)
Hossain, Mohammad Jakir; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2018-03-01
In this paper, a miniaturized wideband left-handed (LH) meta-atom based on planar modified multiple hexagonal split ring resonators was designed, simulated, fabricated and tested that can maintain a left-handed property. An analysis and comparison of the different array structures were performed that obtained better effective medium ratio (EMR) and wideband (5.54 GHz) for multi band operations in the microwave regime. Finite-difference time-domain (FDTD) method based Computer Simulation Technology was implemented to design the meta-atom. The meta-atom showed multi-band response in conjunction with wideband and LH property over the certain frequency bands in the microwave spectra. The EMR was considerably improved compared to previously reported meta-atoms. The measured results showed good agreement with the simulated results. The dimensions, S-parameters and EMR parameters of the proposed miniaturized LH meta-atom are appropriate for L-, S-, C-, X-, and Ku-band applications.
Kuhn, S. J.; Morgenlander, W.; Louden, E. R.; ...
2017-11-14
Despite numerous studies the exact nature of the order parameter in superconducting Sr 2RuO 4 remains unresolved. We have extended previous small-angle neutron scattering studies of the vortex lattice in this material to a wider field range, higher temperatures, and with the field applied close to both the <100> and <110> basal plane directions. Measurements at high field were made possible by the use of both spin polarization and analysis to improve the signal-to-noise ratio. Rotating the field towards the basal plane causes a distortion of the square vortex lattice observed for H // <001> and also a symmetry changemore » to a distorted triangular symmetry for fields close to <100>.The vortex lattice distortion allows us to determine the intrinsic superconducting anisotropy between the c axis and the Ru-O basal plane, yielding a value of ~60 at low temperature and low to intermediate fields. This greatly exceeds the upper critical field anisotropy of ~20 at low temperature, reminiscent of Pauli limiting. Indirect evidence for Pauli paramagnetic effects on the unpaired quasiparticles in the vortex cores are observed, but a direct detection lies below the measurement sensitivity. The superconducting anisotropy is found to be independent of temperature but increases for fields > 1 T, indicating multiband superconductvity in Sr 2RuO 4. Lastly, the temperature dependence of the scattered intensity provides further support for gap nodes or deep minima in the superconducting gap.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhn, S. J.; Morgenlander, W.; Louden, E. R.
Despite numerous studies the exact nature of the order parameter in superconducting Sr 2RuO 4 remains unresolved. We have extended previous small-angle neutron scattering studies of the vortex lattice in this material to a wider field range, higher temperatures, and with the field applied close to both the <100> and <110> basal plane directions. Measurements at high field were made possible by the use of both spin polarization and analysis to improve the signal-to-noise ratio. Rotating the field towards the basal plane causes a distortion of the square vortex lattice observed for H // <001> and also a symmetry changemore » to a distorted triangular symmetry for fields close to <100>.The vortex lattice distortion allows us to determine the intrinsic superconducting anisotropy between the c axis and the Ru-O basal plane, yielding a value of ~60 at low temperature and low to intermediate fields. This greatly exceeds the upper critical field anisotropy of ~20 at low temperature, reminiscent of Pauli limiting. Indirect evidence for Pauli paramagnetic effects on the unpaired quasiparticles in the vortex cores are observed, but a direct detection lies below the measurement sensitivity. The superconducting anisotropy is found to be independent of temperature but increases for fields > 1 T, indicating multiband superconductvity in Sr 2RuO 4. Lastly, the temperature dependence of the scattered intensity provides further support for gap nodes or deep minima in the superconducting gap.« less
Analysis of artifacts suggests DGGE should not be used for quantitative diversity analysis.
Neilson, Julia W; Jordan, Fiona L; Maier, Raina M
2013-03-01
PCR-denaturing gradient gel electrophoresis (PCR-DGGE) is widely used in microbial ecology for the analysis of comparative community structure. However, artifacts generated during PCR-DGGE of mixed template communities impede the application of this technique to quantitative analysis of community diversity. The objective of the current study was to employ an artificial bacterial community to document and analyze artifacts associated with multiband signatures and preferential template amplification and to highlight their impacts on the use of this technique for quantitative diversity analysis. Six bacterial species (three Betaproteobacteria, two Alphaproteobacteria, and one Firmicutes) were amplified individually and in combinations with primers targeting the V7/V8 region of the 16S rRNA gene. Two of the six isolates produced multiband profiles demonstrating that band number does not correlate directly with α-diversity. Analysis of the multiple bands from one of these isolates confirmed that both bands had identical sequences which lead to the hypothesis that the multiband pattern resulted from two distinct structural conformations of the same amplicon. In addition, consistent preferential amplification was demonstrated following pairwise amplifications of the six isolates. DGGE and real time PCR analysis identified primer mismatch and PCR inhibition due to 16S rDNA secondary structure as the most probable causes of preferential amplification patterns. Reproducible DGGE community profiles generated in this study confirm that PCR-DGGE provides an excellent high-throughput tool for comparative community structure analysis, but that method-specific artifacts preclude its use for accurate comparative diversity analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
Alam, Md Shahidul; Islam, Mohammad Tariqul; Arshad, Haslina
2014-01-01
A multiband microstrip resonator is proposed in this study which is realized through a rectangular radiator with embedded symmetrical rectangular slots in it and a defected ground surface. The study is presented with detailed parametric analyses to understand the effect of various design parameters. The design and analyses are performed using the FIT based full-wave electromagnetic simulator CST microwave studio suite. With selected parameter values, the resonator showed a peak gain of 5.85 dBi at 5.2 GHz, 6.2 dBi at 8.3 GHz, 3.9 dBi at 9.5 GHz, 5.9 dBi at 12.2 GHz, and 4.7 dBi at 14.6 GHz. Meanwhile, the main lobe magnitude and the 3 dB angular beam width are 6.2 dBi and 86°, 5.9 dBi and 53.7°, 8.5 dBi and 43.9°, 8.6 dBi and 42.1°, and 4.7 dBi and 30.1°, respectively, at the resonant frequencies. The overall resonator has a compact dimension of 0.52λ × 0.52λ × 0.027λ at the lower resonant frequency. For practical validation, a lab prototype was built on a 1.6 mm thick epoxide woven glass fabric dielectric material which is measured using a vector network analyzer and within an anechoic chamber. The comparison between the simulated and measured results showed a very good understanding, which implies the practical suitability of the proposed multiband resonator design.
NASA Astrophysics Data System (ADS)
Louarn, K.; Claveau, Y.; Hapiuk, D.; Fontaine, C.; Arnoult, A.; Taliercio, T.; Licitra, C.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.
2017-09-01
The aim of this study is to investigate the impact of multiband corrections on the current density in GaAs tunnel junctions (TJs) calculated with a refined yet simple semi-classical interband tunneling model (SCITM). The non-parabolicity of the considered bands and the spin-orbit effects are considered by using a recently revisited SCITM available in the literature. The model is confronted to experimental results from a series of molecular beam epitaxy grown GaAs TJs and to numerical results obtained with a full quantum model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We emphasize the importance of considering the non-parabolicity of the conduction band by two different measurements of the energy-dependent electron effective mass in N-doped GaAs. We also propose an innovative method to compute the non-uniform electric field in the TJ for the SCITM simulations, which is of prime importance for a successful operation of the model. We demonstrate that, when considering the multiband corrections and this new computation of the non-uniform electric field, the SCITM succeeds in predicting the electrical characteristics of GaAs TJs, and are also in agreement with the quantum model. Besides the fundamental study of the tunneling phenomenon in TJs, the main benefit of this SCITM is that it can be easily embedded into drift-diffusion software, which are the most widely-used simulation tools for electronic and opto-electronic devices such as multi-junction solar cells, tunnel field-effect transistors, or vertical-cavity surface-emitting lasers.
NASA Astrophysics Data System (ADS)
Tropeano, M.; Pallecchi, I.; Cimberle, M. R.; Ferdeghini, C.; Lamura, G.; Vignolo, M.; Martinelli, A.; Palenzona, A.; Putti, M.
2010-05-01
In this paper we carry out a direct comparison between transport and superconducting properties—namely resistivity, magnetoresistivity, Hall effect, Seebeck effect, thermal conductivity, upper critical field—of two different families of Fe-based superconductors, which can be viewed in many respects as end members: SmFeAsO1 - xFx with the largest Tc and the largest anisotropy and Fe1 + yTe1 - xSex, with the largest Hc2, the lowest Tc and the lowest anisotropy. In the case of the SmFeAsO1 - xFx series, we find that a single-band description allows us to extract an approximate estimation of band parameters such as carrier density and mobility from experimental data, although the behaviour of the Seebeck effect as a function of doping demonstrates that a multiband description would be more appropriate. On the contrary, experimental data for the Fe1 + y(Te1 - x, Sex) series exhibit a strongly compensated behaviour, which can be described only within a multiband model. In the Fe1 + y(Te1 - x, Sex) series, the role of the excess Fe, tuned by Se stoichiometry, is found to be twofold: on one hand it dopes electrons in the system and on the other hand it introduces localized magnetic moments, responsible for Kondo like scattering and likely pairbreaking of Cooper pairs. Hence, Fe excess also plays a crucial role in determining superconducting properties such as the Tc and the upper critical field Hc2. The huge Hc2 values of the Fe1 + yTe1 - xSex samples are described by a dirty limit law, opposed to the clean limit behaviour of the SmFeAsO1 - xFx samples. Hence, magnetic scattering by excess Fe seems to drive the system in the dirty regime, but its detrimental pairbreaking role seems not to be as severe as predicted by theory. This issue has yet to be clarified, addressing the more fundamental issue of the interplay between magnetism and superconductivity.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
... personnel and law enforcement officers. For Confidential Informants, fingerprints, handwriting samples... Informant; Fingerprints; Handwriting sample; Identifying numbers, such as Social Security Number, Alien...; Photograph of the individual; Fingerprints; Handwriting sample; Identifying numbers, such as Social Security...
Maternal Caregiving and Infant Security in Two Cultures.
ERIC Educational Resources Information Center
Posada, German; Jacobs, Amanda; Richmond, Melissa Y.; Carbonell, Olga A.; Alzate, Gloria; Bhstamante, Maria R.; Quiceno, Julio
2002-01-01
Examined maternal care and infant attachment security in a sample from the United States (Colorado) and one from Colombia. Found that maternal sensitivity and infant security were significantly associated in both samples. Identified six common and two noncommon domains (one per sample) of caregiving; associations between domains of maternal…
Food insecurity and diabetes self-management among food pantry clients.
Ippolito, Matthew M; Lyles, Courtney R; Prendergast, Kimberly; Marshall, Michelle Berger; Waxman, Elaine; Seligman, Hilary Kessler
2017-01-01
To examine the association between level of food security and diabetes self-management among food pantry clients, which is largely not possible using clinic-based sampling methods. Cross-sectional descriptive study. Community-based food pantries in California, Ohio and Texas, USA, from March 2012 through March 2014. Convenience sample of adults with diabetes queuing at pantries (n 1237; 83 % response). Sampled adults were stratified as food secure, low food secure or very low food secure. We used point-of-care glycated Hb (HbA1c) testing to determine glycaemic control and captured diabetes self-management using validated survey items. The sample was 70 % female, 55 % Latino/Hispanic, 25 % white and 10 % black/African American, with a mean age of 56 years. Eighty-four per cent were food insecure, one-half of whom had very low food security. Mean HbA1c was 8·1 % and did not vary significantly by food security status. In adjusted models, very-low-food-secure participants, compared with both low-food-secure and food-secure participants, had poorer diabetes self-efficacy, greater diabetes distress, greater medication non-adherence, higher prevalence of severe hypoglycaemic episodes, higher prevalence of depressive symptoms, more medication affordability challenges, and more food and medicine or health supply trade-offs. Few studies of the health impact of food security have been able to examine very low food security. In a food pantry sample with high rates of food insecurity, we found that diabetes self-management becomes increasingly difficult as food security worsens. The efficacy of interventions to improve diabetes self-management may increase if food security is simultaneously addressed.
SAGITTARIUS STREAM THREE-DIMENSIONAL KINEMATICS FROM SLOAN DIGITAL SKY SURVEY STRIPE 82
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koposov, Sergey E.; Belokurov, Vasily; Evans, N. Wyn
2013-04-01
Using multi-epoch observations of the Stripe 82 region from the Sloan Digital Sky Survey (SDSS), we measure precise statistical proper motions of the stars in the Sagittarius (Sgr) stellar stream. The multi-band photometry and SDSS radial velocities allow us to efficiently select Sgr members and thus enhance the proper-motion precision to {approx}0.1 mas yr{sup -1}. We measure separately the proper motion of a photometrically selected sample of the main-sequence turn-off stars, as well as spectroscopically selected Sgr giants. The data allow us to determine the proper motion separately for the two Sgr streams in the south found in Koposov etmore » al. Together with the precise velocities from SDSS, our proper motions provide exquisite constraints of the three-dimensional motions of the stars in the Sgr streams.« less
Molecular design of TiO2 for gigantic red shift via sublattice substitution.
Shao, Guosheng; Deng, Quanrong; Wan, Lin; Guo, Meilan; Xia, Xiaohong; Gao, Yun
2010-11-01
The effects of 3d transition metal doping in TiO2 phases have been simulated in detail. The results of modelling indicate that Mn has the biggest potential among 3d transition metals, for the reduction of energy gap and the introduction of effective intermediate bands to allow multi-band optical absorption. On the basis of theoretical formulation, we have incorporated considerable amount of Mn in nano-crystalline TiO2 materials. Mn doped samples demonstrate significant red shift in the optical absorption edge, with a secondary absorption edge corresponding to theoretically predicted intermediate bands/states. The gigantic red shift achievable in Mn-doped TiO2 is expected to extend the useful TiO2 functionalities well beyond the UV threshold via the optical absorption of both visible and infrared photon irradiance.
Sparse-View Ultrasound Diffraction Tomography Using Compressed Sensing with Nonuniform FFT
2014-01-01
Accurate reconstruction of the object from sparse-view sampling data is an appealing issue for ultrasound diffraction tomography (UDT). In this paper, we present a reconstruction method based on compressed sensing framework for sparse-view UDT. Due to the piecewise uniform characteristics of anatomy structures, the total variation is introduced into the cost function to find a more faithful sparse representation of the object. The inverse problem of UDT is iteratively resolved by conjugate gradient with nonuniform fast Fourier transform. Simulation results show the effectiveness of the proposed method that the main characteristics of the object can be properly presented with only 16 views. Compared to interpolation and multiband method, the proposed method can provide higher resolution and lower artifacts with the same view number. The robustness to noise and the computation complexity are also discussed. PMID:24868241
The soundtrack of RR Lyrae in omega Cen at high-frequency.
NASA Astrophysics Data System (ADS)
Calamida, A.; Randall, S. K.; Monelli, M.; Bono, G.; Buonanno, R.; Strampelli, G.; Catelan, M.; Van Grootel, V.; Alonso, M. L.; Stetson, P. B.; Stellingwerf, R. F.
We present preliminary Sloan u',g'-band light curves for a sample of known RR Lyrae variables in the Galactic globular cluster omega Cen. Results are based on the partial reduction of multi-band time series photometric data collected during six consecutive nights with the visitor instrument ULTRACAM mounted on the New Technology Telescope (La Silla, ESO). This facility allowed us to simultaneously observe in three different bands (Sloan u',g',r') a field of view of ˜ 6×6 arcminutes. The telescope and the good seeing conditions allowed us to sample the light curves every 15 seconds. We ended up with a data set of ˜ 6,000 images per night per filter, for a total of more than 200,000 images of the selected field. This data set allowed us to detect different kind of variables, such as RR-Lyraes, SX Phoenicis, eclipsing binaries, semi-regulars. More importantly, we were able for the first time to sample at high-frequency cluster RR Lyraes in the u',g'-band and to show in detail the pulsation phases across the dip located along the rising branch of RR-Lyraes. Based on data collected with ULTRACAM@NTT (La Silla, ESO, PID: 087.D-0216)
Thors, Björn; Thielens, Arno; Fridén, Jonas; Colombi, Davide; Törnevik, Christer; Vermeeren, Günter; Martens, Luc; Joseph, Wout
2014-05-01
In this paper, different methods for practical numerical radio frequency exposure compliance assessments of radio base station products were investigated. Both multi-band base station antennas and antennas designed for multiple input multiple output (MIMO) transmission schemes were considered. For the multi-band case, various standardized assessment methods were evaluated in terms of resulting compliance distance with respect to the reference levels and basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Both single frequency and multiple frequency (cumulative) compliance distances were determined using numerical simulations for a mobile communication base station antenna transmitting in four frequency bands between 800 and 2600 MHz. The assessments were conducted in terms of root-mean-squared electromagnetic fields, whole-body averaged specific absorption rate (SAR) and peak 10 g averaged SAR. In general, assessments based on peak field strengths were found to be less computationally intensive, but lead to larger compliance distances than spatial averaging of electromagnetic fields used in combination with localized SAR assessments. For adult exposure, the results indicated that even shorter compliance distances were obtained by using assessments based on localized and whole-body SAR. Numerical simulations, using base station products employing MIMO transmission schemes, were performed as well and were in agreement with reference measurements. The applicability of various field combination methods for correlated exposure was investigated, and best estimate methods were proposed. Our results showed that field combining methods generally considered as conservative could be used to efficiently assess compliance boundary dimensions of single- and dual-polarized multicolumn base station antennas with only minor increases in compliance distances. © 2014 Wiley Periodicals, Inc.
Contourlet domain multiband deblurring based on color correlation for fluid lens cameras.
Tzeng, Jack; Liu, Chun-Chen; Nguyen, Truong Q
2010-10-01
Due to the novel fluid optics, unique image processing challenges are presented by the fluidic lens camera system. Developed for surgical applications, unique properties, such as no moving parts while zooming and better miniaturization than traditional glass optics, are advantages of the fluid lens. Despite these abilities, sharp color planes and blurred color planes are created by the nonuniform reaction of the liquid lens to different color wavelengths. Severe axial color aberrations are caused by this reaction. In order to deblur color images without estimating a point spread function, a contourlet filter bank system is proposed. Information from sharp color planes is used by this multiband deblurring method to improve blurred color planes. Compared to traditional Lucy-Richardson and Wiener deconvolution algorithms, significantly improved sharpness and reduced ghosting artifacts are produced by a previous wavelet-based method. Directional filtering is used by the proposed contourlet-based system to adjust to the contours of the image. An image is produced by the proposed method which has a similar level of sharpness to the previous wavelet-based method and has fewer ghosting artifacts. Conditions for when this algorithm will reduce the mean squared error are analyzed. While improving the blue color plane by using information from the green color plane is the primary focus of this paper, these methods could be adjusted to improve the red color plane. Many multiband systems such as global mapping, infrared imaging, and computer assisted surgery are natural extensions of this work. This information sharing algorithm is beneficial to any image set with high edge correlation. Improved results in the areas of deblurring, noise reduction, and resolution enhancement can be produced by the proposed algorithm.
MULTIBAND OPTICAL OBSERVATION OF THE P/2010 A2 DUST TAIL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Junhan; Ishiguro, Masateru; Hanayama, Hidekazu
2012-02-10
An inner main-belt asteroid, P/2010 A2, was discovered on 2010 January 6. Based on its orbital elements, it is considered that the asteroid belongs to the Flora collisional family, where S-type asteroids are common, while showing a comet-like dust tail. Although analysis of images taken by the Hubble Space Telescope and Rosetta spacecraft suggested that the dust tail resulted from a recent head-on collision between asteroids, an alternative idea of ice sublimation was suggested based on the morphological fitting of ground-based images. Here, we report a multiband observation of P/2010 A2 made on 2010 January with a 105 cm telescopemore » at the Ishigakijima Astronomical Observatory. Three broadband filters, g', R{sub c} , and I{sub c} , were employed for the observation. The unique multiband data reveal that the reflectance spectrum of the P/2010 A2 dust tail resembles that of an Sq-type asteroid or that of ordinary chondrites rather than that of an S-type asteroid. Due to the large error of the measurement, the reflectance spectrum also resembles the spectra of C-type asteroids, even though C-type asteroids are uncommon in the Flora family. The reflectances relative to the g' band (470 nm) are 1.096 {+-} 0.046 at the R{sub c} band (650 nm) and 1.131 {+-} 0.061 at the I{sub c} band (800 nm). We hypothesize that the parent body of P/2010 A2 was originally S-type but was then shattered upon collision into scattering fresh chondritic particles from the interior, thus forming the dust tail.« less
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Chavez Dagostino, Miguel; Arellanes, Adan O.; Aguirre Lopez, Arturo
2016-09-01
We develop a multi-band spectrometer with a few spatially parallel optical arms for the combined processing of their data flow. Such multi-band capability has various applications in astrophysical scenarios at different scales: from objects in the distant universe to planetary atmospheres in the Solar system. Each optical arm exhibits original performances to provide parallel multi-band observations with different scales simultaneously. Similar possibility is based on designing each optical arm individually via exploiting different materials for acousto-optical cells operating within various regimes, frequency ranges and light wavelengths from independent light sources. Individual beam shapers provide both the needed incident light polarization and the required apodization to increase the dynamic range of a system. After parallel acousto-optical processing, data flows are united by the joint CCD matrix on the stage of the combined electronic data processing. At the moment, the prototype combines still three bands, i.e. includes three spatial optical arms. The first low-frequency arm operates at the central frequencies 60-80 MHz with frequency bandwidth 40 MHz. The second arm is oriented to middle-frequencies 350-500 MHz with frequency bandwidth 200-300 MHz. The third arm is intended for ultra-high-frequency radio-wave signals about 1.0-1.5 GHz with frequency bandwidth <300 MHz. To-day, this spectrometer has the following preliminary performances. The first arm exhibits frequency resolution 20 KHz; while the second and third arms give the resolution 150-200 KHz. The numbers of resolvable spots are 1500- 2000 depending on the regime of operation. The fourth optical arm at the frequency range 3.5 GHz is currently under construction.
NASA Astrophysics Data System (ADS)
Orte, P. F.; Wolfram, E. A.; Salvador, J.; D'Elia, R.; Paes Leme, N.; Quel, E. J.
2011-01-01
In this paper we examined the annual variability of the erythemal solar radiation (a health risk) and the solar irradiance for synthesis of vitamin D (a health benefit) in Río Gallegos, Argentina. We use ultraviolet radiation measurements made by a multiband filter radiometer GUV-541 and a Brewer spectrophotometer located at CEILAP-RG Station (CITEFA-CONICET) (51° 33' S, 69° 19' W). These measurements are weighted with action spectra published by the CIE (International Commission on Illumination). An action spectrum describes the relative effectiveness of different wavelengths in the generation of a particular biological response. The analyzed data correspond to September 2008-December 2009 period. The methodology used to obtain the erythemal irradiance and synthesis of vitamin D values combines irradiance measurements of a multiband filter radiometer with modeled values (output of radiative transfer model) and measurements of a Brewer spectrophotometer. This procedure increases the instrumental capabilities of this instrument. The synthesis of vitamin D and erythema are affected by UVB solar radiation. Therefore, its effect is strongly dependent of the stratospheric ozone amount, which undergoes large variations in the Río Gallegos city due to ozone hole passage and its influence on these sub-polar latitudes. We observed that could exist cases of sunburn for reasonable exposure in abnormal situations of low total ozone column, resulting in high levels of ultraviolet radiation. Furthermore, the synthesis of vitamin D through exposure to ultraviolet radiation would be lower than the appropriate values to the majority of the year for these latitudes. Therefore it is important to evaluate the annual variation of these quantities realizing seasonal balance between this health risk and this health benefit.
Cohen, Alexander D; Nencka, Andrew S; Lebel, R Marc; Wang, Yang
2017-01-01
A novel sequence has been introduced that combines multiband imaging with a multi-echo acquisition for simultaneous high spatial resolution pseudo-continuous arterial spin labeling (ASL) and blood-oxygenation-level dependent (BOLD) echo-planar imaging (MBME ASL/BOLD). Resting-state connectivity in healthy adult subjects was assessed using this sequence. Four echoes were acquired with a multiband acceleration of four, in order to increase spatial resolution, shorten repetition time, and reduce slice-timing effects on the ASL signal. In addition, by acquiring four echoes, advanced multi-echo independent component analysis (ME-ICA) denoising could be employed to increase the signal-to-noise ratio (SNR) and BOLD sensitivity. Seed-based and dual-regression approaches were utilized to analyze functional connectivity. Cerebral blood flow (CBF) and BOLD coupling was also evaluated by correlating the perfusion-weighted timeseries with the BOLD timeseries. These metrics were compared between single echo (E2), multi-echo combined (MEC), multi-echo combined and denoised (MECDN), and perfusion-weighted (PW) timeseries. Temporal SNR increased for the MECDN data compared to the MEC and E2 data. Connectivity also increased, in terms of correlation strength and network size, for the MECDN compared to the MEC and E2 datasets. CBF and BOLD coupling was increased in major resting-state networks, and that correlation was strongest for the MECDN datasets. These results indicate our novel MBME ASL/BOLD sequence, which collects simultaneous high-resolution ASL/BOLD data, could be a powerful tool for detecting functional connectivity and dynamic neurovascular coupling during the resting state. The collection of more than two echoes facilitates the use of ME-ICA denoising to greatly improve the quality of resting state functional connectivity MRI.
Islam, Mohammad Tariqul; Arshad, Haslina
2014-01-01
A multiband microstrip resonator is proposed in this study which is realized through a rectangular radiator with embedded symmetrical rectangular slots in it and a defected ground surface. The study is presented with detailed parametric analyses to understand the effect of various design parameters. The design and analyses are performed using the FIT based full-wave electromagnetic simulator CST microwave studio suite. With selected parameter values, the resonator showed a peak gain of 5.85 dBi at 5.2 GHz, 6.2 dBi at 8.3 GHz, 3.9 dBi at 9.5 GHz, 5.9 dBi at 12.2 GHz, and 4.7 dBi at 14.6 GHz. Meanwhile, the main lobe magnitude and the 3 dB angular beam width are 6.2 dBi and 86°, 5.9 dBi and 53.7°, 8.5 dBi and 43.9°, 8.6 dBi and 42.1°, and 4.7 dBi and 30.1°, respectively, at the resonant frequencies. The overall resonator has a compact dimension of 0.52λ × 0.52λ × 0.027λ at the lower resonant frequency. For practical validation, a lab prototype was built on a 1.6 mm thick epoxide woven glass fabric dielectric material which is measured using a vector network analyzer and within an anechoic chamber. The comparison between the simulated and measured results showed a very good understanding, which implies the practical suitability of the proposed multiband resonator design. PMID:24883354
New Technologies in Amplification: Applications to the Pediatric Population.
ERIC Educational Resources Information Center
Kopun, Judy
1995-01-01
Discussion of technological advances in amplification for children with hearing impairments focuses on the advantages and limitations of fitting children with devices that have features such as dynamic-range compression, multiband signal processing, multimemory capability, digital feedback reduction, and frequency transposition. (Author/DB)
Multi-Band Frequency Selective Surfaces: Analysis
2008-08-01
performed by a graduate student from the University of Turin (Italy) in the frame of a six-month internship at TNO, following these steps: la Study the IEMEN...antennas using EBG substrates", Ph.D. dissertation, Departamento de Comunicaciones , Universidad Politecnica de Valencia, Valencia, Spain, 2006. [21
NASA Technical Reports Server (NTRS)
Biehl, L. L.; Silva, L. F.
1975-01-01
Skylab multispectral scanner data, digitized Skylab color infrared (IR) photography, digitized Skylab black and white multiband photography, and Earth Resources Technology Satellite (ERTS) multispectral scanner data collected within a 24-hr time period over an area in south-central Indiana near Bloomington on June 9 and 10, 1973, were compared in a machine-aided land use analysis of the area. The overall classification performance results, obtained with nine land use classes, were 87% correct classification using the 'best' 4 channels of the Skylab multispectral scanner, 80% for the channels on the Skylab multispectral scanner which are spectrally comparable to the ERTS multispectral scanner, 88% for the ERTS multispectral scanner, 83% for the digitized color IR photography, and 76% for the digitized black and white multiband photography. The results indicate that the Skylab multispectral scanner may yield even higher classification accuracies when a noise-filtered multispectral scanner data set becomes available in the near future.
Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neo, Darren C. J.; Assender, Hazel E.; Watt, Andrew A. R., E-mail: Andrew.watt@materials.ox.ac.uk
2015-09-07
Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation currentmore » as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure.« less
Compact multi-band fluorescent microscope with an electrically tunable lens for autofocusing
Wang, Zhaojun; Lei, Ming; Yao, Baoli; Cai, Yanan; Liang, Yansheng; Yang, Yanlong; Yang, Xibin; Li, Hui; Xiong, Daxi
2015-01-01
Autofocusing is a routine technique in redressing focus drift that occurs in time-lapse microscopic image acquisition. To date, most automatic microscopes are designed on the distance detection scheme to fulfill the autofocusing operation, which may suffer from the low contrast of the reflected signal due to the refractive index mismatch at the water/glass interface. To achieve high autofocusing speed with minimal motion artifacts, we developed a compact multi-band fluorescent microscope with an electrically tunable lens (ETL) device for autofocusing. A modified searching algorithm based on equidistant scanning and curve fitting is proposed, which no longer requires a single-peak focus curve and then efficiently restrains the impact of external disturbance. This technique enables us to achieve an autofocusing time of down to 170 ms and the reproductivity of over 97%. The imaging head of the microscope has dimensions of 12 cm × 12 cm × 6 cm. This portable instrument can easily fit inside standard incubators for real-time imaging of living specimens. PMID:26601001
scarlet: Source separation in multi-band images by Constrained Matrix Factorization
NASA Astrophysics Data System (ADS)
Melchior, Peter; Moolekamp, Fred; Jerdee, Maximilian; Armstrong, Robert; Sun, Ai-Lei; Bosch, James; Lupton, Robert
2018-03-01
SCARLET performs source separation (aka "deblending") on multi-band images. It is geared towards optical astronomy, where scenes are composed of stars and galaxies, but it is straightforward to apply it to other imaging data. Separation is achieved through a constrained matrix factorization, which models each source with a Spectral Energy Distribution (SED) and a non-parametric morphology, or multiple such components per source. The code performs forced photometry (with PSF matching if needed) using an optimal weight function given by the signal-to-noise weighted morphology across bands. The approach works well if the sources in the scene have different colors and can be further strengthened by imposing various additional constraints/priors on each source. Because of its generic utility, this package provides a stand-alone implementation that contains the core components of the source separation algorithm. However, the development of this package is part of the LSST Science Pipeline; the meas_deblender package contains a wrapper to implement the algorithms here for the LSST stack.
Cheng, Zheng Ze; Mao, Xue Song; Gong, Rong Zhou
2017-01-01
We design an ultra-thin multi-band polarization-insensitive metamaterial absorber (MMA) using a single circular sector resonator (CSR) structure in the microwave region. Simulated results show that the proposed MMA has three distinctive absorption peaks at 3.35 GHz, 8.65 GHz, and 12.44 GHz, with absorbance of 98.8%, 99.7%, and 98.3%, respectively, which agree well with an experiment. Simulated surface current distributions of the unit-cell structure reveal that the triple-band absorption mainly originates from multiple-harmonic magnetic resonance. The proposed triple-band MMA can remain at a high absorption level for all polarization of both transverse-electric (TE) and transverse-magnetic (TM) modes under normal incidence. Moreover, by further optimizing the geometric parameters of the CSRs, four-band and five-band MMAs can also be obtained. Thus, our design will have potential application in detection, sensing, and stealth technology. PMID:29077036
Aerosol and Surface Parameter Retrievals for a Multi-Angle, Multiband Spectrometer
NASA Technical Reports Server (NTRS)
Broderick, Daniel
2012-01-01
This software retrieves the surface and atmosphere parameters of multi-angle, multiband spectra. The synthetic spectra are generated by applying the modified Rahman-Pinty-Verstraete Bidirectional Reflectance Distribution Function (BRDF) model, and a single-scattering dominated atmosphere model to surface reflectance data from Multiangle Imaging SpectroRadiometer (MISR). The aerosol physical model uses a single scattering approximation using Rayleigh scattering molecules, and Henyey-Greenstein aerosols. The surface and atmosphere parameters of the models are retrieved using the Lavenberg-Marquardt algorithm. The software can retrieve the surface and atmosphere parameters with two different scales. The surface parameters are retrieved pixel-by-pixel while the atmosphere parameters are retrieved for a group of pixels where the same atmosphere model parameters are applied. This two-scale approach allows one to select the natural scale of the atmosphere properties relative to surface properties. The software also takes advantage of an intelligent initial condition given by the solution of the neighbor pixels.
NASA Astrophysics Data System (ADS)
Chen, Xuliang; Shao, Dexi; Gu, Chuanchuan; Zhou, Yonghui; An, Chao; Zhou, Ying; Zhu, Xiangde; Chen, Tong; Tian, Mingliang; Sun, Jian; Yang, Zhaorong
2018-05-01
We report on the discovery of pressure-induced superconductivity in the compensated semimetal pyrite PtB i2 , which exhibits extreme magnetoresistance (XMR) and nontrivial band structure at ambient pressure. The appearance of superconductivity, first observed at PC˜13 GPa with an onset critical temperature TC of ˜2.2 K , is accompanied by a pronounced enhancement of the density of electrons and holes based on Hall-effect measurements. Upon further compression, TC remains almost unchanged up to 50.0 GPa; remarkably, the perfect electron-hole compensation still holds, while the carrier mobility greatly reduces. No evident trace of structural phase transitions is detected through synchrotron x-ray diffraction over the measured pressure range of 1.5-51.2 GPa. These results highlight a multiband characteristic of the observed superconductivity, making pyrite PtB i2 unique among the compensated XMR materials where the pressure-induced superconductivity usually links to structural transitions and carrier imbalance.
Jeong, Jeong-Won; Shin, Dae C; Do, Synho; Marmarelis, Vasilis Z
2006-08-01
This paper presents a novel segmentation methodology for automated classification and differentiation of soft tissues using multiband data obtained with the newly developed system of high-resolution ultrasonic transmission tomography (HUTT) for imaging biological organs. This methodology extends and combines two existing approaches: the L-level set active contour (AC) segmentation approach and the agglomerative hierarchical kappa-means approach for unsupervised clustering (UC). To prevent the trapping of the current iterative minimization AC algorithm in a local minimum, we introduce a multiresolution approach that applies the level set functions at successively increasing resolutions of the image data. The resulting AC clusters are subsequently rearranged by the UC algorithm that seeks the optimal set of clusters yielding the minimum within-cluster distances in the feature space. The presented results from Monte Carlo simulations and experimental animal-tissue data demonstrate that the proposed methodology outperforms other existing methods without depending on heuristic parameters and provides a reliable means for soft tissue differentiation in HUTT images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff-Fabris, F.; Lei, Hechang; Wosnitza, J.
We have studied the temperature dependence of the upper critical fields μ 0 H c 2 of K x Fe 2 - y Se 2 - z S z single crystals up to 60 T. The μ 0 H c 2 for H ∥ a b and H ∥ c decrease with increasing sulfur content. The detailed analysis using Werthamer-Helfand-Hohenberg theory including the Pauli spin-paramagnetic effect shows that μ 0 H c 2 for H ∥ a b is dominated by the spin-paramagnetic effect, which diminishes with higher S content, whereas μ 0 H c 2 for H ∥ cmore » shows a linear temperature dependence with an upturn at high fields. The latter observation can be ascribed to multiband effects that become weaker for higher S content. This results in an enhanced anisotropy of μ 0 H c 2 for high S content due to the different trends of the spin-paramagnetic and multiband effect for H ∥ a b and H ∥ c , respectively.« less
Hallmarks of Hunds coupling in the Mott insulator Ca2RuO4
Sutter, D.; Fatuzzo, C. G.; Moser, S.; Kim, M.; Fittipaldi, R.; Vecchione, A.; Granata, V.; Sassa, Y.; Cossalter, F.; Gatti, G.; Grioni, M.; Rønnow, H. M.; Plumb, N. C.; Matt, C. E.; Shi, M.; Hoesch, M.; Kim, T. K.; Chang, T-R; Jeng, H-T; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; Georges, A.; Neupert, T.; Chang, J.
2017-01-01
A paradigmatic case of multi-band Mott physics including spin-orbit and Hund's coupling is realized in Ca2RuO4. Progress in understanding the nature of this Mott insulating phase has been impeded by the lack of knowledge about the low-energy electronic structure. Here we provide—using angle-resolved photoemission electron spectroscopy—the band structure of the paramagnetic insulating phase of Ca2RuO4 and show how it features several distinct energy scales. Comparison to a simple analysis of atomic multiplets provides a quantitative estimate of the Hund's coupling J=0.4 eV. Furthermore, the experimental spectra are in good agreement with electronic structure calculations performed with Dynamical Mean-Field Theory. The crystal field stabilization of the dxy orbital due to c-axis contraction is shown to be essential to explain the insulating phase. These results underscore the importance of multi-band physics, Coulomb interaction and Hund's coupling that together generate the Mott insulating state of Ca2RuO4. PMID:28474681
NASA Astrophysics Data System (ADS)
Singh, S. J.; Shimoyama, J.; Ogino, H.; Kishio, K.
2015-11-01
The transport properties (electrical resistivity, Hall and Seebeck coefficient, and thermal conductivity) of iron based superconductors with thick perovskite-type oxide blocking layers and fluorine-doped SmFeAsO were studied to explore their possible potential for thermoelectric applications. The thermal conductivity of former compounds depicts the dominated role of phonon and its value decreases rapidly below the Tc, suggesting the addition of scattering of phonons. Both the Seebeck coefficient (S) and Hall coefficient (RH) of all samples were negative in the whole temperature region below 300 K, indicating that the major contribution to the normal state conductivity is by electrons. In addition, the profile of S(T) and RH(T) of all samples have similar behaviours as would be expected for a multi-band superconductors. Although the estimated thermoelectric figure of merit (ZT) of these compounds was much lower than that of practically applicable thermoelectric materials, however its improvement can be expected by optimizing microstructure of the polycrystalline materials, such as densification and grain orientation.
Multi-Band Cable Antenna with Irregular Reactive Loading
2014-11-04
antenna 10 consists of an insulated solid conductor 12 of radius a. Preferably, this element is made from copper ; however, any highly conductive metal...Docket No. 300035 5 of 12 improved flotation . A low dielectric constant is essential for optimal RF performance. Reactive elements (not shown, see
2012-04-09
signatures (RSS), in particular, despeckling, superresolution and convergence rate, for a variety of admissible 115 imaging array sensor...attain the superresolution performances in the resulting SSP estimates (3.4), we propose the VA inspired approach [13], [14] to specify the POCS
USDA-ARS?s Scientific Manuscript database
In this research, we present a novel technique to monitor cyanobacterial algal bloom using remote sensing measurements. We have used a multi-band quasi analytical algorithm that determines phytoplankton absorption coefficients, aF('), from above-surface remote sensing reflectance, Rrs('). In situ da...
Remote Sensing Classification of Grass Seed Cropping Practices in Western Oregon
USDA-ARS?s Scientific Manuscript database
Multiband Landsat images and multi-temporal MODIS 16-day composite NDVI were classified into 16 categories representing the primary crop rotation options and stand establishment conditions present in western Oregon grass seed fields. Mismatch in resolution between MODIS and Landsat data was resolved...
NASA Astrophysics Data System (ADS)
Iafrate, G. J.; Sokolov, V. N.; Krieger, J. B.
2017-10-01
The theory of Bloch electron dynamics for carriers in homogeneous electric and magnetic fields of arbitrary time dependence is developed in the framework of the Liouville equation. The Wigner distribution function (WDF) is determined from the single-particle density matrix in the ballistic regime, i.e., collision effects are excluded. In the theory, the single-particle transport equation is established with the electric field described in the vector potential gauge, and the magnetic field is treated in the symmetric gauge. No specific assumptions are made concerning the form of the initial distribution in momentum or configuration space. The general approach is to employ the accelerated Bloch state representation (ABR) as a basis so that the dependence upon the electric field, including multiband Zener tunneling, is treated exactly. Further, in the formulation of the WDF, we transform to a new set of variables so that the final WDF is gauge invariant and is expressed explicitly in terms of the position, kinetic momentum, and time. The methodology for developing the WDF is illustrated by deriving the exact WDF equation for free electrons in homogeneous electric and magnetic fields resulting in the same form as given by the collisionless Boltzmann transport equation (BTE). The methodology is then extended to the case of electrons described by an effective Hamiltonian corresponding to an arbitrary energy band function; the exact WDF equation results for the effective Hamiltonian case are shown to approximate the free electron results when taken to second order in the magnetic field. As a corollary, in these cases, it is shown that if the WDF is a wave packet, then the time rate of change of the electron quasimomentum is given by the Lorentz force. In treating the problem of Bloch electrons in a periodic potential in the presence of homogeneous electric and magnetic fields, the methodology for deriving the WDF reveals a multiband character due to the inherent nature of the Bloch states. The K0 representation of the Bloch envelope functions is employed to express the multiband WDF in a useful form. In examining the single-band WDF, it is found that the collisionless WDF equation matches the equivalent BTE to first order in the magnetic field. These results are necessarily extended to second order in the magnetic field by employing a unitary transformation that diagonalizes the Hamiltonian using the ABR to second order. The unitary transformation process includes a discussion of the multiband WDF transport analysis and the identification of the combined Zener-magnetic-field induced tunneling.
VizieR Online Data Catalog: RR Lyrae in SDSS Stripe 82 (Suveges+, 2012)
NASA Astrophysics Data System (ADS)
Suveges, M.; Sesar, B.; Varadi, M.; Mowlavi, N.; Becker, A. C.; Ivezic, Z.; Beck, M.; Nienartowicz, K.; Rimoldini, L.; Dubath, P.; Bartholdi, P.; Eyer, L.
2013-05-01
We propose a robust principal component analysis framework for the exploitation of multiband photometric measurements in large surveys. Period search results are improved using the time-series of the first principal component due to its optimized signal-to-noise ratio. The presence of correlated excess variations in the multivariate time-series enables the detection of weaker variability. Furthermore, the direction of the largest variance differs for certain types of variable stars. This can be used as an efficient attribute for classification. The application of the method to a subsample of Sloan Digital Sky Survey Stripe 82 data yielded 132 high-amplitude delta Scuti variables. We also found 129 new RR Lyrae variables, complementary to the catalogue of Sesar et al., extending the halo area mapped by Stripe 82 RR Lyrae stars towards the Galactic bulge. The sample also comprises 25 multiperiodic or Blazhko RR Lyrae stars. (8 data files).
NASA Technical Reports Server (NTRS)
Amato, R. V.; Russell, O. R.; Martin, K. R.; Wier, C. E.
1975-01-01
Remote sensing techniques were used to study coal mining sites within the Eastern Interior Coal Basin (Indiana, Illinois, and western Kentucky), the Appalachian Coal Basin (Ohio, West Virginia, and Pennsylvania) and the anthracite coal basins of northeastern Pennsylvania. Remote sensor data evaluated during these studies were acquired by LANDSAT, Skylab and both high and low altitude aircraft. Airborne sensors included multispectral scanners, multiband cameras and standard mapping cameras loaded with panchromatic, color and color infrared films. The research conducted in these areas is a useful prerequisite to the development of an operational monitoring system that can be peridically employed to supply state and federal regulatory agencies with supportive data. Further research, however, must be undertaken to systematically examine those mining processes and features that can be monitored cost effectively using remote sensors and for determining what combination of sensors and ground sampling processes provide the optimum combination for an operational system.
Apparatus and method for handheld sampling
Staab, Torsten A.
2005-09-20
The present invention includes an apparatus, and corresponding method, for taking a sample. The apparatus is built around a frame designed to be held in at least one hand. A sample media is used to secure the sample. A sample media adapter for securing the sample media is operated by a trigger mechanism connectively attached within the frame to the sample media adapter.
Defense Contracts: DOD’s Requests for Information from Contractors to Assess Prices
2015-08-01
manuals $4,000,000 Commercial Goodyear tires $3,290,902 Commercial Multiband manpack radio systems and operator training $1,742,712...by Phone Connect with GAO To Report Fraud, Waste, and Abuse in Federal Programs Congressional Relations Public Affairs Please Print on Recycled Paper.
Evaluation and Analysis of a Multi-Band Transceiver for Next Generation Telemetry Applications
2014-06-01
DDC ) BAND SELECTION Kintex FPGA DIGITAL RADIO RECEIVER DIGITAL RADIO TRANSMITTER ADC Fs < 225 MSPS Fs = 400 MHz RF BW = 36 MHz FREQ TRANSLATION VIA...MANAGER (MMCM) DIGITAL DOWN CONVERSION ( DDC ) BAND SELECTIVE FILTER Kintex FPGA DIGITAL RADIO RECEIVER DIGITAL RADIO TRANSMITTER FIR FINE TRANSLATION
VizieR Online Data Catalog: VIc photometry of IR-excess stars in NGC6611 (De Marchi+ 2013)
NASA Astrophysics Data System (ADS)
de Marchi, G.; Panagia, N.; Guarcello, M. G.; Bonito, R.
2014-10-01
The data analysed in this work were extracted from the multiband photometric catalogue of NGC 6611 and of the surrounding M 16 cloud compiled by Guarcello et al. (2010, Cat. J/A+A/521/A61). (1 data file).
NASA Technical Reports Server (NTRS)
Driscoll, R. S.
1971-01-01
Analysis and recognition processing of multispectral scanner imagery for plant community classification and interpretations of various film-filter-scale aerial photographs are reported. Data analyses and manuscript preparation of research on microdensitometry for plant community and component identification and remote estimates of biomass are included.
17 CFR Appendix B to Part 420 - Sample Large Position Report
Code of Federal Regulations, 2010 CFR
2010-04-01
..., and as collateral for financial derivatives and other securities transactions $ Total Memorandum 1... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Sample Large Position Report B Appendix B to Part 420 Commodity and Securities Exchanges DEPARTMENT OF THE TREASURY REGULATIONS UNDER...
Alavi, Seyyed Salman; Alaghemandan, Hamed; Jannatifard, Fereshte
2013-01-01
Medical universities are of those organizations that serve many individuals. As a result, the employees who work at medical universities should have adequate job qualifications and requisite conditions for work. Job security is one of these needed conditions. The current study aims to determine the main components of job security among the employees of Isfahan University of Medical Sciences (IUMS). The study had a cross-sectional design. The sample included 300 employees which were selected from the faculties of IUMS. The sample was recruited using quota sampling. First, demographic and Job security questionnaires were completed by each employee. Then, data was analyzed by descriptive methods and ANOVA in SPSS16. The study results showed that there was no significant difference among five subscales of Job security questionnaire and as a result, job security among the employees of IUMS but there was a significant difference in job security among male and female employees and a significant difference in job security based on type of job contract. Lower rate of job security among female employees with temporary job contracts has professional and psychological implication for both females and IUMS which should be considered in designing professional programs of IUMS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, S.; Gezari, S.; Heinis, S.
2015-03-20
We present a novel method for the light-curve characterization of Pan-STARRS1 Medium Deep Survey (PS1 MDS) extragalactic sources into stochastic variables (SVs) and burst-like (BL) transients, using multi-band image-differencing time-series data. We select detections in difference images associated with galaxy hosts using a star/galaxy catalog extracted from the deep PS1 MDS stacked images, and adopt a maximum a posteriori formulation to model their difference-flux time-series in four Pan-STARRS1 photometric bands g {sub P1}, r {sub P1}, i {sub P1}, and z {sub P1}. We use three deterministic light-curve models to fit BL transients; a Gaussian, a Gamma distribution, and anmore » analytic supernova (SN) model, and one stochastic light-curve model, the Ornstein-Uhlenbeck process, in order to fit variability that is characteristic of active galactic nuclei (AGNs). We assess the quality of fit of the models band-wise and source-wise, using their estimated leave-out-one cross-validation likelihoods and corrected Akaike information criteria. We then apply a K-means clustering algorithm on these statistics, to determine the source classification in each band. The final source classification is derived as a combination of the individual filter classifications, resulting in two measures of classification quality, from the averages across the photometric filters of (1) the classifications determined from the closest K-means cluster centers, and (2) the square distances from the clustering centers in the K-means clustering spaces. For a verification set of AGNs and SNe, we show that SV and BL occupy distinct regions in the plane constituted by these measures. We use our clustering method to characterize 4361 extragalactic image difference detected sources, in the first 2.5 yr of the PS1 MDS, into 1529 BL, and 2262 SV, with a purity of 95.00% for AGNs, and 90.97% for SN based on our verification sets. We combine our light-curve classifications with their nuclear or off-nuclear host galaxy offsets, to define a robust photometric sample of 1233 AGNs and 812 SNe. With these two samples, we characterize their variability and host galaxy properties, and identify simple photometric priors that would enable their real-time identification in future wide-field synoptic surveys.« less
Völlm, Birgit A; Edworthy, Rachel; Huband, Nick; Talbot, Emily; Majid, Shazmin; Holley, Jessica; Furtado, Vivek; Weaver, Tim; McDonald, Ruth; Duggan, Conor
2018-01-01
Background: Many patients experience extended stays within forensic care, but the characteristics of long-stay patients are poorly understood. Aims: To describe the characteristics of long-stay patients in high and medium secure settings in England. Method: Detailed file reviews provided clinical, offending and risk data for a large representative sample of 401 forensic patients from 2 of the 3 high secure settings and from 23 of the 57 medium secure settings in England on 1 April 2013. The threshold for long-stay status was defined as 5 years in medium secure care or 10 years in high secure care, or 15 years in a combination of high and medium secure settings. Results: 22% of patients in high security and 18% in medium security met the definition for "long-stay," with 20% staying longer than 20 years. Of the long-stay sample, 58% were violent offenders (22% both sexual and violent), 27% had been convicted for violent or sexual offences whilst in an institutional setting, and 26% had committed a serious assault on staff in the last 5 years. The most prevalent diagnosis was schizophrenia (60%) followed by personality disorder (47%, predominantly antisocial and borderline types); 16% were categorised as having an intellectual disability. Overall, 7% of the long-stay sample had never been convicted of any offence, and 16.5% had no index offence prompting admission. Although some significant differences were found between the high and medium secure samples, there were more similarities than contrasts between these two levels of security. The treatment pathways of these long-stay patients involved multiple moves between settings. An unsuccessful referral to a setting of lower security was recorded over the last 5 years for 33% of the sample. Conclusions: Long-stay patients accounted for one fifth of the forensic inpatient population in England in this representative sample. A significant proportion of this group remain unsettled. High levels of personality pathology and the risk of assaults on staff and others within the care setting are likely to impact on treatment and management. Further research into the treatment pathways of longer stay patients is warranted to understand the complex trajectories of this group.
Völlm, Birgit A.; Edworthy, Rachel; Huband, Nick; Talbot, Emily; Majid, Shazmin; Holley, Jessica; Furtado, Vivek; Weaver, Tim; McDonald, Ruth; Duggan, Conor
2018-01-01
Background: Many patients experience extended stays within forensic care, but the characteristics of long-stay patients are poorly understood. Aims: To describe the characteristics of long-stay patients in high and medium secure settings in England. Method: Detailed file reviews provided clinical, offending and risk data for a large representative sample of 401 forensic patients from 2 of the 3 high secure settings and from 23 of the 57 medium secure settings in England on 1 April 2013. The threshold for long-stay status was defined as 5 years in medium secure care or 10 years in high secure care, or 15 years in a combination of high and medium secure settings. Results: 22% of patients in high security and 18% in medium security met the definition for “long-stay,” with 20% staying longer than 20 years. Of the long-stay sample, 58% were violent offenders (22% both sexual and violent), 27% had been convicted for violent or sexual offences whilst in an institutional setting, and 26% had committed a serious assault on staff in the last 5 years. The most prevalent diagnosis was schizophrenia (60%) followed by personality disorder (47%, predominantly antisocial and borderline types); 16% were categorised as having an intellectual disability. Overall, 7% of the long-stay sample had never been convicted of any offence, and 16.5% had no index offence prompting admission. Although some significant differences were found between the high and medium secure samples, there were more similarities than contrasts between these two levels of security. The treatment pathways of these long-stay patients involved multiple moves between settings. An unsuccessful referral to a setting of lower security was recorded over the last 5 years for 33% of the sample. Conclusions: Long-stay patients accounted for one fifth of the forensic inpatient population in England in this representative sample. A significant proportion of this group remain unsettled. High levels of personality pathology and the risk of assaults on staff and others within the care setting are likely to impact on treatment and management. Further research into the treatment pathways of longer stay patients is warranted to understand the complex trajectories of this group. PMID:29713294
Huang, Yichun; Ding, Weiwei; Zhang, Zhuomin; Li, Gongke
2013-07-01
This paper summarizes the recent developments of the rapid detection methods for food security, such as sensors, optical techniques, portable spectral analysis, enzyme-linked immunosorbent assay, portable gas chromatograph, etc. Additionally, the applications of these rapid detection methods coupled with sample pretreatment techniques in real food security analysis are reviewed. The coupling technique has the potential to provide references to establish the selective, precise and quantitative rapid detection methods in food security analysis.
Microelectromechanical Systems (MEMS) Actuators for Antenna Reconfigurability
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.
2001-01-01
A novel microelectromechanical systems (MEMS) actuator for patch antenna reconfiguration, is presented for the first time. A key feature is the capability of multi-band operation without greatly increasing the antenna element dimensions. Experimental results demonstrate that the center frequency can be reconfigured from few hundred MHz to few GHz away from the nominal operating frequency.
Fast rotation of a subkilometer-sized near-Earth object 2011 XA{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urakawa, Seitaro; Ohtsuka, Katsuhito; Abe, Shinsuke
2014-05-01
We present light curve observations and their multiband photometry for near-Earth object (NEO) 2011 XA{sub 3}. The light curve has shown a periodicity of 0.0304 ± 0.0003 days (= 43.8 ± 0.4 minutes). The fast rotation shows that 2011 XA{sub 3} is in a state of tension (i.e., a monolithic asteroid) and cannot be held together by self-gravitation. Moreover, the multiband photometric analysis indicates that the taxonomic class of 2011 XA{sub 3} is S-complex, or V-type. Its estimated effective diameter is 225 ± 97 m (S-complex) and 166 ± 63 m (V-type), respectively. Therefore, 2011 XA{sub 3} is a candidatemore » for the second-largest, fast-rotating, monolithic asteroid. Moreover, the orbital parameters of 2011 XA{sub 3} are apparently similar to those of NEO (3200) Phaethon, but F/B-type. We computed the orbital evolutions of 2011 XA{sub 3} and Phaethon. However, the results of the computation and distinct taxonomy indicate that neither of the asteroids is of common origin.« less
Vu, An T; Phillips, Jeffrey S; Kay, Kendrick; Phillips, Matthew E; Johnson, Matthew R; Shinkareva, Svetlana V; Tubridy, Shannon; Millin, Rachel; Grossman, Murray; Gureckis, Todd; Bhattacharyya, Rajan; Yacoub, Essa
2016-01-01
The blood-oxygen-level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments is generally regarded as sluggish and poorly suited for probing neural function at the rapid timescales involved in sentence comprehension. However, recent studies have shown the value of acquiring data with very short repetition times (TRs), not merely in terms of improvements in contrast to noise ratio (CNR) through averaging, but also in terms of additional fine-grained temporal information. Using multiband-accelerated fMRI, we achieved whole-brain scans at 3-mm resolution with a TR of just 500 ms at both 3T and 7T field strengths. By taking advantage of word timing information, we found that word decoding accuracy across two separate sets of scan sessions improved significantly, with better overall performance at 7T than at 3T. The effect of TR was also investigated; we found that substantial word timing information can be extracted using fast TRs, with diminishing benefits beyond TRs of 1000 ms.
Hashimoto, Mitsuhiro; Hata, Akihiro; Miyata, Takaki; Hirase, Hajime
2014-01-01
Abstract. We produced a miniaturized, multicode, multiband, and programmable light-emitting diode (LED) stimulator for wireless control of optogenetic experiments. The LED stimulator is capable of driving three independent LEDs upon reception of an infrared (IR) signal generated by a custom-made IR transmitter. Individual LED photopulse patterns are assigned to different codes of the IR signals (up to 256 codes). The photopulse patterns can be programmed in the on-board microcontroller by specifying the parameters of duration (>1 ms), frequency (<500 Hz), and pulse width (>1 ms). The IR signals were modulated at multiple carrier frequencies to establish multiband IR transmission. Using these devices, we could remotely control the moving direction of a Thy1-ChR2-YFP transgenic mouse by transcranially illuminating the corresponding hemisphere of the primary motor cortex. IR transmitter and LED stimulator will be particularly useful in experiments where free movement or patterned concurrent stimulation is desired, such as testing social communication of rodents. PMID:26157963
PyTranSpot: A tool for multiband light curve modeling of planetary transits and stellar spots
NASA Astrophysics Data System (ADS)
Juvan, Ines G.; Lendl, M.; Cubillos, P. E.; Fossati, L.; Tregloan-Reed, J.; Lammer, H.; Guenther, E. W.; Hanslmeier, A.
2018-02-01
Several studies have shown that stellar activity features, such as occulted and non-occulted starspots, can affect the measurement of transit parameters biasing studies of transit timing variations and transmission spectra. We present PyTranSpot, which we designed to model multiband transit light curves showing starspot anomalies, inferring both transit and spot parameters. The code follows a pixellation approach to model the star with its corresponding limb darkening, spots, and transiting planet on a two dimensional Cartesian coordinate grid. We combine PyTranSpot with a Markov chain Monte Carlo framework to study and derive exoplanet transmission spectra, which provides statistically robust values for the physical properties and uncertainties of a transiting star-planet system. We validate PyTranSpot's performance by analyzing eleven synthetic light curves of four different star-planet systems and 20 transit light curves of the well-studied WASP-41b system. We also investigate the impact of starspots on transit parameters and derive wavelength dependent transit depth values for WASP-41b covering a range of 6200-9200 Å, indicating a flat transmission spectrum.
Tail-like regime and BCS-BEC crossover due to hybridization in a two-band superconductor.
Reyes, D; Continentino, M A; Deus, F; Thomas, C
2018-05-02
Superconductivity in strongly correlated systems is a remarkable phenomenon that attracts huge interest. The study of this problem is relevant for materials such as the high T c oxides, pnictides and heavy fermions. These systems also have in common the existence of electrons of several orbitals that coexist at a common Fermi surface. In this paper we study the effect of pressure, chemical or applied on multi-band superconductivity. Pressure varies the atomic distances and consequently the overlap of the wave-functions in the crystal. This rearranges the electronic structure that we model including a pressure dependent hybridization between the bands. We consider the case of two-dimensional systems in a square lattice with inverted bands. We study the conditions for obtaining a pressure induced superconductor quantum critical point and show that hybridization, i.e. pressure can induce a Bardeen-Cooper-Schrieffer-Bose-Einstein condensation crossover in multi-band systems even for moderate interactions. We found a tail-like superconductor regime and briefly discuss the influence of the symmetry of the order parameter in the results.
Single-snapshot 2D color measurement by plenoptic imaging system
NASA Astrophysics Data System (ADS)
Masuda, Kensuke; Yamanaka, Yuji; Maruyama, Go; Nagai, Sho; Hirai, Hideaki; Meng, Lingfei; Tosic, Ivana
2014-03-01
Plenoptic cameras enable capture of directional light ray information, thus allowing applications such as digital refocusing, depth estimation, or multiband imaging. One of the most common plenoptic camera architectures contains a microlens array at the conventional image plane and a sensor at the back focal plane of the microlens array. We leverage the multiband imaging (MBI) function of this camera and develop a single-snapshot, single-sensor high color fidelity camera. Our camera is based on a plenoptic system with XYZ filters inserted in the pupil plane of the main lens. To achieve high color measurement precision of this system, we perform an end-to-end optimization of the system model that includes light source information, object information, optical system information, plenoptic image processing and color estimation processing. Optimized system characteristics are exploited to build an XYZ plenoptic colorimetric camera prototype that achieves high color measurement precision. We describe an application of our colorimetric camera to color shading evaluation of display and show that it achieves color accuracy of ΔE<0.01.
The Pseudogap in Multiband Superconductivity
NASA Astrophysics Data System (ADS)
Kristoffel, N.; Rubin, P.
2012-11-01
The pseudogap (PG) excitation is analyzed as a natural event in multiband superconductivity. It corresponds to minimal quasiparticle excitation energy of an electron band not touched by the chemical potential. The critical points of the phase diagram are determined by vanishing conditions for normal state pseudogaps (NPG). For two bands (gapped or overlapping) these are positioned on edges of the superconducting dome. Theoretical background for a three-band system with two interband pairing channels is developed. There are three independent superconducting gaps (SCG). The PG is associated with the band component possessing a bare gap which can be quenched by doping. At low doping the PG and the SCG of another band component coexist. The critical point is not fixed in respect of the transition temperature (Tc) dome background. The depletion of the PG associated states is restored here. This effect can also be indirect by the participation of these states in determining the chemical potential position. At the critical point the PG looses its normal state contribution and continues as the SCG of the same band. Illustrative examples on the doping scale have been calculated.
Boyacioğlu, Rasim; Schulz, Jenni; Koopmans, Peter J; Barth, Markus; Norris, David G
2015-10-01
A multiband multi-echo (MBME) sequence is implemented and compared to a matched standard multi-echo (ME) protocol to investigate the potential improvement in sensitivity and spatial specificity at 7 T for resting state and task fMRI. ME acquisition is attractive because BOLD sensitivity is less affected by variation in T2*, and because of the potential for separating BOLD and non-BOLD signal components. MBME further reduces TR thus increasing the potential reduction in physiological noise. In this study we used FSL-FIX to clean ME and MBME resting state and task fMRI data (both 3.5mm isotropic). After noise correction, the detection of resting state networks improves with more non-artifactual independent components being observed. Additional activation clusters for task data are discovered for MBME data (increased sensitivity) whereas existing clusters become more localized for resting state (improved spatial specificity). The results obtained indicate that MBME is superior to ME at high field strengths. Copyright © 2015 Elsevier Inc. All rights reserved.
Multiband optical variability of the blazar OJ 287 during its outbursts in 2015-2016
NASA Astrophysics Data System (ADS)
Gupta, Alok C.; Agarwal, Aditi; Mishra, Alka; Gaur, H.; Wiita, P. J.; Gu, M. F.; Kurtanidze, O. M.; Damljanovic, G.; Uemura, M.; Semkov, E.; Strigachev, A.; Bachev, R.; Vince, O.; Zhang, Z.; Villarroel, B.; Kushwaha, P.; Pandey, A.; Abe, T.; Chanishvili, R.; Chigladze, R. A.; Fan, J. H.; Hirochi, J.; Itoh, R.; Kanda, Y.; Kawabata, M.; Kimeridze, G. N.; Kurtanidze, S. O.; Latev, G.; Dimitrova, R. V. Muñoz; Nakaoka, T.; Nikolashvili, M. G.; Shiki, K.; Sigua, L. A.; Spassov, B.
2017-03-01
We present recent optical photometric observations of the blazar OJ 287 taken during 2015 September-2016 May. Our intense observations of the blazar started in 2015 November and continued until 2016 May and included detection of the large optical outburst in 2015 December that was predicted using the binary black hole model for OJ 287. For our observing campaign, we used a total of nine ground-based optical telescopes of which one is in Japan, one is in India, three are in Bulgaria, one is in Serbia, one is in Georgia, and two are in the USA. These observations were carried out in 102 nights with a total of ∼1000 image frames in BVRI bands, though the majority were in the R band. We detected a second comparably strong flare in 2016 March. In addition, we investigated multiband flux variations, colour variations, and spectral changes in the blazar on diverse time-scales as they are useful in understanding the emission mechanisms. We briefly discuss the possible physical mechanisms most likely responsible for the observed flux, colour, and spectral variability.
Visual enhancement of unmixed multispectral imagery using adaptive smoothing
Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.
2004-01-01
Adaptive smoothing (AS) has been previously proposed as a method to smooth uniform regions of an image, retain contrast edges, and enhance edge boundaries. The method is an implementation of the anisotropic diffusion process which results in a gray scale image. This paper discusses modifications to the AS method for application to multi-band data which results in a color segmented image. The process was used to visually enhance the three most distinct abundance fraction images produced by the Lagrange constraint neural network learning-based unmixing of Landsat 7 Enhanced Thematic Mapper Plus multispectral sensor data. A mutual information-based method was applied to select the three most distinct fraction images for subsequent visualization as a red, green, and blue composite. A reported image restoration technique (partial restoration) was applied to the multispectral data to reduce unmixing error, although evaluation of the performance of this technique was beyond the scope of this paper. The modified smoothing process resulted in a color segmented image with homogeneous regions separated by sharpened, coregistered multiband edges. There was improved class separation with the segmented image, which has importance to subsequent operations involving data classification.
Wang, Wenzheng; Wang, Yanming; Song, Wujun; Li, Xueqin
2017-03-20
A multiband infrared diagnostic (MBID) method for methane emission monitoring in limited underground environments was presented considering the strong optical background of gas/solid attenuation. Based on spatial distribution of aerosols and complex refractive index of dust particles, forward calculations were carried out with/without methane to obtain the spectral transmittance through the participating atmosphere in a mine roadway. Considering the concurrent attenuation and absorption behavior of dust and gases, four infrared wavebands were selected to retrieve the methane concentration combined with a stochastic particle swarm optimization (SPSO) algorithm. Inversion results prove that the presented MBID method is robust and effective in identifying methane at concentrations of 0.1% or even lower with inversed relative error within 10%. Further analyses illustrate that the four selected wavebands are indispensable, and the MBID method is still valid with transmission signal disturbance in a conventional dust-polluted atmosphere under mechanized mining condition. However, the effective detection distance should be limited within 50 m to ensure inversed relative error less than 5% at 1% methane concentration.
Multi-Band Light Curves from Two-Dimensional Simulations of Gamma-Ray Burst Afterglows
NASA Astrophysics Data System (ADS)
MacFadyen, Andrew
2010-01-01
The dynamics of gamma-ray burst outflows is inherently multi-dimensional. 1.) We present high resolution two-dimensional relativistic hydrodynamics simulations of GRBs in the afterglow phase using adaptive mesh refinement (AMR). Using standard synchrotron radiation models, we compute multi-band light curves, from the radio to X-ray, directly from the 2D hydrodynamics simulation data. We will present on-axis light curves for both constant density and wind media. We will also present off-axis light curves relevant for searches for orphan afterglows. We find that jet breaks are smoothed due to both off-axis viewing and wind media effects. 2.) Non-thermal radiation mechanisms in GRB afterglows require substantial magnetic field strengths. In turbulence driven by shear instabilities in relativistic magnetized gas, we demonstrate that magnetic field is naturally amplified to half a percent of the total energy (epsilon B = 0.005). We will show high resolution three dimensional relativistic MHD simulations of this process as well as particle in cell (PIC) simulations of mildly relativistic collisionless shocks.
NASA Astrophysics Data System (ADS)
Urata, T.; Tanabe, Y.; Huynh, K. K.; Yamakawa, Y.; Kontani, H.; Tanigaki, K.
2016-01-01
In high-superconducting transition temperature (Tc) iron-based superconductors, interband sign reversal (s±) and sign preserving (s++) s -wave superconducting states have been primarily discussed as the plausible superconducting mechanism. We study Co impurity scattering effects on the superconductivity in order to achieve an important clue on the pairing mechanism using single-crystal Fe1 -xCoxSe and depict a phase diagram of a FeSe system. Both superconductivity and structural transition/orbital order are suppressed by the Co replacement on the Fe sites and disappear above x = 0.036. These correlated suppressions represent a common background physics behind these physical phenomena in the multiband Fermi surfaces of FeSe. By comparing experimental data and theories so far proposed, the suppression of Tc against the residual resistivity is shown to be much weaker than that predicted in the case of general sign reversal and full gap s± models. The origin of the superconducting paring in FeSe is discussed in terms of its multiband electronic structure.
Tail-like regime and BCS-BEC crossover due to hybridization in a two-band superconductor
NASA Astrophysics Data System (ADS)
Reyes, D.; Continentino, M. A.; Deus, F.; Thomas, C.
2018-05-01
Superconductivity in strongly correlated systems is a remarkable phenomenon that attracts huge interest. The study of this problem is relevant for materials such as the high T c oxides, pnictides and heavy fermions. These systems also have in common the existence of electrons of several orbitals that coexist at a common Fermi surface. In this paper we study the effect of pressure, chemical or applied on multi-band superconductivity. Pressure varies the atomic distances and consequently the overlap of the wave-functions in the crystal. This rearranges the electronic structure that we model including a pressure dependent hybridization between the bands. We consider the case of two-dimensional systems in a square lattice with inverted bands. We study the conditions for obtaining a pressure induced superconductor quantum critical point and show that hybridization, i.e. pressure can induce a Bardeen–Cooper–Schrieffer-Bose–Einstein condensation crossover in multi-band systems even for moderate interactions. We found a tail-like superconductor regime and briefly discuss the influence of the symmetry of the order parameter in the results.
NASA Astrophysics Data System (ADS)
Salem, Mohamed Shaker; Abdelaleem, Asmaa Mohamed; El-Gamal, Abear Abdullah; Amin, Mohamed
2017-01-01
One-dimensional silicon-based photonic crystals are formed by the electrochemical anodization of silicon substrates in hydrofluoric acid-based solution using an appropriate current density profile. In order to create a multi-band optical filter, two fabrication approaches are compared and discussed. The first approach utilizes a current profile composed of a linear combination of sinusoidal current waveforms having different frequencies. The individual frequency of the waveform maps to a characteristic stop band in the reflectance spectrum. The stopbands of the optical filter created by the second approach, on the other hand, are controlled by stacking multiple porous silicon rugate multilayers having different fabrication conditions. The morphology of the resulting optical filters is tuned by controlling the electrolyte composition and the type of the silicon substrate. The reduction of sidelobes arising from the interference in the multilayers is observed by applying an index matching current profile to the anodizing current waveform. In order to stabilize the resulting optical filters against natural oxidation, atomic layer deposition of silicon dioxide on the pore wall is employed.
Generating Random Samples of a Given Size Using Social Security Numbers.
ERIC Educational Resources Information Center
Erickson, Richard C.; Brauchle, Paul E.
1984-01-01
The purposes of this article are (1) to present a method by which social security numbers may be used to draw cluster samples of a predetermined size and (2) to describe procedures used to validate this method of drawing random samples. (JOW)
NASA Astrophysics Data System (ADS)
Jiang, Linhua; Egami, Eiichi; Mechtley, Matthew; Fan, Xiaohui; Cohen, Seth H.; Windhorst, Rogier A.; Davé, Romeel; Finlator, Kristian; Kashikawa, Nobunari; Ouchi, Masami; Shimasaku, Kazuhiro
2013-08-01
We present deep Hubble Space Telescope near-IR and Spitzer mid-IR observations of a large sample of spectroscopically confirmed galaxies at z >= 6. The sample consists of 51 Lyα emitters (LAEs) at z ~= 5.7, 6.5, and 7.0, and 16 Lyman break galaxies (LBGs) at 5.9 <= z <= 6.5. The near-IR images were mostly obtained with WFC3 in the F125W and F160W bands, and the mid-IR images were obtained with IRAC in the 3.6 μm and 4.5 μm bands. Our galaxies also have deep optical imaging data from Subaru Suprime-Cam. We utilize the multi-band data and secure redshifts to derive their rest-frame UV properties. These galaxies have steep UV-continuum slopes roughly between β ~= -1.5 and -3.5, with an average value of β ~= -2.3, slightly steeper than the slopes of LBGs in previous studies. The slope shows little dependence on UV-continuum luminosity except for a few of the brightest galaxies. We find a statistically significant excess of galaxies with slopes around β ~= -3, suggesting the existence of very young stellar populations with extremely low metallicity and dust content. Our galaxies have moderately strong rest-frame Lyα equivalent width (EW) in a range of ~10 to ~200 Å. The star formation rates are also moderate, from a few to a few tens of solar masses per year. The LAEs and LBGs in this sample share many common properties, implying that LAEs represent a subset of LBGs with strong Lyα emission. Finally, the comparison of the UV luminosity functions between LAEs and LBGs suggests that there exists a substantial population of faint galaxies with weak Lyα emission (EW < 20 Å) that could be the dominant contribution to the total ionizing flux at z >= 6. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. Based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Based in part on data collected at Subaru Telescope and obtained from SMOKA, which is operated by the Astronomy Data Center, National Astronomical Observatory of Japan.
Milsom, Sophia A; Freestone, Mark; Duller, Rachel; Bouman, Marisa; Taylor, Celia
2014-04-01
Social climate has an influence on a number of treatment-related factors, including service users' behaviour, staff morale and treatment outcomes. Reliable assessment of social climate is, therefore, beneficial within forensic mental health settings. The Essen Climate Evaluation Schema (EssenCES) has been validated in forensic mental health services in the UK and Germany. Preliminary normative data have been produced for UK high-security national health services and German medium-security and high-security services. We aim to validate the use of the EssenCES scale (English version) and provide preliminary normative data in UK medium-security hospital settings. The EssenCES scale was completed in a medium-security mental health service as part of a service-wide audit. A total of 89 patients and 112 staff completed the EssenCES. The three-factor structure of the EssenCES and its internal construct validity were maintained within the sample. Scores from this medium-security hospital sample were significantly higher than those from earlier high-security hospital data, with three exceptions--'patient cohesion' according to the patients and 'therapeutic hold' according to staff and patients. Our data support the use of the EssenCES scale as a valid measure for assessing social climate within medium-security hospital settings. Significant differences between the means of high-security and medium-security service samples imply that degree of security is a relevant factor affecting the ward climate and that in monitoring quality of secure services, it is likely to be important to apply different scores to reflect standards. Copyright © 2013 John Wiley & Sons, Ltd.
Multi-band filter design with less total film thickness for short-wave infrared
NASA Astrophysics Data System (ADS)
Yan, Yung-Jhe; Chien, I.-Pen; Chen, Po-Han; Chen, Sheng-Hui; Tsai, Yi-Chun; Ou-Yang, Mang
2017-08-01
A multi-band pass filter array was proposed and designed for short wave infrared applications. The central wavelength of the multi-band pass filters are located about 905 nm, 950 nm, 1055 nm and 1550 nm. In the simulation of an optical interference band pass filter, high spectrum performance (high transmittance ratio between the pass band and stop band) relies on (1) the index gap between the selected high/low-index film materials, with a larger gap correlated to higher performance, and (2) sufficient repeated periods of high/low-index thin-film layers. When determining high and low refractive index materials, spectrum performance was improved by increasing repeated periods. Consequently, the total film thickness increases rapidly. In some cases, a thick total film thickness is difficult to process in practice, especially when incorporating photolithography liftoff. Actually the maximal thickness of the photoresist being able to liftoff will bound the total film thickness of the band pass filter. For the application of the short wave infrared with the wavelength range from 900nm to 1700nm, silicone was chosen as a high refractive index material. Different from other dielectric materials used in the visible range, silicone has a higher absorptance in the visible range opposite to higher transmission in the short wave infrared. In other words, designing band pass filters based on silicone as a high refractive index material film could not obtain a better spectrum performance than conventional high index materials like TiO2 or Ta2O5, but also its material cost would reduce about half compared to the total film thickness with the conventional material TiO2. Through the simulation and several experimental trials, the total film thickness below 4 um was practicable and reasonable. The fabrication of the filters was employed a dual electric gun deposition system with ion assisted deposition after the lithography process. Repeating four times of lithography and deposition process and black matrix coating, the optical device processes were completed.
Chang, Hing-Chiu; Gaur, Pooja; Chou, Ying-hui; Chu, Mei-Lan; Chen, Nan-kuei
2014-01-01
Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful imaging tool for detecting brain activities. The majority of fMRI studies are performed with single-shot echo-planar imaging (EPI) due to its high temporal resolution. Recent studies have demonstrated that, by increasing the spatial-resolution of fMRI, previously unidentified neuronal networks can be measured. However, it is challenging to improve the spatial resolution of conventional single-shot EPI based fMRI. Although multi-shot interleaved EPI is superior to single-shot EPI in terms of the improved spatial-resolution, reduced geometric distortions, and sharper point spread function (PSF), interleaved EPI based fMRI has two main limitations: 1) the imaging throughput is lower in interleaved EPI; 2) the magnitude and phase signal variations among EPI segments (due to physiological noise, subject motion, and B0 drift) are translated to significant in-plane aliasing artifact across the field of view (FOV). Here we report a method that integrates multiple approaches to address the technical limitations of interleaved EPI-based fMRI. Firstly, the multiplexed sensitivity-encoding (MUSE) post-processing algorithm is used to suppress in-plane aliasing artifacts resulting from time-domain signal instabilities during dynamic scans. Secondly, a simultaneous multi-band interleaved EPI pulse sequence, with a controlled aliasing scheme incorporated, is implemented to increase the imaging throughput. Thirdly, the MUSE algorithm is then generalized to accommodate fMRI data obtained with our multi-band interleaved EPI pulse sequence, suppressing both in-plane and through-plane aliasing artifacts. The blood-oxygenation-level-dependent (BOLD) signal detectability and the scan throughput can be significantly improved for interleaved EPI-based fMRI. Our human fMRI data obtained from 3 Tesla systems demonstrate the effectiveness of the developed methods. It is expected that future fMRI studies requiring high spatial-resolvability and fidelity will largely benefit from the reported techniques.
IAR signatures in the ionosphere: Modeling and observations at the Chibis-M microsatellite
NASA Astrophysics Data System (ADS)
Pilipenko, V.; Dudkin, D.; Fedorov, E.; Korepanov, V.; Klimov, S.
2017-02-01
A peculiar feature of geomagnetic variations at middle/low latitudes in the ULF band, just below the fundamental tone of the Schumann resonance, is the occurrence of a multi-band spectral resonant structure, observed by high-sensitivity induction magnetometers during nighttime. The occurrence of such spectral structure was commonly attributed to the Ionospheric Alfvén Resonator (IAR) in the upper ionosphere. Rather surprisingly, while ground observations of the IAR are ubiquitous, there are practically no reports on the IAR signatures from space missions. According to the new paradigm, the multi-band spectral structure excited by a lightning discharge is in fact produced by a regular sequence of an original pulse from a stroke and echo-pulses reflected from the IAR upper boundary. Upon the interaction of initial lightning-generated pulse with the anisotropic lower ionosphere, it partially penetrates into the ionosphere, travels up the ionosphere as an Alfvén pulse, and reflects back from the upper IAR boundary. The superposition of the initial pulse and echo-pulses produces spectra with multiple spectral peaks. Our modeling of Alfvénic pulse propagation in a system with the altitude profile of Alfven velocity modeling the realistic ionosphere has shown that IAR spectral signatures are to be evident only on the ground and above the IAR. Inside the IAR, the superposition of upward and downward propagating pulses produces a more complicated spectral pattern and the IAR spectral signatures deteriorate. We have used electric field data from the low-orbit Chibis-M microsatellite to search for IAR signatures in the ionosphere. We found evidence that the multi-band structure revealed by spectral analysis in the frequency range of interest is indeed the result of a sequence of lightning-produced pulses. According to the proposed conception it seems possible to comprehend why the IAR signatures are less evident in the ionosphere than on the ground.
Alavi, Seyyed Salman; Alaghemandan, Hamed; Jannatifard, Fereshte
2013-01-01
Introduction: Medical universities are of those organizations that serve many individuals. As a result, the employees who work at medical universities should have adequate job qualifications and requisite conditions for work. Job security is one of these needed conditions. The current study aims to determine the main components of job security among the employees of Isfahan University of Medical Sciences (IUMS). Method and materials: The study had a cross-sectional design. The sample included 300 employees which were selected from the faculties of IUMS. The sample was recruited using quota sampling. First, demographic and Job security questionnaires were completed by each employee. Then, data was analyzed by descriptive methods and ANOVA in SPSS16. Results: The study results showed that there was no significant difference among five subscales of Job security questionnaire and as a result, job security among the employees of IUMS but there was a significant difference in job security among male and female employees and a significant difference in job security based on type of job contract. Discussion: Lower rate of job security among female employees with temporary job contracts has professional and psychological implication for both females and IUMS which should be considered in designing professional programs of IUMS. PMID:23687464
NASA Technical Reports Server (NTRS)
Menanteau, Felipe; Gonzalez, Jorge; Juin, Jean-Baptiste; Marriage, Tobias; Reese, Erik D.; Acquaviva, Viviana; Aguirre, Paula; Appel, John Willam; Baker, Andrew J.; Barrientos, L. Felipe;
2010-01-01
We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich Effect from 148 GHz maps over 455 square degrees of sky made with the Atacama Cosmology Telescope. These maps. coupled with multi-band imaging on 4-meter-class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8.0 x 10(exp 14) Stellar Mass. with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1 x 10(exp 15) Stellar Mass and the redshift range is 0.167 to 1.066. Archival observations from Chandra, XMM-Newton. and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically-significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the Universe.
Jin, Mi Kyoung; Jacobvitz, Deborah; Hazen, Nancy; Jung, Sung Hoon
2012-01-01
The present study sought to analyze infant and maternal behavior both during the Strange Situation Procedure (SSP) and a free play session in a Korean sample (N = 87) to help understand whether mother-infant attachment relationships are universal or culture-specific. Distributions of attachment classifications in the Korean sample were compared with a cross-national sample. Behavior of mothers and infants following the two separation episodes in the SSP, including mothers' proximity to their infants and infants' approach to the caregiver, was also observed, as was the association between maternal sensitivity observed during free play session and infant security. The percentage of Korean infants classified as secure versus insecure mirrored the global distribution, however, only one Korean baby was classified as avoidant. Following the separation episodes in the Strange Situation, Korean mothers were more likely than mothers in Ainsworth's Baltimore sample to approach their babies immediately and sit beside them throughout the reunion episodes, even when their babies were no longer distressed. Also, Korean babies less often approached their mothers during reunions than did infants in the Baltimore sample. Finally, the link between maternal sensitivity and infant security was significant. The findings support the idea that the basic secure base function of attachment is universal and the SSP is a valid measure of secure attachment, but cultural differences in caregiving may result in variations in how this function is manifested.
NASA Astrophysics Data System (ADS)
Tuccari, Gino; Alef, Walter
2016-12-01
A multi-band concurrent observation capability for the frequency bands commonly used in the EVN could greatly improve the VLBI scientific opportunities, even enabling an important simplification of the radio telescope operations. The project for a 1.5-15.5 GHz fully digital receiver is presented with possible solutions for a smooth introduction in the EVN radio telescopes, which differ widely from each other.
2013-12-01
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send...0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing...comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Radiometric calibration of spacecraft using small lunar images
Kieffer, Hugh H.; Anderson, James M.; Becker, Kris J.
1999-01-01
In this study, the data reduction steps that can be used to extract the lunar irradiance from low resolution images of the Moon are examined and the attendant uncertainties are quantitatively assessed. The response integrated over an image is compared to a lunar irradiance model being developed from terrestrial multi-band photometric observations over the 350-2500 nm range.
System Framework for a Multi-Band, Multi-Mode Software Defined Radio
2014-06-01
detection, while the VITA Radio Transport ( VRT ) protocol over Gigabit Ethernet (GIGE) is implemented for the data interface. In addition to the SoC...CTRL VGA CTRL C2 GPP C2 CORE SW ARM0 RX SYN CTRL PL MEMORY MAP DR CTRL GENERIC INTERRUPT CONTROLLER DR GPP VITERBI ALGORITHM & VRT INTERFACE ARM1
Supplemental nutrition assistance program participation and child food security.
Mabli, James; Worthington, Julie
2014-04-01
This article investigates the association between Supplemental Nutrition Assistance Program (SNAP) participation and child food security by using data from the largest national survey of the food security of SNAP participants to date. The analysis used a survey of nearly 3000 households with children and a quasi-experimental research design that consisted of 2 sets of comparisons. Using a cross-sectional sample, we compared information collected from SNAP households within days of program entry with information collected from a contemporaneous sample of SNAP households that had participated for ∼6 months. Next, by using a longitudinal sample, we compared baseline information collected from new-entrant SNAP households with information from those same households 6 months later. Multivariate logistic regression analysis was used to estimate associations between SNAP and child food security. SNAP participation was associated with an approximately one-third decrease in the odds of children being food insecure in both samples. In the cross-sectional analysis only, SNAP was also associated with a decrease in the odds of children experiencing severe food insecurity (designated very low food security). Findings were qualitatively robust to different empirical specifications. After controlling for other possible confounders, we found children in households that had participated in SNAP for 6 months experienced improvements in food security. On the basis of these findings, we conclude SNAP serves a vital role in improving the health and well-being of low-income children by increasing food security. Future research is needed to determine whether specific groups of children experience differential improvements in food security.
A Computer Security Course in the Undergraduate Computer Science Curriculum.
ERIC Educational Resources Information Center
Spillman, Richard
1992-01-01
Discusses the importance of computer security and considers criminal, national security, and personal privacy threats posed by security breakdown. Several examples are given, including incidents involving computer viruses. Objectives, content, instructional strategies, resources, and a sample examination for an experimental undergraduate computer…
NASA Astrophysics Data System (ADS)
Galler, Anna; Gunacker, Patrik; Tomczak, Jan; Thunström, Patrik; Held, Karsten
Recently, approaches such as the dynamical vertex approximation (D ΓA) or the dual-fermion method have been developed. These diagrammatic approaches are going beyond dynamical mean field theory (DMFT) by including nonlocal electronic correlations on all length scales as well as the local DMFT correlations. Here we present our efforts to extend the D ΓA methodology to ab-initio materials calculations (ab-initio D ΓA). Our approach is a unifying framework which includes both GW and DMFT-type of diagrams, but also important nonlocal correlations beyond, e.g. nonlocal spin fluctuations. In our multi-band implementation we are using a worm sampling technique within continuous-time quantum Monte Carlo in the hybridization expansion to obtain the DMFT vertex, from which we construct the reducible vertex function using the two particle-hole ladders. As a first application we show results for transition metal oxides. Support by the ERC project AbinitioDGA (306447) is acknowledged.
Cui, Shan; He, Lan -Po; Hong, Xiao -Chen; ...
2016-06-09
It was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe 3. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe 3–x Se x near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe 3–x Se x single crystals (x = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term κ 0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependencemore » of κ 0/T manifests a multigap behavior. Lastly, these results demonstrate multiple nodeless superconducting gaps in ZrTe 3–x Se x, which indicates conventional superconductivity despite of the existence of a CDW QCP.« less
NASA Technical Reports Server (NTRS)
Stoner, E. R.; May, G. A.; Kalcic, M. T. (Principal Investigator)
1981-01-01
Sample segments of ground-verified land cover data collected in conjunction with the USDA/ESS June Enumerative Survey were merged with LANDSAT data and served as a focus for unsupervised spectral class development and accuracy assessment. Multitemporal data sets were created from single-date LANDSAT MSS acquisitions from a nominal scene covering an eleven-county area in north central Missouri. Classification accuracies for the four land cover types predominant in the test site showed significant improvement in going from unitemporal to multitemporal data sets. Transformed LANDSAT data sets did not significantly improve classification accuracies. Regression estimators yielded mixed results for different land covers. Misregistration of two LANDSAT data sets by as much and one half pixels did not significantly alter overall classification accuracies. Existing algorithms for scene-to scene overlay proved adequate for multitemporal data analysis as long as statistical class development and accuracy assessment were restricted to field interior pixels.
Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy
NASA Astrophysics Data System (ADS)
Nader, Nima; Maser, Daniel L.; Cruz, Flavio C.; Kowligy, Abijith; Timmers, Henry; Chiles, Jeff; Fredrick, Connor; Westly, Daron A.; Nam, Sae Woo; Mirin, Richard P.; Shainline, Jeffrey M.; Diddams, Scott
2018-03-01
Laser frequency combs, with their unique combination of precisely defined spectral lines and broad bandwidth, are a powerful tool for basic and applied spectroscopy. Here, we report offset-free, mid-infrared frequency combs and dual-comb spectroscopy through supercontinuum generation in silicon-on-sapphire waveguides. We leverage robust fabrication and geometrical dispersion engineering of nanophotonic waveguides for multi-band, coherent frequency combs spanning 70 THz in the mid-infrared (2.5 μm-6.2 μm). Precise waveguide fabrication provides significant spectral broadening with engineered spectra targeted at specific mid-infrared bands. We characterize the relative-intensity-noise of different bands and show that the measured levels do not pose any limitation for spectroscopy applications. Additionally, we use the fabricated photonic devices to demonstrate dual-comb spectroscopy of a carbonyl sulfide gas sample at 5 μm. This work forms the technological basis for applications such as point sensors for fundamental spectroscopy, atmospheric chemistry, trace and hazardous gas detection, and biological microscopy.
1986-01-01
of the net ring to crossrods by slipping the crossrods through the rope which secured the net to the ring (Fig. 3). Each net was clipped to the center...and the base was wedged among the rocks thereby anchoring the sample device securely even in rough weather conditions. At the top of each support rod...samples i with a 0.5-m diameter, 363-gm mesh net. The net was secured to the bridge with rope and sampled ə m below the surface for 10 min. Surface
NASA Astrophysics Data System (ADS)
Hu, Bihe; Bolus, Daniel; Brown, J. Quincy
2018-02-01
Current gold-standard histopathology for cancerous biopsies is destructive, time consuming, and limited to 2D slices, which do not faithfully represent true 3D tumor micro-morphology. Light sheet microscopy has emerged as a powerful tool for 3D imaging of cancer biospecimens. Here, we utilize the versatile dual-view inverted selective plane illumination microscopy (diSPIM) to render digital histological images of cancer biopsies. Dual-view architecture enabled more isotropic resolution in X, Y, and Z; and different imaging modes, such as adding electronic confocal slit detection (eCSD) or structured illumination (SI), can be used to improve degraded image quality caused by background signal of large, scattering samples. To obtain traditional H&E-like images, we used DRAQ5 and eosin (D&E) staining, with 488nm and 647nm laser illumination, and multi-band filter sets. Here, phantom beads and a D&E stained buccal cell sample have been used to verify our dual-view method. We also show that via dual view imaging and deconvolution, more isotropic resolution has been achieved for optical cleared human prostate sample, providing more accurate quantitation of 3D tumor architecture than was possible with single-view SPIM methods. We demonstrate that the optimized diSPIM delivers more precise analysis of 3D cancer microarchitecture in human prostate biopsy than simpler light sheet microscopy arrangements.
NASA Astrophysics Data System (ADS)
Randriamampandry, S. M.; Crawford, S. M.; Bershady, M. A.; Wirth, G. D.; Cress, C. M.
2017-10-01
We investigate the stellar masses of the class of star-forming objects known as luminous compact blue galaxies (LCBGs) by studying a sample of galaxies in the distant cluster MS 0451.6-0305 at z ≈ 0.54 with ground-based multicolour imaging and spectroscopy. For a sample of 16 spectroscopically confirmed cluster LCBGs (colour B - V < 0.5, surface brightness μB < 21 mag arcsec-2 and magnitude MB < -18.5), we measure stellar masses by fitting spectral energy distribution (SED) models to multiband photometry, and compare with dynamical masses [determined from velocity dispersion in the range 10 < σv(km s- 1) < 80] we previously obtained from their emission-line spectra. We compare two different stellar population models that measure stellar mass in star-bursting galaxies, indicating correlations between the stellar age, extinction and stellar mass derived from the two different SED models. The stellar masses of cluster LCBGs are distributed similarly to those of field LCBGs, but the cluster LCBGs show lower dynamical-to-stellar mass ratios (Mdyn/M⋆ = 2.6) than their field LCBG counterparts (Mdyn/M⋆ = 4.8), echoing trends noted previously in low-redshift dwarf elliptical galaxies. Within this limited sample, the specific star formation rate declines steeply with increasing mass, suggesting that these cluster LCBGs have undergone vigorous star formation.
Ocean Variability Effects on Underwater Acoustic Communications
2011-09-01
schemes for accessing wide frequency bands. Compared with OFDM schemes, the multiband MIMO transmission combined with time reversal processing...systems, or multiple- input/multiple-output ( MIMO ) systems, decision feedback equalization and interference cancellation schemes have been integrated...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 MIMO receiver also iterates channel estimation and symbol demodulation with
Common Submarine Radio Room: A Case Study of a System of Systems Approach
2014-09-01
38 a. Military Strategic and Tactical Relay System / Navy Extremely High Frequency Program / Navy Multiband Terminal...sigma MCAP medium data rate channel access protocol MILSATCOM military satellite communications MILSTAR military strategic and tactical relay system...challenges between the various communications systems throughout the U.S. military place additional burdens and vulnerabilities on the warfighter. While
Geologic studies of Yellowstone National Park imagery using an electronic image enhancement system
NASA Technical Reports Server (NTRS)
Smedes, H. W.
1970-01-01
The image enhancement system is described, as well as the kinds of enhancement attained. Results were obtained from various kinds of remote sensing imagery (mainly black and white multiband, color, color infrared, thermal infrared, and side-looking K-band radar) of parts of Yellowstone National Park. Possible additional fields of application of these techniques are considered.
NASA Astrophysics Data System (ADS)
Jeong, Jeong-Won; Kim, Tae-Seong; Shin, Dae-Chul; Do, Synho; Marmarelis, Vasilis Z.
2004-04-01
Recently it was shown that soft tissue can be differentiated with spectral unmixing and detection methods that utilize multi-band information obtained from a High-Resolution Ultrasonic Transmission Tomography (HUTT) system. In this study, we focus on tissue differentiation using the spectral target detection method based on Constrained Energy Minimization (CEM). We have developed a new tissue differentiation method called "CEM filter bank". Statistical inference on the output of each CEM filter of a filter bank is used to make a decision based on the maximum statistical significance rather than the magnitude of each CEM filter output. We validate this method through 3-D inter/intra-phantom soft tissue classification where target profiles obtained from an arbitrary single slice are used for differentiation in multiple tomographic slices. Also spectral coherence between target and object profiles of an identical tissue at different slices and phantoms is evaluated by conventional cross-correlation analysis. The performance of the proposed classifier is assessed using Receiver Operating Characteristic (ROC) analysis. Finally we apply our method to classify tiny structures inside a beef kidney such as Styrofoam balls (~1mm), chicken tissue (~5mm), and vessel-duct structures.
NASA Astrophysics Data System (ADS)
Lin, Bao-Qin; Guo, Jian-Xin; Chu, Peng; Huo, Wen-Jun; Xing, Zhuo; Huang, Bai-Gang; Wu, Lan
2018-02-01
In this work, we propose a multiband linear-polarization (LP) conversion and circular polarization (CP) maintaining reflector using a symmetric anisotropic metasurface. The anisotropic metasurface is composed of a square array of a two-corner-cut square multiring disk printed on a grounded dielectric substrate, which is a symmetric structure with a pair of mutually perpendicular symmetric axes u and v along the ±45 ° directions with respect to the y -axis direction. The simulated results show that the reflector can realize LP conversion in five frequency bands at both x - and y -polarized incidence, the first four bands all have a certain bandwidth, and the fourth one, especially, is an ultrawideband. In addition, because of the symmetry of the reflector structure, the polarization state of a CP wave can be maintained after reflection, and the magnitude of the copolarized reflection coefficient at the CP incidence is just equal to that of the cross-polarized reflection coefficient at the x - and y -polarized incidence. We analyze the root cause of the multiband LP conversion and CP maintaining reflection, and carry out one experiment to verify the proposed reflector.
Observations of Multi-band Structures in Double Star TC-1 PEACE Electron and HIA Ion Data
NASA Astrophysics Data System (ADS)
Mohan Narasimhan, K.; Fazakerley, A. N.; Grimald, S.; Dandouras, I. S.; Mihaljcic, B.; Kistler, L. M.; Owen, C. J.
2015-12-01
Several authors have reported inner magnetosphere observations of proton distributions confined to narrow energy bands in the range 1 - 25 keV (Smith and Hoffman (1974), etc). These structures have been described as "nose structures", with reference to their appearance in energy-time spectrograms and are also known as "bands" if they occur for extended periods of time. Multi-nose structures have been observed if 2 or more noses appear at the same time (Vallat et al., 2007). Gaps between "noses" (or "bands") have been explained in terms of the competing corotation, convection and magnetic gradient drifts. Charge exchange losses in slow drift paths for steady state scenarios and the role of substorm injections have also been considered (Li et al., 2000; Ebihara et al., 2004). We analyse observations of electron and ion multi-band structures frequently seen in Double-Star TC1 PEACE and HIA data. We present results from statistical surveys conducted using data from the duration of the mission. Furthermore, using a combination of both statistics and simulations, we test previous theories as to possible formation mechanisms and explore other possible explanations.
NASA Astrophysics Data System (ADS)
Feng, Ximeng; Li, Gang; Yu, Haixia; Wang, Shaohui; Yi, Xiaoqing; Lin, Ling
2018-03-01
Noninvasive blood component analysis by spectroscopy has been a hotspot in biomedical engineering in recent years. Dynamic spectrum provides an excellent idea for noninvasive blood component measurement, but studies have been limited to the application of broadband light sources and high-resolution spectroscopy instruments. In order to remove redundant information, a more effective wavelength selection method has been presented in this paper. In contrast to many common wavelength selection methods, this method is based on sensing mechanism which has a clear mechanism and can effectively avoid the noise from acquisition system. The spectral difference coefficient was theoretically proved to have a guiding significance for wavelength selection. After theoretical analysis, the multi-band spectral difference coefficient-wavelength selection method combining with the dynamic spectrum was proposed. An experimental analysis based on clinical trial data from 200 volunteers has been conducted to illustrate the effectiveness of this method. The extreme learning machine was used to develop the calibration models between the dynamic spectrum data and hemoglobin concentration. The experiment result shows that the prediction precision of hemoglobin concentration using multi-band spectral difference coefficient-wavelength selection method is higher compared with other methods.
Design of a multiband near-infrared sky brightness monitor using an InSb detector.
Dong, Shu-Cheng; Wang, Jian; Tang, Qi-Jie; Jiang, Feng-Xin; Chen, Jin-Ting; Zhang, Yi-Hao; Wang, Zhi-Yue; Chen, Jie; Zhang, Hong-Fei; Jiang, Hai-Jiao; Zhu, Qing-Feng; Jiang, Peng; Ji, Tuo
2018-02-01
Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.
Multiband Study of Radio Sources of the Rcr Catalogue with Virtual Observatory Tools
NASA Astrophysics Data System (ADS)
Zhelenkova, O. P.; Soboleva, N. S.; Majorova, E. K.; Temirova, A. V.
We present early results of our multiband study of the RATAN Cold Revised (RCR) catalogue obtained from seven cycles of the ``Cold'' survey carried with the RATAN-600 radio telescope at 7.6 cm in 1980--1999, at the declination of the SS 433 source. We used the 2MASS and LAS UKIDSS infrared surveys, the DSS-II and SDSS DR7 optical surveys, as well as the USNO-B1 and GSC-II catalogues, the VLSS, TXS, NVSS, FIRST and GB6 radio surveys to accumulate information about the sources. For radio sources that have no detectable optical candidate in optical or infrared catalogues, we additionally looked through images in several bands from the SDSS, LAS UKIDSS, DPOSS, 2MASS surveys and also used co-added frames in different bands. We reliably identified 76% of radio sources of the RCR catalogue. We used the ALADIN and SAOImage DS9 scripting capabilities, interoperability services of ALADIN and TOPCAT, and also other Virtual Observatory (VO) tools and resources, such as CASJobs, NED, Vizier, and WSA, for effective data access, visualization and analysis. Without VO tools it would have been problematic to perform our study.
Design of a multiband near-infrared sky brightness monitor using an InSb detector
NASA Astrophysics Data System (ADS)
Dong, Shu-cheng; Wang, Jian; Tang, Qi-jie; Jiang, Feng-xin; Chen, Jin-ting; Zhang, Yi-hao; Wang, Zhi-yue; Chen, Jie; Zhang, Hong-fei; Jiang, Hai-jiao; Zhu, Qing-feng; Jiang, Peng; Ji, Tuo
2018-02-01
Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.
Low-cost dielectric substrate for designing low profile multiband monopole microstrip antenna.
Ahsan, M R; Islam, M T; Habib Ullah, M; Arshad, H; Mansor, M F
2014-01-01
This paper proposes a small sized, low-cost multiband monopole antenna which can cover the WiMAX bands and C-band. The proposed antenna of 20 × 20 mm(2) radiating patch is printed on cost effective 1.6 mm thick fiberglass polymer resin dielectric material substrate and fed by 4 mm long microstrip line. The finite element method based, full wave electromagnetic simulator HFSS is efficiently utilized for designing and analyzing the proposed antenna and the antenna parameters are measured in a standard far-field anechoic chamber. The experimental results show that the prototype of the antenna has achieved operating bandwidths (voltage stand wave ratio (VSWR) less than 2) 360 MHz (2.53-2.89 GHz) and 440 MHz (3.47-3.91 GHz) for WiMAX and 1550 MHz (6.28-7.83 GHz) for C-band. The simulated and measured results for VSWR, radiation patterns, and gain are well matched. Nearly omnidirectional radiation patterns are achieved and the peak gains are of 3.62 dBi, 3.67 dBi, and 5.7 dBi at 2.66 GHz, 3.65 GHz, and 6.58 GHz, respectively.
Liu, Zhengqi; Liu, Guiqiang; Liu, Xiaoshan; Huang, Shan; Wang, Yan; Pan, Pingping; Liu, Mulin
2015-06-12
Resonant plasmonic and metamaterial absorbers are of particular interest for applications in a wide variety of nanotechnologies including thermophotovoltaics, photothermal therapy, hot-electron collection and biosensing. However, it is rather challenging to realize ultra-narrow absorbers using plasmonic materials due to large optical losses in metals that inevitably decrease the quality of optical resonators. Here, we theoretically report methods to achieve an ultra-narrow light absorption meta-surface by using photonic modes of the optical cavities, which strongly couple with the plasmon resonances of the metallic nanostructures. Multispectral light absorption with absorption amplitude exceeding 99% and a bandwidth approaching 10 nm is achieved at the optical frequencies. Moreover, by introducing a thick dielectric coupling cavity, the number of absorption bands can be strongly increased and the bandwidth can even be narrowed to less than 5 nm due to the resonant spectrum splitting enabled by strong coupling between the plasmon resonances and the optical cavity modes. Designing such optical cavity-coupled meta-surface structures is a promising route for achieving ultra-narrow multiband absorbers, which can be used in absorption filters, narrow-band multispectral thermal emitters and thermophotovoltaics.
The SED Machine: A Robotic Spectrograph for Fast Transient Classification
NASA Astrophysics Data System (ADS)
Blagorodnova, Nadejda; Neill, James D.; Walters, Richard; Kulkarni, Shrinivas R.; Fremling, Christoffer; Ben-Ami, Sagi; Dekany, Richard G.; Fucik, Jason R.; Konidaris, Nick; Nash, Reston; Ngeow, Chow-Choong; Ofek, Eran O.; O’ Sullivan, Donal; Quimby, Robert; Ritter, Andreas; Vyhmeister, Karl E.
2018-03-01
Current time domain facilities are finding several hundreds of transient astronomical events a year. The discovery rate is expected to increase in the future as soon as new surveys such as the Zwicky Transient Facility (ZTF) and the Large Synoptic Sky Survey (LSST) come online. Presently, the rate at which transients are classified is approximately one order or magnitude lower than the discovery rate, leading to an increasing “follow-up drought”. Existing telescopes with moderate aperture can help address this deficit when equipped with spectrographs optimized for spectral classification. Here, we provide an overview of the design, operations and first results of the Spectral Energy Distribution Machine (SEDM), operating on the Palomar 60-inch telescope (P60). The instrument is optimized for classification and high observing efficiency. It combines a low-resolution (R ∼ 100) integral field unit (IFU) spectrograph with “Rainbow Camera” (RC), a multi-band field acquisition camera which also serves as multi-band (ugri) photometer. The SEDM was commissioned during the operation of the intermediate Palomar Transient Factory (iPTF) and has already lived up to its promise. The success of the SEDM demonstrates the value of spectrographs optimized for spectral classification.
The design of common aperture and multi-band optical system based on day light telescope
NASA Astrophysics Data System (ADS)
Chen, Jiao; Wang, Ling; Zhang, Bo; Teng, Guoqi; Wang, Meng
2017-02-01
As the development of electro-optical weapon system, the technique of common path and multi-sensor are used popular, and becoming a trend. According to the requirement of miniaturization and lightweight for electro-optical stabilized sighting system, a day light telescope/television viewing-aim system/ laser ranger has been designed in this thesis, which has common aperture. Thus integration scheme of multi-band and common aperture has been adopted. A day light telescope has been presented, which magnification is 8, field of view is 6°, and distance of exit pupil is more than 20mm. For 1/3" CCD, television viewing-aim system which has 156mm focal length, has been completed. In addition, laser ranging system has been designed, with 10km raging distance. This paper outlines its principle which used day light telescope as optical reference of correcting the optical axis. Besides, by means of shared objective, reserved image with inverting prism and coating beam-splitting film on the inclined plane of the cube prism, the system has been applied to electro-optical weapon system, with high-resolution of imaging and high-precision ranging.
Independent polarization and multi-band THz absorber base on Jerusalem cross
NASA Astrophysics Data System (ADS)
Arezoomand, Afsaneh Saee; Zarrabi, Ferdows B.; Heydari, Samaneh; Gandji, Navid P.
2015-10-01
In this paper, we present the design and simulation of a single and multi-band perfect metamaterial absorber (MA) in the THz region base on Jerusalem cross (JC) and metamaterial load in unit cells. The structures consist of dual metallic layers for allowing near-perfect absorption with absorption peak of more than 99%. In this novel design, four-different shape of Jerusalem cross is presented and by adding L, U and W shape loaded to first structure, we tried to achieve a dual-band absorber. In addition, by good implementation of these loaded, we are able to control the absorption resonance at second resonance at 0.9, 0.7 and 0.85 THz respectively. In the other hand, we achieved a semi stable designing at first resonance between 0.53 and 0.58 THz. The proposed absorber has broadband polarization angle. The surface current modeled and proved the broadband polarization angle at prototype MA. The LC resonance of the metamaterial for Jerusalem cross and modified structures are extracting from equivalent circuit. As a result, proposed MA is useful for THz medical imaging and communication systems and the dual-band absorber has applications in many scientific and technological areas.
Kupčić, I; Rukelj, Z; Barišić, S
2014-05-14
The current-dipole Kubo formula for the dynamical conductivity of interacting multiband electronic systems derived in Kupčić et al (2013 J. Phys.: Condens. Matter 25 145602) is illustrated on the Peierls model for quasi-one-dimensional systems with the charge-density-wave (CDW) instability. Using the microscopic representation of the Peierls model, it is shown in which way the scattering of conduction electrons by CDW fluctuations affects the dynamical conductivity at temperatures above and well below the CDW transition temperature. The generalized Drude formula for the intraband conductivity is derived in the ordered CDW state well below the transition temperature. The natural extension of this formula to the case where the intraband memory function is dependent on frequency and wave vectors is also presented. It is shown that the main adventage of such a memory-function conductivity model is that it can be easily extended to study the dynamical conductivity and the electronic Raman scattering in more complicated multiband electronic systems in a way consistent with the law of conservation of energy. The incoherent interband conductivity in the CDW pseudogap state is briefly discussed as well.
Gloor, Kayleen T; Winget, Doug; Swanson, William F
2006-09-01
In response to growing terrorism concerns, the Transportation Security Administration now requires that all checked baggage at U.S. airports be scanned through a cabinet x-ray system, which may increase risk of radiation damage to transported biologic samples and other sensitive genetic material. The objective of this study was to investigate the effect of these new airport security regulations on the viability and DNA integrity of frozen felid spermatozoa. Semen was collected from two domestic cats (Felis silvestris catus) and one fishing cat (Prionailurus viverrinus), cryopreserved in plastic freezing straws, and transferred into liquid nitrogen dry shippers for security screening. Treatment groups included frozen samples from each male scanned once or three times using a Transportation Security Administration-operated cabinet x-ray system, in addition to non-scanned samples (i.e., negative control) and samples previously scanned three times and exposed to five additional high-intensity x-ray bursts (i.e., positive control). Dosimeters placed in empty dry shippers were used to quantify radiation exposure. Following treatment, straws were thawed and spermatozoa analyzed for post-thaw motility (percentage motile and rate of progressive movement), acrosome status, and DNA integrity using single-cell gel electrophoresis (i.e., the comet assay). Dosimeter measurements determined that each airport screening procedure produced approximately 16 mrem of radiation exposure. Our results indicated that all levels of radiation exposure adversely affected (P < 0.05) post-thaw sperm motility, but the percentage of acrosome-intact spermatozoa did not differ (P > 0.05) among treatment groups. Results also showed that the amount of double-stranded DNA damage was greater (P < 0.05) in sperm samples from both cat species scanned three times compared to samples scanned once or negative controls. Findings suggest that new airport security measures may cause radiation-induced damage to frozen spermatozoa and other valuable biologic samples transported on passenger aircraft and that alternative modes of sample transportation should be used whenever possible.
TECHNOLOGY EVALUATION REPORT CEREX ENVIRONMENTAL SERVICES UV HOUND POINT SAMPLE AIR MONITOR
The USEPA's National Homeland Security Research Center (NHSRC) Technology Testing and Evaluation Program (TTEP) is carrying out performance tests on homeland security technologies. Under TTEP, Battelle evaluated the performance of the Cerex UV Hound point sample air monitor in de...
1996-10-01
Diet 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT OF REPORT OF THIS PAGE...approach, Frank et al. (1993) compared DDE and PCB residues in the general diet with blood levels of Ontario residents. Blood samples were obtained from...sources of PCBs and HCB in this geographical region. In a similar study, Kashyap et al. (1994) monitored DDT levels in duplicate diet samples and
An evaluation of the construct of earned security in adolescents: evidence from an inpatient sample.
Venta, Amanda; Sharp, Carla; Shmueli-Goetz, Yael; Newlin, Elizabeth
2015-01-01
In adult attachment research, a group of individuals who convey secure attachments despite recalling difficult early caregiver relationships has been identified. The term earned security refers to individuals in this group, whereas continuous security refers to individuals who convey secure attachments and describe caring early relationships. Evidence on the validity of earned security in adults is mixed--with one longitudinal study showing that earned secure adults, despite contrary recollections, are actually more likely to have experienced positive caregiving than continuous secure adults. There is currently no evidence of earned security in adolescence, and exploring it in this age group may help shed light on the overall problem of the validity of this construct. Therefore, the broad aim of this study was to examine the construct of earned security in a group of inpatient adolescents. First, the authors aimed to identify a group of adolescents with secure attachments and memories of difficult caregiver relationships (i.e., proposed earned secure group) in a sample of 240 inpatient adolescents. Next, to explore external validity, the authors examined whether this group differed from others with regard to internalizing distress and emotion regulation. Findings indicated that a subset of secure adolescents recall difficult caregiving, as has been noted in adults, and that they differ from others with regard to emotion regulation. Despite this preliminary evidence that earned security can be identified in adolescents, the authors conclude with a discussion of the caveats of applying this construct in adolescents as well as adults.
2017-02-01
enable high scalability and reconfigurability for inter-CPU/Memory communications with an increased number of communication channels in frequency ...interconnect technology (MRFI) to enable high scalability and re-configurability for inter-CPU/Memory communications with an increased number of communication ...testing in the University of California, Los Angeles (UCLA) Center for High Frequency Electronics, and Dr. Afshin Momtaz at Broadcom Corporation for
NASA Technical Reports Server (NTRS)
Gunapala, S. D.; Bandara, S. V.
2004-01-01
A 640x512 pixel, long-wavelength cutoff, narrow-band (delta(lambda)/approx. 10%) quantum well infrared photodetector (QWIP) focal plane array (FPA), a four-band QWIP FPA in the 4-16 m spectral region, and a broad-band (delta(lambda)/approx. 42%) QWIP FPA having 15.4 m cutoff have been demonstrated.
Ocean Variability Effects on Underwater Acoustic Communications
2012-09-30
2000. [2] B. Li, J. Huang, S. Zhou, K. Ball, M. Stojanovic, L. Freitag, and P. Willett. MIMO - OFDM for high rate underwater acoustic...alternative to orthogonal frequency-division multiplexing ( OFDM ) [2], we developed a multiband transceiver, where a wide frequency band is divided into...multiple separated sub-bands. These sub- bands are several kilohertz in width, much wider than OFDM sub-carriers used in underwater channels
Location and Navigation with Ultra-Wideband Signals
2012-06-07
Coherent vs. Noncoherent Combination 26 F Ranging with Multi-Band UWB Signals: Random Phase Ratation 29 F.1 MB-OFDM System Model...adopted to combine the channel information from subbands: the coherent combining and the noncoherent combining. For the coherent combining, estimates of...channel frequency response coefficients for all subbands are jointly used to estimate the time domain channel with Eq. (33). For the noncoherent
NASA Astrophysics Data System (ADS)
de Jong, Arie N.; van Eijk, Alexander M. J.; Cohen, Leo H.; Fritz, Peter J.; Gunter, Willem H.; Vrahimis, George; October, Faith J.
2011-09-01
The FATMOSE trial (False Bay Atmospheric Experiment) is a continuation of the cooperative work between TNO and IMT on atmospheric propagation and point target detection and identification in a maritime environment, South Africa). The atmospheric transmission, being of major importance for target detection, was measured with the MSRT multiband optical/IR transmissometer over a path of 15.7 km over sea. Simultaneously a set of instruments was installed on a midpath lighthouse for collection of local meteorological data, including turbulence, scintillation, sea surface temperature and visibility. The multiband transmission data allow the retrieval of the size distribution (PSD) of the particles (aerosols) in the transmission path. The retrieved PSD's can be correlated with the weather data such as windspeed, wind direction, relative humidity and visibility. This knowledge will lead to better atmospheric propagation models. The measurement period covered nearly a full year, starting in November 2009 and ending in October 2010. The False Bay site is ideal for studies on propagation effects over sea because of the large variety of weather conditions, including high windspeed, expected from the South East with maritime air masses, as well as Northerly winds, expected to bring warm and dry air from the continent. From an operational point of view the False Bay area is interesting, being representative for the scenery around the African coast with warships in an active protecting role in the battle against piracy. The yearround transmission data are an important input for range performance calculations of electro-optical sensors against maritime targets. The data support the choice of the proper spectral band and contain statistical information about the detection ranges to be expected. In this paper details on the instrumentation will be explained as well as the methods of calibration and PSD retrieval. Data are presented for various weather conditions, showing correlations between different parameters and including statistical behaviour over the year. Examples will be shown of special conditions such as refractive gain, gravity waves and showers.
Occurrence features of simultaneous H+- and He+-band EMIC emissions in the outer radiation belt
NASA Astrophysics Data System (ADS)
Fu, Song; He, Fengming; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Liu, Jiang
2018-04-01
As an important loss mechanism of radiation belt electrons, electromagnetic ion cyclotron (EMIC) waves show up as three distinct frequency bands below the hydrogen (H+), helium (He+), and oxygen (O+) ion gyrofrequencies. Compared to O+-band EMIC waves, H+- and He+-band emissions generally occur more frequently and result in more efficient scattering removal of <∼5 MeV relativistic electrons. Therefore, knowledge about the occurrence of these two bands is important for understanding the evolution of the relativistic electron population. To evaluate the occurrence pattern and wave properties of H+- and He+-band EMIC waves when they occur concurrently, we investigate 64 events of multi-band EMIC emissions identified from high quality Van Allen Probes wave data. Our quantitative results demonstrate a strong occurrence dependence of the multi-band EMIC emissions on magnetic local time (MLT) and L-shell to mainly concentrate on the dayside region of L = ∼4-6. We also find that the average magnetic field amplitude of H+-band waves is larger than that of He+-band waves only when L < 4.5 and AE∗ < 300 nT, and He+-band emissions are more intense under all other conditions. In contrast to 5 events that have average H+-band amplitude over 2 nT, 19 events exhibit >2 nT He+-band amplitude, indicating that the He+-band waves can be more easily amplified than the H+-band waves under the same circumstances. For simultaneous occurrences of the two EMIC wave bands, their frequencies vary with L-shell and geomagnetic activity: the peak wave frequency of H+-band emissions varies between 0.25 and 0.8 fcp with the average between 0.25 and 0.6 fcp, while that of He+-band emissions varies between 0.03 and 0.23 fcp with the average between 0.05 and 0.15 fcp. These newly observed occurrence features of simultaneous H+- and He+-band EMIC emissions provide improved information to quantify the overall contribution of multi-band EMIC waves to the loss processes of radiation belt electrons.
NASA Astrophysics Data System (ADS)
Saha, Rony Kumer; Aswakul, Chaodit
2017-01-01
In this paper, a multi-band enabled femtocell base station (FCBS) and user equipment (UE) architecture is proposed in a multi-tier network that consists of small cells, including femtocells and picocells deployed over the coverage of a macrocell for splitting uplink and downlink (UL/DL) as well as control-plane and user-plane (C-/U-plane) for 5G mobile networks. Since splitting is performed at the same FCBS, we define this architecture as the same base station based split architecture (SBSA). For multiple bands, we consider co-channel (CC) microwave and different frequency (DF) 60 GHz millimeter wave (mmWave) bands for FCBSs and UEs with respect to the microwave band used by their over-laid macrocell base station. All femtocells are assumed to be deployed in a 3-dimensional multi-storage building. For CC microwave band, cross-tier CC interference of femtocells with macrocell is avoided using almost blank subframe based enhanced inter-cell interference coordination techniques. The co-existence of CC microwave and DF mmWave bands for SBSA on the same FCBS and UE is first studied to show their performance disparities in terms of system capacity and spectral efficiency in order to provide incentives for employing multiple bands at the same FCBS and UE and identify a suitable band for routing decoupled UL/DL or C-/U-plane traffic. We then present a number of disruptive architectural design alternatives of multi-band enabled SBSA for 5G mobile networks for UL/DL and C-/U-plane splitting, including a disruptive and complete splitting of UL/DL and C-/U-plane as well as a combined UL/DL and C-/U-plane splitting, by exploiting dual connectivity on CC microwave and DF mmWave bands. The outperformances of SBSA in terms of system level capacity, average spectral efficiency, energy efficiency, and control-plane overhead traffic capacity in comparison with different base stations based split architecture (DBSA) are shown. Finally, a number of technical and business perspectives as well as key research issues of SBSA are discussed.
ERIC Educational Resources Information Center
Costantini, Alessandro; Cassibba, Rosalinda; Coppola, Gabrielle; Castoro, Germana
2012-01-01
We investigated the influence of biological immaturity and attachment security on linguistic development and tested whether maternal language mediated the impact of security on the child's linguistic abilities. Forty mother-child dyads were followed longitudinally, with the child's attachment security assessed at 24 months of age through trained…
Selections from 2017: Computers Help Us Map Our Home
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-12-01
Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.Machine-Learned Identification of RR Lyrae Stars from Sparse, Multi-Band Data: The PS1 SamplePublished April2017Main takeaway:A sample of RR Lyrae variable stars was built from thePan-STARRS1 (PS1) survey by a team led byBranimir Sesar (Max Planck Institute for Astronomy, Germany). The sample of45,000 starsrepresentsthe widest (three-fourthsof the sky) and deepest (reaching 120 kpc) sample of RR Lyrae stars to date.Why its interesting:Its challengingto understand the overall shape and behaviorof our galaxy because were stuck on the inside of it. RR Lyrae stars are a useful tool for this purpose: they can be used as tracers to map out the Milky Ways halo. The authors large sample of RR Lyrae stars from PS1 combined withproper-motion measurements from Gaia and radial-velocity measurements from multi-object spectroscopic surveys could become thepremier source for studying the structure, kinematics, and the gravitational potential of our galaxys outskirts.How they were found:The black dots show the distribution of the 45,000 probable RR Lyrae stars in the authors sample. [Sesar et al. 2017]The 45,000 stars in this sample were selected not by humans, but by computer.The authors used machine-learning algorithms to examine the light curvesin the Pan-STARRS1 sample and identify the characteristic brightness variations of RR Lyrae stars lying in the galactic halo. These techniques resulted in a very pure and complete sample, and the authors suggest that this approachmay translate well to othersparse,multi-band data sets such asthat from the upcomingLarge Synoptic Survey Telescope (LSST) galactic plane sub-survey.CitationBranimir Sesar et al 2017 AJ 153 204. doi:10.3847/1538-3881/aa661b
Mabli, James; Ohls, Jim
2015-02-01
The Supplemental Nutrition Assistance Program (SNAP) provides nutrition assistance benefits to low-income families in an effort to reduce hunger and improve health and well-being. Because 1 in 7 Americans participate in the program each month, policymakers need to know whether the program is meeting these objectives effectively. The objective of this study was to estimate the association between SNAP participation and household food security using recent data from the largest national survey of the food security of SNAP participants to date. The analysis used a survey of nearly 6500 households and a quasi-experimental research design that consisted of 2 sets of comparisons. Using a cross-sectional sample, we compared information collected from SNAP households within days of program entry with information collected from a contemporaneous sample of SNAP households that had participated for ∼6 mo. Next, using a longitudinal sample, we compared baseline information collected from new-entrant SNAP households with information from those same households 6 mo later. Multivariate logistic regression analysis was used to estimate associations between SNAP and household food security. SNAP participation decreased the percentage of SNAP households that were food insecure in both samples by 6-17%. SNAP participation also decreased the percentage of households experiencing severe food insecurity--designated very low food security--by 12-19%. Findings were qualitatively robust to different empirical specifications. SNAP serves a vital role in improving the health and well-being of households by increasing food security. Given recent legislation to reduce program size and limit program eligibility, this study underscores SNAP's continued importance in affecting households' well-being. Future research is needed to determine whether specific groups of households experience differential improvements in food security. © 2015 American Society for Nutrition.
Multi-wavelength mid-IR light source for gas sensing
NASA Astrophysics Data System (ADS)
Karioja, Pentti; Alajoki, Teemu; Cherchi, Matteo; Ollila, Jyrki; Harjanne, Mikko; Heinilehto, Noora; Suomalainen, Soile; Viheriälä, Jukka; Zia, Nouman; Guina, Mircea; Buczyński, Ryszard; Kasztelanic, Rafał; Kujawa, Ireneusz; Salo, Tomi; Virtanen, Sami; Kluczyński, Paweł; Sagberg, Hâkon; Ratajczyk, Marcin; Kalinowski, Przemyslaw
2017-02-01
Cost effective multi-wavelength light sources are key enablers for wide-scale penetration of gas sensors at Mid-IR wavelength range. Utilizing novel Mid-IR Si-based photonic integrated circuits (PICs) filter and wide-band Mid-IR Super Luminescent Light Emitting Diodes (SLEDs), we show the concept of a light source that covers 2.5…3.5 μm wavelength range with a resolution of <1nm. The spectral bands are switchable and tunable and they can be modulated. The source allows for the fabrication of an affordable multi-band gas sensor with good selectivity and sensitivity. The unit price can be lowered in high volumes by utilizing tailored molded IR lens technology and automated packaging and assembling technologies. The status of the development of the key components of the light source are reported. The PIC is based on the use of micron-scale SOI technology, SLED is based on AlGaInAsSb materials and the lenses are tailored heavy metal oxide glasses fabricated by the use of hot-embossing. The packaging concept utilizing automated assembly tools is depicted. In safety and security applications, the Mid-IR wavelength range covered by the novel light source allows for detecting several harmful gas components with a single sensor. At the moment, affordable sources are not available. The market impact is expected to be disruptive, since the devices currently in the market are either complicated, expensive and heavy instruments, or the applied measurement principles are inadequate in terms of stability and selectivity.
Optical Spectroscopy of Distant Red Galaxies
NASA Astrophysics Data System (ADS)
Wuyts, Stijn; van Dokkum, Pieter G.; Franx, Marijn; Förster Schreiber, Natascha M.; Illingworth, Garth D.; Labbé, Ivo; Rudnick, Gregory
2009-11-01
We present optical spectroscopic follow-up of a sample of distant red galaxies (DRGs) with K tot s,Vega < 22.5, selected by (J - K)Vega>2.3, in the Hubble Deep Field South (HDFS), the MS 1054-03 field, and the Chandra Deep Field South (CDFS). Spectroscopic redshifts were obtained for 15 DRGs. Only two out of 15 DRGs are located at z < 2, suggesting a high efficiency to select high-redshift sources. From other spectroscopic surveys in the CDFS targeting intermediate to high-redshift populations selected with different criteria, we find spectroscopic redshifts for a further 30 DRGs. We use the sample of spectroscopically confirmed DRGs to establish the high quality (scatter in Δz/(1 + z) of ~0.05) of their photometric redshifts in the considered deep fields, as derived with EAZY. Combining the spectroscopic and photometric redshifts, we find that 74% of DRGs with K tot s,Vega < 22.5 lie at z>2. The combined spectroscopic and photometric sample is used to analyze the distinct intrinsic and observed properties of DRGs at z < 2 and z>2. In our photometric sample to K tot s,Vega < 22.5, low-redshift DRGs are brighter in Ks than high-redshift DRGs by 0.7 mag, and more extincted by 1.2 mag in AV . Our analysis shows that the DRG criterion selects galaxies with different properties at different redshifts. Such biases can be largely avoided by selecting galaxies based on their rest-frame properties, which requires very good multi-band photometry and high quality photometric redshifts.
Urban-field land use in southern New England: A first look
NASA Technical Reports Server (NTRS)
Simpson, R. B. (Principal Investigator)
1972-01-01
There are no author-identified significant results in this report. First look evaluation of ERTS-1 multiband imagery for urban-field land use applications revealed a great deal of potentially valuable information. The amount of land use detail which can be extracted confidently from ERTS imagery is encouraging, and the objectives of the proposed project are considered feasible providing timely cloud-free coverage is available.
Investigations into Novel Multi-Band Antenna Designs
2006-08-01
endeavouring to modify the designs to incorporate dual polarisation , building the antennas, as well as experimental work that will use the manufactured...based on the Koch, Minkowski and Hilbert curves. The merit in this approach is that non -Euclidean designs (i.e. fractals) are compared with Euclidean... polarisation . A number of possible changes to the current design need to be explored towards achieving the above objectives. Some of the suggested
Surface Material Characterization from Non-resolved Multi-band Optical Observations
2012-09-01
functions ( BRDFs ) — then a forward model of the spectral signature of the entire body could be constructed by summing contributions from all reflecting...buffering). 3.3.2 Material Bi-directional Reflectance Distribution Functions ( BRDFs ) Notably, the satellite wire-frame and attitude models together...environments and/or created numerical BRDF models . For instance, BRDFs for several spacecraft materials — such as solar array panels, milled aluminum
REMOTE SENSING IN OCEANOGRAPHY.
remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and
Multifunction Multiband Airborne Radio Architecture Study.
1982-01-01
30 to 88, 108 to 156, and 255 to 400 MHz band allocations . (ii) On designated operating channels: two in the 225 to 400 MHz bandwidth, one in each of...altimeter, direction finding, and relay. 2.2 BASELINE SYSTEM APPROACH This subsection describes the TRW-proposed baseline design for the MFBARS system...problem and SINCGARS application. Major efforts were directed toward reducing the overall costs while retaining required performance. Significantly, cost
Exposure assessment in front of a multi-band base station antenna.
Kos, Bor; Valič, Blaž; Kotnik, Tadej; Gajšek, Peter
2011-04-01
This study investigates occupational exposure to electromagnetic fields in front of a multi-band base station antenna for mobile communications at 900, 1800, and 2100 MHz. Finite-difference time-domain method was used to first validate the antenna model against measurement results published in the literature and then investigate the specific absorption rate (SAR) in two heterogeneous, anatomically correct human models (Virtual Family male and female) at distances from 10 to 1000 mm. Special attention was given to simultaneous exposure to fields of three different frequencies, their interaction and the additivity of SAR resulting from each frequency. The results show that the highest frequency--2100 MHz--results in the highest spatial-peak SAR averaged over 10 g of tissue, while the whole-body SAR is similar at all three frequencies. At distances > 200 mm from the antenna, the whole-body SAR is a more limiting factor for compliance to exposure guidelines, while at shorter distances the spatial-peak SAR may be more limiting. For the evaluation of combined exposure, a simple summation of spatial-peak SAR maxima at each frequency gives a good estimation for combined exposure, which was also found to depend on the distribution of transmitting power between the different frequency bands. Copyright © 2010 Wiley-Liss, Inc.
Vitale, Salvatore
2016-07-29
With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.
NASA Astrophysics Data System (ADS)
Vinckier, Quentin; Crabtree, Karlton; Paine, Christopher G.; Hayne, Paul O.; Sellar, Glenn R.
2017-08-01
Lunar Flashlight is an innovative NASA CubeSat mission dedicated to mapping water ice in the permanently shadowed regions of the Moon, which may act as cold traps for volatiles. To this end, a multi-band reflectometer will be sent to orbit the Moon. This instrument consists of an optical receiver aligned with four lasers, each of which emits sequentially at a different wavelength in the near-infrared between 1 μm and 2 μm. The receiver measures the laser light reflected from the lunar surface; continuum/absorption band ratios are then analyzed to quantify water ice in the illuminated spot. Here, we present the current state of the optical receiver design. To optimize the optical signal-to-noise ratio, we have designed the receiver so as to maximize the laser signal collected, while minimizing the stray light reaching the detector from solarilluminated areas of the lunar surface outside the field-of-view, taking into account the complex lunar topography. Characterization plans are also discussed. This highly mass- and volume-constrained mission will demonstrate several firsts, including being one of the first CubeSats performing science measurements beyond low Earth orbit.
Multi-band photometry of trans-Neptunian objects in the Subaru Hyper Suprime-Cam survey
NASA Astrophysics Data System (ADS)
Terai, Tsuyoshi; Yoshida, Fumi; Ohtsuki, Keiji; Lykawka, Patryk Sofia; Takato, Naruhisa; Higuchi, Arika; Ito, Takashi; Komiyama, Yutaka; Miyazaki, Satoshi; Wang, Shiang-Yu
2018-01-01
We present visible multi-band photometry of trans-Neptunian objects (TNOs) observed by the Subaru Telescope in the framework of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) from 2014 March to 2016 September. We measured the five broad-band (g, r, i, z, and Y) colors over the wavelength range from 0.4 μm to 1.0 μm for 30 known TNOs using the HSC-SSP survey data covering ˜500 deg2 of sky within ±30° of ecliptic latitude. This dataset allows us to investigate the correlations between the dynamical classes and visible reflectance spectra of TNOs. Our results show that the hot classical and scattered populations with orbital inclination (I) of I ≳ 6° share similar color distributions, while the cold classical population with I ≲ 6° has a different color distribution from the others. The low-I population has reflectance increasing toward longer wavelengths up to ˜0.8 μm, with a steeper slope than the high-I population at ≲ 0.6 μm. We also find a significant anti-correlation between g - r/r - i colors and inclination in the high-I population, as well as a possible bimodality in the g - i color vs. eccentricity plot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, Yunkyu; Stewart, G. R.
Although the pairing mechanism of Fe-based superconductors (FeSCs) has not yet been settled with consensus with regard to the pairing symmetry and the superconducting (SC) gap function, the vast majority of experiments support the existence of spin-singlet signchanging s-wave SC gaps on multi-bands (s±-wave state). This multi-band s±-wave state is a very unique gap state per se and displays numerous unexpected novel SC properties, such as a strong reduction of the coherence peak, non-trivial impurity effects, nodal-gap-like nuclear magnetic resonance signals, various Volovik effects in the specific heat (SH) and thermal conductivity, and anomalous scaling behaviors with a SH jumpmore » and condensation energy versus Tc, etc. In particular, many of these non-trivial SC properties can easily be mistaken as evidence for a nodal-gap state such as a d-wave gap. In this review, we provide detailed explanations of the theoretical principles for the various non-trivial SC properties of the s±-wave pairing state, and then critically compare the theoretical predictions with experiments on FeSCs. This will provide a pedagogical overview of to what extent we can coherently understand the wide range of different experiments on FeSCs within the s±-wave gap model.« less
Low-Cost Dielectric Substrate for Designing Low Profile Multiband Monopole Microstrip Antenna
Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Arshad, H.; Mansor, M. F.
2014-01-01
This paper proposes a small sized, low-cost multiband monopole antenna which can cover the WiMAX bands and C-band. The proposed antenna of 20 × 20 mm2 radiating patch is printed on cost effective 1.6 mm thick fiberglass polymer resin dielectric material substrate and fed by 4 mm long microstrip line. The finite element method based, full wave electromagnetic simulator HFSS is efficiently utilized for designing and analyzing the proposed antenna and the antenna parameters are measured in a standard far-field anechoic chamber. The experimental results show that the prototype of the antenna has achieved operating bandwidths (voltage stand wave ratio (VSWR) less than 2) 360 MHz (2.53–2.89 GHz) and 440 MHz (3.47–3.91 GHz) for WiMAX and 1550 MHz (6.28–7.83 GHz) for C-band. The simulated and measured results for VSWR, radiation patterns, and gain are well matched. Nearly omnidirectional radiation patterns are achieved and the peak gains are of 3.62 dBi, 3.67 dBi, and 5.7 dBi at 2.66 GHz, 3.65 GHz, and 6.58 GHz, respectively. PMID:25136648
Field-induced coexistence of s++ and s± superconducting states in dirty multiband superconductors
NASA Astrophysics Data System (ADS)
Garaud, Julien; Corticelli, Alberto; Silaev, Mihail; Babaev, Egor
2018-02-01
In multiband systems, such as iron-based superconductors, the superconducting states with locking and antilocking of the interband phase differences are usually considered as mutually exclusive. For example, a dirty two-band system with interband impurity scattering undergoes a sharp crossover between the s± state (which favors phase antilocking) and the s++ state (which favors phase locking). We discuss here that the situation can be much more complex in the presence of an external field or superconducting currents. In an external applied magnetic field, dirty two-band superconductors do not feature a sharp s±→s++ crossover but rather a washed-out crossover to a finite region in the parameter space where both s± and s++ states can coexist for example as a lattice or a microemulsion of inclusions of different states. The current-carrying regions such as the regions near vortex cores can exhibit an s± state while it is the s++ state that is favored in the bulk. This coexistence of both states can even be realized in the Meissner state at the domain's boundaries featuring Meissner currents. We demonstrate that there is a magnetic-field-driven crossover between the pure s± and the s++ states.
NASA Astrophysics Data System (ADS)
Weinschenk, Sedrick; Murphy, Brian; Villiger, Nathan J.
2018-01-01
We present a detailed study of the variable stars in the globular cluster NGC 6402 (M14). Approximately 1500 B and V band images were collected from July 2016 to August 2017 using the SARA Consortium Jacobus Kaptyen 1-meter telescope located in the Canary Islands. Using difference image analysis, we were able to identify 145 probable variable stars, confirming the 133 previously known variables and adding 12 new variables. The variables consisted of 117 RR Lyrae stars, 18 long period variables, 2 eclipsing variables, 6 Cepheid variables, and 2 SX Phoenix variables. Of the RR Lyrae variables 55 were of fundamental mode RR0 stars, of which 18 exhibited the Blazhko effect, 57 were of 1st overtone RR1, of which 7 appear to exhibit the Blazhko effect, 1 2nd overtone RR2, and 2 double mode variables. We found an average period of 0.59016 days for RR0 stars and 0.30294 days for RR1 stars. Using the multiband light curves of both the RR0 and RR1 variables we found an average E(B-V) of 0.604 with a scatter of 0.15 magnitudes. Using Fourier decomposition of the RR Lyrae light curves we also determined the metallicity and distance of the NGC 6402.
Superconducting properties of the s ± -wave state: Fe-based superconductors
Bang, Yunkyu; Stewart, G. R.
2017-02-13
Although the pairing mechanism of Fe-based superconductors (FeSCs) has not yet been settled with consensus with regard to the pairing symmetry and the superconducting (SC) gap function, the vast majority of experiments support the existence of spin-singlet signchanging s-wave SC gaps on multi-bands (s±-wave state). This multi-band s±-wave state is a very unique gap state per se and displays numerous unexpected novel SC properties, such as a strong reduction of the coherence peak, non-trivial impurity effects, nodal-gap-like nuclear magnetic resonance signals, various Volovik effects in the specific heat (SH) and thermal conductivity, and anomalous scaling behaviors with a SH jumpmore » and condensation energy versus Tc, etc. In particular, many of these non-trivial SC properties can easily be mistaken as evidence for a nodal-gap state such as a d-wave gap. In this review, we provide detailed explanations of the theoretical principles for the various non-trivial SC properties of the s±-wave pairing state, and then critically compare the theoretical predictions with experiments on FeSCs. This will provide a pedagogical overview of to what extent we can coherently understand the wide range of different experiments on FeSCs within the s±-wave gap model.« less
Compact triple band-stop filter using novel epsilon-shaped metamaterial with lumped capacitor
NASA Astrophysics Data System (ADS)
Ali, W. A. E.; Hamdalla, M. Z. M.
2018-04-01
This paper presents the design of a novel epsilon-shaped metamaterial unit cell structure that is applicable for single-band and multi-band applications. A closed-form formulas to control the resonance frequencies of the proposed design are included. The proposed unit cell, which exhibits negative permeability at its frequency bands, is etched from the ground plane to form a band-stop filter. The filter design is constructed to validate the band-notched characteristics of the proposed unit cell. A lumped capacitor is inserted for size reduction purpose in addition to multi-resonance generation. The fundamental resonance frequency is translated from 3.62 GHz to 2.45 GHz, which means that the filter size will be more compact (more than 32% size reduction). The overall size of the proposed filter is 13 × 6 × 1.524 mm3, where the electrical size is 0.221λg × 0.102λg × 0.026λg at the lower frequency band (2.45 GHz). Two other resonance frequencies are generated at 5.3 GHz and 9.2 GHz, which confirm the multi-band behavior of the proposed filter. Good agreement between simulated and measured characteristics of the fabricated filter prototype is achieved.
Islam, Md Rabiul; Tanaka, Toshihisa; Molla, Md Khademul Islam
2018-05-08
When designing multiclass motor imagery-based brain-computer interface (MI-BCI), a so-called tangent space mapping (TSM) method utilizing the geometric structure of covariance matrices is an effective technique. This paper aims to introduce a method using TSM for finding accurate operational frequency bands related brain activities associated with MI tasks. A multichannel electroencephalogram (EEG) signal is decomposed into multiple subbands, and tangent features are then estimated on each subband. A mutual information analysis-based effective algorithm is implemented to select subbands containing features capable of improving motor imagery classification accuracy. Thus obtained features of selected subbands are combined to get feature space. A principal component analysis-based approach is employed to reduce the features dimension and then the classification is accomplished by a support vector machine (SVM). Offline analysis demonstrates the proposed multiband tangent space mapping with subband selection (MTSMS) approach outperforms state-of-the-art methods. It acheives the highest average classification accuracy for all datasets (BCI competition dataset 2a, IIIa, IIIb, and dataset JK-HH1). The increased classification accuracy of MI tasks with the proposed MTSMS approach can yield effective implementation of BCI. The mutual information-based subband selection method is implemented to tune operation frequency bands to represent actual motor imagery tasks.
Dissolution actuated sample container
Nance, Thomas A.; McCoy, Frank T.
2013-03-26
A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.
NASA Astrophysics Data System (ADS)
Tau Siesakul, Bamrung; Gkoktsi, Kyriaki; Giaralis, Agathoklis
2015-05-01
Motivated by the need to reduce monetary and energy consumption costs of wireless sensor networks in undertaking output-only/operational modal analysis of engineering structures, this paper considers a multi-coset analog-toinformation converter for structural system identification from acceleration response signals of white noise excited linear damped structures sampled at sub-Nyquist rates. The underlying natural frequencies, peak gains in the frequency domain, and critical damping ratios of the vibrating structures are estimated directly from the sub-Nyquist measurements and, therefore, the computationally demanding signal reconstruction step is by-passed. This is accomplished by first employing a power spectrum blind sampling (PSBS) technique for multi-band wide sense stationary stochastic processes in conjunction with deterministic non-uniform multi-coset sampling patterns derived from solving a weighted least square optimization problem. Next, modal properties are derived by the standard frequency domain peak picking algorithm. Special attention is focused on assessing the potential of the adopted PSBS technique, which poses no sparsity requirements to the sensed signals, to derive accurate estimates of modal structural system properties from noisy sub- Nyquist measurements. To this aim, sub-Nyquist sampled acceleration response signals corrupted by various levels of additive white noise pertaining to a benchmark space truss structure with closely spaced natural frequencies are obtained within an efficient Monte Carlo simulation-based framework. Accurate estimates of natural frequencies and reasonable estimates of local peak spectral ordinates and critical damping ratios are derived from measurements sampled at about 70% below the Nyquist rate and for SNR as low as 0db demonstrating that the adopted approach enjoys noise immunity.
Wood, David B.
2007-11-01
Between 1951 and 1992, 828 underground tests were conducted on the Nevada National Security Site, Nye County, Nevada. Prior to and following these nuclear tests, holes were drilled and mined to collect rock samples. These samples are organized and stored by depth of borehole or drift at the U.S. Geological Survey Core Library and Data Center at Mercury, Nevada, on the Nevada National Security Site. From these rock samples, rock properties were analyzed and interpreted and compiled into project files and in published reports that are maintained at the Core Library and at the U.S. Geological Survey office in Henderson, Nevada. These rock-sample data include lithologic descriptions, physical and mechanical properties, and fracture characteristics. Hydraulic properties also were compiled from holes completed in the water table. Rock samples are irreplaceable because pre-test, in-place conditions cannot be recreated and samples can not be recollected from the many holes destroyed by testing. Documenting these data in a published report will ensure availability for future investigators.
Kinematics, turbulence, and star formation of z ˜ 1 strongly lensed galaxies seen with MUSE
NASA Astrophysics Data System (ADS)
Patrício, V.; Richard, J.; Carton, D.; Contini, T.; Epinat, B.; Brinchmann, J.; Schmidt, K. B.; Krajnović, D.; Bouché, N.; Weilbacher, P. M.; Pelló, R.; Caruana, J.; Maseda, M.; Finley, H.; Bauer, F. E.; Martinez, J.; Mahler, G.; Lagattuta, D.; Clément, B.; Soucail, G.; Wisotzki, L.
2018-06-01
We analyse a sample of eight highly magnified galaxies at redshift 0.6 < z < 1.5 observed with MUSE, exploring the resolved properties of these galaxies at sub-kiloparsec scales. Combining multiband HST photometry and MUSE spectra, we derive the stellar mass, global star formation rates (SFRs), extinction and metallicity from multiple nebular lines, concluding that our sample is representative of z ˜ 1 star-forming galaxies. We derive the 2D kinematics of these galaxies from the [O II ] emission and model it with a new method that accounts for lensing effects and fits multiple images simultaneously. We use these models to calculate the 2D beam-smearing correction and derive intrinsic velocity dispersion maps. We find them to be fairly homogeneous, with relatively constant velocity dispersions between 15 and 80 km s-1 and Gini coefficient of {≲ }0.3. We do not find any evidence for higher (or lower) velocity dispersions at the positions of bright star-forming clumps. We derive resolved maps of dust attenuation and attenuation-corrected SFRs from emission lines for two objects in the sample. We use this information to study the relation between resolved SFR and velocity dispersion. We find that these quantities are not correlated, and the high-velocity dispersions found for relatively low star-forming densities seems to indicate that, at sub-kiloparsec scales, turbulence in high-z discs is mainly dominated by gravitational instability rather than stellar feedback.
NASA Astrophysics Data System (ADS)
Vargas, Carlos J.; Mora-Partiarroyo, Silvia Carolina; Schmidt, Philip; Rand, Richard J.; Stein, Yelena; Walterbos, René A. M.; Wang, Q. Daniel; Basu, Aritra; Patterson, Maria; Kepley, Amanda; Beck, Rainer; Irwin, Judith; Heald, George; Li, Jiangtao; Wiegert, Theresa
2018-02-01
We analyze the application of star formation rate calibrations using Hα and 22 μm infrared (IR) imaging data in predicting the thermal radio component for a test sample of three edge-on galaxies (NGC 891, NGC 3044, and NGC 4631) in the Continuum Halos in Nearby Galaxies—an EVLA Survey (CHANG-ES). We use a mixture of Hα and 24 μm calibration from Calzetti et al. and a linear 22 μm only calibration from Jarrett et al. on the test sample. We apply these relations on a pixel-to-pixel basis to create thermal prediction maps in the two CHANG-ES bands: L and C band (1.5 GHz and 6.0 GHz, respectively). We analyze the resulting nonthermal spectral index maps, and find a characteristic steepening of the nonthermal spectral index with vertical distance from the disk after application of all methods. We find possible evidence of extinction in the 22 μm data as compared to 70 μm Spitzer Multiband Imaging Photometer imaging in NGC 891. We analyze a larger sample of edge-on and face-on galaxy 25–100 μm flux ratios, and find that the ratios for edge-ons are systematically lower by a factor of 1.36, a result we attribute to excess extinction in the mid-IR in edge-ons. We introduce a new calibration for correcting the Hα luminosity for dust when galaxies are edge-on or very dusty.
Security of attachment and quality of mother-toddler social interaction in a high-risk sample.
Haltigan, John D; Lambert, Brittany L; Seifer, Ronald; Ekas, Naomi V; Bauer, Charles R; Messinger, Daniel S
2012-02-01
The quality of children's social interactions and their attachment security with a primary caregiver are two widely studied indices of socioemotional functioning in early childhood. Although both Bowlby and Ainsworth suggested that the parent-child interactions underlying the development of attachment security could be distinguished from other aspects of parent-child interaction (e.g., play), relatively little empirical research has examined this proposition. The aim of the current study was to explore this issue by examining concurrent relations between toddler's attachment security in the Strange Situation Procedure and quality of mother-child social interaction in a high-risk sample of toddlers characterized by prenatal cocaine exposure and low levels of maternal education. Analyses of variance suggested limited relations between attachment security and quality of social interaction. Further research examining the interrelations among various components of the parent-child relationship is needed. Copyright © 2011 Elsevier Inc. All rights reserved.
Witt, Michael; Krefting, Dagmar
2016-01-01
Human sample data is stored in biobanks with software managing digital derived sample data. When these stand-alone components are connected and a search infrastructure is employed users become able to collect required research data from different data sources. Data protection, patient rights, data heterogeneity and access control are major challenges for such an infrastructure. This dissertation will investigate concepts for a multi-level security architecture to comply with these requirements.
Psychological Security-Insecurity of Illinois Central College Students.
ERIC Educational Resources Information Center
Grout, David R.
This study attempted to discover the distribution of feelings of security and insecurity in the population of Illinois Central College (ICC) and whether significant differences exist among various subgroups. A 10 per cent stratified random sample of students were administered Maslow's Security-Insecurity Inventory. No significant difference was…
GLACiAR: GaLAxy survey Completeness AlgoRithm
NASA Astrophysics Data System (ADS)
Carrasco, Daniela; Trenti, Michele; Mutch, Simon; Oesch, Pascal
2018-05-01
GLACiAR (GaLAxy survey Completeness AlgoRithm) estimates the completeness and selection functions in galaxy surveys. Tailored for multiband imaging surveys aimed at searching for high-redshift galaxies through the Lyman Break technique, the code can nevertheless be applied broadly. GLACiAR generates artificial galaxies that follow Sérsic profiles with different indexes and with customizable size, redshift and spectral energy distribution properties, adds them to input images, and measures the recovery rate.
2015-12-01
AEHF satellites and MILSTAR satellites in the backwards-compatible mode. Mission requirements specific to Navy operations, including threat levels and...Center for Cost Analysis (NCCA) Component Cost Position (CCP) memo dated December 18, 2015 Confidence Level Confidence Level of cost estimate for... Econ Qty Sch Eng Est Oth Spt Total 6.970 0.082 0.637 0.034 0.000 -1.210 0.000 -0.418 -0.875 6.095 Current SAR Baseline to Current Estimate (TY $M) PAUC
A Photometric Study of the Eclipsing Binary Star PY Boötis
NASA Astrophysics Data System (ADS)
Michaels, E. J.
2016-12-01
Presented here are the first precision multi-band CCD photometry of the eclipsing binary star PY Boötis. Best-fit stellar models were determined by analyzing the light curves with the Wilson-Devinney program. Asymmetries in the light curves were interpreted as resulting from magnetic activity which required spots to be included in the model. The resulting model is consistent with a W-type contact eclipsing binary having total eclipses.
VizieR Online Data Catalog: TrES-2b multi-band transit observations (Mislis+, 2010)
NASA Astrophysics Data System (ADS)
Mislis, D.; Schroeter, S.; Schmitt, J. H. M. M.; Cordes, O.; Reif, K.
2010-02-01
The OLT data were taken on 11 April 2009 using a 3Kx3K CCD with a 1x1 FOV and an I-band filter as in our previous observing run (Paper I, Mislis & Schmitt, 2009, Cat.
Multi-filter spectrophotometry simulations
NASA Technical Reports Server (NTRS)
Callaghan, Kim A. S.; Gibson, Brad K.; Hickson, Paul
1993-01-01
To complement both the multi-filter observations of quasar environments described in these proceedings, as well as the proposed UBC 2.7 m Liquid Mirror Telescope (LMT) redshift survey, we have initiated a program of simulated multi-filter spectrophotometry. The goal of this work, still very much in progress, is a better quantitative assessment of the multiband technique as a viable mechanism for obtaining useful redshift and morphological class information from large scale multi-filter surveys.
Multifunction Multiband Airborne Radio System MFBARS.
1978-10-01
different levels of simultaneity of capabilities, do not try to determine the most effective mix . ai. Put significant effort into trade-offs related...The purpose is to be able to answer questions such as " What functions drop out naturally as a function of modularity and what is the asso- ciated cost...transmitter time. It is appropriate to consider the fine structures of the signals to be transmitted to deter- mine what priorities might be
The zenithal 4-m International Liquid Mirror Telescope: a unique facility for supernova studies
NASA Astrophysics Data System (ADS)
Kumar, Brajesh; Pandey, Kanhaiya L.; Pandey, S. B.; Hickson, P.; Borra, E. F.; Anupama, G. C.; Surdej, J.
2018-05-01
The 4-m International Liquid Mirror Telescope (ILMT) will soon become operational at the newly developed Devasthal observatory near Nainital (Uttarakhand, India). Coupled with a 4k × 4k pixels CCD detector and TDI optical corrector, it will reach approximately 22.8, 22.3, and 21.4 mag in the g΄, r΄, and i΄ spectral bands, respectively, in a single scan. The limiting magnitudes can be further improved by co-adding the consecutive night images in particular filters. The uniqueness to observe the same sky region by looking towards the zenith direction every night makes the ILMT a unique instrument to detect new supernovae (SNe) by applying the image subtraction technique. High cadence (˜24 h) observations will help to construct dense sampling multi-band SNe light curves. We discuss the importance of the ILMT facility in the context of SNe studies. Considering the various plausible cosmological parameters and observational constraints, we perform detailed calculations of the expected SNe rate that can be detected with the ILMT in different spectral bands.
On the UV/Optical Variation in NGC 5548: New Evidence Against the Reprocessing Diagram
NASA Astrophysics Data System (ADS)
Zhu, Fei-Fan; Wang, Jun-Xian; Cai, Zhen-Yi; Sun, Yu-Han; Sun, Mou-Yuan; Zhang, Ji-Xian
2018-06-01
The reprocessing scenario is widely adopted in literature to explain the observed tight inter-band correlation and short lags in the UV/optical variations of active galactic nuclei (AGNs). In this work we look into the color variability of the famous Seyfert galaxy NGC 5548 with high-quality Swift multi-band UV/optical light curves. We find the color variation of NGC 5548 is clearly timescale-dependent, in a way that it is more prominent on shorter timescales. This is similar to that previously detected in quasar samples, but for the first time in an individual AGN. We show that while a reprocessing model with strict assumptions on the driving source and the disk size can apparently match the observed light curves and inter-band lags, it fails to reproduce the observed timescale dependency in the color variation. Such discrepancy raises a severe challenge to, and can hardly be reconciled under the widely accepted reprocessing diagram. It also demonstrates that the timescale dependency of the color variation is uniquely powerful in probing the physics behind AGN UV/optical variations.
VGOS Operations and Geodetic Results
NASA Astrophysics Data System (ADS)
Niell, Arthur E.; Beaudoin, Christopher J.; Bolotin, Sergei; Cappallo, Roger J.; Corey, Brian E.; Gipson, John; Gordon, David; McWhirter, Russell; Ruszczyk, Chester A.; SooHoo, Jason
2014-12-01
Over the past two years the first VGOS geodetic results were obtained using the GGAO12M and Westford broadband systems that have been developed under NASA sponsorship and funding. These observations demonstrated full broadband operation, from data acquisition through correlation, delay extraction, and baseline estimation. The May 2013 24-hour session proceeded almost without human intervention in anticipation of the goal of unattended operation. A recent test observation successfully demonstrated the use of what is expected to be the operational version of the RDBE digital back end and the Mark 6 system on which the outputs of four RDBEs, each processing one RF band, were recorded on a single module at eight gigabits per second. The complex-sample VDIF data from GGAO12M and Westford were cross-correlated on the Haystack DiFX software correlator, and the instrumental delay was calculated from all of the phase calibration tones in each channel. A minimum redundancy frequency sequence (1, 2, 4, 6, 9, 13, 14, 15) was utilized to minimize the first sidelobes of the multiband delay resolution function.
NASA Astrophysics Data System (ADS)
Yen, Y. T.; Hu, Rongwei; Petrovic, C.; Yeh, K. W.; Wu, M. K.; Wei, J. Y. T.
2012-02-01
We report on cryomagnetic point-contact Andreev reflection spectroscopy performed on single crystals of superconducting FeTe1-xSx and FeTe1-xSex. The samples are cleaved in-situ and the measurements are carried out at temperatures down to 4.2K and in a field up to 9T. At base temperature and zero field, we observe a cone-shaped hump at lower voltages in the conductance spectra with no dips at zero bias and a linear background at higher voltages. The spectral evolution of gap size, zero-bias conductance, and excess spectral area are analyzed as a function of temperature and field. Further spectral analysis is carried out using theoretical models of conductance spectra in multiband superconductors [1,2] and of gap symmetry in Fe-based superconductors [3]. The role of interstitial iron is also considered, by comparison with atomically-resolved scanning tunneling spectroscopy data.[4pt] [1] V. Lukic and E.J. Nicol, PRB 76, 144508 (2007) [2] A. Golubov et al., PRL 103, 077003 (2009) [3] P.J. Hirschfeld et al., RPP 74, 124508 (2011)
NASA Astrophysics Data System (ADS)
Brydegaard, Mikkel; Malmqvist, Elin; Jansson, Samuel; Larsson, Jim; Török, Sandra; Zhao, Guangyu
2017-08-01
The recent several years we developed the Scheimpflug lidar method. We combined an invention from the 19th century with modern optoelectronics such as diode lasers and CMOS array from the 21st century. The approach exceeds expectations of background suppression, sensitivity and resolution beyond known from time-of-flight lidars. We accomplished multiband elastic atmospheric lidars for resolving single particles and aerosol plumes from 405 nm to 1550 nm. We pursued hyperspectral differential absorption lidar for molecular species. We demonstrated a simple method of inelastic hyperspectral lidar for profiling aquatic environments and vegetation structure. Not least, we have developed polarimetric Scheimpflug lidar with multi-kHz sampling rates for remote modulation spectroscopy and classification of aerofauna. All these advances are thanks to the Scheimpflug principle. Here we give a review of how far we have come and shed light on the limitations and opportunities for future directions. In particular, we show how the biosphere can be resolved with unsurpassed resolution in space and time, and share our expectation on how this can revolutionize ecological analysis and management in relation to agricultural pests, disease vectors and pollinator problematics.
Multiwavelength Properties of Faint Submillimeter Galaxies with Archival ALMA Data
NASA Astrophysics Data System (ADS)
Patil, Pallavi; Lacy, Mark; Nyland, Kristina
2018-01-01
Detection of Faint submillimeter galaxies was made possible by large improvements in the spatial resolution and sensitivity by interferometric observations. These galaxies are a dominant contributor to the extragalactic background light at millimeter wavelengths and are likely to play a significant role in galaxy evolution. We present a catalog of 28 such galaxies with S(1.1 mm) < 1.0 mJy that have 13-band optical/near IR photometry (Spitzer DeepDrill, VIDEO, CFHTLS, and HSC) and serendipitous detections in ALMA band 6. ALMA 1.1 mm continuum observations were cross-matched with the K-band VIDEO catalog in the XMM-LSS field to identify multiwavelength counterparts. A forced Photometry approach based on the Tractor image modeling code is used to construct the catalog. The median photometric redshift of the sample is z ~ 1.96 along with two high redshift candidates at z ~ 5. We have provided population statistics using multiband photometry and estimated galaxy properties such as dust and gas masses. We aim to provide a detailed characterization of this population to ultimately devise better selection techniques for future wide-area sky surveys.
Accreting SMBH in the COSMOS field: the connection to their host galaxies .
NASA Astrophysics Data System (ADS)
Merloni, A.; Bongiorno, A.
Using the rich multi-band photometry in the COSMOS field we explore the host galaxy properties of a large, complete, sample of X-ray and spectroscopically selected AGN. Based on a two-components fit to their Spectral Energy Distribution (SED) we derive rest-frame magnitudes, colours, stellar masses and star formation rates up to z˜ 3. The probability for a galaxy to host a black hole growing at any given specific accretion rate (the ratio of X-ray luminosity to the host stellar mass) is independent of the galaxy mass and follows a power-law distribution in L_X/M. By looking at the normalisation of such a probability distribution, we show how the incidence of AGN increases with redshift as rapidly as (1+z)4.2, in close resemblance with the overall evolution of the specific star formation rate. Although AGN activity and star formation appear to have a common triggering mechanism, we do not find any 'smoking gun' signalling powerful AGN influence on the global properties of their host galaxies.
Substructures in DAFT/FADA survey clusters based on XMM and optical data
NASA Astrophysics Data System (ADS)
Durret, F.; DAFT/FADA Team
2014-07-01
The DAFT/FADA survey was initiated to perform weak lensing tomography on a sample of 90 massive clusters in the redshift range [0.4,0.9] with HST imaging available. The complementary deep multiband imaging constitutes a high quality imaging data base for these clusters. In X-rays, we have analysed the XMM-Newton and/or Chandra data available for 32 clusters, and for 23 clusters we fit the X-ray emissivity with a beta-model and subtract it to search for substructures in the X-ray gas. This study was coupled with a dynamical analysis for the 18 clusters with at least 15 spectroscopic galaxy redshifts in the cluster range, based on a Serna & Gerbal (SG) analysis. We detected ten substructures in eight clusters by both methods (X-rays and SG). The percentage of mass included in substructures is found to be roughly constant with redshift, with values of 5-15%. Most of the substructures detected both in X-rays and with the SG method are found to be relatively recent infalls, probably at their first cluster pericenter approach.
NASA Astrophysics Data System (ADS)
Yue, S.; Fu, P.; Ren, H.; Fan, S.; Wei, L.; Hou, S.; Sun, Y.; Wang, Z.
2016-12-01
Primary biological aerosol particles (PBAP) such as pollen, fungal spore, bacteria and virus represent a major subset of particulate compositions for both coarse and fine aerosols. This category of aerosols affects weather, climate and human and plant health. We report the first multi-band quantification of fluorescent biological aerosol particles in Beijing, China in winter. The number concentrations and size distributions of FBAP were acquired by a Wideband Integrated Bioaerosol Sensor (WIBS-4A). Three-hour samples of total suspended particles (TSP) were concurrently collected during a transition of a haze event to a clear period. It was found that the fraction of FBAP in all particles (> 0.8 µm) in pollution episodes (average value: 17%) was slightly higher than that during clear periods (13%). Besides, size-segregated FBAP in different fluorescent channels were less correlated (Pearson correlation coefficient) and existed diverse diurnal trends, indicating various sources of FBAP. Our results provide a better understanding of the roles of biological aerosols in an urban environment that is frequently suffered from severe air pollution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanatar, Makariy A.; Liu, Yong; Jaroszynski, J.
In-plane resistivity measurements as a function of temperature and magnetic field up to 35 T with precise orientation within the crystallographic ac plane were used to study the upper critical field H c2 of the hole-doped iron-based superconductor Ba 1–xK xFe 2As 2. Compositions of the samples studied spanned from under- doped x=0.17 (T c=12 K) and x=0.22 (T c=20 K), both in the coexistence range of stripe magnetism and superconductivity, through optimal doping x=0.39 (T c=38.4 K) and x=0.47 (T c=37.2 K), to overdoped x=0.65 (T c=22 K) and x=0.83 (T c=10 K). Here, we find notable doping asymmetrymore » of the shapes of the anisotropic H c2(T), suggesting the important role of paramagnetic limiting effects in the H∥a configuration in overdoped compositions and multiband effects in underdoped compositions.« less
The Astronomical Zoo in MIPSGAL I and II
NASA Astrophysics Data System (ADS)
Kuchar, Thomas A.; Mizuno, D.; Shenoy, S.; Paladini, R.; Kraemer, K.; Price, S.; Marleau, F.; Padgett, D.; Indebetouw, R.; Ingalls, J.; Ali, B.; Berriman, B.; Boulanger, F.; Cutri, R.; Latter, W.; Miville-Deschenes, M.; Molinari, S.; Rebull, L.; Testi, L.; Shipman, R.; Martin, P.; Carey, S.; Noriega-Crespo, A.
2006-12-01
The view of the Galactic Plane at 24 µm is breathtaking. A great part of this beauty arises from the complexity of the Interstellar Medium shaped by endless energetic events driven by HII regions, supernova explosions, Wolf-Rayets, Luminous Blue Variables, and evolved and new born massive stars. A sample of these objects is presented in this poster, gathered from the Multiband Imaging Photometer for Spitzer (MIPS) Survey of the Galactic Plane I and II (MIPSGAL; see Carey et al. 2006, this meeting). The global color properties of these objects are derived by combining the data at 24 and 70um with that from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), and following similar schemes as those used in the Spitzer Surveys of the Magellanic Clouds (Bolatto et al. 2006, astroph-0608561; Meixner et al. 2006, astroph-0606356). This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA in part through an award issued by JPL/Caltech.
High field superconducting properties of Ba(Fe1-xCox)2As2 thin films
NASA Astrophysics Data System (ADS)
Hänisch, Jens; Iida, Kazumasa; Kurth, Fritz; Reich, Elke; Tarantini, Chiara; Jaroszynski, Jan; Förster, Tobias; Fuchs, Günther; Hühne, Ruben; Grinenko, Vadim; Schultz, Ludwig; Holzapfel, Bernhard
2015-11-01
In general, the critical current density, Jc, of type II superconductors and its anisotropy with respect to magnetic field orientation is determined by intrinsic and extrinsic properties. The Fe-based superconductors of the ‘122’ family with their moderate electronic anisotropies and high yet accessible critical fields (Hc2 and Hirr) are a good model system to study this interplay. In this paper, we explore the vortex matter of optimally Co-doped BaFe2As2 thin films with extended planar and c-axis correlated defects. The temperature and angular dependence of the upper critical field is well explained by a two-band model in the clean limit. The dirty band scenario, however, cannot be ruled out completely. Above the irreversibility field, the flux motion is thermally activated, where the activation energy U0 is going to zero at the extrapolated zero-kelvin Hirr value. The anisotropy of the critical current density Jc is both influenced by the Hc2 anisotropy (and therefore by multi-band effects) as well as the extended planar and columnar defects present in the sample.
Testing Dark Energy with the Advanced Liquid-Mirror Probe of Asteroids, Cosmology and Astrophysics
NASA Astrophysics Data System (ADS)
LoVerde, M.; Corasaniti, P. S.; Crotts, A.; Blake, C.
2006-06-01
The Advanced Liquid-Mirror Probe of Asteroids, Cosmology and Astrophysics (ALPACA) is a proposed 8-meter liquid mirror telescope surveying ˜ 1000 deg2 of the southern-hemisphere sky. It will be a remarkably simple and inexpensive telescope that will nonetheless deliver a powerful sample of optical data for studying dark energy. The bulk of the cosmological data consists of nightly, high signal-to-noise, multiband light curves of SN Ia. At the end of the three-year run ALPACA is expected to collect ˜ 100,000 SN Ia up to z ˜ 1. This will allow accurate calibration of the standard-candle relation and reduce the systematic uncertainties. The survey will also provide several other datasets such as the detection of baryon acoustic oscillations in the matter power spectrum and shear weak lensing measurements. In this preliminary analysis we forecast constraints on dark energy parameters from SN Ia and baryon acoustic oscillations. The combination of these two datasets will provide competitive constraints on the dark energy parameters with minimal prior assumptions. Further studies are needed to address the accuracy of weak lensing measurements.
Tanatar, Makariy A.; Liu, Yong; Jaroszynski, J.; ...
2017-11-14
In-plane resistivity measurements as a function of temperature and magnetic field up to 35 T with precise orientation within the crystallographic ac plane were used to study the upper critical field H c2 of the hole-doped iron-based superconductor Ba 1–xK xFe 2As 2. Compositions of the samples studied spanned from under- doped x=0.17 (T c=12 K) and x=0.22 (T c=20 K), both in the coexistence range of stripe magnetism and superconductivity, through optimal doping x=0.39 (T c=38.4 K) and x=0.47 (T c=37.2 K), to overdoped x=0.65 (T c=22 K) and x=0.83 (T c=10 K). Here, we find notable doping asymmetrymore » of the shapes of the anisotropic H c2(T), suggesting the important role of paramagnetic limiting effects in the H∥a configuration in overdoped compositions and multiband effects in underdoped compositions.« less
ERIC Educational Resources Information Center
Roisman, Glenn I.; Fraley, R. Chris
2008-01-01
A number of relatively small-sample, genetically sensitive studies of infant attachment security have been published in the past several years that challenge the view that all psychological phenotypes are heritable and that environmental influences on child development--to the extent that they can be detected--serve to make siblings dissimilar.…
Securing While Sampling in Wireless Body Area Networks With Application to Electrocardiography.
Dautov, Ruslan; Tsouri, Gill R
2016-01-01
Stringent resource constraints and broadcast transmission in wireless body area network raise serious security concerns when employed in biomedical applications. Protecting data transmission where any minor alteration is potentially harmful is of significant importance in healthcare. Traditional security methods based on public or private key infrastructure require considerable memory and computational resources, and present an implementation obstacle in compact sensor nodes. This paper proposes a lightweight encryption framework augmenting compressed sensing with wireless physical layer security. Augmenting compressed sensing to secure information is based on the use of the measurement matrix as an encryption key, and allows for incorporating security in addition to compression at the time of sampling an analog signal. The proposed approach eliminates the need for a separate encryption algorithm, as well as the predeployment of a key thereby conserving sensor node's limited resources. The proposed framework is evaluated using analysis, simulation, and experimentation applied to a wireless electrocardiogram setup consisting of a sensor node, an access point, and an eavesdropper performing a proximity attack. Results show that legitimate communication is reliable and secure given that the eavesdropper is located at a reasonable distance from the sensor node and the access point.
Huth-Bocks, Alissa C.; Muzik, Maria; Beeghly, Marjorie; Earls, Lauren; Stacks, Ann M.
2015-01-01
There is growing evidence that ‘secure-base scripts’ (Waters & Waters, 2006) are an important part of the cognitive underpinnings of internal working models of attachment. Recent research in middle class samples has shown that secure-base scripts are linked to maternal attachment-oriented behavior and child outcomes. However, little is known about the correlates of secure base scripts in higher-risk samples. Participants in the current study included 115 mothers who were oversampled for childhood maltreatment and their infants. Results revealed that a higher level of secure base scriptedness was significantly related to more positive and less negative maternal parenting in both unstructured free play and structured teaching contexts, and to higher reflective functioning scores on the Parent Development Interview-Revised Short Form (Slade, Aber, Berger, Bresgi, & Kaplan, 2003). Associations with parent-child secure base scripts, specifically, indicate some level of relationship-specificity in attachment scripts. Many, but not all, significant associations remained after controlling for family income and maternal age. Findings suggest that assessing secure base scripts among mothers known to be at risk for parenting difficulties may be important for interventions aimed at altering problematic parental representations and caregiving behavior. PMID:25319230
Quantifying Security Threats and Their Impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aissa, Anis Ben; Abercrombie, Robert K; Sheldon, Frederick T
In earlier works, we present a computational infrastructure that allows an analyst to estimate the security of a system in terms of the loss that each stakeholder stands to sustain as a result of security breakdowns. In this paper we illustrate this infrastructure by means of a sample example involving an e-commerce application.
Spitzer Finds Clarity in the Inner Milky Way
NASA Technical Reports Server (NTRS)
2008-01-01
More than 800,000 frames from NASA's Spitzer Space Telescope were stitched together to create this infrared portrait of dust and stars radiating in the inner Milky Way. As inhabitants of a flat galactic disk, Earth and its solar system have an edge-on view of their host galaxy, like looking at a glass dish from its edge. From our perspective, most of the galaxy is condensed into a blurry narrow band of light that stretches completely around the sky, also known as the galactic plane. In this mosaic the galactic plane is broken up into five components: the far-left side of the plane (top image); the area just left of the galactic center (second to top); galactic center (middle); the area to the right of galactic center (second to bottom); and the far-right side of the plane (bottom). From Earth, the top two panels are visible to the northern hemisphere, and the bottom two images to the southern hemisphere. Together, these panels represent more than 50 percent of our entire Milky Way galaxy. The swaths of green represent organic molecules, called polycyclic aromatic hydrocarbons, which are illuminated by light from nearby star formation, while the thermal emission, or heat, from warm dust is rendered in red. Star-forming regions appear as swirls of red and yellow, where the warm dust overlaps with the glowing organic molecules. The blue specks sprinkled throughout the photograph are Milky Way stars. The bluish-white haze that hovers heavily in the middle panel is starlight from the older stellar population towards the center of the galaxy. This is a three-color composite that shows infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer. The Galactic Legacy Infrared Mid-Plane Survey Extraordinaire team (GLIMPSE) used the telescope's infrared array camera to see light from newborn stars, old stars and polycyclic aromatic hydrocarbons. A second group, the Multiband Imaging Photometer for Spitzer Galactic Plane Survey team (MIPSGAL), imaged dust in the inner galaxy with Spitzer's multiband imaging photometer.DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihaljevic, Miodrag J.
2007-05-15
It is shown that the security, against known-plaintext attacks, of the Yuen 2000 (Y00) quantum-encryption protocol can be considered via the wire-tap channel model assuming that the heterodyne measurement yields the sample for security evaluation. Employing the results reported on the wire-tap channel, a generic framework is proposed for developing secure Y00 instantiations. The proposed framework employs a dedicated encoding which together with inherent quantum noise at the attacker's side provides Y00 security.
Absolute Distances to Nearby Type Ia Supernovae via Light Curve Fitting Methods
NASA Astrophysics Data System (ADS)
Vinkó, J.; Ordasi, A.; Szalai, T.; Sárneczky, K.; Bányai, E.; Bíró, I. B.; Borkovits, T.; Hegedüs, T.; Hodosán, G.; Kelemen, J.; Klagyivik, P.; Kriskovics, L.; Kun, E.; Marion, G. H.; Marschalkó, G.; Molnár, L.; Nagy, A. P.; Pál, A.; Silverman, J. M.; Szakáts, R.; Szegedi-Elek, E.; Székely, P.; Szing, A.; Vida, K.; Wheeler, J. C.
2018-06-01
We present a comparative study of absolute distances to a sample of very nearby, bright Type Ia supernovae (SNe) derived from high cadence, high signal-to-noise, multi-band photometric data. Our sample consists of four SNe: 2012cg, 2012ht, 2013dy and 2014J. We present new homogeneous, high-cadence photometric data in Johnson–Cousins BVRI and Sloan g‧r‧i‧z‧ bands taken from two sites (Piszkesteto and Baja, Hungary), and the light curves are analyzed with publicly available light curve fitters (MLCS2k2, SNooPy2 and SALT2.4). When comparing the best-fit parameters provided by the different codes, it is found that the distance moduli of moderately reddened SNe Ia agree within ≲0.2 mag, and the agreement is even better (≲0.1 mag) for the highest signal-to-noise BVRI data. For the highly reddened SN 2014J the dispersion of the inferred distance moduli is slightly higher. These SN-based distances are in good agreement with the Cepheid distances to their host galaxies. We conclude that the current state-of-the-art light curve fitters for Type Ia SNe can provide consistent absolute distance moduli having less than ∼0.1–0.2 mag uncertainty for nearby SNe. Still, there is room for future improvements to reach the desired ∼0.05 mag accuracy in the absolute distance modulus.
Constraints on the Location of γ-Ray Sample of Blazars with Radio Core-shift Measurements
NASA Astrophysics Data System (ADS)
Wu, Linhui; Wu, Qingwen; Yan, Dahai; Chen, Liang; Fan, Xuliang
2018-01-01
We model simultaneous or quasi-simultaneous multi-band spectral energy distributions (SEDs) for a sample of 25 blazars that have radio core-shift measurements, where a one-zone leptonic model and Markov chain Monte Carlo technique are adopted. In the SED fitting for 23 low-synchrotron-peaked (LSP) blazars, the seed photons from the broad-line (BLR) and molecular torus are considered respectively in the external Compton process. We find that the SED fitting with the seed photons from the torus are better than those utilizing BLR photons, which suggest that the γ-ray emitting region may be located outside the BLR. Assuming the magnetic field strength in the γ-ray emitting region as constrained from the SED fitting follows the magnetic field distribution as derived from the radio core-shift measurements (i.e., B{(R)≃ {B}1{pc}(R/1{pc})}-1, where R is the distance from the central engine and {B}1{pc} is the magnetic field strength at 1 pc), we further calculate the location of the γ-ray emitting region, {R}γ , for these blazars. We find that {R}γ ∼ 2× {10}4{R}{{S}}≃ 10 {R}{BLR} ({R}{{S}} is the Schwarzschild radius and {R}{BLR} is the BLR size), where {R}{BLR} is estimated from the broad-line luminosities using the empirical correlations obtained using the reverberation mapping methods.
Probing Ultracool Atmospheres and Substellar Interiors with Dynamical Masses
NASA Astrophysics Data System (ADS)
Dupuy, Trent
2010-09-01
After years of patient orbital monitoring, there is now a large sample of very low-mass stars and brown dwarfs with precise { 5%} dynamical masses. These binaries represent the gold standard for testing substellar theoretical models. Work to date has identified problems with the model-predicted broad-band colors, effective temperatures, and possibly even luminosity evolution with age. However, our ability to test models is currently limited by how well the individual components of these highly prized binaries are characterized. To solve this problem, we propose to use NICMOS and STIS to characterize this first large sample of ultracool binaries with well-determined dynamical masses. We will use NICMOS multi-band photometry to measure the SEDs of the binary components and thereby precisely estimate their spectral types and effective temperatures. We will use STIS to obtain resolved spectroscopy of the Li I doublet at 6708 A for a subset of three binaries whose masses lie very near the theoretical mass limit for lithium burning. The STIS data will provide the first ever resolved lithium measurements for brown dwarfs of known mass, enabling a direct probe of substellar interiors. Our proposed HST observations to characterize the components of these binaries is much less daunting in comparison to the years of orbital monitoring needed to yield dynamical masses, but these HST data are equally vital for robust tests of theory.
A Ks-band-selected catalogue of objects in the ALHAMBRA survey
NASA Astrophysics Data System (ADS)
Nieves-Seoane, L.; Fernandez-Soto, A.; Arnalte-Mur, P.; Molino, A.; Stefanon, M.; Ferreras, I.; Ascaso, B.; Ballesteros, F. J.; Cristóbal-Hornillos, D.; López-Sanjuán, C.; Hurtado-Gil, Ll.; Márquez, I.; Masegosa, J.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Moles, M.; Olmo, A. del; Perea, J.; Pović, M.; Prada, F.; Quintana, J. M.; Troncoso-Iribarren, P.; Viironen, K.
2017-02-01
The original ALHAMBRA catalogue contained over 400 000 galaxies selected using a synthetic F814W image, to the magnitude limit AB(F814W) ≈ 24.5. Given the photometric redshift depth of the ALHAMBRA multiband data (
Rodin, Gary; Walsh, Andrew; Zimmermann, Camilla; Gagliese, Lucia; Jones, Jennifer; Shepherd, Frances A; Moore, Malcolm; Braun, Michal; Donner, Allan; Mikulincer, Mario
2007-12-01
The present study examines the association between disease-related factors, perceived social support, attachment security (i.e. attachment anxiety and avoidance), and the occurrence of depressive symptoms in a sample of patients with metastatic gastrointestinal or lung cancer. Results from a sample of 326 cancer outpatients with advanced disease indicate that disease-related factors are significantly associated with the occurrence of depressive symptoms, and the latter are inversely related to the degree of attachment anxiety and avoidance, and perceived social support. Attachment security (on the dimension of anxious attachment) significantly buffered the effect of disease-related factors on depressive symptoms, and perceived social support mediated the relationship between attachment security and depressive symptoms. The buffering effect of attachment security on depressive symptoms and its partial mediation through social support suggest that the interaction of individual, social, and disease-related factors contribute to the emergence of depressive symptoms in patients with metastatic cancer.
Experimental applications of multispectral data to natural resource inventory and survey
NASA Technical Reports Server (NTRS)
Mallon, H. J.
1970-01-01
The feasibility of using multispectral, color, color infrared, thermal infrared imagery and related ground data to recognize, identify, determine and monitor the status of mineral ore and metals stockpiles is studied. An attempt was made to identify valid, unique spectral signatures of such materials for possible use under a wide variety of environmental circumstances. Research emphasis was upon the analysis of the multiband imagery from the various film-filter combinations, using density analysis techniques.
Kepler Mission Design, Realized Photometric Performance, and Early Science
2010-04-20
USA 19 Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA 20 Ball Aerospace and Technologies Corp., Boulder, CO 80306, USA 21...was to perform multi-band photometric observations using a filter set similar to the Sloan Survey (g, r, i, z ) with the addition of a filter for the...Dynamic range 7 Kp 17 Meets photometric precision Operating temperature −85 ◦C 10 mK stability Controller Ball Aerospace Design and manufacturer
Gas spectroscopy system with transmitters and receivers in SiGe BiCMOS for 225-273 GHz
NASA Astrophysics Data System (ADS)
Schmalz, Klaus; Rothbart, Nick; Borngräber, Johannes; Yilmaz, Selahattin Berk; Kissinger, Dietmar; Hübers, Heinz-Wilhelm
2017-10-01
This paper updates results of our work on gas spectroscopy based on transmitters (TXs) and receivers (RXs) in IHP's 0.13 μm SiGe BiCMOS technology. The improved performance of our system is shown by the absorption spectra of gaseous methanol in the range 241 - 242 GHz at 1.4 Pa, corresponding to an absorption line width of about 1 MHz. The signal-noise ratio (SNR) for the absorption line of methanol at 241.7 GHz is used as measure. The system includes two fractional-n phase-locked loops (PLLs), which allow frequency ramps for the TX and RX, and a superimposed frequency shift keying modulation (FSK) for the TX. Another option includes reference frequency ramps for the PLLs in integer-n mode, which are realized by a direct digital synthesizer (DDS). An SNR of 1515 is observed for the 241.7 GHz absorption line at 1.4 Pa. We extend our single band TX/RX system with the range 238 - 252 GHz to a multi-band system to cover the range 225 - 273 GHz. It is built by combining corresponding pairs of TXs and RXs of three frequency bands in this range. The multi-band operation allows parallel spectra acquisition for these bands. For the TXs and RXs appropriate frequency ramps are generated by their external fractional-n PLL devices.
Interleaved numerical renormalization group as an efficient multiband impurity solver
NASA Astrophysics Data System (ADS)
Stadler, K. M.; Mitchell, A. K.; von Delft, J.; Weichselbaum, A.
2016-06-01
Quantum impurity problems can be solved using the numerical renormalization group (NRG), which involves discretizing the free conduction electron system and mapping to a "Wilson chain." It was shown recently that Wilson chains for different electronic species can be interleaved by use of a modified discretization, dramatically increasing the numerical efficiency of the RG scheme [Phys. Rev. B 89, 121105(R) (2014), 10.1103/PhysRevB.89.121105]. Here we systematically examine the accuracy and efficiency of the "interleaved" NRG (iNRG) method in the context of the single impurity Anderson model, the two-channel Kondo model, and a three-channel Anderson-Hund model. The performance of iNRG is explicitly compared with "standard" NRG (sNRG): when the average number of states kept per iteration is the same in both calculations, the accuracy of iNRG is equivalent to that of sNRG but the computational costs are significantly lower in iNRG when the same symmetries are exploited. Although iNRG weakly breaks SU(N ) channel symmetry (if present), both accuracy and numerical cost are entirely competitive with sNRG exploiting full symmetries. iNRG is therefore shown to be a viable and technically simple alternative to sNRG for high-symmetry models. Moreover, iNRG can be used to solve a range of lower-symmetry multiband problems that are inaccessible to sNRG.
NASA Astrophysics Data System (ADS)
Imai, Yoshiki; Wakabayashi, Katsunori; Sigrist, Manfred
2015-03-01
Considering the superconductor Sr2RuO4, we analyze a three-band tight-binding model with one hole-like and two electron-like Fermi surfaces corresponding to the α, β and γ bands of Sr2RuO4 by means of a self-consistent Bogoliubov-de Gennes approach for ribbonshaped system to investigate topological properties and edge states. In the superconducting phase two types of gapless edge states can be identified, one of which displays an almost flat dispersion at zero energy, while the other, originating from the γ band, has a linear dispersion and constitutes a genuine chiral edge states. Not only a charge current appears at the edges but also a spin current due to the multi-band effect in the superconducting phase. In particular, the chiral edge state from the γ band is closely tied to topological properties, and the chiral p-wave superconducting states are characterized by an integer topological number, the so-called Chern number. We show that the γ band is close to a Lifshitz transition. Since the sign of the Chern number may be very sensitive to the surface condition, we consider the effect of the surface reconstruction observed in Sr2RuO4 on the topological property and show the possibility of the hole-like Fermi surface at the surface.
Multi-mode multi-band power amplifier module with high low-power efficiency
NASA Astrophysics Data System (ADS)
Xuguang, Zhang; Jie, Jin
2015-10-01
Increasingly, mobile communications standards require high power efficiency and low currents in the low power mode. This paper proposes a fully-integrated multi-mode and multi-band power amplifier module (PAM) to meet these requirements. A dual-path PAM is designed for high-power mode (HPM), medium-power mode (MPM), and low-power mode (LPM) operations without any series switches for different mode selection. Good performance and significant current saving can be achieved by using an optimized load impedance design for each power mode. The PAM is tapeout with the InGaP/GaAs heterojunction bipolar transistor (HBT) process and the 0.18-μm complementary metal-oxide semiconductor (CMOS) process. The test results show that the PAM achieves a very low quiescent current of 3 mA in LPM. Meanwhile, across the 1.7-2.0 GHz frequency, the PAM performs well. In HPM, the output power is 28 dBm with at least 39.4% PAE and -40 dBc adjacent channel leakage ratio 1 (ACLR1). In MPM, the output power is 17 dBm, with at least 21.3% PAE and -43 dBc ACLR1. In LPM, the output power is 8 dBm, with at least 18.2% PAE and -40 dBc ACLR1. Project supported by the National Natural Science Foundation of China (No. 61201244).
Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering.
Song, Junyeob; Zhou, Wei
2018-06-27
Optical nanoantennas can concentrate light and enhance light-matter interactions in subwavelength domain, which is useful for photodetection, light emission, optical biosensing, and spectroscopy. However, conventional optical nanoantennas operating at a single wavelength band are not suitable for multiband applications. Here, we propose and exploit an out-of-plane plasmonic engineering strategy to design and create composite optical nanoantennas that can support multiple nanolocalized modes at different resonant wavelengths. These multiresonant composite nanoantennas are composed of vertically stacked building blocks of metal-insulator-metal loop nanoantennas. Studies of multiresonant composite nanoantennas demonstrate that the number of supported modes depends on the number of vertically stacked building blocks and the resonant wavelengths of individual modes are tunable by controlling the out-of-plane geometries of their building blocks. In addition, numerical studies show that the resonant wavelengths of individual modes in composite nanoantennas can deviate from the optical response of building blocks due to hybridization of magnetic modes in neighboring building blocks. Using Au nanohole arrays as deposition masks to fabricate arrays of multilayered composite nanoantennas, we experimentally demonstrate their multiresonant optical properties in good agreement with theory predictions. These studies show that out-of-plane engineered multiresonant composite nanoantennas can provide new opportunities for fundamental nanophotonics research and practical applications involving optical multiband operations, such as multiphoton process, broadband solar energy conversion, and wavelength-multiplexed optical system.
Target Characterization and Follow-Up Observations in Support of the Kepler Mission
NASA Technical Reports Server (NTRS)
Latham, David W.
2003-01-01
A variety of experiments were carried out to investigate the number and characteristics of the stars to be included in the Kepler Input Catalog. One result of this work was the proposal that the 2MASS Catalog of astrometry and photometry in the infrared be used as the primary source for the initial selection of candidate target stars, because this would naturally decrease the number of unsuitable hot blue stars and would also increase the number of desirable solar-type dwarf stars. Another advantage of the 2MASS catalogue is that the stellar positions have more than adequate astrometric accuracy for the Kepler target selection. The original plan reported in the Concept Study Report was to use the parallaxes and multi-band photometry from the FAME mission to provide the information needed for reliable separation of giants and dwarfs. As a result of NASA's withdrawal of support for FAME an alternate approach was needed. In November 2002 we proposed to the Kepler Science Team that a ground-based multi-band photometric survey could help alleviate the loss of the FAME data. The Science Team supported this proposal strongly, and we undertook a survey of possible facilities for such a survey. We concluded that the SAO's 4Shooter CCD camera on the 1.2-m telescope at the Whipple Observatory on Mount Hopkins, Arizona, showed promise for this work.
Querol, Jorge; Tarongí, José Miguel; Forte, Giuseppe; Gómez, José Javier; Camps, Adriano
2017-05-10
MERITXELL is a ground-based multisensor instrument that includes a multiband dual-polarization radiometer, a GNSS reflectometer, and several optical sensors. Its main goals are twofold: to test data fusion techniques, and to develop Radio-Frequency Interference (RFI) detection, localization and mitigation techniques. The former is necessary to retrieve complementary data useful to develop geophysical models with improved accuracy, whereas the latter aims at solving one of the most important problems of microwave radiometry. This paper describes the hardware design, the instrument control architecture, the calibration of the radiometer, and several captures of RFI signals taken with MERITXELL in urban environment. The multiband radiometer has a dual linear polarization total-power radiometer topology, and it covers the L-, S-, C-, X-, K-, Ka-, and W-band. Its back-end stage is based on a spectrum analyzer structure which allows to perform real-time signal processing, while the rest of the sensors are controlled by a host computer where the off-line processing takes place. The calibration of the radiometer is performed using the hot-cold load procedure, together with the tipping curves technique in the case of the five upper frequency bands. Finally, some captures of RFI signals are shown for most of the radiometric bands under analysis, which evidence the problem of RFI in microwave radiometry, and the limitations they impose in external calibration.
Thielens, Arno; Agneessens, Sam; Van Torre, Patrick; Van den Bossche, Matthias; Eeftens, Marloes; Huss, Anke; Vermeulen, Roel; de Seze, René; Mazet, Paul; Cardis, Elisabeth; Röösli, Martin; Martens, Luc; Joseph, Wout
2018-01-01
A multi-band Body-Worn Distributed exposure Meter (BWDM) calibrated for simultaneous measurement of the incident power density in 11 telecommunication frequency bands, is proposed. The BDWM consists of 22 textile antennas integrated in a garment and is calibrated on six human subjects in an anechoic chamber to assess its measurement uncertainty in terms of 68% confidence interval of the on-body antenna aperture. It is shown that by using multiple antennas in each frequency band, the uncertainty of the BWDM is 22 dB improved with respect to single nodes on the front and back of the torso and variations are decreased to maximum 8.8 dB. Moreover, deploying single antennas for different body morphologies results in a variation up to 9.3 dB, which is reduced to 3.6 dB using multiple antennas for six subjects with various body mass index values. The designed BWDM, has an improved uncertainty of up to 9.6 dB in comparison to commercially available personal exposure meters calibrated on body. As an application, an average incident power density in the range of 26.7–90.8 μW·m−2 is measured in Ghent, Belgium. The measurements show that commercial personal exposure meters underestimate the actual exposure by a factor of up to 20.6. PMID:29346280
NASA Astrophysics Data System (ADS)
Ravi, Koustuban; Wang, Qian; Ho, Seng-Tiong
2015-08-01
We report a new computational model for simulations of electromagnetic interactions with semiconductor quantum well(s) (SQW) in complex electromagnetic geometries using the finite-difference time-domain method. The presented model is based on an approach of spanning a large number of electron transverse momentum states in each SQW sub-band (multi-band) with a small number of discrete multi-electron states (multi-level, multi-electron). This enables accurate and efficient two-dimensional (2-D) and three-dimensional (3-D) simulations of nanophotonic devices with SQW active media. The model includes the following features: (1) Optically induced interband transitions between various SQW conduction and heavy-hole or light-hole sub-bands are considered. (2) Novel intra sub-band and inter sub-band transition terms are derived to thermalize the electron and hole occupational distributions to the correct Fermi-Dirac distributions. (3) The terms in (2) result in an explicit update scheme which circumvents numerically cumbersome iterative procedures. This significantly augments computational efficiency. (4) Explicit update terms to account for carrier leakage to unconfined states are derived, which thermalize the bulk and SQW populations to a common quasi-equilibrium Fermi-Dirac distribution. (5) Auger recombination and intervalence band absorption are included. The model is validated by comparisons to analytic band-filling calculations, simulations of SQW optical gain spectra, and photonic crystal lasers.
Functional connectivity density mapping: comparing multiband and conventional EPI protocols.
Cohen, Alexander D; Tomasi, Dardo; Shokri-Kojori, Ehsan; Nencka, Andrew S; Wang, Yang
2018-06-01
Functional connectivity density mapping (FCDM) is a newly developed data-driven technique that quantifies the number of local and global functional connections for each voxel in the brain. In this study, we evaluated reproducibility, sensitivity, and specificity of both local functional connectivity density (lFCD) and global functional connectivity density (gFCD). We compared these metrics using the human connectome project (HCP) compatible high-resolution (2 mm isotropic, TR = 0.8 s) multiband (MB), and more typical, lower resolution (3.5 mm isotropic, TR = 2.0 s) single-band (SB) resting state functional MRI (rs-fMRI) acquisitions. Furthermore, in order to be more clinically feasible, only rs-fMRI scans that lasted seven minutes were tested. Subjects were scanned twice within a two-week span. We found sensitivity and specificity increased and reproducibility either increased or did not change for the MB compared to the SB acquisitions. The MB scans also showed improved gray matter/white matter contrast compared to the SB scans. The lFCD and gFCD patterns were similar across MB and SB scans and confined predominantly to gray matter. We also observed a strong spatial correlation of FCD between MB and SB scans indicating the two acquisitions provide similar information. These findings indicate high-resolution MB acquisitions improve the quality of FCD data, and seven minute rs-fMRI scan can provide robust FCD measurements.
Advancing RF pulse design using an open-competition format: Report from the 2015 ISMRM challenge.
Grissom, William A; Setsompop, Kawin; Hurley, Samuel A; Tsao, Jeffrey; Velikina, Julia V; Samsonov, Alexey A
2017-10-01
To advance the best solutions to two important RF pulse design problems with an open head-to-head competition. Two sub-challenges were formulated in which contestants competed to design the shortest simultaneous multislice (SMS) refocusing pulses and slice-selective parallel transmission (pTx) excitation pulses, subject to realistic hardware and safety constraints. Short refocusing pulses are needed for spin echo SMS imaging at high multiband factors, and short slice-selective pTx pulses are needed for multislice imaging in ultra-high field MRI. Each sub-challenge comprised two phases, in which the first phase posed problems with a low barrier of entry, and the second phase encouraged solutions that performed well in general. The Challenge ran from October 2015 to May 2016. The pTx Challenge winners developed a spokes pulse design method that combined variable-rate selective excitation with an efficient method to enforce SAR constraints, which achieved 10.6 times shorter pulse durations than conventional approaches. The SMS Challenge winners developed a time-optimal control multiband pulse design algorithm that achieved 5.1 times shorter pulse durations than conventional approaches. The Challenge led to rapid step improvements in solutions to significant problems in RF excitation for SMS imaging and ultra-high field MRI. Magn Reson Med 78:1352-1361, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Achieving a multi-band metamaterial perfect absorber via a hexagonal ring dielectric resonator
NASA Astrophysics Data System (ADS)
Li, Li-Yang; Wang, Jun; Du, Hong-Liang; Wang, Jia-Fu; Qu, Shao-Bo
2015-06-01
A multi-band absorber composed of high-permittivity hexagonal ring dielectric resonators and a metallic ground plate is designed in the microwave band. Near-unity absorptions around 9.785 GHz, 11.525 GHz, and 12.37 GHz are observed for this metamaterial absorber. The dielectric hexagonal ring resonator is made of microwave ceramics with high permittivity and low loss. The mechanism for the near-unity absorption is investigated via the dielectric resonator theory. It is found that the absorption results from electric and magnetic resonances where enhanced electromagnetic fields are excited inside the dielectric resonator. In addition, the resonance modes of the hexagonal resonator are similar to those of standard rectangle resonators and can be used for analyzing hexagonal absorbers. Our work provides a new research method as well as a solid foundation for designing and analyzing dielectric metamaterial absorbers with complex shapes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 11204378, 11274389, 11304393, and 61302023), the Aviation Science Foundation of China (Grant Nos. 20132796018 and 20123196015), the Natural Science Foundation for Post-Doctoral Scientists of China (Grant Nos. 2013M532131 and 2013M532221), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM6005), and the Special Funds for Authors of Annual Excellent Doctoral Degree Dissertations of China (Grant No. 201242).
Multiple Waveband Temperature Sensor (MWTS)
NASA Technical Reports Server (NTRS)
Bandara, Sumith V.; Gunapala, Sarath; Wilson, Daniel; Stirbl, Robert; Blea, Anthony; Harding, Gilbert
2006-01-01
This slide presentation reviews the development of Multiple Waveband Temperature Sensor (MWTS). The MWTS project will result in a highly stable, monolithically integrated, high resolution infrared detector array sensor that records registered thermal imagery in four infrared wavebands to infer dynamic temperature profiles on a laser-irradiated ground target. An accurate surface temperature measurement of a target in extreme environments in a non-intrusive manner is required. The development challenge is to: determine optimum wavebands (suitable for target temperatures, nature of the targets and environments) to measure accurate target surface temperature independent of the emissivity, integrate simultaneously readable multiband Quantum Well Infrared Photodetectors (QWIPs) in a single monolithic focal plane array (FPA) sensor and to integrate the hardware/software and system calibration for remote temperature measurements. The charge was therefore to develop and demonstrate a multiband infrared imaging camera with the detectors simultaneously sensitive to multiple distinct color bands for front surface temperature measurements Wavelength ( m) measurements. Amongst the requirements are: that the measurement system will not affect target dynamics or response to the laser irradiation and that the simplest criterion for spectral band selection is to choose those practically feasible spectral bands that create the most contrast between the objects or scenes of interest in the expected environmental conditions. There is in the presentation a review of the modeling and simulation of multi-wave infrared temperature measurement and also a review of the detector development and QWIP capacities.
Multiband mucosectomy for advanced dysplastic lesions in the upper digestive tract
Espinel, Jesús; Pinedo, Eugenia; Ojeda, Vanesa; del Rio, Maria Guerra
2015-01-01
Endoscopic resection (ER) is at present an accepted treatment for superficial gastrointestinal neoplasia. ER provides similar efficacy to surgery; however, it is minimally invasive and less expensive. Endoscopic mucosal resection (EMR) is superior to biopsy for diagnosing advanced dysplasia and can change the diagnostic grade and the management. Several EMR techniques have been described that are alternatively used dependent upon the endoscopist personal experience, the anatomic conditions and the endoscopic appearance of the lesion to be resected. The literature suggests that EMR offers comparable outcomes to surgery for selected indications. EMR techniques using a cap fitted endoscope and EMR using a ligation device [multiband mucosectomy (MBM)] are the most frequently use. MBM technique does not require submucosal injection as with the endoscopic resection-cap technique, multiple resections can be performed with the same snare, pre-looping the endoscopic resection-snare in the ridge of the cap is not necessary, MBM does not require withdrawal of the endoscope between resections and up to six consecutive resections can be performed. This reduces the time and cost required for the procedure, while also reducing patient discomfort. Despite the increasing popularity of MBM, data on the safety and efficacy of this technique in upper gastrointestinal lesions with advanced dysplasia, defined as those lesions that have high-grade dysplasia or early cancer, is limited. PMID:25901216
Jiang, Qian; Zeng, Wenxia; Zhang, Canying; Meng, Zhaoguo; Wu, Jiawei; Zhu, Qunzhi; Wu, Daxiong; Zhu, Haitao
2017-12-19
Photothermal conversion materials have promising applications in many fields and therefore they have attracted tremendous attention. However, the multi-functionalization of a single nanostructure to meet the requirements of multiple photothermal applications is still a challenge. The difficulty is that most nanostructures have specific absoprtion band and are not flexible to different demands. In the current work, we reported the synthesis and multi-band photothermal conversion of Ag@Ag 2 S core@shell structures with gradually varying shell thickness. We synthesized the core@shell structures through the sulfidation of Ag nanocubes by taking the advantage of their spatially different reactivity. The resulting core@shell structures show an octopod-like mopgorlogy with a Ag 2 S bulge sitting at each corner of the Ag nanocubes. The thickness of the Ag 2 S shell gradually increases from the central surface towards the corners of the structure. The synthesized core@shell structures show a broad band absorption spectrum from 300 to 1100 nm. Enhanced photothermal conversion effect is observed under the illuminations of 635, 808, and 1064 nm lasers. The results indicate that the octopod-like Ag@Ag 2 S core@shell structures have characteristics of multi-band photothermal conversion. The current work might provide a guidance for the design and synthesis of multifunctional photothermal conversion materials.
Querol, Jorge; Tarongí, José Miguel; Forte, Giuseppe; Gómez, José Javier; Camps, Adriano
2017-01-01
MERITXELL is a ground-based multisensor instrument that includes a multiband dual-polarization radiometer, a GNSS reflectometer, and several optical sensors. Its main goals are twofold: to test data fusion techniques, and to develop Radio-Frequency Interference (RFI) detection, localization and mitigation techniques. The former is necessary to retrieve complementary data useful to develop geophysical models with improved accuracy, whereas the latter aims at solving one of the most important problems of microwave radiometry. This paper describes the hardware design, the instrument control architecture, the calibration of the radiometer, and several captures of RFI signals taken with MERITXELL in urban environment. The multiband radiometer has a dual linear polarization total-power radiometer topology, and it covers the L-, S-, C-, X-, K-, Ka-, and W-band. Its back-end stage is based on a spectrum analyzer structure which allows to perform real-time signal processing, while the rest of the sensors are controlled by a host computer where the off-line processing takes place. The calibration of the radiometer is performed using the hot-cold load procedure, together with the tipping curves technique in the case of the five upper frequency bands. Finally, some captures of RFI signals are shown for most of the radiometric bands under analysis, which evidence the problem of RFI in microwave radiometry, and the limitations they impose in external calibration. PMID:28489056
NASA Astrophysics Data System (ADS)
Zhang, Q.; Xiong, S. L.; Song, L. M.
2018-04-01
Electrons accelerated in relativistic collisionless shocks are usually assumed to follow a power-law energy distribution with an index of p. Observationally, although most gamma-ray bursts (GRBs) have afterglows that are consistent with p > 2, there are still a few GRBs suggestive of a hard (p < 2) electron energy spectrum. Our previous work showed that GRB 091127 gave strong evidence for a double power-law hard electron energy (DPLH) spectrum with 1 < p 1 < 2, p 2 > 2 and an “injection break” assumed as γ b ∝ γ q in the highly relativistic regime, where γ is the bulk Lorentz factor of the jet. In this paper, we show that GRB 060614 and GRB 060908 provide further evidence for such a DPLH spectrum. We interpret the multiband afterglow of GRB 060614 with the DPLH model in a homogeneous interstellar medium by taking into account a continuous energy injection process, while, for GRB 060908, a wind-like circumburst density profile is used. The two bursts, along with GRB 091127, suggest a similar behavior in the evolution of the injection break, with q ∼ 0.5. Whether this represents a universal law of the injection break remains uncertain and more afterglow observations such as these are needed to test this conjecture.
Exploring the Web : The Active Galaxy Population in the ORELSE Survey
NASA Astrophysics Data System (ADS)
Lubin, Lori
What are the physical processes that trigger starburst and nuclear activity in galaxies and drive galaxy evolution? Studies aimed at understanding this complex issue have largely focused on the cores of galaxy clusters or on field surveys, leaving underexplored intermediate-density regimes where rapid evolution occurs. As a result, we are conducting the ORELSE survey, a search for structure on scales > 10 Mpc around 18 clusters at 0.6 < z < 1.3. The survey covers 5 sq. deg., all targeted at high-density regions, making it comparable to field surveys such as DEEP2 and COSMOS. ORELSE is unmatched, with no other cluster survey having comparable breadth, depth, precision, and multi-band coverage. As such, ORELSE overcomes critical problems with previous high-redshift studies, including cosmic variance, restricted environmental ranges, sparse cluster samples, inconsistent star formation rate measures, and limited spectroscopy. From its initial spectral and photometric components, ORELSE already contains wellmeasured properties such as redshift, color, stellar mass, and star formation rate for a statistical sample of 7000 field+cluster galaxies. Because X-ray and mid-IR observations are crucial for a complete census of the active galaxy population, we propose to use the wealth of archival Chandra, Spitzer, and Herschel data in the ORELSE fields to map AGN and starburst galaxies over large scales. When complete, our sample will exceed by more than an order of magnitude the current samples of spectroscopically-confirmed active galaxies in high-redshift clusters and their environs. Combined with our numerical simulations plus galaxy formation models, we will provide a robust census of the active galaxy population in intermediate and high-density environments at z = 1, constrain the physical processes (e.g., merging, intracluster gas interactions, AGN feedback) responsible for triggering/quenching starburst and nuclear activity, and estimate their associated timescales.
THE LYMAN ALPHA REFERENCE SAMPLE. V. THE IMPACT OF NEUTRAL ISM KINEMATICS AND GEOMETRY ON Lyα ESCAPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Thorsen, Thøger E.; Hayes, Matthew; Östlin, Göran
2015-05-20
We present high-resolution far-UV spectroscopy of the 14 galaxies of the Lyα Reference Sample; a sample of strongly star-forming galaxies at low redshifts (0.028 < z < 0.18). We compare the derived properties to global properties derived from multi-band imaging and 21 cm H i interferometry and single-dish observations, as well as archival optical SDSS spectra. Besides the Lyα line, the spectra contain a number of metal absorption features allowing us to probe the kinematics of the neutral ISM and evaluate the optical depth and and covering fraction of the neutral medium as a function of line of sight velocity.more » Furthermore, we show how this, in combination with the precise determination of systemic velocity and good Lyα spectra, can be used to distinguish a model in which separate clumps together fully cover the background source, from the “picket fence” model named by Heckman et al. We find that no one single effect dominates in governing Lyα radiative transfer and escape. Lyα escape in our sample coincides with a maximum velocity-binned covering fraction of ≲0.9 and bulk outflow velocities of ≳50 km s{sup −1}, although a number of galaxies show these characteristics and yet little or no Lyα escape. We find that Lyα peak velocities, where available, are not consistent with a strong backscattered component, but rather with a simpler model of an intrinsic emission line overlaid by a blueshifted absorption profile from the outflowing wind. Finally, we find a strong anticorrelation between Hα equivalent width and maximum velocity-binned covering factor, and propose a heuristic explanatory model.« less
ERIC Educational Resources Information Center
Brown, Geoffrey L.; Schoppe-Sullivan, Sarah J.; Mangelsdorf, Sarah C.; Neff, Cynthia
2010-01-01
This study examined associations between supportive coparenting and infant-mother and infant-father attachment security. Observed and parent-reported coparenting, and observed maternal and paternal sensitivity were assessed in a sample of 68 families with 3.5-month-old infants. Infant-mother and infant-father attachment security were assessed in…
Disparity of Ego-Identity Components in Relation to Psychological Security of Adolescents
ERIC Educational Resources Information Center
Al Diyar, Mosaad Abu; Salem, Ashraf Atta M. S.
2015-01-01
The current study aimed at investigating the Ego-identity components and the disparity of these components in relation to the psychological security of adolescents in Egypt. The sample of the study consisted of (400) male and female adolescents. The researchers used two main instruments; the psychological security scale and the Ego-identity scale.…
ERIC Educational Resources Information Center
Allen, Joseph P.; Porter, Maryfrances; McFarland, Christy; McElhaney, Kathleen Boykin; Marsh, Penny
2007-01-01
The relation of attachment security to multiple domains of psychosocial functioning was examined in a community sample of 167 early adolescents. Security of attachment organization, assessed using the Adult Attachment Interview, was linked to success in establishing autonomy while maintaining a sense of relatedness both with fathers and with…
Yonkman, Janell; O'Neil, Joseph; Talty, Judith; Bull, Marilyn J
2010-01-01
We compared observed and reported practice among children with special health care needs transported in wheelchairs with the recommendations from the American National Standards Institute/Rehabilitation Engineering and Assistive Technology Society of North America Committee on Wheelchairs and Transportation voluntary standards for best practice for using wheelchairs in vehicles. A convenience sample of vehicles exiting the garage of a children's hospital was observed. Certified child passenger safety technicians gathered driver demographics and the child's reported medical condition, weight, age, clinic visited, and relation to the driver. Technicians observed how the wheelchair and occupant were secured. A sample of 20 vehicles showed that 90% used four-point tie-down systems to secure the wheelchairs. A total of 88% of drivers tied the wheelchairs down correctly; only 20% used a separate lap-shoulder belts to secure the occupants. Twenty-five percent used lap trays, which are not recommended. Fifteen participants traveled with medical equipment secured inappropriately. Many deviations from best practice were observed and highlight areas for increased awareness, education, and resources for caregivers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2008-04-30
This report documents the formalization of relationships with external service providers in the development of the National Security Technology Incubator (NSTI). The technology incubator is being developed as part of the National Security Preparedness Project (NSPP), funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report summarizes the process in developing and formalizing relationships with those service providers and includes a sample letter of cooperation executed with each provider.
Two-way multi-band optical/IR transmission measurements in the Persian Gulf coastal region
NASA Astrophysics Data System (ADS)
de Jong, Arie N.; Fritz, Peter J.
2005-10-01
The atmospheric conditions in the Persian Gulf region are significantly different from other places in the world. The particle size distribution may vary daily and during the day. The aerosols can contribute to the amount of rainfall over land, important for the nations around the Gulf. In 2004 NASNGSFC and NRL (Naval Research Laboratory) introduced a proposal to improve the modelling of aerosol transport for the Persian Gulf area. The proposal included a measurement campaign in the UAE (United Arabian Emirates), held in the summer/fall of 2004, sponsored by the DWRS (Department of Water Resources Studies) in Abu Dhabi: UAEz (Unified Aerosol Experiment in the UAE). In this campaign NASA installed a number of multi-spectral sun-photometers at various locations in the UAE (http://aeronet.gsfc.nasa.gov). NRL installed ground based and airborne particle samplers. In addition, TNO (the Netherlands) installed its multi-band opticaUIR transmissometer, in order to collect horizontal, path-integrated transmission data. This device provides additional information on the scattering behaviour of the aerosols compared to the other instruments, which either integrate scattering over the full vertical path (the NASA sun-photometers, providing the Aerosol Optical Depth (AOD)) or sample the particles in-situ (the NRL particle samplers, providing size distribution and composition). This paper deals with our transmission measurement set-up, which was located in a coastal area near Abu Dhabi. This location allowed the investigation of the local variability of the atmospheric conditions: from desert dust to pollution, such as fossil fuel and biomass burning, depending on the wind direction. For logistic reasons a set-up was chosen with a retro-reflector. This choice implies consequences for the calibration procedure and measurement accuracy, which are discussed in detail. Also the effects of path-inhomogeneity and scintillation for such a two-way set-up are considered. Results are presented for the measurement period of two weeks in September, showing interesting transmission effects due to temporal changes in aerosol particle composition. These phenomena cannot be explained by scattering theory for spherical particles. More knowledge is required on the shape and composition of the particles. Comparison of the transmission data with the data from other instruments will be done in a next phase.
THE MULTI-WAVELENGTH EXTREME STARBURST SAMPLE OF LUMINOUS GALAXIES. I. SAMPLE CHARACTERISTICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laag, Edward; Croft, Steve; Canalizo, Gabriela
2010-12-15
This paper introduces the Multi-wavelength Extreme Starburst Sample (MESS), a new catalog of 138 star-forming galaxies (0.1 < z < 0.3) optically selected from the Sloan Digital Sky Survey using emission line strength diagnostics to have a high absolute star formation rate (SFR; minimum 11 M{sub sun} yr{sup -1} with median SFR {approx} 61 M{sub sun} yr{sup -1} based on a Kroupa initial mass function). The MESS was designed to complement samples of nearby star-forming galaxies such as the luminous infrared galaxies (LIRGs) and ultraviolet luminous galaxies (UVLGs). Observations using the Multi-band Imaging Photometer (24, 70, and 160 {mu}m channels)more » on the Spitzer Space Telescope indicate that the MESS galaxies have IR luminosities similar to those of LIRGs, with an estimated median L{sub TIR} {approx} 3 x 10{sup 11} L{sub sun}. The selection criteria for the MESS objects suggest they may be less obscured than typical far-IR-selected galaxies with similar estimated SFRs. Twenty out of 70 of the MESS objects detected in the Galaxy Evolution Explorer FUV band also appear to be UVLGs. We estimate the SFRs based directly on luminosities to determine the agreement for these methods in the MESS. We compare these estimates to the emission line strength technique, since the effective measurement of dust attenuation plays a central role in these methods. We apply an image stacking technique to the Very Large Array FIRST survey radio data to retrieve 1.4 GHz luminosity information for 3/4 of the sample covered by FIRST including sources too faint, and at too high a redshift, to be detected in FIRST. We also discuss the relationship between the MESS objects and samples selected through alternative criteria. Morphologies will be the subject of a forthcoming paper.« less
Brief Report: Attachment Security in Infants At-Risk for Autism Spectrum Disorders
ERIC Educational Resources Information Center
Haltigan, John D.; Ekas, Naomi V.; Seifer, Ronald; Messinger, Daniel S.
2011-01-01
Little is known about attachment security and disorganization in children who are at genetic risk for an Autism Spectrum Disorder (ASD) prior to a possible diagnosis. The present study examined distributions of attachment security and disorganization at 15-months of age in a sample of infant siblings of older children with (ASD-sibs; n = 51) or…
ERIC Educational Resources Information Center
Cummings, E. Mark; Schermerhorn, Alice C.; Davies, Patrick T.; Goeke-Morey, Marcie C.; Cummings, Jennifer S.
2006-01-01
Advancing the process-oriented study of links between interparental discord and child adjustment, 2 multimethod prospective tests of emotional security as an explanatory mechanism are reported. On the basis of community samples, with waves spaced 2 years apart, Study 1 (113 boys and 113 girls, ages 9-18) identified emotional security as a mediator…
ERIC Educational Resources Information Center
Koren-Karie, Nina; Oppenheim, David; Dolev, Smadar; Yirmiya, Nurit
2009-01-01
In the current study we examined the links between maternal sensitivity and children's secure attachment in a sample of 45 preschool-age boys with Autism Spectrum Disorders (ASD). We hypothesized that mothers of securely attached children would be more sensitive to their children than mothers of insecurely attached children. Children's attachment…
ERIC Educational Resources Information Center
Goldner, Limor; Berenshtein-Dagan, Tal
2016-01-01
Associations between security within the family, satisfaction of basic psychological needs, true-self behavior, and knowledge of true self, as well as levels of adjustment, were explored in a sample of early adolescents and midadolescents in Israel (N = 302, mean age = 14.19 years). Both security within the family and needs satisfaction were found…
Psychological Security and Self-Efficacy among Syrian Refugee Students inside and outside the Camps
ERIC Educational Resources Information Center
ALharbi, Bassam H. M.
2017-01-01
The present study aimed to identify the degree of psychological security and self-efficacy among the Syrian refugee students inside and outside the camps. The sample consisted of 600 students from Syrian refugees inside and outside the camps in the second semester of the academic year 2014-2015. Scales for psychological security and self-efficacy…
[The comparative evaluation of level of security culture in medical organizations].
Roitberg, G E; Kondratova, N V; Galanina, E V
2016-01-01
The study was carried out on the basis of clinic “Medicine” in 2014-2015 concerning security culture. The sampling included 465 filled HSPSC questionnaires. The comparative analysis of received was implemented. The “Zubovskaia district hospital” Having no accreditation according security standards and group of clinics from USA functioning for many years in the system of patient security support were selected as objects for comparison. The evaluation was implemented concerning dynamics of security culture in organization at implementation of strategies of security of patients during 5 years and comparison of obtained results with USA clinics was made. The study results demonstrated that in conditions of absence of implemented standards of security in medical organization total evaluation of security remains extremely low. The study of security culture using HSPSC questionnaire is an effective tool for evaluating implementation of various strategies of security ofpatient. The functioning in the system of international standards of quality, primarily JCI standards, permits during several years to achieve high indices of security culture.
Multiband VLBI Observations of CTA102
NASA Technical Reports Server (NTRS)
Rantakyro, F. T.; Baath, L. B.; Dallacasa, D.; Jones, D. L.; Wehrle, A. E.
1995-01-01
The source CTA102, known to exhibit low frequency variability, has been observed at six epochs (three at lambda 32 cm, two at lambda 18 cm, and one at lambda l.3 cm) with intercontinental VLBI arrays. On the basis of the changes observed in the structure, we believe that the flux density variations at these wavelengths are due to intrinsic processes and not due to interstellar scintillation. This source exhibits behaviour suggestive of being expanding with a very high apparent transverse velocity.
NASA Technical Reports Server (NTRS)
1998-01-01
As summarized in this pamphlet, some of the far-reaching underlying issues to be addressed include: What is the origin of the universe and its destiny; Why is the universe lumpy; How did the known structures of the universe evolve; How do galaxies evolve; How do massive black holes grow; How did the elemental composition of the universe evolve; What is the structure and behavior of matter in the extreme; and Is Einstein's general relativity theory right.
Modular Multi-Function Multi-Band Airborne Radio System (MFBARS). Volume II. Detailed Report.
1981-06-01
Three Platforms in a Field of Hyperbolic LOP’s.......................... 187 76 Comparison, MFBARS Versus Baseline .......... 190 77 Program Flow Chart...configure, from a set of common modules, a given total CNI capability on specific platforms for a given mission " the ability to take advantage of...X Comm/Nav GPS L-Band; Spread Spectrum Nay X X SEEK TALK UHF Spread; Spectrum Comm X X SINCGARS VHF; Freq. Hop Comm (some platforms ) AFSATCOM UHF
Classifying forest and nonforest land on space photographs
NASA Technical Reports Server (NTRS)
Aldrich, R. C.
1970-01-01
Although the research reported is in its preliminary stages, results show that: (1) infrared color film is the best single multiband sensor available; (2) there is a good possibility that forest can be separated from all nonforest land uses by microimage evaluation techniques on IR color film coupled with B/W infrared and panchromatic films; and (3) discrimination of forest and nonforest classes is possible by either of two methods: interpreters with appropriate viewing and mapping instruments, or programmable automatic scanning microdensitometers and automatic data processing.
Public health applications of remote sensing
NASA Technical Reports Server (NTRS)
Fuller, C. E.
1972-01-01
Remote infrared and multispectral photography were used to identify coastal salt water-fresh water interfaces conducive to encephalitis vector mosquito breeding in Florida, and to determine the environmental conditions that caused an explosive outbreak of anthrax in Louisiana. Multiband photographic inventories were obtained by simultaneously processing three photographic negatives of the same view which record different wavelength portions of the same light. The process enhances differentiation of vegetative communities and sharply delineates edge effects by assigning false colors to differentiate subtle density differences.
Pulsating stars in the VMC survey
NASA Astrophysics Data System (ADS)
Cioni, Maria-Rosa L.; Ripepi, Vincenzo; Clementini, Gisella; Groenewegen, Martin A. T.; Moretti, Maria I.; Muraveva, Tatiana; Subramanian, Smitha
2017-09-01
The VISTA survey of the Magellanic Clouds system (VMC) began observations in 2009 and since then, it has collected multi-epoch data at Ks and in addition multi-band data in Y and J for a wide range of stellar populations across the Magellanic system. Among them are pulsating variable stars: Cepheids, RR Lyrae, and asymptotic giant branch stars that represent useful tracers of the host system geometry. Based on observations made with VISTA at ESO under programme ID 179.B-2003.
A Real Time System for Multi-Sensor Image Analysis through Pyramidal Segmentation
1992-01-30
A Real Time Syte for M~ulti- sensor Image Analysis S. E I0 through Pyramidal Segmentation/ / c •) L. Rudin, S. Osher, G. Koepfler, J.9. Morel 7. ytu...experiments with reconnaissance photography, multi- sensor satellite imagery, medical CT and MRI multi-band data have shown a great practi- cal potential...C ,SF _/ -- / WSM iS-I-0-d41-40450 $tltwt, kw" I (nor.- . Z-97- A real-time system for multi- sensor image analysis through pyramidal segmentation
Robust Radio Broadcast Monitoring Using a Multi-Band Spectral Entropy Signature
NASA Astrophysics Data System (ADS)
Camarena-Ibarrola, Antonio; Chávez, Edgar; Tellez, Eric Sadit
Monitoring media broadcast content has deserved a lot of attention lately from both academy and industry due to the technical challenge involved and its economic importance (e.g. in advertising). The problem pose a unique challenge from the pattern recognition point of view because a very high recognition rate is needed under non ideal conditions. The problem consist in comparing a small audio sequence (the commercial ad) with a large audio stream (the broadcast) searching for matches.
Lari, Nicoletta; Cavallini, Michela; Rindi, Laura; Iona, Elisabetta; Fattorini, Lanfranco; Garzelli, Carlo
1998-01-01
All but 2 of 63 Mycobacterium avium isolates from distinct geographic areas of Italy exhibited markedly polymorphic, multibanded IS1245 restriction fragment length polymorphism (RFLP) patterns; 2 isolates showed the low-number banding pattern typical of bird isolates. By computer analysis, 41 distinct IS1245 patterns and 10 clusters of essentially identical strains were detected; 40% of the 63 isolates showed genetic relatedness, suggesting the existence of a predominant AIDS-associated IS1245 RFLP pattern. PMID:9817900
Determination of Precise Satellite Orbital Position Using Multi-Band GNSS Signals
2017-10-16
AFRL-AFOSR-JP-TR-2018-0002 Determination of Precise Satellite Orbital Position Using Multi -Band GNSS Signals Erry Gunawan NANYANG TECHNOLOGICAL...Position Using Multi -Band GNSS Signals 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-15-1-4041 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Erry...Grant FA2386-15-1-4041 “Determination of Precise orbital position using multi -band GNSS signals” October 13, 2017 Name of Principal Investigators
Pappa, Irene; Szekely, Eszter; Mileva-Seitz, Viara R; Luijk, Maartje P C M; Bakermans-Kranenburg, Marian J; van IJzendoorn, Marinus H; Tiemeier, Henning
2015-01-01
Although the environmental influences on infant attachment disorganization and security are well-studied, little is known about their heritability. Candidate gene studies have shown small, often non-replicable effects. In this study, we gathered the largest sample (N = 657) of ethnically homogenous, 14-month-old children with both observed attachment and genome-wide data. First, we used a Genome-Wide Association Study (GWAS) approach to identify single nucleotide polymorphisms (SNPs) associated with attachment disorganization and security. Second, we annotated them into genes (Versatile Gene-based Association Study) and functional pathways. Our analyses provide evidence of novel genes (HDAC1, ZNF675, BSCD1) and pathways (synaptic transmission, cation transport) associated with attachment disorganization. Similar analyses identified a novel gene (BECN1) but no distinct pathways associated with attachment security. The results of this first extensive, exploratory study on the molecular-genetic basis of infant attachment await replication in large, independent samples.
1980-09-01
CLASSIFICATION OF THIS PAGE (Uffi Pat* jfntered) READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM AH -8- -21 12 . GOVT ACCESSION NO. 3. RECIPIENT’S...appliration of that specification. - DDO ,JA11473- K Unclassified t ,9 SECURITY CLASSIFICATION OF THIS PAGG Rnh DM- Entered) U nclassified SECURITY...codes .............................. 52 12 Sample data sheet for use in user analysis ............... 54 13 Sample data sheet G for use in user analysis
A Passive Badge Dosimeter for HCL Detection and Measurement - SBIR 90.I (A90-189)
1990-10-02
Microencapsulation ; Toxic gas detection; Combustion Products; RA III; ’i6.PRICECOOE SORR OF____PAGOfABSRAC 17. SECURITY CLASSIFICATION It. SECURITY... microencapsulated samples, all of the sample? changed color when exposed to sufficiently high concentrations of Ha vapor. In general, detector sensitivity...correlted with indicator pKa with the highest sensitivity being noted for indicators with pKa- 7.0. The microencapsulated dye/liquid crystal droplets
2016-03-01
November 2015). Sample: hello -jni. Android NDK. Available: http://developer.android.com/ndk/samples/sample_hellojni.html [49] A. Pyles and M. Peck...Demonstration Application We wrote an application based on Google’s sample custom class loading app [47] and the hello - jni sample app found in the
Attachment security and obesity in US preschool-aged children.
Anderson, Sarah E; Whitaker, Robert C
2011-03-01
To estimate the association between attachment security in children aged 24 months and their risk for obesity at 4½ years of age. Insecure attachment is associated with unhealthy physiologic and behavioral responses to stress, which could lead to development of obesity. Cohort study. National sample of US children born in 2001. Children and mothers participating in the 2003 and 2005-2006 waves of the Early Childhood Longitudinal Study, Birth Cohort, conducted by the National Center for Education Statistics. Our analytic sample included 6650 children (76.0% of children assessed in both waves). Attachment security at 24 months was assessed by trained interviewers during observation in the child's home. Insecure attachment was defined as lowest quartile of attachment security, based on the security score from the Toddler Attachment Sort-45 Item. Obesity at 4½ years of age (sex-specific body mass index ≥95th percentile for age). The prevalence of obesity was 23.1% in children with insecure attachment and 16.6% in those with secure attachment. For children with insecure attachment, the odds of obesity were 1.30 (95% confidence interval, 1.05-1.62) times higher than for children with secure attachment after controlling for the quality of mother-child interaction during play, parenting practices related to obesity, maternal body mass index, and sociodemographic characteristics. Insecure attachment in early childhood may be a risk factor for obesity. Interventions to increase children's attachment security should examine the effects on children's weight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Covered are: analytical laboratory operations (ALO) sample receipt and control, ALO data report/package preparation review and control, single shell tank (PST) project sample tracking system, sample receiving, analytical balances, duties and responsibilities of sample custodian, sample refrigerator temperature monitoring, security, assignment of staff responsibilities, sample storage, data reporting, and general requirements for glassware.
NASA Technical Reports Server (NTRS)
Delgado, Felix A. (Inventor); Stern, Susan M. (Inventor)
1998-01-01
A contamination sample collection device has a wooden dowel with a cotton swab at one end, the cotton being covered by a nylon cloth and the wooden dowel being encapsulated by plastic tubing which is heat shrunk onto the dowel and onto a portion of the cotton swab to secure the cotton in place. Another plastic tube is heat shrunk onto the plastic that encapsulates the dowel and a portion of the nylon cloth to secure the nylon cloth in place. The device may thereafter be covered with aluminum foil protector. The device may be used for obtaining samples of contamination in clean room environments.
ERIC Educational Resources Information Center
Brown, Ben
2005-01-01
This paper provides an analysis of data on school security measures which were obtained from a survey administered to a sample of 230 high school students. The majority of students indicated that the school police officers and security officers help keep the schools safe and that the drug-sniffing dogs help reduce drugs in the schools, but there…
Automated Support for Rapid Coordination of Joint UUV Operation
2015-03-01
automata , dead-reckoning, static plan, nmtime plan, rapid deployment, GPS 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY...STATE MACHINES, MOORE AUTOMATA ..........................................9 A. MOORE AUTOMATA ...9 B. UUV PLANS AS MOORE AUTOMATA ...................................................11 C. SAMPLING RATE
A Secure Base in Adolescence: Markers of Attachment Security in the Mother–Adolescent Relationship
Allen, Joseph P.; McElhaney, Kathleen Boykin; Land, Deborah J.; Kuperminc, Gabriel P.; Moore, Cynthia W.; O’Beirne-Kelly, Heather; Kilmer, Sarah Liebman
2017-01-01
This study sought to identify ways in which adolescent attachment security, as assessed via the Adult Attachment Interview, is manifest in qualities of the secure base provided by the mother–adolescent relationship. Assessments included data coded from mother–adolescent interactions, test-based data, and adolescent self-reports obtained from an ethnically and socioeconomically diverse sample of moderately at-risk 9th and 10th graders. This study found several robust markers of adolescent attachment security in the mother–adolescent relationship. Each of these markers was found to contribute unique variance to explaining adolescent security, and in combination, they accounted for as much as 40% of the raw variance in adolescent security. These findings suggest that security is closely connected to the workings of the mother–adolescent relationship via a secure-base phenomenon, in which the teen can explore independence in thought and speech from the secure base of a maternal relationship characterized by maternal attunement to the adolescent and maternal supportiveness. PMID:12625451
Lockhart, Ginger; Phillips, Samantha; Bolland, Anneliese; Delgado, Melissa; Tietjen, Juliet; Bolland, John
2017-01-01
This study examined prospective mediating relations among mother-adolescent attachment security, self-worth, and risk behaviors, including substance use and violence, across ages 13–17 in a sample of 901 low-income African American adolescents. Path analyses revealed that self-worth was a significant mediator between attachment security and risk behaviors, such that earlier attachment security predicted self-worth 1 year later, which in turn, predicted substance use, weapon carrying, and fighting in the 3rd year. Implications for the role of the secure base concept within the context of urban poverty are discussed. PMID:28174548
Homeland Security Research Improves the Nation's Ability to ...
Technical Brief Homeland Security (HS) Research develops data, tools, and technologies to minimize the impact of accidents, natural disasters, terrorist attacks, and other incidents that can result in toxic chemical, biological or radiological (CBR) contamination. HS Research develops ways to detect contamination, sampling strategies, sampling and analytical methods, cleanup methods, waste management approaches, exposure assessment methods, and decision support tools (including water system models). These contributions improve EPA’s response to a broad range of environmental disasters.
Optical identity authentication technique based on compressive ghost imaging with QR code
NASA Astrophysics Data System (ADS)
Wenjie, Zhan; Leihong, Zhang; Xi, Zeng; Yi, Kang
2018-04-01
With the rapid development of computer technology, information security has attracted more and more attention. It is not only related to the information and property security of individuals and enterprises, but also to the security and social stability of a country. Identity authentication is the first line of defense in information security. In authentication systems, response time and security are the most important factors. An optical authentication technology based on compressive ghost imaging with QR codes is proposed in this paper. The scheme can be authenticated with a small number of samples. Therefore, the response time of the algorithm is short. At the same time, the algorithm can resist certain noise attacks, so it offers good security.
A Proactive Approach to Building Security.
ERIC Educational Resources Information Center
Winters, Sharon
1994-01-01
Describes building security procedures developed at the Hampton Public Library (Virginia) to deal with problem patrons. Highlights include need for the library monitor program; staffing patterns; monitor selection criteria; training procedures; library behavior guidelines; library policy statements; theft detection systems; and sample job…
Wu, Xiaoping; Tian, Jinfeng; Schmitter, Sebastian; Vaughan, J Tommy; Uğurbil, Kâmil; Van de Moortele, Pierre-François
2016-06-01
We explore the advantages of using a double-ring radiofrequency (RF) array and slice orientation to design parallel transmission (pTx) multiband (MB) pulses for simultaneous multislice (SMS) imaging with whole-brain coverage at 7 Tesla (T). A double-ring head array with 16 elements split evenly in two rings stacked in the z-direction was modeled and compared with two single-ring arrays consisting of 8 or 16 elements. The array performance was evaluated by designing band-specific pTx MB pulses with local specific absorption rate (SAR) control. The impact of slice orientations was also investigated. The double-ring array consistently and significantly outperformed the other two single-ring arrays, with peak local SAR reduced by up to 40% at a fixed excitation error of 0.024. For all three arrays, exciting sagittal or coronal slices yielded better RF performance than exciting axial or oblique slices. A double-ring RF array can be used to drastically improve SAR versus excitation fidelity tradeoff for pTx MB pulse design for brain imaging at 7 T; therefore, it is preferable against single-ring RF array designs when pursuing various biomedical applications of pTx SMS imaging. In comparing the stripline arrays, coronal and sagittal slices are more advantageous than axial and oblique slices for pTx MB pulses. Magn Reson Med 75:2464-2472, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Exploring the multiband emission of TXS 0536+145: the most distant -γray flaring blazar
Orienti, M.; D'Ammando, F.; Giroletti, M.; ...
2014-09-15
We report results of a multi-band monitoring campaign of the flat spectrum radio quasar TXS 0536+145 at redshift 2.69. This source was detected during a very high γ-ray activity state in 2012 March by the Large Area Telescope on board Fermi, becoming the γ-ray flaring blazar at the highest redshift detected so far. At the peak of the flare the source reached an apparent isotropic γ-ray luminosity of 6.6×1049 erg s-1 which is comparable to the values achieved by the most luminous blazars. This activity triggered radio-to-X-rays monitoring observations by Swift, Very Long Baseline Array, European VLBI Network, and Medicinamore » single-dish telescope. Significant variability was observed from radio to X-rays supporting the identification of the γ-ray source with TXS 0536+145. Both the radio and γ-ray light curves show a similar behaviour, with the γ-rays leading the radio variability with a time lag of about 4-6 months. The luminosity increase is associated with a flattening of the radio spectrum. No new superluminal component associated with the flare was detected in high resolution parsec-scale radio images. During the flare the γ-ray spectrum seems to deviate from a power law, showing a curvature that was not present during the average activity state. The γ-ray properties of TXS 0536+145 are consistent with those shown by the high-redshift γ-ray blazar population.« less
Absorption enhancement in type-II coupled quantum rings due to existence of quasi-bound states
NASA Astrophysics Data System (ADS)
Hsieh, Chi-Ti; Lin, Shih-Yen; Chang, Shu-Wei
2018-02-01
The absorption of type-II nanostructures is often weaker than type-I counterpart due to spatially separated electrons and holes. We model the bound-to-continuum absorption of type-II quantum rings (QRs) using a multiband source-radiation approach using the retarded Green function in the cylindrical coordinate system. The selection rules due to the circular symmetry for allowed transitions of absorption are utilized. The bound-tocontinuum absorptions of type-II GaSb coupled and uncoupled QRs embedded in GaAs matrix are compared here. The GaSb QRs act as energy barriers for electrons but potential wells for holes. For the coupled QR structure, the region sandwiched between two QRs forms a potential reservoir of quasi-bound electrons. Electrons in these states, though look like bound ones, would ultimately tunnel out of the reservoir through barriers. Multiband perfectly-matched layers are introduced to model the tunneling of quasi-bound states into open space. Resonance peaks are observed on the absorption spectra of type-II coupled QRs due to the formation of quasi-bound states in conduction bands, but no resonance exist in the uncoupled QR. The tunneling time of these metastable states can be extracted from the resonance and is in the order of ten femtoseconds. Absorption of coupled QRs is significantly enhanced as compared to that of uncoupled ones in certain spectral windows of interest. These features may improve the performance of photon detectors and photovoltaic devices based on type-II semiconductor nanostructures.
RARE/Turbo Spin Echo Imaging with Simultaneous MultiSlice Wave-CAIPI
Eichner, Cornelius; Bhat, Himanshu; Grant, P. Ellen; Wald, Lawrence L.; Setsompop, Kawin
2014-01-01
Purpose To enable highly accelerated RARE/Turbo Spin Echo (TSE) imaging using Simultaneous MultiSlice (SMS) Wave-CAIPI acquisition with reduced g-factor penalty. Methods SMS Wave-CAIPI incurs slice shifts across simultaneously excited slices while playing sinusoidal gradient waveforms during the readout of each encoding line. This results in an efficient k-space coverage that spreads aliasing in all three dimensions to fully harness the encoding power of coil sensitivities. The novel MultiPINS radiofrequency (RF) pulses dramatically reduce the power deposition of multiband (MB) refocusing pulse, thus allowing high MB factors within the Specific Absorption Rate (SAR) limit. Results Wave-CAIPI acquisition with MultiPINS permits whole brain coverage with 1 mm isotropic resolution in 70 seconds at effective MB factor 13, with maximum and average g-factor penalties of gmax=1.34 and gavg=1.12, and without √R penalty. With blipped-CAIPI, the g-factor performance was degraded to gmax=3.24 and gavg=1.42; a 2.4-fold increase in gmax relative to Wave-CAIPI. At this MB factor, the SAR of the MultiBand and PINS pulses are 4.2 and 1.9 times that of the MultiPINS pulse, while the peak RF power are 19.4 and 3.9 times higher. Conclusion Combination of the two technologies, Wave-CAIPI and MultiPINS pulse, enables highly accelerated RARE/TSE imaging with low SNR penalty at reduced SAR. PMID:25640187
NASA Astrophysics Data System (ADS)
Ma, Liu Hao; Lau, Lok Yin; Ren, Wei
2017-03-01
We report in situ measurements of non-uniform temperature, H2O and CO2 concentration distributions in a premixed methane-air laminar flame using tunable diode laser absorption spectroscopy (TDLAS). A mid-infrared, continuous-wave, room-temperature interband cascade laser (ICL) at 4183 nm was used for the sensitive detection of CO2 at high temperature.The H2O absorption lines were exploited by one distributed feedback (DFB) diode laser at 1343 nm and one ICL at 2482 nm to achieve multi-band absorption measurements with high species concentration sensitivity, high temperature sensitivity, and immunity to variations in ambient conditions. A novel profile-fitting function was proposed to characterize the non-uniform temperature and species concentrations along the line-of-sight in the flame by detecting six absorption lines of CO2 and H2O simultaneously. The flame temperature distribution was measured at different heights above the burner (5-20 mm), and compared with the thermocouple measurement with heat-transfer correction. Our TDLAS measured temperature of the central flame was in excellent agreement (<1.5% difference) with the thermocouple data.The TDLAS results were also compared with the CFD simulations using a detailed chemical kinetics mechanism (GRI 3.0) and considering the heat loss to the surroundings.The current CFD simulation overpredicted the flame temperature in the gradient region, but was in excellent agreement with the measured temperature and species concentration in the core of the flame.
NASA Astrophysics Data System (ADS)
Tregloan-Reed, J.; Southworth, J.; Mancini, L.; Mollière, P.; Ciceri, S.; Bruni, I.; Ricci, D.; Ayala-Loera, C.; Henning, T.
2018-03-01
We present high-precision photometry of eight separate transit events in the HAT-P-32 planetary system. One transit event was observed simultaneously by two telescopes of which one obtained a simultaneous multiband light curve in three optical bands, giving a total of 11 transit light curves. Due to the filter selection and in conjunction with using the defocused photometry technique, we were able to obtain an extremely high-precision, ground-based transit in the u band (350 nm), with an rms scatter of ≈1 mmag. All 11 transits were modelled using PRISM and GEMC, and the physical properties of the system calculated. We find the mass and radius of the host star to be 1.182 ± 0.041 M⊙ and 1.225 ± 0.015 R⊙, respectively. For the planet, we find a mass of 0.80 ± 0.14 MJup, a radius of 1.807 ± 0.022 RJup, and a density of 0.126 ± 0.023 ρJup. These values are consistent with those found in the literature. We also obtain a new orbital ephemeris for the system T0 = BJD/TDB 2 454 420.447187(96) + 2.15000800(10) × E. We measured the transmission spectrum of HAT-P-32 A b and compared it to theoretical transmission spectra. Our results indicate a bimodal cloud particle distribution consisting of Rayleigh-like haze and grey absorbing cloud particles within the atmosphere of HAT-P-32 A b.
Zhao, Lei; Liu, Han; He, Zhihong; Dong, Shikui
2018-05-14
Multiband metamaterial perfect absorbers (MPAs) have promising applications in many fields like microbolometers, infrared detection, biosensing, and thermal emitters. In general, the single resonator can only excite a fundamental mode and achieve single absorption band. The multiband MPA can be achieved by combining several different sized resonators together. However, it's still challenging to design the MPA with absorption bands of more than four and average absorptivity of more than 90% due to the interaction between differently sized resonators. In this paper, three absorption bands are successfully achieved with average absorptivity up to 98.5% only utilizing single one our designed ring-strip resonator, which can simultaneously excite a fundamental electric dipole mode, a higher-order electric quadrupole mode, and a higher-order electric octopole mode. As the biosensor, the sensing performance of the higher-order modes is higher than the fundamental modes. Then we try to increase the absorption bands by combining different sized ring-strip resonators together and make the average absorptivity above 90% by optimizing the geometry parameters. A six-band MPA is achieved by combining two different sized ring-strip resonators with average absorptivity up to 98.8%, which can excite two dipole modes, two quadrupole modes, and two octopole modes. A twelve-band MPA is achieved by combining four different sized ring-strip resonators with average absorptivity up to 93.7%, which can excite four dipole modes, four quadrupole modes, and four octopole modes.
NASA Astrophysics Data System (ADS)
Moeller, Mirko; Berciu, Mona
2015-03-01
When studying the properties of complex, magnetic materials it is often necessary to work with effective Hamiltonians. In many cases the effective Hamiltonian is obtained by mapping the full, multiband Hamiltonian onto a simpler, single band model. A prominent example is the use of Zhang-Rice singlets to map the multiband Emery model for cuprates onto the single band t - J -model. Such mappings are usually done at zero temperature (T) and it is implicitly assumed that they are justified at finite T, as well. We present results on 3 different models of a single charge carrier (electron or hole) injected into a ferromagnetic Ising chain. Model I is a two band, two sublattice model, Model II is a two band, single sublattice model, and Model III is a single band model, the so called t -Jz -model. Due to the absence of spin-flip terms, a numerically exact solution of all 3 Models is possible, even at finite T. At zero T a mapping between all 3 models results in the same low energy physics. However, this is no longer true at finite T. Here the low energy behavior of Model III is significantly different from that of Models I and II. The reasons for this discrepancy and its implications for more realistic models (higher dimension, inclusion of spin-flip terms) are discussed. This work was supported by NSERC, QMI and the UBC 4YF (M.M.).
Exploring the multiband emission of TXS 0536+145: the most distant γ-ray flaring blazar
NASA Astrophysics Data System (ADS)
Orienti, M.; D'Ammando, F.; Giroletti, M.; Finke, J.; Ajello, M.; Dallacasa, D.; Venturi, T.
2014-11-01
We report results of a multiband monitoring campaign of the flat spectrum radio quasar TXS 0536+145 at redshift 2.69. This source was detected during a very high γ-ray activity state in 2012 March by the Large Area Telescope on board Fermi, becoming the γ-ray flaring blazar at the highest redshift detected so far. At the peak of the flare the source reached an apparent isotropic γ-ray luminosity of 6.6 × 1049 erg s-1 which is comparable to the values achieved by the most luminous blazars. This activity triggered radio-to-X-rays monitoring observations by Swift, Very Long Baseline Array, European VLBI Network, and Medicina single-dish telescope. Significant variability was observed from radio to X-rays supporting the identification of the γ-ray source with TXS 0536+145. Both the radio and γ-ray light curves show a similar behaviour, with the γ-rays leading the radio variability with a time lag of about 4-6 months. The luminosity increase is associated with a flattening of the radio spectrum. No new superluminal component associated with the flare was detected in high-resolution parsec-scale radio images. During the flare the γ-ray spectrum seems to deviate from a power law, showing a curvature that was not present during the average activity state. The γ-ray properties of TXS 0536+145 are consistent with those shown by the high-redshift γ-ray blazar population.
Jiang, Yun; Ma, Dan; Bhat, Himanshu; Ye, Huihui; Cauley, Stephen F; Wald, Lawrence L; Setsompop, Kawin; Griswold, Mark A
2017-11-01
The purpose of this study is to accelerate an MR fingerprinting (MRF) acquisition by using a simultaneous multislice method. A multiband radiofrequency (RF) pulse was designed to excite two slices with different flip angles and phases. The signals of two slices were driven to be as orthogonal as possible. The mixed and undersampled MRF signal was matched to two dictionaries to retrieve T 1 and T 2 maps of each slice. Quantitative results from the proposed method were validated with the gold-standard spin echo methods in a phantom. T 1 and T 2 maps of in vivo human brain from two simultaneously acquired slices were also compared to the results of fast imaging with steady-state precession based MRF method (MRF-FISP) with a single-band RF excitation. The phantom results showed that the simultaneous multislice imaging MRF-FISP method quantified the relaxation properties accurately compared to the gold-standard spin echo methods. T 1 and T 2 values of in vivo brain from the proposed method also matched the results from the normal MRF-FISP acquisition. T 1 and T 2 values can be quantified at a multiband acceleration factor of two using our proposed acquisition even in a single-channel receive coil. Further acceleration could be achieved by combining this method with parallel imaging or iterative reconstruction. Magn Reson Med 78:1870-1876, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
ERIC Educational Resources Information Center
Coronado, Adolfo S.
2012-01-01
Using a sample of security and privacy breaches the present research examines the comparative announcement impact between the two types of events. The first part of the dissertation analyzes the impact of publicly announced security and privacy breaches on abnormal stock returns, the change in firm risk, and abnormal trading volume are measured.…
Shahri, Ahmad Bakhtiyari; Ismail, Zuraini; Mohanna, Shahram
2016-11-01
The security effectiveness based on users' behaviors is becoming a top priority of Health Information System (HIS). In the first step of this study, through the review of previous studies 'Self-efficacy in Information Security' (SEIS) and 'Security Competency' (SCMP) were identified as the important factors to transforming HIS users to the first line of defense in the security. Subsequently, a conceptual model was proposed taking into mentioned factors for HIS security effectiveness. Then, this quantitative study used the structural equation modeling to examine the proposed model based on survey data collected from a sample of 263 HIS users from eight hospitals in Iran. The result shows that SEIS is one of the important factors to cultivate of good end users' behaviors toward HIS security effectiveness. However SCMP appears a feasible alternative to providing SEIS. This study also confirms the mediation effects of SEIS on the relationship between SCMP and HIS security effectiveness. The results of this research paper can be used by HIS and IT managers to implement their information security process more effectively.
CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xingxing; Wang, Junxian; Shu, Xinwen
2015-03-01
We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-framemore » [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.« less
High field superconducting properties of Ba(Fe1−xCox)2As2 thin films
Hänisch, Jens; Iida, Kazumasa; Kurth, Fritz; Reich, Elke; Tarantini, Chiara; Jaroszynski, Jan; Förster, Tobias; Fuchs, Günther; Hühne, Ruben; Grinenko, Vadim; Schultz, Ludwig; Holzapfel, Bernhard
2015-01-01
In general, the critical current density, Jc, of type II superconductors and its anisotropy with respect to magnetic field orientation is determined by intrinsic and extrinsic properties. The Fe-based superconductors of the ‘122’ family with their moderate electronic anisotropies and high yet accessible critical fields (Hc2 and Hirr) are a good model system to study this interplay. In this paper, we explore the vortex matter of optimally Co-doped BaFe2As2 thin films with extended planar and c-axis correlated defects. The temperature and angular dependence of the upper critical field is well explained by a two-band model in the clean limit. The dirty band scenario, however, cannot be ruled out completely. Above the irreversibility field, the flux motion is thermally activated, where the activation energy U0 is going to zero at the extrapolated zero-kelvin Hirr value. The anisotropy of the critical current density Jc is both influenced by the Hc2 anisotropy (and therefore by multi-band effects) as well as the extended planar and columnar defects present in the sample. PMID:26612567
Markovian and non-Markovian light-emission channels in strained quantum wires.
Lopez-Richard, V; González, J C; Matinaga, F M; Trallero-Giner, C; Ribeiro, E; Sousa Dias, M Rebello; Villegas-Lelovsky, L; Marques, G E
2009-09-01
We have achieved conditions to obtain optical memory effects in semiconductor nanostructures. The system is based on strained InP quantum wires where the tuning of the heavy-light valence band splitting has allowed the existence of two independent optical channels with correlated and uncorrelated excitation and light-emission processes. The presence of an optical channel that preserves the excitation memory is unambiguously corroborated by photoluminescence measurements of free-standing quantum wires under different configurations of the incoming and outgoing light polarizations in various samples. High-resolution transmission electron microscopy and electron diffraction indicate the presence of strain effects in the optical response. By using this effect and under certain growth conditions, we have shown that the optical recombination is mediated by relaxation processes with different natures: one a Markov and another with a non-Markovian signature. Resonance intersubband light-heavy hole transitions assisted by optical phonons provide the desired mechanism for the correlated non-Markovian carrier relaxation process. A multiband calculation for strained InP quantum wires was developed to account for the description of the character of the valence band states and gives quantitative support for light hole-heavy hole transitions assisted by optical phonons.
Testing dark energy with the Advanced Liquid-mirror Probe of Asteroids, Cosmology and Astrophysics
NASA Astrophysics Data System (ADS)
Corasaniti, Pier Stefano; LoVerde, Marilena; Crotts, Arlin; Blake, Chris
2006-06-01
The Advanced Liquid-mirror Probe of Asteroids, Cosmology and Astrophysics (ALPACA) is a proposed 8-m liquid-mirror telescope surveying ~1000deg2 of the Southern hemisphere sky. It will be a remarkably simple and inexpensive telescope that none the less will deliver a powerful sample of optical data for studying dark energy. The bulk of the cosmological data consist of nightly, high signal-to-noise ratio, multiband light curves of Type Ia supernovae (SNe Ia). At the end of the 3-yr run, ALPACA is expected to collect >~100000 SNe Ia up to z ~ 1. This will allow us to reduce present systematic uncertainties affecting the standard-candle relation. The survey will also provide several other data sets such as the detection of baryon acoustic oscillations in the matter power spectrum and shear weak-lensing measurements. In this preliminary analysis, we forecast constraints on dark energy parameters from SNe Ia and baryon acoustic oscillations. The combination of these two data sets will provide competitive constraints on the dark energy parameters under minimal prior assumptions. Further studies are needed to address the accuracy of weak-lensing measurements.
Cantón-Cortés, David; Cantón, José; Cortés, María Rosario
2016-01-01
The Emotional Security Theory (EST) was originally developed to investigate the association between high levels of interparental conflict and child maladaptative outcome. The objective of the present study was to analyze the effects of emotional security in the family system on psychological distress among a sample of young female adult survivors of child sexual abuse (CSA). The role of emotional security was investigated through the interactive effects of a number of factors including the type of abuse, the continuity of abuse, the relationship with the perpetrator and the existence of disclosure for the abuse. Participants were 167 female survivors of CSA. Information about the abuse was obtained from a self-reported questionnaire. Emotional security was assessed with the Security in the Family System (SIFS) Scale, and the Symptom Checklist-90-Revised (SCL-90-R) was used to assess psychological distress. In the total sample, insecurity (preoccupation and disengagement) was correlated with high psychological distress scores, whereas no relationship was found between security and psychological distress. The relationship between emotional insecurity and psychological distress was stronger in cases of continued abuse and non-disclosure, while the relationship between emotional security and distress was stronger in cases of extrafamilial abuse and especially isolated or several incidents and when a disclosure had been made. No interactive effect was found between any of the three emotional variables and the type of abuse committed. The results of the current study suggest that characteristics of CSA such as relationship with the perpetrator and, especially, continuity of abuse and whether or not disclosure had been made, can affect the impact of emotional security on psychological distress of CSA survivors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Maternal Sensitivity, Child Functional Level, and Attachment in Down Syndrome.
ERIC Educational Resources Information Center
Atkinson, Leslie; Chrisholm, Vivienne C.; Scott, Brian; Goldberg, Susan; Vaughn, Brian E.; Blackwell, Janis; Dickens, Susan; Tam, Frances
1999-01-01
Investigated the influence of child intellectual/adaptive functioning and maternal sensitivity on attachment security, using a sample of children with Down syndrome. Found a relationship between attachment security in DS related to the interaction of maternal sensitivity and cognitive competence. (JPB)
Attachment Security and Obesity in US Preschool-Aged Children
Anderson, Sarah E.; Whitaker, Robert C.
2011-01-01
Objective Insecure attachment is associated with unhealthy physiologic and behavioral responses to stress, which could lead to the development of obesity. We estimated the association between children’s attachment security at 24 months of age and risk for obesity at 4.5 years of age. Design Cohort study. Setting National sample of US children born in 2001. Participants Children and mothers participating in the 2003 and 2005-2006 waves of the Early Childhood Longitudinal Study, Birth Cohort, conducted by the National Center for Education Statistics. Our analytic sample included 6650 children (76% of children assessed at both waves). Main Exposure Attachment security at 24 months was assessed by trained interviewers following observation in the child’s home. Insecure attachment was defined as lowest quartile of attachment security, based on the security score from the Toddler Attachment Sort. Outcome Measure Obesity at 4.5 years of age (sex-specific BMI ≥95th percentile for age). Results The prevalence of obesity was 23.1% in children with insecure attachment and 16.6% in those with secure attachment. For children with insecure attachment, the odds (95% confidence interval) of obesity was 1.30 (1.05, 1.62) times higher than for children with secure attachment, after controlling for the quality of mother-child interaction during play, parenting practices related to obesity, maternal body mass index, and sociodemographic characteristics. Conclusions Insecure attachment in early childhood may be a previously unrecognized risk factor for obesity. Interventions to increase children’s attachment security should also examine impacts on children’s weight. PMID:21383273
Star/Galaxy Separation in Hyper Suprime-Cam and Mapping the Milky Way with Star Counts
NASA Astrophysics Data System (ADS)
Garmilla, Jose Antonio
We study the problem of separating stars and galaxies in the Hyper Suprime-Cam (HSC) multi-band imaging data at high galactic latitudes. We show that the current separation technique implemented in the HSC pipeline is unable to produce samples of stars with i 24 without a significant contamination from galaxies (> 50%). We study various methods for measuring extendedness in HSC with simulated and real data and find that there are a number of available techniques that give nearly optimal results; the extendedness measure HSC is currently using is among these. We develop a star/galaxy separation method for HSC based on the Extreme Deconvolution (XD) algorithm that uses colors and extendedness simultaneously, and show that with it we can generate samples of faint stars keeping contamination from galaxies under control to i ≤ 25. We apply our star/galaxy separation method to carry out a preliminary study of the structure of the Milky Way (MW) with main sequence (MS) stars using photometric parallax relations derived for the HSC photometric system. We show that it will be possible to generate a tomography of the MW stellar halo to galactocentric radii ˜ 100 kpc with ˜ 106 MS stars in the HSC Wide layer once the survey has been completed. We report two potential detections of the Sagittarius tidal stream with MS stars in the XMM and GAMA15 fields at ≈ 20 kpc and ≈ 40 kpc respectively.
Llamas-Carreras, J M; Amarilla, A; Solano, E; Velasco-Ortega, E; Rodríguez-Varo, L; Segura-Egea, J J
2010-08-01
To determine whether root filled teeth and those with vital pulps exhibit a similar degree of external root resorption (ERR) as a consequence of orthodontic treatment. The study sample consisted of 77 patients, with a mean age of 32.7 +/- 10.7 years, who had one root filled tooth before completion of multiband/bracket orthodontic therapy for at least 1 year. For each patient, digital panoramic radiographs taken before and after orthodontic treatment were used to determine the proportion of external root resorption (PRR), defined as the ratio between the root resorption in the root filled tooth and that in its contralateral tooth with a vital pulp. The student's t-test, anova and logistic regression analysis were used to determine statistical significance. The mean PRR was 1.00 +/- 0.13, indicating that, in the total sample, there were no significant differences in root resorption in the root filled teeth and their contralateral teeth with vital pulps. Multivariate logistic regression analysis suggested that PRR was significantly greater in incisors (P = 0.0014; odds ratio = 6.2885, C.I. 95% = 2.0-19.4), compared to other teeth, and in women (P = 0.0255; odds ratio = 4.2, C.I. 95% = 1.2-14.6), compared to men. There was no significant difference in the amount or severity of external root resorption during orthodontic movement between root filled teeth and their contralateral teeth with vital pulps.
Morphology and Structure of High-redshift Massive Galaxies in the CANDELS Fields
NASA Astrophysics Data System (ADS)
Guan-wen, Fang; Ze-sen, Lin; Xu, Kong
2018-01-01
Using the multi-band photometric data of all five CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) fields and the near-infrared (F125W and F160W) high-resolution images of HST WFC3 (Hubble Space Telescope Wide Field Camera 3), a quantitative study of morphology and structure of mass-selected galaxies is presented. The sample includes 8002 galaxies with a redshift 1 < z < 3 and stellar mass M*> 1010M⊙. Based on the Convolutional Neural Network (ConvNet) criteria, we classify the sample galaxies into SPHeroids (SPH), Early-Type Disks (ETD), Late-Type Disks (LTD), and IRRegulars (IRR) in different redshift bins. The findings indicate that the galaxy morphology and structure evolve with redshift up to z ∼ 3, from irregular galaxies in the high-redshift universe to the formation of the Hubble sequence dominated by disks and spheroids. For the same redshift interval, the median values of effective radii (re) of different morphological types are in a descending order: IRR, LTD, ETD, and SPH. But for the Sérsic index (n), the order is reversed (SPH, ETD, LTD, and IRR). In the meantime, the evolution of galaxy size (re) with the redshift is explored for the galaxies of different morphological types, and it is confirmed that their size will enlarge with time. However, such a phenomenon is not found in the relations between the redshift (1 < z < 3) and the mean axis ratio (b/a), as well as the Sérsic index (n).
Demosaicking for full motion video 9-band SWIR sensor
NASA Astrophysics Data System (ADS)
Kanaev, Andrey V.; Rawhouser, Marjorie; Kutteruf, Mary R.; Yetzbacher, Michael K.; DePrenger, Michael J.; Novak, Kyle M.; Miller, Corey A.; Miller, Christopher W.
2014-05-01
Short wave infrared (SWIR) spectral imaging systems are vital for Intelligence, Surveillance, and Reconnaissance (ISR) applications because of their abilities to autonomously detect targets and classify materials. Typically the spectral imagers are incapable of providing Full Motion Video (FMV) because of their reliance on line scanning. We enable FMV capability for a SWIR multi-spectral camera by creating a repeating pattern of 3x3 spectral filters on a staring focal plane array (FPA). In this paper we present the imagery from an FMV SWIR camera with nine discrete bands and discuss image processing algorithms necessary for its operation. The main task of image processing in this case is demosaicking of the spectral bands i.e. reconstructing full spectral images with original FPA resolution from spatially subsampled and incomplete spectral data acquired with the choice of filter array pattern. To the best of author's knowledge, the demosaicking algorithms for nine or more equally sampled bands have not been reported before. Moreover all existing algorithms developed for demosaicking visible color filter arrays with less than nine colors assume either certain relationship between the visible colors, which are not valid for SWIR imaging, or presence of one color band with higher sampling rate compared to the rest of the bands, which does not conform to our spectral filter pattern. We will discuss and present results for two novel approaches to demosaicking: interpolation using multi-band edge information and application of multi-frame super-resolution to a single frame resolution enhancement of multi-spectral spatially multiplexed images.
The security concern on internet banking adoption among Malaysian banking customers.
Sudha, Raju; Thiagarajan, A S; Seetharaman, A
2007-01-01
The existing literatures highlights that the security is the primary factor which determines the adoption of Internet banking technology. The secondary information on Internet banking development in Malaysia shows a very slow growth rate. Hence, this study aims to study the banking customers perception towards security concern and Internet banking adoption through the information collected from 150 sample respondents. The data analysis reveals that the customers have much concern about security and privacy issue in adoption of Internet banking, whether the customers are adopted Internet banking or not. Hence, it infers that to popularize Internet banking system there is a need for improvement in security and privacy issue among the banking customers.
John, Aesha; Morris, Amanda Sheffield; Halliburton, Amy L
2012-11-01
This study examined correlates of attachment security among children with intellectual disabilities in urban India. Survey and observational data were gathered from 47 children, mothers, and teachers on children's attachment security, adaptive functioning, and mother-child emotional availability. The data were analyzed to examine whether child emotional availability mediates the links between maternal emotional availability and child attachment security, and between child functioning and attachment security. The results supported full mediation, indicating that children's emotional availability was a primary mechanism through which maternal emotional availability and child functioning were linked to attachment security among children in our sample. The study findings are discussed in the context of implications for family interventions and research on socio-emotional development among children with intellectual disabilities.
Stability and Change in Attachment Security Across Adolescence
Allen, Joseph P.; McElhaney, Kathleen Boykin; Kuperminc, Gabriel P.; Jodl, Kathleen M.
2006-01-01
This study examined both continuity and familial, intrapsychic, and environmental predictors of change in adolescent attachment security across a two-year period from mid- to late-adolescence. Assessments included the Adult Attachment Interview, observed mother-adolescent interactions, test-based data, and adolescent self-reports obtained from an ethnically and socio-economically diverse sample of moderately at-risk adolescents interviewed at ages 16 and 18. Substantial stability in security was identified. Beyond this stability, however, relative declines in attachment security were predicted by adolescents’ enmeshed, overpersonalizing behavior with their mothers, depressive symptoms, and poverty status. Results suggest that while security may trend upward for non-stressed adolescents, stressors that overwhelm the capacity for affect regulation and that are not easily assuaged by parents predict relative declines in security. over time. PMID:15566380
McCue, M J; Thompson, J M; Dodd-McCue, D
Using a resource dependency framework and financial theory, this study assessed the market, mission, operational, and financial factors associated with the level of cash and security investments in hospitals. We ranked hospitals in the study sample based on their cash and security investments as a percentage of total assets: hospitals in the high cash/security investment category were in the top 25th percentile of all hospitals; those in the low cash/security investment group were in the bottom 25th percentile. Findings indicate that high cash/security investment hospitals are under either public or private nonprofit ownership and have greater market share. They also serve more complex cases, offer more technology services, generate greater profits, incur a more stable patient revenue base, and maintain less debt.
Decker, David L; Lyles, Brad F; Purcell, Richard G; Hershey, Ronald Lee
2014-05-20
An apparatus and method for supporting a tubing bundle during installation or removal. The apparatus includes a clamp for securing the tubing bundle to an external wireline. The method includes deploying the tubing bundle and wireline together, The tubing bundle is periodically secured to the wireline using a clamp.
Intergenerational transmission of attachment for infants raised in a prison nursery.
Byrne, M W; Goshin, L S; Joestl, S S
2010-07-01
Within a larger intervention study, attachment was assessed with the Strange Situation Procedure for 30 infants who co-resided with their mothers in a prison nursery. Sixty percent of infants were classified secure, 75% who co-resided a year or more and 43% who co-resided less than a year, all within the range of normative community samples. The year-long co-residing group had significantly more secure and fewer disorganized infants than predicted by their mothers' attachment status, measured by the Adult Attachment Interview, and a significantly greater proportion of secure infants than meta-analyzed community samples of mothers with low income, depression, or drug/alcohol abuse. Using intergenerational data collected with rigorous methods, this study provides the first evidence that mothers in a prison nursery setting can raise infants who are securely attached to them at rates comparable to healthy community children, even when the mother's own internal attachment representation has been categorized as insecure.
Intergenerational Transmission of Attachment for Infants Raised in a Prison Nursery
Byrne, M. W.; Goshin, L. S.; Joestl, S. S.
2010-01-01
Within a larger intervention study, attachment was assessed with the Strange Situation Procedure for 30 infants who co-resided with their mothers in a prison nursery. Sixty percent of infants were classified secure, 75% who co-resided a year or more and 43% who co-resided less than a year, all within the range of normative community samples. The year-long co-residing group had significantly more secure and fewer disorganized infants than predicted by their mothers’ attachment status, measured by the Adult Attachment Interview, and a significantly greater proportion of secure infants than meta-analyzed community samples of mothers with low income, depression, or drug/alcohol abuse. Using intergenerational data collected with rigorous methods, this study provides the first evidence that mothers in a prison nursery setting can raise infants who are securely attached to them at rates comparable to healthy community children, even when the mother’s own internal attachment representation has been categorized as insecure. PMID:20582846
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, K; Curran, B
I. Information Security Background (Speaker = Kevin McDonald) Evolution of Medical Devices Living and Working in a Hostile Environment Attack Motivations Attack Vectors Simple Safety Strategies Medical Device Security in the News Medical Devices and Vendors Summary II. Keeping Radiation Oncology IT Systems Secure (Speaker = Bruce Curran) Hardware Security Double-lock Requirements “Foreign” computer systems Portable Device Encryption Patient Data Storage System Requirements Network Configuration Isolating Critical Devices Isolating Clinical Networks Remote Access Considerations Software Applications / Configuration Passwords / Screen Savers Restricted Services / access Software Configuration Restriction Use of DNS to restrict accesse. Patches / Upgrades Awareness Intrusionmore » Prevention Intrusion Detection Threat Risk Analysis Conclusion Learning Objectives: Understanding how Hospital IT Requirements affect Radiation Oncology IT Systems. Illustrating sample practices for hardware, network, and software security. Discussing implementation of good IT security practices in radiation oncology. Understand overall risk and threats scenario in a networked environment.« less
NASA Astrophysics Data System (ADS)
Cantiello, Michele; Blakeslee, John P.; Ferrarese, Laura; Côté, Patrick; Roediger, Joel C.; Raimondo, Gabriella; Peng, Eric W.; Gwyn, Stephen; Durrell, Patrick R.; Cuillandre, Jean-Charles
2018-04-01
We describe a program to measure surface brightness fluctuation (SBF) distances to galaxies observed in the Next Generation Virgo Cluster Survey (NGVS), a photometric imaging survey covering 104 deg2 of the Virgo cluster in the u*, g, i, and z bandpasses with the Canada–France–Hawaii Telescope. We describe the selection of the sample galaxies, the procedures for measuring the apparent i-band SBF magnitude {\\overline{m}}i, and the calibration of the absolute Mibar as a function of observed stellar population properties. The multiband NGVS data set provides multiple options for calibrating the SBF distances, and we explore various calibrations involving individual color indices as well as combinations of two different colors. Within the color range of the present sample, the two-color calibrations do not significantly improve the scatter with respect to wide-baseline, single-color calibrations involving u*. We adopt the ({u}* -z) calibration as a reference for the present galaxy sample, with an observed scatter of 0.11 mag. For a few cases that lack good u* photometry, we use an alternative relation based on a combination of (g-i) and (g-z) colors, with only a slightly larger observed scatter of 0.12 mag. The agreement of our measurements with the best existing distance estimates provides confidence that our measurements are accurate. We present a preliminary catalog of distances for 89 galaxies brighter than B T ≈ 13.0 mag within the survey footprint, including members of the background M and W Clouds at roughly twice the distance of the main body of the Virgo cluster. The extension of the present work to fainter and bluer galaxies is in progress.
Time‐efficient and flexible design of optimized multishell HARDI diffusion
Tournier, J. Donald; Price, Anthony N.; Cordero‐Grande, Lucilio; Hughes, Emer J.; Malik, Shaihan; Steinweg, Johannes; Bastiani, Matteo; Sotiropoulos, Stamatios N.; Jbabdi, Saad; Andersson, Jesper; Edwards, A. David; Hajnal, Joseph V.
2017-01-01
Purpose Advanced diffusion magnetic resonance imaging benefits from collecting as much data as is feasible but is highly sensitive to subject motion and the risk of data loss increases with longer acquisition times. Our purpose was to create a maximally time‐efficient and flexible diffusion acquisition capability with built‐in robustness to partially acquired or interrupted scans. Our framework has been developed for the developing Human Connectome Project, but different application domains are equally possible. Methods Complete flexibility in the sampling of diffusion space combined with free choice of phase‐encode‐direction and the temporal ordering of the sampling scheme was developed taking into account motion robustness, internal consistency, and hardware limits. A split‐diffusion‐gradient preparation, multiband acceleration, and a restart capacity were added. Results The framework was used to explore different parameters choices for the desired high angular resolution diffusion imaging diffusion sampling. For the developing Human Connectome Project, a high‐angular resolution, maximally time‐efficient (20 min) multishell protocol with 300 diffusion‐weighted volumes was acquired in >400 neonates. An optimal design of a high‐resolution (1.2 × 1.2 mm2) two‐shell acquisition with 54 diffusion weighted volumes was obtained using a split‐gradient design. Conclusion The presented framework provides flexibility to generate time‐efficient and motion‐robust diffusion magnetic resonance imaging acquisitions taking into account hardware constraints that might otherwise result in sub‐optimal choices. Magn Reson Med 79:1276–1292, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28557055
Galaxy Zoo: secular evolution of barred galaxies from structural decomposition of multiband images
NASA Astrophysics Data System (ADS)
Kruk, Sandor J.; Lintott, Chris J.; Bamford, Steven P.; Masters, Karen L.; Simmons, Brooke D.; Häußler, Boris; Cardamone, Carolin N.; Hart, Ross E.; Kelvin, Lee; Schawinski, Kevin; Smethurst, Rebecca J.; Vika, Marina
2018-02-01
We present the results of two-component (disc+bar) and three-component (disc+bar+bulge) multiwavelength 2D photometric decompositions of barred galaxies in five Sloan Digital Sky Survey (SDSS) bands (ugriz). This sample of ∼3500 nearby (z < 0.06) galaxies with strong bars selected from the Galaxy Zoo citizen science project is the largest sample of barred galaxies to be studied using photometric decompositions that include a bar component. With detailed structural analysis, we obtain physical quantities such as the bar- and bulge-to-total luminosity ratios, effective radii, Sérsic indices and colours of the individual components. We observe a clear difference in the colours of the components, the discs being bluer than the bars and bulges. An overwhelming fraction of bulge components have Sérsic indices consistent with being pseudo-bulges. By comparing the barred galaxies with a mass-matched and volume-limited sample of unbarred galaxies, we examine the connection between the presence of a large-scale galactic bar and the properties of discs and bulges. We find that the discs of unbarred galaxies are significantly bluer compared to the discs of barred galaxies, while there is no significant difference in the colours of the bulges. We find possible evidence of secular evolution via bars that leads to the build-up of pseudo-bulges and to the quenching of star formation in the discs. We identify a subsample of unbarred galaxies with an inner lens/oval and find that their properties are similar to barred galaxies, consistent with an evolutionary scenario in which bars dissolve into lenses. This scenario deserves further investigation through both theoretical and observational work.
Edson, D.; Colvocoresses, Alden P.
1973-01-01
Remote-sensor images, including aerial and space photographs, are generally recorded on film, where the differences in density create the image of the scene. With panchromatic and multiband systems the density differences are recorded in shades of gray. On color or color infrared film, with the emulsion containing dyes sensitive to different wavelengths, a color image is created by a combination of color densities. The colors, however, can be separated by filtering or other techniques, and the color image reduced to monochromatic images in which each of the separated bands is recorded as a function of the gray scale.
Radar data processing and analysis
NASA Technical Reports Server (NTRS)
Ausherman, D.; Larson, R.; Liskow, C.
1976-01-01
Digitized four-channel radar images corresponding to particular areas from the Phoenix and Huntington test sites were generated in conjunction with prior experiments performed to collect X- and L-band synthetic aperture radar imagery of these two areas. The methods for generating this imagery are documented. A secondary objective was the investigation of digital processing techniques for extraction of information from the multiband radar image data. Following the digitization, the remaining resources permitted a preliminary machine analysis to be performed on portions of the radar image data. The results, although necessarily limited, are reported.
A survey of earth resources on Apollo 9 photography
NASA Technical Reports Server (NTRS)
Colwell, R. N.
1969-01-01
The types of photography obtained on the Apollo 9 mission and on concurrent flights made by supporting aircraft are described. The need for earth resource surveys and the value of aircraft and spacecraft as the platforms from which to make such surveys are considered along with the rational for using multiband photography and the means by which such photography can be enhanced. Aerial and space photographs are presented and analyzed. The feasibility of conducting earth resource surveys by means of space photography is discussed and results are summarized.
Portable receiver for radar detection
Lopes, Christopher D.; Kotter, Dale K.
2008-10-14
Various embodiments are described relating to a portable antenna-equipped device for multi-band radar detection. The detection device includes a plurality of antennas on a flexible substrate, a detection-and-control circuit, an indicator and a power source. The antenna may include one or more planar lithographic antennas that may be fabricated on a thin-film substrate. Each antenna may be tuned to a different selection frequency or band. The antennas may include a bolometer for radar detection. Each antenna may include a frequency selective surface for tuning to the selection frequency.
NASA Technical Reports Server (NTRS)
Taranik, James V.; Hutsinpiller, Amy; Borengasser, Marcus
1986-01-01
Thermal Infrared Multispectral Scanner (TIMS) data were acquired over the Virginia City area on September 12, 1984. The data were acquired at approximately 1130 hours local time (1723 IRIG). The TIMS data were analyzed using both photointerpretation and digital processing techniques. Karhuen-Loeve transformations were utilized to display variations in radiant spectral emittance. The TIMS image data were compared with color infrared metric camera photography, LANDSAT Thematic Mapper (TM) data, and key areas were photographed in the field.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 2 2011-04-01 2011-04-01 false Sampling. 151.10 Section 151.10 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE General § 151.10 Sampling. When necessary, the port director...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 2 2010-04-01 2010-04-01 false Sampling. 151.10 Section 151.10 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE General § 151.10 Sampling. When necessary, the port director...
29 CFR 1910.1051 - 1,3-Butadiene.
Code of Federal Regulations, 2013 CFR
2013-07-01
... samples taken; (E) Type of protective devices worn, if any; and (F) Name, social security number and... include at least the following information: (A) The name and social security number of the employee; (B... before the need arises. IV. Respirators and Protective Clothing A. Respirators: Good industrial hygiene...
29 CFR 1910.1051 - 1,3-Butadiene. =
Code of Federal Regulations, 2012 CFR
2012-07-01
... samples taken; (E) Type of protective devices worn, if any; and (F) Name, social security number and... include at least the following information: (A) The name and social security number of the employee; (B... before the need arises. IV. Respirators and Protective Clothing A. Respirators: Good industrial hygiene...
29 CFR 1910.1051 - 1,3-Butadiene.
Code of Federal Regulations, 2014 CFR
2014-07-01
... samples taken; (E) Type of protective devices worn, if any; and (F) Name, social security number and... include at least the following information: (A) The name and social security number of the employee; (B... before the need arises. IV. Respirators and Protective Clothing A. Respirators: Good industrial hygiene...
Development and initial validation of a measure of attachment security in late adulthood.
Lopez, Frederick G; Ramos, Katherine; Kim, Mijin
2018-05-10
Attachment theory-guided studies of older adults have generally relied on self-report measures that were validated on young adult samples and that focus on fears of rejection by romantic partners and on experiences of chronic discomfort with romantic intimacy as the key indicators of adult attachment security. These assessment characteristics raise important questions as to whether these measures are appropriate for use with older adults. Unlike their younger adult counterparts, older adults may face distinctive life stage-related threats to their attachment security such as declining health and autonomy, spousal loss, and increased dependence on younger family members for instrumental and emotional support. In response to these concerns, we conducted two independent studies aimed at developing and validating a novel measure of attachment security in older adults-the Late Adulthood Attachment Scale (LAAS). In study one (N = 287), exploratory structural equation modeling (ESEM) methods were used to identify and support a 2-factor structure (Fearful Avoidance, Secure Engagement) underlying LAAS scores. In study two (N = 417), ESEM and regression analyses confirmed the 2-factor structure and demonstrated the ability of LAAS scores to predict participants' well-being over a 3-month interval (n = 93). Findings from both studies support the psychometric adequacy of the LAAS as an alternative measure of attachment security for use with older adult samples. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
19 CFR 151.83 - Method of sampling.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 2 2010-04-01 2010-04-01 false Method of sampling. 151.83 Section 151.83 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Cotton § 151.83 Method of sampling. For...
19 CFR 151.67 - Sampling by importer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 2 2010-04-01 2010-04-01 false Sampling by importer. 151.67 Section 151.67 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Wool and Hair § 151.67 Sampling by...
19 CFR 151.66 - Duty on samples.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 2 2014-04-01 2014-04-01 false Duty on samples. 151.66 Section 151.66 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Wool and Hair § 151.66 Duty on samples. Duty...
19 CFR 151.66 - Duty on samples.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 2 2013-04-01 2013-04-01 false Duty on samples. 151.66 Section 151.66 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Wool and Hair § 151.66 Duty on samples. Duty...
19 CFR 151.66 - Duty on samples.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 2 2011-04-01 2011-04-01 false Duty on samples. 151.66 Section 151.66 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Wool and Hair § 151.66 Duty on samples. Duty...
19 CFR 151.66 - Duty on samples.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 2 2010-04-01 2010-04-01 false Duty on samples. 151.66 Section 151.66 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Wool and Hair § 151.66 Duty on samples. Duty...
19 CFR 151.66 - Duty on samples.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 2 2012-04-01 2012-04-01 false Duty on samples. 151.66 Section 151.66 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Wool and Hair § 151.66 Duty on samples. Duty...
Cassibba, Rosalinda; Castoro, Germana; Costantino, Elisabetta; Sette, Giovanna; Van Ijzendoorn, Marinus H
2015-01-01
This study aims to explore whether a short-term and attachment-based video-feedback intervention, the Video-Feedback Intervention to Promote Positive Parenting With Discussions on the Representational Level (VIPP-R; F. Juffer, M.J. Bakermans-Kranenburg, & M.H. van IJzendoorn, 2008), might be effective in enhancing maternal sensitivity and in promoting infants' attachment security in an Italian sample of dyads with primiparous mothers. Moreover, we explore whether the effectiveness of VIPP-R might be different for parents with insecure attachment representations who might be most in need of preventive intervention, as compared to parents who already have a more balanced and secure state of mind. Thirty-two infants (40% female) and their mothers participated in the study. The sample was divided into an intervention group (n = 16) and a comparison group (n = 16). At 6 and 13 months of age, the Adult Attachment Interview (AAI; M. Main, N. Kaplan, & J. Cassidy, 1985) was administered. Moreover, a 30-min mother-infant play situation was videotaped and coded for maternal sensitivity with the Emotional Availability Scales (Z. Biringen, J. Robinson, & R.N. Emde, 2000). At 13 months of age, the Strange Situation Procedure (M.D.S. Ainsworth, M.D. Blehar, E. Waters, & S. Wall, 1978) was used to assess the security of mother-infant attachment. Results revealed a significant interaction effect between intervention and AAI security for infant attachment security; moreover, main effects of AAI security and intervention for maternal sensitivity were found. The VIPP-R appears effective in enhancing maternal sensitivity and infant attachment security, although only mothers with an insecure attachment representation may benefit from the intervention. © 2014 Michigan Association for Infant Mental Health.
Lionetti, Francesca
2014-01-01
Life before adoption is characterized by the lack of sensitive and stable caregiving, putting infants at risk for non-secure attachment patterns. What leads to adoptees' attachment security in their adoptive families has not been conclusively determined. We investigated the roles of children's temperament and adoptive parents' attachment on adoptees' attachment security. The variables were studied in a sample of 30 early-placed adoptees (age at adoption placement M = 5.37 months, SD = 4.43) and their adoptive mothers and fathers. Attachment patterns were investigated by means of the Strange Situation Procedure and the Adult Attachment Interview, and temperament via the Infant Behavior Questionnaire. Results showed that mothers' secure attachment, but not fathers' attachment or adoptees' temperament, increased the chance of secure attachment in adoptees. Temperament moderated the mother-child attachment match.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., which contain the individual's name; rank/pay grade; Social Security Number; military branch or..., retiring, accessing, retaining, and disposing of records. Storage: Electronic storage media. Retrievability: Retrieved by individual's surname, Social Security Number and/or passport number. Safeguards: Electronic...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., which contain the individual's name; rank/pay grade; Social Security Number; military branch or..., retiring, accessing, retaining, and disposing of records. Storage: Electronic storage media. Retrievability: Retrieved by individual's surname, Social Security Number and/or passport number. Safeguards: Electronic...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., which contain the individual's name; rank/pay grade; Social Security Number; military branch or..., retiring, accessing, retaining, and disposing of records. Storage: Electronic storage media. Retrievability: Retrieved by individual's surname, Social Security Number and/or passport number. Safeguards: Electronic...
17 CFR Appendix B to Part 420 - Sample Large Position Report
Code of Federal Regulations, 2014 CFR
2014-04-01
... Memorandum 1 $ Memorandum 2: Report the gross par amount of fails to deliver. Included in the calculation of... millions at par value as of trade date] Security Being Reported Date For Which Information is Being... Principal Components of the Specific Security $________ Total Net Trading Position $ 2. Gross Financing...