Sample records for secure session key

  1. Secure SCADA communication by using a modified key management scheme.

    PubMed

    Rezai, Abdalhossein; Keshavarzi, Parviz; Moravej, Zahra

    2013-07-01

    This paper presents and evaluates a new cryptographic key management scheme which increases the efficiency and security of the Supervisory Control And Data Acquisition (SCADA) communication. In the proposed key management scheme, two key update phases are used: session key update and master key update. In the session key update phase, session keys are generated in the master station. In the master key update phase, the Elliptic Curve Diffie-Hellman (ECDH) protocol is used. The Poisson process is also used to model the Security Index (SI) and Quality of Service (QoS). Our analysis shows that the proposed key management not only supports the required speed in the MODBUS implementation but also has several advantages compared to other key management schemes for secure communication in SCADA networks. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Simple group password-based authenticated key agreements for the integrated EPR information system.

    PubMed

    Lee, Tian-Fu; Chang, I-Pin; Wang, Ching-Cheng

    2013-04-01

    The security and privacy are important issues for electronic patient records (EPRs). The goal of EPRs is sharing the patients' medical histories such as the diagnosis records, reports and diagnosis image files among hospitals by the Internet. So the security issue for the integrated EPR information system is essential. That is, to ensure the information during transmission through by the Internet is secure and private. The group password-based authenticated key agreement (GPAKE) allows a group of users like doctors, nurses and patients to establish a common session key by using password authentication. Then the group of users can securely communicate by using this session key. Many approaches about GAPKE employ the public key infrastructure (PKI) in order to have higher security. However, it not only increases users' overheads and requires keeping an extra equipment for storing long-term secret keys, but also requires maintaining the public key system. This investigation presents a simple group password-based authenticated key agreement (SGPAKE) protocol for the integrated EPR information system. The proposed SGPAKE protocol does not require using the server or users' public keys. Each user only remembers his weak password shared with a trusted server, and then can obtain a common session key. Then all users can securely communicate by using this session key. The proposed SGPAKE protocol not only provides users with convince, but also has higher security.

  3. Three-party authenticated key agreements for optimal communication

    PubMed Central

    Lee, Tian-Fu; Hwang, Tzonelih

    2017-01-01

    Authenticated key agreements enable users to determine session keys, and to securely communicate with others over an insecure channel via the session keys. This study investigates the lower bounds on communications for three-party authenticated key agreements and considers whether or not the sub-keys for generating a session key can be revealed in the channel. Since two clients do not share any common secret key, they require the help of the server to authenticate their identities and exchange confidential and authenticated information over insecure networks. However, if the session key security is based on asymmetric cryptosystems, then revealing the sub-keys cannot compromise the session key. The clients can directly exchange the sub-keys and reduce the transmissions. In addition, authenticated key agreements were developed by using the derived results of the lower bounds on communications. Compared with related approaches, the proposed protocols had fewer transmissions and realized the lower bounds on communications. PMID:28355253

  4. A Round-Efficient Authenticated Key Agreement Scheme Based on Extended Chaotic Maps for Group Cloud Meeting.

    PubMed

    Lin, Tsung-Hung; Tsung, Chen-Kun; Lee, Tian-Fu; Wang, Zeng-Bo

    2017-12-03

    The security is a critical issue for business purposes. For example, the cloud meeting must consider strong security to maintain the communication privacy. Considering the scenario with cloud meeting, we apply extended chaotic map to present passwordless group authentication key agreement, termed as Passwordless Group Authentication Key Agreement (PL-GAKA). PL-GAKA improves the computation efficiency for the simple group password-based authenticated key agreement (SGPAKE) proposed by Lee et al. in terms of computing the session key. Since the extended chaotic map has equivalent security level to the Diffie-Hellman key exchange scheme applied by SGPAKE, the security of PL-GAKA is not sacrificed when improving the computation efficiency. Moreover, PL-GAKA is a passwordless scheme, so the password maintenance is not necessary. Short-term authentication is considered, hence the communication security is stronger than other protocols by dynamically generating session key in each cloud meeting. In our analysis, we first prove that each meeting member can get the correct information during the meeting. We analyze common security issues for the proposed PL-GAKA in terms of session key security, mutual authentication, perfect forward security, and data integrity. Moreover, we also demonstrate that communicating in PL-GAKA is secure when suffering replay attacks, impersonation attacks, privileged insider attacks, and stolen-verifier attacks. Eventually, an overall comparison is given to show the performance between PL-GAKA, SGPAKE and related solutions.

  5. A Round-Efficient Authenticated Key Agreement Scheme Based on Extended Chaotic Maps for Group Cloud Meeting

    PubMed Central

    Lee, Tian-Fu; Wang, Zeng-Bo

    2017-01-01

    The security is a critical issue for business purposes. For example, the cloud meeting must consider strong security to maintain the communication privacy. Considering the scenario with cloud meeting, we apply extended chaotic map to present passwordless group authentication key agreement, termed as Passwordless Group Authentication Key Agreement (PL-GAKA). PL-GAKA improves the computation efficiency for the simple group password-based authenticated key agreement (SGPAKE) proposed by Lee et al. in terms of computing the session key. Since the extended chaotic map has equivalent security level to the Diffie–Hellman key exchange scheme applied by SGPAKE, the security of PL-GAKA is not sacrificed when improving the computation efficiency. Moreover, PL-GAKA is a passwordless scheme, so the password maintenance is not necessary. Short-term authentication is considered, hence the communication security is stronger than other protocols by dynamically generating session key in each cloud meeting. In our analysis, we first prove that each meeting member can get the correct information during the meeting. We analyze common security issues for the proposed PL-GAKA in terms of session key security, mutual authentication, perfect forward security, and data integrity. Moreover, we also demonstrate that communicating in PL-GAKA is secure when suffering replay attacks, impersonation attacks, privileged insider attacks, and stolen-verifier attacks. Eventually, an overall comparison is given to show the performance between PL-GAKA, SGPAKE and related solutions. PMID:29207509

  6. Server-Controlled Identity-Based Authenticated Key Exchange

    NASA Astrophysics Data System (ADS)

    Guo, Hua; Mu, Yi; Zhang, Xiyong; Li, Zhoujun

    We present a threshold identity-based authenticated key exchange protocol that can be applied to an authenticated server-controlled gateway-user key exchange. The objective is to allow a user and a gateway to establish a shared session key with the permission of the back-end servers, while the back-end servers cannot obtain any information about the established session key. Our protocol has potential applications in strong access control of confidential resources. In particular, our protocol possesses the semantic security and demonstrates several highly-desirable security properties such as key privacy and transparency. We prove the security of the protocol based on the Bilinear Diffie-Hellman assumption in the random oracle model.

  7. Efficient and Security Enhanced Anonymous Authentication with Key Agreement Scheme in Wireless Sensor Networks

    PubMed Central

    Jung, Jaewook; Moon, Jongho; Lee, Donghoon; Won, Dongho

    2017-01-01

    At present, users can utilize an authenticated key agreement protocol in a Wireless Sensor Network (WSN) to securely obtain desired information, and numerous studies have investigated authentication techniques to construct efficient, robust WSNs. Chang et al. recently presented an authenticated key agreement mechanism for WSNs and claimed that their authentication mechanism can both prevent various types of attacks, as well as preserve security properties. However, we have discovered that Chang et al’s method possesses some security weaknesses. First, their mechanism cannot guarantee protection against a password guessing attack, user impersonation attack or session key compromise. Second, the mechanism results in a high load on the gateway node because the gateway node should always maintain the verifier tables. Third, there is no session key verification process in the authentication phase. To this end, we describe how the previously-stated weaknesses occur and propose a security-enhanced version for WSNs. We present a detailed analysis of the security and performance of our authenticated key agreement mechanism, which not only enhances security compared to that of related schemes, but also takes efficiency into consideration. PMID:28335572

  8. Efficient and Security Enhanced Anonymous Authentication with Key Agreement Scheme in Wireless Sensor Networks.

    PubMed

    Jung, Jaewook; Moon, Jongho; Lee, Donghoon; Won, Dongho

    2017-03-21

    At present, users can utilize an authenticated key agreement protocol in a Wireless Sensor Network (WSN) to securely obtain desired information, and numerous studies have investigated authentication techniques to construct efficient, robust WSNs. Chang et al. recently presented an authenticated key agreement mechanism for WSNs and claimed that their authentication mechanism can both prevent various types of attacks, as well as preserve security properties. However, we have discovered that Chang et al's method possesses some security weaknesses. First, their mechanism cannot guarantee protection against a password guessing attack, user impersonation attack or session key compromise. Second, the mechanism results in a high load on the gateway node because the gateway node should always maintain the verifier tables. Third, there is no session key verification process in the authentication phase. To this end, we describe how the previously-stated weaknesses occur and propose a security-enhanced version for WSNs. We present a detailed analysis of the security and performance of our authenticated key agreement mechanism, which not only enhances security compared to that of related schemes, but also takes efficiency into consideration.

  9. A Novel Re-keying Function Protocol (NRFP) For Wireless Sensor Network Security

    PubMed Central

    Abdullah, Maan Younis; Hua, Gui Wei; Alsharabi, Naif

    2008-01-01

    This paper describes a novel re-keying function protocol (NRFP) for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs), covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding innetwork processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks. PMID:27873963

  10. A Novel Re-keying Function Protocol (NRFP) For Wireless Sensor Network Security.

    PubMed

    Abdullah, Maan Younis; Hua, Gui Wei; Alsharabi, Naif

    2008-12-04

    This paper describes a novel re-keying function protocol (NRFP) for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs), covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding in-network processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks.

  11. A Polynomial Subset-Based Efficient Multi-Party Key Management System for Lightweight Device Networks.

    PubMed

    Mahmood, Zahid; Ning, Huansheng; Ghafoor, AtaUllah

    2017-03-24

    Wireless Sensor Networks (WSNs) consist of lightweight devices to measure sensitive data that are highly vulnerable to security attacks due to their constrained resources. In a similar manner, the internet-based lightweight devices used in the Internet of Things (IoT) are facing severe security and privacy issues because of the direct accessibility of devices due to their connection to the internet. Complex and resource-intensive security schemes are infeasible and reduce the network lifetime. In this regard, we have explored the polynomial distribution-based key establishment schemes and identified an issue that the resultant polynomial value is either storage intensive or infeasible when large values are multiplied. It becomes more costly when these polynomials are regenerated dynamically after each node join or leave operation and whenever key is refreshed. To reduce the computation, we have proposed an Efficient Key Management (EKM) scheme for multiparty communication-based scenarios. The proposed session key management protocol is established by applying a symmetric polynomial for group members, and the group head acts as a responsible node. The polynomial generation method uses security credentials and secure hash function. Symmetric cryptographic parameters are efficient in computation, communication, and the storage required. The security justification of the proposed scheme has been completed by using Rubin logic, which guarantees that the protocol attains mutual validation and session key agreement property strongly among the participating entities. Simulation scenarios are performed using NS 2.35 to validate the results for storage, communication, latency, energy, and polynomial calculation costs during authentication, session key generation, node migration, secure joining, and leaving phases. EKM is efficient regarding storage, computation, and communication overhead and can protect WSN-based IoT infrastructure.

  12. A Polynomial Subset-Based Efficient Multi-Party Key Management System for Lightweight Device Networks

    PubMed Central

    Mahmood, Zahid; Ning, Huansheng; Ghafoor, AtaUllah

    2017-01-01

    Wireless Sensor Networks (WSNs) consist of lightweight devices to measure sensitive data that are highly vulnerable to security attacks due to their constrained resources. In a similar manner, the internet-based lightweight devices used in the Internet of Things (IoT) are facing severe security and privacy issues because of the direct accessibility of devices due to their connection to the internet. Complex and resource-intensive security schemes are infeasible and reduce the network lifetime. In this regard, we have explored the polynomial distribution-based key establishment schemes and identified an issue that the resultant polynomial value is either storage intensive or infeasible when large values are multiplied. It becomes more costly when these polynomials are regenerated dynamically after each node join or leave operation and whenever key is refreshed. To reduce the computation, we have proposed an Efficient Key Management (EKM) scheme for multiparty communication-based scenarios. The proposed session key management protocol is established by applying a symmetric polynomial for group members, and the group head acts as a responsible node. The polynomial generation method uses security credentials and secure hash function. Symmetric cryptographic parameters are efficient in computation, communication, and the storage required. The security justification of the proposed scheme has been completed by using Rubin logic, which guarantees that the protocol attains mutual validation and session key agreement property strongly among the participating entities. Simulation scenarios are performed using NS 2.35 to validate the results for storage, communication, latency, energy, and polynomial calculation costs during authentication, session key generation, node migration, secure joining, and leaving phases. EKM is efficient regarding storage, computation, and communication overhead and can protect WSN-based IoT infrastructure. PMID:28338632

  13. Flexible session management in a distributed environment

    NASA Astrophysics Data System (ADS)

    Miller, Zach; Bradley, Dan; Tannenbaum, Todd; Sfiligoi, Igor

    2010-04-01

    Many secure communication libraries used by distributed systems, such as SSL, TLS, and Kerberos, fail to make a clear distinction between the authentication, session, and communication layers. In this paper we introduce CEDAR, the secure communication library used by the Condor High Throughput Computing software, and present the advantages to a distributed computing system resulting from CEDAR's separation of these layers. Regardless of the authentication method used, CEDAR establishes a secure session key, which has the flexibility to be used for multiple capabilities. We demonstrate how a layered approach to security sessions can avoid round-trips and latency inherent in network authentication. The creation of a distinct session management layer allows for optimizations to improve scalability by way of delegating sessions to other components in the system. This session delegation creates a chain of trust that reduces the overhead of establishing secure connections and enables centralized enforcement of system-wide security policies. Additionally, secure channels based upon UDP datagrams are often overlooked by existing libraries; we show how CEDAR's structure accommodates this as well. As an example of the utility of this work, we show how the use of delegated security sessions and other techniques inherent in CEDAR's architecture enables US CMS to meet their scalability requirements in deploying Condor over large-scale, wide-area grid systems.

  14. Cryptanalysis and Enhancement of Anonymity Preserving Remote User Mutual Authentication and Session Key Agreement Scheme for E-Health Care Systems.

    PubMed

    Amin, Ruhul; Islam, S K Hafizul; Biswas, G P; Khan, Muhammad Khurram; Li, Xiong

    2015-11-01

    The E-health care systems employ IT infrastructure for maximizing health care resources utilization as well as providing flexible opportunities to the remote patient. Therefore, transmission of medical data over any public networks is necessary in health care system. Note that patient authentication including secure data transmission in e-health care system is critical issue. Although several user authentication schemes for accessing remote services are available, their security analysis show that none of them are free from relevant security attacks. We reviewed Das et al.'s scheme and demonstrated their scheme lacks proper protection against several security attacks such as user anonymity, off-line password guessing attack, smart card theft attack, user impersonation attack, server impersonation attack, session key discloser attack. In order to overcome the mentioned security pitfalls, this paper proposes an anonymity preserving remote patient authentication scheme usable in E-health care systems. We then validated the security of the proposed scheme using BAN logic that ensures secure mutual authentication and session key agreement. We also presented the experimental results of the proposed scheme using AVISPA software and the results ensure that our scheme is secure under OFMC and CL-AtSe models. Moreover, resilience of relevant security attacks has been proved through both formal and informal security analysis. The performance analysis and comparison with other schemes are also made, and it has been found that the proposed scheme overcomes the security drawbacks of the Das et al.'s scheme and additionally achieves extra security requirements.

  15. A Secure Group Communication Architecture for a Swarm of Autonomous Unmanned Aerial Vehicles

    DTIC Science & Technology

    2008-03-01

    members to use the same decryption key. This shared decryption key is called the Session Encryption Key ( SEK ) or Traffic Encryption Key (TEK...Since everyone shares the SEK , members need to hold additional Key Encryption Keys (KEK) that are used to securely distribute the SEK to each valid...managing this process. To preserve the secrecy of the multicast data, the SEK needs to be updated upon certain events such as a member joining and

  16. 77 FR 26024 - National Maritime Security Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Maritime Intelligence Center and in open session at the American Bureau of Shipping, 1400 Key Blvd., Suite... Guard to continue deliberations and make forward progress regarding multiple maritime security...

  17. Key management schemes using routing information frames in secure wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Kamaev, V. A.; Finogeev, A. G.; Finogeev, A. A.; Parygin, D. S.

    2017-01-01

    The article considers the problems and objectives of key management for data encryption in wireless sensor networks (WSN) of SCADA systems. The structure of the key information in the ZigBee network and methods of keys obtaining are discussed. The use of a hybrid key management schemes is most suitable for WSN. The session symmetric key is used to encrypt the sensor data, asymmetric keys are used to encrypt the session key transmitted from the routing information. Three algorithms of hybrid key management using routing information frames determined by routing methods and the WSN topology are presented.

  18. Security Analysis and Improvement of an Anonymous Authentication Scheme for Roaming Services

    PubMed Central

    Lee, Youngsook; Paik, Juryon

    2014-01-01

    An anonymous authentication scheme for roaming services in global mobility networks allows a mobile user visiting a foreign network to achieve mutual authentication and session key establishment with the foreign-network operator in an anonymous manner. In this work, we revisit He et al.'s anonymous authentication scheme for roaming services and present previously unpublished security weaknesses in the scheme: (1) it fails to provide user anonymity against any third party as well as the foreign agent, (2) it cannot protect the passwords of mobile users due to its vulnerability to an offline dictionary attack, and (3) it does not achieve session-key security against a man-in-the-middle attack. We also show how the security weaknesses of He et al.'s scheme can be addressed without degrading the efficiency of the scheme. PMID:25302330

  19. Security analysis and improvement of an anonymous authentication scheme for roaming services.

    PubMed

    Lee, Youngsook; Paik, Juryon

    2014-01-01

    An anonymous authentication scheme for roaming services in global mobility networks allows a mobile user visiting a foreign network to achieve mutual authentication and session key establishment with the foreign-network operator in an anonymous manner. In this work, we revisit He et al.'s anonymous authentication scheme for roaming services and present previously unpublished security weaknesses in the scheme: (1) it fails to provide user anonymity against any third party as well as the foreign agent, (2) it cannot protect the passwords of mobile users due to its vulnerability to an offline dictionary attack, and (3) it does not achieve session-key security against a man-in-the-middle attack. We also show how the security weaknesses of He et al.'s scheme can be addressed without degrading the efficiency of the scheme.

  20. Mutual Authentication Scheme in Secure Internet of Things Technology for Comfortable Lifestyle.

    PubMed

    Park, Namje; Kang, Namhi

    2015-12-24

    The Internet of Things (IoT), which can be regarded as an enhanced version of machine-to-machine communication technology, was proposed to realize intelligent thing-to-thing communications by utilizing the Internet connectivity. In the IoT, "things" are generally heterogeneous and resource constrained. In addition, such things are connected to each other over low-power and lossy networks. In this paper, we propose an inter-device authentication and session-key distribution system for devices with only encryption modules. In the proposed system, unlike existing sensor-network environments where the key distribution center distributes the key, each sensor node is involved with the generation of session keys. In addition, in the proposed scheme, the performance is improved so that the authenticated device can calculate the session key in advance. The proposed mutual authentication and session-key distribution system can withstand replay attacks, man-in-the-middle attacks, and wiretapped secret-key attacks.

  1. Enhanced smartcard-based password-authenticated key agreement using extended chaotic maps.

    PubMed

    Lee, Tian-Fu; Hsiao, Chia-Hung; Hwang, Shi-Han; Lin, Tsung-Hung

    2017-01-01

    A smartcard based password-authenticated key agreement scheme enables a legal user to log in to a remote authentication server and access remote services through public networks using a weak password and a smart card. Lin recently presented an improved chaotic maps-based password-authenticated key agreement scheme that used smartcards to eliminate the weaknesses of the scheme of Guo and Chang, which does not provide strong user anonymity and violates session key security. However, the improved scheme of Lin does not exhibit the freshness property and the validity of messages so it still fails to withstand denial-of-service and privileged-insider attacks. Additionally, a single malicious participant can predetermine the session key such that the improved scheme does not exhibit the contributory property of key agreements. This investigation discusses these weaknesses and proposes an enhanced smartcard-based password-authenticated key agreement scheme that utilizes extended chaotic maps. The session security of this enhanced scheme is based on the extended chaotic map-based Diffie-Hellman problem, and is proven in the real-or-random and the sequence of games models. Moreover, the enhanced scheme ensures the freshness of communicating messages by appending timestamps, and thereby avoids the weaknesses in previous schemes.

  2. Enhanced smartcard-based password-authenticated key agreement using extended chaotic maps

    PubMed Central

    Lee, Tian-Fu; Hsiao, Chia-Hung; Hwang, Shi-Han

    2017-01-01

    A smartcard based password-authenticated key agreement scheme enables a legal user to log in to a remote authentication server and access remote services through public networks using a weak password and a smart card. Lin recently presented an improved chaotic maps-based password-authenticated key agreement scheme that used smartcards to eliminate the weaknesses of the scheme of Guo and Chang, which does not provide strong user anonymity and violates session key security. However, the improved scheme of Lin does not exhibit the freshness property and the validity of messages so it still fails to withstand denial-of-service and privileged-insider attacks. Additionally, a single malicious participant can predetermine the session key such that the improved scheme does not exhibit the contributory property of key agreements. This investigation discusses these weaknesses and proposes an enhanced smartcard-based password-authenticated key agreement scheme that utilizes extended chaotic maps. The session security of this enhanced scheme is based on the extended chaotic map-based Diffie-Hellman problem, and is proven in the real-or-random and the sequence of games models. Moreover, the enhanced scheme ensures the freshness of communicating messages by appending timestamps, and thereby avoids the weaknesses in previous schemes. PMID:28759615

  3. Security analysis and enhanced user authentication in proxy mobile IPv6 networks.

    PubMed

    Kang, Dongwoo; Jung, Jaewook; Lee, Donghoon; Kim, Hyoungshick; Won, Dongho

    2017-01-01

    The Proxy Mobile IPv6 (PMIPv6) is a network-based mobility management protocol that allows a Mobile Node(MN) connected to the PMIPv6 domain to move from one network to another without changing the assigned IPv6 address. The user authentication procedure in this protocol is not standardized, but many smartcard based authentication schemes have been proposed. Recently, Alizadeh et al. proposed an authentication scheme for the PMIPv6. However, it could allow an attacker to derive an encryption key that must be securely shared between MN and the Mobile Access Gate(MAG). As a result, outsider adversary can derive MN's identity, password and session key. In this paper, we analyze Alizadeh et al.'s scheme regarding security and propose an enhanced authentication scheme that uses a dynamic identity to satisfy anonymity. Furthermore, we use BAN logic to show that our scheme can successfully generate and communicate with the inter-entity session key.

  4. Information security system based on virtual-optics imaging methodology and public key infrastructure

    NASA Astrophysics Data System (ADS)

    Peng, Xiang; Zhang, Peng; Cai, Lilong

    In this paper, we present a virtual-optical based information security system model with the aid of public-key-infrastructure (PKI) techniques. The proposed model employs a hybrid architecture in which our previously published encryption algorithm based on virtual-optics imaging methodology (VOIM) can be used to encipher and decipher data while an asymmetric algorithm, for example RSA, is applied for enciphering and deciphering the session key(s). For an asymmetric system, given an encryption key, it is computationally infeasible to determine the decryption key and vice versa. The whole information security model is run under the framework of PKI, which is on basis of public-key cryptography and digital signatures. This PKI-based VOIM security approach has additional features like confidentiality, authentication, and integrity for the purpose of data encryption under the environment of network.

  5. A Secure Multicast Framework in Large and High-Mobility Network Groups

    NASA Astrophysics Data System (ADS)

    Lee, Jung-San; Chang, Chin-Chen

    With the widespread use of Internet applications such as Teleconference, Pay-TV, Collaborate tasks, and Message services, how to construct and distribute the group session key to all group members securely is becoming and more important. Instead of adopting the point-to-point packet delivery, these emerging applications are based upon the mechanism of multicast communication, which allows the group member to communicate with multi-party efficiently. There are two main issues in the mechanism of multicast communication: Key Distribution and Scalability. The first issue is how to distribute the group session key to all group members securely. The second one is how to maintain the high performance in large network groups. Group members in conventional multicast systems have to keep numerous secret keys in databases, which makes it very inconvenient for them. Furthermore, in case that a member joins or leaves the communication group, many involved participants have to change their own secret keys to preserve the forward secrecy and the backward secrecy. We consequently propose a novel version for providing secure multicast communication in large network groups. Our proposed framework not only preserves the forward secrecy and the backward secrecy but also possesses better performance than existing alternatives. Specifically, simulation results demonstrate that our scheme is suitable for high-mobility environments.

  6. Mutual Authentication Scheme in Secure Internet of Things Technology for Comfortable Lifestyle

    PubMed Central

    Park, Namje; Kang, Namhi

    2015-01-01

    The Internet of Things (IoT), which can be regarded as an enhanced version of machine-to-machine communication technology, was proposed to realize intelligent thing-to-thing communications by utilizing the Internet connectivity. In the IoT, “things” are generally heterogeneous and resource constrained. In addition, such things are connected to each other over low-power and lossy networks. In this paper, we propose an inter-device authentication and session-key distribution system for devices with only encryption modules. In the proposed system, unlike existing sensor-network environments where the key distribution center distributes the key, each sensor node is involved with the generation of session keys. In addition, in the proposed scheme, the performance is improved so that the authenticated device can calculate the session key in advance. The proposed mutual authentication and session-key distribution system can withstand replay attacks, man-in-the-middle attacks, and wiretapped secret-key attacks. PMID:26712759

  7. Security analysis and enhanced user authentication in proxy mobile IPv6 networks

    PubMed Central

    Kang, Dongwoo; Jung, Jaewook; Lee, Donghoon; Kim, Hyoungshick

    2017-01-01

    The Proxy Mobile IPv6 (PMIPv6) is a network-based mobility management protocol that allows a Mobile Node(MN) connected to the PMIPv6 domain to move from one network to another without changing the assigned IPv6 address. The user authentication procedure in this protocol is not standardized, but many smartcard based authentication schemes have been proposed. Recently, Alizadeh et al. proposed an authentication scheme for the PMIPv6. However, it could allow an attacker to derive an encryption key that must be securely shared between MN and the Mobile Access Gate(MAG). As a result, outsider adversary can derive MN’s identity, password and session key. In this paper, we analyze Alizadeh et al.’s scheme regarding security and propose an enhanced authentication scheme that uses a dynamic identity to satisfy anonymity. Furthermore, we use BAN logic to show that our scheme can successfully generate and communicate with the inter-entity session key. PMID:28719621

  8. Secure anonymity-preserving password-based user authentication and session key agreement scheme for telecare medicine information systems.

    PubMed

    Sutrala, Anil Kumar; Das, Ashok Kumar; Odelu, Vanga; Wazid, Mohammad; Kumari, Saru

    2016-10-01

    Information and communication and technology (ICT) has changed the entire paradigm of society. ICT facilitates people to use medical services over the Internet, thereby reducing the travel cost, hospitalization cost and time to a greater extent. Recent advancements in Telecare Medicine Information System (TMIS) facilitate users/patients to access medical services over the Internet by gaining health monitoring facilities at home. Amin and Biswas recently proposed a RSA-based user authentication and session key agreement protocol usable for TMIS, which is an improvement over Giri et al.'s RSA-based user authentication scheme for TMIS. In this paper, we show that though Amin-Biswas's scheme considerably improves the security drawbacks of Giri et al.'s scheme, their scheme has security weaknesses as it suffers from attacks such as privileged insider attack, user impersonation attack, replay attack and also offline password guessing attack. A new RSA-based user authentication scheme for TMIS is proposed, which overcomes the security pitfalls of Amin-Biswas's scheme and also preserves user anonymity property. The careful formal security analysis using the two widely accepted Burrows-Abadi-Needham (BAN) logic and the random oracle models is done. Moreover, the informal security analysis of the scheme is also done. These security analyses show the robustness of our new scheme against the various known attacks as well as attacks found in Amin-Biswas's scheme. The simulation of the proposed scheme using the widely accepted Automated Validation of Internet Security Protocols and Applications (AVISPA) tool is also done. We present a new user authentication and session key agreement scheme for TMIS, which fixes the mentioned security pitfalls found in Amin-Biswas's scheme, and we also show that the proposed scheme provides better security than other existing schemes through the rigorous security analysis and verification tool. Furthermore, we present the formal security verification of our scheme using the widely accepted AVISPA tool. High security and extra functionality features allow our proposed scheme to be applicable for telecare medicine information systems which is used for e-health care medical applications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Entropy uncertainty relations and stability of phase-temporal quantum cryptography with finite-length transmitted strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N., E-mail: sergei.molotkov@gmail.com

    2012-12-15

    Any key-generation session contains a finite number of quantum-state messages, and it is there-fore important to understand the fundamental restrictions imposed on the minimal length of a string required to obtain a secret key with a specified length. The entropy uncertainty relations for smooth min and max entropies considerably simplify and shorten the proof of security. A proof of security of quantum key distribution with phase-temporal encryption is presented. This protocol provides the maximum critical error compared to other protocols up to which secure key distribution is guaranteed. In addition, unlike other basic protocols (of the BB84 type), which aremore » vulnerable with respect to an attack by 'blinding' of avalanche photodetectors, this protocol is stable with respect to such an attack and guarantees key security.« less

  10. Network and data security design for telemedicine applications.

    PubMed

    Makris, L; Argiriou, N; Strintzis, M G

    1997-01-01

    The maturing of telecommunication technologies has ushered in a whole new era of applications and services in the health care environment. Teleworking, teleconsultation, mutlimedia conferencing and medical data distribution are rapidly becoming commonplace in clinical practice. As a result, a set of problems arises, concerning data confidentiality and integrity. Public computer networks, such as the emerging ISDN technology, are vulnerable to eavesdropping. Therefore it is important for telemedicine applications to employ end-to-end encryption mechanisms securing the data channel from unauthorized access of modification. We propose a network access and encryption system that is both economical and easily implemented for integration in developing or existing applications, using well-known and thoroughly tested encryption algorithms. Public-key cryptography is used for session-key exchange, while symmetric algorithms are used for bulk encryption. Mechanisms for session-key generation and exchange are also provided.

  11. A Secure Dynamic Identity and Chaotic Maps Based User Authentication and Key Agreement Scheme for e-Healthcare Systems.

    PubMed

    Li, Chun-Ta; Lee, Cheng-Chi; Weng, Chi-Yao; Chen, Song-Jhih

    2016-11-01

    Secure user authentication schemes in many e-Healthcare applications try to prevent unauthorized users from intruding the e-Healthcare systems and a remote user and a medical server can establish session keys for securing the subsequent communications. However, many schemes does not mask the users' identity information while constructing a login session between two or more parties, even though personal privacy of users is a significant topic for e-Healthcare systems. In order to preserve personal privacy of users, dynamic identity based authentication schemes are hiding user's real identity during the process of network communications and only the medical server knows login user's identity. In addition, most of the existing dynamic identity based authentication schemes ignore the inputs verification during login condition and this flaw may subject to inefficiency in the case of incorrect inputs in the login phase. Regarding the use of secure authentication mechanisms for e-Healthcare systems, this paper presents a new dynamic identity and chaotic maps based authentication scheme and a secure data protection approach is employed in every session to prevent illegal intrusions. The proposed scheme can not only quickly detect incorrect inputs during the phases of login and password change but also can invalidate the future use of a lost/stolen smart card. Compared the functionality and efficiency with other authentication schemes recently, the proposed scheme satisfies desirable security attributes and maintains acceptable efficiency in terms of the computational overheads for e-Healthcare systems.

  12. AES based secure low energy adaptive clustering hierarchy for WSNs

    NASA Astrophysics Data System (ADS)

    Kishore, K. R.; Sarma, N. V. S. N.

    2013-01-01

    Wireless sensor networks (WSNs) provide a low cost solution in diversified application areas. The wireless sensor nodes are inexpensive tiny devices with limited storage, computational capability and power. They are being deployed in large scale in both military and civilian applications. Security of the data is one of the key concerns where large numbers of nodes are deployed. Here, an energy-efficient secure routing protocol, secure-LEACH (Low Energy Adaptive Clustering Hierarchy) for WSNs based on the Advanced Encryption Standard (AES) is being proposed. This crypto system is a session based one and a new session key is assigned for each new session. The network (WSN) is divided into number of groups or clusters and a cluster head (CH) is selected among the member nodes of each cluster. The measured data from the nodes is aggregated by the respective CH's and then each CH relays this data to another CH towards the gateway node in the WSN which in turn sends the same to the Base station (BS). In order to maintain confidentiality of data while being transmitted, it is necessary to encrypt the data before sending at every hop, from a node to the CH and from the CH to another CH or to the gateway node.

  13. An Energy Efficient Mutual Authentication and Key Agreement Scheme Preserving Anonymity for Wireless Sensor Networks.

    PubMed

    Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2016-06-08

    WSNs (Wireless sensor networks) are nowadays viewed as a vital portion of the IoTs (Internet of Things). Security is a significant issue in WSNs, especially in resource-constrained environments. AKA (Authentication and key agreement) enhances the security of WSNs against adversaries attempting to get sensitive sensor data. Various AKA schemes have been developed for verifying the legitimate users of a WSN. Firstly, we scrutinize Amin-Biswas's currently scheme and demonstrate the major security loopholes in their works. Next, we propose a lightweight AKA scheme, using symmetric key cryptography based on smart card, which is resilient against all well known security attacks. Furthermore, we prove the scheme accomplishes mutual handshake and session key agreement property securely between the participates involved under BAN (Burrows, Abadi and Needham) logic. Moreover, formal security analysis and simulations are also conducted using AVISPA(Automated Validation of Internet Security Protocols and Applications) to show that our scheme is secure against active and passive attacks. Additionally, performance analysis shows that our proposed scheme is secure and efficient to apply for resource-constrained WSNs.

  14. An Energy Efficient Mutual Authentication and Key Agreement Scheme Preserving Anonymity for Wireless Sensor Networks

    PubMed Central

    Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2016-01-01

    WSNs (Wireless sensor networks) are nowadays viewed as a vital portion of the IoTs (Internet of Things). Security is a significant issue in WSNs, especially in resource-constrained environments. AKA (Authentication and key agreement) enhances the security of WSNs against adversaries attempting to get sensitive sensor data. Various AKA schemes have been developed for verifying the legitimate users of a WSN. Firstly, we scrutinize Amin-Biswas’s currently scheme and demonstrate the major security loopholes in their works. Next, we propose a lightweight AKA scheme, using symmetric key cryptography based on smart card, which is resilient against all well known security attacks. Furthermore, we prove the scheme accomplishes mutual handshake and session key agreement property securely between the participates involved under BAN (Burrows, Abadi and Needham) logic. Moreover, formal security analysis and simulations are also conducted using AVISPA(Automated Validation of Internet Security Protocols and Applications) to show that our scheme is secure against active and passive attacks. Additionally, performance analysis shows that our proposed scheme is secure and efficient to apply for resource-constrained WSNs. PMID:27338382

  15. Virtual-optical information security system based on public key infrastructure

    NASA Astrophysics Data System (ADS)

    Peng, Xiang; Zhang, Peng; Cai, Lilong; Niu, Hanben

    2005-01-01

    A virtual-optical based encryption model with the aid of public key infrastructure (PKI) is presented in this paper. The proposed model employs a hybrid architecture in which our previously published encryption method based on virtual-optics scheme (VOS) can be used to encipher and decipher data while an asymmetric algorithm, for example RSA, is applied for enciphering and deciphering the session key(s). The whole information security model is run under the framework of international standard ITU-T X.509 PKI, which is on basis of public-key cryptography and digital signatures. This PKI-based VOS security approach has additional features like confidentiality, authentication, and integrity for the purpose of data encryption under the environment of network. Numerical experiments prove the effectiveness of the method. The security of proposed model is briefly analyzed by examining some possible attacks from the viewpoint of a cryptanalysis.

  16. Location-Aware Dynamic Session-Key Management for Grid-Based Wireless Sensor Networks

    PubMed Central

    Chen, Chin-Ling; Lin, I-Hsien

    2010-01-01

    Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths. PMID:22163606

  17. Location-aware dynamic session-key management for grid-based Wireless Sensor Networks.

    PubMed

    Chen, Chin-Ling; Lin, I-Hsien

    2010-01-01

    Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths.

  18. A User Authentication Scheme Based on Elliptic Curves Cryptography for Wireless Ad Hoc Networks

    PubMed Central

    Chen, Huifang; Ge, Linlin; Xie, Lei

    2015-01-01

    The feature of non-infrastructure support in a wireless ad hoc network (WANET) makes it suffer from various attacks. Moreover, user authentication is the first safety barrier in a network. A mutual trust is achieved by a protocol which enables communicating parties to authenticate each other at the same time and to exchange session keys. For the resource-constrained WANET, an efficient and lightweight user authentication scheme is necessary. In this paper, we propose a user authentication scheme based on the self-certified public key system and elliptic curves cryptography for a WANET. Using the proposed scheme, an efficient two-way user authentication and secure session key agreement can be achieved. Security analysis shows that our proposed scheme is resilient to common known attacks. In addition, the performance analysis shows that our proposed scheme performs similar or better compared with some existing user authentication schemes. PMID:26184224

  19. A User Authentication Scheme Based on Elliptic Curves Cryptography for Wireless Ad Hoc Networks.

    PubMed

    Chen, Huifang; Ge, Linlin; Xie, Lei

    2015-07-14

    The feature of non-infrastructure support in a wireless ad hoc network (WANET) makes it suffer from various attacks. Moreover, user authentication is the first safety barrier in a network. A mutual trust is achieved by a protocol which enables communicating parties to authenticate each other at the same time and to exchange session keys. For the resource-constrained WANET, an efficient and lightweight user authentication scheme is necessary. In this paper, we propose a user authentication scheme based on the self-certified public key system and elliptic curves cryptography for a WANET. Using the proposed scheme, an efficient two-way user authentication and secure session key agreement can be achieved. Security analysis shows that our proposed scheme is resilient to common known attacks. In addition, the performance analysis shows that our proposed scheme performs similar or better compared with some existing user authentication schemes.

  20. Quantum key distribution session with 16-dimensional photonic states.

    PubMed

    Etcheverry, S; Cañas, G; Gómez, E S; Nogueira, W A T; Saavedra, C; Xavier, G B; Lima, G

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.

  1. Quantum key distribution session with 16-dimensional photonic states

    NASA Astrophysics Data System (ADS)

    Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.

    2013-07-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.

  2. Quantum key distribution session with 16-dimensional photonic states

    PubMed Central

    Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD. PMID:23897033

  3. Authenticated multi-user quantum key distribution with single particles

    NASA Astrophysics Data System (ADS)

    Lin, Song; Wang, Hui; Guo, Gong-De; Ye, Guo-Hua; Du, Hong-Zhen; Liu, Xiao-Fen

    2016-03-01

    Quantum key distribution (QKD) has been growing rapidly in recent years and becomes one of the hottest issues in quantum information science. During the implementation of QKD on a network, identity authentication has been one main problem. In this paper, an efficient authenticated multi-user quantum key distribution (MQKD) protocol with single particles is proposed. In this protocol, any two users on a quantum network can perform mutual authentication and share a secure session key with the assistance of a semi-honest center. Meanwhile, the particles, which are used as quantum information carriers, are not required to be stored, therefore the proposed protocol is feasible with current technology. Finally, security analysis shows that this protocol is secure in theory.

  4. Password-only authenticated three-party key exchange with provable security in the standard model.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Kim, Junghwan; Kang, Hyun-Kyu; Kim, Jinsoo; Paik, Juryon; Won, Dongho

    2014-01-01

    Protocols for password-only authenticated key exchange (PAKE) in the three-party setting allow two clients registered with the same authentication server to derive a common secret key from their individual password shared with the server. Existing three-party PAKE protocols were proven secure under the assumption of the existence of random oracles or in a model that does not consider insider attacks. Therefore, these protocols may turn out to be insecure when the random oracle is instantiated with a particular hash function or an insider attack is mounted against the partner client. The contribution of this paper is to present the first three-party PAKE protocol whose security is proven without any idealized assumptions in a model that captures insider attacks. The proof model we use is a variant of the indistinguishability-based model of Bellare, Pointcheval, and Rogaway (2000), which is one of the most widely accepted models for security analysis of password-based key exchange protocols. We demonstrated that our protocol achieves not only the typical indistinguishability-based security of session keys but also the password security against undetectable online dictionary attacks.

  5. Enhanced Two-Factor Authentication and Key Agreement Using Dynamic Identities in Wireless Sensor Networks.

    PubMed

    Chang, I-Pin; Lee, Tian-Fu; Lin, Tsung-Hung; Liu, Chuan-Ming

    2015-11-30

    Key agreements that use only password authentication are convenient in communication networks, but these key agreement schemes often fail to resist possible attacks, and therefore provide poor security compared with some other authentication schemes. To increase security, many authentication and key agreement schemes use smartcard authentication in addition to passwords. Thus, two-factor authentication and key agreement schemes using smartcards and passwords are widely adopted in many applications. Vaidya et al. recently presented a two-factor authentication and key agreement scheme for wireless sensor networks (WSNs). Kim et al. observed that the Vaidya et al. scheme fails to resist gateway node bypassing and user impersonation attacks, and then proposed an improved scheme for WSNs. This study analyzes the weaknesses of the two-factor authentication and key agreement scheme of Kim et al., which include vulnerability to impersonation attacks, lost smartcard attacks and man-in-the-middle attacks, violation of session key security, and failure to protect user privacy. An efficient and secure authentication and key agreement scheme for WSNs based on the scheme of Kim et al. is then proposed. The proposed scheme not only solves the weaknesses of previous approaches, but also increases security requirements while maintaining low computational cost.

  6. RUASN: a robust user authentication framework for wireless sensor networks.

    PubMed

    Kumar, Pardeep; Choudhury, Amlan Jyoti; Sain, Mangal; Lee, Sang-Gon; Lee, Hoon-Jae

    2011-01-01

    In recent years, wireless sensor networks (WSNs) have been considered as a potential solution for real-time monitoring applications and these WSNs have potential practical impact on next generation technology too. However, WSNs could become a threat if suitable security is not considered before the deployment and if there are any loopholes in their security, which might open the door for an attacker and hence, endanger the application. User authentication is one of the most important security services to protect WSN data access from unauthorized users; it should provide both mutual authentication and session key establishment services. This paper proposes a robust user authentication framework for wireless sensor networks, based on a two-factor (password and smart card) concept. This scheme facilitates many services to the users such as user anonymity, mutual authentication, secure session key establishment and it allows users to choose/update their password regularly, whenever needed. Furthermore, we have provided the formal verification using Rubin logic and compare RUASN with many existing schemes. As a result, we found that the proposed scheme possesses many advantages against popular attacks, and achieves better efficiency at low computation cost.

  7. Securing Real-Time Sessions in an IMS-Based Architecture

    NASA Astrophysics Data System (ADS)

    Cennamo, Paolo; Fresa, Antonio; Longo, Maurizio; Postiglione, Fabio; Robustelli, Anton Luca; Toro, Francesco

    The emerging all-IP mobile network infrastructures based on 3rd Generation IP Multimedia Subsystem philosophy are characterised by radio access technology independence and ubiquitous connectivity for mobile users. Currently, great focus is being devoted to security issues since most of the security threats presently affecting the public Internet domain, and the upcoming ones as well, are going to be suffered by mobile users in the years to come. While a great deal of research activity, together with standardisation efforts and experimentations, is carried out on mechanisms for signalling protection, very few integrated frameworks for real-time multimedia data protection have been proposed in a context of IP Multimedia Subsystem, and even fewer experimental results based on testbeds are available. In this paper, after a general overview of the security issues arising in an advanced IP Multimedia Subsystem scenario, a comprehensive infrastructure for real-time multimedia data protection, based on the adoption of the Secure Real-Time Protocol, is proposed; then, the development of a testbed incorporating such functionalities, including mechanisms for key management and cryptographic context transfer, and allowing the setup of Secure Real-Time Protocol sessions is presented; finally, experimental results are provided together with quantitative assessments and comparisons of system performances for audio sessions with and without the adoption of the Secure Real-Time Protocol framework.

  8. An Efficient Identity-Based Key Management Scheme for Wireless Sensor Networks Using the Bloom Filter

    PubMed Central

    Qin, Zhongyuan; Zhang, Xinshuai; Feng, Kerong; Zhang, Qunfang; Huang, Jie

    2014-01-01

    With the rapid development and widespread adoption of wireless sensor networks (WSNs), security has become an increasingly prominent problem. How to establish a session key in node communication is a challenging task for WSNs. Considering the limitations in WSNs, such as low computing capacity, small memory, power supply limitations and price, we propose an efficient identity-based key management (IBKM) scheme, which exploits the Bloom filter to authenticate the communication sensor node with storage efficiency. The security analysis shows that IBKM can prevent several attacks effectively with acceptable computation and communication overhead. PMID:25264955

  9. Enhanced Two-Factor Authentication and Key Agreement Using Dynamic Identities in Wireless Sensor Networks

    PubMed Central

    Chang, I-Pin; Lee, Tian-Fu; Lin, Tsung-Hung; Liu, Chuan-Ming

    2015-01-01

    Key agreements that use only password authentication are convenient in communication networks, but these key agreement schemes often fail to resist possible attacks, and therefore provide poor security compared with some other authentication schemes. To increase security, many authentication and key agreement schemes use smartcard authentication in addition to passwords. Thus, two-factor authentication and key agreement schemes using smartcards and passwords are widely adopted in many applications. Vaidya et al. recently presented a two-factor authentication and key agreement scheme for wireless sensor networks (WSNs). Kim et al. observed that the Vaidya et al. scheme fails to resist gateway node bypassing and user impersonation attacks, and then proposed an improved scheme for WSNs. This study analyzes the weaknesses of the two-factor authentication and key agreement scheme of Kim et al., which include vulnerability to impersonation attacks, lost smartcard attacks and man-in-the-middle attacks, violation of session key security, and failure to protect user privacy. An efficient and secure authentication and key agreement scheme for WSNs based on the scheme of Kim et al. is then proposed. The proposed scheme not only solves the weaknesses of previous approaches, but also increases security requirements while maintaining low computational cost. PMID:26633396

  10. An enhanced password authentication scheme for session initiation protocol with perfect forward secrecy.

    PubMed

    Qiu, Shuming; Xu, Guoai; Ahmad, Haseeb; Guo, Yanhui

    2018-01-01

    The Session Initiation Protocol (SIP) is an extensive and esteemed communication protocol employed to regulate signaling as well as for controlling multimedia communication sessions. Recently, Kumari et al. proposed an improved smart card based authentication scheme for SIP based on Farash's scheme. Farash claimed that his protocol is resistant against various known attacks. But, we observe some accountable flaws in Farash's protocol. We point out that Farash's protocol is prone to key-compromise impersonation attack and is unable to provide pre-verification in the smart card, efficient password change and perfect forward secrecy. To overcome these limitations, in this paper we present an enhanced authentication mechanism based on Kumari et al.'s scheme. We prove that the proposed protocol not only overcomes the issues in Farash's scheme, but it can also resist against all known attacks. We also provide the security analysis of the proposed scheme with the help of widespread AVISPA (Automated Validation of Internet Security Protocols and Applications) software. At last, comparing with the earlier proposals in terms of security and efficiency, we conclude that the proposed protocol is efficient and more secure.

  11. Password-Only Authenticated Three-Party Key Exchange with Provable Security in the Standard Model

    PubMed Central

    Nam, Junghyun; Kim, Junghwan; Kang, Hyun-Kyu; Kim, Jinsoo; Paik, Juryon

    2014-01-01

    Protocols for password-only authenticated key exchange (PAKE) in the three-party setting allow two clients registered with the same authentication server to derive a common secret key from their individual password shared with the server. Existing three-party PAKE protocols were proven secure under the assumption of the existence of random oracles or in a model that does not consider insider attacks. Therefore, these protocols may turn out to be insecure when the random oracle is instantiated with a particular hash function or an insider attack is mounted against the partner client. The contribution of this paper is to present the first three-party PAKE protocol whose security is proven without any idealized assumptions in a model that captures insider attacks. The proof model we use is a variant of the indistinguishability-based model of Bellare, Pointcheval, and Rogaway (2000), which is one of the most widely accepted models for security analysis of password-based key exchange protocols. We demonstrated that our protocol achieves not only the typical indistinguishability-based security of session keys but also the password security against undetectable online dictionary attacks. PMID:24977229

  12. An Indoor Positioning-Based Mobile Payment System Using Bluetooth Low Energy Technology

    PubMed Central

    Winata, Doni

    2018-01-01

    The development of information technology has paved the way for faster and more convenient payment process flows and new methodology for the design and implementation of next generation payment systems. The growth of smartphone usage nowadays has fostered a new and popular mobile payment environment. Most of the current generation smartphones support Bluetooth Low Energy (BLE) technology to communicate with nearby BLE-enabled devices. It is plausible to construct an Over-the-Air BLE-based mobile payment system as one of the payment methods for people living in modern societies. In this paper, a secure indoor positioning-based mobile payment authentication protocol with BLE technology and the corresponding mobile payment system design are proposed. The proposed protocol consists of three phases: initialization phase, session key construction phase, and authentication phase. When a customer moves toward the POS counter area, the proposed mobile payment system will automatically detect the position of the customer to confirm whether the customer is ready for the checkout process. Once the system has identified the customer is standing within the payment-enabled area, the payment system will invoke authentication process between POS and the customer’s smartphone through BLE communication channel to generate a secure session key and establish an authenticated communication session to perform the payment transaction accordingly. A prototype is implemented to assess the performance of the proposed design for mobile payment system. In addition, security analysis is conducted to evaluate the security strength of the proposed protocol. PMID:29587399

  13. An Indoor Positioning-Based Mobile Payment System Using Bluetooth Low Energy Technology.

    PubMed

    Yohan, Alexander; Lo, Nai-Wei; Winata, Doni

    2018-03-25

    The development of information technology has paved the way for faster and more convenient payment process flows and new methodology for the design and implementation of next generation payment systems. The growth of smartphone usage nowadays has fostered a new and popular mobile payment environment. Most of the current generation smartphones support Bluetooth Low Energy (BLE) technology to communicate with nearby BLE-enabled devices. It is plausible to construct an Over-the-Air BLE-based mobile payment system as one of the payment methods for people living in modern societies. In this paper, a secure indoor positioning-based mobile payment authentication protocol with BLE technology and the corresponding mobile payment system design are proposed. The proposed protocol consists of three phases: initialization phase, session key construction phase, and authentication phase. When a customer moves toward the POS counter area, the proposed mobile payment system will automatically detect the position of the customer to confirm whether the customer is ready for the checkout process. Once the system has identified the customer is standing within the payment-enabled area, the payment system will invoke authentication process between POS and the customer's smartphone through BLE communication channel to generate a secure session key and establish an authenticated communication session to perform the payment transaction accordingly. A prototype is implemented to assess the performance of the proposed design for mobile payment system. In addition, security analysis is conducted to evaluate the security strength of the proposed protocol.

  14. RUASN: A Robust User Authentication Framework for Wireless Sensor Networks

    PubMed Central

    Kumar, Pardeep; Choudhury, Amlan Jyoti; Sain, Mangal; Lee, Sang-Gon; Lee, Hoon-Jae

    2011-01-01

    In recent years, wireless sensor networks (WSNs) have been considered as a potential solution for real-time monitoring applications and these WSNs have potential practical impact on next generation technology too. However, WSNs could become a threat if suitable security is not considered before the deployment and if there are any loopholes in their security, which might open the door for an attacker and hence, endanger the application. User authentication is one of the most important security services to protect WSN data access from unauthorized users; it should provide both mutual authentication and session key establishment services. This paper proposes a robust user authentication framework for wireless sensor networks, based on a two-factor (password and smart card) concept. This scheme facilitates many services to the users such as user anonymity, mutual authentication, secure session key establishment and it allows users to choose/update their password regularly, whenever needed. Furthermore, we have provided the formal verification using Rubin logic and compare RUASN with many existing schemes. As a result, we found that the proposed scheme possesses many advantages against popular attacks, and achieves better efficiency at low computation cost. PMID:22163888

  15. An Improvement of Robust and Efficient Biometrics Based Password Authentication Scheme for Telecare Medicine Information Systems Using Extended Chaotic Maps.

    PubMed

    Moon, Jongho; Choi, Younsung; Kim, Jiye; Won, Dongho

    2016-03-01

    Recently, numerous extended chaotic map-based password authentication schemes that employ smart card technology were proposed for Telecare Medical Information Systems (TMISs). In 2015, Lu et al. used Li et al.'s scheme as a basis to propose a password authentication scheme for TMISs that is based on biometrics and smart card technology and employs extended chaotic maps. Lu et al. demonstrated that Li et al.'s scheme comprises some weaknesses such as those regarding a violation of the session-key security, a vulnerability to the user impersonation attack, and a lack of local verification. In this paper, however, we show that Lu et al.'s scheme is still insecure with respect to issues such as a violation of the session-key security, and that it is vulnerable to both the outsider attack and the impersonation attack. To overcome these drawbacks, we retain the useful properties of Lu et al.'s scheme to propose a new password authentication scheme that is based on smart card technology and requires the use of chaotic maps. Then, we show that our proposed scheme is more secure and efficient and supports security properties.

  16. Security enhanced anonymous multiserver authenticated key agreement scheme using smart cards and biometrics.

    PubMed

    Choi, Younsung; Nam, Junghyun; Lee, Donghoon; Kim, Jiye; Jung, Jaewook; Won, Dongho

    2014-01-01

    An anonymous user authentication scheme allows a user, who wants to access a remote application server, to achieve mutual authentication and session key establishment with the server in an anonymous manner. To enhance the security of such authentication schemes, recent researches combined user's biometrics with a password. However, these authentication schemes are designed for single server environment. So when a user wants to access different application servers, the user has to register many times. To solve this problem, Chuang and Chen proposed an anonymous multiserver authenticated key agreement scheme using smart cards together with passwords and biometrics. Chuang and Chen claimed that their scheme not only supports multiple servers but also achieves various security requirements. However, we show that this scheme is vulnerable to a masquerade attack, a smart card attack, a user impersonation attack, and a DoS attack and does not achieve perfect forward secrecy. We also propose a security enhanced anonymous multiserver authenticated key agreement scheme which addresses all the weaknesses identified in Chuang and Chen's scheme.

  17. An Authentication Protocol for Future Sensor Networks.

    PubMed

    Bilal, Muhammad; Kang, Shin-Gak

    2017-04-28

    Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections. Moreover, to establish multiple data sessions, it is essential that a protocol participant have the capability of running multiple instances of the protocol run, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. Hence, ensuring a lightweight and efficient authentication protocol has become more crucial. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis (including formal analysis using the BAN-logic) and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols.

  18. An Authentication Protocol for Future Sensor Networks

    PubMed Central

    Bilal, Muhammad; Kang, Shin-Gak

    2017-01-01

    Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections. Moreover, to establish multiple data sessions, it is essential that a protocol participant have the capability of running multiple instances of the protocol run, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. Hence, ensuring a lightweight and efficient authentication protocol has become more crucial. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis (including formal analysis using the BAN-logic) and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols. PMID:28452937

  19. Efficiency and security problems of anonymous key agreement protocol based on chaotic maps

    NASA Astrophysics Data System (ADS)

    Yoon, Eun-Jun

    2012-07-01

    In 2011, Niu-Wang proposed an anonymous key agreement protocol based on chaotic maps in [Niu Y, Wang X. An anonymous key agreement protocol based on chaotic maps. Commun Nonlinear Sci Simulat 2011;16(4):1986-92]. Niu-Wang's protocol not only achieves session key agreement between a server and a user, but also allows the user to anonymously interact with the server. Nevertheless, this paper points out that Niu-Wang's protocol has the following efficiency and security problems: (1) The protocol has computational efficiency problem when a trusted third party decrypts the user sending message. (2) The protocol is vulnerable to Denial of Service (DoS) attack based on illegal message modification by an attacker.

  20. An enhanced password authentication scheme for session initiation protocol with perfect forward secrecy

    PubMed Central

    2018-01-01

    The Session Initiation Protocol (SIP) is an extensive and esteemed communication protocol employed to regulate signaling as well as for controlling multimedia communication sessions. Recently, Kumari et al. proposed an improved smart card based authentication scheme for SIP based on Farash’s scheme. Farash claimed that his protocol is resistant against various known attacks. But, we observe some accountable flaws in Farash’s protocol. We point out that Farash’s protocol is prone to key-compromise impersonation attack and is unable to provide pre-verification in the smart card, efficient password change and perfect forward secrecy. To overcome these limitations, in this paper we present an enhanced authentication mechanism based on Kumari et al.’s scheme. We prove that the proposed protocol not only overcomes the issues in Farash’s scheme, but it can also resist against all known attacks. We also provide the security analysis of the proposed scheme with the help of widespread AVISPA (Automated Validation of Internet Security Protocols and Applications) software. At last, comparing with the earlier proposals in terms of security and efficiency, we conclude that the proposed protocol is efficient and more secure. PMID:29547619

  1. An Extended Chaotic Maps-Based Three-Party Password-Authenticated Key Agreement with User Anonymity

    PubMed Central

    Lu, Yanrong; Li, Lixiang; Zhang, Hao; Yang, Yixian

    2016-01-01

    User anonymity is one of the key security features of an authenticated key agreement especially for communicating messages via an insecure network. Owing to the better properties and higher performance of chaotic theory, the chaotic maps have been introduced into the security schemes, and hence numerous key agreement schemes have been put forward under chaotic-maps. Recently, Xie et al. released an enhanced scheme under Farash et al.’s scheme and claimed their improvements could withstand the security loopholes pointed out in the scheme of Farash et al., i.e., resistance to the off-line password guessing and user impersonation attacks. Nevertheless, through our careful analysis, the improvements were released by Xie et al. still could not solve the problems troubled in Farash et al‥ Besides, Xie et al.’s improvements failed to achieve the user anonymity and the session key security. With the purpose of eliminating the security risks of the scheme of Xie et al., we design an anonymous password-based three-party authenticated key agreement under chaotic maps. Both the formal analysis and the formal security verification using AVISPA are presented. Also, BAN logic is used to show the correctness of the enhancements. Furthermore, we also demonstrate that the design thwarts most of the common attacks. We also make a comparison between the recent chaotic-maps based schemes and our enhancements in terms of performance. PMID:27101305

  2. A Secure Three-Factor User Authentication and Key Agreement Protocol for TMIS With User Anonymity.

    PubMed

    Amin, Ruhul; Biswas, G P

    2015-08-01

    Telecare medical information system (TMIS) makes an efficient and convenient connection between patient(s)/user(s) and doctor(s) over the insecure internet. Therefore, data security, privacy and user authentication are enormously important for accessing important medical data over insecure communication. Recently, many user authentication protocols for TMIS have been proposed in the literature and it has been observed that most of the protocols cannot achieve complete security requirements. In this paper, we have scrutinized two (Mishra et al., Xu et al.) remote user authentication protocols using smart card and explained that both the protocols are suffering against several security weaknesses. We have then presented three-factor user authentication and key agreement protocol usable for TMIS, which fix the security pitfalls of the above mentioned schemes. The informal cryptanalysis makes certain that the proposed protocol provides well security protection on the relevant security attacks. Furthermore, the simulator AVISPA tool confirms that the protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. The security functionalities and performance comparison analysis confirm that our protocol not only provide strong protection on security attacks, but it also achieves better complexities along with efficient login and password change phase as well as session key verification property.

  3. Novel secret key generation techniques using memristor devices

    NASA Astrophysics Data System (ADS)

    Abunahla, Heba; Shehada, Dina; Yeun, Chan Yeob; Mohammad, Baker; Jaoude, Maguy Abi

    2016-02-01

    This paper proposes novel secret key generation techniques using memristor devices. The approach depends on using the initial profile of a memristor as a master key. In addition, session keys are generated using the master key and other specified parameters. In contrast to existing memristor-based security approaches, the proposed development is cost effective and power efficient since the operation can be achieved with a single device rather than a crossbar structure. An algorithm is suggested and demonstrated using physics based Matlab model. It is shown that the generated keys can have dynamic size which provides perfect security. Moreover, the proposed encryption and decryption technique using the memristor based generated keys outperforms Triple Data Encryption Standard (3DES) and Advanced Encryption Standard (AES) in terms of processing time. This paper is enriched by providing characterization results of a fabricated microscale Al/TiO2/Al memristor prototype in order to prove the concept of the proposed approach and study the impacts of process variations. The work proposed in this paper is a milestone towards System On Chip (SOC) memristor based security.

  4. Experimental quantum key distribution with finite-key security analysis for noisy channels.

    PubMed

    Bacco, Davide; Canale, Matteo; Laurenti, Nicola; Vallone, Giuseppe; Villoresi, Paolo

    2013-01-01

    In quantum key distribution implementations, each session is typically chosen long enough so that the secret key rate approaches its asymptotic limit. However, this choice may be constrained by the physical scenario, as in the perspective use with satellites, where the passage of one terminal over the other is restricted to a few minutes. Here we demonstrate experimentally the extraction of secure keys leveraging an optimal design of the prepare-and-measure scheme, according to recent finite-key theoretical tight bounds. The experiment is performed in different channel conditions, and assuming two distinct attack models: individual attacks or general quantum attacks. The request on the number of exchanged qubits is then obtained as a function of the key size and of the ambient quantum bit error rate. The results indicate that viable conditions for effective symmetric, and even one-time-pad, cryptography are achievable.

  5. Security Enhanced Anonymous Multiserver Authenticated Key Agreement Scheme Using Smart Cards and Biometrics

    PubMed Central

    Choi, Younsung; Nam, Junghyun; Lee, Donghoon; Kim, Jiye; Jung, Jaewook; Won, Dongho

    2014-01-01

    An anonymous user authentication scheme allows a user, who wants to access a remote application server, to achieve mutual authentication and session key establishment with the server in an anonymous manner. To enhance the security of such authentication schemes, recent researches combined user's biometrics with a password. However, these authentication schemes are designed for single server environment. So when a user wants to access different application servers, the user has to register many times. To solve this problem, Chuang and Chen proposed an anonymous multiserver authenticated key agreement scheme using smart cards together with passwords and biometrics. Chuang and Chen claimed that their scheme not only supports multiple servers but also achieves various security requirements. However, we show that this scheme is vulnerable to a masquerade attack, a smart card attack, a user impersonation attack, and a DoS attack and does not achieve perfect forward secrecy. We also propose a security enhanced anonymous multiserver authenticated key agreement scheme which addresses all the weaknesses identified in Chuang and Chen's scheme. PMID:25276847

  6. Enhancing LoRaWAN Security through a Lightweight and Authenticated Key Management Approach.

    PubMed

    Sanchez-Iborra, Ramon; Sánchez-Gómez, Jesús; Pérez, Salvador; Fernández, Pedro J; Santa, José; Hernández-Ramos, José L; Skarmeta, Antonio F

    2018-06-05

    Luckily, new communication technologies and protocols are nowadays designed considering security issues. A clear example of this can be found in the Internet of Things (IoT) field, a quite recent area where communication technologies such as ZigBee or IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) already include security features to guarantee authentication, confidentiality and integrity. More recent technologies are Low-Power Wide-Area Networks (LP-WAN), which also consider security, but present initial approaches that can be further improved. An example of this can be found in Long Range (LoRa) and its layer-two supporter LoRa Wide Area Network (LoRaWAN), which include a security scheme based on pre-shared cryptographic material lacking flexibility when a key update is necessary. Because of this, in this work, we evaluate the security vulnerabilities of LoRaWAN in the area of key management and propose different alternative schemes. Concretely, the application of an approach based on the recently specified Ephemeral Diffie⁻Hellman Over COSE (EDHOC) is found as a convenient solution, given its flexibility in the update of session keys, its low computational cost and the limited message exchanges needed. A comparative conceptual analysis considering the overhead of different security schemes for LoRaWAN is carried out in order to evaluate their benefits in the challenging area of LP-WAN.

  7. An Efficient and Practical Smart Card Based Anonymity Preserving User Authentication Scheme for TMIS using Elliptic Curve Cryptography.

    PubMed

    Amin, Ruhul; Islam, S K Hafizul; Biswas, G P; Khan, Muhammad Khurram; Kumar, Neeraj

    2015-11-01

    In the last few years, numerous remote user authentication and session key agreement schemes have been put forwarded for Telecare Medical Information System, where the patient and medical server exchange medical information using Internet. We have found that most of the schemes are not usable for practical applications due to known security weaknesses. It is also worth to note that unrestricted number of patients login to the single medical server across the globe. Therefore, the computation and maintenance overhead would be high and the server may fail to provide services. In this article, we have designed a medical system architecture and a standard mutual authentication scheme for single medical server, where the patient can securely exchange medical data with the doctor(s) via trusted central medical server over any insecure network. We then explored the security of the scheme with its resilience to attacks. Moreover, we formally validated the proposed scheme through the simulation using Automated Validation of Internet Security Schemes and Applications software whose outcomes confirm that the scheme is protected against active and passive attacks. The performance comparison demonstrated that the proposed scheme has lower communication cost than the existing schemes in literature. In addition, the computation cost of the proposed scheme is nearly equal to the exiting schemes. The proposed scheme not only efficient in terms of different security attacks, but it also provides an efficient login, mutual authentication, session key agreement and verification and password update phases along with password recovery.

  8. Panel session on "how to meet the challenges for nuclear power".

    PubMed

    Tenforde, Thomas S

    2011-01-01

    This panel session at the 2009 Annual Meeting involved a discussion of views of government, industry, and national research laboratory members on the primary future goals in developing advanced nuclear reactor and nuclear fuel cycle designs, fuel management, and used fuel disposal options. The session at the 2009 NCRP Annual Meeting on "How to Meet the Challenges for Nuclear Power" was chaired by Mary E. Clark of the U.S. Environmental Protection Agency and focused on efforts in the United States and worldwide to expand nuclear capabilities for electric power production in a safe, secure, and environmentally acceptable manner. This paper briefly summarizes the key topics discussed in five presentations during this session of the NCRP Annual Meeting. Copyright © 2010 Health Physics Society

  9. A secure smart-card based authentication and key agreement scheme for telecare medicine information systems.

    PubMed

    Lee, Tian-Fu; Liu, Chuan-Ming

    2013-06-01

    A smart-card based authentication scheme for telecare medicine information systems enables patients, doctors, nurses, health visitors and the medicine information systems to establish a secure communication platform through public networks. Zhu recently presented an improved authentication scheme in order to solve the weakness of the authentication scheme of Wei et al., where the off-line password guessing attacks cannot be resisted. This investigation indicates that the improved scheme of Zhu has some faults such that the authentication scheme cannot execute correctly and is vulnerable to the attack of parallel sessions. Additionally, an enhanced authentication scheme based on the scheme of Zhu is proposed. The enhanced scheme not only avoids the weakness in the original scheme, but also provides users' anonymity and authenticated key agreements for secure data communications.

  10. Freshness-Preserving Non-Interactive Hierarchical Key Agreement Protocol over WHMS

    PubMed Central

    Kim, Hyunsung

    2014-01-01

    The digitization of patient health information (PHI) for wireless health monitoring systems (WHMSs) has brought many benefits and challenges for both patients and physicians. However, security, privacy and robustness have remained important challenges for WHMSs. Since the patient's PHI is sensitive and the communication channel, i.e., the Internet, is insecure, it is important to protect them against unauthorized entities, i.e., attackers. Otherwise, failure to do so will not only lead to the compromise of a patient's privacy, but will also put his/her life at risk. This paper proposes a freshness-preserving non-interactive hierarchical key agreement protocol (FNKAP) for WHMSs. The FNKAP is based on the concept of the non-interactive identity-based key agreement for communication efficiency. It achieves patient anonymity between a patient and physician, session key secrecy and resistance against various security attacks, especially including replay attacks. PMID:25513824

  11. Freshness-preserving non-interactive hierarchical key agreement protocol over WHMS.

    PubMed

    Kim, Hyunsung

    2014-12-10

    The digitization of patient health information (PHI) for wireless health monitoring systems (WHMSs) has brought many benefits and challenges for both patients and physicians. However, security, privacy and robustness have remained important challenges for WHMSs. Since the patient's PHI is sensitive and the communication channel, i.e., the Internet, is insecure, it is important to protect them against unauthorized entities, i.e., attackers. Otherwise, failure to do so will not only lead to the compromise of a patient's privacy, but will also put his/her life at risk. This paper proposes a freshness-preserving non-interactive hierarchical key agreement protocol (FNKAP) for WHMSs. The FNKAP is based on the concept of the non-interactive identity-based key agreement for communication efficiency. It achieves patient anonymity between a patient and physician, session key secrecy and resistance against various security attacks, especially including replay attacks.

  12. An Efficient and Adaptive Mutual Authentication Framework for Heterogeneous Wireless Sensor Network-Based Applications

    PubMed Central

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-01-01

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications. PMID:24521942

  13. An efficient and adaptive mutual authentication framework for heterogeneous wireless sensor network-based applications.

    PubMed

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-02-11

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications.

  14. Key Management Scheme Based on Route Planning of Mobile Sink in Wireless Sensor Networks.

    PubMed

    Zhang, Ying; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming; Chen, Wei

    2016-01-29

    In many wireless sensor network application scenarios the key management scheme with a Mobile Sink (MS) should be fully investigated. This paper proposes a key management scheme based on dynamic clustering and optimal-routing choice of MS. The concept of Traveling Salesman Problem with Neighbor areas (TSPN) in dynamic clustering for data exchange is proposed, and the selection probability is used in MS route planning. The proposed scheme extends static key management to dynamic key management by considering the dynamic clustering and mobility of MSs, which can effectively balance the total energy consumption during the activities. Considering the different resources available to the member nodes and sink node, the session key between cluster head and MS is established by modified an ECC encryption with Diffie-Hellman key exchange (ECDH) algorithm and the session key between member node and cluster head is built with a binary symmetric polynomial. By analyzing the security of data storage, data transfer and the mechanism of dynamic key management, the proposed scheme has more advantages to help improve the resilience of the key management system of the network on the premise of satisfying higher connectivity and storage efficiency.

  15. New York State Forum for Information Resource Management: 1998-1999 Annual Report.

    ERIC Educational Resources Information Center

    New York State Forum for Information Resource Management.

    This annual report of the New York State Forum for Information Resource Management begins with a section that summarizes key activities for 1998-99, including partnerships with other organizations, sessions on the use of information in government and information security, programs on the challenges of electronic commerce for government,…

  16. New secure communication-layer standard for medical image management (ISCL)

    NASA Astrophysics Data System (ADS)

    Kita, Kouichi; Nohara, Takashi; Hosoba, Minoru; Yachida, Masuyoshi; Yamaguchi, Masahiro; Ohyama, Nagaaki

    1999-07-01

    This paper introduces a summary of the standard draft of ISCL 1.00 which will be published by MEDIS-DC officially. ISCL is abbreviation of Integrated Secure Communication Layer Protocols for Secure Medical Image Management Systems. ISCL is a security layer which manages security function between presentation layer and TCP/IP layer. ISCL mechanism depends on basic function of a smart IC card and symmetric secret key mechanism. A symmetry key for each session is made by internal authentication function of a smart IC card with a random number. ISCL has three functions which assure authentication, confidently and integrity. Entity authentication process is done through 3 path 4 way method using functions of internal authentication and external authentication of a smart iC card. Confidentially algorithm and MAC algorithm for integrity are able to be selected. ISCL protocols are communicating through Message Block which consists of Message Header and Message Data. ISCL protocols are evaluating by applying to regional collaboration system for image diagnosis, and On-line Secure Electronic Storage system for medical images. These projects are supported by Medical Information System Development Center. These project shows ISCL is useful to keep security.

  17. Robust ECC-based authenticated key agreement scheme with privacy protection for Telecare medicine information systems.

    PubMed

    Zhang, Liping; Zhu, Shaohui

    2015-05-01

    To protect the transmission of the sensitive medical data, a secure and efficient authenticated key agreement scheme should be deployed when the healthcare delivery session is established via Telecare Medicine Information Systems (TMIS) over the unsecure public network. Recently, Islam and Khan proposed an authenticated key agreement scheme using elliptic curve cryptography for TMIS. They claimed that their proposed scheme is provably secure against various attacks in random oracle model and enjoys some good properties such as user anonymity. In this paper, however, we point out that any legal but malicious patient can reveal other user's identity. Consequently, their scheme suffers from server spoofing attack and off-line password guessing attack. Moreover, if the malicious patient performs the same time of the registration as other users, she can further launch the impersonation attack, man-in-the-middle attack, modification attack, replay attack, and strong replay attack successfully. To eliminate these weaknesses, we propose an improved ECC-based authenticated key agreement scheme. Security analysis demonstrates that the proposed scheme can resist various attacks and enables the patient to enjoy the remote healthcare services with privacy protection. Through the performance evaluation, we show that the proposed scheme achieves a desired balance between security and performance in comparisons with other related schemes.

  18. Chaotic maps and biometrics-based anonymous three-party authenticated key exchange protocol without using passwords

    NASA Astrophysics Data System (ADS)

    Xie, Qi; Hu, Bin; Chen, Ke-Fei; Liu, Wen-Hao; Tan, Xiao

    2015-11-01

    In three-party password authenticated key exchange (AKE) protocol, since two users use their passwords to establish a secure session key over an insecure communication channel with the help of the trusted server, such a protocol may suffer the password guessing attacks and the server has to maintain the password table. To eliminate the shortages of password-based AKE protocol, very recently, according to chaotic maps, Lee et al. [2015 Nonlinear Dyn. 79 2485] proposed a first three-party-authenticated key exchange scheme without using passwords, and claimed its security by providing a well-organized BAN logic test. Unfortunately, their protocol cannot resist impersonation attack, which is demonstrated in the present paper. To overcome their security weakness, by using chaotic maps, we propose a biometrics-based anonymous three-party AKE protocol with the same advantages. Further, we use the pi calculus-based formal verification tool ProVerif to show that our AKE protocol achieves authentication, security and anonymity, and an acceptable efficiency. Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ12F02005), the Major State Basic Research Development Program of China (Grant No. 2013CB834205), and the National Natural Science Foundation of China (Grant No. 61070153).

  19. Security Enhanced User Authentication Protocol for Wireless Sensor Networks Using Elliptic Curves Cryptography

    PubMed Central

    Choi, Younsung; Lee, Donghoon; Kim, Jiye; Jung, Jaewook; Nam, Junghyun; Won, Dongho

    2014-01-01

    Wireless sensor networks (WSNs) consist of sensors, gateways and users. Sensors are widely distributed to monitor various conditions, such as temperature, sound, speed and pressure but they have limited computational ability and energy. To reduce the resource use of sensors and enhance the security of WSNs, various user authentication protocols have been proposed. In 2011, Yeh et al. first proposed a user authentication protocol based on elliptic curve cryptography (ECC) for WSNs. However, it turned out that Yeh et al.'s protocol does not provide mutual authentication, perfect forward secrecy, and key agreement between the user and sensor. Later in 2013, Shi et al. proposed a new user authentication protocol that improves both security and efficiency of Yeh et al.'s protocol. However, Shi et al.'s improvement introduces other security weaknesses. In this paper, we show that Shi et al.'s improved protocol is vulnerable to session key attack, stolen smart card attack, and sensor energy exhausting attack. In addition, we propose a new, security-enhanced user authentication protocol using ECC for WSNs. PMID:24919012

  20. Security enhanced user authentication protocol for wireless sensor networks using elliptic curves cryptography.

    PubMed

    Choi, Younsung; Lee, Donghoon; Kim, Jiye; Jung, Jaewook; Nam, Junghyun; Won, Dongho

    2014-06-10

    Wireless sensor networks (WSNs) consist of sensors, gateways and users. Sensors are widely distributed to monitor various conditions, such as temperature, sound, speed and pressure but they have limited computational ability and energy. To reduce the resource use of sensors and enhance the security of WSNs, various user authentication protocols have been proposed. In 2011, Yeh et al. first proposed a user authentication protocol based on elliptic curve cryptography (ECC) for WSNs. However, it turned out that Yeh et al.'s protocol does not provide mutual authentication, perfect forward secrecy, and key agreement between the user and sensor. Later in 2013, Shi et al. proposed a new user authentication protocol that improves both security and efficiency of Yeh et al.'s protocol. However, Shi et al.'s improvement introduces other security weaknesses. In this paper, we show that Shi et al.'s improved protocol is vulnerable to session key attack, stolen smart card attack, and sensor energy exhausting attack. In addition, we propose a new, security-enhanced user authentication protocol using ECC for WSNs.

  1. Experimental demonstration on the deterministic quantum key distribution based on entangled photons.

    PubMed

    Chen, Hua; Zhou, Zhi-Yuan; Zangana, Alaa Jabbar Jumaah; Yin, Zhen-Qiang; Wu, Juan; Han, Yun-Guang; Wang, Shuang; Li, Hong-Wei; He, De-Yong; Tawfeeq, Shelan Khasro; Shi, Bao-Sen; Guo, Guang-Can; Chen, Wei; Han, Zheng-Fu

    2016-02-10

    As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified "Ping-Pong"(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications.

  2. Experimental demonstration on the deterministic quantum key distribution based on entangled photons

    PubMed Central

    Chen, Hua; Zhou, Zhi-Yuan; Zangana, Alaa Jabbar Jumaah; Yin, Zhen-Qiang; Wu, Juan; Han, Yun-Guang; Wang, Shuang; Li, Hong-Wei; He, De-Yong; Tawfeeq, Shelan Khasro; Shi, Bao-Sen; Guo, Guang-Can; Chen, Wei; Han, Zheng-Fu

    2016-01-01

    As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications. PMID:26860582

  3. Security Analysis of Session Initiation Protocol

    DTIC Science & Technology

    2010-06-01

    traffic as Bob@biloxi.com), a VPN was established with OpenVPN 2.1_rc19 between all relevant entities. Configuration files used by the clients and...static key is created by running the command ’ openvpn --genkey --secret static.key.’ By 22 rerouting all SIP traffic through VPNs as needed, a network... OpenVPN , and VM 2’s routing table is modified so that all IP packets except those addressed to VM 1’s publicly facing IP are routed through the OpenVPN

  4. Hybrid cryptosystem implementation using fast data encipherment algorithm (FEAL) and goldwasser-micali algorithm for file security

    NASA Astrophysics Data System (ADS)

    Rachmawati, D.; Budiman, M. A.; Siburian, W. S. E.

    2018-05-01

    On the process of exchanging files, security is indispensable to avoid the theft of data. Cryptography is one of the sciences used to secure the data by way of encoding. Fast Data Encipherment Algorithm (FEAL) is a block cipher symmetric cryptographic algorithms. Therefore, the file which wants to protect is encrypted and decrypted using the algorithm FEAL. To optimize the security of the data, session key that is utilized in the algorithm FEAL encoded with the Goldwasser-Micali algorithm, which is an asymmetric cryptographic algorithm and using probabilistic concept. In the encryption process, the key was converted into binary form. The selection of values of x that randomly causes the results of the cipher key is different for each binary value. The concept of symmetry and asymmetry algorithm merger called Hybrid Cryptosystem. The use of the algorithm FEAL and Goldwasser-Micali can restore the message to its original form and the algorithm FEAL time required for encryption and decryption is directly proportional to the length of the message. However, on Goldwasser- Micali algorithm, the length of the message is not directly proportional to the time of encryption and decryption.

  5. Session Types for Access and Information Flow Control

    NASA Astrophysics Data System (ADS)

    Capecchi, Sara; Castellani, Ilaria; Dezani-Ciancaglini, Mariangiola; Rezk, Tamara

    We consider a calculus for multiparty sessions with delegation, enriched with security levels for session participants and data. We propose a type system that guarantees both session safety and a form of access control. Moreover, this type system ensures secure information flow, including controlled forms of declassification. In particular, the type system prevents leaks that could result from an unrestricted use of the control constructs of the calculus, such as session opening, selection, branching and delegation. We illustrate the use of our type system with a number of examples, which reveal an interesting interplay between the constraints used in security type systems and those used in session types to ensure properties like communication safety and session fidelity.

  6. Key exchange using biometric identity based encryption for sharing encrypted data in cloud environment

    NASA Astrophysics Data System (ADS)

    Hassan, Waleed K.; Al-Assam, Hisham

    2017-05-01

    The main problem associated with using symmetric/ asymmetric keys is how to securely store and exchange the keys between the parties over open networks particularly in the open environment such as cloud computing. Public Key Infrastructure (PKI) have been providing a practical solution for session key exchange for loads of web services. The key limitation of PKI solution is not only the need for a trusted third partly (e.g. certificate authority) but also the absent link between data owner and the encryption keys. The latter is arguably more important where accessing data needs to be linked with identify of the owner. Currently available key exchange protocols depend on using trusted couriers or secure channels, which can be subject to man-in-the-middle attack and various other attacks. This paper proposes a new protocol for Key Exchange using Biometric Identity Based Encryption (KE-BIBE) that enables parties to securely exchange cryptographic keys even an adversary is monitoring the communication channel between the parties. The proposed protocol combines biometrics with IBE in order to provide a secure way to access symmetric keys based on the identity of the users in unsecure environment. In the KE-BIOBE protocol, the message is first encrypted by the data owner using a traditional symmetric key before migrating it to a cloud storage. The symmetric key is then encrypted using public biometrics of the users selected by data owner to decrypt the message based on Fuzzy Identity-Based Encryption. Only the selected users will be able to decrypt the message by providing a fresh sample of their biometric data. The paper argues that the proposed solution eliminates the needs for a key distribution centre in traditional cryptography. It will also give data owner the power of finegrained sharing of encrypted data by control who can access their data.

  7. An Efficient Authenticated Key Transfer Scheme in Client-Server Networks

    NASA Astrophysics Data System (ADS)

    Shi, Runhua; Zhang, Shun

    2017-10-01

    In this paper, we presented a novel authenticated key transfer scheme in client-server networks, which can achieve two secure goals of remote user authentication and the session key establishment between the remote user and the server. Especially, the proposed scheme can subtly provide two fully different authentications: identity-base authentication and anonymous authentication, while the remote user only holds a private key. Furthermore, our scheme only needs to transmit 1-round messages from the remote user to the server, thus it is very efficient in communication complexity. In addition, the most time-consuming computation in our scheme is elliptic curve scalar point multiplication, so it is also feasible even for mobile devices.

  8. Mobility based key management technique for multicast security in mobile ad hoc networks.

    PubMed

    Madhusudhanan, B; Chitra, S; Rajan, C

    2015-01-01

    In MANET multicasting, forward and backward secrecy result in increased packet drop rate owing to mobility. Frequent rekeying causes large message overhead which increases energy consumption and end-to-end delay. Particularly, the prevailing group key management techniques cause frequent mobility and disconnections. So there is a need to design a multicast key management technique to overcome these problems. In this paper, we propose the mobility based key management technique for multicast security in MANET. Initially, the nodes are categorized according to their stability index which is estimated based on the link availability and mobility. A multicast tree is constructed such that for every weak node, there is a strong parent node. A session key-based encryption technique is utilized to transmit a multicast data. The rekeying process is performed periodically by the initiator node. The rekeying interval is fixed depending on the node category so that this technique greatly minimizes the rekeying overhead. By simulation results, we show that our proposed approach reduces the packet drop rate and improves the data confidentiality.

  9. Instrumented SSH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Scott; Campbell, Scott

    NERSC recently undertook a project to access and analyze Secure Shell (SSH) related data. This includes authentication data such as user names and key fingerprints, interactive session data such as keystrokes and responses, and information about noninteractive sessions such as commands executed and files transferred. Historically, this data has been inaccessible with traditional network monitoring techniques, but with a modification to the SSH daemon, this data can be passed directly to intrusion detection systems for analysis. The instrumented version of SSH is now running on all NERSC production systems. This paper describes the project, details about how SSH was instrumented,more » and the initial results of putting this in production.« less

  10. 78 FR 69433 - Executive Order 13650 Improving Chemical Facility Safety and Security Listening Sessions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... Chemical Facility Safety and Security Listening Sessions AGENCY: National Protection and Programs... from stakeholders on issues pertaining to Improving Chemical Facility Safety and Security (Executive... regulations, guidance, and policies; and identifying best practices in chemical facility safety and security...

  11. Impersonation attack on a quantum secure direct communication and authentication protocol with improvement

    NASA Astrophysics Data System (ADS)

    Amerimehr, Ali; Hadain Dehkordi, Massoud

    2018-03-01

    We analyze the security of a quantum secure direct communication and authentication protocol based on single photons. We first give an impersonation attack on the protocol. The cryptanalysis shows that there is a gap in the authentication procedure of the protocol so that an opponent can reveal the secret information by an undetectable attempt. We then propose an improvement for the protocol and show it closes the gap by applying a mutual authentication procedure. In the improved protocol single photons are transmitted once in a session, so it is easy to implement as the primary protocol. Furthermore, we use a novel technique for secret order rearrangement of photons by which not only quantum storage is eliminated also a secret key can be reused securely. So the new protocol is applicable in practical approaches like embedded system devices.

  12. Remote software upload techniques in future vehicles and their performance analysis

    NASA Astrophysics Data System (ADS)

    Hossain, Irina

    Updating software in vehicle Electronic Control Units (ECUs) will become a mandatory requirement for a variety of reasons, for examples, to update/fix functionality of an existing system, add new functionality, remove software bugs and to cope up with ITS infrastructure. Software modules of advanced vehicles can be updated using Remote Software Upload (RSU) technique. The RSU employs infrastructure-based wireless communication technique where the software supplier sends the software to the targeted vehicle via a roadside Base Station (BS). However, security is critically important in RSU to avoid any disasters due to malfunctions of the vehicle or to protect the proprietary algorithms from hackers, competitors or people with malicious intent. In this thesis, a mechanism of secure software upload in advanced vehicles is presented which employs mutual authentication of the software provider and the vehicle using a pre-shared authentication key before sending the software. The software packets are sent encrypted with a secret key along with the Message Digest (MD). In order to increase the security level, it is proposed the vehicle to receive more than one copy of the software along with the MD in each copy. The vehicle will install the new software only when it receives more than one identical copies of the software. In order to validate the proposition, analytical expressions of average number of packet transmissions for successful software update is determined. Different cases are investigated depending on the vehicle's buffer size and verification methods. The analytical and simulation results show that it is sufficient to send two copies of the software to the vehicle to thwart any security attack while uploading the software. The above mentioned unicast method for RSU is suitable when software needs to be uploaded to a single vehicle. Since multicasting is the most efficient method of group communication, updating software in an ECU of a large number of vehicles could benefit from it. However, like the unicast RSU, the security requirements of multicast communication, i.e., authenticity, confidentiality and integrity of the software transmitted and access control of the group members is challenging. In this thesis, an infrastructure-based mobile multicasting for RSU in vehicle ECUs is proposed where an ECU receives the software from a remote software distribution center using the road side BSs as gateways. The Vehicular Software Distribution Network (VSDN) is divided into small regions administered by a Regional Group Manager (RGM). Two multicast Group Key Management (GKM) techniques are proposed based on the degree of trust on the BSs named Fully-trusted (FT) and Semi-trusted (ST) systems. Analytical models are developed to find the multicast session establishment latency and handover latency for these two protocols. The average latency to perform mutual authentication of the software vendor and a vehicle, and to send the multicast session key by the software provider during multicast session initialization, and the handoff latency during multicast session is calculated. Analytical and simulation results show that the link establishment latency per vehicle of our proposed schemes is in the range of few seconds and the ST system requires few ms higher time than the FT system. The handoff latency is also in the range of few seconds and in some cases ST system requires less handoff time than the FT system. Thus, it is possible to build an efficient GKM protocol without putting too much trust on the BSs.

  13. Cryptosystem based on two-step phase-shifting interferometry and the RSA public-key encryption algorithm

    NASA Astrophysics Data System (ADS)

    Meng, X. F.; Peng, X.; Cai, L. Z.; Li, A. M.; Gao, Z.; Wang, Y. R.

    2009-08-01

    A hybrid cryptosystem is proposed, in which one image is encrypted to two interferograms with the aid of double random-phase encoding (DRPE) and two-step phase-shifting interferometry (2-PSI), then three pairs of public-private keys are utilized to encode and decode the session keys (geometrical parameters, the second random-phase mask) and interferograms. In the stage of decryption, the ciphered image can be decrypted by wavefront reconstruction, inverse Fresnel diffraction, and real amplitude normalization. This approach can successfully solve the problem of key management and dispatch, resulting in increased security strength. The feasibility of the proposed cryptosystem and its robustness against some types of attack are verified and analyzed by computer simulations.

  14. An Efficient Mutual Authentication Framework for Healthcare System in Cloud Computing.

    PubMed

    Kumar, Vinod; Jangirala, Srinivas; Ahmad, Musheer

    2018-06-28

    The increasing role of Telecare Medicine Information Systems (TMIS) makes its accessibility for patients to explore medical treatment, accumulate and approach medical data through internet connectivity. Security and privacy preservation is necessary for medical data of the patient in TMIS because of the very perceptive purpose. Recently, Mohit et al.'s proposed a mutual authentication protocol for TMIS in the cloud computing environment. In this work, we reviewed their protocol and found that it is not secure against stolen verifier attack, many logged in patient attack, patient anonymity, impersonation attack, and fails to protect session key. For enhancement of security level, we proposed a new mutual authentication protocol for the similar environment. The presented framework is also more capable in terms of computation cost. In addition, the security evaluation of the protocol protects resilience of all possible security attributes, and we also explored formal security evaluation based on random oracle model. The performance of the proposed protocol is much better in comparison to the existing protocol.

  15. The Secure-Base Hypothesis: Global Attachment, Attachment to Counselor, and Session Exploration in Psychotherapy

    ERIC Educational Resources Information Center

    Romano, Vera; Fitzpatrick, Marilyn; Janzen, Jennifer

    2008-01-01

    This study explored J. Bowlby's (1988) secure-base hypothesis, which predicts that a client's secure attachment to the therapist, as well as the client's and the therapist's global attachment security, will facilitate in-session exploration. Volunteer clients (N = 59) and trainee counselors (N = 59) in short-term therapy completed the Experiences…

  16. An authentication scheme for secure access to healthcare services.

    PubMed

    Khan, Muhammad Khurram; Kumari, Saru

    2013-08-01

    Last few decades have witnessed boom in the development of information and communication technologies. Health-sector has also been benefitted with this advancement. To ensure secure access to healthcare services some user authentication mechanisms have been proposed. In 2012, Wei et al. proposed a user authentication scheme for telecare medical information system (TMIS). Recently, Zhu pointed out offline password guessing attack on Wei et al.'s scheme and proposed an improved scheme. In this article, we analyze both of these schemes for their effectiveness in TMIS. We show that Wei et al.'s scheme and its improvement proposed by Zhu fail to achieve some important characteristics necessary for secure user authentication. We find that security problems of Wei et al.'s scheme stick with Zhu's scheme; like undetectable online password guessing attack, inefficacy of password change phase, traceability of user's stolen/lost smart card and denial-of-service threat. We also identify that Wei et al.'s scheme lacks forward secrecy and Zhu's scheme lacks session key between user and healthcare server. We therefore propose an authentication scheme for TMIS with forward secrecy which preserves the confidentiality of air messages even if master secret key of healthcare server is compromised. Our scheme retains advantages of Wei et al.'s scheme and Zhu's scheme, and offers additional security. The security analysis and comparison results show the enhanced suitability of our scheme for TMIS.

  17. The engineering of a scalable multi-site communications system utilizing quantum key distribution (QKD)

    NASA Astrophysics Data System (ADS)

    Tysowski, Piotr K.; Ling, Xinhua; Lütkenhaus, Norbert; Mosca, Michele

    2018-04-01

    Quantum key distribution (QKD) is a means of generating keys between a pair of computing hosts that is theoretically secure against cryptanalysis, even by a quantum computer. Although there is much active research into improving the QKD technology itself, there is still significant work to be done to apply engineering methodology and determine how it can be practically built to scale within an enterprise IT environment. Significant challenges exist in building a practical key management service (KMS) for use in a metropolitan network. QKD is generally a point-to-point technique only and is subject to steep performance constraints. The integration of QKD into enterprise-level computing has been researched, to enable quantum-safe communication. A novel method for constructing a KMS is presented that allows arbitrary computing hosts on one site to establish multiple secure communication sessions with the hosts of another site. A key exchange protocol is proposed where symmetric private keys are granted to hosts while satisfying the scalability needs of an enterprise population of users. The KMS operates within a layered architectural style that is able to interoperate with various underlying QKD implementations. Variable levels of security for the host population are enforced through a policy engine. A network layer provides key generation across a network of nodes connected by quantum links. Scheduling and routing functionality allows quantum key material to be relayed across trusted nodes. Optimizations are performed to match the real-time host demand for key material with the capacity afforded by the infrastructure. The result is a flexible and scalable architecture that is suitable for enterprise use and independent of any specific QKD technology.

  18. Security Cooperation: Comparison of Proposed Provisions for the FY2017 National Defense Authorization Act (NDAA)

    DTIC Science & Technology

    2016-11-01

    in the FY2017 NDAA Congressional Research Service Summary During the lame duck session, the 114th Congress is expected to consider various...the lame duck session beginning in November is expected to address the NDAA conference report. Security cooperation provisions in the conference report...U.S. security assistance authorities, see Defense Security Cooperation Agency (DSCA), Defense Institute of Security Cooperation Studies , “Chapter 2

  19. RSA-Based Password-Authenticated Key Exchange, Revisited

    NASA Astrophysics Data System (ADS)

    Shin, Seonghan; Kobara, Kazukuni; Imai, Hideki

    The RSA-based Password-Authenticated Key Exchange (PAKE) protocols have been proposed to realize both mutual authentication and generation of secure session keys where a client is sharing his/her password only with a server and the latter should generate its RSA public/private key pair (e, n), (d, n) every time due to the lack of PKI (Public-Key Infrastructures). One of the ways to avoid a special kind of off-line (so called e-residue) attacks in the RSA-based PAKE protocols is to deploy a challenge/response method by which a client verifies the relative primality of e and φ(n) interactively with a server. However, this kind of RSA-based PAKE protocols did not give any proof of the underlying challenge/response method and therefore could not specify the exact complexity of their protocols since there exists another security parameter, needed in the challenge/response method. In this paper, we first present an RSA-based PAKE (RSA-PAKE) protocol that can deploy two different challenge/response methods (denoted by Challenge/Response Method1 and Challenge/Response Method2). The main contributions of this work include: (1) Based on the number theory, we prove that the Challenge/Response Method1 and the Challenge/Response Method2 are secure against e-residue attacks for any odd prime e (2) With the security parameter for the on-line attacks, we show that the RSA-PAKE protocol is provably secure in the random oracle model where all of the off-line attacks are not more efficient than on-line dictionary attacks; and (3) By considering the Hamming weight of e and its complexity in the. RSA-PAKE protocol, we search for primes to be recommended for a practical use. We also compare the RSA-PAKE protocol with the previous ones mainly in terms of computation and communication complexities.

  20. A secure chaotic maps and smart cards based password authentication and key agreement scheme with user anonymity for telecare medicine information systems.

    PubMed

    Li, Chun-Ta; Lee, Cheng-Chi; Weng, Chi-Yao

    2014-09-01

    Telecare medicine information system (TMIS) is widely used for providing a convenient and efficient communicating platform between patients at home and physicians at medical centers or home health care (HHC) organizations. To ensure patient privacy, in 2013, Hao et al. proposed a chaotic map based authentication scheme with user anonymity for TMIS. Later, Lee showed that Hao et al.'s scheme is in no provision for providing fairness in session key establishment and gave an efficient user authentication and key agreement scheme using smart cards, in which only few hashing and Chebyshev chaotic map operations are required. In addition, Jiang et al. discussed that Hao et al.'s scheme can not resist stolen smart card attack and they further presented an improved scheme which attempts to repair the security pitfalls found in Hao et al.'s scheme. In this paper, we found that both Lee's and Jiang et al.'s authentication schemes have a serious security problem in that a registered user's secret parameters may be intentionally exposed to many non-registered users and this problem causing the service misuse attack. Therefore, we propose a slight modification on Lee's scheme to prevent the shortcomings. Compared with previous schemes, our improved scheme not only inherits the advantages of Lee's and Jiang et al.'s authentication schemes for TMIS but also remedies the serious security weakness of not being able to withstand service misuse attack.

  1. A secure and efficient chaotic map-based authenticated key agreement scheme for telecare medicine information systems.

    PubMed

    Mishra, Dheerendra; Srinivas, Jangirala; Mukhopadhyay, Sourav

    2014-10-01

    Advancement in network technology provides new ways to utilize telecare medicine information systems (TMIS) for patient care. Although TMIS usually faces various attacks as the services are provided over the public network. Recently, Jiang et al. proposed a chaotic map-based remote user authentication scheme for TMIS. Their scheme has the merits of low cost and session key agreement using Chaos theory. It enhances the security of the system by resisting various attacks. In this paper, we analyze the security of Jiang et al.'s scheme and demonstrate that their scheme is vulnerable to denial of service attack. Moreover, we demonstrate flaws in password change phase of their scheme. Further, our aim is to propose a new chaos map-based anonymous user authentication scheme for TMIS to overcome the weaknesses of Jiang et al.'s scheme, while also retaining the original merits of their scheme. We also show that our scheme is secure against various known attacks including the attacks found in Jiang et al.'s scheme. The proposed scheme is comparable in terms of the communication and computational overheads with Jiang et al.'s scheme and other related existing schemes. Moreover, we demonstrate the validity of the proposed scheme through the BAN (Burrows, Abadi, and Needham) logic.

  2. Motivations for Providing a Secure Base: Links with Attachment Orientation and Secure Base Support Behavior

    PubMed Central

    Feeney, Brooke C.; Collins, Nancy L.; Van Vleet, Meredith; Tomlinson, Jennifer

    2015-01-01

    This investigation examined the importance of underlying motivations in predicting secure base support behavior, as well as the extent to which support motivations are predicted by individual differences in attachment orientation. Participants were 189 married couples who participated in two laboratory sessions: During a questionnaire session, couples completed assessments of their underlying motivations for providing, and for not providing, support for their partner's exploration (i.e., goal-strivings), as well as assessments of their typical secure base support behavior. In an observational session, couples engaged in a discussion of one member's personal goals, during which the partner's secure base support was assessed. Results revealed a variety of distinct motivations for providing, and for not providing, secure base support to one's partner, as well as theoretically expected links between these motivations and both secure base behavior and attachment orientation. This work establishes motivations as important mechanisms that underlie the effective or ineffective provision of relational support. PMID:23581972

  3. Design of Secure and Lightweight Authentication Protocol for Wearable Devices Environment.

    PubMed

    Das, Ashok Kumar; Wazid, Mohammad; Kumar, Neeraj; Khan, Muhammad Khurram; Choo, Kim-Kwang Raymond; Park, YoungHo

    2017-09-18

    Wearable devices are used in various applications to collect information including step information, sleeping cycles, workout statistics, and health related information. Due to the nature and richness of the data collected by such devices, it is important to ensure the security of the collected data. This paper presents a new lightweight authentication scheme suitable for wearable device deployment. The scheme allows a user to mutually authenticate his/her wearable device(s) and the mobile terminal (e.g., Android and iOS device) and establish a session key among these devices (worn and carried by the same user) for secure communication between the wearable device and the mobile terminal. The security of the proposed scheme is then demonstrated through the broadly-accepted Real-Or-Random model, as well as using the popular formal security verification tool, known as the Automated Validation of Internet Security Protocols and Applications (AVISPA). Finally, we present a comparative summary of the proposed scheme in terms of the overheads such as computation and communication costs, security and functionality features of the proposed scheme and related schemes, and also the evaluation findings from the NS2 simulation.

  4. SSL/TLS Vulnerability Detection Using Black Box Approach

    NASA Astrophysics Data System (ADS)

    Gunawan, D.; Sitorus, E. H.; Rahmat, R. F.; Hizriadi, A.

    2018-03-01

    Socket Secure Layer (SSL) and Transport Layer Security (TLS) are cryptographic protocols that provide data encryption to secure the communication over a network. However, in some cases, there are vulnerability found in the implementation of SSL/TLS because of weak cipher key, certificate validation error or session handling error. One of the most vulnerable SSL/TLS bugs is heartbleed. As the security is essential in data communication, this research aims to build a scanner that detect the SSL/TLS vulnerability by using black box approach. This research will focus on heartbleed case. In addition, this research also gathers information about existing SSL in the server. The black box approach is used to test the output of a system without knowing the process inside the system itself. For testing purpose, this research scanned websites and found that some of the websites still have SSL/TLS vulnerability. Thus, the black box approach can be used to detect the vulnerability without considering the source code and the process inside the application.

  5. Smart Cards and remote entrusting

    NASA Astrophysics Data System (ADS)

    Aussel, Jean-Daniel; D'Annoville, Jerome; Castillo, Laurent; Durand, Stephane; Fabre, Thierry; Lu, Karen; Ali, Asad

    Smart cards are widely used to provide security in end-to-end communication involving servers and a variety of terminals, including mobile handsets or payment terminals. Sometime, end-to-end server to smart card security is not applicable, and smart cards must communicate directly with an application executing on a terminal, like a personal computer, without communicating with a server. In this case, the smart card must somehow trust the terminal application before performing some secure operation it was designed for. This paper presents a novel method to remotely trust a terminal application from the smart card. For terminals such as personal computers, this method is based on an advanced secure device connected through the USB and consisting of a smart card bundled with flash memory. This device, or USB dongle, can be used in the context of remote untrusting to secure portable applications conveyed in the dongle flash memory. White-box cryptography is used to set the secure channel and a mechanism based on thumbprint is described to provide external authentication when session keys need to be renewed. Although not as secure as end-to-end server to smart card security, remote entrusting with smart cards is easy to deploy for mass-market applications and can provide a reasonable level of security.

  6. 2010 Plant Molecular Biology Gordon Research Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Sussman

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2010 conference will continue in that tradition. Emerging concerns about food security have inspired a program with three main themes: (1) genomics, natural variation and breeding to understand adaptation and crop improvement, (2) hormonal cross talk, and (3) plant/microbe interactions. There are also sessions on epigenetics and proteomics/metabolomics. Thus this conference will bring together a range of disciplines, will foster the exchange of ideas and enable participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides anmore » excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner. In particular, this conference plays a key role in enabling students and postdocs (the next generation of research leaders) to mingle with pioneers in multiple areas of plant science.« less

  7. Indian parliamentarians meet to discuss population and food security.

    PubMed

    1996-01-01

    96 parliamentarians and state legislators attended a seminar on November 8 on food security, population, and development. The one-day meeting was held at the Parliament House Annex in New Delhi and organized by the Indian Association of Parliamentarians on Population and Development as part of a regional campaign to highlight the relationship between population and food security. The first session of the day focused upon the impact of population on food security and nutrition, the second session was on the strategy for food security through poverty alleviation, and the third session discussed food security through trade and self-sufficiency. The participants believe that population size is growing faster than food production. Furthermore, it is important to view both food production and the capacity of people to buy food. Poverty is rooted in unemployment and unemployment is the result of overpopulation. As such, overpopulation causes unemployment which results in the inability of the poor to buy food. A declaration was adopted at the seminar.

  8. An enhanced biometric authentication scheme for telecare medicine information systems with nonce using chaotic hash function.

    PubMed

    Das, Ashok Kumar; Goswami, Adrijit

    2014-06-01

    Recently, Awasthi and Srivastava proposed a novel biometric remote user authentication scheme for the telecare medicine information system (TMIS) with nonce. Their scheme is very efficient as it is based on efficient chaotic one-way hash function and bitwise XOR operations. In this paper, we first analyze Awasthi-Srivastava's scheme and then show that their scheme has several drawbacks: (1) incorrect password change phase, (2) fails to preserve user anonymity property, (3) fails to establish a secret session key beween a legal user and the server, (4) fails to protect strong replay attack, and (5) lacks rigorous formal security analysis. We then a propose a novel and secure biometric-based remote user authentication scheme in order to withstand the security flaw found in Awasthi-Srivastava's scheme and enhance the features required for an idle user authentication scheme. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. In addition, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool and show that our scheme is secure against passive and active attacks, including the replay and man-in-the-middle attacks. Our scheme is also efficient as compared to Awasthi-Srivastava's scheme.

  9. International Cyber Incident Repository System: Information Sharing on a Global Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joyce, Amanda L.; Evans, PhD, Nathaniel; Tanzman, Edward A.

    According to the 2016 Internet Security Threat Report, the largest number of cyber attacks were recorded last year (2015), reaching a total of 430 million incidents throughout the world. As the number of cyber incidents increases, the need for information and intelligence sharing increases, as well. This fairly large increase in cyber incidents is driving the need for an international cyber incident data reporting system. The goal of the cyber incident reporting system is to make available shared and collected information about cyber events among participating international parties. In its 2014 report, Insurance Industry Working Session Readout Report-Insurance for CyberRelatedmore » Critical Infrastructure Loss: Key Issues, on the outcomes of a working session on cyber insurance, the U.S. Department of Homeland Security observed that “many participants cited the need for a secure method through which organizations could pool and share cyber incident information” and noted that one underwriter emphasized the importance of internationally harmonized data taxonomies. This cyber incident data reporting system could benefit all nations that take part in reporting incidents to provide a more common operating picture. In addition, this reporting system could allow for trending and anticipated attacks and could potentially benefit participating members by enabling them to get in front of potential attacks. The purpose of this paper is to identify options for consideration for such a system in fostering cooperative cyber defense.« less

  10. Advanced technologies for encryption of satellite links

    NASA Astrophysics Data System (ADS)

    McMahan, Sherry S.

    The use of encryption on satellite links is discussed. Advanced technology exists to provide transmission security for large earth station with data rates up to 50 megabits per second. One of the major concerns in the use of encryption equipment with very small aperture terminals (VSAT) is the key management issue and the related operational costs. The low cost requirement and the lack of physical protection of remote VSATs place severe constraints on the design of encryption equipment. Encryption may be accomplished by embedding a tamper proof encryption module into the baseband unit of each VSAT. VSAT networks are usually star networks where there is a single large earth station that serves as a hub and all satellite communications takes place between each VSAT and the hub earth station. The hub earth station has the secret master key of each VSAT. These master keys are used to downline load encrypted session keys to each VSAT. A more secure alternative is to use public key techniques where each embedded VSAT encryption module internally generates its own secret and public numbers. The secret number never leaves the module while the public number is sent to the hub at the time of initialization of the encryption module into the VSAT. Physical access control to encryption modules of VSAT systems can be implemented using passwords, smart cards or biometrics.

  11. Eternal Sunshine of the Spotless Machine: Protecting Privacy with Ephemeral Channels

    PubMed Central

    Dunn, Alan M.; Lee, Michael Z.; Jana, Suman; Kim, Sangman; Silberstein, Mark; Xu, Yuanzhong; Shmatikov, Vitaly; Witchel, Emmett

    2014-01-01

    Modern systems keep long memories. As we show in this paper, an adversary who gains access to a Linux system, even one that implements secure deallocation, can recover the contents of applications’ windows, audio buffers, and data remaining in device drivers—long after the applications have terminated. We design and implement Lacuna, a system that allows users to run programs in “private sessions.” After the session is over, all memories of its execution are erased. The key abstraction in Lacuna is an ephemeral channel, which allows the protected program to talk to peripheral devices while making it possible to delete the memories of this communication from the host. Lacuna can run unmodified applications that use graphics, sound, USB input devices, and the network, with only 20 percentage points of additional CPU utilization. PMID:24755709

  12. Cryptographic framework for document-objects resulting from multiparty collaborative transactions.

    PubMed

    Goh, A

    2000-01-01

    Multiparty transactional frameworks--i.e. Electronic Data Interchange (EDI) or Health Level (HL) 7--often result in composite documents which can be accurately modelled using hyperlinked document-objects. The structural complexity arising from multiauthor involvement and transaction-specific sequencing would be poorly handled by conventional digital signature schemes based on a single evaluation of a one-way hash function and asymmetric cryptography. In this paper we outline the generation of structure-specific authentication hash-trees for the the authentication of transactional document-objects, followed by asymmetric signature generation on the hash-tree value. Server-side multi-client signature verification would probably constitute the single most compute-intensive task, hence the motivation for our usage of the Rabin signature protocol which results in significantly reduced verification workloads compared to the more commonly applied Rivest-Shamir-Adleman (RSA) protocol. Data privacy is handled via symmetric encryption of message traffic using session-specific keys obtained through key-negotiation mechanisms based on discrete-logarithm cryptography. Individual client-to-server channels can be secured using a double key-pair variation of Diffie-Hellman (DH) key negotiation, usage of which also enables bidirectional node authentication. The reciprocal server-to-client multicast channel is secured through Burmester-Desmedt (BD) key-negotiation which enjoys significant advantages over the usual multiparty extensions to the DH protocol. The implementation of hash-tree signatures and bi/multidirectional key negotiation results in a comprehensive cryptographic framework for multiparty document-objects satisfying both authentication and data privacy requirements.

  13. 76 FR 41278 - Cargo Security Risk Reduction; Public Listening Sessions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... services for individuals with disabilities, or to request special assistance at either or both sessions... ``shared responsibility'' paradigm. The agenda for the two sessions will principally consist of a...

  14. Security of a sessional blind signature based on quantum cryptograph

    NASA Astrophysics Data System (ADS)

    Wang, Tian-Yin; Cai, Xiao-Qiu; Zhang, Rui-Ling

    2014-08-01

    We analyze the security of a sessional blind signature protocol based on quantum cryptograph and show that there are two security leaks in this protocol. One is that the legal user Alice can change the signed message after she gets a valid blind signature from the signatory Bob, and the other is that an external opponent Eve also can forge a valid blind message by a special attack, which are not permitted for blind signature. Therefore, this protocol is not secure in the sense that it does not satisfy the non-forgeability of blind signatures. We also discuss the methods to prevent the attack strategies in the end.

  15. A prospective health impact assessment of the international astronomy and space exploration centre.

    PubMed

    Winters, L Y

    2001-06-01

    Assess the potential health impacts of the proposed International Astronomy and Space Exploration Centre on the population of New Wallasey. Contribute to the piloting of health impact assessment methods. Prospective health impact assessment involving brainstorming sessions and individual interviews with key informants and a literature review. New Wallasey Single Regeneration Budget 4 area. Key stakeholders including local residents' groups selected through purposeful snowball sampling. Recommendations are made that cover issues around: transport and traffic; civic design; security; public safety, employment and training. Health impact assessment is a useful pragmatic tool for facilitating wide consultation. In particular engaging the local population in the early planning stages of a proposed development, and assisting in highlighting changes to maximise the positive health influences on affected communities.

  16. Design and Analysis of an Enhanced Patient-Server Mutual Authentication Protocol for Telecare Medical Information System.

    PubMed

    Amin, Ruhul; Islam, S K Hafizul; Biswas, G P; Khan, Muhammad Khurram; Obaidat, Mohammad S

    2015-11-01

    In order to access remote medical server, generally the patients utilize smart card to login to the server. It has been observed that most of the user (patient) authentication protocols suffer from smart card stolen attack that means the attacker can mount several common attacks after extracting smart card information. Recently, Lu et al.'s proposes a session key agreement protocol between the patient and remote medical server and claims that the same protocol is secure against relevant security attacks. However, this paper presents several security attacks on Lu et al.'s protocol such as identity trace attack, new smart card issue attack, patient impersonation attack and medical server impersonation attack. In order to fix the mentioned security pitfalls including smart card stolen attack, this paper proposes an efficient remote mutual authentication protocol using smart card. We have then simulated the proposed protocol using widely-accepted AVISPA simulation tool whose results make certain that the same protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. Moreover, the rigorous security analysis proves that the proposed protocol provides strong security protection on the relevant security attacks including smart card stolen attack. We compare the proposed scheme with several related schemes in terms of computation cost and communication cost as well as security functionalities. It has been observed that the proposed scheme is comparatively better than related existing schemes.

  17. 2008 Homeland Security S and T Stakeholders Conference West. Volume 4. Wednesday

    DTIC Science & Technology

    2008-01-16

    www.npia.police.uk Polonium 210 Interoperability - lessons Major Incident - CBRN Images courtesy of BBC www.npia.police.uk Boscastle 2007...Washington Training Session 37: Preparing First Responders for Food Systems Disasters Jerry Gillespie, DVM, PhD Director, Western Institute for... Food Safety and Security Training Session 39: Technology Adoption & Innovation 1 Dr. Neal Thornberry, Innovation Chair Graduate School of

  18. Robust and efficient biometrics based password authentication scheme for telecare medicine information systems using extended chaotic maps.

    PubMed

    Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Xie, Dong; Yang, Yixian

    2015-06-01

    The Telecare Medicine Information Systems (TMISs) provide an efficient communicating platform supporting the patients access health-care delivery services via internet or mobile networks. Authentication becomes an essential need when a remote patient logins into the telecare server. Recently, many extended chaotic maps based authentication schemes using smart cards for TMISs have been proposed. Li et al. proposed a secure smart cards based authentication scheme for TMISs using extended chaotic maps based on Lee's and Jiang et al.'s scheme. In this study, we show that Li et al.'s scheme has still some weaknesses such as violation the session key security, vulnerability to user impersonation attack and lack of local verification. To conquer these flaws, we propose a chaotic maps and smart cards based password authentication scheme by applying biometrics technique and hash function operations. Through the informal and formal security analyses, we demonstrate that our scheme is resilient possible known attacks including the attacks found in Li et al.'s scheme. As compared with the previous authentication schemes, the proposed scheme is more secure and efficient and hence more practical for telemedical environments.

  19. Security Analysis and Improvements of Authentication and Access Control in the Internet of Things

    PubMed Central

    Ndibanje, Bruce; Lee, Hoon-Jae; Lee, Sang-Gon

    2014-01-01

    Internet of Things is a ubiquitous concept where physical objects are connected over the internet and are provided with unique identifiers to enable their self-identification to other devices and the ability to continuously generate data and transmit it over a network. Hence, the security of the network, data and sensor devices is a paramount concern in the IoT network as it grows very fast in terms of exchanged data and interconnected sensor nodes. This paper analyses the authentication and access control method using in the Internet of Things presented by Jing et al (Authentication and Access Control in the Internet of Things. In Proceedings of the 2012 32nd International Conference on Distributed Computing Systems Workshops, Macau, China, 18–21 June 2012, pp. 588–592). According to our analysis, Jing et al.'s protocol is costly in the message exchange and the security assessment is not strong enough for such a protocol. Therefore, we propose improvements to the protocol to fill the discovered weakness gaps. The protocol enhancements facilitate many services to the users such as user anonymity, mutual authentication, and secure session key establishment. Finally, the performance and security analysis show that the improved protocol possesses many advantages against popular attacks, and achieves better efficiency at low communication cost. PMID:25123464

  20. Security analysis and improvements of authentication and access control in the Internet of Things.

    PubMed

    Ndibanje, Bruce; Lee, Hoon-Jae; Lee, Sang-Gon

    2014-08-13

    Internet of Things is a ubiquitous concept where physical objects are connected over the internet and are provided with unique identifiers to enable their self-identification to other devices and the ability to continuously generate data and transmit it over a network. Hence, the security of the network, data and sensor devices is a paramount concern in the IoT network as it grows very fast in terms of exchanged data and interconnected sensor nodes. This paper analyses the authentication and access control method using in the Internet of Things presented by Jing et al. (Authentication and Access Control in the Internet of Things. In Proceedings of the 2012 32nd International Conference on Distributed Computing Systems Workshops, Macau, China, 18-21 June 2012, pp. 588-592). According to our analysis, Jing et al.'s protocol is costly in the message exchange and the security assessment is not strong enough for such a protocol. Therefore, we propose improvements to the protocol to fill the discovered weakness gaps. The protocol enhancements facilitate many services to the users such as user anonymity, mutual authentication, and secure session key establishment. Finally, the performance and security analysis show that the improved protocol possesses many advantages against popular attacks, and achieves better efficiency at low communication cost.

  1. Security enhanced multi-factor biometric authentication scheme using bio-hash function.

    PubMed

    Choi, Younsung; Lee, Youngsook; Moon, Jongho; Won, Dongho

    2017-01-01

    With the rapid development of personal information and wireless communication technology, user authentication schemes have been crucial to ensure that wireless communications are secure. As such, various authentication schemes with multi-factor authentication have been proposed to improve the security of electronic communications. Multi-factor authentication involves the use of passwords, smart cards, and various biometrics to provide users with the utmost privacy and data protection. Cao and Ge analyzed various authentication schemes and found that Younghwa An's scheme was susceptible to a replay attack where an adversary masquerades as a legal server and a user masquerading attack where user anonymity is not provided, allowing an adversary to execute a password change process by intercepting the user's ID during login. Cao and Ge improved upon Younghwa An's scheme, but various security problems remained. This study demonstrates that Cao and Ge's scheme is susceptible to a biometric recognition error, slow wrong password detection, off-line password attack, user impersonation attack, ID guessing attack, a DoS attack, and that their scheme cannot provide session key agreement. Then, to address all weaknesses identified in Cao and Ge's scheme, this study proposes a security enhanced multi-factor biometric authentication scheme and provides a security analysis and formal analysis using Burrows-Abadi-Needham logic. Finally, the efficiency analysis reveals that the proposed scheme can protect against several possible types of attacks with only a slightly high computational cost.

  2. Secure key storage and distribution

    DOEpatents

    Agrawal, Punit

    2015-06-02

    This disclosure describes a distributed, fault-tolerant security system that enables the secure storage and distribution of private keys. In one implementation, the security system includes a plurality of computing resources that independently store private keys provided by publishers and encrypted using a single security system public key. To protect against malicious activity, the security system private key necessary to decrypt the publication private keys is not stored at any of the computing resources. Rather portions, or shares of the security system private key are stored at each of the computing resources within the security system and multiple security systems must communicate and share partial decryptions in order to decrypt the stored private key.

  3. Security analysis of a chaotic map-based authentication scheme for telecare medicine information systems.

    PubMed

    Yau, Wei-Chuen; Phan, Raphael C-W

    2013-12-01

    Many authentication schemes have been proposed for telecare medicine information systems (TMIS) to ensure the privacy, integrity, and availability of patient records. These schemes are crucial for TMIS systems because otherwise patients' medical records become susceptible to tampering thus hampering diagnosis or private medical conditions of patients could be disclosed to parties who do not have a right to access such information. Very recently, Hao et al. proposed a chaotic map-based authentication scheme for telecare medicine information systems in a recent issue of Journal of Medical Systems. They claimed that the authentication scheme can withstand various attacks and it is secure to be used in TMIS. In this paper, we show that this authentication scheme is vulnerable to key-compromise impersonation attacks, off-line password guessing attacks upon compromising of a smart card, and parallel session attacks. We also exploit weaknesses in the password change phase of the scheme to mount a denial-of-service attack. Our results show that this scheme cannot be used to provide security in a telecare medicine information system.

  4. 76 FR 81477 - Announcing an Open Meeting of the Information Security and Privacy Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... sessions will be open to the public. The ISPAB was established by the Computer Security Act of 1987 (Pub. L... Secure Mobile Devices, --Panel Discussion on cyber R&D Strategy, and --Update of NIST Computer Security... of the Information Security and Privacy Advisory Board AGENCY: National Institute of Standards and...

  5. Secure Web-Site Access with Tickets and Message-Dependent Digests

    USGS Publications Warehouse

    Donato, David I.

    2008-01-01

    Although there are various methods for restricting access to documents stored on a World Wide Web (WWW) site (a Web site), none of the widely used methods is completely suitable for restricting access to Web applications hosted on an otherwise publicly accessible Web site. A new technique, however, provides a mix of features well suited for restricting Web-site or Web-application access to authorized users, including the following: secure user authentication, tamper-resistant sessions, simple access to user state variables by server-side applications, and clean session terminations. This technique, called message-dependent digests with tickets, or MDDT, maintains secure user sessions by passing single-use nonces (tickets) and message-dependent digests of user credentials back and forth between client and server. Appendix 2 provides a working implementation of MDDT with PHP server-side code and JavaScript client-side code.

  6. A Key Establishment Protocol for RFID User in IPTV Environment

    NASA Astrophysics Data System (ADS)

    Jeong, Yoon-Su; Kim, Yong-Tae; Sohn, Jae-Min; Park, Gil-Cheol; Lee, Sang-Ho

    In recent years, the usage of IPTV (Internet Protocol Television) has been increased. The reason is a technological convergence of broadcasting and telecommunication delivering interactive applications and multimedia content through high speed Internet connections. The main critical point of IPTV security requirements is subscriber authentication. That is, IPTV service should have the capability to identify the subscribers to prohibit illegal access. Currently, IPTV service does not provide a sound authentication mechanism to verify the identity of its wireless users (or devices). This paper focuses on a lightweight authentication and key establishment protocol based on the use of hash functions. The proposed approach provides effective authentication for a mobile user with a RFID tag whose authentication information is communicated back and forth with the IPTV authentication server via IPTV set-top box (STB). That is, the proposed protocol generates user's authentication information that is a bundle of two public keys derived from hashing user's private keys and RFID tag's session identifier, and adds 1bit to this bundled information for subscriber's information confidentiality before passing it to the authentication server.

  7. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 2

    ScienceCinema

    Thomas D'Agostino

    2017-12-09

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  8. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1

    ScienceCinema

    Thomas D'Agostino

    2017-12-09

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  9. Across the Atlantic cooperation to address international challenges in eHealth and health IT: managing toward a common goal.

    PubMed

    Friedman, Charles P; Iakovidis, Ilias; Debenedetti, Laurent; Lorenzi, Nancy M

    2009-11-01

    Countries on both sides of the Atlantic Ocean have invested in health information and communication technologies. Since eHealth challenges cross borders a European Union-United States of America conference on public policies relating to health IT and eHealth was held October 20-21, 2008 in Paris, France. The conference was organized around the four themes: (1) privacy and security, (2) health IT interoperability, (3) deployment and adoption of health IT, and (4) Public Private Collaborative Governance. The four key themes framed the discussion over the two days of plenary sessions and workshops. Key findings of the conference were organized along the four themes. (1) Privacy and security: Patients' access to their own data and key elements of a patient identification management framework were discussed. (2) Health IT interoperability: Three significant and common interoperability challenges emerged: (a) the need to establish common or compatible standards and clear guidelines for their implementation, (b) the desirability for shared certification criteria and (c) the need for greater awareness of the importance of interoperability. (3) Deployment and adoption of health IT: Three major areas of need emerged: (a) a shared knowledge base and assessment framework, (b) public-private collaboration and (c) and effective organizational change strategies. (4) Public Private Collaborative Governance: Sharing and communication are central to success in this area. Nations can learn from one another about ways to develop harmonious, effective partnerships. Three areas that were identified as highest priority for collaboration included: (1) health data security, (2) developing effective strategies to ensure healthcare professionals' acceptance of health IT tools, and (3) interoperability.

  10. A sessional blind signature based on quantum cryptography

    NASA Astrophysics Data System (ADS)

    Khodambashi, Siavash; Zakerolhosseini, Ali

    2014-01-01

    In this paper, we present a sessional blind signature protocol whose security is guaranteed by fundamental principles of quantum physics. It allows a message owner to get his message signed by an authorized signatory. However, the signatory is not capable of reading the message contents and everyone can verify authenticity of the message. For this purpose, we took advantage of a sessional signature as well as quantum entangled pairs which are generated with respect to it in our proposed protocol. We describe our proposed blind signature through an example and briefly discuss about its unconditional security. Due to the feasibility of the protocol, it can be widely employed for e-payment, e-government, e-business and etc.

  11. A prospective health impact assessment of the international astronomy and space exploration centre

    PubMed Central

    Winters, L

    2001-01-01

    STUDY OBJECTIVES—Assess the potential health impacts of the proposed International Astronomy and Space Exploration Centre on the population of New Wallasey. Contribute to the piloting of health impact assessment methods.
DESIGN—Prospective health impact assessment involving brainstorming sessions and individual interviews with key informants and a literature review.
SETTING—New Wallasey Single Regeneration Budget 4 area.
PARTICIPANTS—Key stakeholders including local residents' groups selected through purposeful snowball sampling.
MAIN RESULTS—Recommendations are made that cover issues around: transport and traffic; civic design; security; public safety, employment and training.
CONCLUSIONS—Health impact assessment is a useful pragmatic tool for facilitating wide consultation. In particular engaging the local population in the early planning stages of a proposed development, and assisting in highlighting changes to maximise the positive health influences on affected communities.


Keywords: health impact assessment; health determinants PMID:11351002

  12. E-SAP: Efficient-Strong Authentication Protocol for Healthcare Applications Using Wireless Medical Sensor Networks

    PubMed Central

    Kumar, Pardeep; Lee, Sang-Gon; Lee, Hoon-Jae

    2012-01-01

    A wireless medical sensor network (WMSN) can sense humans’ physiological signs without sacrificing patient comfort and transmit patient vital signs to health professionals’ hand-held devices. The patient physiological data are highly sensitive and WMSNs are extremely vulnerable to many attacks. Therefore, it must be ensured that patients’ medical signs are not exposed to unauthorized users. Consequently, strong user authentication is the main concern for the success and large scale deployment of WMSNs. In this regard, this paper presents an efficient, strong authentication protocol, named E-SAP, for healthcare application using WMSNs. The proposed E-SAP includes: (1) a two-factor (i.e., password and smartcard) professional authentication; (2) mutual authentication between the professional and the medical sensor; (3) symmetric encryption/decryption for providing message confidentiality; (4) establishment of a secure session key at the end of authentication; and (5) professionals can change their password. Further, the proposed protocol requires three message exchanges between the professional, medical sensor node and gateway node, and achieves efficiency (i.e., low computation and communication cost). Through the formal analysis, security analysis and performance analysis, we demonstrate that E-SAP is more secure against many practical attacks, and allows a tradeoff between the security and the performance cost for healthcare application using WMSNs. PMID:22438729

  13. E-SAP: efficient-strong authentication protocol for healthcare applications using wireless medical sensor networks.

    PubMed

    Kumar, Pardeep; Lee, Sang-Gon; Lee, Hoon-Jae

    2012-01-01

    A wireless medical sensor network (WMSN) can sense humans' physiological signs without sacrificing patient comfort and transmit patient vital signs to health professionals' hand-held devices. The patient physiological data are highly sensitive and WMSNs are extremely vulnerable to many attacks. Therefore, it must be ensured that patients' medical signs are not exposed to unauthorized users. Consequently, strong user authentication is the main concern for the success and large scale deployment of WMSNs. In this regard, this paper presents an efficient, strong authentication protocol, named E-SAP, for healthcare application using WMSNs. The proposed E-SAP includes: (1) a two-factor (i.e., password and smartcard) professional authentication; (2) mutual authentication between the professional and the medical sensor; (3) symmetric encryption/decryption for providing message confidentiality; (4) establishment of a secure session key at the end of authentication; and (5) professionals can change their password. Further, the proposed protocol requires three message exchanges between the professional, medical sensor node and gateway node, and achieves efficiency (i.e., low computation and communication cost). Through the formal analysis, security analysis and performance analysis, we demonstrate that E-SAP is more secure against many practical attacks, and allows a tradeoff between the security and the performance cost for healthcare application using WMSNs.

  14. Security enhanced multi-factor biometric authentication scheme using bio-hash function

    PubMed Central

    Lee, Youngsook; Moon, Jongho

    2017-01-01

    With the rapid development of personal information and wireless communication technology, user authentication schemes have been crucial to ensure that wireless communications are secure. As such, various authentication schemes with multi-factor authentication have been proposed to improve the security of electronic communications. Multi-factor authentication involves the use of passwords, smart cards, and various biometrics to provide users with the utmost privacy and data protection. Cao and Ge analyzed various authentication schemes and found that Younghwa An’s scheme was susceptible to a replay attack where an adversary masquerades as a legal server and a user masquerading attack where user anonymity is not provided, allowing an adversary to execute a password change process by intercepting the user’s ID during login. Cao and Ge improved upon Younghwa An’s scheme, but various security problems remained. This study demonstrates that Cao and Ge’s scheme is susceptible to a biometric recognition error, slow wrong password detection, off-line password attack, user impersonation attack, ID guessing attack, a DoS attack, and that their scheme cannot provide session key agreement. Then, to address all weaknesses identified in Cao and Ge’s scheme, this study proposes a security enhanced multi-factor biometric authentication scheme and provides a security analysis and formal analysis using Burrows-Abadi-Needham logic. Finally, the efficiency analysis reveals that the proposed scheme can protect against several possible types of attacks with only a slightly high computational cost. PMID:28459867

  15. Key on demand (KoD) for software-defined optical networks secured by quantum key distribution (QKD).

    PubMed

    Cao, Yuan; Zhao, Yongli; Colman-Meixner, Carlos; Yu, Xiaosong; Zhang, Jie

    2017-10-30

    Software-defined optical networking (SDON) will become the next generation optical network architecture. However, the optical layer and control layer of SDON are vulnerable to cyberattacks. While, data encryption is an effective method to minimize the negative effects of cyberattacks, secure key interchange is its major challenge which can be addressed by the quantum key distribution (QKD) technique. Hence, in this paper we discuss the integration of QKD with WDM optical networks to secure the SDON architecture by introducing a novel key on demand (KoD) scheme which is enabled by a novel routing, wavelength and key assignment (RWKA) algorithm. The QKD over SDON with KoD model follows two steps to provide security: i) quantum key pools (QKPs) construction for securing the control channels (CChs) and data channels (DChs); ii) the KoD scheme uses RWKA algorithm to allocate and update secret keys for different security requirements. To test our model, we define a security probability index which measures the security gain in CChs and DChs. Simulation results indicate that the security performance of CChs and DChs can be enhanced by provisioning sufficient secret keys in QKPs and performing key-updating considering potential cyberattacks. Also, KoD is beneficial to achieve a positive balance between security requirements and key resource usage.

  16. Information Security in the 1990s: Keeping the Locks on.

    ERIC Educational Resources Information Center

    Kovac, Ron J.

    1999-01-01

    As the Internet proliferates, it drastically increases an institution's level of data insecurity. Hacker attacks can result in denial of service, data corruption or erasure, and passive theft (via spoofing, splicing, or session stealing). To ensure data security, a firewall (screening software program) and a security policy should be implemented.…

  17. 76 FR 70984 - National Assessment Governing Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... be discussed/disclosed in an open meeting. Premature disclosure of these secure test items and... Education, National Assessment Governing Board. ACTION: Notice of Open and Closed Meeting Sessions. SUMMARY... Hoc, Assessment Development, and Executive Committee. Meetings Ad Hoc Committee: Open Session: 8:30 a...

  18. A Temporal Credential-Based Mutual Authentication with Multiple-Password Scheme for Wireless Sensor Networks

    PubMed Central

    Zhang, Ruisheng; Liu, Qidong

    2017-01-01

    Wireless sensor networks (WSNs), which consist of a large number of sensor nodes, have become among the most important technologies in numerous fields, such as environmental monitoring, military surveillance, control systems in nuclear reactors, vehicle safety systems, and medical monitoring. The most serious drawback for the widespread application of WSNs is the lack of security. Given the resource limitation of WSNs, traditional security schemes are unsuitable. Approaches toward withstanding related attacks with small overhead have thus recently been studied by many researchers. Numerous studies have focused on the authentication scheme for WSNs, but most of these works cannot achieve the security performance and overhead perfectly. Nam et al. proposed a two-factor authentication scheme with lightweight sensor computation for WSNs. In this paper, we review this scheme, emphasize its drawbacks, and propose a temporal credential-based mutual authentication with a multiple-password scheme for WSNs. Our scheme uses multiple passwords to achieve three-factor security performance and generate a session key between user and sensor nodes. The security analysis phase shows that our scheme can withstand related attacks, including a lost password threat, and the comparison phase shows that our scheme involves a relatively small overhead. In the comparison of the overhead phase, the result indicates that more than 95% of the overhead is composed of communication and not computation overhead. Therefore, the result motivates us to pay further attention to communication overhead than computation overhead in future research. PMID:28135288

  19. A Temporal Credential-Based Mutual Authentication with Multiple-Password Scheme for Wireless Sensor Networks.

    PubMed

    Liu, Xin; Zhang, Ruisheng; Liu, Qidong

    2017-01-01

    Wireless sensor networks (WSNs), which consist of a large number of sensor nodes, have become among the most important technologies in numerous fields, such as environmental monitoring, military surveillance, control systems in nuclear reactors, vehicle safety systems, and medical monitoring. The most serious drawback for the widespread application of WSNs is the lack of security. Given the resource limitation of WSNs, traditional security schemes are unsuitable. Approaches toward withstanding related attacks with small overhead have thus recently been studied by many researchers. Numerous studies have focused on the authentication scheme for WSNs, but most of these works cannot achieve the security performance and overhead perfectly. Nam et al. proposed a two-factor authentication scheme with lightweight sensor computation for WSNs. In this paper, we review this scheme, emphasize its drawbacks, and propose a temporal credential-based mutual authentication with a multiple-password scheme for WSNs. Our scheme uses multiple passwords to achieve three-factor security performance and generate a session key between user and sensor nodes. The security analysis phase shows that our scheme can withstand related attacks, including a lost password threat, and the comparison phase shows that our scheme involves a relatively small overhead. In the comparison of the overhead phase, the result indicates that more than 95% of the overhead is composed of communication and not computation overhead. Therefore, the result motivates us to pay further attention to communication overhead than computation overhead in future research.

  20. PDS4 Training: Key Concepts and Vocabulary

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Guinness, E. A.; Neakrase, L. D. V.; Padams, J.; Raugh, A. C.

    2017-06-01

    Those planning to attend the PDS4 training session are strongly encouraged to review this poster prior to the training session. This poster briefly describes new vocabulary and a number of key concepts introduced with PDS4.

  1. 76 FR 45883 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... Effectiveness of Proposed Rule Change Regarding Cancellation or Rescheduling Fees for Qualification Examinations and Continuing Education Sessions July 26, 2011. Pursuant to Section 19(b)(1) of the Securities... for qualification examinations and continuing education sessions. Specifically, the proposed rule...

  2. 75 FR 16157 - Pharmaceutical Supply Chain; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... supply of high quality, safe, and effective drug products and drug ingredients depends upon a series of... patients. Through a series of plenary sessions and working group breakout sessions, the workshop will... environment. Share improvements in programs and technology. Identify any barriers to securing the entire...

  3. Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry.

    PubMed

    Zhang, Zheshen; Mower, Jacob; Englund, Dirk; Wong, Franco N C; Shapiro, Jeffrey H

    2014-03-28

    High-dimensional quantum key distribution (HDQKD) offers the possibility of high secure-key rate with high photon-information efficiency. We consider HDQKD based on the time-energy entanglement produced by spontaneous parametric down-conversion and show that it is secure against collective attacks. Its security rests upon visibility data-obtained from Franson and conjugate-Franson interferometers-that probe photon-pair frequency correlations and arrival-time correlations. From these measurements, an upper bound can be established on the eavesdropper's Holevo information by translating the Gaussian-state security analysis for continuous-variable quantum key distribution so that it applies to our protocol. We show that visibility data from just the Franson interferometer provides a weaker, but nonetheless useful, secure-key rate lower bound. To handle multiple-pair emissions, we incorporate the decoy-state approach into our protocol. Our results show that over a 200-km transmission distance in optical fiber, time-energy entanglement HDQKD could permit a 700-bit/sec secure-key rate and a photon information efficiency of 2 secure-key bits per photon coincidence in the key-generation phase using receivers with a 15% system efficiency.

  4. A Traceability Attack against e-Passports

    NASA Astrophysics Data System (ADS)

    Chothia, Tom; Smirnov, Vitaliy

    Since 2004, many nations have started issuing "e-passports" containing an RFID tag that, when powered, broadcasts information. It is claimed that these passports are more secure and that our data will be protected from any possible unauthorised attempts to read it. In this paper we show that there is a flaw in one of the passport's protocols that makes it possible to trace the movements of a particular passport, without having to break the passport's cryptographic key. All an attacker has to do is to record one session between the passport and a legitimate reader, then by replaying a particular message, the attacker can distinguish that passport from any other. We have implemented our attack and tested it successfully against passports issued by a range of nations.

  5. Security Enhancement Using Cache Based Reauthentication in WiMAX Based E-Learning System

    PubMed Central

    Rajagopal, Chithra; Bhuvaneshwaran, Kalaavathi

    2015-01-01

    WiMAX networks are the most suitable for E-Learning through their Broadcast and Multicast Services at rural areas. Authentication of users is carried out by AAA server in WiMAX. In E-Learning systems the users must be forced to perform reauthentication to overcome the session hijacking problem. The reauthentication of users introduces frequent delay in the data access which is crucial in delaying sensitive applications such as E-Learning. In order to perform fast reauthentication caching mechanism known as Key Caching Based Authentication scheme is introduced in this paper. Even though the cache mechanism requires extra storage to keep the user credentials, this type of mechanism reduces the 50% of the delay occurring during reauthentication. PMID:26351658

  6. Security Enhancement Using Cache Based Reauthentication in WiMAX Based E-Learning System.

    PubMed

    Rajagopal, Chithra; Bhuvaneshwaran, Kalaavathi

    2015-01-01

    WiMAX networks are the most suitable for E-Learning through their Broadcast and Multicast Services at rural areas. Authentication of users is carried out by AAA server in WiMAX. In E-Learning systems the users must be forced to perform reauthentication to overcome the session hijacking problem. The reauthentication of users introduces frequent delay in the data access which is crucial in delaying sensitive applications such as E-Learning. In order to perform fast reauthentication caching mechanism known as Key Caching Based Authentication scheme is introduced in this paper. Even though the cache mechanism requires extra storage to keep the user credentials, this type of mechanism reduces the 50% of the delay occurring during reauthentication.

  7. The 68th Session of the International Labour Conference, June 1982.

    ERIC Educational Resources Information Center

    International Labour Review, 1982

    1982-01-01

    This year's session adopted new standards such as maintenance of migrant workers' social security rights, protection of workers against unjustified dismissal, and vocational rehabilitation. This article describes the conference's examination of these technical agenda items, and its annual review of the application of Conventions and…

  8. Session management for web-based healthcare applications.

    PubMed Central

    Wei, L.; Sengupta, S.

    1999-01-01

    In health care systems, users may access multiple applications during one session of interaction with the system. However, users must sign on to each application individually, and it is difficult to maintain a common context among these applications. We are developing a session management system for web-based applications using LDAP directory service, which will allow single sign-on to multiple web-based applications, and maintain a common context among those applications for the user. This paper discusses the motivations for building this system, the system architecture, and the challenges of our approach, such as the session objects management for the user, and session security. PMID:10566511

  9. The use of drama to support reflection and understanding of the residents' situation in dementia care: a pilot study.

    PubMed

    Bolmsjö, Ingrid; Edberg, Anna-Karin; Andersson, Petra Lilja

    2014-09-01

    One key aspect of person-centredness is striving to understand both the patients' experiences and behaviours from their perspective. These aspects are precisely those that staff in dementia care highlight as causing them most difficulty because the people in their care have major problems expressing themselves. There is thus a need to develop a method to help the staff to achieve interpretation through reflection. The aim of this study was to explore the use of drama as a tool to support reflection among staff working in the residential care of people with dementia. A qualitative evaluation of a programme consisting of three drama sessions with staff working in residential care (n = 10 nurse assistants). Data comprised observations and tape recordings of the sessions, the researchers' reflections after each session and a focus-group interview with the participants. The texts were analysed using qualitative content analysis. The analysis showed that: (i) the exercises stimulate reflection about daily caring practice; (ii) the participants must receive extensive information about the purpose of the sessions; (iii) the research team must secure the defined frames and conditions and have practical knowledge about caring for people with dementia and (iv) the management needs to be stable, committed and supportive. Drama seems to be a valid tool to aid reflection, but several adjustments are needed concerning both the content of the sessions and the methodology. When designing a larger intervention study, it would be preferable to the sessions to be combined with staff support to effect changes in care provision resulting from their increased awareness of the residents' situation and experience. Our results showed that drama can be a means to enhance reflection among staff in residential care for people with dementia. Further research is however needed concerning the effects for the staff's situation and nursing care quality. © 2012 Blackwell Publishing Ltd.

  10. 20 CFR 416.940 - Evaluating compliance with the treatment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... requirements. 416.940 Section 416.940 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY..., hematological or urinalysis studies for individuals with drug addiction and hematological studies and breath...) Consistent attendance at and participation in treatment sessions; (3) Improved social functioning and levels...

  11. 20 CFR 416.940 - Evaluating compliance with the treatment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... requirements. 416.940 Section 416.940 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY..., hematological or urinalysis studies for individuals with drug addiction and hematological studies and breath...) Consistent attendance at and participation in treatment sessions; (3) Improved social functioning and levels...

  12. 20 CFR 416.940 - Evaluating compliance with the treatment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... requirements. 416.940 Section 416.940 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY..., hematological or urinalysis studies for individuals with drug addiction and hematological studies and breath...) Consistent attendance at and participation in treatment sessions; (3) Improved social functioning and levels...

  13. 20 CFR 416.940 - Evaluating compliance with the treatment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... requirements. 416.940 Section 416.940 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY..., hematological or urinalysis studies for individuals with drug addiction and hematological studies and breath...) Consistent attendance at and participation in treatment sessions; (3) Improved social functioning and levels...

  14. 20 CFR 416.940 - Evaluating compliance with the treatment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... requirements. 416.940 Section 416.940 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY..., hematological or urinalysis studies for individuals with drug addiction and hematological studies and breath...) Consistent attendance at and participation in treatment sessions; (3) Improved social functioning and levels...

  15. Security Standards and Best Practice Considerations for Quantum Key Distribution (QKD)

    DTIC Science & Technology

    2012-03-01

    SECURITY STANDARDS AND BEST PRACTICE CONSIDERATIONS FOR QUANTUM KEY DISTRIBUTION (QKD) THESIS...protection in the United States. AFIT/GSE/ENV/12-M05 SECURITY STANDARDS AND BEST PRACTICE CONSIDERATIONS FOR QUANTUM KEY DISTRIBUTION (QKD...FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GSE/ENV/12-M05 SECURITY STANDARDS AND BEST PRACTICE CONSIDERATIONS FOR QUANTUM KEY

  16. Performance of device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Zhao, Qi; Ma, Xiongfeng

    2016-07-01

    Quantum key distribution provides information-theoretically-secure communication. In practice, device imperfections may jeopardise the system security. Device-independent quantum key distribution solves this problem by providing secure keys even when the quantum devices are untrusted and uncharacterized. Following a recent security proof of the device-independent quantum key distribution, we improve the key rate by tightening the parameter choice in the security proof. In practice where the system is lossy, we further improve the key rate by taking into account the loss position information. From our numerical simulation, our method can outperform existing results. Meanwhile, we outline clear experimental requirements for implementing device-independent quantum key distribution. The maximal tolerable error rate is 1.6%, the minimal required transmittance is 97.3%, and the minimal required visibility is 96.8 % .

  17. Summary of ADTT Website Functionality and Features

    NASA Technical Reports Server (NTRS)

    Hawke, Veronica; Duong, Trang; Liang, Lawrence; Gage, Peter; Lawrence, Scott (Technical Monitor)

    2001-01-01

    This report summarizes development of the ADTT web-based design environment by the ELORET team in 2000. The Advanced Design Technology Testbed had been in development for several years, with demonstration applications restricted to aerodynamic analyses of subsonic aircraft. The key changes achieved this year were improvements in Web-based accessibility, evaluation of collaborative visualization, remote invocation of geometry updates and performance analysis, and application to aerospace system analysis. Significant effort was also devoted to post-processing of data, chiefly through comparison of similar data for alternative vehicle concepts. Such comparison is an essential requirement for designers to make informed choices between alternatives. The next section of this report provides more discussion of the goals for ADTT development. Section 3 provides screen shots from a sample session in the ADTT environment, including Login and navigation to the project of interest, data inspection, analysis execution and output evaluation. The following section provides discussion of implementation details and recommendations for future development of the software and information technologies that provide the key functionality of the ADTT system. Section 5 discusses the integration architecture for the system, which links machines running different operating systems and provides unified access to data stored in distributed locations. Security is a significant issue for this system, especially for remote access to NAS machines, so Section 6 discusses several architectural considerations with respect to security. Additional details of some aspects of ADTT development are included in Appendices.

  18. A secure and efficient uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care.

    PubMed

    Das, Ashok Kumar; Goswami, Adrijit

    2013-06-01

    Connected health care has several applications including telecare medicine information system, personally controlled health records system, and patient monitoring. In such applications, user authentication can ensure the legality of patients. In user authentication for such applications, only the legal user/patient himself/herself is allowed to access the remote server, and no one can trace him/her according to transmitted data. Chang et al. proposed a uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care (Chang et al., J Med Syst 37:9902, 2013). Their scheme uses the user's personal biometrics along with his/her password with the help of the smart card. The user's biometrics is verified using BioHashing. Their scheme is efficient due to usage of one-way hash function and exclusive-or (XOR) operations. In this paper, we show that though their scheme is very efficient, their scheme has several security weaknesses such as (1) it has design flaws in login and authentication phases, (2) it has design flaws in password change phase, (3) it fails to protect privileged insider attack, (4) it fails to protect the man-in-the middle attack, and (5) it fails to provide proper authentication. In order to remedy these security weaknesses in Chang et al.'s scheme, we propose an improvement of their scheme while retaining the original merit of their scheme. We show that our scheme is efficient as compared to Chang et al.'s scheme. Through the security analysis, we show that our scheme is secure against possible attacks. Further, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to ensure that our scheme is secure against passive and active attacks. In addition, after successful authentication between the user and the server, they establish a secret session key shared between them for future secure communication.

  19. 2008 Homeland Security S and T Stakeholders Conference West

    DTIC Science & Technology

    2008-01-16

    Untitled Document 2008hls.html[5/26/ 2016 8:25:16 AM] 2008 Homeland Security S&T Stakeholders Conference West “Putting First Responders First” Los...Sector Commander/Captain of the Port, U.S. Coast Guard Sector Los Angeles - Long Beach Mr. Mark Denari, Director, Aviation Security & Public Safety...Document 2008hls.html[5/26/ 2016 8:25:16 AM] Pre Conference Training Workshop Monday, 14 January 2008 Training Session 3:Better Security via Randomization

  20. Key Exchange Trust Evaluation in Peer-to-Peer Sensor Networks With Unconditionally Secure Key Exchange

    NASA Astrophysics Data System (ADS)

    Gonzalez, Elias; Kish, Laszlo B.

    2016-03-01

    As the utilization of sensor networks continue to increase, the importance of security becomes more profound. Many industries depend on sensor networks for critical tasks, and a malicious entity can potentially cause catastrophic damage. We propose a new key exchange trust evaluation for peer-to-peer sensor networks, where part of the network has unconditionally secure key exchange. For a given sensor, the higher the portion of channels with unconditionally secure key exchange the higher the trust value. We give a brief introduction to unconditionally secured key exchange concepts and mention current trust measures in sensor networks. We demonstrate the new key exchange trust measure on a hypothetical sensor network using both wired and wireless communication channels.

  1. Towards secure quantum key distribution protocol for wireless LANs: a hybrid approach

    NASA Astrophysics Data System (ADS)

    Naik, R. Lalu; Reddy, P. Chenna

    2015-12-01

    The primary goals of security such as authentication, confidentiality, integrity and non-repudiation in communication networks can be achieved with secure key distribution. Quantum mechanisms are highly secure means of distributing secret keys as they are unconditionally secure. Quantum key distribution protocols can effectively prevent various attacks in the quantum channel, while classical cryptography is efficient in authentication and verification of secret keys. By combining both quantum cryptography and classical cryptography, security of communications over networks can be leveraged. Hwang, Lee and Li exploited the merits of both cryptographic paradigms for provably secure communications to prevent replay, man-in-the-middle, and passive attacks. In this paper, we propose a new scheme with the combination of quantum cryptography and classical cryptography for 802.11i wireless LANs. Since quantum cryptography is premature in wireless networks, our work is a significant step forward toward securing communications in wireless networks. Our scheme is known as hybrid quantum key distribution protocol. Our analytical results revealed that the proposed scheme is provably secure for wireless networks.

  2. Comparative study of key exchange and authentication methods in application, transport and network level security mechanisms

    NASA Astrophysics Data System (ADS)

    Fathirad, Iraj; Devlin, John; Jiang, Frank

    2012-09-01

    The key-exchange and authentication are two crucial elements of any network security mechanism. IPsec, SSL/TLS, PGP and S/MIME are well-known security approaches in providing security service to network, transport and application layers; these protocols use different methods (based on their requirements) to establish keying materials and authenticates key-negotiation and participated parties. This paper studies and compares the authenticated key negotiation methods in mentioned protocols.

  3. Projects without a purpose: Why a top down strategy to resilience matters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kingery, Kristine M.; Fowler, Kimberly M.; Harrove

    Energy resilience is a key focus of the current administration and Department of Defense (DoD) leaders, and is in the title of every energy conference session. Most case studies and success stories focus on resilience projects hardening systems or microgriding critical infrastructure. Some case studies focus on unique financing approaches to bring private sector innovation and increased investment to military installations. Many times, what initially look like innovative resilience projects, end as isolated systems or stranded infrastructure. This article will explore how the DoD can make greater strides advancing resilience objectives and ultimately developing projects that support installation mission readinessmore » by first focusing on top down strategies. The Army established energy and water security/resilience requirements, developed a comprehensive measurement framework, is evolving integrated planning approaches in collaboration with local communities, and is supporting project development activities across third-party and appropriated programs. The Army’s multi-year strategic energy and water security planning activities can provide helpful guidance to both the lifecycle of programs or individual projects, and ensure resilience projects both have and achieve a purpose.« less

  4. A robust ECC based mutual authentication protocol with anonymity for session initiation protocol.

    PubMed

    Mehmood, Zahid; Chen, Gongliang; Li, Jianhua; Li, Linsen; Alzahrani, Bander

    2017-01-01

    Over the past few years, Session Initiation Protocol (SIP) is found as a substantial application-layer protocol for the multimedia services. It is extensively used for managing, altering, terminating and distributing the multimedia sessions. Authentication plays a pivotal role in SIP environment. Currently, Lu et al. presented an authentication protocol for SIP and profess that newly proposed protocol is protected against all the familiar attacks. However, the detailed analysis describes that the Lu et al.'s protocol is exposed against server masquerading attack and user's masquerading attack. Moreover, it also fails to protect the user's identity as well as it possesses incorrect login and authentication phase. In order to establish a suitable and efficient protocol, having ability to overcome all these discrepancies, a robust ECC-based novel mutual authentication mechanism with anonymity for SIP is presented in this manuscript. The improved protocol contains an explicit parameter for user to cope the issues of security and correctness and is found to be more secure and relatively effective to protect the user's privacy, user's masquerading and server masquerading as it is verified through the comprehensive formal and informal security analysis.

  5. Securing non-volatile memory regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faraboschi, Paolo; Ranganathan, Parthasarathy; Muralimanohar, Naveen

    Methods, apparatus and articles of manufacture to secure non-volatile memory regions are disclosed. An example method disclosed herein comprises associating a first key pair and a second key pair different than the first key pair with a process, using the first key pair to secure a first region of a non-volatile memory for the process, and using the second key pair to secure a second region of the non-volatile memory for the same process, the second region being different than the first region.

  6. Fundamental quantitative security in quantum key generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuen, Horace P.

    2010-12-15

    We analyze the fundamental security significance of the quantitative criteria on the final generated key K in quantum key generation including the quantum criterion d, the attacker's mutual information on K, and the statistical distance between her distribution on K and the uniform distribution. For operational significance a criterion has to produce a guarantee on the attacker's probability of correctly estimating some portions of K from her measurement, in particular her maximum probability of identifying the whole K. We distinguish between the raw security of K when the attacker just gets at K before it is used in a cryptographicmore » context and its composition security when the attacker may gain further information during its actual use to help get at K. We compare both of these securities of K to those obtainable from conventional key expansion with a symmetric key cipher. It is pointed out that a common belief in the superior security of a quantum generated K is based on an incorrect interpretation of d which cannot be true, and the security significance of d is uncertain. Generally, the quantum key distribution key K has no composition security guarantee and its raw security guarantee from concrete protocols is worse than that of conventional ciphers. Furthermore, for both raw and composition security there is an exponential catch-up problem that would make it difficult to quantitatively improve the security of K in a realistic protocol. Some possible ways to deal with the situation are suggested.« less

  7. 76 FR 31971 - New Agency Information Collection Activity Under OMB Review: Security Program for Hazardous...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... INFORMATION CONTACT: Joanna Johnson, TSA PRA Officer, Office of Information Technology (OIT), TSA-11... other forms of information technology. Information Collection Requirement Title: Security Program for... surveyor tool that is managed at TSA. Participants who attend the classroom training sessions will also be...

  8. 76 FR 43286 - National Assessment Governing Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... levels for each grade and subject tested, developing standards and procedures for interstate and national... in closed session to review secure test items for the 2012 Economics assessment at grade 12 and the... meeting the ADC will complete their review of secure NAEP test items for the 2012 Economics assessment at...

  9. Fifty Years of Social Security: Past Achievements and Future Challenges. An Information Paper Prepared for Use by the Special Committee on Aging. United States Senate, Ninety-Ninth Congress, First Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Special Committee on Aging.

    This document contains six essays examining the history and impact of the social security program on America's economic and social development. "Social Security: The Cornerstone of American Social Welfare Policy," by Malcolm H. Morrison, presents brief background information on the system and discusses the basic principles of social…

  10. Session Initiation Protocol Network Encryption Device Plain Text Domain Discovery Service

    DTIC Science & Technology

    2007-12-07

    MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a...such as the TACLANE, have developed unique discovery methods to establish Plain Text Domain (PTD) Security Associations (SA). All of these techniques...can include network and host Internet Protocol (IP) addresses, Information System Security Office (ISSO) point of contact information and PTD status

  11. On the Security of a Two-Factor Authentication and Key Agreement Scheme for Telecare Medicine Information Systems.

    PubMed

    Arshad, Hamed; Teymoori, Vahid; Nikooghadam, Morteza; Abbassi, Hassan

    2015-08-01

    Telecare medicine information systems (TMISs) aim to deliver appropriate healthcare services in an efficient and secure manner to patients. A secure mechanism for authentication and key agreement is required to provide proper security in these systems. Recently, Bin Muhaya demonstrated some security weaknesses of Zhu's authentication and key agreement scheme and proposed a security enhanced authentication and key agreement scheme for TMISs. However, we show that Bin Muhaya's scheme is vulnerable to off-line password guessing attacks and does not provide perfect forward secrecy. Furthermore, in order to overcome the mentioned weaknesses, we propose a new two-factor anonymous authentication and key agreement scheme using the elliptic curve cryptosystem. Security and performance analyses demonstrate that the proposed scheme not only overcomes the weaknesses of Bin Muhaya's scheme, but also is about 2.73 times faster than Bin Muhaya's scheme.

  12. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOEpatents

    Nordholt, Jane Elizabeth; Hughes, Richard John; Peterson, Charles Glen

    2013-07-09

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  13. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOEpatents

    Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen

    2015-01-06

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  14. Security of Color Image Data Designed by Public-Key Cryptosystem Associated with 2D-DWT

    NASA Astrophysics Data System (ADS)

    Mishra, D. C.; Sharma, R. K.; Kumar, Manish; Kumar, Kuldeep

    2014-08-01

    In present times the security of image data is a major issue. So, we have proposed a novel technique for security of color image data by public-key cryptosystem or asymmetric cryptosystem. In this technique, we have developed security of color image data using RSA (Rivest-Shamir-Adleman) cryptosystem with two-dimensional discrete wavelet transform (2D-DWT). Earlier proposed schemes for security of color images designed on the basis of keys, but this approach provides security of color images with the help of keys and correct arrangement of RSA parameters. If the attacker knows about exact keys, but has no information of exact arrangement of RSA parameters, then the original information cannot be recovered from the encrypted data. Computer simulation based on standard example is critically examining the behavior of the proposed technique. Security analysis and a detailed comparison between earlier developed schemes for security of color images and proposed technique are also mentioned for the robustness of the cryptosystem.

  15. High-Speed Large-Alphabet Quantum Key Distribution Using Photonic Integrated Circuits

    DTIC Science & Technology

    2014-01-28

    polarizing beam splitter, TDC: time-to-digital converter. Extra&loss& photon/bin frame size QSER secure bpp ECC secure&key&rate& none& 0.0031 64 14...to-digital converter. photon/frame frame size QSER secure bpp ECC secure&key& rate& 1.3 16 9.5 % 2.9 layered LDPC 7.3&Mbps& Figure 24: Operating

  16. Using a Personal Device to Strengthen Password Authentication from an Untrusted Computer

    NASA Astrophysics Data System (ADS)

    Mannan, Mohammad; van Oorschot, P. C.

    Keylogging and phishing attacks can extract user identity and sensitive account information for unauthorized access to users' financial accounts. Most existing or proposed solutions are vulnerable to session hijacking attacks. We propose a simple approach to counter these attacks, which cryptographically separates a user's long-term secret input from (typically untrusted) client PCs; a client PC performs most computations but has access only to temporary secrets. The user's long-term secret (typically short and low-entropy) is input through an independent personal trusted device such as a cellphone. The personal device provides a user's long-term secrets to a client PC only after encrypting the secrets using a pre-installed, "correct" public key of a remote service (the intended recipient of the secrets). The proposed protocol (MP-Auth) realizes such an approach, and is intended to safeguard passwords from keyloggers, other malware (including rootkits), phishing attacks and pharming, as well as to provide transaction security to foil session hijacking. We report on a prototype implementation of MP-Auth, and provide a comparison of web authentication techniques that use an additional factor of authentication (e.g. a cellphone, PDA or hardware token).

  17. The Farmer Life School: experience from an innovative approach to HIV education among farmers in South Africa.

    PubMed

    Swaans, K; Broerse, J E W; Salomon, M; Mudhara, M; Mweli, M; Bunders, J F G

    2008-07-01

    The Farmer Life School (FLS) is an innovative approach to integrating HIV education into life skills and technical training for farmers. This study aims to gain insight into the strengths and weaknesses of this relatively new approach, through the implementation of an adapted version in South Africa. The results are presented of a pilot with three groups of community gardeners, predominantly women, attending weekly sessions. Impact was assessed in terms of three key elements: participation, learning, and empowerment. Data were collected through extensive session reports, follow-up interviews, and reflection exercises with facilitators and participating groups and individuals. The results suggest that a group-based discovery learning approach such as the FLS has great potential to improve food security and wellbeing, while allowing participants to explore issues around HIV/AIDS. However, the analysis also shows that HIV/AIDS-related illness and death, and the factors that drive the epidemic and its impact, undermine farmers' ability to participate, the safety and trust required for learning, and the empowerment process. Participatory approaches such as the FLS require a thorough understanding of and adaptation to the context.

  18. The Evaluation of Vehicle Mass Reduction and Material Choice in Life Cycle Assessments: Key Factors and Dynamic Industries

    EPA Science Inventory

    Developments in the realm of lightweight materials for automotive use continue to be announced by the industry and by academia. This session will provide new and updated information on new generation of materials. Additionally, this session will focus on the key topics involved i...

  19. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD aremore » extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.« less

  20. Finite-key analysis for measurement-device-independent quantum key distribution.

    PubMed

    Curty, Marcos; Xu, Feihu; Cui, Wei; Lim, Charles Ci Wen; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2014-04-29

    Quantum key distribution promises unconditionally secure communications. However, as practical devices tend to deviate from their specifications, the security of some practical systems is no longer valid. In particular, an adversary can exploit imperfect detectors to learn a large part of the secret key, even though the security proof claims otherwise. Recently, a practical approach--measurement-device-independent quantum key distribution--has been proposed to solve this problem. However, so far its security has only been fully proven under the assumption that the legitimate users of the system have unlimited resources. Here we fill this gap and provide a rigorous security proof against general attacks in the finite-key regime. This is obtained by applying large deviation theory, specifically the Chernoff bound, to perform parameter estimation. For the first time we demonstrate the feasibility of long-distance implementations of measurement-device-independent quantum key distribution within a reasonable time frame of signal transmission.

  1. On the complexity of search for keys in quantum cryptography

    NASA Astrophysics Data System (ADS)

    Molotkov, S. N.

    2016-03-01

    The trace distance is used as a security criterion in proofs of security of keys in quantum cryptography. Some authors doubted that this criterion can be reduced to criteria used in classical cryptography. The following question has been answered in this work. Let a quantum cryptography system provide an ɛ-secure key such that ½‖ρ XE - ρ U ⊗ ρ E ‖1 < ɛ, which will be repeatedly used in classical encryption algorithms. To what extent does the ɛ-secure key reduce the number of search steps (guesswork) as compared to the use of ideal keys? A direct relation has been demonstrated between the complexity of the complete consideration of keys, which is one of the main security criteria in classical systems, and the trace distance used in quantum cryptography. Bounds for the minimum and maximum numbers of search steps for the determination of the actual key have been presented.

  2. Simple proof of security of the BB84 quantum key distribution protocol

    PubMed

    Shor; Preskill

    2000-07-10

    We prove that the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution is secure. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chau's proof of security for a similar protocol. We then show that the security of this protocol implies the security of BB84. The entanglement purification based protocol uses Calderbank-Shor-Steane codes, and properties of these codes are used to remove the use of quantum computation from the Lo-Chau protocol.

  3. 75 FR 43944 - Defense Science Board; Task Force on Trends and Implications of Climate Change for National and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board; Task Force on Trends and Implications of Climate Change for National and International Security AGENCY: Department of Defense (DoD... and Implications of Climate Change for National and International Security will meet in closed session...

  4. 75 FR 34438 - Defense Science Board Task Force on Trends and Implications of Climate Change for National and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board Task Force on Trends and Implications of Climate Change for National and International Security AGENCY: Department of Defense (DoD... and Implications of Climate Change for National and International Security will meet in closed session...

  5. DNA based random key generation and management for OTP encryption.

    PubMed

    Zhang, Yunpeng; Liu, Xin; Sun, Manhui

    2017-09-01

    One-time pad (OTP) is a principle of key generation applied to the stream ciphering method which offers total privacy. The OTP encryption scheme has proved to be unbreakable in theory, but difficult to realize in practical applications. Because OTP encryption specially requires the absolute randomness of the key, its development has suffered from dense constraints. DNA cryptography is a new and promising technology in the field of information security. DNA chromosomes storing capabilities can be used as one-time pad structures with pseudo-random number generation and indexing in order to encrypt the plaintext messages. In this paper, we present a feasible solution to the OTP symmetric key generation and transmission problem with DNA at the molecular level. Through recombinant DNA technology, by using only sender-receiver known restriction enzymes to combine the secure key represented by DNA sequence and the T vector, we generate the DNA bio-hiding secure key and then place the recombinant plasmid in implanted bacteria for secure key transmission. The designed bio experiments and simulation results show that the security of the transmission of the key is further improved and the environmental requirements of key transmission are reduced. Analysis has demonstrated that the proposed DNA-based random key generation and management solutions are marked by high security and usability. Published by Elsevier B.V.

  6. Security of a single-state semi-quantum key distribution protocol

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Qiu, Daowen; Mateus, Paulo

    2018-06-01

    Semi-quantum key distribution protocols are allowed to set up a secure secret key between two users. Compared with their full quantum counterparts, one of the two users is restricted to perform some "classical" or "semi-quantum" operations, which potentially makes them easily realizable by using less quantum resource. However, the semi-quantum key distribution protocols mainly rely on a two-way quantum channel. The eavesdropper has two opportunities to intercept the quantum states transmitted in the quantum communication stage. It may allow the eavesdropper to get more information and make the security analysis more complicated. In the past ten years, many semi-quantum key distribution protocols have been proposed and proved to be robust. However, there are few works concerning their unconditional security. It is doubted that how secure the semi-quantum ones are and how much noise they can tolerate to establish a secure secret key. In this paper, we prove the unconditional security of a single-state semi-quantum key distribution protocol proposed by Zou et al. (Phys Rev A 79:052312, 2009). We present a complete proof from information theory aspect by deriving a lower bound of the protocol's key rate in the asymptotic scenario. Using this bound, we figure out an error threshold value such that for all error rates that are less than this threshold value, the secure secret key can be established between the legitimate users definitely. Otherwise, the users should abort the protocol. We make an illustration of the protocol under the circumstance that the reverse quantum channel is a depolarizing one with parameter q. Additionally, we compare the error threshold value with some full quantum protocols and several existing semi-quantum ones whose unconditional security proofs have been provided recently.

  7. Partially Key Distribution with Public Key Cryptosystem Based on Error Control Codes

    NASA Astrophysics Data System (ADS)

    Tavallaei, Saeed Ebadi; Falahati, Abolfazl

    Due to the low level of security in public key cryptosystems based on number theory, fundamental difficulties such as "key escrow" in Public Key Infrastructure (PKI) and a secure channel in ID-based cryptography, a new key distribution cryptosystem based on Error Control Codes (ECC) is proposed . This idea is done by some modification on McEliece cryptosystem. The security of ECC cryptosystem obtains from the NP-Completeness of block codes decoding. The capability of generating public keys with variable lengths which is suitable for different applications will be provided by using ECC. It seems that usage of these cryptosystems because of decreasing in the security of cryptosystems based on number theory and increasing the lengths of their keys would be unavoidable in future.

  8. Secure Multicast Tree Structure Generation Method for Directed Diffusion Using A* Algorithms

    NASA Astrophysics Data System (ADS)

    Kim, Jin Myoung; Lee, Hae Young; Cho, Tae Ho

    The application of wireless sensor networks to areas such as combat field surveillance, terrorist tracking, and highway traffic monitoring requires secure communication among the sensor nodes within the networks. Logical key hierarchy (LKH) is a tree based key management model which provides secure group communication. When a sensor node is added or evicted from the communication group, LKH updates the group key in order to ensure the security of the communications. In order to efficiently update the group key in directed diffusion, we propose a method for secure multicast tree structure generation, an extension to LKH that reduces the number of re-keying messages by considering the addition and eviction ratios of the history data. For the generation of the proposed key tree structure the A* algorithm is applied, in which the branching factor at each level can take on different value. The experiment results demonstrate the efficiency of the proposed key tree structure against the existing key tree structures of fixed branching factors.

  9. A Model for Linking Organizational Culture and Performance. Innovative Session 6. [AHRD Conference, 2001].

    ERIC Educational Resources Information Center

    McCullough, Cathy Bolton

    An innovative session was conducted to introduce session participants to a concept and researched model for linking organizational culture and performance. The session goals were as follows: (1) give participants a working knowledge of the link between business culture and key business performance indicators; (2) give participants a hands-on…

  10. On the security of a simple three-party key exchange protocol without server's public keys.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Park, Minkyu; Paik, Juryon; Won, Dongho

    2014-01-01

    Authenticated key exchange protocols are of fundamental importance in securing communications and are now extensively deployed for use in various real-world network applications. In this work, we reveal major previously unpublished security vulnerabilities in the password-based authenticated three-party key exchange protocol according to Lee and Hwang (2010): (1) the Lee-Hwang protocol is susceptible to a man-in-the-middle attack and thus fails to achieve implicit key authentication; (2) the protocol cannot protect clients' passwords against an offline dictionary attack; and (3) the indistinguishability-based security of the protocol can be easily broken even in the presence of a passive adversary. We also propose an improved password-based authenticated three-party key exchange protocol that addresses the security vulnerabilities identified in the Lee-Hwang protocol.

  11. On the Security of a Simple Three-Party Key Exchange Protocol without Server's Public Keys

    PubMed Central

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Park, Minkyu; Paik, Juryon; Won, Dongho

    2014-01-01

    Authenticated key exchange protocols are of fundamental importance in securing communications and are now extensively deployed for use in various real-world network applications. In this work, we reveal major previously unpublished security vulnerabilities in the password-based authenticated three-party key exchange protocol according to Lee and Hwang (2010): (1) the Lee-Hwang protocol is susceptible to a man-in-the-middle attack and thus fails to achieve implicit key authentication; (2) the protocol cannot protect clients' passwords against an offline dictionary attack; and (3) the indistinguishability-based security of the protocol can be easily broken even in the presence of a passive adversary. We also propose an improved password-based authenticated three-party key exchange protocol that addresses the security vulnerabilities identified in the Lee-Hwang protocol. PMID:25258723

  12. Security of quantum key distribution with multiphoton components

    PubMed Central

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-01-01

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states. PMID:27383014

  13. Enhancing Heart-Beat-Based Security for mHealth Applications.

    PubMed

    Seepers, Robert M; Strydis, Christos; Sourdis, Ioannis; De Zeeuw, Chris I

    2017-01-01

    In heart-beat-based security, a security key is derived from the time difference between consecutive heart beats (the inter-pulse interval, IPI), which may, subsequently, be used to enable secure communication. While heart-beat-based security holds promise in mobile health (mHealth) applications, there currently exists no work that provides a detailed characterization of the delivered security in a real system. In this paper, we evaluate the strength of IPI-based security keys in the context of entity authentication. We investigate several aspects that should be considered in practice, including subjects with reduced heart-rate variability (HRV), different sensor-sampling frequencies, intersensor variability (i.e., how accurate each entity may measure heart beats) as well as average and worst-case-authentication time. Contrary to the current state of the art, our evaluation demonstrates that authentication using multiple, less-entropic keys may actually increase the key strength by reducing the effects of intersensor variability. Moreover, we find that the maximal key strength of a 60-bit key varies between 29.2 bits and only 5.7 bits, depending on the subject's HRV. To improve security, we introduce the inter-multi-pulse interval (ImPI), a novel method of extracting entropy from the heart by considering the time difference between nonconsecutive heart beats. Given the same authentication time, using the ImPI for key generation increases key strength by up to 3.4 × (+19.2 bits) for subjects with limited HRV, at the cost of an extended key-generation time of 4.8 × (+45 s).

  14. A Security Proof of Measurement Device Independent Quantum Key Distribution: From the View of Information Theory

    NASA Astrophysics Data System (ADS)

    Li, Fang-Yi; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Wang, Shuang; Wen, Hao; Zhao, Yi-Bo; Han, Zheng-Fu

    2014-07-01

    Although some ideal quantum key distribution protocols have been proved to be secure, there have been some demonstrations that practical quantum key distribution implementations were hacked due to some real-life imperfections. Among these attacks, detector side channel attacks may be the most serious. Recently, a measurement device independent quantum key distribution protocol [Phys. Rev. Lett. 108 (2012) 130503] was proposed and all detector side channel attacks are removed in this scheme. Here a new security proof based on quantum information theory is given. The eavesdropper's information of the sifted key bits is bounded. Then with this bound, the final secure key bit rate can be obtained.

  15. Quantum cryptography to satellites for global secure key distribution

    NASA Astrophysics Data System (ADS)

    Rarity, John G.; Gorman, Philip M.; Knight, Paul; Wallace, Kotska; Tapster, Paul R.

    2017-11-01

    We have designed and built a free space secure key exchange system using weak laser pulses with polarisation modulation by acousto-optic switching. We have used this system to exchange keys over a 1.2km ground range with absolute security. Building from this initial result we analyse the feasibility of exchanging keys to a low earth orbit satellite.

  16. Achieving the NOAA Arctic Action Plan: The Missing Permafrost Element - Permafrost Forecasting Listening Session Results

    NASA Astrophysics Data System (ADS)

    Buxbaum, T. M.; Thoman, R.; Romanovsky, V. E.

    2015-12-01

    Permafrost is ground at or below freezing for at least two consecutive years. It currently occupies 80% of Alaska. Permafrost temperature and active layer thickness (ALT) are key climatic variables for monitoring permafrost conditions. Active layer thickness is the depth that the top layer of ground above the permafrost thaws each summer season and permafrost temperature is the temperature of the frozen permafrost under this active layer. Knowing permafrost conditions is key for those individuals working and living in Alaska and the Arctic. The results of climate models predict vast changes and potential permafrost degradation across Alaska and the Arctic. NOAA is working to implement its 2014 Arctic Action Plan and permafrost forecasting is a missing piece of this plan. The Alaska Center for Climate Assessment and Policy (ACCAP), using our webinar software and our diverse network of statewide stakeholder contacts, hosted a listening session to bring together a select group of key stakeholders. During this listening session the National Weather Service (NWS) and key permafrost researchers explained what is possible in the realm of permafrost forecasting and participants had the opportunity to discuss and share with the group (NWS, researchers, other stakeholders) what is needed for usable permafrost forecasting. This listening session aimed to answer the questions: Is permafrost forecasting needed? If so, what spatial scale is needed by stakeholders? What temporal scales do stakeholders need/want? Are there key times (winter, fall freeze-up, etc.) or locations (North Slope, key oil development areas, etc.) where forecasting would be most applicable and useful? Are there other considerations or priority needs we haven't thought of regarding permafrost forecasting? This presentation will present the results of that listening session.

  17. High speed and adaptable error correction for megabit/s rate quantum key distribution.

    PubMed

    Dixon, A R; Sato, H

    2014-12-02

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90-94% of the ideal secure key rate over all fibre distances from 0-80 km.

  18. High speed and adaptable error correction for megabit/s rate quantum key distribution

    PubMed Central

    Dixon, A. R.; Sato, H.

    2014-01-01

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90–94% of the ideal secure key rate over all fibre distances from 0–80 km. PMID:25450416

  19. Federal Plan for Cyber Security and Information Assurance Research and Development

    DTIC Science & Technology

    2006-04-01

    Security Systems 103 varieties of the BB84 scheme have been developed, and other forms of quantum key distribution have been proposed. Rapid progress has led... key . Capability Gaps Existing quantum cryptographic protocols may also have weaknesses. Although BB84 is generally regarded as secure , researchers...complement agency-specific prioritization and R&D planning efforts in cyber security and information assurance. The Plan also describes the key Federal

  20. Understanding security failures of two authentication and key agreement schemes for telecare medicine information systems.

    PubMed

    Mishra, Dheerendra

    2015-03-01

    Smart card based authentication and key agreement schemes for telecare medicine information systems (TMIS) enable doctors, nurses, patients and health visitors to use smart cards for secure login to medical information systems. In recent years, several authentication and key agreement schemes have been proposed to present secure and efficient solution for TMIS. Most of the existing authentication schemes for TMIS have either higher computation overhead or are vulnerable to attacks. To reduce the computational overhead and enhance the security, Lee recently proposed an authentication and key agreement scheme using chaotic maps for TMIS. Xu et al. also proposed a password based authentication and key agreement scheme for TMIS using elliptic curve cryptography. Both the schemes provide better efficiency from the conventional public key cryptography based schemes. These schemes are important as they present an efficient solution for TMIS. We analyze the security of both Lee's scheme and Xu et al.'s schemes. Unfortunately, we identify that both the schemes are vulnerable to denial of service attack. To understand the security failures of these cryptographic schemes which are the key of patching existing schemes and designing future schemes, we demonstrate the security loopholes of Lee's scheme and Xu et al.'s scheme in this paper.

  1. Security-Enhanced Push Button Configuration for Home Smart Control.

    PubMed

    Han, Junghee; Park, Taejoon

    2017-06-08

    With the emergence of smart and converged home services, the need for the secure and easy interplay of various devices has been increased. Push Button Configuration (PBC) is one of the technologies proposed for easy set-up of a secure session between IT and consumer devices. Although the Wi-Fi Direct specification explicitly states that all devices must support the PBC method, its applicability is very limited. This is because the security vulnerability of PBC can be maliciously exploited so that attackers can make illegitimate sessions with consumer devices. To address this problem, this paper proposes a novel Security-enhanced PBC (SePBC) scheme with which we can uncover suspicious or malicious devices. The proposed mechanism has several unique features. First, we develop a secure handshake distance measurement protocol by preventing an adversary sitting outside the region from maliciously manipulating its distance to be fake. Second, it is compatible with the original Wi-Fi PBC without introducing a brand-new methodology. Finally, SePBC uses lightweight operations without CPU-intensive cryptography computation and employs inexpensive H/W. Moreover, it needs to incur little overhead when there is no attack. This paper also designs and implements the proposed SePBC in the real world. Our experimental results and analysis show that the proposed SePBC scheme effectively defeats attacks on PBC while minimizing the modification of the original PBC equipment.

  2. Security-Enhanced Push Button Configuration for Home Smart Control †

    PubMed Central

    Han, Junghee; Park, Taejoon

    2017-01-01

    With the emergence of smart and converged home services, the need for the secure and easy interplay of various devices has been increased. Push Button Configuration (PBC) is one of the technologies proposed for easy set-up of a secure session between IT and consumer devices. Although the Wi-Fi Direct specification explicitly states that all devices must support the PBC method, its applicability is very limited. This is because the security vulnerability of PBC can be maliciously exploited so that attackers can make illegitimate sessions with consumer devices. To address this problem, this paper proposes a novel Security-enhanced PBC (SePBC) scheme with which we can uncover suspicious or malicious devices. The proposed mechanism has several unique features. First, we develop a secure handshake distance measurement protocol by preventing an adversary sitting outside the region from maliciously manipulating its distance to be fake. Second, it is compatible with the original Wi-Fi PBC without introducing a brand-new methodology. Finally, SePBC uses lightweight operations without CPU-intensive cryptography computation and employs inexpensive H/W. Moreover, it needs to incur little overhead when there is no attack. This paper also designs and implements the proposed SePBC in the real world. Our experimental results and analysis show that the proposed SePBC scheme effectively defeats attacks on PBC while minimizing the modification of the original PBC equipment. PMID:28594370

  3. Maternal sensitivity and infant attachment security in Korea: cross-cultural validation of the Strange Situation.

    PubMed

    Jin, Mi Kyoung; Jacobvitz, Deborah; Hazen, Nancy; Jung, Sung Hoon

    2012-01-01

    The present study sought to analyze infant and maternal behavior both during the Strange Situation Procedure (SSP) and a free play session in a Korean sample (N = 87) to help understand whether mother-infant attachment relationships are universal or culture-specific. Distributions of attachment classifications in the Korean sample were compared with a cross-national sample. Behavior of mothers and infants following the two separation episodes in the SSP, including mothers' proximity to their infants and infants' approach to the caregiver, was also observed, as was the association between maternal sensitivity observed during free play session and infant security. The percentage of Korean infants classified as secure versus insecure mirrored the global distribution, however, only one Korean baby was classified as avoidant. Following the separation episodes in the Strange Situation, Korean mothers were more likely than mothers in Ainsworth's Baltimore sample to approach their babies immediately and sit beside them throughout the reunion episodes, even when their babies were no longer distressed. Also, Korean babies less often approached their mothers during reunions than did infants in the Baltimore sample. Finally, the link between maternal sensitivity and infant security was significant. The findings support the idea that the basic secure base function of attachment is universal and the SSP is a valid measure of secure attachment, but cultural differences in caregiving may result in variations in how this function is manifested.

  4. Distinguishability of quantum states and shannon complexity in quantum cryptography

    NASA Astrophysics Data System (ADS)

    Arbekov, I. M.; Molotkov, S. N.

    2017-07-01

    The proof of the security of quantum key distribution is a rather complex problem. Security is defined in terms different from the requirements imposed on keys in classical cryptography. In quantum cryptography, the security of keys is expressed in terms of the closeness of the quantum state of an eavesdropper after key distribution to an ideal quantum state that is uncorrelated to the key of legitimate users. A metric of closeness between two quantum states is given by the trace metric. In classical cryptography, the security of keys is understood in terms of, say, the complexity of key search in the presence of side information. In quantum cryptography, side information for the eavesdropper is given by the whole volume of information on keys obtained from both quantum and classical channels. The fact that the mathematical apparatuses used in the proof of key security in classical and quantum cryptography are essentially different leads to misunderstanding and emotional discussions [1]. Therefore, one should be able to answer the question of how different cryptographic robustness criteria are related to each other. In the present study, it is shown that there is a direct relationship between the security criterion in quantum cryptography, which is based on the trace distance determining the distinguishability of quantum states, and the criterion in classical cryptography, which uses guesswork on the determination of a key in the presence of side information.

  5. Threat Modelling Adobe PDF

    DTIC Science & Technology

    2012-08-01

    this attack sensitive information relating to their two-factor authentication process, employed within RSA’s products, was stolen; potentially... authenticated session the victim has with another website. This could allow the attacker to impersonate the victim or obtain sensitive information...all that is not blacklisted is authorised . We will outline relevant security settings in this section. 4.1 Adobe End-User Security Modification

  6. 77 FR 2343 - Eighteenth Meeting: RTCA Special Committee 216: Aeronautical Systems Security (Joint Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... advise the public of the eighteenth meeting of RTCA Special Committee 216: Aeronautical Systems Security... Agenda Overview and Approval Split Plenary Session (9:15 a.m.--12 p.m.) SC 216 Review of the Summary of....--12 p.m.) WG-72 Introduction, Report about publications and relations EUROCAE Document Discussions, e...

  7. Building a clinical leadership community to drive improvement: a multi-case educational study to inform 21st century clinical commissioning, professional capability and patient care.

    PubMed

    Lynch, Marion; Verner, Elizabeth

    2013-01-01

    The new NHS requires transformational leadership; people with the knowledge and motivation to make effective change combined with an understanding of the system they work in. The aim of the Practice Leaders' Programme (PLP) is to generate the conditions needed to focus the energy and collaborative creativity required for innovation to enhance leadership skills across the health economy improving patient care. The PLP engaged 60 local leaders from central England in a new approach enabling them to influence others. It has informed educational policy and practice and helped change professional behaviours. Each participant implemented improvements in care and participated in six action learning sets (ALS) and up to six coaching sessions. Evidence of progress, learning and impact was identified in project reports, reflective diaries and evaluations. The ALS brought together key individuals from clinical and management disciplines across a diverse organisation to redesign a system by developing a shared vision for improving the quality of patient care. The links forged, the projects initiated, and the skills cultivated through the PLP produced ongoing benefits and outcomes beyond the course itself. Coaching sessions helped participants focus their efforts to achieve maximum impact and to become resilient in managing service change effectively. The programme has evolved over four years, building on recommendations from external evaluation which identified statistically significant increases in leadership competences. Further enhancement of this programme secured an International Health Improvement Award. Three key findings of positive impact have emerged; personal growth, service improvement, and legacy and sustainability.

  8. SSeCloud: Using secret sharing scheme to secure keys

    NASA Astrophysics Data System (ADS)

    Hu, Liang; Huang, Yang; Yang, Disheng; Zhang, Yuzhen; Liu, Hengchang

    2017-08-01

    With the use of cloud storage services, one of the concerns is how to protect sensitive data securely and privately. While users enjoy the convenience of data storage provided by semi-trusted cloud storage providers, they are confronted with all kinds of risks at the same time. In this paper, we present SSeCloud, a secure cloud storage system that improves security and usability by applying secret sharing scheme to secure keys. The system encrypts uploading files on the client side and splits encrypted keys into three shares. Each of them is respectively stored by users, cloud storage providers and the alternative third trusted party. Any two of the parties can reconstruct keys. Evaluation results of prototype system show that SSeCloud provides high security without too much performance penalty.

  9. Safe and Secure Services Based on NGN

    NASA Astrophysics Data System (ADS)

    Fukazawa, Tomoo; Nisase, Takemi; Kawashima, Masahisa; Hariu, Takeo; Oshima, Yoshihito

    Next Generation Network (NGN), which has been undergoing standardization as it has developed, is expected to create new services that converge the fixed and mobile networks. This paper introduces the basic requirements for NGN in terms of security and explains the standardization activities, in particular, the requirements for the security function described in Y.2701 discussed in ITU-T SG-13. In addition to the basic NGN security function, requirements for NGN authentication are also described from three aspects: security, deployability, and service. As examples of authentication implementation, three profiles-namely, fixed, nomadic, and mobile-are defined in this paper. That is, the “fixed profile” is typically for fixed-line subscribers, the “nomadic profile” basically utilizes WiFi access points, and the “mobile profile” provides ideal NGN mobility for mobile subscribers. All three of these profiles satisfy the requirements from security aspects. The three profiles are compared from the viewpoint of requirements for deployability and service. After showing that none of the three profiles can fulfill all of the requirements, we propose that multiple profiles should be used by NGN providers. As service and application examples, two promising NGN applications are proposed. The first is a strong authentication mechanism that makes Web applications more safe and secure even against password theft. It is based on NGN ID federation function. The second provides an easy peer-to-peer broadband virtual private network service aimed at safe and secure communication for personal/SOHO (small office, home office) users, based on NGN SIP (session initiation protocol) session control.

  10. 77 FR 16287 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... of the Proposed Rule Change The ISE is proposing to amend its API or login fees. The text of the... Exchange's API or login fees. ISE currently charges its Members a fee for each login that a Member uses for... sessions. The Exchange now proposes to lower the quote allowance for each login session from 1.8 million...

  11. Multiparty quantum key agreement with single particles

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Gao, Fei; Huang, Wei; Wen, Qiao-yan

    2013-04-01

    Two conditions must be satisfied in a secure quantum key agreement (QKA) protocol: (1) outside eavesdroppers cannot gain the generated key without introducing any error; (2) the generated key cannot be determined by any non-trivial subset of the participants. That is, a secure QKA protocol can not only prevent the outside attackers from stealing the key, but also resist the attack from inside participants, i.e. some dishonest participants determine the key alone by illegal means. How to resist participant attack is an aporia in the design of QKA protocols, especially the multi-party ones. In this paper we present the first secure multiparty QKA protocol against both outside and participant attacks. Further more, we have proved its security in detail.

  12. Perspectives on the Key PK-12 Education Legislation of 2013

    ERIC Educational Resources Information Center

    Center for Evaluation and Education Policy, Indiana University, 2013

    2013-01-01

    The 2013 session of the 118th Indiana General Assembly adjourned sine die (with no appointed date for resumption) on Saturday, April 27, 2013. The legislature considered over 2,200 bills during the session, many of which addressed education policy and school governance, or were child-related legislation. This report is a summary of 12 key PK-12…

  13. An improved biometrics-based authentication scheme for telecare medical information systems.

    PubMed

    Guo, Dianli; Wen, Qiaoyan; Li, Wenmin; Zhang, Hua; Jin, Zhengping

    2015-03-01

    Telecare medical information system (TMIS) offers healthcare delivery services and patients can acquire their desired medical services conveniently through public networks. The protection of patients' privacy and data confidentiality are significant. Very recently, Mishra et al. proposed a biometrics-based authentication scheme for telecare medical information system. Their scheme can protect user privacy and is believed to resist a range of network attacks. In this paper, we analyze Mishra et al.'s scheme and identify that their scheme is insecure to against known session key attack and impersonation attack. Thereby, we present a modified biometrics-based authentication scheme for TMIS to eliminate the aforementioned faults. Besides, we demonstrate the completeness of the proposed scheme through BAN-logic. Compared to the related schemes, our protocol can provide stronger security and it is more practical.

  14. Sustaining International CBRN Centers of Excellence with a Focus on Nuclear Security and Safeguards: Initial Scoping Session London, 23-24 September 2013 SUMMARY REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Roger G.; Frazar, Sarah L.

    2013-12-12

    This report provides a summary-level description of the key information, observations, ideas, and recommendations expressed during the subject meeting. The report is organized to correspond to the meeting agenda provided in Appendix 1 and includes references to several of the participants listed in Appendix 2 .The meeting venue was Lloyd’s Register in the City of London. Lloyd’s Register graciously accommodated the request of The Pacific Northwest Laboratory (PNNL) with whom it works on various safeguards activities commissioned by NNSA. PNNL and NNSA also shared the goal of the meeting/study with the United Kingdom (UK) Foreign and Commonwealth Office (FCO) andmore » the Department of Energy and Climate Change with whom they coordinated the participant list.« less

  15. Study on the security of the authentication scheme with key recycling in QKD

    NASA Astrophysics Data System (ADS)

    Li, Qiong; Zhao, Qiang; Le, Dan; Niu, Xiamu

    2016-09-01

    In quantum key distribution (QKD), the information theoretically secure authentication is necessary to guarantee the integrity and authenticity of the exchanged information over the classical channel. In order to reduce the key consumption, the authentication scheme with key recycling (KR), in which a secret but fixed hash function is used for multiple messages while each tag is encrypted with a one-time pad (OTP), is preferred in QKD. Based on the assumption that the OTP key is perfect, the security of the authentication scheme has be proved. However, the OTP key of authentication in a practical QKD system is not perfect. How the imperfect OTP affects the security of authentication scheme with KR is analyzed thoroughly in this paper. In a practical QKD, the information of the OTP key resulting from QKD is partially leaked to the adversary. Although the information leakage is usually so little to be neglected, it will lead to the increasing degraded security of the authentication scheme as the system runs continuously. Both our theoretical analysis and simulation results demonstrate that the security level of authentication scheme with KR, mainly indicated by its substitution probability, degrades exponentially in the number of rounds and gradually diminishes to zero.

  16. The Evaluation of Vehicle Mass Reduction and Material ...

    EPA Pesticide Factsheets

    Developments in the realm of lightweight materials for automotive use continue to be announced by the industry and by academia. This session will provide new and updated information on new generation of materials. Additionally, this session will focus on the key topics involved in Life-Cycle-Analysis of light-weight materials including practices and developments in material recyclability. This presentation will review key findings from recent LCAs for vehicle mass reduction. Presentation for panel session on advanced materials/lightweighting for light duty vehicles at the Society of Automotive Engineers (SAE) Government/Industry Meeting, Washington, DC (January 25, 2017)

  17. Three-Factor User Authentication and Key Agreement Using Elliptic Curve Cryptosystem in Wireless Sensor Networks.

    PubMed

    Park, YoHan; Park, YoungHo

    2016-12-14

    Secure communication is a significant issue in wireless sensor networks. User authentication and key agreement are essential for providing a secure system, especially in user-oriented mobile services. It is also necessary to protect the identity of each individual in wireless environments to avoid personal privacy concerns. Many authentication and key agreement schemes utilize a smart card in addition to a password to support security functionalities. However, these schemes often fail to provide security along with privacy. In 2015, Chang et al. analyzed the security vulnerabilities of previous schemes and presented the two-factor authentication scheme that provided user privacy by using dynamic identities. However, when we cryptanalyzed Chang et al.'s scheme, we found that it does not provide sufficient security for wireless sensor networks and fails to provide accurate password updates. This paper proposes a security-enhanced authentication and key agreement scheme to overcome these security weaknesses using biometric information and an elliptic curve cryptosystem. We analyze the security of the proposed scheme against various attacks and check its viability in the mobile environment.

  18. Three-Factor User Authentication and Key Agreement Using Elliptic Curve Cryptosystem in Wireless Sensor Networks

    PubMed Central

    Park, YoHan; Park, YoungHo

    2016-01-01

    Secure communication is a significant issue in wireless sensor networks. User authentication and key agreement are essential for providing a secure system, especially in user-oriented mobile services. It is also necessary to protect the identity of each individual in wireless environments to avoid personal privacy concerns. Many authentication and key agreement schemes utilize a smart card in addition to a password to support security functionalities. However, these schemes often fail to provide security along with privacy. In 2015, Chang et al. analyzed the security vulnerabilities of previous schemes and presented the two-factor authentication scheme that provided user privacy by using dynamic identities. However, when we cryptanalyzed Chang et al.’s scheme, we found that it does not provide sufficient security for wireless sensor networks and fails to provide accurate password updates. This paper proposes a security-enhanced authentication and key agreement scheme to overcome these security weaknesses using biometric information and an elliptic curve cryptosystem. We analyze the security of the proposed scheme against various attacks and check its viability in the mobile environment. PMID:27983616

  19. Quantum key distribution network for multiple applications

    NASA Astrophysics Data System (ADS)

    Tajima, A.; Kondoh, T.; Ochi, T.; Fujiwara, M.; Yoshino, K.; Iizuka, H.; Sakamoto, T.; Tomita, A.; Shimamura, E.; Asami, S.; Sasaki, M.

    2017-09-01

    The fundamental architecture and functions of secure key management in a quantum key distribution (QKD) network with enhanced universal interfaces for smooth key sharing between arbitrary two nodes and enabling multiple secure communication applications are proposed. The proposed architecture consists of three layers: a quantum layer, key management layer and key supply layer. We explain the functions of each layer, the key formats in each layer and the key lifecycle for enabling a practical QKD network. A quantum key distribution-advanced encryption standard (QKD-AES) hybrid system and an encrypted smartphone system were developed as secure communication applications on our QKD network. The validity and usefulness of these systems were demonstrated on the Tokyo QKD Network testbed.

  20. Secure content objects

    DOEpatents

    Evans, William D [Cupertino, CA

    2009-02-24

    A secure content object protects electronic documents from unauthorized use. The secure content object includes an encrypted electronic document, a multi-key encryption table having at least one multi-key component, an encrypted header and a user interface device. The encrypted document is encrypted using a document encryption key associated with a multi-key encryption method. The encrypted header includes an encryption marker formed by a random number followed by a derivable variation of the same random number. The user interface device enables a user to input a user authorization. The user authorization is combined with each of the multi-key components in the multi-key encryption key table and used to try to decrypt the encrypted header. If the encryption marker is successfully decrypted, the electronic document may be decrypted. Multiple electronic documents or a document and annotations may be protected by the secure content object.

  1. Network information security in a phase III Integrated Academic Information Management System (IAIMS).

    PubMed

    Shea, S; Sengupta, S; Crosswell, A; Clayton, P D

    1992-01-01

    The developing Integrated Academic Information System (IAIMS) at Columbia-Presbyterian Medical Center provides data sharing links between two separate corporate entities, namely Columbia University Medical School and The Presbyterian Hospital, using a network-based architecture. Multiple database servers with heterogeneous user authentication protocols are linked to this network. "One-stop information shopping" implies one log-on procedure per session, not separate log-on and log-off procedures for each server or application used during a session. These circumstances provide challenges at the policy and technical levels to data security at the network level and insuring smooth information access for end users of these network-based services. Five activities being conducted as part of our security project are described: (1) policy development; (2) an authentication server for the network; (3) Kerberos as a tool for providing mutual authentication, encryption, and time stamping of authentication messages; (4) a prototype interface using Kerberos services to authenticate users accessing a network database server; and (5) a Kerberized electronic signature.

  2. Randomness determines practical security of BB84 quantum key distribution.

    PubMed

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-11-10

    Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system.

  3. Randomness determines practical security of BB84 quantum key distribution

    PubMed Central

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-01-01

    Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system. PMID:26552359

  4. Randomness determines practical security of BB84 quantum key distribution

    NASA Astrophysics Data System (ADS)

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-11-01

    Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system.

  5. Challenges in Serving Rural American Children through the Summer Food Service Program. Issue Brief No. 13

    ERIC Educational Resources Information Center

    Wauchope, Barbara; Stracuzzi, Nena

    2010-01-01

    Many families rely on U.S. Department of Agriculture (USDA)-funded school lunch and breakfast programs to make the family's food budget stretch, improving their food security throughout the school year. These programs feed about 31 million students annually. During the summer where schools are not in session, food security decreases. The USDA…

  6. Symmetric Key Services Markup Language (SKSML)

    NASA Astrophysics Data System (ADS)

    Noor, Arshad

    Symmetric Key Services Markup Language (SKSML) is the eXtensible Markup Language (XML) being standardized by the OASIS Enterprise Key Management Infrastructure Technical Committee for requesting and receiving symmetric encryption cryptographic keys within a Symmetric Key Management System (SKMS). This protocol is designed to be used between clients and servers within an Enterprise Key Management Infrastructure (EKMI) to secure data, independent of the application and platform. Building on many security standards such as XML Signature, XML Encryption, Web Services Security and PKI, SKSML provides standards-based capability to allow any application to use symmetric encryption keys, while maintaining centralized control. This article describes the SKSML protocol and its capabilities.

  7. A Scenario-Based Protocol Checker for Public-Key Authentication Scheme

    NASA Astrophysics Data System (ADS)

    Saito, Takamichi

    Security protocol provides communication security for the internet. One of the important features of it is authentication with key exchange. Its correctness is a requirement of the whole of the communication security. In this paper, we introduce three attack models realized as their attack scenarios, and provide an authentication-protocol checker for applying three attack-scenarios based on the models. We also utilize it to check two popular security protocols: Secure SHell (SSH) and Secure Socket Layer/Transport Layer Security (SSL/TLS).

  8. Phoenix: Service Oriented Architecture for Information Management - Abstract Architecture Document

    DTIC Science & Technology

    2011-09-01

    implementation logic and policy if and which Information Brokering and Repository Services the information is going to be forwarded to. These service chains...descriptions are going to be retrieved. Raised Exceptions: • Exception getConsumers(sessionTrack : SessionTrack, information : Information...that exetnd the usefullness of the IM system as a whole. • Client • Event Notification • Filter • Information Discovery • Security • Service

  9. A Low Cost Key Agreement Protocol Based on Binary Tree for EPCglobal Class 1 Generation 2 RFID Protocol

    NASA Astrophysics Data System (ADS)

    Jeng, Albert; Chang, Li-Chung; Chen, Sheng-Hui

    There are many protocols proposed for protecting Radio Frequency Identification (RFID) system privacy and security. A number of these protocols are designed for protecting long-term security of RFID system using symmetric key or public key cryptosystem. Others are designed for protecting user anonymity and privacy. In practice, the use of RFID technology often has a short lifespan, such as commodity check out, supply chain management and so on. Furthermore, we know that designing a long-term security architecture to protect the security and privacy of RFID tags information requires a thorough consideration from many different aspects. However, any security enhancement on RFID technology will jack up its cost which may be detrimental to its widespread deployment. Due to the severe constraints of RFID tag resources (e. g., power source, computing power, communication bandwidth) and open air communication nature of RFID usage, it is a great challenge to secure a typical RFID system. For example, computational heavy public key and symmetric key cryptography algorithms (e. g., RSA and AES) may not be suitable or over-killed to protect RFID security or privacy. These factors motivate us to research an efficient and cost effective solution for RFID security and privacy protection. In this paper, we propose a new effective generic binary tree based key agreement protocol (called BKAP) and its variations, and show how it can be applied to secure the low cost and resource constraint RFID system. This BKAP is not a general purpose key agreement protocol rather it is a special purpose protocol to protect privacy, un-traceability and anonymity in a single RFID closed system domain.

  10. Secure detection in quantum key distribution by real-time calibration of receiver

    NASA Astrophysics Data System (ADS)

    Marøy, Øystein; Makarov, Vadim; Skaar, Johannes

    2017-12-01

    The single-photon detectionefficiency of the detector unit is crucial for the security of common quantum key distribution protocols like Bennett-Brassard 1984 (BB84). A low value for the efficiency indicates a possible eavesdropping attack that exploits the photon receiver’s imperfections. We present a method for estimating the detection efficiency, and calculate the corresponding secure key generation rate. The estimation is done by testing gated detectors using a randomly activated photon source inside the receiver unit. This estimate gives a secure rate for any detector with non-unity single-photon detection efficiency, both inherit or due to blinding. By adding extra optical components to the receiver, we make sure that the key is extracted from photon states for which our estimate is valid. The result is a quantum key distribution scheme that is secure against any attack that exploits detector imperfections.

  11. Quantum key distribution with delayed privacy amplification and its application to the security proof of a two-way deterministic protocol

    NASA Astrophysics Data System (ADS)

    Fung, Chi-Hang Fred; Ma, Xiongfeng; Chau, H. F.; Cai, Qing-Yu

    2012-03-01

    Privacy amplification (PA) is an essential postprocessing step in quantum key distribution (QKD) for removing any information an eavesdropper may have on the final secret key. In this paper, we consider delaying PA of the final key after its use in one-time pad encryption and prove its security. We prove that the security and the key generation rate are not affected by delaying PA. Delaying PA has two applications: it serves as a tool for significantly simplifying the security proof of QKD with a two-way quantum channel, and also it is useful in QKD networks with trusted relays. To illustrate the power of the delayed PA idea, we use it to prove the security of a qubit-based two-way deterministic QKD protocol which uses four states and four encoding operations.

  12. Secret-key expansion from covert communication

    NASA Astrophysics Data System (ADS)

    Arrazola, Juan Miguel; Amiri, Ryan

    2018-02-01

    Covert communication allows the transmission of messages in such a way that it is not possible for adversaries to detect that the communication is occurring. This provides protection in situations where knowledge that two parties are talking to each other may be incriminating to them. In this work, we study how covert communication can be used for a different purpose: secret key expansion. First, we show that any message transmitted in a secure covert protocol is also secret and therefore unknown to an adversary. We then propose a covert communication protocol where the amount of key consumed in the protocol is smaller than the transmitted key, thus leading to secure secret key expansion. We derive precise conditions for secret key expansion to occur, showing that it is possible when there are sufficiently low levels of noise for a given security level. We conclude by examining how secret key expansion from covert communication can be performed in a computational security model.

  13. Rolling in the Dough, Running from Reform: An Analysis and Critique of the 1994 Utah Legislative Session and Its Impact on Education.

    ERIC Educational Resources Information Center

    Johnson, Bob L., Jr.

    This paper provides a critical review of the 1994 Utah Legislative session as it relates to public and higher education in the state. The paper discusses the defining contextual features of the 1994 Legislative Session, the agendas of key state educational policy actors for the 1994 session, and significant issues and legislation in the…

  14. A view of software management issues

    NASA Technical Reports Server (NTRS)

    Manley, J. H.

    1985-01-01

    The Software Development Environment (SDE) Panel addressed key programmatic, scope, and structural issues raised by its members and the general audience regarding the proposed software development environment for the Space Station program. The general team approach taken by this group led to a consensus on 18 recommendations to NASA mangament regarding the acquisition and definition of the SDE. This approach was keyed by the initial issues presentation given to the general audience. Additional issues (for a total of 23) were developed by the panelists in their first closed session from which key areas were selected and discussed in open session. These discussions led to key recommendations which are summarized and described.

  15. Input from Key Stakeholders in the National Security Technology Incubator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report documents the input from key stakeholders of the National Security Technology Incubator (NSTI) in developing a new technology incubator and related programs for southern New Mexico. The technology incubator is being developed as part of the National Security Preparedness Project (NSPP), funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes identification of key stakeholders as well as a description and analysis of their input for the development of an incubator.

  16. Field test of quantum key distribution in the Tokyo QKD Network.

    PubMed

    Sasaki, M; Fujiwara, M; Ishizuka, H; Klaus, W; Wakui, K; Takeoka, M; Miki, S; Yamashita, T; Wang, Z; Tanaka, A; Yoshino, K; Nambu, Y; Takahashi, S; Tajima, A; Tomita, A; Domeki, T; Hasegawa, T; Sakai, Y; Kobayashi, H; Asai, T; Shimizu, K; Tokura, T; Tsurumaru, T; Matsui, M; Honjo, T; Tamaki, K; Takesue, H; Tokura, Y; Dynes, J F; Dixon, A R; Sharpe, A W; Yuan, Z L; Shields, A J; Uchikoga, S; Legré, M; Robyr, S; Trinkler, P; Monat, L; Page, J-B; Ribordy, G; Poppe, A; Allacher, A; Maurhart, O; Länger, T; Peev, M; Zeilinger, A

    2011-05-23

    A secure communication network with quantum key distribution in a metropolitan area is reported. Six different QKD systems are integrated into a mesh-type network. GHz-clocked QKD links enable us to demonstrate the world-first secure TV conferencing over a distance of 45km. The network includes a commercial QKD product for long-term stable operation, and application interface to secure mobile phones. Detection of an eavesdropper, rerouting into a secure path, and key relay via trusted nodes are demonstrated in this network.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Jody Rustyn; Poland, Richard W.

    A system and method for the secure storage and transmission of data is provided. A data aggregate device can be configured to receive secure data from a data source, such as a sensor, and encrypt the secure data using a suitable encryption technique, such as a shared private key technique, a public key encryption technique, a Diffie-Hellman key exchange technique, or other suitable encryption technique. The encrypted secure data can be provided from the data aggregate device to different remote devices over a plurality of segregated or isolated data paths. Each of the isolated data paths can include an optoisolatormore » that is configured to provide one-way transmission of the encrypted secure data from the data aggregate device over the isolated data path. External data can be received through a secure data filter which, by validating the external data, allows for key exchange and other various adjustments from an external source.« less

  18. Continuous-variable measurement-device-independent quantum key distribution: Composable security against coherent attacks

    NASA Astrophysics Data System (ADS)

    Lupo, Cosmo; Ottaviani, Carlo; Papanastasiou, Panagiotis; Pirandola, Stefano

    2018-05-01

    We present a rigorous security analysis of continuous-variable measurement-device-independent quantum key distribution (CV MDI QKD) in a finite-size scenario. The security proof is obtained in two steps: by first assessing the security against collective Gaussian attacks, and then extending to the most general class of coherent attacks via the Gaussian de Finetti reduction. Our result combines recent state-of-the-art security proofs for CV QKD with findings about min-entropy calculus and parameter estimation. In doing so, we improve the finite-size estimate of the secret key rate. Our conclusions confirm that CV MDI protocols allow for high rates on the metropolitan scale, and may achieve a nonzero secret key rate against the most general class of coherent attacks after 107-109 quantum signal transmissions, depending on loss and noise, and on the required level of security.

  19. Authenticated sensor interface device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Jody Rustyn; Poland, Richard W.

    A system and method for the secure storage and transmission of data is provided. A data aggregate device can be configured to receive secure data from a data source, such as a sensor, and encrypt the secure data using a suitable encryption technique, such as a shared private key technique, a public key encryption technique, a Diffie-Hellman key exchange technique, or other suitable encryption technique. The encrypted secure data can be provided from the data aggregate device to different remote devices over a plurality of segregated or isolated data paths. Each of the isolated data paths can include an optoisolatormore » that is configured to provide one-way transmission of the encrypted secure data from the data aggregate device over the isolated data path. External data can be received through a secure data filter which, by validating the external data, allows for key exchange and other various adjustments from an external source.« less

  20. Security of Y-00 and Similar Quantum Cryptographic Protocols

    DTIC Science & Technology

    2004-11-16

    security of Y-00 type protocols is clarified. Key words: Quantum cryptography PACS: 03.67.Dd Anew approach to quantum cryptog- raphy called KCQ, ( keyed ...classical- noise key generation [2] or the well known BB84 quantum protocol [3]. A special case called αη (or Y-00 in Japan) has been experimentally in... quantum noise for typical op- erating parameters. It weakens both the data and key security , possibly information-theoretically and cer- tainly

  1. Key Factors in the Success of an Organization's Information Security Culture: A Quantitative Study and Analysis

    ERIC Educational Resources Information Center

    Pierce, Robert E.

    2012-01-01

    This research study reviewed relative literature on information security and information security culture within organizations to determine what factors potentially assist an organization in implementing, integrating, and maintaining a successful organizational information security culture. Based on this review of literature, five key factors were…

  2. Practical issues in quantum-key-distribution postprocessing

    NASA Astrophysics Data System (ADS)

    Fung, Chi-Hang Fred; Ma, Xiongfeng; Chau, H. F.

    2010-01-01

    Quantum key distribution (QKD) is a secure key generation method between two distant parties by wisely exploiting properties of quantum mechanics. In QKD, experimental measurement outcomes on quantum states are transformed by the two parties to a secret key. This transformation is composed of many logical steps (as guided by security proofs), which together will ultimately determine the length of the final secret key and its security. We detail the procedure for performing such classical postprocessing taking into account practical concerns (including the finite-size effect and authentication and encryption for classical communications). This procedure is directly applicable to realistic QKD experiments and thus serves as a recipe that specifies what postprocessing operations are needed and what the security level is for certain lengths of the keys. Our result is applicable to the BB84 protocol with a single or entangled photon source.

  3. Key Management Schemes for Peer-to-Peer Multimedia Streaming Overlay Networks

    NASA Astrophysics Data System (ADS)

    Naranjo, J. A. M.; López-Ramos, J. A.; Casado, L. G.

    Key distribution for multimedia live streaming peer-to-peer overlay networks is a field still in its childhood stage. A scheme designed for networks of this kind must seek security and efficiency while keeping in mind the following restrictions: limited bandwidth, continuous playing, great audience size and clients churn. This paper introduces two novel schemes that allow a trade-off between security and efficiency by allowing to dynamically vary the number of levels used in the key hierarchy. These changes are motivated by great variations in audience size, and initiated by decision of the Key Server. Additionally, a comparative study of both is presented, focusing on security and audience size. Results show that larger key hierarchies can supply bigger audiences, but offer less security against statistical attacks. The opposite happens for shorter key hierarchies.

  4. Experimental quantum key distribution with simulated ground-to-satellite photon losses and processing limitations

    NASA Astrophysics Data System (ADS)

    Bourgoin, Jean-Philippe; Gigov, Nikolay; Higgins, Brendon L.; Yan, Zhizhong; Meyer-Scott, Evan; Khandani, Amir K.; Lütkenhaus, Norbert; Jennewein, Thomas

    2015-11-01

    Quantum key distribution (QKD) has the potential to improve communications security by offering cryptographic keys whose security relies on the fundamental properties of quantum physics. The use of a trusted quantum receiver on an orbiting satellite is the most practical near-term solution to the challenge of achieving long-distance (global-scale) QKD, currently limited to a few hundred kilometers on the ground. This scenario presents unique challenges, such as high photon losses and restricted classical data transmission and processing power due to the limitations of a typical satellite platform. Here we demonstrate the feasibility of such a system by implementing a QKD protocol, with optical transmission and full post-processing, in the high-loss regime using minimized computing hardware at the receiver. Employing weak coherent pulses with decoy states, we demonstrate the production of secure key bits at up to 56.5 dB of photon loss. We further illustrate the feasibility of a satellite uplink by generating a secure key while experimentally emulating the varying losses predicted for realistic low-Earth-orbit satellite passes at 600 km altitude. With a 76 MHz source and including finite-size analysis, we extract 3374 bits of a secure key from the best pass. We also illustrate the potential benefit of combining multiple passes together: while one suboptimal "upper-quartile" pass produces no finite-sized key with our source, the combination of three such passes allows us to extract 165 bits of a secure key. Alternatively, we find that by increasing the signal rate to 300 MHz it would be possible to extract 21 570 bits of a secure finite-sized key in just a single upper-quartile pass.

  5. Physical Layer Secret-Key Generation Scheme for Transportation Security Sensor Network

    PubMed Central

    Yang, Bin; Zhang, Jianfeng

    2017-01-01

    Wireless Sensor Networks (WSNs) are widely used in different disciplines, including transportation systems, agriculture field environment monitoring, healthcare systems, and industrial monitoring. The security challenge of the wireless communication link between sensor nodes is critical in WSNs. In this paper, we propose a new physical layer secret-key generation scheme for transportation security sensor network. The scheme is based on the cooperation of all the sensor nodes, thus avoiding the key distribution process, which increases the security of the system. Different passive and active attack models are analyzed in this paper. We also prove that when the cooperative node number is large enough, even when the eavesdropper is equipped with multiple antennas, the secret-key is still secure. Numerical results are performed to show the efficiency of the proposed scheme. PMID:28657588

  6. Final report for the Integrated and Robust Security Infrastructure (IRSI) laboratory directed research and development project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, R.L.; Hamilton, V.A.; Istrail, G.G.

    1997-11-01

    This report describes the results of a Sandia-funded laboratory-directed research and development project titled {open_quotes}Integrated and Robust Security Infrastructure{close_quotes} (IRSI). IRSI was to provide a broad range of commercial-grade security services to any software application. IRSI has two primary goals: application transparency and manageable public key infrastructure. IRSI must provide its security services to any application without the need to modify the application to invoke the security services. Public key mechanisms are well suited for a network with many end users and systems. There are many issues that make it difficult to deploy and manage a public key infrastructure. IRSImore » addressed some of these issues to create a more manageable public key infrastructure.« less

  7. Physical Layer Secret-Key Generation Scheme for Transportation Security Sensor Network.

    PubMed

    Yang, Bin; Zhang, Jianfeng

    2017-06-28

    Wireless Sensor Networks (WSNs) are widely used in different disciplines, including transportation systems, agriculture field environment monitoring, healthcare systems, and industrial monitoring. The security challenge of the wireless communication link between sensor nodes is critical in WSNs. In this paper, we propose a new physical layer secret-key generation scheme for transportation security sensor network. The scheme is based on the cooperation of all the sensor nodes, thus avoiding the key distribution process, which increases the security of the system. Different passive and active attack models are analyzed in this paper. We also prove that when the cooperative node number is large enough, even when the eavesdropper is equipped with multiple antennas, the secret-key is still secure. Numerical results are performed to show the efficiency of the proposed scheme.

  8. Physical Unclonable Function Hardware Keys Utilizing Kirchhoff-Law Secure Key Exchange and Noise-Based Logic

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Kwan, Chiman

    Weak unclonable function (PUF) encryption key means that the manufacturer of the hardware can clone the key but not anybody else. Strong unclonable function (PUF) encryption key means that even the manufacturer of the hardware is unable to clone the key. In this paper, first we introduce an "ultra" strong PUF with intrinsic dynamical randomness, which is not only unclonable but also gets renewed to an independent key (with fresh randomness) during each use via the unconditionally secure key exchange. The solution utilizes the Kirchhoff-law-Johnson-noise (KLJN) method for dynamical key renewal and a one-time-pad secure key for the challenge/response process. The secure key is stored in a flash memory on the chip to provide tamper-resistance and nonvolatile storage with zero power requirements in standby mode. Simplified PUF keys are shown: a strong PUF utilizing KLJN protocol during the first run and noise-based logic (NBL) hyperspace vector string verification method for the challenge/response during the rest of its life or until it is re-initialized. Finally, the simplest PUF utilizes NBL without KLJN thus it can be cloned by the manufacturer but not by anybody else.

  9. Distributed generation of shared RSA keys in mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Liang; Huang, Qin; Shen, Ying

    2005-12-01

    Mobile Ad Hoc Networks is a totally new concept in which mobile nodes are able to communicate together over wireless links in an independent manner, independent of fixed physical infrastructure and centralized administrative infrastructure. However, the nature of Ad Hoc Networks makes them very vulnerable to security threats. Generation and distribution of shared keys for CA (Certification Authority) is challenging for security solution based on distributed PKI(Public-Key Infrastructure)/CA. The solutions that have been proposed in the literature and some related issues are discussed in this paper. The solution of a distributed generation of shared threshold RSA keys for CA is proposed in the present paper. During the process of creating an RSA private key share, every CA node only has its own private security. Distributed arithmetic is used to create the CA's private share locally, and that the requirement of centralized management institution is eliminated. Based on fully considering the Mobile Ad Hoc network's characteristic of self-organization, it avoids the security hidden trouble that comes by holding an all private security share of CA, with which the security and robustness of system is enhanced.

  10. 75 FR 40852 - NASA Advisory Council; Exploration Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... Cooperation and Other Partnerships. Joint Session with NASA Advisory Council Technology & Innovation Committee... expiration date, U.S. Social Security Number (if applicable), Permanent Resident Alien card number and...

  11. Security on Campus. Hearing before a Subcommittee of the Committee on Appropriations, United State Senate, One Hundred Fifth Congress, Second Session. Special Hearing.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Appropriations.

    This document presents the transcript of a congressional hearing held before a Senate subcommittee concerning reporting requirements of the Student Right to Know and Campus Security Act of 1990. Among issues addressed is whether the definition of "campus" includes buildings used partially or completely for commercial purposes, sidewalks,…

  12. Kerberos authentication: The security answer for unsecured networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engert, D.E.

    1995-06-01

    Traditional authentication schemes do not properly address the problems encountered with today`s unsecured networks. Kerbmm developed by MIT, on the other hand is designed to operate in an open unsecured network, yet provide good authentication and security including encrypted session traffic. Basic Kerberos principles as well as experiences of the ESnet Authentication Pilot Project with Cross Realm. Authentication between four National Laboratories will also be described.

  13. 77 FR 2329 - Self-Regulatory Organizations; EDGA Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... Change To Amend EDGA Rule 1.5(q) January 10, 2012. Pursuant to Section 19(b)(1) of the Securities... EDGA Rule 1.5(q) to change the starting time of the Pre-Opening Session from 7 a.m. Eastern Time (``ET... amend EDGA Rule 1.5(q) to change the starting time of the Pre-Opening Session from 8 a.m. ET to 7 a.m...

  14. Hardening Logic Encryption against Key Extraction Attacks with Circuit Camouflage

    DTIC Science & Technology

    2017-03-01

    camouflage; obfuscation; SAT; key extraction; reverse engineering; security; trusted electronics Introduction Integrated Circuit (IC) designs are...Encryption Algorithms”, Hardware Oriented Security and Trust , 2015. 3. Rajendran J., Pino, Y., Sinanoglu, O., Karri, R., “Security Analysis of Logic

  15. Stable operation of a Secure QKD system in the real-world setting

    NASA Astrophysics Data System (ADS)

    Tomita, Akihisa

    2007-06-01

    Quantum Key Distribution (QKD) now steps forward from the proof of principle to the validation of the practical feasibility. Nevertheless, the QKD technology should respond to the challenges from the real-world such as stable operation against the fluctuating environment, and security proof under the practical setting. We report our recent progress on stable operation of a QKD system, and key generation with security assurance. A QKD system should robust to temperature fluctuation in a common office environment. We developed a loop-mirror, a substitution of a Faraday mirror, to allow easy compensation for the temperature dependence of the device. Phase locking technique was also employed to synchronize the system clock to the quantum signals. This technique is indispensable for the transmission system based on the installed fiber cables, which stretch and shrink due to the temperature change. The security proof of QKD, however, has assumed the ideal conditions, such as the use of a genuine single photon source and/or unlimited computational resources. It has been highly desirable to give an assurance of security for practical systems, where the ideal conditions are no longer satisfied. We have constructed a theory to estimate the leakage information on the transmitted key under the practically attainable conditions, and have developed a QKD system equipped with software for secure key distillation. The QKD system generates the final key at the rate of 2000 bps after 20 km fiber transmission. Eavesdropper's information on the final key is guaranteed to be less than 2-7 per bit. This is the first successful generation of the secure key with quantitative assurance of the upper bound of the leakage information. It will put forth the realization of highly secure metropolitan optical communication network against any types of eavesdropping.

  16. Authentication Binding between SSL/TLS and HTTP

    NASA Astrophysics Data System (ADS)

    Saito, Takamichi; Sekiguchi, Kiyomi; Hatsugai, Ryosuke

    While the Secure Socket Layer or Transport Layer Security (SSL/TLS) is assumed to provide secure communications over the Internet, many web applications utilize basic or digest authentication of Hyper Text Transport Protocol (HTTP) over SSL/TLS. Namely, in the scheme, there are two different authentication schemes in a session. Since they are separated by a layer, these are not convenient for a web application. Moreover, the scheme may also cause problems in establishing secure communication. Then we provide a scheme of authentication binding between SSL/TLS and HTTP without modifying SSL/TLS protocols and its implementation, and we show the effectiveness of our proposed scheme.

  17. How Data Mining Threatens Student Privacy. Joint Hearing before the Subcommittee on Cybersecurity, Infrastructure Protection, and Security Technologies of the Committee on Homeland Security, House of Representatives Serial No. 113-76 and the Subcommittee on Early Childhood, Elementary, and Secondary Education of the Committee on Education and the Workforce, House of Representatives Serial No. 113-61, House of Representatives, One Hundred Thirteenth Congress, Second Session (June 25, 2014)

    ERIC Educational Resources Information Center

    US House of Representatives, 2015

    2015-01-01

    This paper presents the first joint hearing of the Subcommittee on Cybersecurity, Infrastructure Protection, and Security Technologies of the Committee on Homeland Security and the Subcommittee on Early Childhood, Elementary, and Secondary Education of the Committee on Education and the Workforce. The subcommittees met to examine data collection…

  18. Phase-encoded measurement device independent quantum key distribution without a shared reference frame

    NASA Astrophysics Data System (ADS)

    Zhuo-Dan, Zhu; Shang-Hong, Zhao; Chen, Dong; Ying, Sun

    2018-07-01

    In this paper, a phase-encoded measurement device independent quantum key distribution (MDI-QKD) protocol without a shared reference frame is presented, which can generate secure keys between two parties while the quantum channel or interferometer introduces an unknown and slowly time-varying phase. The corresponding secret key rate and single photons bit error rate is analysed, respectively, with single photons source (SPS) and weak coherent source (WCS), taking finite-key analysis into account. The numerical simulations show that the modified phase-encoded MDI-QKD protocol has apparent superiority both in maximal secure transmission distance and key generation rate while possessing the improved robustness and practical security in the high-speed case. Moreover, the rejection of the frame-calibrating part will intrinsically reduce the consumption of resources as well as the potential security flaws of practical MDI-QKD systems.

  19. Biometrics based key management of double random phase encoding scheme using error control codes

    NASA Astrophysics Data System (ADS)

    Saini, Nirmala; Sinha, Aloka

    2013-08-01

    In this paper, an optical security system has been proposed in which key of the double random phase encoding technique is linked to the biometrics of the user to make it user specific. The error in recognition due to the biometric variation is corrected by encoding the key using the BCH code. A user specific shuffling key is used to increase the separation between genuine and impostor Hamming distance distribution. This shuffling key is then further secured using the RSA public key encryption to enhance the security of the system. XOR operation is performed between the encoded key and the feature vector obtained from the biometrics. The RSA encoded shuffling key and the data obtained from the XOR operation are stored into a token. The main advantage of the present technique is that the key retrieval is possible only in the simultaneous presence of the token and the biometrics of the user which not only authenticates the presence of the original input but also secures the key of the system. Computational experiments showed the effectiveness of the proposed technique for key retrieval in the decryption process by using the live biometrics of the user.

  20. Proceedings of the 1991 Oil Heat Technology Conference and Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, R.J.

    This Conference, which was the sixth held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: Identify and evaluate the state-of-the-art and recommend; new initiatives to satisfy consumer needs cost-effectively, reliably, and safely; Foster cooperation among federal and industrial representatives with the common goal of national security via energy conservation. The 1991 Oil Technology Conference comprised: (a) two plenary sessions devoted tomore » presentations and summations by public and private sector representatives from the United States, Europe, and Canada; and, (b) four workshops which focused on mainstream issues in oil-heating technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.« less

  1. Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Hua; Department of Mathematics and Physics, Hubei University of Technology, Wuhan 430068; Fung, Chi-Hang Fred

    2011-10-15

    In a deterministic quantum key distribution (DQKD) protocol with a two-way quantum channel, Bob sends a qubit to Alice who then encodes a key bit onto the qubit and sends it back to Bob. After measuring the returned qubit, Bob can obtain Alice's key bit immediately, without basis reconciliation. Since an eavesdropper may attack the qubits traveling on either the Bob-Alice channel or the Alice-Bob channel, the security analysis of DQKD protocol with a two-way quantum channel is complicated and its unconditional security has been controversial. This paper presents a security proof of a single-photon four-state DQKD protocol against generalmore » attacks.« less

  2. Public key infrastructure for DOE security research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aiken, R.; Foster, I.; Johnston, W.E.

    This document summarizes the Department of Energy`s Second Joint Energy Research/Defence Programs Security Research Workshop. The workshop, built on the results of the first Joint Workshop which reviewed security requirements represented in a range of mission-critical ER and DP applications, discussed commonalties and differences in ER/DP requirements and approaches, and identified an integrated common set of security research priorities. One significant conclusion of the first workshop was that progress in a broad spectrum of DOE-relevant security problems and applications could best be addressed through public-key cryptography based systems, and therefore depended upon the existence of a robust, broadly deployed public-keymore » infrastructure. Hence, public-key infrastructure ({open_quotes}PKI{close_quotes}) was adopted as a primary focus for the second workshop. The Second Joint Workshop covered a range of DOE security research and deployment efforts, as well as summaries of the state of the art in various areas relating to public-key technologies. Key findings were that a broad range of DOE applications can benefit from security architectures and technologies built on a robust, flexible, widely deployed public-key infrastructure; that there exists a collection of specific requirements for missing or undeveloped PKI functionality, together with a preliminary assessment of how these requirements can be met; that, while commercial developments can be expected to provide many relevant security technologies, there are important capabilities that commercial developments will not address, due to the unique scale, performance, diversity, distributed nature, and sensitivity of DOE applications; that DOE should encourage and support research activities intended to increase understanding of security technology requirements, and to develop critical components not forthcoming from other sources in a timely manner.« less

  3. Self-Assembled Resonance Energy Transfer Keys for Secure Communication over Classical Channels.

    PubMed

    Nellore, Vishwa; Xi, Sam; Dwyer, Chris

    2015-12-22

    Modern authentication and communication protocols increasingly use physical keys in lieu of conventional software-based keys for security. This shift is primarily driven by the ability to derive a unique, unforgeable signature from a physical key. The sole demonstration of an unforgeable key, thus far, has been through quantum key distribution, which suffers from limited communication distances and expensive infrastructure requirements. Here, we show a method for creating unclonable keys by molecular self-assembly of resonance energy transfer (RET) devices. It is infeasible to clone the RET-key due to the inability to characterize the key using current technology, the large number of input-output combinations per key, and the variation of the key's response with time. However, the manufacturer can produce multiple identical devices, which enables inexpensive, secure authentication and communication over classical channels, and thus any distance. Through a detailed experimental survey of the nanoscale keys, we demonstrate that legitimate users are successfully authenticated 99.48% of the time and the false-positives are only 0.39%, over two attempts. We estimate that a legitimate user would have a computational advantage of more than 10(340) years over an attacker. Our method enables the discovery of physical key based multiparty authentication and communication schemes that are both practical and possess unprecedented security.

  4. Key handling in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Li, Y.; Newe, T.

    2007-07-01

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided.

  5. Efficient bit sifting scheme of post-processing in quantum key distribution

    NASA Astrophysics Data System (ADS)

    Li, Qiong; Le, Dan; Wu, Xianyan; Niu, Xiamu; Guo, Hong

    2015-10-01

    Bit sifting is an important step in the post-processing of quantum key distribution (QKD). Its function is to sift out the undetected original keys. The communication traffic of bit sifting has essential impact on the net secure key rate of a practical QKD system. In this paper, an efficient bit sifting scheme is presented, of which the core is a lossless source coding algorithm. Both theoretical analysis and experimental results demonstrate that the performance of the scheme is approaching the Shannon limit. The proposed scheme can greatly decrease the communication traffic of the post-processing of a QKD system, which means the proposed scheme can decrease the secure key consumption for classical channel authentication and increase the net secure key rate of the QKD system, as demonstrated by analyzing the improvement on the net secure key rate. Meanwhile, some recommendations on the application of the proposed scheme to some representative practical QKD systems are also provided.

  6. Security of six-state quantum key distribution protocol with threshold detectors

    PubMed Central

    Kato, Go; Tamaki, Kiyoshi

    2016-01-01

    The security of quantum key distribution (QKD) is established by a security proof, and the security proof puts some assumptions on the devices consisting of a QKD system. Among such assumptions, security proofs of the six-state protocol assume the use of photon number resolving (PNR) detector, and as a result the bit error rate threshold for secure key generation for the six-state protocol is higher than that for the BB84 protocol. Unfortunately, however, this type of detector is demanding in terms of technological level compared to the standard threshold detector, and removing the necessity of such a detector enhances the feasibility of the implementation of the six-state protocol. Here, we develop the security proof for the six-state protocol and show that we can use the threshold detector for the six-state protocol. Importantly, the bit error rate threshold for the key generation for the six-state protocol (12.611%) remains almost the same as the one (12.619%) that is derived from the existing security proofs assuming the use of PNR detectors. This clearly demonstrates feasibility of the six-state protocol with practical devices. PMID:27443610

  7. Report of the Annual Scientific Session of the American College of Cardiology (ACC) 2018, Orlando.

    PubMed

    Hashimoto, Takuya; Ako, Junya

    2018-04-28

    The 67 th Annual Scientific Session and Expo of the American College of Cardiology (ACC) were held at the Orange County Convention Center, Orlando, from March 10-12, 2018. This meeting offered 2,700 accepted abstracts presented in oral and poster sessions by 2,100 experts and 37 Late-Breaking Clinical Trials and Featured Clinical Research presentations. This report introduces the key presentations and highlights from the ACC 2018 Scientific Session.

  8. 76 FR 64895 - Information Systems Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... Session 1. Welcome and Introductions. 2. Working Group Reports. 3. Industry Presentation: Autonomous Vehicle. 4. Industry Presentation: Technology Export Controls. 5. Industry Presentation: Security as a...

  9. Designing and Operating Through Compromise: Architectural Analysis of CKMS for the Advanced Metering Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duren, Mike; Aldridge, Hal; Abercrombie, Robert K

    2013-01-01

    Compromises attributable to the Advanced Persistent Threat (APT) highlight the necessity for constant vigilance. The APT provides a new perspective on security metrics (e.g., statistics based cyber security) and quantitative risk assessments. We consider design principals and models/tools that provide high assurance for energy delivery systems (EDS) operations regardless of the state of compromise. Cryptographic keys must be securely exchanged, then held and protected on either end of a communications link. This is challenging for a utility with numerous substations that must secure the intelligent electronic devices (IEDs) that may comprise complex control system of systems. For example, distribution andmore » management of keys among the millions of intelligent meters within the Advanced Metering Infrastructure (AMI) is being implemented as part of the National Smart Grid initiative. Without a means for a secure cryptographic key management system (CKMS) no cryptographic solution can be widely deployed to protect the EDS infrastructure from cyber-attack. We consider 1) how security modeling is applied to key management and cyber security concerns on a continuous basis from design through operation, 2) how trusted models and key management architectures greatly impact failure scenarios, and 3) how hardware-enabled trust is a critical element to detecting, surviving, and recovering from attack.« less

  10. Complex Conjugated certificateless-based signcryption with differential integrated factor for secured message communication in mobile network

    PubMed Central

    Rajagopalan, S. P.

    2017-01-01

    Certificateless-based signcryption overcomes inherent shortcomings in traditional Public Key Infrastructure (PKI) and Key Escrow problem. It imparts efficient methods to design PKIs with public verifiability and cipher text authenticity with minimum dependency. As a classic primitive in public key cryptography, signcryption performs validity of cipher text without decryption by combining authentication, confidentiality, public verifiability and cipher text authenticity much more efficiently than the traditional approach. In this paper, we first define a security model for certificateless-based signcryption called, Complex Conjugate Differential Integrated Factor (CC-DIF) scheme by introducing complex conjugates through introduction of the security parameter and improving secured message distribution rate. However, both partial private key and secret value changes with respect to time. To overcome this weakness, a new certificateless-based signcryption scheme is proposed by setting the private key through Differential (Diff) Equation using an Integration Factor (DiffEIF), minimizing computational cost and communication overhead. The scheme is therefore said to be proven secure (i.e. improving the secured message distributing rate) against certificateless access control and signcryption-based scheme. In addition, compared with the three other existing schemes, the CC-DIF scheme has the least computational cost and communication overhead for secured message communication in mobile network. PMID:29040290

  11. Complex Conjugated certificateless-based signcryption with differential integrated factor for secured message communication in mobile network.

    PubMed

    Alagarsamy, Sumithra; Rajagopalan, S P

    2017-01-01

    Certificateless-based signcryption overcomes inherent shortcomings in traditional Public Key Infrastructure (PKI) and Key Escrow problem. It imparts efficient methods to design PKIs with public verifiability and cipher text authenticity with minimum dependency. As a classic primitive in public key cryptography, signcryption performs validity of cipher text without decryption by combining authentication, confidentiality, public verifiability and cipher text authenticity much more efficiently than the traditional approach. In this paper, we first define a security model for certificateless-based signcryption called, Complex Conjugate Differential Integrated Factor (CC-DIF) scheme by introducing complex conjugates through introduction of the security parameter and improving secured message distribution rate. However, both partial private key and secret value changes with respect to time. To overcome this weakness, a new certificateless-based signcryption scheme is proposed by setting the private key through Differential (Diff) Equation using an Integration Factor (DiffEIF), minimizing computational cost and communication overhead. The scheme is therefore said to be proven secure (i.e. improving the secured message distributing rate) against certificateless access control and signcryption-based scheme. In addition, compared with the three other existing schemes, the CC-DIF scheme has the least computational cost and communication overhead for secured message communication in mobile network.

  12. Quantum key distribution with an efficient countermeasure against correlated intensity fluctuations in optical pulses

    NASA Astrophysics Data System (ADS)

    Yoshino, Ken-ichiro; Fujiwara, Mikio; Nakata, Kensuke; Sumiya, Tatsuya; Sasaki, Toshihiko; Takeoka, Masahiro; Sasaki, Masahide; Tajima, Akio; Koashi, Masato; Tomita, Akihisa

    2018-03-01

    Quantum key distribution (QKD) allows two distant parties to share secret keys with the proven security even in the presence of an eavesdropper with unbounded computational power. Recently, GHz-clock decoy QKD systems have been realized by employing ultrafast optical communication devices. However, security loopholes of high-speed systems have not been fully explored yet. Here we point out a security loophole at the transmitter of the GHz-clock QKD, which is a common problem in high-speed QKD systems using practical band-width limited devices. We experimentally observe the inter-pulse intensity correlation and modulation pattern-dependent intensity deviation in a practical high-speed QKD system. Such correlation violates the assumption of most security theories. We also provide its countermeasure which does not require significant changes of hardware and can generate keys secure over 100 km fiber transmission. Our countermeasure is simple, effective and applicable to wide range of high-speed QKD systems, and thus paves the way to realize ultrafast and security-certified commercial QKD systems.

  13. An Efficient and Secure Arbitrary N-Party Quantum Key Agreement Protocol Using Bell States

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Jie; Xu, Yong; Yang, Ching-Nung; Gao, Pei-Pei; Yu, Wen-Bin

    2018-01-01

    Two quantum key agreement protocols using Bell states and Bell measurement were recently proposed by Shukla et al. (Quantum Inf. Process. 13(11), 2391-2405, 2014). However, Zhu et al. pointed out that there are some security flaws and proposed an improved version (Quantum Inf. Process. 14(11), 4245-4254, 2015). In this study, we will show Zhu et al.'s improvement still exists some security problems, and its efficiency is not high enough. For solving these problems, we utilize four Pauli operations { I, Z, X, Y} to encode two bits instead of the original two operations { I, X} to encode one bit, and then propose an efficient and secure arbitrary N-party quantum key agreement protocol. In the protocol, the channel checking with decoy single photons is introduced to avoid the eavesdropper's flip attack, and a post-measurement mechanism is used to prevent against the collusion attack. The security analysis shows the present protocol can guarantee the correctness, security, privacy and fairness of quantum key agreement.

  14. Experimental realization of equiangular three-state quantum key distribution

    PubMed Central

    Schiavon, Matteo; Vallone, Giuseppe; Villoresi, Paolo

    2016-01-01

    Quantum key distribution using three states in equiangular configuration combines a security threshold comparable with the one of the Bennett-Brassard 1984 protocol and a quantum bit error rate (QBER) estimation that does not need to reveal part of the key. We implement an entanglement-based version of the Renes 2004 protocol, using only passive optic elements in a linear scheme for the positive-operator valued measure (POVM), generating an asymptotic secure key rate of more than 10 kbit/s, with a mean QBER of 1.6%. We then demonstrate its security in the case of finite key and evaluate the key rate for both collective and general attacks. PMID:27465643

  15. Measurement-Device-Independent Quantum Key Distribution over Untrustful Metropolitan Network

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Lin; Yin, Hua-Lei; Zhao, Qi; Liu, Hui; Sun, Xiang-Xiang; Huang, Ming-Qi; Zhang, Wei-Jun; Chen, Si-Jing; Zhang, Lu; You, Li-Xing; Wang, Zhen; Liu, Yang; Lu, Chao-Yang; Jiang, Xiao; Ma, Xiongfeng; Zhang, Qiang; Chen, Teng-Yun; Pan, Jian-Wei

    2016-01-01

    Quantum cryptography holds the promise to establish an information-theoretically secure global network. All field tests of metropolitan-scale quantum networks to date are based on trusted relays. The security critically relies on the accountability of the trusted relays, which will break down if the relay is dishonest or compromised. Here, we construct a measurement-device-independent quantum key distribution (MDIQKD) network in a star topology over a 200-square-kilometer metropolitan area, which is secure against untrustful relays and against all detection attacks. In the field test, our system continuously runs through one week with a secure key rate 10 times larger than previous results. Our results demonstrate that the MDIQKD network, combining the best of both worlds—security and practicality, constitutes an appealing solution to secure metropolitan communications.

  16. Three-factor anonymous authentication and key agreement scheme for Telecare Medicine Information Systems.

    PubMed

    Arshad, Hamed; Nikooghadam, Morteza

    2014-12-01

    Nowadays, with comprehensive employment of the internet, healthcare delivery services is provided remotely by telecare medicine information systems (TMISs). A secure mechanism for authentication and key agreement is one of the most important security requirements for TMISs. Recently, Tan proposed a user anonymity preserving three-factor authentication scheme for TMIS. The present paper shows that Tan's scheme is vulnerable to replay attacks and Denial-of-Service attacks. In order to overcome these security flaws, a new and efficient three-factor anonymous authentication and key agreement scheme for TMIS is proposed. Security and performance analysis shows superiority of the proposed scheme in comparison with previously proposed schemes that are related to security of TMISs.

  17. Building a highly available and intrusion tolerant Database Security and Protection System (DSPS).

    PubMed

    Cai, Liang; Yang, Xiao-Hu; Dong, Jin-Xiang

    2003-01-01

    Database Security and Protection System (DSPS) is a security platform for fighting malicious DBMS. The security and performance are critical to DSPS. The authors suggested a key management scheme by combining the server group structure to improve availability and the key distribution structure needed by proactive security. This paper detailed the implementation of proactive security in DSPS. After thorough performance analysis, the authors concluded that the performance difference between the replicated mechanism and proactive mechanism becomes smaller and smaller with increasing number of concurrent connections; and that proactive security is very useful and practical for large, critical applications.

  18. Digital security technology simplified.

    PubMed

    Scaglione, Bernard J

    2007-01-01

    Digital security technology is making great strides in replacing analog and other traditional security systems including CCTV card access, personal identification and alarm monitoring applications. Like any new technology, the author says, it is important to understand its benefits and limitations before purchasing and installing, to ensure its proper operation and effectiveness. This article is a primer for security directors on how digital technology works. It provides an understanding of the key components which make up the foundation for digital security systems, focusing on three key aspects of the digital security world: the security network, IP cameras and IP recorders.

  19. Security of Distributed-Phase-Reference Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Moroder, Tobias; Curty, Marcos; Lim, Charles Ci Wen; Thinh, Le Phuc; Zbinden, Hugo; Gisin, Nicolas

    2012-12-01

    Distributed-phase-reference quantum key distribution stands out for its easy implementation with present day technology. For many years, a full security proof of these schemes in a realistic setting has been elusive. We solve this long-standing problem and present a generic method to prove the security of such protocols against general attacks. To illustrate our result, we provide lower bounds on the key generation rate of a variant of the coherent-one-way quantum key distribution protocol. In contrast to standard predictions, it appears to scale quadratically with the system transmittance.

  20. Secure telemonitoring system for delivering telerehabilitation therapy to enhance children's communication function to home.

    PubMed

    Parmanto, Bambang; Saptono, Andi; Murthi, Raymond; Safos, Charlotte; Lathan, Corinna E

    2008-11-01

    A secure telemonitoring system was developed to transform CosmoBot system, a stand-alone speech-language therapy software, into a telerehabilitation system. The CosmoBot system is a motivating, computer-based play character designed to enhance children's communication skills and stimulate verbal interaction during the remediation of speech and language disorders. The CosmoBot system consists of the Mission Control human interface device and Cosmo's Play and Learn software featuring a robot character named Cosmo that targets educational goals for children aged 3-5 years. The secure telemonitoring infrastructure links a distant speech-language therapist and child/parents at home or school settings. The result is a telerehabilitation system that allows a speech-language therapist to monitor children's activities at home while providing feedback and therapy materials remotely. We have developed the means for telerehabilitation of communication skills that can be implemented in children's home settings. The architecture allows the therapist to remotely monitor the children after completion of the therapy session and to provide feedback for the following session.

  1. Secure image retrieval with multiple keys

    NASA Astrophysics Data System (ADS)

    Liang, Haihua; Zhang, Xinpeng; Wei, Qiuhan; Cheng, Hang

    2018-03-01

    This article proposes a secure image retrieval scheme under a multiuser scenario. In this scheme, the owner first encrypts and uploads images and their corresponding features to the cloud; then, the user submits the encrypted feature of the query image to the cloud; next, the cloud compares the encrypted features and returns encrypted images with similar content to the user. To find the nearest neighbor in the encrypted features, an encryption with multiple keys is proposed, in which the query feature of each user is encrypted by his/her own key. To improve the key security and space utilization, global optimization and Gaussian distribution are, respectively, employed to generate multiple keys. The experiments show that the proposed encryption can provide effective and secure image retrieval for each user and ensure confidentiality of the query feature of each user.

  2. Orthogonal-state-based cryptography in quantum mechanics and local post-quantum theories

    NASA Astrophysics Data System (ADS)

    Aravinda, S.; Banerjee, Anindita; Pathak, Anirban; Srikanth, R.

    2014-02-01

    We introduce the concept of cryptographic reduction, in analogy with a similar concept in computational complexity theory. In this framework, class A of crypto-protocols reduces to protocol class B in a scenario X, if for every instance a of A, there is an instance b of B and a secure transformation X that reproduces a given b, such that the security of b guarantees the security of a. Here we employ this reductive framework to study the relationship between security in quantum key distribution (QKD) and quantum secure direct communication (QSDC). We show that replacing the streaming of independent qubits in a QKD scheme by block encoding and transmission (permuting the order of particles block by block) of qubits, we can construct a QSDC scheme. This forms the basis for the block reduction from a QSDC class of protocols to a QKD class of protocols, whereby if the latter is secure, then so is the former. Conversely, given a secure QSDC protocol, we can of course construct a secure QKD scheme by transmitting a random key as the direct message. Then the QKD class of protocols is secure, assuming the security of the QSDC class which it is built from. We refer to this method of deduction of security for this class of QKD protocols, as key reduction. Finally, we propose an orthogonal-state-based deterministic key distribution (KD) protocol which is secure in some local post-quantum theories. Its security arises neither from geographic splitting of a code state nor from Heisenberg uncertainty, but from post-measurement disturbance.

  3. Work after 65: Options for the 80's. Hearing before the Special Committee on Aging, United States Senate, Ninety-Sixth Congress, Second Session. Part 1--Washington, D.C.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Special Committee on Aging.

    With Social Security and retirement benefits unable to keep up with inflation, and persons living longer than ever in this country, retirement at age 65 or younger may no longer be a desirable choice for millions of older workers. These themes were articulated by government officials and foundation officers at the first session of a U.S. Senate…

  4. Biometrics based authentication scheme for session initiation protocol.

    PubMed

    Xie, Qi; Tang, Zhixiong

    2016-01-01

    Many two-factor challenge-response based session initiation protocol (SIP) has been proposed, but most of them are vulnerable to smart card stolen attacks and password guessing attacks. In this paper, we propose a novel three-factor SIP authentication scheme using biometrics, password and smart card, and utilize the pi calculus-based formal verification tool ProVerif to prove that the proposed protocol achieves security and authentication. Furthermore, our protocol is highly efficient when compared to other related protocols.

  5. 77 FR 55196 - Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... Nuclear Security Administration's oversight for these activities, and the status of site-wide emergency preparedness. That session will be rescheduled as a separate open meeting and hearing at a time and place to be...

  6. Insider Threat to Computer Security at Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Rebecca Lynn

    After completing this session, you should be able to: Describe the Insider Threat; Characterize the cyber insider threat; Describe preventive measures against the insider threat; Describe protective measures against the insider threat.

  7. A Course in Critical Thinking for PhD Students in Biomolecular Sciences and Biotechnology: Classical Experiments in Biochemistry

    ERIC Educational Resources Information Center

    Hirschberg, Carlos B.

    2016-01-01

    This essay presents and discusses an eight-session seminar course designed to develop critical thinking skills in doctoral biochemistry students by exposing them to classical experiments in biochemistry. During each 2.5 session, different key topics of the discovery and development of biochemical concepts are discussed. Before each session,…

  8. Enhancement of security using structured phase masked in optical image encryption on Fresnel transform domain

    NASA Astrophysics Data System (ADS)

    Yadav, Poonam Lata; Singh, Hukum

    2018-05-01

    To enhance the security in optical image encryption system and to protect it from the attackers, this paper proposes new digital spiral phase mask based on Fresnel Transform. In this cryptosystem the Spiral Phase Mask (SPM) used is a hybrid of Fresnel Zone Plate (FZP) and Radial Hilbert Mask (RHM) which makes the key strong and enhances the security. The different keys used for encryption and decryption purposed make the system much more secure. Proposed scheme uses various structured phase mask which increases the key space also it increases the number of parameters which makes it difficult for the attackers to exactly find the key to recover the original image. We have also used different keys for encryption and decryption purpose to make the system much more secure. The strength of the proposed cryptosystem has been analyzed by simulating on MATLAB 7.9.0(R2008a). Mean Square Errors (MSE) and Peak Signal to Noise Ratio (PSNR) are calculated for the proposed algorithm. The experimental results are provided to highlight the effectiveness and sustainability of proposed cryptosystem and to prove that the cryptosystem is secure for usage.

  9. Experimental quantum key distribution with source flaws

    NASA Astrophysics Data System (ADS)

    Xu, Feihu; Wei, Kejin; Sajeed, Shihan; Kaiser, Sarah; Sun, Shihai; Tang, Zhiyuan; Qian, Li; Makarov, Vadim; Lo, Hoi-Kwong

    2015-09-01

    Decoy-state quantum key distribution (QKD) is a standard technique in current quantum cryptographic implementations. Unfortunately, existing experiments have two important drawbacks: the state preparation is assumed to be perfect without errors and the employed security proofs do not fully consider the finite-key effects for general attacks. These two drawbacks mean that existing experiments are not guaranteed to be proven to be secure in practice. Here, we perform an experiment that shows secure QKD with imperfect state preparations over long distances and achieves rigorous finite-key security bounds for decoy-state QKD against coherent attacks in the universally composable framework. We quantify the source flaws experimentally and demonstrate a QKD implementation that is tolerant to channel loss despite the source flaws. Our implementation considers more real-world problems than most previous experiments, and our theory can be applied to general discrete-variable QKD systems. These features constitute a step towards secure QKD with imperfect devices.

  10. Symmetric Link Key Management for Secure Neighbor Discovery in a Decentralized Wireless Sensor Network

    DTIC Science & Technology

    2017-09-01

    and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT...KEY MANAGEMENT FOR SECURE NEIGHBOR DISCOVERY IN A DECENTRALIZED WIRELESS SENSOR NETWORK by Kelvin T. Chew September 2017 Thesis Advisor...DATE September 2017 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE SYMMETRIC LINK KEY MANAGEMENT FOR SECURE NEIGHBOR

  11. Modeling, Simulation and Analysis of Public Key Infrastructure

    NASA Technical Reports Server (NTRS)

    Liu, Yuan-Kwei; Tuey, Richard; Ma, Paul (Technical Monitor)

    1998-01-01

    Security is an essential part of network communication. The advances in cryptography have provided solutions to many of the network security requirements. Public Key Infrastructure (PKI) is the foundation of the cryptography applications. The main objective of this research is to design a model to simulate a reliable, scalable, manageable, and high-performance public key infrastructure. We build a model to simulate the NASA public key infrastructure by using SimProcess and MatLab Software. The simulation is from top level all the way down to the computation needed for encryption, decryption, digital signature, and secure web server. The application of secure web server could be utilized in wireless communications. The results of the simulation are analyzed and confirmed by using queueing theory.

  12. Measurement-Device-Independent Quantum Key Distribution over 200 km

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Lin; Yin, Hua-Lei; Chen, Si-Jing; Liu, Yang; Zhang, Wei-Jun; Jiang, Xiao; Zhang, Lu; Wang, Jian; You, Li-Xing; Guan, Jian-Yu; Yang, Dong-Xu; Wang, Zhen; Liang, Hao; Zhang, Zhen; Zhou, Nan; Ma, Xiongfeng; Chen, Teng-Yun; Zhang, Qiang; Pan, Jian-Wei

    2014-11-01

    Measurement-device-independent quantum key distribution (MDIQKD) protocol is immune to all attacks on detection and guarantees the information-theoretical security even with imperfect single-photon detectors. Recently, several proof-of-principle demonstrations of MDIQKD have been achieved. Those experiments, although novel, are implemented through limited distance with a key rate less than 0.1 bit /s . Here, by developing a 75 MHz clock rate fully automatic and highly stable system and superconducting nanowire single-photon detectors with detection efficiencies of more than 40%, we extend the secure transmission distance of MDIQKD to 200 km and achieve a secure key rate 3 orders of magnitude higher. These results pave the way towards a quantum network with measurement-device-independent security.

  13. Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue

    NASA Astrophysics Data System (ADS)

    Shukla, Chitra; Thapliyal, Kishore; Pathak, Anirban

    2017-12-01

    Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first-time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.

  14. The application of data encryption technology in computer network communication security

    NASA Astrophysics Data System (ADS)

    Gong, Lina; Zhang, Li; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2017-04-01

    With the rapid development of Intemet and the extensive application of computer technology, the security of information becomes more and more serious, and the information security technology with data encryption technology as the core has also been developed greatly. Data encryption technology not only can encrypt and decrypt data, but also can realize digital signature, authentication and authentication and other functions, thus ensuring the confidentiality, integrity and confirmation of data transmission over the network. In order to improve the security of data in network communication, in this paper, a hybrid encryption system is used to encrypt and decrypt the triple DES algorithm with high security, and the two keys are encrypted with RSA algorithm, thus ensuring the security of the triple DES key and solving the problem of key management; At the same time to realize digital signature using Java security software, to ensure data integrity and non-repudiation. Finally, the data encryption system is developed by Java language. The data encryption system is simple and effective, with good security and practicality.

  15. 33 CFR 165.767 - Security Zone; Manbirtee Key, Port of Manatee, Florida.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation Areas and Limited Access Areas Seventh Coast Guard District § 165.767 Security Zone; Manbirtee Key, Port of Manatee, Florida. (a) Regulated area. The following area...

  16. Long-distance entanglement-based quantum key distribution experiment using practical detectors.

    PubMed

    Takesue, Hiroki; Harada, Ken-Ichi; Tamaki, Kiyoshi; Fukuda, Hiroshi; Tsuchizawa, Tai; Watanabe, Toshifumi; Yamada, Koji; Itabashi, Sei-Ichi

    2010-08-02

    We report an entanglement-based quantum key distribution experiment that we performed over 100 km of optical fiber using a practical source and detectors. We used a silicon-based photon-pair source that generated high-purity time-bin entangled photons, and high-speed single photon detectors based on InGaAs/InP avalanche photodiodes with the sinusoidal gating technique. To calculate the secure key rate, we employed a security proof that validated the use of practical detectors. As a result, we confirmed the successful generation of sifted keys over 100 km of optical fiber with a key rate of 4.8 bit/s and an error rate of 9.1%, with which we can distill secure keys with a key rate of 0.15 bit/s.

  17. An automated device for appetitive conditioning in zebrafish (Danio rerio).

    PubMed

    Manabe, Kazuchika; Dooling, R J; Takaku, Shinichi

    2013-12-01

    An automated device and a procedure for the operant conditioning individual zebrafish were developed. The key feature of this procedure was the construction of a simple, inexpensive feeder that can deliver extremely small amounts of food, thus preventing rapid satiation. This allows the experimenter to run multiple trails in a single test session and multiple sessions in one day. In addition, small response keys made from acryl rods and fiber sensors were developed that were sufficiently sensitive to detect fish contact. To illustrate the efficiency and utility of the device for traditional learning paradigms, we trained zebrafish in a fixed ratio schedule where subjects were reinforced with food after 10 responses. Zebrafish reliably responded on the response key for sessions that lasted as long 80-reinforcements. They also showed the traditional "break and run" response pattern that has been found in many species. These results show that this system will be valuable for behavioral studies with zebrafish, especially for experiments that need many repeated trials using food reinforcer in a session. The present system can be used for sensory and learning investigations, as well applications in behavioral pharmacology, behavioral genetics, and toxicology where the zebrafish is becoming the vertebrate model of choice.

  18. On the security of compressed encryption with partial unitary sensing matrices embedding a secret keystream

    NASA Astrophysics Data System (ADS)

    Yu, Nam Yul

    2017-12-01

    The principle of compressed sensing (CS) can be applied in a cryptosystem by providing the notion of security. In this paper, we study the computational security of a CS-based cryptosystem that encrypts a plaintext with a partial unitary sensing matrix embedding a secret keystream. The keystream is obtained by a keystream generator of stream ciphers, where the initial seed becomes the secret key of the CS-based cryptosystem. For security analysis, the total variation distance, bounded by the relative entropy and the Hellinger distance, is examined as a security measure for the indistinguishability. By developing upper bounds on the distance measures, we show that the CS-based cryptosystem can be computationally secure in terms of the indistinguishability, as long as the keystream length for each encryption is sufficiently large with low compression and sparsity ratios. In addition, we consider a potential chosen plaintext attack (CPA) from an adversary, which attempts to recover the key of the CS-based cryptosystem. Associated with the key recovery attack, we show that the computational security of our CS-based cryptosystem is brought by the mathematical intractability of a constrained integer least-squares (ILS) problem. For a sub-optimal, but feasible key recovery attack, we consider a successive approximate maximum-likelihood detection (SAMD) and investigate the performance by developing an upper bound on the success probability. Through theoretical and numerical analyses, we demonstrate that our CS-based cryptosystem can be secure against the key recovery attack through the SAMD.

  19. Secure password-based authenticated key exchange for web services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Fang; Meder, Samuel; Chevassut, Olivier

    This paper discusses an implementation of an authenticated key-exchange method rendered on message primitives defined in the WS-Trust and WS-SecureConversation specifications. This IEEE-specified cryptographic method (AuthA) is proven-secure for password-based authentication and key exchange, while the WS-Trust and WS-Secure Conversation are emerging Web Services Security specifications that extend the WS-Security specification. A prototype of the presented protocol is integrated in the WSRF-compliant Globus Toolkit V4. Further hardening of the implementation is expected to result in a version that will be shipped with future Globus Toolkit releases. This could help to address the current unavailability of decent shared-secret-based authentication options inmore » the Web Services and Grid world. Future work will be to integrate One-Time-Password (OTP) features in the authentication protocol.« less

  20. Finite-key security analysis of quantum key distribution with imperfect light sources

    DOE PAGES

    Mizutani, Akihiro; Curty, Marcos; Lim, Charles Ci Wen; ...

    2015-09-09

    In recent years, the gap between theory and practice in quantum key distribution (QKD) has been significantly narrowed, particularly for QKD systems with arbitrarily flawed optical receivers. The status for QKD systems with imperfect light sources is however less satisfactory, in the sense that the resulting secure key rates are often overly dependent on the quality of state preparation. This is especially the case when the channel loss is high. Very recently, to overcome this limitation, Tamaki et al proposed a QKD protocol based on the so-called 'rejected data analysis', and showed that its security in the limit of infinitelymore » long keys is almost independent of any encoding flaw in the qubit space, being this protocol compatible with the decoy state method. Here, as a step towards practical QKD, we show that a similar conclusion is reached in the finite-key regime, even when the intensity of the light source is unstable. More concretely, we derive security bounds for a wide class of realistic light sources and show that the bounds are also efficient in the presence of high channel loss. Our results strongly suggest the feasibility of long distance provably secure communication with imperfect light sources.« less

  1. Practical challenges in quantum key distribution

    DOE PAGES

    Diamanti, Eleni; Lo, Hoi -Kwong; Qi, Bing; ...

    2016-11-08

    Here, quantum key distribution (QKD) promises unconditional security in data communication and is currently being deployed in commercial applications. Nonetheless, before QKD can be widely adopted, it faces a number of important challenges such as secret key rate, distance, size, cost and practical security. Here, we survey those key challenges and the approaches that are currently being taken to address them.

  2. Practical challenges in quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamanti, Eleni; Lo, Hoi -Kwong; Qi, Bing

    Here, quantum key distribution (QKD) promises unconditional security in data communication and is currently being deployed in commercial applications. Nonetheless, before QKD can be widely adopted, it faces a number of important challenges such as secret key rate, distance, size, cost and practical security. Here, we survey those key challenges and the approaches that are currently being taken to address them.

  3. 100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors

    NASA Astrophysics Data System (ADS)

    Diamanti, Eleni; Takesue, Hiroki; Langrock, Carsten; Fejer, M. M.; Yamamoto, Yoshihisa

    2006-12-01

    We present a quantum key distribution experiment in which keys that were secure against all individual eavesdropping attacks allowed by quantum mechanics were distributed over 100 km of optical fiber. We implemented the differential phase shift quantum key distribution protocol and used low timing jitter 1.55 µm single-photon detectors based on frequency up-conversion in periodically poled lithium niobate waveguides and silicon avalanche photodiodes. Based on the security analysis of the protocol against general individual attacks, we generated secure keys at a practical rate of 166 bit/s over 100 km of fiber. The use of the low jitter detectors also increased the sifted key generation rate to 2 Mbit/s over 10 km of fiber.

  4. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks.

    PubMed

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman

    2015-10-30

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

  5. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

    PubMed Central

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman

    2015-01-01

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein–Podolsky–Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components. PMID:26514280

  6. 75 FR 4047 - Materials Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... the Bureau of Industry and Security Management. 3. Industry Presentation on Composite Technology. 4. Report of Composite Working group and ECCN review subgroup. 5. New business. Closed Session 6. Discussion...

  7. On the security of Y-00 under fast correlation and other attacks on the key

    NASA Astrophysics Data System (ADS)

    Yuen, Horace P.; Nair, Ranjith

    2007-04-01

    The security of the Y-00 direct encryption protocol under correlation attack is addressed. A Y-00 configuration that is more secure than AES under known-plaintext attack is presented. It is shown that under any ciphertext-only attack, full information-theoretic security on the Y-00 seed key is obtained for any encryption box ENC with proper deliberate signal randomization.

  8. The Psychedelic Debriefing in Alcohol Dependence Treatment: Illustrating Key Change Phenomena through Qualitative Content Analysis of Clinical Sessions

    PubMed Central

    Nielson, Elizabeth M.; May, Darrick G.; Forcehimes, Alyssa A.; Bogenschutz, Michael P.

    2018-01-01

    Research on the clinical applications of psychedelic-assisted psychotherapy has demonstrated promising early results for treatment of alcohol dependence. Detailed description of the content and methods of psychedelic-assisted psychotherapy, as it is conducted in clinical settings, is scarce. Methods: An open-label pilot (proof-of-concept) study of psilocybin-assisted treatment of alcohol dependence (NCT01534494) was conducted to generate data for a phase 2 RCT (NCT02061293) of a similar treatment in a larger population. The present paper presents a qualitative content analysis of the 17 debriefing sessions conducted in the pilot study, which occurred the day after corresponding psilocybin medication sessions. Results: Participants articulated a series of key phenomena related to change in drinking outcomes and acute subjective effects of psilocybin. Discussion: The data illuminate change processes in patients' own words during clinical sessions, shedding light on potential therapeutic mechanisms of change and how participants express effects of psilocybin. This study is unique in analyzing actual clinical sessions, as opposed to interviews of patients conducted separately from treatment. PMID:29515449

  9. Quantum key distribution with hacking countermeasures and long term field trial.

    PubMed

    Dixon, A R; Dynes, J F; Lucamarini, M; Fröhlich, B; Sharpe, A W; Plews, A; Tam, W; Yuan, Z L; Tanizawa, Y; Sato, H; Kawamura, S; Fujiwara, M; Sasaki, M; Shields, A J

    2017-05-16

    Quantum key distribution's (QKD's) central and unique claim is information theoretic security. However there is an increasing understanding that the security of a QKD system relies not only on theoretical security proofs, but also on how closely the physical system matches the theoretical models and prevents attacks due to discrepancies. These side channel or hacking attacks exploit physical devices which do not necessarily behave precisely as the theory expects. As such there is a need for QKD systems to be demonstrated to provide security both in the theoretical and physical implementation. We report here a QKD system designed with this goal in mind, providing a more resilient target against possible hacking attacks including Trojan horse, detector blinding, phase randomisation and photon number splitting attacks. The QKD system was installed into a 45 km link of a metropolitan telecom network for a 2.5 month period, during which time the system operated continuously and distributed 1.33 Tbits of secure key data with a stable secure key rate over 200 kbit/s. In addition security is demonstrated against coherent attacks that are more general than the collective class of attacks usually considered.

  10. Three-pass protocol scheme for bitmap image security by using vernam cipher algorithm

    NASA Astrophysics Data System (ADS)

    Rachmawati, D.; Budiman, M. A.; Aulya, L.

    2018-02-01

    Confidentiality, integrity, and efficiency are the crucial aspects of data security. Among the other digital data, image data is too prone to abuse of operation like duplication, modification, etc. There are some data security techniques, one of them is cryptography. The security of Vernam Cipher cryptography algorithm is very dependent on the key exchange process. If the key is leaked, security of this algorithm will collapse. Therefore, a method that minimizes key leakage during the exchange of messages is required. The method which is used, is known as Three-Pass Protocol. This protocol enables message delivery process without the key exchange. Therefore, the sending messages process can reach the receiver safely without fear of key leakage. The system is built by using Java programming language. The materials which are used for system testing are image in size 200×200 pixel, 300×300 pixel, 500×500 pixel, 800×800 pixel and 1000×1000 pixel. The result of experiments showed that Vernam Cipher algorithm in Three-Pass Protocol scheme could restore the original image.

  11. Information Security Scheme Based on Computational Temporal Ghost Imaging.

    PubMed

    Jiang, Shan; Wang, Yurong; Long, Tao; Meng, Xiangfeng; Yang, Xiulun; Shu, Rong; Sun, Baoqing

    2017-08-09

    An information security scheme based on computational temporal ghost imaging is proposed. A sequence of independent 2D random binary patterns are used as encryption key to multiply with the 1D data stream. The cipher text is obtained by summing the weighted encryption key. The decryption process can be realized by correlation measurement between the encrypted information and the encryption key. Due to the instinct high-level randomness of the key, the security of this method is greatly guaranteed. The feasibility of this method and robustness against both occlusion and additional noise attacks are discussed with simulation, respectively.

  12. Wyoming Landscape Conservation Initiative Science Workshop Proceedings, May 15-17, 2007

    USGS Publications Warehouse

    D'Erchia, Frank

    2008-01-01

    The U.S. Geological Survey (USGS) hosted a Wyoming Landscape Conservation Initiative (WLCI) Science Workshop at the University of Wyoming on May 15, 16, and 17, 2007. The goal of the workshop was to gather information from stakeholders about research needs and existing data resources to help develop the USGS WLCI science plan. The workshop focused on six research and management needs identified by WLCI partners prior to the workshop: *evaluate the cumulative effects of development activities; *identify key drivers of change; *identify condition and distribution of key wildlife species, habitat, and species habitat requirements; *evaluate wildlife and livestock responses to development; *develop an integrated inventory and monitoring strategy; and *develop a data clearinghouse and an information-management framework. These topics correlated to six plenary panels and discussions and six breakout sessions. Several collective needs were identified: *create a long-term, accessible information database; *identify key habitats, indicator species; *collect and research missing critical baseline data; *begin on-the-ground projects as soon as possible; and *implement a monitoring program to assist with adaptive management techniques. Several concerns were expressed repeatedly: *secure adequate and long-term funding; *meeting the WLCI workload with agencies that are already understaffed; *assess cumulative effects as an analysis approach; *perform offsite mitigation in a way that is valuable and effective; *focus all research on providing practical applications; and *involve the public in WLCI proceedings.

  13. Securing electronic health records with novel mobile encryption schemes.

    PubMed

    Weerasinghe, Dasun; Elmufti, Kalid; Rajarajan, Muttukrishnan; Rakocevic, Veselin

    2007-01-01

    Mobile devices have penetrated the healthcare sector due to their increased functionality, low cost, high reliability and easy-to-use nature. However, in healthcare applications the privacy and security of the transmitted information must be preserved. Therefore applications require a concrete security framework based on long-term security keys, such as the security key that can be found in a mobile Subscriber Identity Module (SIM). The wireless nature of communication links in mobile networks presents a major challenge in this respect. This paper presents a novel protocol that will send the information securely while including the access privileges to the authorized recipient.

  14. Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks.

    PubMed

    Furrer, F; Franz, T; Berta, M; Leverrier, A; Scholz, V B; Tomamichel, M; Werner, R F

    2012-09-07

    We provide a security analysis for continuous variable quantum key distribution protocols based on the transmission of two-mode squeezed vacuum states measured via homodyne detection. We employ a version of the entropic uncertainty relation for smooth entropies to give a lower bound on the number of secret bits which can be extracted from a finite number of runs of the protocol. This bound is valid under general coherent attacks, and gives rise to keys which are composably secure. For comparison, we also give a lower bound valid under the assumption of collective attacks. For both scenarios, we find positive key rates using experimental parameters reachable today.

  15. Estimates of Tibial Shock Magnitude in Men and Women at the Start and End of a Military Drill Training Program.

    PubMed

    Rice, Hannah M; Saunders, Samantha C; McGuire, Stephen J; O'Leary, Thomas J; Izard, Rachel M

    2018-03-26

    Foot drill is a key component of military training and is characterized by frequent heel stamping, likely resulting in high tibial shock magnitudes. Higher tibial shock during running has previously been associated with risk of lower limb stress fractures, which are prevalent among military populations. Quantification of tibial shock during drill training is, therefore, warranted. This study aimed to provide estimates of tibial shock during military drill in British Army Basic training. The study also aimed to compare values between men and women, and to identify any differences between the first and final sessions of training. Tibial accelerometers were secured on the right medial, distal shank of 10 British Army recruits (n = 5 men; n = 5 women) throughout a scheduled drill training session in week 1 and week 12 of basic military training. Peak positive accelerations, the average magnitude above given thresholds, and the rate at which each threshold was exceeded were quantified. Mean (SD) peak positive acceleration was 20.8 (2.2) g across all sessions, which is considerably higher than values typically observed during high impact physical activity. Magnitudes of tibial shock were higher in men than women, and higher in week 12 compared with week 1 of training. This study provides the first estimates of tibial shock magnitude during military drill training in the field. The high values suggest that military drill is a demanding activity and this should be considered when developing and evaluating military training programs. Further exploration is required to understand the response of the lower limb to military drill training and the etiology of these responses in the development of lower limb stress fractures.

  16. Unified Compact ECC-AES Co-Processor with Group-Key Support for IoT Devices in Wireless Sensor Networks

    PubMed Central

    Castillo, Encarnación; López-Ramos, Juan A.; Morales, Diego P.

    2018-01-01

    Security is a critical challenge for the effective expansion of all new emerging applications in the Internet of Things paradigm. Therefore, it is necessary to define and implement different mechanisms for guaranteeing security and privacy of data interchanged within the multiple wireless sensor networks being part of the Internet of Things. However, in this context, low power and low area are required, limiting the resources available for security and thus hindering the implementation of adequate security protocols. Group keys can save resources and communications bandwidth, but should be combined with public key cryptography to be really secure. In this paper, a compact and unified co-processor for enabling Elliptic Curve Cryptography along to Advanced Encryption Standard with low area requirements and Group-Key support is presented. The designed co-processor allows securing wireless sensor networks with independence of the communications protocols used. With an area occupancy of only 2101 LUTs over Spartan 6 devices from Xilinx, it requires 15% less area while achieving near 490% better performance when compared to cryptoprocessors with similar features in the literature. PMID:29337921

  17. Unified Compact ECC-AES Co-Processor with Group-Key Support for IoT Devices in Wireless Sensor Networks.

    PubMed

    Parrilla, Luis; Castillo, Encarnación; López-Ramos, Juan A; Álvarez-Bermejo, José A; García, Antonio; Morales, Diego P

    2018-01-16

    Security is a critical challenge for the effective expansion of all new emerging applications in the Internet of Things paradigm. Therefore, it is necessary to define and implement different mechanisms for guaranteeing security and privacy of data interchanged within the multiple wireless sensor networks being part of the Internet of Things. However, in this context, low power and low area are required, limiting the resources available for security and thus hindering the implementation of adequate security protocols. Group keys can save resources and communications bandwidth, but should be combined with public key cryptography to be really secure. In this paper, a compact and unified co-processor for enabling Elliptic Curve Cryptography along to Advanced Encryption Standard with low area requirements and Group-Key support is presented. The designed co-processor allows securing wireless sensor networks with independence of the communications protocols used. With an area occupancy of only 2101 LUTs over Spartan 6 devices from Xilinx, it requires 15% less area while achieving near 490% better performance when compared to cryptoprocessors with similar features in the literature.

  18. Secure Cryptographic Key Management System (CKMS) Considerations for Smart Grid Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Sheldon, Frederick T; Aldridge, Hal

    2011-01-01

    In this paper, we examine some unique challenges associated with key management in the Smart Grid and concomitant research initiatives: 1) effectively model security requirements and their implementations, and 2) manage keys and key distribution for very large scale deployments such as Smart Meters over a long period of performance. This will set the stage to: 3) develop innovative, low cost methods to protect keying material, and 4) provide high assurance authentication services. We will present our perspective on key management and will discuss some key issues within the life cycle of a cryptographic key designed to achieve the following:more » 1) control systems designed, installed, operated, and maintained to survive an intentional cyber assault with no loss of critical function, and 2) widespread implementation of methods for secure communication between remote access devices and control centers that are scalable and cost-effective to deploy.« less

  19. Unconditional security of quantum key distribution over arbitrarily long distances

    PubMed

    Lo; Chau

    1999-03-26

    Quantum key distribution is widely thought to offer unconditional security in communication between two users. Unfortunately, a widely accepted proof of its security in the presence of source, device, and channel noises has been missing. This long-standing problem is solved here by showing that, given fault-tolerant quantum computers, quantum key distribution over an arbitrarily long distance of a realistic noisy channel can be made unconditionally secure. The proof is reduced from a noisy quantum scheme to a noiseless quantum scheme and then from a noiseless quantum scheme to a noiseless classical scheme, which can then be tackled by classical probability theory.

  20. Collective attacks and unconditional security in continuous variable quantum key distribution.

    PubMed

    Grosshans, Frédéric

    2005-01-21

    We present here an information theoretic study of Gaussian collective attacks on the continuous variable key distribution protocols based on Gaussian modulation of coherent states. These attacks, overlooked in previous security studies, give a finite advantage to the eavesdropper in the experimentally relevant lossy channel, but are not powerful enough to reduce the range of the reverse reconciliation protocols. Secret key rates are given for the ideal case where Bob performs optimal collective measurements, as well as for the realistic cases where he performs homodyne or heterodyne measurements. We also apply the generic security proof of Christiandl et al. to obtain unconditionally secure rates for these protocols.

  1. 78 FR 23969 - Ewan 1, INC. n/k/a AccessKey IP, Inc.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Ewan 1, INC. n/k/a AccessKey IP, Inc.; Order of Suspension of Trading April 19, 2013. It appears to the Securities and Exchange Commission that... AccessKey IP, Inc. (``AccessKey'') because it has not filed a periodic report since it filed its...

  2. Tomographic quantum cryptography: equivalence of quantum and classical key distillation.

    PubMed

    Bruss, Dagmar; Christandl, Matthias; Ekert, Artur; Englert, Berthold-Georg; Kaszlikowski, Dagomir; Macchiavello, Chiara

    2003-08-29

    The security of a cryptographic key that is generated by communication through a noisy quantum channel relies on the ability to distill a shorter secure key sequence from a longer insecure one. For an important class of protocols, which exploit tomographically complete measurements on entangled pairs of any dimension, we show that the noise threshold for classical advantage distillation is identical with the threshold for quantum entanglement distillation. As a consequence, the two distillation procedures are equivalent: neither offers a security advantage over the other.

  3. Road Map for National Security: Imperative for Change The Phase III Report of the U.S. Commission on National Security/21st Century

    DTIC Science & Technology

    2001-01-31

    before the nation, and to produce organizational competence capable of addressing those problems creatively. The key to our vision is the need for...influence and critical leadership role. We offer recommendations for organizational change in five key areas: ● ensuring the security of the American...homeland; ● recapitalizing America’s strengths in science and education; ● redesigning key institutions of the Executive Branch; ● overhauling the

  4. A Secure Authenticated Key Exchange Protocol for Credential Services

    NASA Astrophysics Data System (ADS)

    Shin, Seonghan; Kobara, Kazukuni; Imai, Hideki

    In this paper, we propose a leakage-resilient and proactive authenticated key exchange (called LRP-AKE) protocol for credential services which provides not only a higher level of security against leakage of stored secrets but also secrecy of private key with respect to the involving server. And we show that the LRP-AKE protocol is provably secure in the random oracle model with the reduction to the computational Difie-Hellman problem. In addition, we discuss about some possible applications of the LRP-AKE protocol.

  5. 76 FR 10004 - President's Export Council; Subcommittee on Export Administration; Notice of Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... Security. 2. Opening remarks by the Chairman. 3. Presentation of papers or comments by the public. 4. Export Control Reform Update. 5. Administrative issues. The open session will be accessible via...

  6. Improved One-Way Hash Chain and Revocation Polynomial-Based Self-Healing Group Key Distribution Schemes in Resource-Constrained Wireless Networks

    PubMed Central

    Chen, Huifang; Xie, Lei

    2014-01-01

    Self-healing group key distribution (SGKD) aims to deal with the key distribution problem over an unreliable wireless network. In this paper, we investigate the SGKD issue in resource-constrained wireless networks. We propose two improved SGKD schemes using the one-way hash chain (OHC) and the revocation polynomial (RP), the OHC&RP-SGKD schemes. In the proposed OHC&RP-SGKD schemes, by introducing the unique session identifier and binding the joining time with the capability of recovering previous session keys, the problem of the collusion attack between revoked users and new joined users in existing hash chain-based SGKD schemes is resolved. Moreover, novel methods for utilizing the one-way hash chain and constructing the personal secret, the revocation polynomial and the key updating broadcast packet are presented. Hence, the proposed OHC&RP-SGKD schemes eliminate the limitation of the maximum allowed number of revoked users on the maximum allowed number of sessions, increase the maximum allowed number of revoked/colluding users, and reduce the redundancy in the key updating broadcast packet. Performance analysis and simulation results show that the proposed OHC&RP-SGKD schemes are practical for resource-constrained wireless networks in bad environments, where a strong collusion attack resistance is required and many users could be revoked. PMID:25529204

  7. Security of counterfactual quantum cryptography

    NASA Astrophysics Data System (ADS)

    Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Han, Zheng-Fu; Guo, Guang-Can

    2010-10-01

    Recently, a “counterfactual” quantum-key-distribution scheme was proposed by T.-G. Noh [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.230501 103, 230501 (2009)]. In this scheme, two legitimate distant peers may share secret keys even when the information carriers are not traveled in the quantum channel. We find that this protocol is equivalent to an entanglement distillation protocol. According to this equivalence, a strict security proof and the asymptotic key bit rate are both obtained when a perfect single-photon source is applied and a Trojan horse attack can be detected. We also find that the security of this scheme is strongly related to not only the bit error rate but also the yields of photons. And our security proof may shed light on the security of other two-way protocols.

  8. Security of counterfactual quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin Zhenqiang; Li Hongwei; Chen Wei

    2010-10-15

    Recently, a 'counterfactual' quantum-key-distribution scheme was proposed by T.-G. Noh [Phys. Rev. Lett. 103, 230501 (2009)]. In this scheme, two legitimate distant peers may share secret keys even when the information carriers are not traveled in the quantum channel. We find that this protocol is equivalent to an entanglement distillation protocol. According to this equivalence, a strict security proof and the asymptotic key bit rate are both obtained when a perfect single-photon source is applied and a Trojan horse attack can be detected. We also find that the security of this scheme is strongly related to not only the bitmore » error rate but also the yields of photons. And our security proof may shed light on the security of other two-way protocols.« less

  9. Improving Access and Systems of Care for Evidence-Based Childhood Obesity Treatment: Conference Key Findings and Next Steps

    PubMed Central

    Wilfley, Denise E.; Staiano, Amanda E.; Altman, Myra; Lindros, Jeanne; Lima, Angela; Hassink, Sandra G.; Dietz, William H.; Cook, Stephen

    2017-01-01

    Objectives To improve systems of care to advance implementation of the U.S. Preventive Services Task Force recommendations for childhood obesity treatment (i.e. clinicians offer/refer children with obesity to intensive, multicomponent behavioral interventions of >25 hours over 6–12 months to improve weight status) and to expand payment for these services. Methods In July 2015, forty-three cross-sector stakeholders attended a conference supported by the Agency for Healthcare Research and Quality, American Academy of Pediatrics Institute for Healthy Childhood Weight, and The Obesity Society. Plenary sessions presenting scientific evidence and clinical and payment practices were interspersed with breakout sessions to identify consensus recommendations. Results Consensus recommendations for childhood obesity treatment included: family-based multicomponent behavioral therapy; integrated care model; and multi-disciplinary care team. The use of evidence-based protocols, a well-trained healthcare team, medical oversight, and treatment at or above the minimum dose (e.g. >25 hours) are critical components to ensure effective delivery of high-quality care and to achieve clinically meaningful weight loss. Approaches to secure reimbursement for evidence-based obesity treatment within payment models were recommended. Conclusion Continued cross-sector collaboration is crucial to ensure a unified approach to increase payment and access for childhood obesity treatment and to scale-up training to ensure quality of care. PMID:27925451

  10. Improving access and systems of care for evidence-based childhood obesity treatment: Conference key findings and next steps.

    PubMed

    Wilfley, Denise E; Staiano, Amanda E; Altman, Myra; Lindros, Jeanne; Lima, Angela; Hassink, Sandra G; Dietz, William H; Cook, Stephen

    2017-01-01

    To improve systems of care to advance implementation of the U.S. Preventive Services Task Force recommendations for childhood obesity treatment (i.e., clinicians offer/refer children with obesity to intensive, multicomponent behavioral interventions of >25 h over 6 to 12 months to improve weight status) and to expand payment for these services. In July 2015, 43 cross-sector stakeholders attended a conference supported by the Agency for Healthcare Research and Quality, American Academy of Pediatrics Institute for Healthy Childhood Weight, and The Obesity Society. Plenary sessions presenting scientific evidence and clinical and payment practices were interspersed with breakout sessions to identify consensus recommendations. Consensus recommendations for childhood obesity treatment included: family-based multicomponent behavioral therapy; integrated care model; and multidisciplinary care team. The use of evidence-based protocols, a well-trained healthcare team, medical oversight, and treatment at or above the minimum dose (e.g., >25 h) are critical components to ensure effective delivery of high-quality care and to achieve clinically meaningful weight loss. Approaches to secure reimbursement for evidence-based obesity treatment within payment models were recommended. Continued cross-sector collaboration is crucial to ensure a unified approach to increase payment and access for childhood obesity treatment and to scale up training to ensure quality of care. © 2016 The Obesity Society.

  11. Metronome improves compression and ventilation rates during CPR on a manikin in a randomized trial.

    PubMed

    Kern, Karl B; Stickney, Ronald E; Gallison, Leanne; Smith, Robert E

    2010-02-01

    We hypothesized that a unique tock and voice metronome could prevent both suboptimal chest compression rates and hyperventilation. A prospective, randomized, parallel design study involving 34 pairs of paid firefighter/emergency medical technicians (EMTs) performing two-rescuer CPR using a Laerdal SkillReporter Resusci Anne manikin with and without metronome guidance was performed. Each CPR session consisted of 2 min of 30:2 CPR with an unsecured airway, then 4 min of CPR with a secured airway (continuous compressions at 100 min(-1) with 8-10 ventilations/min), repeated after the rescuers switched roles. The metronome provided "tock" prompts for compressions, transition prompts between compressions and ventilations, and a spoken "ventilate" prompt. During CPR with a bag/valve/mask the target compression rate of 90-110 min(-1) was achieved in 5/34 CPR sessions (15%) for the control group and 34/34 sessions (100%) for the metronome group (p<0.001). An excessive ventilation rate was not observed in either the metronome or control group during CPR with a bag/valve/mask. During CPR with a bag/endotracheal tube, the target of both a compression rate of 90-110 min(-1) and a ventilation rate of 8-11 min(-1) was achieved in 3/34 CPR sessions (9%) for the control group and 33/34 sessions (97%) for the metronome group (p<0.001). Metronome use with the secured airway scenario significantly decreased the incidence of over-ventilation (11/34 EMT pairs vs. 0/34 EMT pairs; p<0.001). A unique combination tock and voice prompting metronome was effective at directing correct chest compression and ventilation rates both before and after intubation. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  12. Quantum cryptography for secure free-space communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.

    1999-03-01

    The secure distribution of the secret random bit sequences known as key material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is a new technique for secure key distribution with single-photon transmissions: Heisenberg`s uncertainty principle ensures that an adversary can neither successfully tap the key transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). The authors have developed experimental quantum cryptography systems based on the transmission of non-orthogonal photon polarization states to generate shared key material over line-of-sight optical links. Key material is built up usingmore » the transmission of a single-photon per bit of an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. The authors have developed and tested a free-space quantum key distribution (QKD) system over an outdoor optical path of {approximately}1 km at Los Alamos National Laboratory under nighttime conditions. Results show that free-space QKD can provide secure real-time key distribution between parties who have a need to communicate secretly. Finally, they examine the feasibility of surface to satellite QKD.« less

  13. Secure communications using quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.

    1997-08-01

    The secure distribution of the secret random bit sequences known as {open_quotes}key{close_quotes} material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is an emerging technology for secure key distribution with single-photon transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). We have developed experimental quantum cryptography systems based on the transmission of non-orthogonal single-photon states to generate shared key material over multi-kilometer optical fiber paths and over line-of-sight links. In both cases, key material is built up using the transmission of a single-photon per bit ofmore » an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. In our optical fiber experiment we have performed quantum key distribution over 24-km of underground optical fiber using single-photon interference states, demonstrating that secure, real-time key generation over {open_quotes}open{close_quotes} multi-km node-to-node optical fiber communications links is possible. We have also constructed a quantum key distribution system for free-space, line-of-sight transmission using single-photon polarization states, which is currently undergoing laboratory testing. 7 figs.« less

  14. Anxiety at the first radiotherapy session for non-metastatic breast cancer: key communication and communication-related predictors.

    PubMed

    Lewis, Florence; Merckaert, Isabelle; Liénard, Aurore; Libert, Yves; Etienne, Anne-Marie; Reynaert, Christine; Slachmuylder, Jean-Louis; Scalliet, Pierre; Van Houtte, Paul; Coucke, Philippe; Salamon, Emile; Razavi, Darius

    2015-01-01

    Patients may experience clinically relevant anxiety at their first radiotherapy (RT) sessions. To date, studies have not investigated during/around the RT simulation the key communication and communication-related predictors of this clinically relevant anxiety. Breast cancer patients (n=227) completed visual analog scale (VAS) assessments of anxiety before and after their first RT sessions. Clinically relevant anxiety was defined as having pre- and post-first RT session VAS scores ⩾4 cm. Communication during RT simulation was assessed with content analysis software (LaComm), and communication-related variables around the RT simulation were assessed with questionnaires. Clinically relevant anxiety at the first RT session was predicted by lower self-efficacy to communicate with the RT team (OR=0.65; p=0.020), the perception of lower support received from the RT team (OR=0.70; p=0.020), lower knowledge of RT-associated side effects (OR=0.95; p=0.057), and higher use of emotion-focused coping (OR=1.09; p=0.013). This study provides RT team members with information about potential communication strategies, which may be used to reduce patient anxiety at the first RT session. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Provably secure and high-rate quantum key distribution with time-bin qudits

    DOE PAGES

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; ...

    2017-11-24

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. Wemore » use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. In conclusion, the security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.« less

  16. Provably secure and high-rate quantum key distribution with time-bin qudits

    PubMed Central

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J.

    2017-01-01

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. We use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. The security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system. PMID:29202028

  17. Provably secure and high-rate quantum key distribution with time-bin qudits.

    PubMed

    Islam, Nurul T; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J

    2017-11-01

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. We use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. The security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.

  18. Provably secure and high-rate quantum key distribution with time-bin qudits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. Wemore » use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. In conclusion, the security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.« less

  19. Results from the 2010 INMM International Containment and Surveillance Workshop focused on Concepts for the 21st Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, Chris A; Tolk, Keith M; Keel, Frances M

    2010-01-01

    The Institute of Nuclear Materials Management (INMM) held an International Workshop, 'Containment & Surveillance (C/S): Concepts for the 21st Century,' June 6-11, 2010, at the Oak National Laboratory, in Oak Ridge, Tennessee. The National Nuclear Security Administration (NNSA) Office of Nonproliferation Research and Development and Office of Nonproliferation and International Security sponsored the event. The workshop focused on determining concepts and needs for 21st century containment and surveillance (C/S) systems that support International Atomic Energy Agency (IAEA) safeguards and future arms control agreements. Panel discussions by subject matter experts and international practitioners addressed daily topical themes encompassing the following areasmore » of C/S: authentication; tagging, sealing, and containment verification; and surveillance systems. Each panel discussion was followed by a question-and-answer session with the audience and an afternoon breakout session. The facilitated breakout sessions were used to compile information and determine future needs. Individuals attending the workshop included C/S experts and practitioners; IAEA and arms control inspectors; technology providers; vendors; students; and individuals with an interest in, or desire to learn about, future C/S system needs. The primary goal of the workshop was to produce a document that details the future research and development needs for C/S systems that support nuclear safeguards and arms control missions. This talk will present a compilation of the information obtained from breakout sessions at the workshop.« less

  20. Counterfactual attack on counterfactual quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Wnang, Jian; Tang, Chao Jing

    2012-05-01

    It is interesting that counterfactual quantum cryptography protocols allow two remotely separated parties to share a secret key without transmitting any signal particles. Generally, these protocols, expected to provide security advantages, base their security on a translated no-cloning theorem. Therefore, they potentially exhibit unconditional security in theory. In this letter, we propose a new Trojan horse attack, by which an eavesdropper Eve can gain full information about the key without being noticed, to real implementations of a counterfactual quantum cryptography system. Most importantly, the presented attack is available even if the system has negligible imperfections. Therefore, it shows that the present realization of counterfactual quantum key distribution is vulnerable.

  1. [Principles and methodology for ecological rehabilitation and security pattern design in key project construction].

    PubMed

    Chen, Li-Ding; Lu, Yi-He; Tian, Hui-Ying; Shi, Qian

    2007-03-01

    Global ecological security becomes increasingly important with the intensive human activities. The function of ecological security is influenced by human activities, and in return, the efficiency of human activities will also be affected by the patterns of regional ecological security. Since the 1990s, China has initiated the construction of key projects "Yangtze Three Gorges Dam", "Qinghai-Tibet Railway", "West-to-East Gas Pipeline", "West-to-East Electricity Transmission" and "South-to-North Water Transfer" , etc. The interaction between these projects and regional ecological security has particularly attracted the attention of Chinese government. It is not only important for the regional environmental protection, but also of significance for the smoothly implementation of various projects aimed to develop an ecological rehabilitation system and to design a regional ecological security pattern. This paper made a systematic analysis on the types and characteristics of key project construction and their effects on the environment, and on the basis of this, brought forward the basic principles and methodology for ecological rehabilitation and security pattern design in this construction. It was considered that the following issues should be addressed in the implementation of a key project: 1) analysis and evaluation of current regional ecological environment, 2) evaluation of anthropogenic disturbances and their ecological risk, 3) regional ecological rehabilitation and security pattern design, 4) scenario analysis of environmental benefits of regional ecological security pattern, 5) re-optimization of regional ecological system framework, and 6) establishment of regional ecosystem management plan.

  2. Multivariate Cryptography Based on Clipped Hopfield Neural Network.

    PubMed

    Wang, Jia; Cheng, Lee-Ming; Su, Tong

    2018-02-01

    Designing secure and efficient multivariate public key cryptosystems [multivariate cryptography (MVC)] to strengthen the security of RSA and ECC in conventional and quantum computational environment continues to be a challenging research in recent years. In this paper, we will describe multivariate public key cryptosystems based on extended Clipped Hopfield Neural Network (CHNN) and implement it using the MVC (CHNN-MVC) framework operated in space. The Diffie-Hellman key exchange algorithm is extended into the matrix field, which illustrates the feasibility of its new applications in both classic and postquantum cryptography. The efficiency and security of our proposed new public key cryptosystem CHNN-MVC are simulated and found to be NP-hard. The proposed algorithm will strengthen multivariate public key cryptosystems and allows hardware realization practicality.

  3. The Power of Proofs-of-Possession: Securing Multiparty Signatures against Rogue-Key Attacks

    NASA Astrophysics Data System (ADS)

    Ristenpart, Thomas; Yilek, Scott

    Multiparty signature protocols need protection against rogue-key attacks, made possible whenever an adversary can choose its public key(s) arbitrarily. For many schemes, provable security has only been established under the knowledge of secret key (KOSK) assumption where the adversary is required to reveal the secret keys it utilizes. In practice, certifying authorities rarely require the strong proofs of knowledge of secret keys required to substantiate the KOSK assumption. Instead, proofs of possession (POPs) are required and can be as simple as just a signature over the certificate request message. We propose a general registered key model, within which we can model both the KOSK assumption and in-use POP protocols. We show that simple POP protocols yield provable security of Boldyreva's multisignature scheme [11], the LOSSW multisignature scheme [28], and a 2-user ring signature scheme due to Bender, Katz, and Morselli [10]. Our results are the first to provide formal evidence that POPs can stop rogue-key attacks.

  4. Optimized decoy state QKD for underwater free space communication

    NASA Astrophysics Data System (ADS)

    Lopes, Minal; Sarwade, Nisha

    Quantum cryptography (QC) is envisioned as a solution for global key distribution through fiber optic, free space and underwater optical communication due to its unconditional security. In view of this, this paper investigates underwater free space quantum key distribution (QKD) model for enhanced transmission distance, secret key rates and security. It is reported that secure underwater free space QKD is feasible in the clearest ocean water with the sifted key rates up to 207kbps. This paper extends this work by testing performance of optimized decoy state QKD protocol with underwater free space communication model. The attenuation of photons, quantum bit error rate and the sifted key generation rate of underwater quantum communication is obtained with vector radiative transfer theory and Monte Carlo method. It is observed from the simulations that optimized decoy state QKD evidently enhances the underwater secret key transmission distance as well as secret key rates.

  5. Efficient biometric authenticated key agreements based on extended chaotic maps for telecare medicine information systems.

    PubMed

    Lou, Der-Chyuan; Lee, Tian-Fu; Lin, Tsung-Hung

    2015-05-01

    Authenticated key agreements for telecare medicine information systems provide patients, doctors, nurses and health visitors with accessing medical information systems and getting remote services efficiently and conveniently through an open network. In order to have higher security, many authenticated key agreement schemes appended biometric keys to realize identification except for using passwords and smartcards. Due to too many transmissions and computational costs, these authenticated key agreement schemes are inefficient in communication and computation. This investigation develops two secure and efficient authenticated key agreement schemes for telecare medicine information systems by using biometric key and extended chaotic maps. One scheme is synchronization-based, while the other nonce-based. Compared to related approaches, the proposed schemes not only retain the same security properties with previous schemes, but also provide users with privacy protection and have fewer transmissions and lower computational cost.

  6. Monitoring of Student Right To Know and Campus Security Act of 1990. Report To Accompany H. Res. 470. House of Representatives, 104th Congress, 2d Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Economic and Educational Opportunities.

    This report to accompany House Resolution 470 expresses the sense of Congress that the Department of Education should play a more active role in the monitoring of and enforcing compliance with the Higher Education Act of 1965 related to campus crime. The report makes reference to the Campus Crime and Security Awareness Act, enacted as part of the…

  7. Welfare: Reform or Replacement? (Child Support Enforcement---II). Hearing before the Subcommittee on Social Security and Family Policy of the Committee on Finance. United States Senate, One Hundredth Congress, First Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Finance.

    This transcript is from the third in a series of hearings before the Senate Subcommittee on Social Security and Family Policy focusing on whether the present welfare system should be reformed or replaced. A series of public officials, child and family advocates, and other interested parties testified on the issue of enforcement of child support…

  8. 78 FR 70916 - Regulations and Procedures Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... Session 1. Opening remarks by the Chairman. 2. Opening remarks by Bureau of Industry and Security. 3. Export Enforcement update. 4. Regulations update. 5. Update on Export Control Reform Training for Customs...

  9. 76 FR 38740 - Tenth Meeting: RTCA Special Committee 223: Airport Surface Wireless Communications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Chapters 5,6,8--EUROCAE Chap 5--Service Specific CS Draft Chap 8--Physical Layer Discussion of Security Sub-layer--Honeywell MOPS Outline Wednesday, August 10, 2011 Wednesday Morning--MOPS WG Breakout Session...

  10. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation.

    PubMed

    Leverrier, Anthony; Grangier, Philippe

    2009-05-08

    We present a continuous-variable quantum key distribution protocol combining a discrete modulation and reverse reconciliation. This protocol is proven unconditionally secure and allows the distribution of secret keys over long distances, thanks to a reverse reconciliation scheme efficient at very low signal-to-noise ratio.

  11. Logistic Map for Cancellable Biometrics

    NASA Astrophysics Data System (ADS)

    Supriya, V. G., Dr; Manjunatha, Ramachandra, Dr

    2017-08-01

    This paper presents design and implementation of secured biometric template protection system by transforming the biometric template using binary chaotic signals and 3 different key streams to obtain another form of template and demonstrating its efficiency by the results and investigating on its security through analysis including, key space analysis, information entropy and key sensitivity analysis.

  12. Extending key sharing: how to generate a key tightly coupled to a network security policy

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Matheos

    2006-04-01

    Current state of the art security policy technologies, besides the small scale limitation and largely manual nature of accompanied management methods, are lacking a) in real-timeliness of policy implementation and b) vulnerabilities and inflexibility stemming from the centralized policy decision making; even if, for example, a policy description or access control database is distributed, the actual decision is often a centralized action and forms a system single point of failure. In this paper we are presenting a new fundamental concept that allows implement a security policy by a systematic and efficient key distribution procedure. Specifically, we extend the polynomial Shamir key splitting. According to this, a global key is split into n parts, any k of which can re-construct the original key. In this paper we present a method that instead of having "any k parts" be able to re-construct the original key, the latter can only be reconstructed if keys are combined as any access control policy describes. This leads into an easily deployable key generation procedure that results a single key per entity that "knows" its role in the specific access control policy from which it was derived. The system is considered efficient as it may be used to avoid expensive PKI operations or pairwise key distributions as well as provides superior security due to its distributed nature, the fact that the key is tightly coupled to the policy, and that policy change may be implemented easier and faster.

  13. Continuous-variable quantum authentication of physical unclonable keys: Security against an emulation attack

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, Georgios M.

    2018-01-01

    We consider a recently proposed entity authentication protocol in which a physical unclonable key is interrogated by random coherent states of light, and the quadratures of the scattered light are analyzed by means of a coarse-grained homodyne detection. We derive a sufficient condition for the protocol to be secure against an emulation attack in which an adversary knows the challenge-response properties of the key and moreover, he can access the challenges during the verification. The security analysis relies on Holevo's bound and Fano's inequality, and suggests that the protocol is secure against the emulation attack for a broad range of physical parameters that are within reach of today's technology.

  14. Security of a semi-quantum protocol where reflections contribute to the secret key

    NASA Astrophysics Data System (ADS)

    Krawec, Walter O.

    2016-05-01

    In this paper, we provide a proof of unconditional security for a semi-quantum key distribution protocol introduced in a previous work. This particular protocol demonstrated the possibility of using X basis states to contribute to the raw key of the two users (as opposed to using only direct measurement results) even though a semi-quantum participant cannot directly manipulate such states. In this work, we provide a complete proof of security by deriving a lower bound of the protocol's key rate in the asymptotic scenario. Using this bound, we are able to find an error threshold value such that for all error rates less than this threshold, it is guaranteed that A and B may distill a secure secret key; for error rates larger than this threshold, A and B should abort. We demonstrate that this error threshold compares favorably to several fully quantum protocols. We also comment on some interesting observations about the behavior of this protocol under certain noise scenarios.

  15. Aviation security : TSA has completed key activities associated with implementing secure flight, but additional actions are needed to mitigate risks.

    DOT National Transportation Integrated Search

    2009-05-01

    To enhance aviation security, the Department of Homeland Securitys (DHS) Transportation Security Administration (TSA) developed a programknown as Secure Flightto assume from air carriers the function of matching passenger information against...

  16. The growth and evolution of cardiovascular magnetic resonance: a 20-year history of the Society for Cardiovascular Magnetic Resonance (SCMR) annual scientific sessions.

    PubMed

    Lee, Daniel C; Markl, Michael; Dall'Armellina, Erica; Han, Yuchi; Kozerke, Sebastian; Kuehne, Titus; Nielles-Vallespin, Sonia; Messroghli, Daniel; Patel, Amit; Schaeffter, Tobias; Simonetti, Orlando; Valente, Anne Marie; Weinsaft, Jonathan W; Wright, Graham; Zimmerman, Stefan; Schulz-Menger, Jeanette

    2018-01-31

    The purpose of this work is to summarize cardiovascular magnetic resonance (CMR) research trends and highlights presented at the annual Society for Cardiovascular Magnetic Resonance (SCMR) scientific sessions over the past 20 years. Scientific programs from all SCMR Annual Scientific Sessions from 1998 to 2017 were obtained. SCMR Headquarters also provided data for the number and the country of origin of attendees and the number of accepted abstracts according to type. Data analysis included text analysis (key word extraction) and visualization by 'word clouds' representing the most frequently used words in session titles for 5-year intervals. In addition, session titles were sorted into 17 major subject categories to further evaluate research and clinical CMR trends over time. Analysis of SCMR annual scientific sessions locations, attendance, and number of accepted abstracts demonstrated substantial growth of CMR research and clinical applications. As an international field of study, significant growth of CMR was documented by a strong increase in SCMR scientific session attendance (> 500%, 270 to 1406 from 1998 to 2017, number of accepted abstracts (> 700%, 98 to 701 from 1998 to 2018) and number of international participants (42-415% increase for participants from Asia, Central and South America, Middle East and Africa in 2004-2017). 'Word clouds' based evaluation of research trends illustrated a shift from early focus on 'MRI technique feasibility' to new established techniques (e.g. late gadolinium enhancement) and their clinical applications and translation (key words 'patient', 'disease') and more recently novel techniques and quantitative CMR imaging (key words 'mapping', 'T1', 'flow', 'function'). Nearly every topic category demonstrated an increase in the number of sessions over the 20-year period with 'Clinical Practice' leading all categories. Our analysis identified three growth areas 'Congenital', 'Clinical Practice', and 'Structure/function/flow'. The analysis of the SCMR historical archives demonstrates a healthy and internationally active field of study which continues to undergo substantial growth and expansion into new and emerging CMR topics and clinical application areas.

  17. Secure information transmission in filter bank multi-carrier spread spectrum systems

    DOE PAGES

    Majid, Arslan; Moradi, Hussein; Farhang-Boroujeny, Behrouz

    2015-12-17

    This report discusses the issue of secure information transmission for a spread-spectrum system, which in our case is Filter-Bank Multi-Carrier spread spectrum (FB-MC SS). We develop a novel method for generating a secret key to augment the security of the spread spectrum system. The proposed key generation takes advantage of the channel reciprocity exhibited between two communicating parties.We validate the key generation aspect of our system by using real-world measurements. It is found that our augmentation of strongest path cancellation (SPC) is shown to be highly effective in our measurement scenarios where the adversary’s key would otherwise be significantly correlatedmore » with the legitimate nodes. Our approach in using the proposed key generation method as a part of FB-MC SS allows for it to be fault tolerant and it is not necessarily limited to FB-MC SS or spread-spectrum system in general. However, the advantage that our approach has in the domain of spread-spectrum security is that it significantly decorrelates the adversary’s key from the authentic parties. This aspect is crucial because if the adversary’s key is similar to the legitamate parties, then the adversary obtains a sizable advantage due to the fault tolerance nature of the developed spread spectrum key.« less

  18. Secure information transmission in filter bank multi-carrier spread spectrum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majid, Arslan; Moradi, Hussein; Farhang-Boroujeny, Behrouz

    This report discusses the issue of secure information transmission for a spread-spectrum system, which in our case is Filter-Bank Multi-Carrier spread spectrum (FB-MC SS). We develop a novel method for generating a secret key to augment the security of the spread spectrum system. The proposed key generation takes advantage of the channel reciprocity exhibited between two communicating parties.We validate the key generation aspect of our system by using real-world measurements. It is found that our augmentation of strongest path cancellation (SPC) is shown to be highly effective in our measurement scenarios where the adversary’s key would otherwise be significantly correlatedmore » with the legitimate nodes. Our approach in using the proposed key generation method as a part of FB-MC SS allows for it to be fault tolerant and it is not necessarily limited to FB-MC SS or spread-spectrum system in general. However, the advantage that our approach has in the domain of spread-spectrum security is that it significantly decorrelates the adversary’s key from the authentic parties. This aspect is crucial because if the adversary’s key is similar to the legitamate parties, then the adversary obtains a sizable advantage due to the fault tolerance nature of the developed spread spectrum key.« less

  19. An eCK-Secure Authenticated Key Exchange Protocol without Random Oracles

    NASA Astrophysics Data System (ADS)

    Moriyama, Daisuke; Okamoto, Tatsuaki

    This paper presents a (PKI-based) two-pass authenticated key exchange (AKE) protocol that is secure in the extended Canetti-Krawczyk (eCK) security model. The security of the proposed protocol is proven without random oracles (under three assumptions), and relies on no implementation techniques such as a trick by LaMacchia, Lauter and Mityagin (so-called the NAXOS trick). Since an AKE protocol that is eCK-secure under a NAXOS-like implementation trick will be no more eCK-secure if some realistic information leakage occurs through side-channel attacks, it has been an important open problem how to realize an eCK-secure AKE protocol without using the NAXOS tricks (and without random oracles).

  20. Does Exposure Imitate Art: Exposure Science for 21st Century Toxicity Testing

    EPA Science Inventory

    This Issues Session will continue the dialog begun at the highly successful 2008 NRC session in which the Annual Meeting participants were provided an overview of the three National Academy reports addressing key issues impacting the Society and the profession of toxicology. Thes...

  1. Key paediatric messages from Amsterdam

    PubMed Central

    Barben, Jürg; Bohlin, Kajsa; Everard, Mark L.; Hall, Graham; Pijnenburg, Mariëlle; Priftis, Kostas N.; Rusconi, Franca; Midulla, Fabio

    2016-01-01

    The Paediatric Assembly of the European Respiratory Society (ERS) maintained its high profile at the 2015 ERS International Congress in Amsterdam. There were symposia on preschool wheeze, respiratory sounds and cystic fibrosis; an educational skills workshop on paediatric respiratory resuscitation; a hot topic session on risk factors and early origins of respiratory diseases; a meet the expert session on paediatric lung function test reference values; and the annual paediatric grand round. In this report the Chairs of the Paediatric Assembly's Groups highlight the key messages from the abstracts presented at the Congress. PMID:27730186

  2. The Department of Defense Statement on the Defense Energy Technology Program by Ruth M. Davis Deputy Under Secretary of Defense for Research and Advanced Technology before the Research and Development subcommittee of the Committee on Armed Services of the United States House of Representatives 96th Congress, First Session,

    DTIC Science & Technology

    1979-04-05

    political, economic , or military pressure - pressure applied by those who either have the ability to contro directly or can indirectly influence the flow...collective national security. The political and economic risks of foreign oil supply interruptions are very serious and very real to our national security...security. We must find energy alternatives - alternatives that are domestically controllable, technically feasible, and economically , environmentally, and

  3. Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; Marangon, Davide G.; Canale, Matteo; Savorgnan, Ilaria; Bacco, Davide; Barbieri, Mauro; Calimani, Simon; Barbieri, Cesare; Laurenti, Nicola; Villoresi, Paolo

    2015-04-01

    The unconditional security in the creation of cryptographic keys obtained by quantum key distribution (QKD) protocols will induce a quantum leap in free-space communication privacy in the same way that we are beginning to realize secure optical fiber connections. However, free-space channels, in particular those with long links and the presence of atmospheric turbulence, are affected by losses, fluctuating transmissivity, and background light that impair the conditions for secure QKD. Here we introduce a method to contrast the atmospheric turbulence in QKD experiments. Our adaptive real time selection (ARTS) technique at the receiver is based on the selection of the intervals with higher channel transmissivity. We demonstrate, using data from the Canary Island 143-km free-space link, that conditions with unacceptable average quantum bit error rate which would prevent the generation of a secure key can be used once parsed according to the instantaneous scintillation using the ARTS technique.

  4. Quantum key distribution with an unknown and untrusted source

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Qi, Bing; Lo, Hoi-Kwong

    2008-05-01

    The security of a standard bidirectional “plug-and-play” quantum key distribution (QKD) system has been an open question for a long time. This is mainly because its source is equivalently controlled by an eavesdropper, which means the source is unknown and untrusted. Qualitative discussion on this subject has been made previously. In this paper, we solve this question directly by presenting the quantitative security analysis on a general class of QKD protocols whose sources are unknown and untrusted. The securities of standard Bennett-Brassard 1984 protocol, weak+vacuum decoy state protocol, and one-decoy state protocol, with unknown and untrusted sources are rigorously proved. We derive rigorous lower bounds to the secure key generation rates of the above three protocols. Our numerical simulation results show that QKD with an untrusted source gives a key generation rate that is close to that with a trusted source.

  5. 77 FR 50463 - President's Export Council Subcommittee on Export Administration; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... security and foreign policy reasons. Agenda Open Session 1. Opening remarks by the Chairman and Vice Chairman. 2. Export Control Reform Update. 3. Presentation of Papers or Comments by the Public. 4. Working...

  6. Technology and Ethics.

    ERIC Educational Resources Information Center

    Brown, Joan Marie

    1997-01-01

    Describes four open-ended activities for students in grades 4-12 designed to encourage thought, discussion, and decision making in classes dealing with issues in ethics and technology. Provides teacher directions, describes activities, and outlines debriefing sessions for lessons in copyright infringement, network security, artificial…

  7. One-time pad, complexity of verification of keys, and practical security of quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N., E-mail: sergei.molotkov@gmail.com

    2016-11-15

    A direct relation between the complexity of the complete verification of keys, which is one of the main criteria of security in classical systems, and a trace distance used in quantum cryptography is demonstrated. Bounds for the minimum and maximum numbers of verification steps required to determine the actual key are obtained.

  8. A monitoring/auditing mechanism for SSL/TLS secured service sessions in Health Care Applications.

    PubMed

    Kavadias, C D; Koutsopoulos, K A; Vlachos, M P; Bourka, A; Kollias, V; Stassinopoulos, G

    2003-01-01

    This paper analyzes the SSL/TLS procedures and defines the functionality of a monitoring/auditing entity running in parallel with the protocol, which is decoding, checking the certificate and permitting session establishment based on the decoded certificate information, the network addresses of the endpoints and a predefined access list. Finally, this paper discusses how such a facility can be used for detection impersonation attempts in Health Care applications and provides case studies to show the effectiveness and applicability of the proposed method.

  9. Secure remote synchronization and secure key distribution in electro-optic networks revealed by symmetries

    NASA Astrophysics Data System (ADS)

    Xu, Mingfeng; Pan, Wei; Zhang, Liyue

    2018-07-01

    Despite the intuition that synchronization of different nodes in coupled oscillator networks results from information exchange between them, it has recently been shown that remote nodes could be partially synchronous even when they are separated by intermediately unsynchronized nodes. Here based on electro-optic system, we report on a more stronger form of such synchronization pattern that is termed as secure remote synchronization, in which two remotely separated nodes could have identically synchronized dynamical behaviors while the rest of the network are both statistically and information-theoretically incoherent relative to the two synchronized nodes. The generalized form of mirror symmetry in the network structure is identified to be a key mechanism allowing for secure remote synchronization. Moreover, this synchronization mode is robust against a wild range of system parameters and noise perturbing the intermediary dynamics. The lack of information about the synchronized dynamics in the rest of the network suggests that our results could potentially lead to network-based solutions for secure key distribution and secure communication.

  10. United Nations Operations: Who Should be in Charge?

    DTIC Science & Technology

    1994-04-01

    interpretation would also appear to resolve Kelsen’s dilemma (see KELSEN , supra note 35, at 935) with respect to the Korean conflict. Kelsen argues the Security...and Scheffer, supra note 35, at 131. 45. See D. J. HARRIS, CASES AND MATERIAL ON INTERNATIONAL LAW 681 (4th ed. 1991); KELSEN , supra note 35, at 756...167 (July 20). 58. KELSEN , supra note 35, at 768. 59. SEYERSTED, supra note 46, at 156. 60. In opening the Security Council session of 31 December 1992

  11. Review of Social Security Student Benefit Program. Hearing before the Subcommittee on Oversight of the Committee on Ways and Means, House of Representatives, 96th Congress, 1st Session. February 8, 1979. Series 96-3.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Ways and Means.

    Proceedings are presented of hearings before the Subcommittee on Oversight of the Committee on Ways and Means in the House of Representatives. The purpose of the hearings was to review the Social Security student benefit program to determine whether the program is still necessary. Testimony was received from the General Accounting Office, which…

  12. The Children's Development Commission Act--H.R. 3637. Field Hearing before the Subcommittee on Capital Markets, Securities and Government Sponsored Enterprises of the Committee on Banking and Financial Services. U.S. House of Representatives, One Hundred Fifth Congress, Second Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Banking and Financial Services.

    This document presents testimony from the June 1998 hearing on the Children's Development Act (H.R. 3637) held before the Subcommittee on Capital Markets, Securities and Government Sponsored Enterprises. H.R. 3637 encourages the lending of resources to child care facilities by allowing a bank or lender access to a federal reinsurance program that…

  13. Design of the subject of quality engineering and security of the product of the degree in engineering in industrial design and development of product based in the methodology of the case

    NASA Astrophysics Data System (ADS)

    González, M. R.; Lambán, M. P.

    2012-04-01

    This paper presents the result of designing the subject Quality Engineering and Security of the Product, belonging to the Degree of Engineering in Industrial Design and Product Development, on the basis of the case methodology. Practical sessions of this subject are organized using the whole documents of the Quality System Management of the virtual company BeaLuc S.A.

  14. Protocol Standards and Implementation within the Digital Engineering Laboratory Computer Network (DELNET) Using the Universal Network Interface Device (UNID). Part 1.

    DTIC Science & Technology

    1983-12-01

    Initializes the data tables shared by both the Local and Netowrk Operating Systems. 3. Invint: Written in Assembly Language. Initializes the Input/Output...connection with an appropriate type and grade of transport service and appropriate security authentication (Ref 6:38). Data Transfer within a session...V.; Kent, S. Security in oihr Level Protocolst Anorgaches. Alternatives and Recommendations, Draft Report ICST/HLNP-81-19, Wash ingt on,,D.C.: Dept

  15. Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution.

    PubMed

    Li, Jian; Yang, Yu-Guang; Chen, Xiu-Bo; Zhou, Yi-Hua; Shi, Wei-Min

    2016-08-19

    A novel quantum private database query protocol is proposed, based on passive round-robin differential phase-shift quantum key distribution. Compared with previous quantum private database query protocols, the present protocol has the following unique merits: (i) the user Alice can obtain one and only one key bit so that both the efficiency and security of the present protocol can be ensured, and (ii) it does not require to change the length difference of the two arms in a Mach-Zehnder interferometer and just chooses two pulses passively to interfere with so that it is much simpler and more practical. The present protocol is also proved to be secure in terms of the user security and database security.

  16. Tight finite-key analysis for quantum cryptography

    PubMed Central

    Tomamichel, Marco; Lim, Charles Ci Wen; Gisin, Nicolas; Renner, Renato

    2012-01-01

    Despite enormous theoretical and experimental progress in quantum cryptography, the security of most current implementations of quantum key distribution is still not rigorously established. One significant problem is that the security of the final key strongly depends on the number, M, of signals exchanged between the legitimate parties. Yet, existing security proofs are often only valid asymptotically, for unrealistically large values of M. Another challenge is that most security proofs are very sensitive to small differences between the physical devices used by the protocol and the theoretical model used to describe them. Here we show that these gaps between theory and experiment can be simultaneously overcome by using a recently developed proof technique based on the uncertainty relation for smooth entropies. PMID:22252558

  17. Tight finite-key analysis for quantum cryptography.

    PubMed

    Tomamichel, Marco; Lim, Charles Ci Wen; Gisin, Nicolas; Renner, Renato

    2012-01-17

    Despite enormous theoretical and experimental progress in quantum cryptography, the security of most current implementations of quantum key distribution is still not rigorously established. One significant problem is that the security of the final key strongly depends on the number, M, of signals exchanged between the legitimate parties. Yet, existing security proofs are often only valid asymptotically, for unrealistically large values of M. Another challenge is that most security proofs are very sensitive to small differences between the physical devices used by the protocol and the theoretical model used to describe them. Here we show that these gaps between theory and experiment can be simultaneously overcome by using a recently developed proof technique based on the uncertainty relation for smooth entropies.

  18. Composable security proof for continuous-variable quantum key distribution with coherent States.

    PubMed

    Leverrier, Anthony

    2015-02-20

    We give the first composable security proof for continuous-variable quantum key distribution with coherent states against collective attacks. Crucially, in the limit of large blocks the secret key rate converges to the usual value computed from the Holevo bound. Combining our proof with either the de Finetti theorem or the postselection technique then shows the security of the protocol against general attacks, thereby confirming the long-standing conjecture that Gaussian attacks are optimal asymptotically in the composable security framework. We expect that our parameter estimation procedure, which does not rely on any assumption about the quantum state being measured, will find applications elsewhere, for instance, for the reliable quantification of continuous-variable entanglement in finite-size settings.

  19. KeySlinger and StarSlinger: Secure Key Exchange and Encrypted File Transfer on Smartphones

    DTIC Science & Technology

    2011-05-01

    format data to exchange because contact information can be exported to V- Cards using existing APIs. For these reasons it was chosen as the medium to... Card format allows customization of this field. The service provider field serves to identify the app the key is for and the username field stores the...public key data. A sample V- Card field looks like Listing 1 below. IMPP;TextSecure

  20. Daylight operation of a free space, entanglement-based quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Peloso, Matthew P.; Gerhardt, Ilja; Ho, Caleb; Lamas-Linares, Antía; Kurtsiefer, Christian

    2009-04-01

    Many quantum key distribution (QKD) implementations using a free space transmission path are restricted to operation at night time in order to distinguish the signal photons used for a secure key establishment from the background light. Here, we present a lean entanglement-based QKD system overcoming that limitation. By implementing spectral, spatial and temporal filtering techniques, we establish a secure key continuously over several days under varying light and weather conditions.

  1. Secure ADS-B authentication system and method

    NASA Technical Reports Server (NTRS)

    Viggiano, Marc J (Inventor); Valovage, Edward M (Inventor); Samuelson, Kenneth B (Inventor); Hall, Dana L (Inventor)

    2010-01-01

    A secure system for authenticating the identity of ADS-B systems, including: an authenticator, including a unique id generator and a transmitter transmitting the unique id to one or more ADS-B transmitters; one or more ADS-B transmitters, including a receiver receiving the unique id, one or more secure processing stages merging the unique id with the ADS-B transmitter's identification, data and secret key and generating a secure code identification and a transmitter transmitting a response containing the secure code and ADSB transmitter's data to the authenticator; the authenticator including means for independently determining each ADS-B transmitter's secret key, a receiver receiving each ADS-B transmitter's response, one or more secure processing stages merging the unique id, ADS-B transmitter's identification and data and generating a secure code, and comparison processing comparing the authenticator-generated secure code and the ADS-B transmitter-generated secure code and providing an authentication signal based on the comparison result.

  2. A fast key generation method based on dynamic biometrics to secure wireless body sensor networks for p-health.

    PubMed

    Zhang, G H; Poon, Carmen C Y; Zhang, Y T

    2010-01-01

    Body sensor networks (BSNs) have emerged as a new technology for healthcare applications, but the security of communication in BSNs remains a formidable challenge yet to be resolved. The paper discusses the typical attacks faced by BSNs and proposes a fast biometric based approach to generate keys for ensuing confidentiality and authentication in BSN communications. The approach was tested on 900 segments of electrocardiogram. Each segment was 4 seconds long and used to generate a 128-bit key. The results of the study found that entropy of 96% of the keys were above 0.95 and 99% of the hamming distances calculated from any two keys were above 50 bits. Based on the randomness and distinctiveness of these keys, it is concluded that the fast biometric based approach has great potential to be used to secure communication in BSNs for health applications.

  3. Triple symmetric key cryptosystem for data security

    NASA Astrophysics Data System (ADS)

    Fuzail, C. Md; Norman, Jasmine; Mangayarkarasi, R.

    2017-11-01

    As the technology is getting spreads in the macro seconds of speed and in which the trend changing era from human to robotics the security issue is also getting increased. By means of using machine attacks it is very easy to break the cryptosystems in very less amount of time. Cryptosystem is a process which provides the security in all sorts of processes, communications and transactions to be done securely with the help of electronical mechanisms. Data is one such thing with the expanded implication and possible scraps over the collection of data to secure predominance and achievement, Information Security is the process where the information is protected from invalid and unverified accessibilities and data from mishandling. So the idea of Information Security has risen. Symmetric key which is also known as private key.Whereas the private key is mostly used to attain the confidentiality of data. It is a dynamic topic which can be implemented over different applications like android, wireless censor networks, etc. In this paper, a new mathematical manipulation algorithm along with Tea cryptosystem has been implemented and it can be used for the purpose of cryptography. The algorithm which we proposed is straightforward and more powerful and it will authenticate in harder way and also it will be very difficult to break by someone without knowing in depth about its internal mechanisms.

  4. Community Member and Stakeholder Perspectives on a Healthy Environment Initiative in North Carolina.

    PubMed

    Carter-Edwards, Lori; Lowe-Wilson, Abby; Mouw, Mary Sherwyn; Jeon, Janet Yewon; Baber, Ceola Ross; Vu, Maihan B; Bethell, Monique

    2015-08-13

    The North Carolina Community Transformation Grant Project (NC-CTG) aimed to implement policy, system, and environmental strategies to promote healthy eating, active living, tobacco-free living, and clinical and community preventive services to advance health equity and reduce health disparities for the state's most vulnerable communities. This article presents findings from the Health Equity Collaborative Evaluation and Implementation Project, which assessed community and stakeholder perceptions of health equity for 3 NC-CTG strategies: farmers markets, shared use, and smoke-free multiunit housing. In a triangulated qualitative evaluation, 6 photo elicitation (PE) sessions among 45 community members in 1 urban and 3 rural counties and key informant interviews among 22 stakeholders were conducted. Nine participants from the PE sessions and key informant interviews in the urban county subsequently participated in a stakeholder power analysis and mapping session (SPA) to discuss and identify people and organizations in their community perceived to be influential in addressing health equity-related issues. Evaluations of the PE sessions and key informant interviews indicated that access (convenience, cost, safety, and awareness of products and services) and community fit (community-defined quality, safety, values, and norms) were important constructs across the strategies. The SPA identified specific community- and faith-based organizations, health care organizations, and local government agencies as key stakeholders for future efforts. Both community fit and access are essential constructs for promoting health equity. Findings demonstrate the feasibility of and need for formative research that engages community members and local stakeholders to shape context-specific, culturally relevant health promotion strategies.

  5. Community Member and Stakeholder Perspectives on a Healthy Environment Initiative in North Carolina

    PubMed Central

    Lowe-Wilson, Abby; Mouw, Mary Sherwyn; Jeon, Janet Yewon; Baber, Ceola Ross; Vu, Maihan B.; Bethell, Monique

    2015-01-01

    Introduction The North Carolina Community Transformation Grant Project (NC-CTG) aimed to implement policy, system, and environmental strategies to promote healthy eating, active living, tobacco-free living, and clinical and community preventive services to advance health equity and reduce health disparities for the state’s most vulnerable communities. This article presents findings from the Health Equity Collaborative Evaluation and Implementation Project, which assessed community and stakeholder perceptions of health equity for 3 NC-CTG strategies: farmers markets, shared use, and smoke-free multiunit housing. Methods In a triangulated qualitative evaluation, 6 photo elicitation (PE) sessions among 45 community members in 1 urban and 3 rural counties and key informant interviews among 22 stakeholders were conducted. Nine participants from the PE sessions and key informant interviews in the urban county subsequently participated in a stakeholder power analysis and mapping session (SPA) to discuss and identify people and organizations in their community perceived to be influential in addressing health equity–related issues. Results Evaluations of the PE sessions and key informant interviews indicated that access (convenience, cost, safety, and awareness of products and services) and community fit (community-defined quality, safety, values, and norms) were important constructs across the strategies. The SPA identified specific community- and faith-based organizations, health care organizations, and local government agencies as key stakeholders for future efforts. Conclusions Both community fit and access are essential constructs for promoting health equity. Findings demonstrate the feasibility of and need for formative research that engages community members and local stakeholders to shape context-specific, culturally relevant health promotion strategies. PMID:26270741

  6. Wisconsin Educators Tackle Violence Head On.

    ERIC Educational Resources Information Center

    Jones, Katherine A.

    1999-01-01

    In August 1999, Wisconsin school business officials and other school administrators met with police officers to discuss cooperative ventures to ensure school safety. Conference participants attended sessions on identifying troubled students, physical security measures, safety planning, dealing with bomb threats, and prevention and punishment. (MLH)

  7. 78 FR 44958 - Commercial Fishing Safety Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ... be dedicated to continuing subcommittee sessions on training requirements and alternative safety... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2013-0625] Commercial Fishing Safety.... SUMMARY: The Commercial Fishing Safety Advisory Committee (CFSAC) will meet in Washington, DC to discuss...

  8. Key Considerations of Community, Scalability, Supportability, Security, and Functionality in Selecting Open-Source Software in California Universities as Perceived by Technology Leaders

    ERIC Educational Resources Information Center

    Britton, Todd Alan

    2014-01-01

    Purpose: The purpose of this study was to examine the key considerations of community, scalability, supportability, security, and functionality for selecting open-source software in California universities as perceived by technology leaders. Methods: After a review of the cogent literature, the key conceptual framework categories were identified…

  9. Implementation of a Wireless Time Distribution Testbed Protected with Quantum Key Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonior, Jason D; Evans, Philip G; Sheets, Gregory S

    2017-01-01

    Secure time transfer is critical for many timesensitive applications. the Global Positioning System (GPS) which is often used for this purpose has been shown to be susceptible to spoofing attacks. Quantum Key Distribution offers a way to securely generate encryption keys at two locations. Through careful use of this information it is possible to create a system that is more resistant to spoofing attacks. In this paper we describe our work to create a testbed which utilizes QKD and traditional RF links. This testbed will be used for the development of more secure and spoofing resistant time distribution protocols.

  10. A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Huang, Xia; Li, Yu-Xia; Song, Xiao-Na

    2013-01-01

    We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security. Such an algorithm is detailed in terms of security analyses, including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.

  11. Generalized Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange system using arbitrary resistors.

    PubMed

    Vadai, Gergely; Mingesz, Robert; Gingl, Zoltan

    2015-09-03

    The Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange system has been introduced as a simple, very low cost and efficient classical physical alternative to quantum key distribution systems. The ideal system uses only a few electronic components-identical resistor pairs, switches and interconnecting wires-in order to guarantee perfectly protected data transmission. We show that a generalized KLJN system can provide unconditional security even if it is used with significantly less limitations. The more universal conditions ease practical realizations considerably and support more robust protection against attacks. Our theoretical results are confirmed by numerical simulations.

  12. Securing Wireless Communications of the Internet of Things from the Physical Layer, An Overview

    NASA Astrophysics Data System (ADS)

    Zhang, Junqing; Duong, Trung; Woods, Roger; Marshall, Alan

    2017-08-01

    The security of the Internet of Things (IoT) is receiving considerable interest as the low power constraints and complexity features of many IoT devices are limiting the use of conventional cryptographic techniques. This article provides an overview of recent research efforts on alternative approaches for securing IoT wireless communications at the physical layer, specifically the key topics of key generation and physical layer encryption. These schemes can be implemented and are lightweight, and thus offer practical solutions for providing effective IoT wireless security. Future research to make IoT-based physical layer security more robust and pervasive is also covered.

  13. Development of protected endorsement for online banking using mobile phones

    NASA Astrophysics Data System (ADS)

    Narayana, Galla; Venkateswarlu, Tammineni; Kumar, G. S. P.; Padmavathamma, Mokkala; Sreekanth, G.; Delhibabu, K.; Prasad, A. R.

    2013-03-01

    Securing Online Banking transactions for customer is the primary goal of financial institutions that provides Internet banking facility. Mobile phones play an important role in our society as more and more functions having been integrated within mobile phones, such as Internet browsing, mobile banking, and shopping. Mobiles phones can be used to secure ATM card pins by sending to the customer directly rather than in emails or by other means which has a possibility of hacking. In this paper we have proposed method of generating a Private Key Security Token by bank authentication servers which uses IMSI registers and IMEI number of client's mobile registered. The key is generated by implementing RIPE MD160 and Hex Encode Algorithm. Token received is valid only for that client mobile only and can be generated upon request by customer dynamically. The client is given a PIN and a Master Key when registered to the Online Banking Services. If in case a client's mobile is lost, authentication is done using Unique Master Key, else the Private Key Token is used there by making transactions secured and simple without the need of carrying any USB Tokens. The additional functionality provides the client more security on their transactions. Due to this Phishing attacks by the hackers is avoided.

  14. Marital conflict and the quality of young children's peer play behavior: the mediating and moderating role of parent-child emotional reciprocity and attachment security.

    PubMed

    Lindsey, Eric W; Caldera, Yvonne M; Tankersley, Laura

    2009-04-01

    Parent-child attachment security and dyadic measures of parent-child positive and negative emotional reciprocity were examined as possible mediators and moderators of the connection between marital conflict and children's peer play behavior. Eighty parents were observed in a laboratory play session with their 15- to 18-month-old child. Subsequently, at 36 months children were observed interacting with peers at their child care setting. Connections between marital conflict and children's positive peer interaction were mediated by mother-child attachment security, mother-child positive emotional reciprocity, and father-child negative emotional reciprocity. Connections between marital conflict and children's negative peer interaction were mediated by mother-child positive emotional reciprocity and father-child attachment security. Parent-child attachment security and negative emotional reciprocity emerged as important moderators of the connection between marital conflict and children's peer play behavior.

  15. Safety and Security Interface Technology Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Michael A. Lehto; Kevin J. Carroll; Dr. Robert Lowrie

    Safety and Security Interface Technology Initiative Mr. Kevin J. Carroll Dr. Robert Lowrie, Dr. Micheal Lehto BWXT Y12 NSC Oak Ridge, TN 37831 865-576-2289/865-241-2772 carrollkj@y12.doe.gov Work Objective. Earlier this year, the Energy Facility Contractors Group (EFCOG) was asked to assist in developing options related to acceleration deployment of new security-related technologies to assist meeting design base threat (DBT) needs while also addressing the requirements of 10 CFR 830. NNSA NA-70, one of the working group participants, designated this effort the Safety and Security Interface Technology Initiative (SSIT). Relationship to Workshop Theme. “Supporting Excellence in Operations Through Safety Analysis,” (workshop theme)more » includes security and safety personnel working together to ensure effective and efficient operations. One of the specific workshop elements listed in the call for papers is “Safeguards/Security Integration with Safety.” This paper speaks directly to this theme. Description of Work. The EFCOG Safety Analysis Working Group (SAWG) and the EFCOG Security Working Group formed a core team to develop an integrated process involving both safety basis and security needs allowing achievement of the DBT objectives while ensuring safety is appropriately considered. This effort garnered significant interest, starting with a two day breakout session of 30 experts at the 2006 Safety Basis Workshop. A core team was formed, and a series of meetings were held to develop that process, including safety and security professionals, both contractor and federal personnel. A pilot exercise held at Idaho National Laboratory (INL) in mid-July 2006 was conducted as a feasibility of concept review. Work Results. The SSIT efforts resulted in a topical report transmitted from EFCOG to DOE/NNSA in August 2006. Elements of the report included: Drivers and Endstate, Control Selections Alternative Analysis Process, Terminology Crosswalk, Safety Basis/Security Documentation Integration, Configuration Control, and development of a shared ‘tool box’ of information/successes. Specific Benefits. The expectation or end state resulting from the topical report and associated implementation plan includes: (1) A recommended process for handling the documentation of the security and safety disciplines, including an appropriate change control process and participation by all stakeholders. (2) A means to package security systems with sufficient information to help expedite the flow of that system through the process. In addition, a means to share successes among sites, to include information and safety basis to the extent such information is transportable. (3) Identification of key security systems and associated essential security elements being installed and an arrangement for the sites installing these systems to host an appropriate team to review a specific system and determine what information is exportable. (4) Identification of the security systems’ essential elements and appropriate controls required for testing of these essential elements in the facility. (5) The ability to help refine and improve an agreed to control set at the manufacture stage.« less

  16. Changes to Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Sakai, Yasuyuki; Tanaka, Hidema

    Quantum cryptography has become a subject of widespread interest. In particular, quantum key distribution, which provides a secure key agreement by using quantum systems, is believed to be the most important application of quantum cryptography. Quantum key distribution has the potential to achieve the “unconditionally” secure infrastructure. We also have many cryptographic tools that are based on “modern cryptography” at the present time. They are being used in an effort to guarantee secure communication over open networks such as the Internet. Unfortunately, their ultimate efficacy is in doubt. Quantum key distribution systems are believed to be close to practical and commercial use. In this paper, we discuss what we should do to apply quantum cryptography to our communications. We also discuss how quantum key distribution can be combined with or used to replace cryptographic tools based on modern cryptography.

  17. Multi-party quantum key agreement protocol secure against collusion attacks

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Sun, Zhiwei; Sun, Xiaoqiang

    2017-07-01

    The fairness of a secure multi-party quantum key agreement (MQKA) protocol requires that all involved parties are entirely peer entities and can equally influence the outcome of the protocol to establish a shared key wherein no one can decide the shared key alone. However, it is found that parts of the existing MQKA protocols are sensitive to collusion attacks, i.e., some of the dishonest participants can collaborate to predetermine the final key without being detected. In this paper, a multi-party QKA protocol resisting collusion attacks is proposed. Different from previous QKA protocol resisting N-1 coconspirators or resisting 1 coconspirators, we investigate the general circle-type MQKA protocol which can be secure against t dishonest participants' cooperation. Here, t < N. We hope the results of the presented paper will be helpful for further research on fair MQKA protocols.

  18. Hacking on decoy-state quantum key distribution system with partial phase randomization

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-01

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  19. Hacking on decoy-state quantum key distribution system with partial phase randomization.

    PubMed

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-23

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  20. Practical Quantum Cryptography for Secure Free-Space Communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttler, W.T.; Hughes, R.J.; Kwiat, P.G.

    1999-02-01

    Quantum cryptography is an emerging technology in which two parties may simultaneously generate shared, secret cryptographic key material using the transmission of quantum states of light. The security of these transmissions is based on the inviolability of the laws of quantum mechanics and information-theoretically secure post-processing methods. An adversary can neither successfully tap the quantum transmissions, nor evade detection, owing to Heisenberg's uncertainty principle. In this paper we describe the theory of quantum cryptography, and the most recent results from our experimental free-space system with which we have demonstrated for the first time the feasibility of quantum key generation overmore » a point-to-point outdoor atmospheric path in daylight. We achieved a transmission distance of 0.5 km, which was limited only by the length of the test range. Our results provide strong evidence that cryptographic key material could be generated on demand between a ground station and a satellite (or between two satellites), allowing a satellite to be securely re-keyed on orbit. We present a feasibility analysis of surface-to-satellite quantum key generation.« less

  1. Biometric Methods for Secure Communications in Body Sensor Networks: Resource-Efficient Key Management and Signal-Level Data Scrambling

    NASA Astrophysics Data System (ADS)

    Bui, Francis Minhthang; Hatzinakos, Dimitrios

    2007-12-01

    As electronic communications become more prevalent, mobile and universal, the threats of data compromises also accordingly loom larger. In the context of a body sensor network (BSN), which permits pervasive monitoring of potentially sensitive medical data, security and privacy concerns are particularly important. It is a challenge to implement traditional security infrastructures in these types of lightweight networks since they are by design limited in both computational and communication resources. A key enabling technology for secure communications in BSN's has emerged to be biometrics. In this work, we present two complementary approaches which exploit physiological signals to address security issues: (1) a resource-efficient key management system for generating and distributing cryptographic keys to constituent sensors in a BSN; (2) a novel data scrambling method, based on interpolation and random sampling, that is envisioned as a potential alternative to conventional symmetric encryption algorithms for certain types of data. The former targets the resource constraints in BSN's, while the latter addresses the fuzzy variability of biometric signals, which has largely precluded the direct application of conventional encryption. Using electrocardiogram (ECG) signals as biometrics, the resulting computer simulations demonstrate the feasibility and efficacy of these methods for delivering secure communications in BSN's.

  2. Experimental Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-01

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  3. Experimental measurement-device-independent quantum key distribution.

    PubMed

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S; Fejer, M M; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-27

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  4. Quantum cryptography over underground optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, R.J.; Luther, G.G.; Morgan, G.L.

    1996-05-01

    Quantum cryptography is an emerging technology in which two parties may simultaneously generated shared, secret cryptographic key material using the transmission of quantum states of light whose security is based on the inviolability of the laws of quantum mechanics. An adversary can neither successfully tap the key transmissions, nor evade detection, owing to Heisenberg`s uncertainty principle. In this paper the authors describe the theory of quantum cryptography, and the most recent results from their experimental system with which they are generating key material over 14-km of underground optical fiber. These results show that optical-fiber based quantum cryptography could allow secure,more » real-time key generation over ``open`` multi-km node-to-node optical fiber communications links between secure ``islands.``« less

  5. Technical viability and development needs for waste forms and facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegg, I.; Gould, T.

    1996-05-01

    The objective of this breakout session was to provide a forum to discuss technical issues relating to plutonium-bearing waste forms and their disposal facilities. Specific topics for discussion included the technical viability and development needs associated with the waste forms and/or disposal facilities. The expected end result of the session was an in-depth (so far as the limited time would allow) discussion of key issues by the session participants. The session chairs expressed allowance for, and encouragement of, alternative points of view, as well as encouragement for discussion of any relevant topics not addressed in the paper presentations. It wasmore » not the intent of this session to recommend or advocate any one technology over another.« less

  6. A study of the security technology and a new security model for WiFi network

    NASA Astrophysics Data System (ADS)

    Huang, Jing

    2013-07-01

    The WiFi network is one of the most rapidly developing wireless communication networks, which makes wireless office and wireless life possible and greatly expands the application form and scope of the internet. At the same time, the WiFi network security has received wide attention, and this is also the key factor of WiFi network development. This paper makes a systematic introduction to the WiFi network and WiFi network security problems, and the WiFi network security technology are reviewed and compared. In order to solve the security problems in WiFi network, this paper presents a new WiFi network security model and the key exchange algorithm. Experiments are performed to test the performance of the model, the results show that the new security model can withstand external network attack and ensure stable and safe operation of WiFi network.

  7. Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution

    PubMed Central

    Li, Jian; Yang, Yu-Guang; Chen, Xiu-Bo; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    A novel quantum private database query protocol is proposed, based on passive round-robin differential phase-shift quantum key distribution. Compared with previous quantum private database query protocols, the present protocol has the following unique merits: (i) the user Alice can obtain one and only one key bit so that both the efficiency and security of the present protocol can be ensured, and (ii) it does not require to change the length difference of the two arms in a Mach-Zehnder interferometer and just chooses two pulses passively to interfere with so that it is much simpler and more practical. The present protocol is also proved to be secure in terms of the user security and database security. PMID:27539654

  8. A biometric method to secure telemedicine systems.

    PubMed

    Zhang, G H; Poon, Carmen C Y; Li, Ye; Zhang, Y T

    2009-01-01

    Security and privacy are among the most crucial issues for data transmission in telemedicine systems. This paper proposes a solution for securing wireless data transmission in telemedicine systems, i.e. within a body sensor network (BSN), between the BSN and server as well as between the server and professionals who have assess to the server. A unique feature of this solution is the generation of random keys by physiological data (i.e. a biometric approach) for securing communication at all 3 levels. In the performance analysis, inter-pulse interval of photoplethysmogram is used as an example to generate these biometric keys to protect wireless data transmission. The results of statistical analysis and computational complexity suggest that this type of key is random enough to make telemedicine systems resistant to attacks.

  9. Multi-modality Imaging: Bird's eye view from the 2015 American Heart Association Scientific Sessions.

    PubMed

    Einstein, Andrew J; Lloyd, Steven G; Chaudhry, Farooq A; AlJaroudi, Wael A; Hage, Fadi G

    2016-04-01

    Multiple novel studies were presented at the 2015 American Heart Association Scientific Sessions which was considered a successful conference at many levels. In this review, we will summarize key studies in nuclear cardiology, cardiac magnetic resonance, echocardiography, and cardiac computed tomography that were presented at the Sessions. We hope that this bird's eye view will keep readers updated on the newest imaging studies presented at the meeting whether or not they were able to attend the meeting.

  10. Session 1.5: health policy and coordination: a critical review of experiences.

    PubMed

    Procacci, Pasqualino; Doran, Rodger; Chunkath, Sheela Rani; Garfield, Richard; Briceno, Salvano; Fric, Anton

    2005-01-01

    This is a summary of the presentations and discussion of Session 1.5 on Health Policy and Coordination: A Critical Review of Experiences during the Conference, Health Aspects of the Tsunami Disaster in Asia, convened by the World Health Organization (WHO) in Phuket, Thailand, 04-06 May 2005. The topics discussed included issues related to health policy and coordination as pertain to the responses to the damage created by the Tsunami. Key questions were answered in this session, and recommendations were made.

  11. Report of the American Heart Association (AHA) Scientific Sessions 2016, New Orleans.

    PubMed

    Amaki, Makoto; Konagai, Nao; Fujino, Masashi; Kawakami, Shouji; Nakao, Kazuhiro; Hasegawa, Takuya; Sugano, Yasuo; Tahara, Yoshio; Yasuda, Satoshi

    2016-12-22

    The American Heart Association (AHA) Scientific Sessions 2016 were held on November 12-16 at the Ernest N. Morial Convention Center, New Orleans, LA. This 5-day event featured cardiovascular clinical practice covering all aspects of basic, clinical, population, and translational content. One of the hot topics at AHA 2016 was precision medicine. The key presentations and highlights from the AHA Scientific Sessions 2016, including "precision medicine" as one of the hot topics, are herein reported.

  12. An Energy-Efficient Secure Routing and Key Management Scheme for Mobile Sinks in Wireless Sensor Networks Using Deployment Knowledge

    PubMed Central

    Hung, Le Xuan; Canh, Ngo Trong; Lee, Sungyoung; Lee, Young-Koo; Lee, Heejo

    2008-01-01

    For many sensor network applications such as military or homeland security, it is essential for users (sinks) to access the sensor network while they are moving. Sink mobility brings new challenges to secure routing in large-scale sensor networks. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. Also, studies and experiences have shown that considering security during design time is the best way to provide security for sensor network routing. This paper presents an energy-efficient secure routing and key management for mobile sinks in sensor networks, called SCODEplus. It is a significant extension of our previous study in five aspects: (1) Key management scheme and routing protocol are considered during design time to increase security and efficiency; (2) The network topology is organized in a hexagonal plane which supports more efficiency than previous square-grid topology; (3) The key management scheme can eliminate the impacts of node compromise attacks on links between non-compromised nodes; (4) Sensor node deployment is based on Gaussian distribution which is more realistic than uniform distribution; (5) No GPS or like is required to provide sensor node location information. Our security analysis demonstrates that the proposed scheme can defend against common attacks in sensor networks including node compromise attacks, replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Both mathematical and simulation-based performance evaluation show that the SCODEplus significantly reduces the communication overhead, energy consumption, packet delivery latency while it always delivers more than 97 percent of packets successfully. PMID:27873956

  13. An Energy-Efficient Secure Routing and Key Management Scheme for Mobile Sinks in Wireless Sensor Networks Using Deployment Knowledge.

    PubMed

    Hung, Le Xuan; Canh, Ngo Trong; Lee, Sungyoung; Lee, Young-Koo; Lee, Heejo

    2008-12-03

    For many sensor network applications such as military or homeland security, it is essential for users (sinks) to access the sensor network while they are moving. Sink mobility brings new challenges to secure routing in large-scale sensor networks. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. Also, studies and experiences have shown that considering security during design time is the best way to provide security for sensor network routing. This paper presents an energy-efficient secure routing and key management for mobile sinks in sensor networks, called SCODE plus . It is a significant extension of our previous study in five aspects: (1) Key management scheme and routing protocol are considered during design time to increase security and efficiency; (2) The network topology is organized in a hexagonal plane which supports more efficiency than previous square-grid topology; (3) The key management scheme can eliminate the impacts of node compromise attacks on links between non-compromised nodes; (4) Sensor node deployment is based on Gaussian distribution which is more realistic than uniform distribution; (5) No GPS or like is required to provide sensor node location information. Our security analysis demonstrates that the proposed scheme can defend against common attacks in sensor networks including node compromise attacks, replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Both mathematical and simulation-based performance evaluation show that the SCODE plus significantly reduces the communication overhead, energy consumption, packet delivery latency while it always delivers more than 97 percent of packets successfully.

  14. Using Quality Enhancement Processes to Achieve Sustainable Development and Support for Sessional Staff

    ERIC Educational Resources Information Center

    Lekkas, D.; Winning, T. A.

    2017-01-01

    Consistent with quality enhancement, we report on how we used a continuous improvement cycle to formalise and embed an academic development and support programme for our School's sessional staff. Key factors in establishing and maintaining the programme included: local change agents supported initially by institutional project funding; School…

  15. Introductory Guide to Africa.

    ERIC Educational Resources Information Center

    Wyss, Esther, Ed.

    This guide seeks to be a tool for action and a resource for understanding some of the key issues concerning Africa today. Through a series of six sessions, participants focus on a particular theme or issue that links their community with the African context. The six sessions focus on: (1) "Building Connections with Africa"; (2)…

  16. Vulnerability and Protection Talk: Systemic Therapy Process with People with Intellectual Disability

    ERIC Educational Resources Information Center

    Pote, Helen; Mazon, Teresa; Clegg, Jennifer; King, Susan

    2011-01-01

    Background: Vulnerability and protection are key concepts within the literature relating to systemic therapy for people with an intellectual disability (ID). This paper explores the processes by which these concepts were discussed in systemic therapy sessions. Method: Four videotapes of systemic therapy sessions were evaluated using a qualitative…

  17. What's in a Name? Recent Key Projects of the Committee on Organization and Delivery of Burn Care.

    PubMed

    Hickerson, William L; Ryan, Colleen M; Conlon, Kathe M; Harrington, David T; Foster, Kevin; Schwartz, Suzanne; Iyer, Narayan; Jeschke, Marc; Haller, Herbert L; Faucher, Lee D; Arnoldo, Brett D; Jeng, James C

    2015-01-01

    The Committee for the Organization and Delivery of Burn Care (ODBC) was charged by President Palmieri and the American Burn Association (ABA) Board of Directors with presenting a plenary session at the 45th Meeting of the ABA in Palm Springs, CA, in 2013. The objective of the plenary session was to inform the membership about the wide range of the activities performed by the ODBC committee. The hope was that this session would encourage active involvement within the ABA as a means to improve the delivery of future burn care. Selected current activities were summarized by key leaders of each project and highlighted in the plenary session. The history of the committee, current projects in disaster management, regionalization, best practice guidelines, federal partnerships, product development, new technologies, electronic medical records, and manpower issues in the burn workforce were summarized. The ODBC committee is a keystone committee of the ABA. It is tasked by the ABA leadership with addressing and leading progress in many areas that constitute current challenges in the delivery of burn care.

  18. A broadcast-based key agreement scheme using set reconciliation for wireless body area networks.

    PubMed

    Ali, Aftab; Khan, Farrukh Aslam

    2014-05-01

    Information and communication technologies have thrived over the last few years. Healthcare systems have also benefited from this progression. A wireless body area network (WBAN) consists of small, low-power sensors used to monitor human physiological values remotely, which enables physicians to remotely monitor the health of patients. Communication security in WBANs is essential because it involves human physiological data. Key agreement and authentication are the primary issues in the security of WBANs. To agree upon a common key, the nodes exchange information with each other using wireless communication. This information exchange process must be secure enough or the information exchange should be minimized to a certain level so that if information leak occurs, it does not affect the overall system. Most of the existing solutions for this problem exchange too much information for the sake of key agreement; getting this information is sufficient for an attacker to reproduce the key. Set reconciliation is a technique used to reconcile two similar sets held by two different hosts with minimal communication complexity. This paper presents a broadcast-based key agreement scheme using set reconciliation for secure communication in WBANs. The proposed scheme allows the neighboring nodes to agree upon a common key with the personal server (PS), generated from the electrocardiogram (EKG) feature set of the host body. Minimal information is exchanged in a broadcast manner, and even if every node is missing a different subset, by reconciling these feature sets, the whole network will still agree upon a single common key. Because of the limited information exchange, if an attacker gets the information in any way, he/she will not be able to reproduce the key. The proposed scheme mitigates replay, selective forwarding, and denial of service attacks using a challenge-response authentication mechanism. The simulation results show that the proposed scheme has a great deal of adoptability in terms of security, communication overhead, and running time complexity, as compared to the existing EKG-based key agreement scheme.

  19. Novel Multi-Party Quantum Key Agreement Protocol with G-Like States and Bell States

    NASA Astrophysics Data System (ADS)

    Min, Shi-Qi; Chen, Hua-Ying; Gong, Li-Hua

    2018-03-01

    A significant aspect of quantum cryptography is quantum key agreement (QKA), which ensures the security of key agreement protocols by quantum information theory. The fairness of an absolute security multi-party quantum key agreement (MQKA) protocol demands that all participants can affect the protocol result equally so as to establish a shared key and that nobody can determine the shared key by himself/herself. We found that it is difficult for the existing multi-party quantum key agreement protocol to withstand the collusion attacks. Put differently, it is possible for several cooperated and untruthful participants to determine the final key without being detected. To address this issue, based on the entanglement swapping between G-like state and Bell states, a new multi-party quantum key agreement protocol is put forward. The proposed protocol makes full use of EPR pairs as quantum resources, and adopts Bell measurement and unitary operation to share a secret key. Besides, the proposed protocol is fair, secure and efficient without involving a third party quantum center. It demonstrates that the protocol is capable of protecting users' privacy and meeting the requirement of fairness. Moreover, it is feasible to carry out the protocol with existing technologies.

  20. Novel Multi-Party Quantum Key Agreement Protocol with G-Like States and Bell States

    NASA Astrophysics Data System (ADS)

    Min, Shi-Qi; Chen, Hua-Ying; Gong, Li-Hua

    2018-06-01

    A significant aspect of quantum cryptography is quantum key agreement (QKA), which ensures the security of key agreement protocols by quantum information theory. The fairness of an absolute security multi-party quantum key agreement (MQKA) protocol demands that all participants can affect the protocol result equally so as to establish a shared key and that nobody can determine the shared key by himself/herself. We found that it is difficult for the existing multi-party quantum key agreement protocol to withstand the collusion attacks. Put differently, it is possible for several cooperated and untruthful participants to determine the final key without being detected. To address this issue, based on the entanglement swapping between G-like state and Bell states, a new multi-party quantum key agreement protocol is put forward. The proposed protocol makes full use of EPR pairs as quantum resources, and adopts Bell measurement and unitary operation to share a secret key. Besides, the proposed protocol is fair, secure and efficient without involving a third party quantum center. It demonstrates that the protocol is capable of protecting users' privacy and meeting the requirement of fairness. Moreover, it is feasible to carry out the protocol with existing technologies.

  1. 20 CFR 404.1540 - Evaluating compliance with the treatment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... requirements. 404.1540 Section 404.1540 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE..., hematological or urinalysis studies for individuals with drug addiction and hematological studies and breath...) Consistent attendance at and participation in treatment sessions; (3) Improved social functioning and levels...

  2. 20 CFR 404.1540 - Evaluating compliance with the treatment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... requirements. 404.1540 Section 404.1540 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE..., hematological or urinalysis studies for individuals with drug addiction and hematological studies and breath...) Consistent attendance at and participation in treatment sessions; (3) Improved social functioning and levels...

  3. 20 CFR 404.1540 - Evaluating compliance with the treatment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... requirements. 404.1540 Section 404.1540 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE..., hematological or urinalysis studies for individuals with drug addiction and hematological studies and breath...) Consistent attendance at and participation in treatment sessions; (3) Improved social functioning and levels...

  4. 20 CFR 404.1540 - Evaluating compliance with the treatment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... requirements. 404.1540 Section 404.1540 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE..., hematological or urinalysis studies for individuals with drug addiction and hematological studies and breath...) Consistent attendance at and participation in treatment sessions; (3) Improved social functioning and levels...

  5. 20 CFR 404.1540 - Evaluating compliance with the treatment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... requirements. 404.1540 Section 404.1540 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE..., hematological or urinalysis studies for individuals with drug addiction and hematological studies and breath...) Consistent attendance at and participation in treatment sessions; (3) Improved social functioning and levels...

  6. An Elliptic Curve Based Schnorr Cloud Security Model in Distributed Environment

    PubMed Central

    Muthurajan, Vinothkumar; Narayanasamy, Balaji

    2016-01-01

    Cloud computing requires the security upgrade in data transmission approaches. In general, key-based encryption/decryption (symmetric and asymmetric) mechanisms ensure the secure data transfer between the devices. The symmetric key mechanisms (pseudorandom function) provide minimum protection level compared to asymmetric key (RSA, AES, and ECC) schemes. The presence of expired content and the irrelevant resources cause unauthorized data access adversely. This paper investigates how the integrity and secure data transfer are improved based on the Elliptic Curve based Schnorr scheme. This paper proposes a virtual machine based cloud model with Hybrid Cloud Security Algorithm (HCSA) to remove the expired content. The HCSA-based auditing improves the malicious activity prediction during the data transfer. The duplication in the cloud server degrades the performance of EC-Schnorr based encryption schemes. This paper utilizes the blooming filter concept to avoid the cloud server duplication. The combination of EC-Schnorr and blooming filter efficiently improves the security performance. The comparative analysis between proposed HCSA and the existing Distributed Hash Table (DHT) regarding execution time, computational overhead, and auditing time with auditing requests and servers confirms the effectiveness of HCSA in the cloud security model creation. PMID:26981584

  7. An Elliptic Curve Based Schnorr Cloud Security Model in Distributed Environment.

    PubMed

    Muthurajan, Vinothkumar; Narayanasamy, Balaji

    2016-01-01

    Cloud computing requires the security upgrade in data transmission approaches. In general, key-based encryption/decryption (symmetric and asymmetric) mechanisms ensure the secure data transfer between the devices. The symmetric key mechanisms (pseudorandom function) provide minimum protection level compared to asymmetric key (RSA, AES, and ECC) schemes. The presence of expired content and the irrelevant resources cause unauthorized data access adversely. This paper investigates how the integrity and secure data transfer are improved based on the Elliptic Curve based Schnorr scheme. This paper proposes a virtual machine based cloud model with Hybrid Cloud Security Algorithm (HCSA) to remove the expired content. The HCSA-based auditing improves the malicious activity prediction during the data transfer. The duplication in the cloud server degrades the performance of EC-Schnorr based encryption schemes. This paper utilizes the blooming filter concept to avoid the cloud server duplication. The combination of EC-Schnorr and blooming filter efficiently improves the security performance. The comparative analysis between proposed HCSA and the existing Distributed Hash Table (DHT) regarding execution time, computational overhead, and auditing time with auditing requests and servers confirms the effectiveness of HCSA in the cloud security model creation.

  8. Securing While Sampling in Wireless Body Area Networks With Application to Electrocardiography.

    PubMed

    Dautov, Ruslan; Tsouri, Gill R

    2016-01-01

    Stringent resource constraints and broadcast transmission in wireless body area network raise serious security concerns when employed in biomedical applications. Protecting data transmission where any minor alteration is potentially harmful is of significant importance in healthcare. Traditional security methods based on public or private key infrastructure require considerable memory and computational resources, and present an implementation obstacle in compact sensor nodes. This paper proposes a lightweight encryption framework augmenting compressed sensing with wireless physical layer security. Augmenting compressed sensing to secure information is based on the use of the measurement matrix as an encryption key, and allows for incorporating security in addition to compression at the time of sampling an analog signal. The proposed approach eliminates the need for a separate encryption algorithm, as well as the predeployment of a key thereby conserving sensor node's limited resources. The proposed framework is evaluated using analysis, simulation, and experimentation applied to a wireless electrocardiogram setup consisting of a sensor node, an access point, and an eavesdropper performing a proximity attack. Results show that legitimate communication is reliable and secure given that the eavesdropper is located at a reasonable distance from the sensor node and the access point.

  9. Security Concepts for Satellite Links

    NASA Astrophysics Data System (ADS)

    Tobehn, C.; Penné, B.; Rathje, R.; Weigl, A.; Gorecki, Ch.; Michalik, H.

    2008-08-01

    The high costs to develop, launch and maintain a satellite network makes protecting the assets imperative. Attacks may be passive such as eavesdropping on the payload data. More serious threat are active attacks that try to gain control of the satellite, which may lead to the total lost of the satellite asset. To counter these threats, new satellite and ground systems are using cryptographic technologies to provide a range of services: confidentiality, entity & message authentication, and data integrity. Additionally, key management cryptographic services are required to support these services. This paper describes the key points of current satellite control and operations, that are authentication of the access to the satellite TMTC link and encryption of security relevant TM/TC data. For payload data management the key points are multi-user ground station access and high data rates both requiring frequent updates and uploads of keys with the corresponding key management methods. For secure satellite management authentication & key negotiation algorithms as HMAC-RIPEMD160, EC- DSA and EC-DH are used. Encryption of data uses algorithms as IDEA, AES, Triple-DES, or other. A channel coding and encryption unit for payload data provides download data rates up to Nx250 Mbps. The presented concepts are based on our experience and heritage of the security systems for all German MOD satellite projects (SATCOMBw2, SAR-Lupe multi- satellite system and German-French SAR-Lupe-Helios- II systems inter-operability) as well as for further international (KOMPSAT-II Payload data link system) and ESA activities (TMTC security and GMES).

  10. Bit-Oriented Quantum Public-Key Cryptosystem Based on Bell States

    NASA Astrophysics Data System (ADS)

    Wu, WanQing; Cai, QingYu; Zhang, HuanGuo; Liang, XiaoYan

    2018-02-01

    Quantum public key encryption system provides information confidentiality using quantum mechanics. This paper presents a quantum public key cryptosystem (Q P K C) based on the Bell states. By H o l e v o's theorem, the presented scheme provides the security of the secret key using one-wayness during the QPKC. While the QPKC scheme is information theoretic security under chosen plaintext attack (C P A). Finally some important features of presented QPKC scheme can be compared with other QPKC scheme.

  11. Bit-Oriented Quantum Public-Key Cryptosystem Based on Bell States

    NASA Astrophysics Data System (ADS)

    Wu, WanQing; Cai, QingYu; Zhang, HuanGuo; Liang, XiaoYan

    2018-06-01

    Quantum public key encryption system provides information confidentiality using quantum mechanics. This paper presents a quantum public key cryptosystem ( Q P K C) based on the Bell states. By H o l e v o' s theorem, the presented scheme provides the security of the secret key using one-wayness during the QPKC. While the QPKC scheme is information theoretic security under chosen plaintext attack ( C P A). Finally some important features of presented QPKC scheme can be compared with other QPKC scheme.

  12. A security proof of the round-robin differential phase shift quantum key distribution protocol based on the signal disturbance

    NASA Astrophysics Data System (ADS)

    Sasaki, Toshihiko; Koashi, Masato

    2017-06-01

    The round-robin differential phase shift (RRDPS) quantum key distribution (QKD) protocol is a unique QKD protocol whose security has not been understood through an information-disturbance trade-off relation, and a sufficient amount of privacy amplification was given independently of signal disturbance. Here, we discuss the security of the RRDPS protocol in the asymptotic regime when a good estimate of the bit error rate is available as a measure of signal disturbance. The uniqueness of the RRDPS protocol shows up as a peculiar form of information-disturbance trade-off curve. When the length of a block of pulses used for encoding and the signal disturbance are both small, it provides a significantly better key rate than that from the original security proof. On the other hand, when the block length is large, the use of the signal disturbance makes little improvement in the key rate. Our analysis will bridge a gap between the RRDPS protocol and the conventional QKD protocols.

  13. Quantum key distribution with an unknown and untrusted source

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Qi, Bing; Lo, Hoi-Kwong

    2009-03-01

    The security of a standard bi-directional ``plug & play'' quantum key distribution (QKD) system has been an open question for a long time. This is mainly because its source is equivalently controlled by an eavesdropper, which means the source is unknown and untrusted. Qualitative discussion on this subject has been made previously. In this paper, we present the first quantitative security analysis on a general class of QKD protocols whose sources are unknown and untrusted. The securities of standard BB84 protocol, weak+vacuum decoy state protocol, and one-decoy decoy state protocol, with unknown and untrusted sources are rigorously proved. We derive rigorous lower bounds to the secure key generation rates of the above three protocols. Our numerical simulation results show that QKD with an untrusted source gives a key generation rate that is close to that with a trusted source. Our work is published in [1]. [4pt] [1] Y. Zhao, B. Qi, and H.-K. Lo, Phys. Rev. A, 77:052327 (2008).

  14. A semi-symmetric image encryption scheme based on the function projective synchronization of two hyperchaotic systems

    PubMed Central

    Li, Jinqing; Qi, Hui; Cong, Ligang; Yang, Huamin

    2017-01-01

    Both symmetric and asymmetric color image encryption have advantages and disadvantages. In order to combine their advantages and try to overcome their disadvantages, chaos synchronization is used to avoid the key transmission for the proposed semi-symmetric image encryption scheme. Our scheme is a hybrid chaotic encryption algorithm, and it consists of a scrambling stage and a diffusion stage. The control law and the update rule of function projective synchronization between the 3-cell quantum cellular neural networks (QCNN) response system and the 6th-order cellular neural network (CNN) drive system are formulated. Since the function projective synchronization is used to synchronize the response system and drive system, Alice and Bob got the key by two different chaotic systems independently and avoid the key transmission by some extra security links, which prevents security key leakage during the transmission. Both numerical simulations and security analyses such as information entropy analysis, differential attack are conducted to verify the feasibility, security, and efficiency of the proposed scheme. PMID:28910349

  15. Quantum Dialogue with Authentication Based on Bell States

    NASA Astrophysics Data System (ADS)

    Shen, Dongsu; Ma, Wenping; Yin, Xunru; Li, Xiaoping

    2013-06-01

    We propose an authenticated quantum dialogue protocol, which is based on a shared private quantum entangled channel. In this protocol, the EPR pairs are randomly prepared in one of the four Bell states for communication. By performing four Pauli operations on the shared EPR pairs to encode their shared authentication key and secret message, two legitimate users can implement mutual identity authentication and quantum dialogue without the help from the third party authenticator. Furthermore, due to the EPR pairs which are used for secure communication are utilized to implement authentication and the whole authentication process is included in the direct secure communication process, it does not require additional particles to realize authentication in this protocol. The updated authentication key provides the counterparts with a new authentication key for the next authentication and direct communication. Compared with other secure communication with authentication protocols, this one is more secure and efficient owing to the combination of authentication and direct communication. Security analysis shows that it is secure against the eavesdropping attack, the impersonation attack and the man-in-the-middle (MITM) attack.

  16. A novel and lightweight system to secure wireless medical sensor networks.

    PubMed

    He, Daojing; Chan, Sammy; Tang, Shaohua

    2014-01-01

    Wireless medical sensor networks (MSNs) are a key enabling technology in e-healthcare that allows the data of a patient's vital body parameters to be collected by the wearable or implantable biosensors. However, the security and privacy protection of the collected data is a major unsolved issue, with challenges coming from the stringent resource constraints of MSN devices, and the high demand for both security/privacy and practicality. In this paper, we propose a lightweight and secure system for MSNs. The system employs hash-chain based key updating mechanism and proxy-protected signature technique to achieve efficient secure transmission and fine-grained data access control. Furthermore, we extend the system to provide backward secrecy and privacy preservation. Our system only requires symmetric-key encryption/decryption and hash operations and is thus suitable for the low-power sensor nodes. This paper also reports the experimental results of the proposed system in a network of resource-limited motes and laptop PCs, which show its efficiency in practice. To the best of our knowledge, this is the first secure data transmission and access control system for MSNs until now.

  17. Measurement-Device-Independent Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Tang, Zhiyuan

    Quantum key distribution (QKD) enables two legitimate parties to share a secret key even in the presence of an eavesdropper. The unconditional security of QKD is based on the fundamental laws of quantum physics. Original security proofs of QKD are based on a few assumptions, e.g., perfect single photon sources and perfect single-photon detectors. However, practical implementations of QKD systems do not fully comply with such assumptions due to technical limitations. The gap between theory and implementations leads to security loopholes in most QKD systems, and several attacks have been launched on sophisticated QKD systems. Particularly, the detectors have been found to be the most vulnerable part of QKD. Much effort has been put to build side-channel-free QKD systems. Solutions such as security patches and device-independent QKD have been proposed. However, the former are normally ad-hoc, and cannot close unidentified loopholes. The latter, while having the advantages of removing all assumptions on devices, is impractical to implement today. Measurement-device-independent QKD (MDI-QKD) turns out to be a promising solution to the security problem of QKD. In MDI-QKD, all security loopholes, including those yet-to-be discovered, have been removed from the detectors, the most critical part in QKD. In this thesis, we investigate issues related to the practical implementation and security of MDI-QKD. We first present a demonstration of polarization-encoding MDI-QKD. Taking finite key effect into account, we achieve a secret key rate of 0.005 bit per second (bps) over 10 km spooled telecom fiber, and a 1600-bit key is distributed. This work, together with other demonstrations, shows the practicality of MDI-QKD. Next we investigate a critical assumption of MDI-QKD: perfect state preparation. We apply the loss-tolerant QKD protocol and adapt it to MDI-QKD to quantify information leakage due to imperfect state preparation. We then present an experimental demonstration of MDI-QKD over 10 km and 40 km of spooled fiber, which for the first time considers the impact of inaccurate polarization state preparation on the secret key rate. This would not have been possible under previous security proofs, given the same amount of state preparation flaws.

  18. Identifying the Key Weaknesses in Network Security at Colleges.

    ERIC Educational Resources Information Center

    Olsen, Florence

    2000-01-01

    A new study identifies and ranks the 10 security gaps responsible for most outsider attacks on college computer networks. The list is intended to help campus system administrators establish priorities as they work to increase security. One network security expert urges that institutions utilize multiple security layers. (DB)

  19. An E-Hospital Security Architecture

    NASA Astrophysics Data System (ADS)

    Tian, Fang; Adams, Carlisle

    In this paper, we introduce how to use cryptography in network security and access control of an e-hospital. We first define the security goal of the e-hospital system, and then we analyze the current application system. Our idea is proposed on the system analysis and the related regulations of patients' privacy protection. The security of the whole application system is strengthened through layered security protection. Three security domains in the e-hospital system are defined according to their sensitivity level, and for each domain, we propose different security protections. We use identity based cryptography to establish secure communication channel in the backbone network and policy based cryptography to establish secure communication channel between end users and the backbone network. We also use policy based cryptography in the access control of the application system. We use a symmetric key cryptography to protect the real data in the database. The identity based and policy based cryptography are all based on elliptic curve cryptography—a public key cryptography.

  20. Information Theoretically Secure, Enhanced Johnson Noise Based Key Distribution over the Smart Grid with Switched Filters

    PubMed Central

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164

  1. Information theoretically secure, enhanced Johnson noise based key distribution over the smart grid with switched filters.

    PubMed

    Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions.

  2. A more secure parallel keyed hash function based on chaotic neural network

    NASA Astrophysics Data System (ADS)

    Huang, Zhongquan

    2011-08-01

    Although various hash functions based on chaos or chaotic neural network were proposed, most of them can not work efficiently in parallel computing environment. Recently, an algorithm for parallel keyed hash function construction based on chaotic neural network was proposed [13]. However, there is a strict limitation in this scheme that its secret keys must be nonce numbers. In other words, if the keys are used more than once in this scheme, there will be some potential security flaw. In this paper, we analyze the cause of vulnerability of the original one in detail, and then propose the corresponding enhancement measures, which can remove the limitation on the secret keys. Theoretical analysis and computer simulation indicate that the modified hash function is more secure and practical than the original one. At the same time, it can keep the parallel merit and satisfy the other performance requirements of hash function, such as good statistical properties, high message and key sensitivity, and strong collision resistance, etc.

  3. The security energy encryption in wireless power transfer

    NASA Astrophysics Data System (ADS)

    Sadzali, M. N.; Ali, A.; Azizan, M. M.; Albreem, M. A. M.

    2017-09-01

    This paper presents a concept of security in wireless power transfer (WPT) by applying chaos theory. Chaos theory is applied as a security system in order to safeguard the transfer of energy from a transmitter to the intended receiver. The energy encryption of the wireless power transfer utilizes chaos theory to generate the possibility of a logistic map for the chaotic security key. The simulation for energy encryption wireless power transfer system was conducted by using MATLAB and Simulink. By employing chaos theory, the chaotic key ensures the transmission of energy from transmitter to its intended receiver.

  4. Security evaluation of the quantum key distribution system with two-mode squeezed states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osaki, M.; Ban, M.

    2003-08-01

    The quantum key distribution (QKD) system with two-mode squeezed states has been demonstrated by Pereira et al. [Phys. Rev. A 62, 042311 (2000)]. They evaluate the security of the system based on the signal to noise ratio attained by a homodyne detector. In this paper, we discuss its security based on the error probability individually attacked by eavesdropper with the unambiguous or the error optimum detection. The influence of the energy loss at transmission channels is also taken into account. It will be shown that the QKD system is secure under these conditions.

  5. Transparent Proxy for Secure E-Mail

    NASA Astrophysics Data System (ADS)

    Michalák, Juraj; Hudec, Ladislav

    2010-05-01

    The paper deals with the security of e-mail messages and e-mail server implementation by means of a transparent SMTP proxy. The security features include encryption and signing of transported messages. The goal is to design and implement a software proxy for secure e-mail including its monitoring, administration, encryption and signing keys administration. In particular, we focus on automatic public key on-the-fly encryption and signing of e-mail messages according to S/MIME standard by means of an embedded computer system whose function can be briefly described as a brouter with transparent SMTP proxy.

  6. Privacy-enhanced electronic mail

    NASA Astrophysics Data System (ADS)

    Bishop, Matt

    1990-06-01

    The security of electronic mail sent through the Internet may be described in exactly three words: there is none. The Privacy and Security Research Group has recommended implementing mechanisms designed to provide security enhancements. The first set of mechanisms provides a protocol to provide privacy, integrity, and authentication for electronic mail; the second provides a certificate-based key management infrastructure to support key distribution throughout the internet, to support the first set of mechanisms. These mechanisms are described, as well as the reasons behind their selection and how these mechanisms can be used to provide some measure of security in the exchange of electronic mail.

  7. 76 FR 3612 - Materials Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Technical Advisory Committee will meet on February 10... materials and related technology. Agenda Open Session 1. Opening Remarks and Introduction. 2. Remarks from...

  8. Proceedings of the Second Annual NASA Science Internet User Working Group Conference

    NASA Technical Reports Server (NTRS)

    Jackson, Lenore A. (Editor); Gary, J. Patrick (Editor)

    1991-01-01

    Copies of the agenda, list of attendees, meeting summaries, and all presentations and exhibit material are contained. Included are plenary sessions, exhibits of advanced networking applications, and user subgroup meetings on NASA Science Internet policy, networking, security, and user services and applications topics.

  9. 75 FR 22553 - Materials Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Technical Advisory Committee will meet on May 13, 2010... applicable to materials and related technology. Agenda Open Session 1. Opening Remarks and Introduction. 2...

  10. 75 FR 67347 - Materials Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Technical Advisory Committee will meet on November 12... materials and related technology. Agenda Open Session 1. Opening remarks by the Chairman and Introduction. 2...

  11. 77 FR 25960 - Materials Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Technical Advisory Committee will meet on May 17, 2012... materials and related technology. Agenda Open Session 1. Opening remarks and introductions. 2. Remarks from...

  12. 75 FR 44227 - Materials Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Technical Advisory Committee will meet on August 12... applicable to materials and related technology. Agenda Open Session 1. Opening Remarks and Introduction. 2...

  13. 77 FR 3440 - Materials Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Technical Advisory Committee will meet on February 9... materials and related technology. Agenda Open Session: 1. Opening Remarks and Introductions. 2. Remarks from...

  14. Security on Cloud Revocation Authority using Identity Based Encryption

    NASA Astrophysics Data System (ADS)

    Rajaprabha, M. N.

    2017-11-01

    As due to the era of cloud computing most of the people are saving there documents, files and other things on cloud spaces. Due to this security over the cloud is also important because all the confidential things are there on the cloud. So to overcome private key infrastructure (PKI) issues some revocable Identity Based Encryption (IBE) techniques are introduced which eliminates the demand of PKI. The technique introduced is key update cloud service provider which is having two issues in it and they are computation and communication cost is high and second one is scalability issue. So to overcome this problem we come along with the system in which the Cloud Revocation Authority (CRA) is there for the security which will only hold the secret key for each user. And the secret key was send with the help of advanced encryption standard security. The key is encrypted and send to the CRA for giving the authentication to the person who wants to share the data or files or for the communication purpose. Through that key only the other user will able to access that file and if the user apply some invalid key on the particular file than the information of that user and file is send to the administrator and administrator is having rights to block that person of black list that person to use the system services.

  15. Music Improves Subjective Feelings Leading to Cardiac Autonomic Nervous Modulation: A Pilot Study

    PubMed Central

    Kume, Satoshi; Nishimura, Yukako; Mizuno, Kei; Sakimoto, Nae; Hori, Hiroshi; Tamura, Yasuhisa; Yamato, Masanori; Mitsuhashi, Rika; Akiba, Keigo; Koizumi, Jun-ichi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-01-01

    It is widely accepted that listening to music improves subjective feelings and reduces fatigue sensations, and different kinds of music lead to different activations of these feelings. Recently, cardiac autonomic nervous modulation has been proposed as a useful objective indicator of fatigue. However, scientific considerations of the relation between feelings of fatigue and cardiac autonomic nervous modulation while listening to music are still lacking. In this study, we examined which subjective feelings of fatigue are related to participants' cardiac autonomic nervous function while they listen to music. We used an album of comfortable and relaxing environmental music, with blended sounds from a piano and violin as well as natural sound sources. We performed a crossover trial of environmental music and silent sessions for 20 healthy subjects, 12 females, and 8 males, after their daily work shift. We measured changes in eight types of subjective feelings, including healing, fatigue, sleepiness, relaxation, and refreshment, using the KOKORO scale, a subjective mood measurement system for self-reported feelings. Further, we obtained measures of cardiac autonomic nervous function on the basis of heart rate variability before and after the sessions. During the music session, subjective feelings significantly shifted toward healing and a secure/relaxed feeling and these changes were greater than those in the silent session. Heart rates (ΔHR) in the music session significantly decreased compared with those in the silent session. Other cardiac autonomic parameters such as high-frequency (HF) component and the ratio of low-frequency (LF) and HF components (LF/HF) were similar in the two sessions. In the linear regression analysis of the feelings with ΔHR and changes in LF/HF (ΔLF/HF), increases and decreases in ΔHR were correlated to the feeling axes of Fatigue-Healing and Anxiety/Tension–Security/Relaxation, whereas those in ΔLF/HF were related to the feeling axes of Sleepiness–Wakefulness and Gloomy–Refreshed. This indicated that listening to music improved the participants' feelings of fatigue and decreased their heart rates. However, it did not reduce the cardiac LF/HF, suggesting that cardiac LF/HF might show a delayed response to fatigue. Thus, we demonstrated changes in cardiac autonomic nervous functions based on feelings of fatigue. PMID:28344545

  16. Music Improves Subjective Feelings Leading to Cardiac Autonomic Nervous Modulation: A Pilot Study.

    PubMed

    Kume, Satoshi; Nishimura, Yukako; Mizuno, Kei; Sakimoto, Nae; Hori, Hiroshi; Tamura, Yasuhisa; Yamato, Masanori; Mitsuhashi, Rika; Akiba, Keigo; Koizumi, Jun-Ichi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-01-01

    It is widely accepted that listening to music improves subjective feelings and reduces fatigue sensations, and different kinds of music lead to different activations of these feelings. Recently, cardiac autonomic nervous modulation has been proposed as a useful objective indicator of fatigue. However, scientific considerations of the relation between feelings of fatigue and cardiac autonomic nervous modulation while listening to music are still lacking. In this study, we examined which subjective feelings of fatigue are related to participants' cardiac autonomic nervous function while they listen to music. We used an album of comfortable and relaxing environmental music, with blended sounds from a piano and violin as well as natural sound sources. We performed a crossover trial of environmental music and silent sessions for 20 healthy subjects, 12 females, and 8 males, after their daily work shift. We measured changes in eight types of subjective feelings, including healing, fatigue, sleepiness, relaxation, and refreshment, using the KOKORO scale, a subjective mood measurement system for self-reported feelings. Further, we obtained measures of cardiac autonomic nervous function on the basis of heart rate variability before and after the sessions. During the music session, subjective feelings significantly shifted toward healing and a secure/relaxed feeling and these changes were greater than those in the silent session. Heart rates (ΔHR) in the music session significantly decreased compared with those in the silent session. Other cardiac autonomic parameters such as high-frequency (HF) component and the ratio of low-frequency (LF) and HF components (LF/HF) were similar in the two sessions. In the linear regression analysis of the feelings with ΔHR and changes in LF/HF (ΔLF/HF), increases and decreases in ΔHR were correlated to the feeling axes of Fatigue-Healing and Anxiety/Tension-Security/Relaxation, whereas those in ΔLF/HF were related to the feeling axes of Sleepiness-Wakefulness and Gloomy-Refreshed. This indicated that listening to music improved the participants' feelings of fatigue and decreased their heart rates. However, it did not reduce the cardiac LF/HF, suggesting that cardiac LF/HF might show a delayed response to fatigue. Thus, we demonstrated changes in cardiac autonomic nervous functions based on feelings of fatigue.

  17. Security, privacy, and confidentiality issues on the Internet

    PubMed Central

    Kelly, Grant; McKenzie, Bruce

    2002-01-01

    We introduce the issues around protecting information about patients and related data sent via the Internet. We begin by reviewing three concepts necessary to any discussion about data security in a healthcare environment: privacy, confidentiality, and consent. We are giving some advice on how to protect local data. Authentication and privacy of e-mail via encryption is offered by Pretty Good Privacy (PGP) and Secure Multipurpose Internet Mail Extensions (S/MIME). The de facto Internet standard for encrypting Web-based information interchanges is Secure Sockets Layer (SSL), more recently known as Transport Layer Security or TLS. There is a public key infrastructure process to `sign' a message whereby the private key of an individual can be used to `hash' the message. This can then be verified against the sender's public key. This ensures the data's authenticity and origin without conferring privacy, and is called a `digital signature'. The best protection against viruses is not opening e-mails from unknown sources or those containing unusual message headers. PMID:12554559

  18. Security, privacy, and confidentiality issues on the Internet.

    PubMed

    Kelly, Grant; McKenzie, Bruce

    2002-01-01

    We introduce the issues around protecting information about patients and related data sent via the Internet. We begin by reviewing three concepts necessary to any discussion about data security in a healthcare environment: privacy, confidentiality, and consent. We are giving some advice on how to protect local data. Authentication and privacy of e-mail via encryption is offered by Pretty Good Privacy (PGP) and Secure Multipurpose Internet Mail Extensions (S/MIME). The de facto Internet standard for encrypting Web-based information interchanges is Secure Sockets Layer (SSL), more recently known as Transport Layer Security or TLS. There is a public key infrastructure process to 'sign' a message whereby the private key of an individual can be used to 'hash' the message. This can then be verified against the sender's public key. This ensures the data's authenticity and origin without conferring privacy, and is called a 'digital signature'. The best protection against viruses is not opening e-mails from unknown sources or those containing unusual message headers.

  19. Secure communications using nonlinear silicon photonic keys.

    PubMed

    Grubel, Brian C; Bosworth, Bryan T; Kossey, Michael R; Cooper, A Brinton; Foster, Mark A; Foster, Amy C

    2018-02-19

    We present a secure communication system constructed using pairs of nonlinear photonic physical unclonable functions (PUFs) that harness physical chaos in integrated silicon micro-cavities. Compared to a large, electronically stored one-time pad, our method provisions large amounts of information within the intrinsically complex nanostructure of the micro-cavities. By probing a micro-cavity with a rapid sequence of spectrally-encoded ultrafast optical pulses and measuring the lightwave responses, we experimentally demonstrate the ability to extract 2.4 Gb of key material from a single micro-cavity device. Subsequently, in a secure communication experiment with pairs of devices, we achieve bit error rates below 10 -5 at code rates of up to 0.1. The PUFs' responses are never transmitted over the channel or stored in digital memory, thus enhancing the security of the system. Additionally, the micro-cavity PUFs are extremely small, inexpensive, robust, and fully compatible with telecommunications infrastructure, components, and electronic fabrication. This approach can serve one-time pad or public key exchange applications where high security is required.

  20. Secure privacy-preserving biometric authentication scheme for telecare medicine information systems.

    PubMed

    Li, Xuelei; Wen, Qiaoyan; Li, Wenmin; Zhang, Hua; Jin, Zhengping

    2014-11-01

    Healthcare delivery services via telecare medicine information systems (TMIS) can help patients to obtain their desired telemedicine services conveniently. However, information security and privacy protection are important issues and crucial challenges in healthcare information systems, where only authorized patients and doctors can employ telecare medicine facilities and access electronic medical records. Therefore, a secure authentication scheme is urgently required to achieve the goals of entity authentication, data confidentiality and privacy protection. This paper investigates a new biometric authentication with key agreement scheme, which focuses on patient privacy and medical data confidentiality in TMIS. The new scheme employs hash function, fuzzy extractor, nonce and authenticated Diffie-Hellman key agreement as primitives. It provides patient privacy protection, e.g., hiding identity from being theft and tracked by unauthorized participant, and preserving password and biometric template from being compromised by trustless servers. Moreover, key agreement supports secure transmission by symmetric encryption to protect patient's medical data from being leaked. Finally, the analysis shows that our proposal provides more security and privacy protection for TMIS.

  1. Secret Key Crypto Implementations

    NASA Astrophysics Data System (ADS)

    Bertoni, Guido Marco; Melzani, Filippo

    This chapter presents the algorithm selected in 2001 as the Advanced Encryption Standard. This algorithm is the base for implementing security and privacy based on symmetric key solutions in almost all new applications. Secret key algorithms are used in combination with modes of operation to provide different security properties. The most used modes of operation are presented in this chapter. Finally an overview of the different techniques of software and hardware implementations is given.

  2. A Secure Key Distribution System of Quantum Cryptography Based on the Coherent State

    NASA Technical Reports Server (NTRS)

    Guo, Guang-Can; Zhang, Xiao-Yu

    1996-01-01

    The cryptographic communication has a lot of important applications, particularly in the magnificent prospects of private communication. As one knows, the security of cryptographic channel depends crucially on the secrecy of the key. The Vernam cipher is the only cipher system which has guaranteed security. In that system the key must be as long as the message and most be used only once. Quantum cryptography is a method whereby key secrecy can be guaranteed by a physical law. So it is impossible, even in principle, to eavesdrop on such channels. Quantum cryptography has been developed in recent years. Up to now, many schemes of quantum cryptography have been proposed. Now one of the main problems in this field is how to increase transmission distance. In order to use quantum nature of light, up to now proposed schemes all use very dim light pulses. The average photon number is about 0.1. Because of the loss of the optical fiber, it is difficult for the quantum cryptography based on one photon level or on dim light to realize quantum key-distribution over long distance. A quantum key distribution based on coherent state is introduced in this paper. Here we discuss the feasibility and security of this scheme.

  3. The Secure Rural Schools and Community Self-Determination Act of 2000. Hearing before the Subcommittee on Public Lands and Forests of the Committee on Energy and Natural Resources, United States Senate, One Hundred Ninth Congress, First Session (February 8, 2005). Senate Hearing 109-5

    ERIC Educational Resources Information Center

    US Senate, 2005

    2005-01-01

    The purpose of this hearing was to review the implementation of Titles I through III of Public Law 106-393, "The Secure Rural Schools and Community Self-Determination Act of 2000." Statements were presented by: Honorable Jeff Bingaman, U.S. Senator from New Mexico; Honorable Maria Cantwell, U.S. Senator from Washington; Honorable Larry…

  4. Privacy Protection for Telecare Medicine Information Systems Using a Chaotic Map-Based Three-Factor Authenticated Key Agreement Scheme.

    PubMed

    Zhang, Liping; Zhu, Shaohui; Tang, Shanyu

    2017-03-01

    Telecare medicine information systems (TMIS) provide flexible and convenient e-health care. However, the medical records transmitted in TMIS are exposed to unsecured public networks, so TMIS are more vulnerable to various types of security threats and attacks. To provide privacy protection for TMIS, a secure and efficient authenticated key agreement scheme is urgently needed to protect the sensitive medical data. Recently, Mishra et al. proposed a biometrics-based authenticated key agreement scheme for TMIS by using hash function and nonce, they claimed that their scheme could eliminate the security weaknesses of Yan et al.'s scheme and provide dynamic identity protection and user anonymity. In this paper, however, we demonstrate that Mishra et al.'s scheme suffers from replay attacks, man-in-the-middle attacks and fails to provide perfect forward secrecy. To overcome the weaknesses of Mishra et al.'s scheme, we then propose a three-factor authenticated key agreement scheme to enable the patient to enjoy the remote healthcare services via TMIS with privacy protection. The chaotic map-based cryptography is employed in the proposed scheme to achieve a delicate balance of security and performance. Security analysis demonstrates that the proposed scheme resists various attacks and provides several attractive security properties. Performance evaluation shows that the proposed scheme increases efficiency in comparison with other related schemes.

  5. Volunteer and user evaluation of the National Sexual Assault Online Hotline.

    PubMed

    Finn, Jerry; Garner, Michelle D; Wilson, Jen

    2011-08-01

    The National Sexual Assault Online Hotline (NSAOH) is a new model for delivery of rape and sexual assault crisis services through a secure, confidential chat-based online hotline. This paper presents a program evaluation drawn from volunteer counselor and user perceptions and experiences during the second year of operation of the NSAOH. Outcome data are presented from 731 session evaluations submitted by 94 volunteers and session evaluations from 4609 user sessions collected between June 1, 2008 and May 30, 2009. Evaluation includes ratings of usefulness, topics discussed, length of sessions, services provided, and session difficulties. The results indicate that the model is viable and useful, and the majority of volunteers and users are satisfied. Volunteer knowledge and skills are strongly associated with satisfaction with the hotline. Nevertheless, one-fifth of volunteers rate their session as not useful and users rate 8.2% of volunteers low in knowledge and skills. NSAOH is reaching many who have not previously sought services or did not resolve issues through other means. Findings suggest the importance of preparing volunteers in both crisis intervention and a wide variety of long-term issues related to sexual assault. Recommendations for program development, evaluation, and further research are presented. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Song, Xiao-Tian; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2015-10-01

    Measurement-device-independent quantum key distribution (MDI QKD) is a substantial step toward practical information-theoretic security for key sharing between remote legitimate users (Alice and Bob). As with other standard device-dependent quantum key distribution protocols, such as BB84, MDI QKD assumes that the reference frames have been shared between Alice and Bob. In practice, a nontrivial alignment procedure is often necessary, which requires system resources and may significantly reduce the secure key generation rate. Here, we propose a phase-coding reference-frame-independent MDI QKD scheme that requires no phase alignment between the interferometers of two distant legitimate parties. As a demonstration, a proof-of-principle experiment using Faraday-Michelson interferometers is presented. The experimental system worked at 1 MHz, and an average secure key rate of 8.309 bps was obtained at a fiber length of 20 km between Alice and Bob. The system can maintain a positive key generation rate without phase compensation under normal conditions. The results exhibit the feasibility of our system for use in mature MDI QKD devices and its value for network scenarios.

  7. Advances in Cryptology - EUROCRYPT’ 97

    DTIC Science & Technology

    1998-05-03

    public keys is about T/102. For example, one can choose T ~ 227.67 and M ~ 2 35.65. To obtain the secret session key from the determined internal state...scenario, where the objective is to reconstruct the secret key controlled LFSR initial states from the known keystream sequence, for a survey see... the secret message keys defining different initial internal states. This may open new possibilities for the secret key recovery cryptanalytic attacks

  8. Secure NFV Orchestration Over an SDN-Controlled Optical Network With Time-Shared Quantum Key Distribution Resources

    NASA Astrophysics Data System (ADS)

    Aguado, Alejandro; Hugues-Salas, Emilio; Haigh, Paul Anthony; Marhuenda, Jaume; Price, Alasdair B.; Sibson, Philip; Kennard, Jake E.; Erven, Chris; Rarity, John G.; Thompson, Mark Gerard; Lord, Andrew; Nejabati, Reza; Simeonidou, Dimitra

    2017-04-01

    We demonstrate, for the first time, a secure optical network architecture that combines NFV orchestration and SDN control with quantum key distribution (QKD) technology. A novel time-shared QKD network design is presented as a cost-effective solution for practical networks.

  9. Under Lock and Key: Preventing Campus Theft of Electronic Equipment.

    ERIC Educational Resources Information Center

    Harrison, J. Phil

    1996-01-01

    A discussion of computer theft prevention on college campuses looks at a variety of elements in electronic equipment security, including the extent of the problem, physical antitheft products, computerized access, control of key access, alarm systems, competent security personnel, lighting, use of layers of protection, and increasing…

  10. 75 FR 36642 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... relating to the issue, return, and accountability of keys to secure areas. Records may contain name, Social... disposing of records in the system: Storage: Paper records in file folders and electronic storage media. Retrievability: By name, Social Security Number (SSN), key number, personal identification number (PIN), Magnetic...

  11. Securing Digital Audio using Complex Quadratic Map

    NASA Astrophysics Data System (ADS)

    Suryadi, MT; Satria Gunawan, Tjandra; Satria, Yudi

    2018-03-01

    In This digital era, exchanging data are common and easy to do, therefore it is vulnerable to be attacked and manipulated from unauthorized parties. One data type that is vulnerable to attack is digital audio. So, we need data securing method that is not vulnerable and fast. One of the methods that match all of those criteria is securing the data using chaos function. Chaos function that is used in this research is complex quadratic map (CQM). There are some parameter value that causing the key stream that is generated by CQM function to pass all 15 NIST test, this means that the key stream that is generated using this CQM is proven to be random. In addition, samples of encrypted digital sound when tested using goodness of fit test are proven to be uniform, so securing digital audio using this method is not vulnerable to frequency analysis attack. The key space is very huge about 8.1×l031 possible keys and the key sensitivity is very small about 10-10, therefore this method is also not vulnerable against brute-force attack. And finally, the processing speed for both encryption and decryption process on average about 450 times faster that its digital audio duration.

  12. Using negative pressure therapy for improving skin graft taking on genital area defects following Fournier gangrene.

    PubMed

    Orhan, Erkan; Şenen, Dilek

    2017-09-01

    Fournier's gangrene is an infective necrotizing fasciitis of the perineal, genital and perianal regions. Treatment includes aggressive surgical debridement that often results in extensive loss of genital skin. Skin grafts may be used for reconstruction but skin grafting of the male genitalia is diffucult because the penis and scrotum are mobile and deformable. A variety of methods are used to secure skin graft to recipient beds. We used negative pressure therapy (NPT) to secure skin grafts and improve skin graft taking. We used negative pressure therapy for graft fixation in 13 male patients who underwent debridements with the indication of Fournier gangrene, and whose defects formed were reconstructed with grafts between January 2009, and January 2014. Information about age of the patients, sessions of negative pressure therapy applied before, and after reconstruction, duration of hospital stay, and graft losses during postoperative period were recorded. Median age of the patients was 56.15 (46-72) years. NPT was applied to patients for an average of 6.64 sessions (4-12) before and 1 sessions after graft reconstruction. Patients were hospitalized for an average of 26.7 (20-39) days. Any graft loss was not seen after NPT. Because of the peculiar anatomy of the genital region, anchoring of grafts is difficult so graft losses are often encountered. Use of NPT for ensuring graft fixation on the genital region prevents skin graft shearing.

  13. 76 FR 21705 - Closed Meeting of the Defense Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    .... national defense posture and homeland security. In accordance with section 10(d) of the Federal Advisory... DEPARTMENT OF DEFENSE Office of the Secretary Closed Meeting of the Defense Science Board AGENCY: Department of Defense. ACTION: Notice. SUMMARY: The Defense Science Board will meet in closed session on May...

  14. 76 FR 323 - Information Systems Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...), Building 33, Cloud Room, 53560 Hull Street, San Diego, California 92152. The Committee advises the Office... and Relation to Category 3 5. Godson Microprocessor Project 6. Autonomous Vehicle Project 7. Cloud Computing, Technology and Security Issues Thursday, January 27 Closed Session 8. Discussion of matters...

  15. Nuclear Security: Target Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Surinder Paul; Gibbs, Philip W.; Bultz, Garl A.

    2014-03-01

    This objectives of this session were to understand the basic steps of target identification; describe the SNRI targets in detail; characterize specific targets with more detail; prioritize targets based on guidance documents; understand the graded safeguards concept; identify roll up and understand why it is a concern; and recognize the category for different materials.

  16. The Technology Security Program. A Report to the 99th Congress, Second Session

    DTIC Science & Technology

    1986-01-01

    and implement effective and practical controls on advanced technologies. DoD has proposed and has collaborated with the Dept. of Commerce to establish...technology. The United States, the other NATO nations and Japan continue to revise the COCOM (coordinating Committee on Export Controls ) control list and

  17. 76 FR 21331 - Materials Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Technical Advisory Committee will meet on May 12, 2011... materials and related technology. Agenda Open Session 1. Opening Remarks by the Chairman and Introduction. 2...

  18. Some Effects of Procedural Variations on Choice Responding in Concurrent Chains

    ERIC Educational Resources Information Center

    Moore, J.

    2009-01-01

    The present research used pigeons in a three-key operant chamber and varied procedural features pertaining to both initial and terminal links of concurrent chains. The initial links randomly alternated on the side keys during a session, while the terminal links always appeared on the center key. Both equal and unequal initial-link schedules were…

  19. A session-to-session examination of homework engagement in cognitive therapy for depression: Do patients experience immediate benefits?

    PubMed

    Conklin, Laren R; Strunk, Daniel R

    2015-09-01

    Homework is a key component of Cognitive Therapy (CT) for depression. Although previous research has found evidence for a positive relationship between homework compliance and treatment outcome, the methods used in previous studies have often not been optimal. In this study, we examine the relation of specific aspects of homework engagement and symptom change over successive session-to-session intervals. In a sample of 53 depressed adults participating in CT, we examined the relation of observer-rated homework engagement and session-to-session symptom change across the first five sessions. Within patient (and not between patient) variability in homework engagement was significantly related to greater session-to-session symptom improvements. These findings were similar when homework engagement was assessed through a measure of general engagement with homework assignments and a measure assessing engagement in specific assignments often used in CT. Secondary analyses suggested that observer ratings of the effort patients made on homework and the completion of cognitive homework were the numerically strongest predictors of depressive symptom improvements. Patient engagement with homework assignments appears to be an important predictor of early session-to-session symptom improvements. Future research is needed to identify what therapist behaviors promote homework engagement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A Session-to-Session Examination of Homework Engagement in Cognitive Therapy for Depression: Do patients experience immediate benefits?

    PubMed Central

    Conklin, Laren R.; Strunk, Daniel R.

    2015-01-01

    Homework is a key component of Cognitive Therapy (CT) for depression. Although previous research has found evidence for a positive relationship between homework compliance and treatment outcome, the methods used in previous studies have often not been optimal. In this study, we examine the relation of specific aspects of homework engagement and symptom change over successive session-to-session intervals. In a sample of 53 depressed adults participating in CT, we examined the relation of observer-rated homework engagement and session-to-session symptom change across the first five sessions. Within patient (and not between patient) variability in homework engagement was significantly related to session-to-session symptom improvements. These findings were similar when homework engagement was assessed through a measure of general engagement with homework assignments and a measure assessing engagement in specific assignments often used in CT. Secondary analyses suggested that observer ratings of the effort patients made on homework and the completion of cognitive homework were the numerically strongest predictors of depressive symptom improvements. Patient engagement with homework assignments appears to be an important predictor of early session-to-session symptom improvements. Future research is needed to identify what therapist behaviors promote homework engagement. PMID:26183022

  1. Employing a Secure Virtual Private Network (VPN) Infrastructure as a Global Command and Control Gateway to Dynamically Connect and Disconnect Diverse Forces an a Task-Force-By-Task-Force Basis

    DTIC Science & Technology

    2009-09-01

    DIFFIE-HELLMAN KEY EXCHANGE .......................14 III. GHOSTNET SETUP .........................................15 A. INSTALLATION OF OPENVPN FOR...16 3. Verifying the Secure Connection ..............16 B. RUNNING OPENVPN AS A SERVER ON WINDOWS ............17 1. Creating...Generating Server and Client Keys ............20 5. Keys to Transfer to the Client ...............21 6. Configuring OpenVPN to Use Certificates

  2. Secure Communication via Key Generation with Quantum Measurement Advantage in the Telecom Band

    DTIC Science & Technology

    2013-10-30

    II: Summary of Project In this basic research program we proposed to investigate the use of keyed communication in quantum noise as a key generation...implement quantum limited detection in our running-code OCDMA experiment to demonstrate (a) quantum measurement advantage creation between two users, (b...neither is adequate against known-plaintext attacks. This is a serious security problem facing the whole field of quantum cryptography in regard to both

  3. One Step Quantum Key Distribution Based on EPR Entanglement.

    PubMed

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-06-30

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper's attack would introduce at least an error rate of 46.875%. Compared with the "Ping-pong" protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step.

  4. Attribute based encryption for secure sharing of E-health data

    NASA Astrophysics Data System (ADS)

    Charanya, R.; Nithya, S.; Manikandan, N.

    2017-11-01

    Distributed computing is one of the developing innovations in IT part and information security assumes a real part. It includes sending gathering of remote server and programming that permit the unified information and online access to PC administrations. Distributed computing depends on offering of asset among different clients are additionally progressively reallocated on interest. Cloud computing is a revolutionary computing paradigm which enables flexible, on-demand and low-cost usage of computing resources. The reasons for security and protection issues, which rise on the grounds that the health information possessed by distinctive clients are put away in some cloud servers rather than under their own particular control”z. To deal with security problems, various schemes based on the Attribute-Based Encryption have been proposed. In this paper, in order to make ehealth data’s more secure we use multi party in cloud computing system. Where the health data is encrypted using attributes and key policy. And the user with a particular attribute and key policy alone will be able to decrypt the health data after it is verified by “key distribution centre” and the “secure data distributor”. This technique can be used in medical field for secure storage of patient details and limiting to particular doctor access. To make data’s scalable secure we need to encrypt the health data before outsourcing.

  5. Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing.

    PubMed

    Scarani, Valerio; Renner, Renato

    2008-05-23

    We derive a bound for the security of quantum key distribution with finite resources under one-way postprocessing, based on a definition of security that is composable and has an operational meaning. While our proof relies on the assumption of collective attacks, unconditional security follows immediately for standard protocols such as Bennett-Brassard 1984 and six-states protocol. For single-qubit implementations of such protocols, we find that the secret key rate becomes positive when at least N approximately 10(5) signals are exchanged and processed. For any other discrete-variable protocol, unconditional security can be obtained using the exponential de Finetti theorem, but the additional overhead leads to very pessimistic estimates.

  6. Efficient and Provable Secure Pairing-Free Security-Mediated Identity-Based Identification Schemes

    PubMed Central

    Chin, Ji-Jian; Tan, Syh-Yuan; Heng, Swee-Huay; Phan, Raphael C.-W.

    2014-01-01

    Security-mediated cryptography was first introduced by Boneh et al. in 2001. The main motivation behind security-mediated cryptography was the capability to allow instant revocation of a user's secret key by necessitating the cooperation of a security mediator in any given transaction. Subsequently in 2003, Boneh et al. showed how to convert a RSA-based security-mediated encryption scheme from a traditional public key setting to an identity-based one, where certificates would no longer be required. Following these two pioneering papers, other cryptographic primitives that utilize a security-mediated approach began to surface. However, the security-mediated identity-based identification scheme (SM-IBI) was not introduced until Chin et al. in 2013 with a scheme built on bilinear pairings. In this paper, we improve on the efficiency results for SM-IBI schemes by proposing two schemes that are pairing-free and are based on well-studied complexity assumptions: the RSA and discrete logarithm assumptions. PMID:25207333

  7. Efficient and provable secure pairing-free security-mediated identity-based identification schemes.

    PubMed

    Chin, Ji-Jian; Tan, Syh-Yuan; Heng, Swee-Huay; Phan, Raphael C-W

    2014-01-01

    Security-mediated cryptography was first introduced by Boneh et al. in 2001. The main motivation behind security-mediated cryptography was the capability to allow instant revocation of a user's secret key by necessitating the cooperation of a security mediator in any given transaction. Subsequently in 2003, Boneh et al. showed how to convert a RSA-based security-mediated encryption scheme from a traditional public key setting to an identity-based one, where certificates would no longer be required. Following these two pioneering papers, other cryptographic primitives that utilize a security-mediated approach began to surface. However, the security-mediated identity-based identification scheme (SM-IBI) was not introduced until Chin et al. in 2013 with a scheme built on bilinear pairings. In this paper, we improve on the efficiency results for SM-IBI schemes by proposing two schemes that are pairing-free and are based on well-studied complexity assumptions: the RSA and discrete logarithm assumptions.

  8. Layered Location-Based Security Mechanism for Mobile Sensor Networks: Moving Security Areas.

    PubMed

    Wang, Ze; Zhang, Haijuan; Wu, Luqiang; Zhou, Chang

    2015-09-25

    Network security is one of the most important issues in mobile sensor networks (MSNs). Networks are particularly vulnerable in hostile environments because of many factors, such as uncertain mobility, limitations on computation, and the need for storage in mobile nodes. Though some location-based security mechanisms can resist some malicious attacks, they are only suitable for static networks and may sometimes require large amounts of storage. To solve these problems, using location information, which is one of the most important properties in outdoor wireless networks, a security mechanism called a moving security area (MSA) is proposed to resist malicious attacks by using mobile nodes' dynamic location-based keys. The security mechanism is layered by performing different detection schemes inside or outside the MSA. The location-based private keys will be updated only at the appropriate moments, considering the balance of cost and security performance. By transferring parts of the detection tasks from ordinary nodes to the sink node, the memory requirements are distributed to different entities to save limited energy.

  9. A Study on the Secure User Profiling Structure and Procedure for Home Healthcare Systems.

    PubMed

    Ko, Hoon; Song, MoonBae

    2016-01-01

    Despite of various benefits such as a convenience and efficiency, home healthcare systems have some inherent security risks that may cause a serious leak on personal health information. This work presents a Secure User Profiling Structure which has the patient information including their health information. A patient and a hospital keep it at that same time, they share the updated data. While they share the data and communicate, the data can be leaked. To solve the security problems, a secure communication channel with a hash function and an One-Time Password between a client and a hospital should be established and to generate an input value to an OTP, it uses a dual hash-function. This work presents a dual hash function-based approach to generate the One-Time Password ensuring a secure communication channel with the secured key. In result, attackers are unable to decrypt the leaked information because of the secured key; in addition, the proposed method outperforms the existing methods in terms of computation cost.

  10. Combination of Rivest-Shamir-Adleman Algorithm and End of File Method for Data Security

    NASA Astrophysics Data System (ADS)

    Rachmawati, Dian; Amalia, Amalia; Elviwani

    2018-03-01

    Data security is one of the crucial issues in the delivery of information. One of the ways which used to secure the data is by encoding it into something else that is not comprehensible by human beings by using some crypto graphical techniques. The Rivest-Shamir-Adleman (RSA) cryptographic algorithm has been proven robust to secure messages. Since this algorithm uses two different keys (i.e., public key and private key) at the time of encryption and decryption, it is classified as asymmetric cryptography algorithm. Steganography is a method that is used to secure a message by inserting the bits of the message into a larger media such as an image. One of the known steganography methods is End of File (EoF). In this research, the cipher text resulted from the RSA algorithm is compiled into an array form and appended to the end of the image. The result of the EoF is the image which has a line with black gradations under it. This line contains the secret message. This combination of cryptography and steganography in securing the message is expected to increase the security of the message, since the message encryption technique (RSA) is mixed with the data hiding technique (EoF).

  11. Password-only authenticated three-party key exchange proven secure against insider dictionary attacks.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Paik, Juryon; Won, Dongho

    2014-01-01

    While a number of protocols for password-only authenticated key exchange (PAKE) in the 3-party setting have been proposed, it still remains a challenging task to prove the security of a 3-party PAKE protocol against insider dictionary attacks. To the best of our knowledge, there is no 3-party PAKE protocol that carries a formal proof, or even definition, of security against insider dictionary attacks. In this paper, we present the first 3-party PAKE protocol proven secure against both online and offline dictionary attacks as well as insider and outsider dictionary attacks. Our construct can be viewed as a protocol compiler that transforms any 2-party PAKE protocol into a 3-party PAKE protocol with 2 additional rounds of communication. We also present a simple and intuitive approach of formally modelling dictionary attacks in the password-only 3-party setting, which significantly reduces the complexity of proving the security of 3-party PAKE protocols against dictionary attacks. In addition, we investigate the security of the well-known 3-party PAKE protocol, called GPAKE, due to Abdalla et al. (2005, 2006), and demonstrate that the security of GPAKE against online dictionary attacks depends heavily on the composition of its two building blocks, namely a 2-party PAKE protocol and a 3-party key distribution protocol.

  12. Image encryption based on a delayed fractional-order chaotic logistic system

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Huang, Xia; Li, Ning; Song, Xiao-Na

    2012-05-01

    A new image encryption scheme is proposed based on a delayed fractional-order chaotic logistic system. In the process of generating a key stream, the time-varying delay and fractional derivative are embedded in the proposed scheme to improve the security. Such a scheme is described in detail with security analyses including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. Experimental results show that the newly proposed image encryption scheme possesses high security.

  13. Long-distance continuous-variable quantum key distribution by controlling excess noise

    NASA Astrophysics Data System (ADS)

    Huang, Duan; Huang, Peng; Lin, Dakai; Zeng, Guihua

    2016-01-01

    Quantum cryptography founded on the laws of physics could revolutionize the way in which communication information is protected. Significant progresses in long-distance quantum key distribution based on discrete variables have led to the secure quantum communication in real-world conditions being available. However, the alternative approach implemented with continuous variables has not yet reached the secure distance beyond 100 km. Here, we overcome the previous range limitation by controlling system excess noise and report such a long distance continuous-variable quantum key distribution experiment. Our result paves the road to the large-scale secure quantum communication with continuous variables and serves as a stepping stone in the quest for quantum network.

  14. Long-distance continuous-variable quantum key distribution by controlling excess noise.

    PubMed

    Huang, Duan; Huang, Peng; Lin, Dakai; Zeng, Guihua

    2016-01-13

    Quantum cryptography founded on the laws of physics could revolutionize the way in which communication information is protected. Significant progresses in long-distance quantum key distribution based on discrete variables have led to the secure quantum communication in real-world conditions being available. However, the alternative approach implemented with continuous variables has not yet reached the secure distance beyond 100 km. Here, we overcome the previous range limitation by controlling system excess noise and report such a long distance continuous-variable quantum key distribution experiment. Our result paves the road to the large-scale secure quantum communication with continuous variables and serves as a stepping stone in the quest for quantum network.

  15. Long-distance continuous-variable quantum key distribution by controlling excess noise

    PubMed Central

    Huang, Duan; Huang, Peng; Lin, Dakai; Zeng, Guihua

    2016-01-01

    Quantum cryptography founded on the laws of physics could revolutionize the way in which communication information is protected. Significant progresses in long-distance quantum key distribution based on discrete variables have led to the secure quantum communication in real-world conditions being available. However, the alternative approach implemented with continuous variables has not yet reached the secure distance beyond 100 km. Here, we overcome the previous range limitation by controlling system excess noise and report such a long distance continuous-variable quantum key distribution experiment. Our result paves the road to the large-scale secure quantum communication with continuous variables and serves as a stepping stone in the quest for quantum network. PMID:26758727

  16. High performance reconciliation for continuous-variable quantum key distribution with LDPC code

    NASA Astrophysics Data System (ADS)

    Lin, Dakai; Huang, Duan; Huang, Peng; Peng, Jinye; Zeng, Guihua

    2015-03-01

    Reconciliation is a significant procedure in a continuous-variable quantum key distribution (CV-QKD) system. It is employed to extract secure secret key from the resulted string through quantum channel between two users. However, the efficiency and the speed of previous reconciliation algorithms are low. These problems limit the secure communication distance and the secure key rate of CV-QKD systems. In this paper, we proposed a high-speed reconciliation algorithm through employing a well-structured decoding scheme based on low density parity-check (LDPC) code. The complexity of the proposed algorithm is reduced obviously. By using a graphics processing unit (GPU) device, our method may reach a reconciliation speed of 25 Mb/s for a CV-QKD system, which is currently the highest level and paves the way to high-speed CV-QKD.

  17. Application of homomorphism to secure image sharing

    NASA Astrophysics Data System (ADS)

    Islam, Naveed; Puech, William; Hayat, Khizar; Brouzet, Robert

    2011-09-01

    In this paper, we present a new approach for sharing images between l players by exploiting the additive and multiplicative homomorphic properties of two well-known public key cryptosystems, i.e. RSA and Paillier. Contrary to the traditional schemes, the proposed approach employs secret sharing in a way that limits the influence of the dealer over the protocol and allows each player to participate with the help of his key-image. With the proposed approach, during the encryption step, each player encrypts his own key-image using the dealer's public key. The dealer encrypts the secret-to-be-shared image with the same public key and then, the l encrypted key-images plus the encrypted to-be shared image are multiplied homomorphically to get another encrypted image. After this step, the dealer can safely get a scrambled image which corresponds to the addition or multiplication of the l + 1 original images ( l key-images plus the secret image) because of the additive homomorphic property of the Paillier algorithm or multiplicative homomorphic property of the RSA algorithm. When the l players want to extract the secret image, they do not need to use keys and the dealer has no role. Indeed, with our approach, to extract the secret image, the l players need only to subtract their own key-image with no specific order from the scrambled image. Thus, the proposed approach provides an opportunity to use operators like multiplication on encrypted images for the development of a secure privacy preserving protocol in the image domain. We show that it is still possible to extract a visible version of the secret image with only l-1 key-images (when one key-image is missing) or when the l key-images used for the extraction are different from the l original key-images due to a lossy compression for example. Experimental results and security analysis verify and prove that the proposed approach is secure from cryptographic viewpoint.

  18. Fourier domain asymmetric cryptosystem for privacy protected multimodal biometric security

    NASA Astrophysics Data System (ADS)

    Choudhury, Debesh

    2016-04-01

    We propose a Fourier domain asymmetric cryptosystem for multimodal biometric security. One modality of biometrics (such as face) is used as the plaintext, which is encrypted by another modality of biometrics (such as fingerprint). A private key is synthesized from the encrypted biometric signature by complex spatial Fourier processing. The encrypted biometric signature is further encrypted by other biometric modalities, and the corresponding private keys are synthesized. The resulting biometric signature is privacy protected since the encryption keys are provided by the human, and hence those are private keys. Moreover, the decryption keys are synthesized using those private encryption keys. The encrypted signatures are decrypted using the synthesized private keys and inverse complex spatial Fourier processing. Computer simulations demonstrate the feasibility of the technique proposed.

  19. A Secured Authentication Protocol for SIP Using Elliptic Curves Cryptography

    NASA Astrophysics Data System (ADS)

    Chen, Tien-Ho; Yeh, Hsiu-Lien; Liu, Pin-Chuan; Hsiang, Han-Chen; Shih, Wei-Kuan

    Session initiation protocol (SIP) is a technology regularly performed in Internet Telephony, and Hyper Text Transport Protocol (HTTP) as digest authentication is one of the major methods for SIP authentication mechanism. In 2005, Yang et al. pointed out that HTTP could not resist server spoofing attack and off-line guessing attack and proposed a secret authentication with Diffie-Hellman concept. In 2009, Tsai proposed a nonce based authentication protocol for SIP. In this paper, we demonstrate that their protocol could not resist the password guessing attack and insider attack. Furthermore, we propose an ECC-based authentication mechanism to solve their issues and present security analysis of our protocol to show that ours is suitable for applications with higher security requirement.

  20. Physical key-protected one-time pad

    PubMed Central

    Horstmeyer, Roarke; Judkewitz, Benjamin; Vellekoop, Ivo M.; Assawaworrarit, Sid; Yang, Changhuei

    2013-01-01

    We describe an encrypted communication principle that forms a secure link between two parties without electronically saving either of their keys. Instead, random cryptographic bits are kept safe within the unique mesoscopic randomness of two volumetric scattering materials. We demonstrate how a shared set of patterned optical probes can generate 10 gigabits of statistically verified randomness between a pair of unique 2 mm3 scattering objects. This shared randomness is used to facilitate information-theoretically secure communication following a modified one-time pad protocol. Benefits of volumetric physical storage over electronic memory include the inability to probe, duplicate or selectively reset any bits without fundamentally altering the entire key space. Our ability to securely couple the randomness contained within two unique physical objects can extend to strengthen hardware required by a variety of cryptographic protocols, which is currently a critically weak link in the security pipeline of our increasingly mobile communication culture. PMID:24345925

Top