Sample records for security camera system

  1. Situational Awareness from a Low-Cost Camera System

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Ward, David; Lesage, John

    2010-01-01

    A method gathers scene information from a low-cost camera system. Existing surveillance systems using sufficient cameras for continuous coverage of a large field necessarily generate enormous amounts of raw data. Digitizing and channeling that data to a central computer and processing it in real time is difficult when using low-cost, commercially available components. A newly developed system is located on a combined power and data wire to form a string-of-lights camera system. Each camera is accessible through this network interface using standard TCP/IP networking protocols. The cameras more closely resemble cell-phone cameras than traditional security camera systems. Processing capabilities are built directly onto the camera backplane, which helps maintain a low cost. The low power requirements of each camera allow the creation of a single imaging system comprising over 100 cameras. Each camera has built-in processing capabilities to detect events and cooperatively share this information with neighboring cameras. The location of the event is reported to the host computer in Cartesian coordinates computed from data correlation across multiple cameras. In this way, events in the field of view can present low-bandwidth information to the host rather than high-bandwidth bitmap data constantly being generated by the cameras. This approach offers greater flexibility than conventional systems, without compromising performance through using many small, low-cost cameras with overlapping fields of view. This means significant increased viewing without ignoring surveillance areas, which can occur when pan, tilt, and zoom cameras look away. Additionally, due to the sharing of a single cable for power and data, the installation costs are lower. The technology is targeted toward 3D scene extraction and automatic target tracking for military and commercial applications. Security systems and environmental/ vehicular monitoring systems are also potential applications.

  2. Coordinating High-Resolution Traffic Cameras : Developing Intelligent, Collaborating Cameras for Transportation Security and Communications

    DOT National Transportation Integrated Search

    2015-08-01

    Cameras are used prolifically to monitor transportation incidents, infrastructure, and congestion. Traditional camera systems often require human monitoring and only offer low-resolution video. Researchers for the Exploratory Advanced Research (EAR) ...

  3. 75 FR 60495 - Notice of Intent To Rule on Request To Release Airport Property at Monroe Regional Airport...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... upgrade and expand the security camera system to include more of the Security Passenger Holding area as well as cameras for airfield surveillance. Any person may inspect the request in person at the FAA...

  4. Secure chaotic map based block cryptosystem with application to camera sensor networks.

    PubMed

    Guo, Xianfeng; Zhang, Jiashu; Khan, Muhammad Khurram; Alghathbar, Khaled

    2011-01-01

    Recently, Wang et al. presented an efficient logistic map based block encryption system. The encryption system employs feedback ciphertext to achieve plaintext dependence of sub-keys. Unfortunately, we discovered that their scheme is unable to withstand key stream attack. To improve its security, this paper proposes a novel chaotic map based block cryptosystem. At the same time, a secure architecture for camera sensor network is constructed. The network comprises a set of inexpensive camera sensors to capture the images, a sink node equipped with sufficient computation and storage capabilities and a data processing server. The transmission security between the sink node and the server is gained by utilizing the improved cipher. Both theoretical analysis and simulation results indicate that the improved algorithm can overcome the flaws and maintain all the merits of the original cryptosystem. In addition, computational costs and efficiency of the proposed scheme are encouraging for the practical implementation in the real environment as well as camera sensor network.

  5. Secure Chaotic Map Based Block Cryptosystem with Application to Camera Sensor Networks

    PubMed Central

    Guo, Xianfeng; Zhang, Jiashu; Khan, Muhammad Khurram; Alghathbar, Khaled

    2011-01-01

    Recently, Wang et al. presented an efficient logistic map based block encryption system. The encryption system employs feedback ciphertext to achieve plaintext dependence of sub-keys. Unfortunately, we discovered that their scheme is unable to withstand key stream attack. To improve its security, this paper proposes a novel chaotic map based block cryptosystem. At the same time, a secure architecture for camera sensor network is constructed. The network comprises a set of inexpensive camera sensors to capture the images, a sink node equipped with sufficient computation and storage capabilities and a data processing server. The transmission security between the sink node and the server is gained by utilizing the improved cipher. Both theoretical analysis and simulation results indicate that the improved algorithm can overcome the flaws and maintain all the merits of the original cryptosystem. In addition, computational costs and efficiency of the proposed scheme are encouraging for the practical implementation in the real environment as well as camera sensor network. PMID:22319371

  6. OpenCV and TYZX : video surveillance for tracking.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jim; Spencer, Andrew; Chu, Eric

    2008-08-01

    As part of the National Security Engineering Institute (NSEI) project, several sensors were developed in conjunction with an assessment algorithm. A camera system was developed in-house to track the locations of personnel within a secure room. In addition, a commercial, off-the-shelf (COTS) tracking system developed by TYZX was examined. TYZX is a Bay Area start-up that has developed its own tracking hardware and software which we use as COTS support for robust tracking. This report discusses the pros and cons of each camera system, how they work, a proposed data fusion method, and some visual results. Distributed, embedded image processingmore » solutions show the most promise in their ability to track multiple targets in complex environments and in real-time. Future work on the camera system may include three-dimensional volumetric tracking by using multiple simple cameras, Kalman or particle filtering, automated camera calibration and registration, and gesture or path recognition.« less

  7. Securing a Lock on Safety.

    ERIC Educational Resources Information Center

    Daneman, Kathy

    1998-01-01

    Describes the integration of security systems to provide enhanced security that is both effective and long lasting. Examines combining card-access systems with camera surveillance, and highly visible emergency phones and security officers. as one of many possible combinations. Some systems most capable of being integrated are listed. (GR)

  8. Security warning system monitors up to fifteen remote areas simultaneously

    NASA Technical Reports Server (NTRS)

    Fusco, R. C.

    1966-01-01

    Security warning system consisting of 15 television cameras is capable of monitoring several remote or unoccupied areas simultaneously. The system uses a commutator and decommutator, allowing time-multiplexed video transmission. This security system could be used in industrial and retail establishments.

  9. United States Homeland Security and National Biometric Identification

    DTIC Science & Technology

    2002-04-09

    security number. Biometrics is the use of unique individual traits such as fingerprints, iris eye patterns, voice recognition, and facial recognition to...technology to control access onto their military bases using a Defense Manpower Management Command developed software application. FACIAL Facial recognition systems...installed facial recognition systems in conjunction with a series of 200 cameras to fight street crime and identify terrorists. The cameras, which are

  10. The Eyes Have It

    ERIC Educational Resources Information Center

    Mulholland, Jessica

    2012-01-01

    In New York's Port Washington Union Free School District, security and privacy for students, faculty, and staff coexist--thanks to security cameras with eyelids. In 2010, video cameras donated by New York-based SituCon Systems were installed in the main lobby at two of the district's seven schools. "We really haven't had the kind of incidents…

  11. Integration of multispectral face recognition and multi-PTZ camera automated surveillance for security applications

    NASA Astrophysics Data System (ADS)

    Chen, Chung-Hao; Yao, Yi; Chang, Hong; Koschan, Andreas; Abidi, Mongi

    2013-06-01

    Due to increasing security concerns, a complete security system should consist of two major components, a computer-based face-recognition system and a real-time automated video surveillance system. A computerbased face-recognition system can be used in gate access control for identity authentication. In recent studies, multispectral imaging and fusion of multispectral narrow-band images in the visible spectrum have been employed and proven to enhance the recognition performance over conventional broad-band images, especially when the illumination changes. Thus, we present an automated method that specifies the optimal spectral ranges under the given illumination. Experimental results verify the consistent performance of our algorithm via the observation that an identical set of spectral band images is selected under all tested conditions. Our discovery can be practically used for a new customized sensor design associated with given illuminations for an improved face recognition performance over conventional broad-band images. In addition, once a person is authorized to enter a restricted area, we still need to continuously monitor his/her activities for the sake of security. Because pantilt-zoom (PTZ) cameras are capable of covering a panoramic area and maintaining high resolution imagery for real-time behavior understanding, researches in automated surveillance systems with multiple PTZ cameras have become increasingly important. Most existing algorithms require the prior knowledge of intrinsic parameters of the PTZ camera to infer the relative positioning and orientation among multiple PTZ cameras. To overcome this limitation, we propose a novel mapping algorithm that derives the relative positioning and orientation between two PTZ cameras based on a unified polynomial model. This reduces the dependence on the knowledge of intrinsic parameters of PTZ camera and relative positions. Experimental results demonstrate that our proposed algorithm presents substantially reduced computational complexity and improved flexibility at the cost of slightly decreased pixel accuracy as compared to Chen and Wang's method [18].

  12. The role of an open-space CCTV system in limiting alcohol-related assault injuries in a late-night entertainment precinct in a tropical Queensland city, Australia.

    PubMed

    Pointing, Shane; Hayes-Jonkers, Charmaine; Bohanna, India; Clough, Alan

    2012-02-01

    Closed circuit television (CCTV) systems which incorporate real-time communication links between camera room operators and on-the-ground security may limit injuries resulting from alcohol-related assault. This pilot study examined CCTV footage and operator records of security responses for two periods totalling 22 days in 2010-2011 when 30 alcohol-related assaults were recorded. Semistructured discussions were conducted with camera room operators during 18 h of observation. Camera operators were proactive, efficiently directing street security to assault incidents. The system intervened in 40% (n=12) of alcohol-related assaults, limiting possible injury. This included three incidents judged as potentially preventable. A further five (17%) assault incidents were also judged as potentially preventable, while 43% (n=13) happened too quickly for intervention. Case studies describe security intervention in each category. Further research is recommended, particularly to evaluate the effects on preventing injuries through targeted awareness training to improve responsiveness and enhance the preventative capacity of similar CCTV systems.

  13. Security camera resolution measurements: Horizontal TV lines versus modulation transfer function measurements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birch, Gabriel Carisle; Griffin, John Clark

    2015-01-01

    The horizontal television lines (HTVL) metric has been the primary quantity used by division 6000 related to camera resolution for high consequence security systems. This document shows HTVL measurements are fundamen- tally insufficient as a metric to determine camera resolution, and propose a quantitative, standards based methodology by measuring the camera system modulation transfer function (MTF), the most common and accepted metric of res- olution in the optical science community. Because HTVL calculations are easily misinterpreted or poorly defined, we present several scenarios in which HTVL is frequently reported, and discuss their problems. The MTF metric is discussed, and scenariosmore » are presented with calculations showing the application of such a metric.« less

  14. Emergency positioning system accuracy with infrared LEDs in high-security facilities

    NASA Astrophysics Data System (ADS)

    Knoch, Sierra N.; Nelson, Charles; Walker, Owens

    2017-05-01

    Instantaneous personnel location presents a challenge in Department of Defense applications where high levels of security restrict real-time tracking of crew members. During emergency situations, command and control requires immediate accountability of all personnel. Current radio frequency (RF) based indoor positioning systems can be unsuitable due to RF leakage and electromagnetic interference with sensitively calibrated machinery on variable platforms like ships, submarines and high-security facilities. Infrared light provide a possible solution to this problem. This paper proposes and evaluates an indoor line-of-sight positioning system that is comprised of IR and high-sensitivity CMOS camera receivers. In this system the movement of the LEDs is captured by the camera, uploaded and analyzed; the highest point of power is located and plotted to create a blueprint of crewmember location. Results provided evaluate accuracy as a function of both wavelength and environmental conditions. Research will further evaluate the accuracy of the LED transmitter and CMOS camera receiver system. Transmissions in both the 780 and 850nm IR are analyzed.

  15. 78 FR 17939 - Announcement of Funding Awards; Capital Fund Safety and Security Grants; Fiscal Year 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... publishing the names, addresses, and amounts of the 18 awards made under the set aside in Appendix A to this... Security Camera Harrison Street, Oakland, CA Surveillance System 94612. including digital video recorders... Cameras, 50 Lincoln Plaza, Wilkes-Barre, Network Video PA 18702. Recorders, and Lighting. Ft. Worth...

  16. Thermal infrared panoramic imaging sensor

    NASA Astrophysics Data System (ADS)

    Gutin, Mikhail; Tsui, Eddy K.; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey

    2006-05-01

    Panoramic cameras offer true real-time, 360-degree coverage of the surrounding area, valuable for a variety of defense and security applications, including force protection, asset protection, asset control, security including port security, perimeter security, video surveillance, border control, airport security, coastguard operations, search and rescue, intrusion detection, and many others. Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence of target detection, and enables both man-in-the-loop and fully automated system operation. Thermal imaging provides the benefits of all-weather, 24-hour day/night operation with no downtime. In addition, thermal signatures of different target types facilitate better classification, beyond the limits set by camera's spatial resolution. The useful range of catadioptric panoramic cameras is affected by their limited resolution. In many existing systems the resolution is optics-limited. Reflectors customarily used in catadioptric imagers introduce aberrations that may become significant at large camera apertures, such as required in low-light and thermal imaging. Advantages of panoramic imagers with high image resolution include increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) combines the strengths of improved, high-resolution panoramic optics with thermal imaging in the 8 - 14 micron spectral range, leveraged by intelligent video processing for automated detection, location, and tracking of moving targets. The work in progress supports the Future Combat Systems (FCS) and the Intelligent Munitions Systems (IMS). The APTIS is anticipated to operate as an intelligent node in a wireless network of multifunctional nodes that work together to serve in a wide range of applications of homeland security, as well as serve the Army in tasks of improved situational awareness (SA) in defense and offensive operations, and as a sensor node in tactical Intelligence Surveillance Reconnaissance (ISR). The novel ViperView TM high-resolution panoramic thermal imager is the heart of the APTIS system. It features an aberration-corrected omnidirectional imager with small optics designed to match the resolution of a 640x480 pixels IR camera with improved image quality for longer range target detection, classification, and tracking. The same approach is applicable to panoramic cameras working in the visible spectral range. Other components of the ATPIS system include network communications, advanced power management, and wakeup capability. Recent developments include image processing, optical design being expanded into the visible spectral range, and wireless communications design. This paper describes the development status of the APTIS system.

  17. Application of infrared uncooled cameras in surveillance systems

    NASA Astrophysics Data System (ADS)

    Dulski, R.; Bareła, J.; Trzaskawka, P.; PiÄ tkowski, T.

    2013-10-01

    The recent necessity to protect military bases, convoys and patrols gave serious impact to the development of multisensor security systems for perimeter protection. One of the most important devices used in such systems are IR cameras. The paper discusses technical possibilities and limitations to use uncooled IR camera in a multi-sensor surveillance system for perimeter protection. Effective ranges of detection depend on the class of the sensor used and the observed scene itself. Application of IR camera increases the probability of intruder detection regardless of the time of day or weather conditions. It also simultaneously decreased the false alarm rate produced by the surveillance system. The role of IR cameras in the system was discussed as well as technical possibilities to detect human being. Comparison of commercially available IR cameras, capable to achieve desired ranges was done. The required spatial resolution for detection, recognition and identification was calculated. The simulation of detection ranges was done using a new model for predicting target acquisition performance which uses the Targeting Task Performance (TTP) metric. Like its predecessor, the Johnson criteria, the new model bounds the range performance with image quality. The scope of presented analysis is limited to the estimation of detection, recognition and identification ranges for typical thermal cameras with uncooled microbolometer focal plane arrays. This type of cameras is most widely used in security systems because of competitive price to performance ratio. Detection, recognition and identification range calculations were made, and the appropriate results for the devices with selected technical specifications were compared and discussed.

  18. System for critical infrastructure security based on multispectral observation-detection module

    NASA Astrophysics Data System (ADS)

    Trzaskawka, Piotr; Kastek, Mariusz; Życzkowski, Marek; Dulski, Rafał; Szustakowski, Mieczysław; Ciurapiński, Wiesław; Bareła, Jarosław

    2013-10-01

    Recent terrorist attacks and possibilities of such actions in future have forced to develop security systems for critical infrastructures that embrace sensors technologies and technical organization of systems. The used till now perimeter protection of stationary objects, based on construction of a ring with two-zone fencing, visual cameras with illumination are efficiently displaced by the systems of the multisensor technology that consists of: visible technology - day/night cameras registering optical contrast of a scene, thermal technology - cheap bolometric cameras recording thermal contrast of a scene and active ground radars - microwave and millimetre wavelengths that record and detect reflected radiation. Merging of these three different technologies into one system requires methodology for selection of technical conditions of installation and parameters of sensors. This procedure enables us to construct a system with correlated range, resolution, field of view and object identification. Important technical problem connected with the multispectral system is its software, which helps couple the radar with the cameras. This software can be used for automatic focusing of cameras, automatic guiding cameras to an object detected by the radar, tracking of the object and localization of the object on the digital map as well as target identification and alerting. Based on "plug and play" architecture, this system provides unmatched flexibility and simplistic integration of sensors and devices in TCP/IP networks. Using a graphical user interface it is possible to control sensors and monitor streaming video and other data over the network, visualize the results of data fusion process and obtain detailed information about detected intruders over a digital map. System provide high-level applications and operator workload reduction with features such as sensor to sensor cueing from detection devices, automatic e-mail notification and alarm triggering. The paper presents a structure and some elements of critical infrastructure protection solution which is based on a modular multisensor security system. System description is focused mainly on methodology of selection of sensors parameters. The results of the tests in real conditions are also presented.

  19. Design and implementation of modular home security system with short messaging system

    NASA Astrophysics Data System (ADS)

    Budijono, Santoso; Andrianto, Jeffri; Axis Novradin Noor, Muhammad

    2014-03-01

    Today we are living in 21st century where crime become increasing and everyone wants to secure they asset at their home. In that situation user must have system with advance technology so person do not worry when getting away from his home. It is therefore the purpose of this design to provide home security device, which send fast information to user GSM (Global System for Mobile) mobile device using SMS (Short Messaging System) and also activate - deactivate system by SMS. The Modular design of this Home Security System make expandable their capability by add more sensors on that system. Hardware of this system has been designed using microcontroller AT Mega 328, PIR (Passive Infra Red) motion sensor as the primary sensor for motion detection, camera for capturing images, GSM module for sending and receiving SMS and buzzer for alarm. For software this system using Arduino IDE for Arduino and Putty for testing connection programming in GSM module. This Home Security System can monitor home area that surrounding by PIR sensor and sending SMS, save images capture by camera, and make people panic by turn on the buzzer when trespassing surrounding area that detected by PIR sensor. The Modular Home Security System has been tested and succeed detect human movement.

  20. WPSS: watching people security services

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; Baan, Jan; Borsboom, Sander; van Zon, Kasper; Luo, Xinghan; Loke, Ben; Stoeller, Bram; van Kuilenburg, Hans; Dijk, Judith

    2013-10-01

    To improve security, the number of surveillance cameras is rapidly increasing. However, the number of human operators remains limited and only a selection of the video streams are observed. Intelligent software services can help to find people quickly, evaluate their behavior and show the most relevant and deviant patterns. We present a software platform that contributes to the retrieval and observation of humans and to the analysis of their behavior. The platform consists of mono- and stereo-camera tracking, re-identification, behavioral feature computation, track analysis, behavior interpretation and visualization. This system is demonstrated in a busy shopping mall with multiple cameras and different lighting conditions.

  1. Visual identification system for homeland security and law enforcement support

    NASA Astrophysics Data System (ADS)

    Samuel, Todd J.; Edwards, Don; Knopf, Michael

    2005-05-01

    This paper describes the basic configuration for a visual identification system (VIS) for Homeland Security and law enforcement support. Security and law enforcement systems with an integrated VIS will accurately and rapidly provide identification of vehicles or containers that have entered, exited or passed through a specific monitoring location. The VIS system stores all images and makes them available for recall for approximately one week. Images of alarming vehicles will be archived indefinitely as part of the alarming vehicle"s or cargo container"s record. Depending on user needs, the digital imaging information will be provided electronically to the individual inspectors, supervisors, and/or control center at the customer"s office. The key components of the VIS are the high-resolution cameras that capture images of vehicles, lights, presence sensors, image cataloging software, and image recognition software. In addition to the cameras, the physical integration and network communications of the VIS components with the balance of the security system and client must be ensured.

  2. Multi-Target Camera Tracking, Hand-off and Display LDRD 158819 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn’t lead to more alarms, moremore » monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identify individual moving targets from the background imagery, and then display the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.« less

  3. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, moremore » monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.« less

  4. Automatic multi-camera calibration for deployable positioning systems

    NASA Astrophysics Data System (ADS)

    Axelsson, Maria; Karlsson, Mikael; Rudner, Staffan

    2012-06-01

    Surveillance with automated positioning and tracking of subjects and vehicles in 3D is desired in many defence and security applications. Camera systems with stereo or multiple cameras are often used for 3D positioning. In such systems, accurate camera calibration is needed to obtain a reliable 3D position estimate. There is also a need for automated camera calibration to facilitate fast deployment of semi-mobile multi-camera 3D positioning systems. In this paper we investigate a method for automatic calibration of the extrinsic camera parameters (relative camera pose and orientation) of a multi-camera positioning system. It is based on estimation of the essential matrix between each camera pair using the 5-point method for intrinsically calibrated cameras. The method is compared to a manual calibration method using real HD video data from a field trial with a multicamera positioning system. The method is also evaluated on simulated data from a stereo camera model. The results show that the reprojection error of the automated camera calibration method is close to or smaller than the error for the manual calibration method and that the automated calibration method can replace the manual calibration.

  5. Achieving thermography with a thermal security camera using uncooled amorphous silicon microbolometer image sensors

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Wei; Tesdahl, Curtis; Owens, Jim; Dorn, David

    2012-06-01

    Advancements in uncooled microbolometer technology over the last several years have opened up many commercial applications which had been previously cost prohibitive. Thermal technology is no longer limited to the military and government market segments. One type of thermal sensor with low NETD which is available in the commercial market segment is the uncooled amorphous silicon (α-Si) microbolometer image sensor. Typical thermal security cameras focus on providing the best image quality by auto tonemaping (contrast enhancing) the image, which provides the best contrast depending on the temperature range of the scene. While this may provide enough information to detect objects and activities, there are further benefits of being able to estimate the actual object temperatures in a scene. This thermographic ability can provide functionality beyond typical security cameras by being able to monitor processes. Example applications of thermography[2] with thermal camera include: monitoring electrical circuits, industrial machinery, building thermal leaks, oil/gas pipelines, power substations, etc...[3][5] This paper discusses the methodology of estimating object temperatures by characterizing/calibrating different components inside a thermal camera utilizing an uncooled amorphous silicon microbolometer image sensor. Plots of system performance across camera operating temperatures will be shown.

  6. Person and gesture tracking with smart stereo cameras

    NASA Astrophysics Data System (ADS)

    Gordon, Gaile; Chen, Xiangrong; Buck, Ron

    2008-02-01

    Physical security increasingly involves sophisticated, real-time visual tracking of a person's location inside a given environment, often in conjunction with biometrics and other security-related technologies. However, demanding real-world conditions like crowded rooms, changes in lighting and physical obstructions have proved incredibly challenging for 2D computer vision technology. In contrast, 3D imaging technology is not affected by constant changes in lighting and apparent color, and thus allows tracking accuracy to be maintained in dynamically lit environments. In addition, person tracking with a 3D stereo camera can provide the location and movement of each individual very precisely, even in a very crowded environment. 3D vision only requires that the subject be partially visible to a single stereo camera to be correctly tracked; multiple cameras are used to extend the system's operational footprint, and to contend with heavy occlusion. A successful person tracking system, must not only perform visual analysis robustly, but also be small, cheap and consume relatively little power. The TYZX Embedded 3D Vision systems are perfectly suited to provide the low power, small footprint, and low cost points required by these types of volume applications. Several security-focused organizations, including the U.S Government, have deployed TYZX 3D stereo vision systems in security applications. 3D image data is also advantageous in the related application area of gesture tracking. Visual (uninstrumented) tracking of natural hand gestures and movement provides new opportunities for interactive control including: video gaming, location based entertainment, and interactive displays. 2D images have been used to extract the location of hands within a plane, but 3D hand location enables a much broader range of interactive applications. In this paper, we provide some background on the TYZX smart stereo cameras platform, describe the person tracking and gesture tracking systems implemented on this platform, and discuss some deployed applications.

  7. Learning Locked down: Evaluating the Treatment of Students' Rights in High Security School Environments

    ERIC Educational Resources Information Center

    Bracy, Nicole L.

    2009-01-01

    Public schools have transformed significantly over the past several decades in response to broad concerns about rising school violence. Today's public schools are high security environments employing tactics commonly found in jails and prisons such as police officers, security cameras, identification systems, and secure building strategies.…

  8. Minimum Requirements for Taxicab Security Cameras.

    PubMed

    Zeng, Shengke; Amandus, Harlan E; Amendola, Alfred A; Newbraugh, Bradley H; Cantis, Douglas M; Weaver, Darlene

    2014-07-01

    The homicide rate of taxicab-industry is 20 times greater than that of all workers. A NIOSH study showed that cities with taxicab-security cameras experienced significant reduction in taxicab driver homicides. Minimum technical requirements and a standard test protocol for taxicab-security cameras for effective taxicab-facial identification were determined. The study took more than 10,000 photographs of human-face charts in a simulated-taxicab with various photographic resolutions, dynamic ranges, lens-distortions, and motion-blurs in various light and cab-seat conditions. Thirteen volunteer photograph-evaluators evaluated these face photographs and voted for the minimum technical requirements for taxicab-security cameras. Five worst-case scenario photographic image quality thresholds were suggested: the resolution of XGA-format, highlight-dynamic-range of 1 EV, twilight-dynamic-range of 3.3 EV, lens-distortion of 30%, and shutter-speed of 1/30 second. These minimum requirements will help taxicab regulators and fleets to identify effective taxicab-security cameras, and help taxicab-security camera manufacturers to improve the camera facial identification capability.

  9. Technology's Role in Security.

    ERIC Educational Resources Information Center

    Day, C. William

    1999-01-01

    Examines the use of technology to bolster the school security system, tips on selecting a security consultant, and several basic strategies to make buildings and grounds safer. Technological ideas discussed include the use of telephones in classrooms to expedite care in emergency situations, surveillance cameras to reduce crime, and metal…

  10. Developing a Security Profile.

    ERIC Educational Resources Information Center

    Woodcock, Chris

    1999-01-01

    Examines the questions schools should address when re-evaluating how to protect people, property, and assets. Questions addressed include where and how to begin to improve security in a school, getting the most protection economically, establishing where electronic security should be used, using surveillance cameras and systems, and what the role…

  11. Here Today, Here Tomorrow: The Imperative of Collections Security.

    ERIC Educational Resources Information Center

    Billington, James H.

    1996-01-01

    The Librarian of Congress addresses the increasing security threats to the collection at the Library of Congress that caused him to close library stacks, increase police patrol, install surveillance cameras and alarm systems, create material inventories, and limit patron privileges. Many of the security functions are being assessed and monitored…

  12. Development of a real time multiple target, multi camera tracker for civil security applications

    NASA Astrophysics Data System (ADS)

    Åkerlund, Hans

    2009-09-01

    A surveillance system has been developed that can use multiple TV-cameras to detect and track personnel and objects in real time in public areas. The document describes the development and the system setup. The system is called NIVS Networked Intelligent Video Surveillance. Persons in the images are tracked and displayed on a 3D map of the surveyed area.

  13. Minimum Requirements for Taxicab Security Cameras*

    PubMed Central

    Zeng, Shengke; Amandus, Harlan E.; Amendola, Alfred A.; Newbraugh, Bradley H.; Cantis, Douglas M.; Weaver, Darlene

    2015-01-01

    Problem The homicide rate of taxicab-industry is 20 times greater than that of all workers. A NIOSH study showed that cities with taxicab-security cameras experienced significant reduction in taxicab driver homicides. Methods Minimum technical requirements and a standard test protocol for taxicab-security cameras for effective taxicab-facial identification were determined. The study took more than 10,000 photographs of human-face charts in a simulated-taxicab with various photographic resolutions, dynamic ranges, lens-distortions, and motion-blurs in various light and cab-seat conditions. Thirteen volunteer photograph-evaluators evaluated these face photographs and voted for the minimum technical requirements for taxicab-security cameras. Results Five worst-case scenario photographic image quality thresholds were suggested: the resolution of XGA-format, highlight-dynamic-range of 1 EV, twilight-dynamic-range of 3.3 EV, lens-distortion of 30%, and shutter-speed of 1/30 second. Practical Applications These minimum requirements will help taxicab regulators and fleets to identify effective taxicab-security cameras, and help taxicab-security camera manufacturers to improve the camera facial identification capability. PMID:26823992

  14. Utilizing Current Commercial-off-the-Shelf Facial Recognition and Public Live Video Streaming to Enhance National Security

    DTIC Science & Technology

    2014-09-01

    biometrics technologies. 14. SUBJECT TERMS Facial recognition, systems engineering, live video streaming, security cameras, national security ...national security by sharing biometric facial recognition data in real-time utilizing infrastructures currently in place. It should be noted that the...9/11),law enforcement (LE) and Intelligence community (IC)authorities responsible for protecting citizens from threats against national security

  15. Digital security technology simplified.

    PubMed

    Scaglione, Bernard J

    2007-01-01

    Digital security technology is making great strides in replacing analog and other traditional security systems including CCTV card access, personal identification and alarm monitoring applications. Like any new technology, the author says, it is important to understand its benefits and limitations before purchasing and installing, to ensure its proper operation and effectiveness. This article is a primer for security directors on how digital technology works. It provides an understanding of the key components which make up the foundation for digital security systems, focusing on three key aspects of the digital security world: the security network, IP cameras and IP recorders.

  16. Center for Coastline Security Technology, Year 3

    DTIC Science & Technology

    2008-05-01

    Polarization control for 3D Imaging with the Sony SRX-R105 Digital Cinema Projectors 3.4 HDMAX Camera and Sony SRX-R105 Projector Configuration for 3D...HDMAX Camera Pair Figure 3.2 Sony SRX-R105 Digital Cinema Projector Figure 3.3 Effect of camera rotation on projected overlay image. Figure 3.4...system that combines a pair of FAU’s HD-MAX video cameras with a pair of Sony SRX-R105 digital cinema projectors for stereo imaging and projection

  17. Human detection and motion analysis at security points

    NASA Astrophysics Data System (ADS)

    Ozer, I. Burak; Lv, Tiehan; Wolf, Wayne H.

    2003-08-01

    This paper presents a real-time video surveillance system for the recognition of specific human activities. Specifically, the proposed automatic motion analysis is used as an on-line alarm system to detect abnormal situations in a campus environment. A smart multi-camera system developed at Princeton University is extended for use in smart environments in which the camera detects the presence of multiple persons as well as their gestures and their interaction in real-time.

  18. Development of x-ray imaging technique for liquid screening at airport

    NASA Astrophysics Data System (ADS)

    Sulaiman, Nurhani binti; Srisatit, Somyot

    2016-01-01

    X-ray imaging technology is a viable option to recognize flammable liquids for the purposes of aviation security. In this study, an X-ray imaging technology was developed whereby, the image viewing system was built with the use of a digital camera coupled with a gadolinium oxysulfide (GOS) fluorescent screen. The camera was equipped with a software for remote control setting of the camera via a USB cable which allows the images to be captured. The image was analysed to determine the average grey level using a software designed by Microsoft Visual Basic 6.0. The data was obtained for various densities of liquid thickness of 4.5 cm, 6.0 cm and 7.5 cm respectively for X-ray energies ranging from 70 to 200 kVp. In order to verify the reliability of the constructed calibration data, the system was tested with a few types of unknown liquids. The developed system could be conveniently employed for security screening in order to discriminate between a threat and an innocuous liquid.

  19. The appropriate and effective use of security technologies in U.S. schools : a guide for schools and law enforcement agencies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Mary Wilson

    The purpose of this report is to provide school administrators with the ability to determine their security system requirements, so they can make informed decisions when working with vendors and others to improve their security posture. This is accomplished by (1) explaining a systems-based approach to defining the objectives and needs of the system, and (2), providing information on the ability of common components (sensors, cameras, metal detectors, etc) to achieve those objectives, in an effectively integrated system.

  20. 25 CFR 543.2 - What are the definitions for this part?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., mechanical, or other technologic form, that function together to aid the play of one or more Class II games... a particular game, player interface, shift, or other period. Count room. A secured room where the... validated directly by a voucher system. Dedicated camera. A video camera that continuously records a...

  1. 77 FR 73464 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ..., grantees, volunteers, interns, and others performing or working on a contract, service, grant, cooperative... tape records are stored in locked file rooms, locked file cabinets, or locked safes. RETRIEVABILITY... safeguarded in a secured environment. Buildings where records are stored have security cameras and 24-hour...

  2. 19. SITE BUILDING 002 SCANNER BUILDING AIR POLICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. SITE BUILDING 002 - SCANNER BUILDING - AIR POLICE SITE SECURITY OFFICE WITH "SITE PERIMETER STATUS PANEL" AND REAL TIME VIDEO DISPLAY OUTPUT FROM VIDEO CAMERA SYSTEM AT SECURITY FENCE LOCATIONS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  3. A new concept of real-time security camera monitoring with privacy protection by masking moving objects

    NASA Astrophysics Data System (ADS)

    Yabuta, Kenichi; Kitazawa, Hitoshi; Tanaka, Toshihisa

    2006-02-01

    Recently, monitoring cameras for security have been extensively increasing. However, it is normally difficult to know when and where we are monitored by these cameras and how the recorded images are stored and/or used. Therefore, how to protect privacy in the recorded images is a crucial issue. In this paper, we address this problem and introduce a framework for security monitoring systems considering the privacy protection. We state requirements for monitoring systems in this framework. We propose a possible implementation that satisfies the requirements. To protect privacy of recorded objects, they are made invisible by appropriate image processing techniques. Moreover, the original objects are encrypted and watermarked into the image with the "invisible" objects, which is coded by the JPEG standard. Therefore, the image decoded by a normal JPEG viewer includes the objects that are unrecognized or invisible. We also introduce in this paper a so-called "special viewer" in order to decrypt and display the original objects. This special viewer can be used by limited users when necessary for crime investigation, etc. The special viewer allows us to choose objects to be decoded and displayed. Moreover, in this proposed system, real-time processing can be performed, since no future frame is needed to generate a bitstream.

  4. Smart security system for Indian rail wagons using IOT

    NASA Astrophysics Data System (ADS)

    Bhanuteja, S.; Shilpi, S.; Pragna, K.; Arun, M.

    2017-11-01

    The objective of this project is to create a Security System for the goods that are carried in open top freight trains. The most efficient way to secure anything from thieves is to have a continuous observation. So for continuous observation of the open top freight train, Camera module2 has been used. Passive Infrared Sensor (PIR) 1 has been used to detect the motion or to sense movement of people, animals, or any object. So whenever a motion is detected by the PIR sensor, the Camera takes a picture of that particular instance. That picture will be send to the Raspberry PI which does Skin Detection Algorithm and specifies whether that motion was created by a human or not. If a human makes it, then that picture will send to the drop box. Any Official can have a look at the same. The existing system has a CCTV installed at various critical locations like bridges, railway stations etc. but they does not provide a continuous observation. This paper describes about the Security System that provides continuous observation for open top freight trains so that goods can be carried safely to its destination.

  5. Review of intelligent video surveillance with single camera

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Fan, Jiu-lun; Wang, DianWei

    2012-01-01

    Intelligent video surveillance has found a wide range of applications in public security. This paper describes the state-of- the-art techniques in video surveillance system with single camera. This can serve as a starting point for building practical video surveillance systems in developing regions, leveraging existing ubiquitous infrastructure. In addition, this paper discusses the gap between existing technologies and the requirements in real-world scenario, and proposes potential solutions to reduce this gap.

  6. Development of x-ray imaging technique for liquid screening at airport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulaiman, Nurhani binti, E-mail: nhani.sulaiman@gmail.com; Srisatit, Somyot, E-mail: somyot.s@chula.ac.th

    2016-01-22

    X-ray imaging technology is a viable option to recognize flammable liquids for the purposes of aviation security. In this study, an X-ray imaging technology was developed whereby, the image viewing system was built with the use of a digital camera coupled with a gadolinium oxysulfide (GOS) fluorescent screen. The camera was equipped with a software for remote control setting of the camera via a USB cable which allows the images to be captured. The image was analysed to determine the average grey level using a software designed by Microsoft Visual Basic 6.0. The data was obtained for various densities ofmore » liquid thickness of 4.5 cm, 6.0 cm and 7.5 cm respectively for X-ray energies ranging from 70 to 200 kVp. In order to verify the reliability of the constructed calibration data, the system was tested with a few types of unknown liquids. The developed system could be conveniently employed for security screening in order to discriminate between a threat and an innocuous liquid.« less

  7. A fuzzy automated object classification by infrared laser camera

    NASA Astrophysics Data System (ADS)

    Kanazawa, Seigo; Taniguchi, Kazuhiko; Asari, Kazunari; Kuramoto, Kei; Kobashi, Syoji; Hata, Yutaka

    2011-06-01

    Home security in night is very important, and the system that watches a person's movements is useful in the security. This paper describes a classification system of adult, child and the other object from distance distribution measured by an infrared laser camera. This camera radiates near infrared waves and receives reflected ones. Then, it converts the time of flight into distance distribution. Our method consists of 4 steps. First, we do background subtraction and noise rejection in the distance distribution. Second, we do fuzzy clustering in the distance distribution, and form several clusters. Third, we extract features such as the height, thickness, aspect ratio, area ratio of the cluster. Then, we make fuzzy if-then rules from knowledge of adult, child and the other object so as to classify the cluster to one of adult, child and the other object. Here, we made the fuzzy membership function with respect to each features. Finally, we classify the clusters to one with the highest fuzzy degree among adult, child and the other object. In our experiment, we set up the camera in room and tested three cases. The method successfully classified them in real time processing.

  8. Passive stand-off terahertz imaging with 1 hertz frame rate

    NASA Astrophysics Data System (ADS)

    May, T.; Zieger, G.; Anders, S.; Zakosarenko, V.; Starkloff, M.; Meyer, H.-G.; Thorwirth, G.; Kreysa, E.

    2008-04-01

    Terahertz (THz) cameras are expected to be a powerful tool for future security applications. If such a technology shall be useful for typical security scenarios (e.g. airport check-in) it has to meet some minimum standards. A THz camera should record images with video rate from a safe distance (stand-off). Although active cameras are conceivable, a passive system has the benefit of concealed operation. Additionally, from an ethic perspective, the lack of exposure to a radiation source is a considerable advantage in public acceptance. Taking all these requirements into account, only cooled detectors are able to achieve the needed sensitivity. A big leap forward in the detector performance and scalability was driven by the astrophysics community. Superconducting bolometers and midsized arrays of them have been developed and are in routine use. Although devices with many pixels are foreseeable nowadays a device with an additional scanning optic is the straightest way to an imaging system with a useful resolution. We demonstrate the capabilities of a concept for a passive Terahertz video camera based on superconducting technology. The actual prototype utilizes a small Cassegrain telescope with a gyrating secondary mirror to record 2 kilopixel THz images with 1 second frame rate.

  9. 24/7 security system: 60-FPS color EMCCD camera with integral human recognition

    NASA Astrophysics Data System (ADS)

    Vogelsong, T. L.; Boult, T. E.; Gardner, D. W.; Woodworth, R.; Johnson, R. C.; Heflin, B.

    2007-04-01

    An advanced surveillance/security system is being developed for unattended 24/7 image acquisition and automated detection, discrimination, and tracking of humans and vehicles. The low-light video camera incorporates an electron multiplying CCD sensor with a programmable on-chip gain of up to 1000:1, providing effective noise levels of less than 1 electron. The EMCCD camera operates in full color mode under sunlit and moonlit conditions, and monochrome under quarter-moonlight to overcast starlight illumination. Sixty frame per second operation and progressive scanning minimizes motion artifacts. The acquired image sequences are processed with FPGA-compatible real-time algorithms, to detect/localize/track targets and reject non-targets due to clutter under a broad range of illumination conditions and viewing angles. The object detectors that are used are trained from actual image data. Detectors have been developed and demonstrated for faces, upright humans, crawling humans, large animals, cars and trucks. Detection and tracking of targets too small for template-based detection is achieved. For face and vehicle targets the results of the detection are passed to secondary processing to extract recognition templates, which are then compared with a database for identification. When combined with pan-tilt-zoom (PTZ) optics, the resulting system provides a reliable wide-area 24/7 surveillance system that avoids the high life-cycle cost of infrared cameras and image intensifiers.

  10. Issues in implementing services for a wireless web-enabled digital camera

    NASA Astrophysics Data System (ADS)

    Venkataraman, Shyam; Sampat, Nitin; Fisher, Yoram; Canosa, John; Noel, Nicholas

    2001-05-01

    The competition in the exploding digital photography market has caused vendors to explore new ways to increase their return on investment. A common view among industry analysts is that increasingly it will be services provided by these cameras, and not the cameras themselves, that will provide the revenue stream. These services will be coupled to e- Appliance based Communities. In addition, the rapidly increasing need to upload images to the Internet for photo- finishing services as well as the need to download software upgrades to the camera is driving many camera OEMs to evaluate the benefits of using the wireless web to extend their enterprise systems. Currently, creating a viable e- appliance such as a digital camera coupled with a wireless web service requires more than just a competency in product development. This paper will evaluate the system implications in the deployment of recurring revenue services and enterprise connectivity of a wireless, web-enabled digital camera. These include, among other things, an architectural design approach for services such as device management, synchronization, billing, connectivity, security, etc. Such an evaluation will assist, we hope, anyone designing or connecting a digital camera to the enterprise systems.

  11. Reliable Video Analysis Helps Security Company Grow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meurer, Dave; Furgal, Dave; Hobson, Rick

    Armed Response Team (ART) has grown to become the largest locally owned security company in New Mexico. With technical assistance from Sandia National Laboratories through the New Mexico Small Business Assistance (NMSBA) Program, ART got help so they could quickly bring workable video security solutions to market. By offering a reliable video analytic camera system, they’ve been able to reduce theft, add hundreds of clients, and increase their number of employees.

  12. Optical Verification Laboratory Demonstration System for High Security Identification Cards

    NASA Technical Reports Server (NTRS)

    Javidi, Bahram

    1997-01-01

    Document fraud including unauthorized duplication of identification cards and credit cards is a serious problem facing the government, banks, businesses, and consumers. In addition, counterfeit products such as computer chips, and compact discs, are arriving on our shores in great numbers. With the rapid advances in computers, CCD technology, image processing hardware and software, printers, scanners, and copiers, it is becoming increasingly easy to reproduce pictures, logos, symbols, paper currency, or patterns. These problems have stimulated an interest in research, development and publications in security technology. Some ID cards, credit cards and passports currently use holograms as a security measure to thwart copying. The holograms are inspected by the human eye. In theory, the hologram cannot be reproduced by an unauthorized person using commercially-available optical components; in practice, however, technology has advanced to the point where the holographic image can be acquired from a credit card-photographed or captured with by a CCD camera-and a new hologram synthesized using commercially-available optical components or hologram-producing equipment. Therefore, a pattern that can be read by a conventional light source and a CCD camera can be reproduced. An optical security and anti-copying device that provides significant security improvements over existing security technology was demonstrated. The system can be applied for security verification of credit cards, passports, and other IDs so that they cannot easily be reproduced. We have used a new scheme of complex phase/amplitude patterns that cannot be seen and cannot be copied by an intensity-sensitive detector such as a CCD camera. A random phase mask is bonded to a primary identification pattern which could also be phase encoded. The pattern could be a fingerprint, a picture of a face, or a signature. The proposed optical processing device is designed to identify both the random phase mask and the primary pattern [1-3]. We have demonstrated experimentally an optical processor for security verification of objects, products, and persons. This demonstration is very important to encourage industries to consider the proposed system for research and development.

  13. Caught on Camera.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2002-01-01

    Describes the benefits of and rules to be followed when using surveillance cameras for school security. Discusses various camera models, including indoor and outdoor fixed position cameras, pan-tilt zoom cameras, and pinhole-lens cameras for covert surveillance. (EV)

  14. Computational cameras for moving iris recognition

    NASA Astrophysics Data System (ADS)

    McCloskey, Scott; Venkatesha, Sharath

    2015-05-01

    Iris-based biometric identification is increasingly used for facility access and other security applications. Like all methods that exploit visual information, however, iris systems are limited by the quality of captured images. Optical defocus due to a small depth of field (DOF) is one such challenge, as is the acquisition of sharply-focused iris images from subjects in motion. This manuscript describes the application of computational motion-deblurring cameras to the problem of moving iris capture, from the underlying theory to system considerations and performance data.

  15. MTR STACK, TRA710, CONTEXTUAL VIEW, CAMERA FACING SOUTH. PERIMETER SECURITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR STACK, TRA-710, CONTEXTUAL VIEW, CAMERA FACING SOUTH. PERIMETER SECURITY FENCE AND SECURITY LIGHTING IN VIEW AT LEFT. INL NEGATIVE NO. HD52-1-1. Mike Crane, Photographer, 5/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Gawdiak, Yuri; Leidichj, Christopher; Papasin, Richard; Tran, Peter B.; Bass, Kevin

    2006-01-01

    Networks of video cameras, meteorological sensors, and ancillary electronic equipment are under development in collaboration among NASA Ames Research Center, the Federal Aviation Administration (FAA), and the National Oceanic Atmospheric Administration (NOAA). These networks are to be established at and near airports to provide real-time information on local weather conditions that affect aircraft approaches and landings. The prototype network is an airport-approach-zone camera system (AAZCS), which has been deployed at San Francisco International Airport (SFO) and San Carlos Airport (SQL). The AAZCS includes remotely controlled color video cameras located on top of SFO and SQL air-traffic control towers. The cameras are controlled by the NOAA Center Weather Service Unit located at the Oakland Air Route Traffic Control Center and are accessible via a secure Web site. The AAZCS cameras can be zoomed and can be panned and tilted to cover a field of view 220 wide. The NOAA observer can see the sky condition as it is changing, thereby making possible a real-time evaluation of the conditions along the approach zones of SFO and SQL. The next-generation network, denoted a remote tower sensor system (RTSS), will soon be deployed at the Half Moon Bay Airport and a version of it will eventually be deployed at Los Angeles International Airport. In addition to remote control of video cameras via secure Web links, the RTSS offers realtime weather observations, remote sensing, portability, and a capability for deployment at remote and uninhabited sites. The RTSS can be used at airports that lack control towers, as well as at major airport hubs, to provide synthetic augmentation of vision for both local and remote operations under what would otherwise be conditions of low or even zero visibility.

  17. Reliable Video Analysis Helps Security Company Grow

    ScienceCinema

    Meurer, Dave; Furgal, Dave; Hobson, Rick

    2018-05-11

    Armed Response Team (ART) has grown to become the largest locally owned security company in New Mexico. With technical assistance from Sandia National Laboratories through the New Mexico Small Business Assistance (NMSBA) Program, ART got help so they could quickly bring workable video security solutions to market. By offering a reliable video analytic camera system, they’ve been able to reduce theft, add hundreds of clients, and increase their number of employees.

  18. Characterization of a multi-user indoor positioning system based on low cost depth vision (Kinect) for monitoring human activity in a smart home.

    PubMed

    Sevrin, Loïc; Noury, Norbert; Abouchi, Nacer; Jumel, Fabrice; Massot, Bertrand; Saraydaryan, Jacques

    2015-01-01

    An increasing number of systems use indoor positioning for many scenarios such as asset tracking, health care, games, manufacturing, logistics, shopping, and security. Many technologies are available and the use of depth cameras is becoming more and more attractive as this kind of device becomes affordable and easy to handle. This paper contributes to the effort of creating an indoor positioning system based on low cost depth cameras (Kinect). A method is proposed to optimize the calibration of the depth cameras, to describe the multi-camera data fusion and to specify a global positioning projection to maintain the compatibility with outdoor positioning systems. The monitoring of the people trajectories at home is intended for the early detection of a shift in daily activities which highlights disabilities and loss of autonomy. This system is meant to improve homecare health management at home for a better end of life at a sustainable cost for the community.

  19. A data-management system using sensor technology and wireless devices for port security

    NASA Astrophysics Data System (ADS)

    Saldaña, Manuel; Rivera, Javier; Oyola, Jose; Manian, Vidya

    2014-05-01

    Sensor technologies such as infrared sensors and hyperspectral imaging, video camera surveillance are proven to be viable in port security. Drawing from sources such as infrared sensor data, digital camera images and processed hyperspectral images, this article explores the implementation of a real-time data delivery system. In an effort to improve the manner in which anomaly detection data is delivered to interested parties in port security, this system explores how a client-server architecture can provide protected access to data, reports, and device status. Sensor data and hyperspectral image data will be kept in a monitored directory, where the system will link it to existing users in the database. Since this system will render processed hyperspectral images that are dynamically added to the server - which often occupy a large amount of space - the resolution of these images is trimmed down to around 1024×768 pixels. Changes that occur in any image or data modification that originates from any sensor will trigger a message to all users that have a relation with the aforementioned. These messages will be sent to the corresponding users through automatic email generation and through a push notification using Google Cloud Messaging for Android. Moreover, this paper presents the complete architecture for data reception from the sensors, processing, storage and discusses how users of this system such as port security personnel can use benefit from the use of this service to receive secure real-time notifications if their designated sensors have detected anomalies and/or have remote access to results from processed hyperspectral imagery relevant to their assigned posts.

  20. The Legal Implications of Surveillance Cameras

    ERIC Educational Resources Information Center

    Steketee, Amy M.

    2012-01-01

    The nature of school security has changed dramatically over the last decade. Schools employ various measures, from metal detectors to identification badges to drug testing, to promote the safety and security of staff and students. One of the increasingly prevalent measures is the use of security cameras. In fact, the U.S. Department of Education…

  1. Laser Imaging Video Camera Sees Through Fire, Fog, Smoke

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Under a series of SBIR contracts with Langley Research Center, inventor Richard Billmers refined a prototype for a laser imaging camera capable of seeing through fire, fog, smoke, and other obscurants. Now, Canton, Ohio-based Laser Imaging through Obscurants (LITO) Technologies Inc. is demonstrating the technology as a perimeter security system at Glenn Research Center and planning its future use in aviation, shipping, emergency response, and other fields.

  2. Uncooled infrared sensors: rapid growth and future perspective

    NASA Astrophysics Data System (ADS)

    Balcerak, Raymond S.

    2000-07-01

    The uncooled infrared cameras are now available for both the military and commercial markets. The current camera technology incorporates the fruits of many years of development, focusing on the details of pixel design, novel material processing, and low noise read-out electronics. The rapid insertion of cameras into systems is testimony to the successful completion of this 'first phase' of development. In the military market, the first uncooled infrared cameras will be used for weapon sights, driver's viewers and helmet mounted cameras. Major commercial applications include night driving, security, police and fire fighting, and thermography, primarily for preventive maintenance and process control. The technology for the next generation of cameras is even more demanding, but within reach. The paper outlines the technology program planned for the next generation of cameras, and the approaches to further enhance performance, even to the radiation limit of thermal detectors.

  3. Prototype of smart office system using based security system

    NASA Astrophysics Data System (ADS)

    Prasetyo, T. F.; Zaliluddin, D.; Iqbal, M.

    2018-05-01

    Creating a new technology in the modern era gives a positive impact on business and industry. Internet of Things (IoT) as a new communication technology is very useful in realizing smart systems such as: smart home, smart office, smart parking and smart city. This study presents a prototype of the smart office system which was designed as a security system based on IoT. Smart office system development method used waterfall model. IoT-based smart office system used platform (project builder) cayenne so that. The data can be accessed and controlled through internet network from long distance. Smart office system used arduino mega 2560 microcontroller as a controller component. In this study, Smart office system is able to detect threats of dangerous objects made from metals, earthquakes, fires, intruders or theft and perform security monitoring outside the building by using raspberry pi cameras on autonomous robots in real time to the security guard.

  4. OLMS: Online Learning Management System for E-Learning

    ERIC Educational Resources Information Center

    Ippakayala, Vinay Kumar; El-Ocla, Hosam

    2017-01-01

    In this paper we introduce a learning management system that provides a management system for centralized control of course content. A secure system to record lectures is implemented as a key feature of this application. This feature would be accessed through web camera and mobile recording. These features are mainly designed for e-learning…

  5. Design and build a compact Raman sensor for identification of chemical composition

    NASA Astrophysics Data System (ADS)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Sandford, Stephen P.; Elsayed-Ali, Hani

    2008-04-01

    A compact remote Raman sensor system was developed at NASA Langley Research Center. This sensor is an improvement over the previously reported system, which consisted of a 532 nm pulsed laser, a 4-inch telescope, a spectrograph, and an intensified CCD camera. One of the attractive features of the previous system was its portability, thereby making it suitable for applications such as planetary surface explorations, homeland security and defense applications where a compact portable instrument is important. The new system was made more compact by replacing bulky components with smaller and lighter components. The new compact system uses a smaller spectrograph measuring 9 x 4 x 4 in. and a smaller intensified CCD camera measuring 5 in. long and 2 in. in diameter. The previous system was used to obtain the Raman spectra of several materials that are important to defense and security applications. Furthermore, the new compact Raman sensor system is used to obtain the Raman spectra of a diverse set of materials to demonstrate the sensor system's potential use in the identification of unknown materials.

  6. Design and Build a Compact Raman Sensor for Identification of Chemical Composition

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Sandford, Stephen P.; Elsayed-Ali, Hani

    2008-01-01

    A compact remote Raman sensor system was developed at NASA Langley Research Center. This sensor is an improvement over the previously reported system, which consisted of a 532 nm pulsed laser, a 4-inch telescope, a spectrograph, and an intensified charge-coupled devices (CCD) camera. One of the attractive features of the previous system was its portability, thereby making it suitable for applications such as planetary surface explorations, homeland security and defense applications where a compact portable instrument is important. The new system was made more compact by replacing bulky components with smaller and lighter components. The new compact system uses a smaller spectrograph measuring 9 x 4 x 4 in. and a smaller intensified CCD camera measuring 5 in. long and 2 in. in diameter. The previous system was used to obtain the Raman spectra of several materials that are important to defense and security applications. Furthermore, the new compact Raman sensor system is used to obtain the Raman spectra of a diverse set of materials to demonstrate the sensor system's potential use in the identification of unknown materials.

  7. Special report. New products that improve officer performance, safety.

    PubMed

    1991-12-01

    The need for products that improve performance of security officers is counterbalanced these days by budgetary constraints. While this may limit major investments in security systems and personnel, less costly improvements or innovations might be worth considering. In this report, we will discuss four advances that may be valuable not only in hospital security, but in other industries as well. One of them, a smoke filter, was originally developed for the hotel industry. Another, a drug detection device, may replace the use of undercover agents or drug-sniffing' dogs in certain circumstances. The third new product is an economical patrol vehicle for parking facilities which might replace more costly vehicles such as golf carts or cars. The fourth product, a roving CCTV camera, is actually being tested at a Midwest medical center and may allow you to monitor areas of parking garages with cameras instead of officers on patrol.

  8. Leveraging traffic and surveillance video cameras for urban traffic.

    DOT National Transportation Integrated Search

    2014-12-01

    The objective of this project was to investigate the use of existing video resources, such as traffic : cameras, police cameras, red light cameras, and security cameras for the long-term, real-time : collection of traffic statistics. An additional ob...

  9. Body worn camera

    NASA Astrophysics Data System (ADS)

    Aishwariya, A.; Pallavi Sudhir, Gulavani; Garg, Nemesa; Karthikeyan, B.

    2017-11-01

    A body worn camera is small video camera worn on the body, typically used by police officers to record arrests, evidence from crime scenes. It helps preventing and resolving complaints brought by members of the public; and strengthening police transparency, performance, and accountability. The main constants of this type of the system are video format, resolution, frames rate, and audio quality. This system records the video in .mp4 format with 1080p resolution and 30 frames per second. One more important aspect to while designing this system is amount of power the system requires as battery management becomes very critical. The main design challenges are Size of the Video, Audio for the video. Combining both audio and video and saving it in .mp4 format, Battery, size that is required for 8 hours of continuous recording, Security. For prototyping this system is implemented using Raspberry Pi model B.

  10. Real-time vehicle matching for multi-camera tunnel surveillance

    NASA Astrophysics Data System (ADS)

    Jelača, Vedran; Niño Castañeda, Jorge Oswaldo; Frías-Velázquez, Andrés; Pižurica, Aleksandra; Philips, Wilfried

    2011-03-01

    Tracking multiple vehicles with multiple cameras is a challenging problem of great importance in tunnel surveillance. One of the main challenges is accurate vehicle matching across the cameras with non-overlapping fields of view. Since systems dedicated to this task can contain hundreds of cameras which observe dozens of vehicles each, for a real-time performance computational efficiency is essential. In this paper, we propose a low complexity, yet highly accurate method for vehicle matching using vehicle signatures composed of Radon transform like projection profiles of the vehicle image. The proposed signatures can be calculated by a simple scan-line algorithm, by the camera software itself and transmitted to the central server or to the other cameras in a smart camera environment. The amount of data is drastically reduced compared to the whole image, which relaxes the data link capacity requirements. Experiments on real vehicle images, extracted from video sequences recorded in a tunnel by two distant security cameras, validate our approach.

  11. Object tracking using multiple camera video streams

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford

    2010-05-01

    Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.

  12. A&M. Radioactive parts security storage area. camera facing northwest. Outdoor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Radioactive parts security storage area. camera facing northwest. Outdoor storage of concrete storage casks. Photographer: M. Holmes. Date: November 21, 1959. INEEL negative no. 59-6081 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  13. A review of video security training and assessment-systems and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cellucci, J.; Hall, R.J.

    1991-01-01

    This paper reports that during the last 10 years computer-aided video data collection and playback systems have been used as nuclear facility security training and assessment tools with varying degrees of success. These mobile systems have been used by trained security personnel for response force training, vulnerability assessment, force-on-force exercises and crisis management. Typically, synchronous recordings from multiple video cameras, communications audio, and digital sensor inputs; are played back to the exercise participants and then edited for training and briefing. Factors that have influence user acceptance include: frequency of use, the demands placed on security personnel, fear of punishment, usermore » training requirements and equipment cost. The introduction of S-VHS video and new software for scenario planning, video editing and data reduction; should bring about a wider range of security applications and supply the opportunity for significant cost sharing with other user groups.« less

  14. Camera Control and Geo-Registration for Video Sensor Networks

    NASA Astrophysics Data System (ADS)

    Davis, James W.

    With the use of large video networks, there is a need to coordinate and interpret the video imagery for decision support systems with the goal of reducing the cognitive and perceptual overload of human operators. We present computer vision strategies that enable efficient control and management of cameras to effectively monitor wide-coverage areas, and examine the framework within an actual multi-camera outdoor urban video surveillance network. First, we construct a robust and precise camera control model for commercial pan-tilt-zoom (PTZ) video cameras. In addition to providing a complete functional control mapping for PTZ repositioning, the model can be used to generate wide-view spherical panoramic viewspaces for the cameras. Using the individual camera control models, we next individually map the spherical panoramic viewspace of each camera to a large aerial orthophotograph of the scene. The result provides a unified geo-referenced map representation to permit automatic (and manual) video control and exploitation of cameras in a coordinated manner. The combined framework provides new capabilities for video sensor networks that are of significance and benefit to the broad surveillance/security community.

  15. Using Bayesian Networks and Decision Theory to Model Physical Security

    DTIC Science & Technology

    2003-02-01

    Home automation technologies allow a person to monitor and control various activities within a home or office setting. Cameras, sensors and other...components used along with the simple rules in the home automation software provide an environment where the lights, security and other appliances can be...monitored and controlled. These home automation technologies, however, lack the power to reason under uncertain conditions and thus the system can

  16. A robust in-situ warp-correction algorithm for VISAR streak camera data at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.

    2015-02-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high energy density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.

  17. Dealing with problem number one--budget cuts: can you do more with less?

    PubMed

    2001-09-01

    To cope with current budget restraints and cutbacks, hospital security departments are increasingly integrating their manpower with technology in the form of access control, CCTV cameras, and alarm systems to supplement their services as well as becoming more dependent on computerized information technology systems and IT departments to track hospital activities and incidents. Security directors contacted for this report also emphasize that they are doing more with less by providing value-added services both to expand activities and to demonstrate the importance of their departments to top management.

  18. The Zwicky Transient Facility Camera

    NASA Astrophysics Data System (ADS)

    Dekany, Richard; Smith, Roger M.; Belicki, Justin; Delacroix, Alexandre; Duggan, Gina; Feeney, Michael; Hale, David; Kaye, Stephen; Milburn, Jennifer; Murphy, Patrick; Porter, Michael; Reiley, Daniel J.; Riddle, Reed L.; Rodriguez, Hector; Bellm, Eric C.

    2016-08-01

    The Zwicky Transient Facility Camera (ZTFC) is a key element of the ZTF Observing System, the integrated system of optoelectromechanical instrumentation tasked to acquire the wide-field, high-cadence time-domain astronomical data at the heart of the Zwicky Transient Facility. The ZTFC consists of a compact cryostat with large vacuum window protecting a mosaic of 16 large, wafer-scale science CCDs and 4 smaller guide/focus CCDs, a sophisticated vacuum interface board which carries data as electrical signals out of the cryostat, an electromechanical window frame for securing externally inserted optical filter selections, and associated cryo-thermal/vacuum system support elements. The ZTFC provides an instantaneous 47 deg2 field of view, limited by primary mirror vignetting in its Schmidt telescope prime focus configuration. We report here on the design and performance of the ZTF CCD camera cryostat and report results from extensive Joule-Thompson cryocooler tests that may be of broad interest to the instrumentation community.

  19. Standardized access, display, and retrieval of medical video

    NASA Astrophysics Data System (ADS)

    Bellaire, Gunter; Steines, Daniel; Graschew, Georgi; Thiel, Andreas; Bernarding, Johannes; Tolxdorff, Thomas; Schlag, Peter M.

    1999-05-01

    The system presented here enhances documentation and data- secured, second-opinion facilities by integrating video sequences into DICOM 3.0. We present an implementation for a medical video server extended by a DICOM interface. Security mechanisms conforming with DICOM are integrated to enable secure internet access. Digital video documents of diagnostic and therapeutic procedures should be examined regarding the clip length and size necessary for second opinion and manageable with today's hardware. Image sources relevant for this paper include 3D laparoscope, 3D surgical microscope, 3D open surgery camera, synthetic video, and monoscopic endoscopes, etc. The global DICOM video concept and three special workplaces of distinct applications are described. Additionally, an approach is presented to analyze the motion of the endoscopic camera for future automatic video-cutting. Digital stereoscopic video sequences are especially in demand for surgery . Therefore DSVS are also integrated into the DICOM video concept. Results are presented describing the suitability of stereoscopic display techniques for the operating room.

  20. Privacy Protection by Masking Moving Objects for Security Cameras

    NASA Astrophysics Data System (ADS)

    Yabuta, Kenichi; Kitazawa, Hitoshi; Tanaka, Toshihisa

    Because of an increasing number of security cameras, it is crucial to establish a system that protects the privacy of objects in the recorded images. To this end, we propose a framework of image processing and data hiding for security monitoring and privacy protection. First, we state the requirements of the proposed monitoring systems and suggest possible implementation that satisfies those requirements. The underlying concept of our proposed framework is as follows: (1) in the recorded images, the objects whose privacy should be protected are deteriorated by appropriate image processing; (2) the original objects are encrypted and watermarked into the output image, which is encoded using an image compression standard; (3) real-time processing is performed such that no future frame is required to generate on output bitstream. It should be noted that in this framework, anyone can observe the decoded image that includes the deteriorated objects that are unrecognizable or invisible. On the other hand, for crime investigation, this system allows a limited number of users to observe the original objects by using a special viewer that decrypts and decodes the watermarked objects with a decoding password. Moreover, the special viewer allows us to select the objects to be decoded and displayed. We provide an implementation example, experimental results, and performance evaluations to support our proposed framework.

  1. Falling-incident detection and throughput enhancement in a multi-camera video-surveillance system.

    PubMed

    Shieh, Wann-Yun; Huang, Ju-Chin

    2012-09-01

    For most elderly, unpredictable falling incidents may occur at the corner of stairs or a long corridor due to body frailty. If we delay to rescue a falling elder who is likely fainting, more serious consequent injury may occur. Traditional secure or video surveillance systems need caregivers to monitor a centralized screen continuously, or need an elder to wear sensors to detect falling incidents, which explicitly waste much human power or cause inconvenience for elders. In this paper, we propose an automatic falling-detection algorithm and implement this algorithm in a multi-camera video surveillance system. The algorithm uses each camera to fetch the images from the regions required to be monitored. It then uses a falling-pattern recognition algorithm to determine if a falling incident has occurred. If yes, system will send short messages to someone needs to be noticed. The algorithm has been implemented in a DSP-based hardware acceleration board for functionality proof. Simulation results show that the accuracy of falling detection can achieve at least 90% and the throughput of a four-camera surveillance system can be improved by about 2.1 times. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Presentation Attack Detection for Iris Recognition System Using NIR Camera Sensor

    PubMed Central

    Nguyen, Dat Tien; Baek, Na Rae; Pham, Tuyen Danh; Park, Kang Ryoung

    2018-01-01

    Among biometric recognition systems such as fingerprint, finger-vein, or face, the iris recognition system has proven to be effective for achieving a high recognition accuracy and security level. However, several recent studies have indicated that an iris recognition system can be fooled by using presentation attack images that are recaptured using high-quality printed images or by contact lenses with printed iris patterns. As a result, this potential threat can reduce the security level of an iris recognition system. In this study, we propose a new presentation attack detection (PAD) method for an iris recognition system (iPAD) using a near infrared light (NIR) camera image. To detect presentation attack images, we first localized the iris region of the input iris image using circular edge detection (CED). Based on the result of iris localization, we extracted the image features using deep learning-based and handcrafted-based methods. The input iris images were then classified into real and presentation attack categories using support vector machines (SVM). Through extensive experiments with two public datasets, we show that our proposed method effectively solves the iris recognition presentation attack detection problem and produces detection accuracy superior to previous studies. PMID:29695113

  3. Presentation Attack Detection for Iris Recognition System Using NIR Camera Sensor.

    PubMed

    Nguyen, Dat Tien; Baek, Na Rae; Pham, Tuyen Danh; Park, Kang Ryoung

    2018-04-24

    Among biometric recognition systems such as fingerprint, finger-vein, or face, the iris recognition system has proven to be effective for achieving a high recognition accuracy and security level. However, several recent studies have indicated that an iris recognition system can be fooled by using presentation attack images that are recaptured using high-quality printed images or by contact lenses with printed iris patterns. As a result, this potential threat can reduce the security level of an iris recognition system. In this study, we propose a new presentation attack detection (PAD) method for an iris recognition system (iPAD) using a near infrared light (NIR) camera image. To detect presentation attack images, we first localized the iris region of the input iris image using circular edge detection (CED). Based on the result of iris localization, we extracted the image features using deep learning-based and handcrafted-based methods. The input iris images were then classified into real and presentation attack categories using support vector machines (SVM). Through extensive experiments with two public datasets, we show that our proposed method effectively solves the iris recognition presentation attack detection problem and produces detection accuracy superior to previous studies.

  4. A demonstration of a low cost approach to security at shipping facilities and ports

    NASA Astrophysics Data System (ADS)

    Huck, Robert C.; Al Akkoumi, Mouhammad K.; Herath, Ruchira W.; Sluss, James J., Jr.; Radhakrishnan, Sridhar; Landers, Thomas L.

    2010-04-01

    Government funding for the security at shipping facilities and ports is limited so there is a need for low cost scalable security systems. With over 20 million sea, truck, and rail containers entering the United States every year, these facilities pose a large risk to security. Securing these facilities and monitoring the variety of traffic that enter and leave is a major task. To accomplish this, the authors have developed and fielded a low cost fully distributed building block approach to port security at the inland Port of Catoosa in Oklahoma. Based on prior work accomplished in the design and fielding of an intelligent transportation system in the United States, functional building blocks, (e.g. Network, Camera, Sensor, Display, and Operator Console blocks) can be assembled, mixed and matched, and scaled to provide a comprehensive security system. The following functions are demonstrated and scaled through analysis and demonstration: Barge tracking, credential checking, container inventory, vehicle tracking, and situational awareness. The concept behind this research is "any operator on any console can control any device at any time."

  5. Effectiveness of Taxicab Security Equipment in Reducing Driver Homicide Rates

    PubMed Central

    Menéndez, Cammie K.C.; Amandus, Harlan E.; Damadi, Parisa; Wu, Nan; Konda, Srinivas; Hendricks, Scott A.

    2015-01-01

    Background Taxicab drivers historically have had one of the highest work-related homicide rates of any occupation. In 2010 the taxicab driver homicide rate was 7.4 per 100,000 drivers, compared to the overall rate of 0.37 per 100,000 workers. Purpose Evaluate the effectiveness of taxicab security cameras and partitions on citywide taxicab driver homicide rates. Methods Taxicab driver homicide rates were compared in 26 major cities in the U.S. licensing taxicabs with security cameras (n=8); bullet-resistant partitions (n=7); and cities where taxicabs were not equipped with either security cameras or partitions (n=11). News clippings of taxicab driver homicides and the number of licensed taxicabs by city were used to construct taxicab driver homicide rates spanning 15 years (1996–2010). Generalized estimating equations were constructed to model the Poisson-distributed homicide rates on city-specific safety equipment installation status, controlling for city homicide rate and the concurrent decline of homicide rates over time. Data were analyzed in 2012. Results Cities with cameras experienced a threefold reduction in taxicab driver homicides compared with control cities (RR=0.27; 95% CI=0.12, 0.61; p=0.002). There was no difference in homicide rates for cities with partitions compared with control cities (RR=1.15; 95% CI=0.80, 1.64; p=0.575). Conclusions Municipal ordinances and company policies mandating security cameras appear to be highly effective in reducing taxicab driver deaths due to workplace violence. PMID:23790983

  6. Detection of Suspicious Persons using Internet Camera

    NASA Astrophysics Data System (ADS)

    Terada, Kenji; Kamogashira, Daisuke

    Recently, many brutal crimes have shocked us. Therefore, the importance of security and self-defense have increased more and more. It is necessary to develop an automatic method of detecting suspicious persons. In this paper, we propose a method of detecting suspicious persons using the internet camera. An image sequence is obtained by the internet camera. By using these images, the recognition of suspicious persons is carried out. Our method classifies the condition of the target person into 3 postures: walking, staying and sitting. The system employs the subspace method which uses three features: the value of movement, the number of looking around restlessly, and the rate of stopping and going. Some experimental results using a simple experimental system are also reported, which indicate effectiveness of the proposed method. In most scenes, the suspicious persons are able to be detected by the proposed method.

  7. A drone detection with aircraft classification based on a camera array

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Qu, Fangchao; Liu, Yingjian; Zhao, Wei; Chen, Yitong

    2018-03-01

    In recent years, because of the rapid popularity of drones, many people have begun to operate drones, bringing a range of security issues to sensitive areas such as airports and military locus. It is one of the important ways to solve these problems by realizing fine-grained classification and providing the fast and accurate detection of different models of drone. The main challenges of fine-grained classification are that: (1) there are various types of drones, and the models are more complex and diverse. (2) the recognition test is fast and accurate, in addition, the existing methods are not efficient. In this paper, we propose a fine-grained drone detection system based on the high resolution camera array. The system can quickly and accurately recognize the detection of fine grained drone based on hd camera.

  8. Secure and Efficient Reactive Video Surveillance for Patient Monitoring.

    PubMed

    Braeken, An; Porambage, Pawani; Gurtov, Andrei; Ylianttila, Mika

    2016-01-02

    Video surveillance is widely deployed for many kinds of monitoring applications in healthcare and assisted living systems. Security and privacy are two promising factors that align the quality and validity of video surveillance systems with the caliber of patient monitoring applications. In this paper, we propose a symmetric key-based security framework for the reactive video surveillance of patients based on the inputs coming from data measured by a wireless body area network attached to the human body. Only authenticated patients are able to activate the video cameras, whereas the patient and authorized people can consult the video data. User and location privacy are at each moment guaranteed for the patient. A tradeoff between security and quality of service is defined in order to ensure that the surveillance system gets activated even in emergency situations. In addition, the solution includes resistance against tampering with the device on the patient's side.

  9. Secure and Efficient Reactive Video Surveillance for Patient Monitoring

    PubMed Central

    Braeken, An; Porambage, Pawani; Gurtov, Andrei; Ylianttila, Mika

    2016-01-01

    Video surveillance is widely deployed for many kinds of monitoring applications in healthcare and assisted living systems. Security and privacy are two promising factors that align the quality and validity of video surveillance systems with the caliber of patient monitoring applications. In this paper, we propose a symmetric key-based security framework for the reactive video surveillance of patients based on the inputs coming from data measured by a wireless body area network attached to the human body. Only authenticated patients are able to activate the video cameras, whereas the patient and authorized people can consult the video data. User and location privacy are at each moment guaranteed for the patient. A tradeoff between security and quality of service is defined in order to ensure that the surveillance system gets activated even in emergency situations. In addition, the solution includes resistance against tampering with the device on the patient’s side. PMID:26729130

  10. People counting and re-identification using fusion of video camera and laser scanner

    NASA Astrophysics Data System (ADS)

    Ling, Bo; Olivera, Santiago; Wagley, Raj

    2016-05-01

    We present a system for people counting and re-identification. It can be used by transit and homeland security agencies. Under FTA SBIR program, we have developed a preliminary system for transit passenger counting and re-identification using a laser scanner and video camera. The laser scanner is used to identify the locations of passenger's head and shoulder in an image, a challenging task in crowed environment. It can also estimate the passenger height without prior calibration. Various color models have been applied to form color signatures. Finally, using a statistical fusion and classification scheme, passengers are counted and re-identified.

  11. Secure Video Surveillance System Acquisition Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2009-12-04

    The SVSS Acquisition Software collects and displays video images from two cameras through a VPN, and store the images onto a collection controller. The software is configured to allow a user to enter a time window to display up to 2 1/2, hours of video review. The software collects images from the cameras at a rate of 1 image per second and automatically deletes images older than 3 hours. The software code operates in a linux environment and can be run in a virtual machine on Windows XP. The Sandia software integrates the different COTS software together to build themore » video review system.« less

  12. Under-vehicle autonomous inspection through undercarriage signatures

    NASA Astrophysics Data System (ADS)

    Schoenherr, Edward; Smuda, Bill

    2005-05-01

    Increased threats to gate security have caused recent need for improved vehicle inspection methods at security checkpoints in various fields of defense and security. A fast, reliable system of under-vehicle inspection that detects possibly harmful or unwanted materials hidden on vehicle undercarriages and notifies the user of the presence of these materials while allowing the user a safe standoff distance from the inspection site is desirable. An autonomous under-vehicle inspection system would provide for this. The proposed system would function as follows: A low-clearance tele-operated robotic platform would be equipped with sonar/laser range finding sensors as well as a video camera. As a vehicle to be inspected enters a checkpoint, the robot would autonomously navigate under the vehicle, using algorithms to detect tire locations for weigh points. During this navigation, data would be collected from the sonar/laser range finding hardware. This range data would be used to compile an impression of the vehicle undercarriage. Once this impression is complete, the system would compare it to a database of pre-scanned undercarriage impressions. Based on vehicle makes and models, any variance between the undercarriage being inspected and the impression compared against in the database would be marked as potentially threatening. If such variances exist, the robot would navigate to these locations and place the video camera in such a manner that the location in question can be viewed from a standoff position through a TV monitor. At this time, manual control of the robot navigation and camera control can be taken to imply further, more detailed inspection of the area/materials in question. After-market vehicle modifications would provide some difficulty, yet with enough pre-screening of such modifications, the system should still prove accurate. Also, impression scans that are taken in the field can be stored and tagged with a vehicles's license plate number, and future inspections of that vehicle can be compared to already screened and cleared impressions of the same vehicle in order to search for variance.

  13. Building Security into Schools.

    ERIC Educational Resources Information Center

    Kosar, John E.; Ahmed, Faruq

    2000-01-01

    Offers tips for redesigning safer school sites; installing and implementing security technologies (closed-circuit television cameras, door security hardware, electronic security panels, identification cards, metal detectors, and panic buttons); educating students and staff about security functions; and minimizing costs via a comprehensive campus…

  14. Digital camera with apparatus for authentication of images produced from an image file

    NASA Technical Reports Server (NTRS)

    Friedman, Gary L. (Inventor)

    1993-01-01

    A digital camera equipped with a processor for authentication of images produced from an image file taken by the digital camera is provided. The digital camera processor has embedded therein a private key unique to it, and the camera housing has a public key that is so uniquely based upon the private key that digital data encrypted with the private key by the processor may be decrypted using the public key. The digital camera processor comprises means for calculating a hash of the image file using a predetermined algorithm, and second means for encrypting the image hash with the private key, thereby producing a digital signature. The image file and the digital signature are stored in suitable recording means so they will be available together. Apparatus for authenticating at any time the image file as being free of any alteration uses the public key for decrypting the digital signature, thereby deriving a secure image hash identical to the image hash produced by the digital camera and used to produce the digital signature. The apparatus calculates from the image file an image hash using the same algorithm as before. By comparing this last image hash with the secure image hash, authenticity of the image file is determined if they match, since even one bit change in the image hash will cause the image hash to be totally different from the secure hash.

  15. A Robust In-Situ Warp-Correction Algorithm For VISAR Streak Camera Data at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.

    2015-01-12

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high-energy-density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However,more » the camera nonlinearities drift over time, affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.« less

  16. High-performance camera module for fast quality inspection in industrial printing applications

    NASA Astrophysics Data System (ADS)

    Fürtler, Johannes; Bodenstorfer, Ernst; Mayer, Konrad J.; Brodersen, Jörg; Heiss, Dorothea; Penz, Harald; Eckel, Christian; Gravogl, Klaus; Nachtnebel, Herbert

    2007-02-01

    Today, printing products which must meet highest quality standards, e.g., banknotes, stamps, or vouchers, are automatically checked by optical inspection systems. Typically, the examination of fine details of the print or security features demands images taken from various perspectives, with different spectral sensitivity (visible, infrared, ultraviolet), and with high resolution. Consequently, the inspection system is equipped with several cameras and has to cope with an enormous data rate to be processed in real-time. Hence, it is desirable to move image processing tasks into the camera to reduce the amount of data which has to be transferred to the (central) image processing system. The idea is to transfer relevant information only, i.e., features of the image instead of the raw image data from the sensor. These features are then further processed. In this paper a color line-scan camera for line rates up to 100 kHz is presented. The camera is based on a commercial CMOS (complementary metal oxide semiconductor) area image sensor and a field programmable gate array (FPGA). It implements extraction of image features which are well suited to detect print flaws like blotches of ink, color smears, splashes, spots and scratches. The camera design and several image processing methods implemented on the FPGA are described, including flat field correction, compensation of geometric distortions, color transformation, as well as decimation and neighborhood operations.

  17. Cops, cameras, and enclosures : a synthesis of the effectiveness of methods to provide enhanced security for bus operators

    DOT National Transportation Integrated Search

    2001-05-31

    The safety of operators and passengers is a primary concern of transit systems and has become an increasingly important issue to transit bus operators themselves. Many transit agencies have experienced incidents of assaults against their bus operator...

  18. Hierarchical video surveillance architecture: a chassis for video big data analytics and exploration

    NASA Astrophysics Data System (ADS)

    Ajiboye, Sola O.; Birch, Philip; Chatwin, Christopher; Young, Rupert

    2015-03-01

    There is increasing reliance on video surveillance systems for systematic derivation, analysis and interpretation of the data needed for predicting, planning, evaluating and implementing public safety. This is evident from the massive number of surveillance cameras deployed across public locations. For example, in July 2013, the British Security Industry Association (BSIA) reported that over 4 million CCTV cameras had been installed in Britain alone. The BSIA also reveal that only 1.5% of these are state owned. In this paper, we propose a framework that allows access to data from privately owned cameras, with the aim of increasing the efficiency and accuracy of public safety planning, security activities, and decision support systems that are based on video integrated surveillance systems. The accuracy of results obtained from government-owned public safety infrastructure would improve greatly if privately owned surveillance systems `expose' relevant video-generated metadata events, such as triggered alerts and also permit query of a metadata repository. Subsequently, a police officer, for example, with an appropriate level of system permission can query unified video systems across a large geographical area such as a city or a country to predict the location of an interesting entity, such as a pedestrian or a vehicle. This becomes possible with our proposed novel hierarchical architecture, the Fused Video Surveillance Architecture (FVSA). At the high level, FVSA comprises of a hardware framework that is supported by a multi-layer abstraction software interface. It presents video surveillance systems as an adapted computational grid of intelligent services, which is integration-enabled to communicate with other compatible systems in the Internet of Things (IoT).

  19. Multisensor system for the protection of critical infrastructure of a seaport

    NASA Astrophysics Data System (ADS)

    Kastek, Mariusz; Dulski, Rafał; Zyczkowski, Marek; Szustakowski, Mieczysław; Trzaskawka, Piotr; Ciurapinski, Wiesław; Grelowska, Grazyna; Gloza, Ignacy; Milewski, Stanislaw; Listewnik, Karol

    2012-06-01

    There are many separated infrastructural objects within a harbor area that may be considered "critical", such as gas and oil terminals or anchored naval vessels. Those objects require special protection, including security systems capable of monitoring both surface and underwater areas, because an intrusion into the protected area may be attempted using small surface vehicles (boats, kayaks, rafts, floating devices with weapons and explosives) as well as underwater ones (manned or unmanned submarines, scuba divers). The paper will present the concept of multisensor security system for a harbor protection, capable of complex monitoring of selected critical objects within the protected area. The proposed system consists of a command centre and several different sensors deployed in key areas, providing effective protection from land and sea, with special attention focused on the monitoring of underwater zone. The initial project of such systems will be presented, its configuration and initial tests of the selected components. The protection of surface area is based on medium-range radar and LLTV and infrared cameras. Underwater zone will be monitored by a sonar and acoustic and magnetic barriers, connected into an integrated monitoring system. Theoretical analyses concerning the detection of fast, small surface objects (such as RIB boats) by a camera system and real test results in various weather conditions will also be presented.

  20. Strategic options towards an affordable high-performance infrared camera

    NASA Astrophysics Data System (ADS)

    Oduor, Patrick; Mizuno, Genki; Dutta, Achyut K.; Lewis, Jay; Dhar, Nibir K.

    2016-05-01

    The promise of infrared (IR) imaging attaining low-cost akin to CMOS sensors success has been hampered by the inability to achieve cost advantages that are necessary for crossover from military and industrial applications into the consumer and mass-scale commercial realm despite well documented advantages. Banpil Photonics is developing affordable IR cameras by adopting new strategies to speed-up the decline of the IR camera cost curve. We present a new short-wave IR (SWIR) camera; 640x512 pixel InGaAs uncooled system that is high sensitivity low noise (<50e-), high dynamic range (100 dB), high-frame rates (> 500 frames per second (FPS)) at full resolution, and low power consumption (< 1 W) in a compact system. This camera paves the way towards mass market adoption by not only demonstrating high-performance IR imaging capability value add demanded by military and industrial application, but also illuminates a path towards justifiable price points essential for consumer facing application industries such as automotive, medical, and security imaging adoption. Among the strategic options presented include new sensor manufacturing technologies that scale favorably towards automation, multi-focal plane array compatible readout electronics, and dense or ultra-small pixel pitch devices.

  1. Easily Accessible Camera Mount

    NASA Technical Reports Server (NTRS)

    Chalson, H. E.

    1986-01-01

    Modified mount enables fast alinement of movie cameras in explosionproof housings. Screw on side and readily reached through side door of housing. Mount includes right-angle drive mechanism containing two miter gears that turn threaded shaft. Shaft drives movable dovetail clamping jaw that engages fixed dovetail plate on camera. Mechanism alines camera in housing and secures it. Reduces installation time by 80 percent.

  2. 47 CFR 51.323 - Standards for physical collocation and virtual collocation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accessible by both the incumbent LEC and the collocating telecommunications carrier, at which the fiber optic... technically feasible, the incumbent LEC shall provide the connection using copper, dark fiber, lit fiber, or... that the incumbent LEC may adopt include: (1) Installing security cameras or other monitoring systems...

  3. 47 CFR 51.323 - Standards for physical collocation and virtual collocation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... accessible by both the incumbent LEC and the collocating telecommunications carrier, at which the fiber optic... technically feasible, the incumbent LEC shall provide the connection using copper, dark fiber, lit fiber, or... that the incumbent LEC may adopt include: (1) Installing security cameras or other monitoring systems...

  4. Very low cost real time histogram-based contrast enhancer utilizing fixed-point DSP processing

    NASA Astrophysics Data System (ADS)

    McCaffrey, Nathaniel J.; Pantuso, Francis P.

    1998-03-01

    A real time contrast enhancement system utilizing histogram- based algorithms has been developed to operate on standard composite video signals. This low-cost DSP based system is designed with fixed-point algorithms and an off-chip look up table (LUT) to reduce the cost considerably over other contemporary approaches. This paper describes several real- time contrast enhancing systems advanced at the Sarnoff Corporation for high-speed visible and infrared cameras. The fixed-point enhancer was derived from these high performance cameras. The enhancer digitizes analog video and spatially subsamples the stream to qualify the scene's luminance. Simultaneously, the video is streamed through a LUT that has been programmed with the previous calculation. Reducing division operations by subsampling reduces calculation- cycles and also allows the processor to be used with cameras of nominal resolutions. All values are written to the LUT during blanking so no frames are lost. The enhancer measures 13 cm X 6.4 cm X 3.2 cm, operates off 9 VAC and consumes 12 W. This processor is small and inexpensive enough to be mounted with field deployed security cameras and can be used for surveillance, video forensics and real- time medical imaging.

  5. Multiple-camera tracking: UK government requirements

    NASA Astrophysics Data System (ADS)

    Hosmer, Paul

    2007-10-01

    The Imagery Library for Intelligent Detection Systems (i-LIDS) is the UK government's new standard for Video Based Detection Systems (VBDS). The standard was launched in November 2006 and evaluations against it began in July 2007. With the first four i-LIDS scenarios completed, the Home Office Scientific development Branch (HOSDB) are looking toward the future of intelligent vision in the security surveillance market by adding a fifth scenario to the standard. The fifth i-LIDS scenario will concentrate on the development, testing and evaluation of systems for the tracking of people across multiple cameras. HOSDB and the Centre for the Protection of National Infrastructure (CPNI) identified a requirement to track targets across a network of CCTV cameras using both live and post event imagery. The Detection and Vision Systems group at HOSDB were asked to determine the current state of the market and develop an in-depth Operational Requirement (OR) based on government end user requirements. Using this OR the i-LIDS team will develop a full i-LIDS scenario to aid the machine vision community in its development of multi-camera tracking systems. By defining a requirement for multi-camera tracking and building this into the i-LIDS standard the UK government will provide a widely available tool that developers can use to help them turn theory and conceptual demonstrators into front line application. This paper will briefly describe the i-LIDS project and then detail the work conducted in building the new tracking aspect of the standard.

  6. Progress in passive submillimeter-wave video imaging

    NASA Astrophysics Data System (ADS)

    Heinz, Erik; May, Torsten; Born, Detlef; Zieger, Gabriel; Peiselt, Katja; Zakosarenko, Vyacheslav; Krause, Torsten; Krüger, André; Schulz, Marco; Bauer, Frank; Meyer, Hans-Georg

    2014-06-01

    Since 2007 we are developing passive submillimeter-wave video cameras for personal security screening. In contradiction to established portal-based millimeter-wave scanning techniques, these are suitable for stand-off or stealth operation. The cameras operate in the 350GHz band and use arrays of superconducting transition-edge sensors (TES), reflector optics, and opto-mechanical scanners. Whereas the basic principle of these devices remains unchanged, there has been a continuous development of the technical details, as the detector array, the scanning scheme, and the readout, as well as system integration and performance. The latest prototype of this camera development features a linear array of 128 detectors and a linear scanner capable of 25Hz frame rate. Using different types of reflector optics, a field of view of 1×2m2 and a spatial resolution of 1-2 cm is provided at object distances of about 5-25m. We present the concept of this camera and give details on system design and performance. Demonstration videos show its capability for hidden threat detection and illustrate possible application scenarios.

  7. Handheld hyperspectral imager system for chemical/biological and environmental applications

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Piatek, Bob

    2004-08-01

    A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.

  8. Relative effects of posture and activity on human height estimation from surveillance footage.

    PubMed

    Ramstrand, Nerrolyn; Ramstrand, Simon; Brolund, Per; Norell, Kristin; Bergström, Peter

    2011-10-10

    Height estimations based on security camera footage are often requested by law enforcement authorities. While valid and reliable techniques have been established to determine vertical distances from video frames, there is a discrepancy between a person's true static height and their height as measured when assuming different postures or when in motion (e.g., walking). The aim of the research presented in this report was to accurately record the height of subjects as they performed a variety of activities typically observed in security camera footage and compare results to height recorded using a standard height measuring device. Forty-six able bodied adults participated in this study and were recorded using a 3D motion analysis system while performing eight different tasks. Height measurements captured using the 3D motion analysis system were compared to static height measurements in order to determine relative differences. It is anticipated that results presented in this report can be used by forensic image analysis experts as a basis for correcting height estimations of people captured on surveillance footage. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Heterogeneous Vision Data Fusion for Independently Moving Cameras

    DTIC Science & Technology

    2010-03-01

    target detection , tracking , and identification over a large terrain. The goal of the project is to investigate and evaluate the existing image...fusion algorithms, develop new real-time algorithms for Category-II image fusion, and apply these algorithms in moving target detection and tracking . The...moving target detection and classification. 15. SUBJECT TERMS Image Fusion, Target Detection , Moving Cameras, IR Camera, EO Camera 16. SECURITY

  10. Development of an image converter of radical design. [employing solid state electronics towards the production of an advanced engineering model camera system

    NASA Technical Reports Server (NTRS)

    Irwin, E. L.; Farnsworth, D. L.

    1972-01-01

    A long term investigation of thin film sensors, monolithic photo-field effect transistors, and epitaxially diffused phototransistors and photodiodes to meet requirements to produce acceptable all solid state, electronically scanned imaging system, led to the production of an advanced engineering model camera which employs a 200,000 element phototransistor array (organized in a matrix of 400 rows by 500 columns) to secure resolution comparable to commercial television. The full investigation is described for the period July 1962 through July 1972, and covers the following broad topics in detail: (1) sensor monoliths; (2) fabrication technology; (3) functional theory; (4) system methodology; and (5) deployment profile. A summary of the work and conclusions are given, along with extensive schematic diagrams of the final solid state imaging system product.

  11. Visible School Security Measures and Student Academic Performance, Attendance, and Postsecondary Aspirations

    ERIC Educational Resources Information Center

    Tanner-Smith, Emily E.; Fisher, Benjamin W.

    2015-01-01

    Many U.S. schools use visible security measures (security cameras, metal detectors, security personnel) in an effort to keep schools safe and promote adolescents' academic success. This study examined how different patterns of visible security utilization were associated with U.S. middle and high school students' academic performance, attendance,…

  12. School Violence: Physical Security.

    ERIC Educational Resources Information Center

    Utah State Office of Education, Salt Lake City.

    This booklet provides an overview of security technology product areas that might be appropriate and affordable for school applications. Topics cover security concepts and operational issues; security issues when designing for new schools; the role of maintenance; video camera use; walk-through metal detectors; duress alarm devices; and a partial…

  13. A semantic autonomous video surveillance system for dense camera networks in Smart Cities.

    PubMed

    Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M; Carro, Belén; Sánchez-Esguevillas, Antonio

    2012-01-01

    This paper presents a proposal of an intelligent video surveillance system able to detect and identify abnormal and alarming situations by analyzing object movement. The system is designed to minimize video processing and transmission, thus allowing a large number of cameras to be deployed on the system, and therefore making it suitable for its usage as an integrated safety and security solution in Smart Cities. Alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. This means that the system employs a high-level conceptual language easy to understand for human operators, capable of raising enriched alarms with descriptions of what is happening on the image, and to automate reactions to them such as alerting the appropriate emergency services using the Smart City safety network.

  14. Enhanced operator perception through 3D vision and haptic feedback

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Light, Kenneth; Bodenhamer, Andrew; Bosscher, Paul; Wilkinson, Loren

    2012-06-01

    Polaris Sensor Technologies (PST) has developed a stereo vision upgrade kit for TALON® robot systems comprised of a replacement gripper camera and a replacement mast zoom camera on the robot, and a replacement display in the Operator Control Unit (OCU). Harris Corporation has developed a haptic manipulation upgrade for TALON® robot systems comprised of a replacement arm and gripper and an OCU that provides haptic (force) feedback. PST and Harris have recently collaborated to integrate the 3D vision system with the haptic manipulation system. In multiple studies done at Fort Leonard Wood, Missouri it has been shown that 3D vision and haptics provide more intuitive perception of complicated scenery and improved robot arm control, allowing for improved mission performance and the potential for reduced time on target. This paper discusses the potential benefits of these enhancements to robotic systems used for the domestic homeland security mission.

  15. A Semantic Autonomous Video Surveillance System for Dense Camera Networks in Smart Cities

    PubMed Central

    Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M.; Carro, Belén; Sánchez-Esguevillas, Antonio

    2012-01-01

    This paper presents a proposal of an intelligent video surveillance system able to detect and identify abnormal and alarming situations by analyzing object movement. The system is designed to minimize video processing and transmission, thus allowing a large number of cameras to be deployed on the system, and therefore making it suitable for its usage as an integrated safety and security solution in Smart Cities. Alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. This means that the system employs a high-level conceptual language easy to understand for human operators, capable of raising enriched alarms with descriptions of what is happening on the image, and to automate reactions to them such as alerting the appropriate emergency services using the Smart City safety network. PMID:23112607

  16. Applications of superconducting bolometers in security imaging

    NASA Astrophysics Data System (ADS)

    Luukanen, A.; Leivo, M. M.; Rautiainen, A.; Grönholm, M.; Toivanen, H.; Grönberg, L.; Helistö, P.; Mäyrä, A.; Aikio, M.; Grossman, E. N.

    2012-12-01

    Millimeter-wave (MMW) imaging systems are currently undergoing deployment World-wide for airport security screening applications. Security screening through MMW imaging is facilitated by the relatively good transmission of these wavelengths through common clothing materials. Given the long wavelength of operation (frequencies between 20 GHz to ~ 100 GHz, corresponding to wavelengths between 1.5 cm and 3 mm), existing systems are suited for close-range imaging only due to substantial diffraction effects associated with practical aperture diameters. The present and arising security challenges call for systems that are capable of imaging concealed threat items at stand-off ranges beyond 5 meters at near video frame rates, requiring substantial increase in operating frequency in order to achieve useful spatial resolution. The construction of such imaging systems operating at several hundred GHz has been hindered by the lack of submm-wave low-noise amplifiers. In this paper we summarize our efforts in developing a submm-wave video camera which utilizes cryogenic antenna-coupled microbolometers as detectors. Whilst superconducting detectors impose the use of a cryogenic system, we argue that the resulting back-end complexity increase is a favorable trade-off compared to complex and expensive room temperature submm-wave LNAs both in performance and system cost.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Oleg P.; Semin, Ilya A.; Potapov, Victor N.

    Gamma-ray imaging is the most important way to identify unknown gamma-ray emitting objects in decommissioning, security, overcoming accidents. Over the past two decades a system for producing of gamma images in these conditions became more or less portable devices. But in recent years these systems have become the hand-held devices. This is very important, especially in emergency situations, and measurements for safety reasons. We describe the first integrated hand-held instrument for emergency and security applications. The device is based on the coded aperture image formation, position sensitive gamma-ray (X-ray) detector Medipix2 (detectors produces by X-ray Imaging Europe) and tablet computer.more » The development was aimed at creating a very low weight system with high angular resolution. We present some sample gamma-ray images by camera. Main estimated parameters of the system are the following. The field of view video channel ∼ 490 deg. The field of view gamma channel ∼ 300 deg. The sensitivity of the system with a hexagonal mask for the source of Cs-137 (Eg = 662 keV), is in units of dose D ∼ 100 mR. This option is less then order of magnitude worse than for the heavy, non-hand-held systems (e.g., gamma-camera Cartogam, by Canberra.) The angular resolution of the gamma channel for the sources of Cs-137 (Eg = 662 keV) is about 1.20 deg. (authors)« less

  18. Driver face recognition as a security and safety feature

    NASA Astrophysics Data System (ADS)

    Vetter, Volker; Giefing, Gerd-Juergen; Mai, Rudolf; Weisser, Hubert

    1995-09-01

    We present a driver face recognition system for comfortable access control and individual settings of automobiles. The primary goals are the prevention of car thefts and heavy accidents caused by unauthorized use (joy-riders), as well as the increase of safety through optimal settings, e.g. of the mirrors and the seat position. The person sitting on the driver's seat is observed automatically by a small video camera in the dashboard. All he has to do is to behave cooperatively, i.e. to look into the camera. A classification system validates his access. Only after a positive identification, the car can be used and the driver-specific environment (e.g. seat position, mirrors, etc.) may be set up to ensure the driver's comfort and safety. The driver identification system has been integrated in a Volkswagen research car. Recognition results are presented.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Andrew J.; Miller, Brian W.; Robinson, Sean M.

    Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. But, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. We built this method on the theory of compressive sensing and the single pixelmore » optical camera. The performance of the system is quantified using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how robust and secure such an inspection would be. Particularly, it is found that an inspection with low noise (<1%) and high undersampling (>256×) exhibits high robustness and security.« less

  20. Test Operations Procedure (TOP) 03-2-827 Test Procedures for Video Target Scoring Using Calibration Lights

    DTIC Science & Technology

    2016-04-04

    Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 03-2-827 Test Procedures for Video Target Scoring Using...ABSTRACT This Test Operations Procedure (TOP) describes typical equipment and procedures to setup and operate a Video Target Scoring System (VTSS) to...lights. 15. SUBJECT TERMS Video Target Scoring System, VTSS, witness screens, camera, target screen, light pole 16. SECURITY

  1. Generic Learning-Based Ensemble Framework for Small Sample Size Face Recognition in Multi-Camera Networks.

    PubMed

    Zhang, Cuicui; Liang, Xuefeng; Matsuyama, Takashi

    2014-12-08

    Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samples during the training phrase. This is difficult to fulfill due to the limitation of the camera hardware system and the unconstrained image capturing conditions. Conventional face recognition algorithms often encounter the "small sample size" (SSS) problem arising from the small number of training samples compared to the high dimensionality of the sample space. To overcome this problem, interest in the combination of multiple base classifiers has sparked research efforts in ensemble methods. However, existing ensemble methods still open two questions: (1) how to define diverse base classifiers from the small data; (2) how to avoid the diversity/accuracy dilemma occurring during ensemble. To address these problems, this paper proposes a novel generic learning-based ensemble framework, which augments the small data by generating new samples based on a generic distribution and introduces a tailored 0-1 knapsack algorithm to alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from the expanded face space, and more appropriate base classifiers are selected for ensemble. Extensive experimental results on four benchmarks demonstrate the higher ability of our system to cope with the SSS problem compared to the state-of-the-art system.

  2. Generic Learning-Based Ensemble Framework for Small Sample Size Face Recognition in Multi-Camera Networks

    PubMed Central

    Zhang, Cuicui; Liang, Xuefeng; Matsuyama, Takashi

    2014-01-01

    Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samples during the training phrase. This is difficult to fulfill due to the limitation of the camera hardware system and the unconstrained image capturing conditions. Conventional face recognition algorithms often encounter the “small sample size” (SSS) problem arising from the small number of training samples compared to the high dimensionality of the sample space. To overcome this problem, interest in the combination of multiple base classifiers has sparked research efforts in ensemble methods. However, existing ensemble methods still open two questions: (1) how to define diverse base classifiers from the small data; (2) how to avoid the diversity/accuracy dilemma occurring during ensemble. To address these problems, this paper proposes a novel generic learning-based ensemble framework, which augments the small data by generating new samples based on a generic distribution and introduces a tailored 0–1 knapsack algorithm to alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from the expanded face space, and more appropriate base classifiers are selected for ensemble. Extensive experimental results on four benchmarks demonstrate the higher ability of our system to cope with the SSS problem compared to the state-of-the-art system. PMID:25494350

  3. Visualizing the history of living spaces.

    PubMed

    Ivanov, Yuri; Wren, Christopher; Sorokin, Alexander; Kaur, Ishwinder

    2007-01-01

    The technology available to building designers now makes it possible to monitor buildings on a very large scale. Video cameras and motion sensors are commonplace in practically every office space, and are slowly making their way into living spaces. The application of such technologies, in particular video cameras, while improving security, also violates privacy. On the other hand, motion sensors, while being privacy-conscious, typically do not provide enough information for a human operator to maintain the same degree of awareness about the space that can be achieved by using video cameras. We propose a novel approach in which we use a large number of simple motion sensors and a small set of video cameras to monitor a large office space. In our system we deployed 215 motion sensors and six video cameras to monitor the 3,000-square-meter office space occupied by 80 people for a period of about one year. The main problem in operating such systems is finding a way to present this highly multidimensional data, which includes both spatial and temporal components, to a human operator to allow browsing and searching recorded data in an efficient and intuitive way. In this paper we present our experiences and the solutions that we have developed in the course of our work on the system. We consider this work to be the first step in helping designers and managers of building systems gain access to information about occupants' behavior in the context of an entire building in a way that is only minimally intrusive to the occupants' privacy.

  4. Low-altitude photographic transects of the Arctic Network of National Park Units and Selawik National Wildlife Refuge, Alaska, July 2013

    USGS Publications Warehouse

    Marcot, Bruce G.; Jorgenson, M. Torre; DeGange, Anthony R.

    2014-01-01

    5. A Canon® Rebel 3Ti with a Sigma zoom lens (18–200 mm focal length). The Drift® HD-170 and GoPro® Hero3 cameras were secured to the struts and underwing for nadir (direct downward) imaging. The Panasonic® and Canon® cameras were each hand-held for oblique-angle landscape images, shooting through the airplanes’ windows, targeting both general landscape conditions as well as landscape features of special interest, such as tundra fire scars and landslips. The Drift® and GoPro® cameras each were set for time-lapse photography at 5-second intervals for overlapping coverage. Photographs from all cameras (100 percent .jpg format) were date- and time-synchronized to geographic positioning system waypoints taken during the flights, also at 5-second intervals, providing precise geotagging (latitude-longitude) of all files. All photographs were adjusted for color saturation and gamma, and nadir photographs were corrected for lens distortion for the Drift® and GoPro® cameras’ 170° wide-angle distortion. EXIF (exchangeable image file format) data on camera settings and geotagging were extracted into spreadsheet databases. An additional 1 hour, 20 minutes, and 43 seconds of high-resolution videos were recorded at 60 frames per second with the GoPro® camera along selected transect segments, and also were image-adjusted and corrected for lens distortion. Geotagged locations of 12,395 nadir photographs from the Drift® and GoPro® cameras were overlayed in a geographic information system (ArcMap 10.0) onto a map of 44 ecotypes (land- and water-cover types) of the Arctic Network study area. Presence and area of each ecotype occurring within a geographic information system window centered on the location of each photograph were recorded and included in the spreadsheet databases. All original and adjusted photographs, videos, geographic positioning system flight tracks, and photograph databases are available by contacting ascweb@usgs.gov.

  5. Systematic, appropriate, and cost-effective application of security technologies in U.S. public schools to reduce crime, violence, and drugs

    NASA Astrophysics Data System (ADS)

    Green, Mary W.

    1997-01-01

    As problems of violence and crime become more prevalent in our schools, more and more school districts will elect to use security technologies to control these problems. While the desired change in student and community attitudes will require significant systemic change through intense US social programs, security technologies can greatly augment school staff today by providing services similar to having extra adults present. Technologies such as cameras, sensors, drug detection, biometric and personnel identification, lighting, barriers, weapon and explosives detection, anti- graffiti methods, and duress alarms can all be effective, given they are used in appropriate applications, with realistic expectations and an understanding of limitations. Similar to a high-risk government facility, schools must consider a systems approach to security, which includes the use of personnel and procedures as well as security technologies, such that the synergy created by all these elements together contributes more tot he general 'order maintenance' of the facility than could be achieved by separate measures not integrated or related.

  6. 15 CFR 742.4 - National security.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Requirements” section except those cameras in ECCN 6A003.b.4.b that have a focal plane array with 111,000 or..., South Korea, Spain, Sweden, Switzerland, Turkey, and the United Kingdom for those cameras in ECCN 6A003...

  7. 15 CFR 742.4 - National security.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Requirements” section except those cameras in ECCN 6A003.b.4.b that have a focal plane array with 111,000 or..., South Korea, Spain, Sweden, Switzerland, Turkey, and the United Kingdom for those cameras in ECCN 6A003...

  8. 15 CFR 742.4 - National security.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Requirements” section except those cameras in ECCN 6A003.b.4.b that have a focal plane array with 111,000 or..., South Korea, Spain, Sweden, Switzerland, Turkey, and the United Kingdom for those cameras in ECCN 6A003...

  9. 15 CFR 742.4 - National security.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Requirements” section except those cameras in ECCN 6A003.b.4.b that have a focal plane array with 111,000 or..., South Korea, Spain, Sweden, Switzerland, Turkey, and the United Kingdom for those cameras in ECCN 6A003...

  10. About possibility of temperature trace observing on a human skin through clothes by using computer processing of IR image

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Shestakov, Ivan L.; Blednov, Roman G.

    2017-05-01

    One of urgent security problems is a detection of objects placed inside the human body. Obviously, for safety reasons one cannot use X-rays for such object detection widely and often. For this purpose, we propose to use THz camera and IR camera. Below we continue a possibility of IR camera using for a detection of temperature trace on a human body. In contrast to passive THz camera using, the IR camera does not allow to see very pronounced the object under clothing. Of course, this is a big disadvantage for a security problem solution based on the IR camera using. To find possible ways for this disadvantage overcoming we make some experiments with IR camera, produced by FLIR Company and develop novel approach for computer processing of images captured by IR camera. It allows us to increase a temperature resolution of IR camera as well as human year effective susceptibility enhancing. As a consequence of this, a possibility for seeing of a human body temperature changing through clothing appears. We analyze IR images of a person, which drinks water and eats chocolate. We follow a temperature trace on human body skin, caused by changing of temperature inside the human body. Some experiments are made with observing of temperature trace from objects placed behind think overall. Demonstrated results are very important for the detection of forbidden objects, concealed inside the human body, by using non-destructive control without using X-rays.

  11. About possibility of temperature trace observing on the human skin using commercially available IR camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Shestakov, Ivan L.; Blednov, Roman G.

    2016-09-01

    One of urgent security problems is a detection of objects placed inside the human body. Obviously, for safety reasons one cannot use X-rays for such object detection widely and often. Three years ago, we have demonstrated principal possibility to see a temperature trace, induced by food eating or water drinking, on the human body skin by using a passive THz camera. However, this camera is very expensive. Therefore, for practice it will be very convenient if one can use the IR camera for this purpose. In contrast to passive THz camera using, the IR camera does not allow to see the object under clothing, if an image, produced by this camera, is used directly. Of course, this is a big disadvantage for a security problem solution based on the IR camera using. To overcome this disadvantage we develop novel approach for computer processing of IR camera images. It allows us to increase a temperature resolution of IR camera as well as increasing of human year effective susceptibility. As a consequence of this, a possibility for seeing of a human body temperature changing through clothing appears. We analyze IR images of a person, which drinks water and eats chocolate. We follow a temperature trace on human body skin, caused by changing of temperature inside the human body. Some experiments were made with measurements of a body temperature covered by T-shirt. Shown results are very important for the detection of forbidden objects, cancelled inside the human body, by using non-destructive control without using X-rays.

  12. How To Keep Your Schools Safe and Secure.

    ERIC Educational Resources Information Center

    Gilbert, Christopher B.

    1996-01-01

    Discusses unforeseen costs (including potential litigation expenses), benefits, and consequences of adopting security measures (such as metal detectors, drug dogs, security cameras, campus police, dress codes, crime watch programs, and communication devices) to counter on-campus violence and gang activity. High-tech gadgetry alone is insufficient.…

  13. Keeper of the Gates.

    ERIC Educational Resources Information Center

    Bushweller, Kevin

    1994-01-01

    Profiles Floyd Wiggins, Jr., veteran school security chief for Richmond (Virginia) Public Schools. Besides a security force, the district uses hand-held metal-detectors and police-dog raids in its secondary schools and is considering use of student identification cards, security video cameras, and a larger parent volunteer force. Wiggins feels…

  14. A single-pixel X-ray imager concept and its application to secure radiographic inspections

    DOE PAGES

    Gilbert, Andrew J.; Miller, Brian W.; Robinson, Sean M.; ...

    2017-07-01

    Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. But, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. We built this method on the theory of compressive sensing and the single pixelmore » optical camera. The performance of the system is quantified using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how robust and secure such an inspection would be. Particularly, it is found that an inspection with low noise (<1%) and high undersampling (>256×) exhibits high robustness and security.« less

  15. Physical security and IT convergence: Managing the cyber-related risks.

    PubMed

    McCreight, Tim; Leece, Doug

    The convergence of physical security devices into the corporate network is increasing, due to the perceived economic benefits and efficiencies gained from using one enterprise network. Bringing these two networks together is not without risk. Physical devices like closed circuit television cameras (CCTV), card access readers, and heating, ventilation and air conditioning controllers (HVAC) are typically not secured to the standards we expect for corporate computer networks. These devices can pose significant risks to the corporate network by creating new avenues to exploit vulnerabilities in less-than-secure implementations of physical systems. The ASIS Information Technology Security Council (ITSC) developed a white paper describing steps organisations can take to reduce the risks this convergence can pose, and presented these concepts at the 2015 ASIS/ISC2 Congress in Anaheim, California. 1 This paper expands upon the six characteristics described by ITSC, and provides business continuity planners with information on how to apply these recommendations to physical security devices that use the corporate network.

  16. A single-pixel X-ray imager concept and its application to secure radiographic inspections

    NASA Astrophysics Data System (ADS)

    Gilbert, Andrew J.; Miller, Brian W.; Robinson, Sean M.; White, Timothy A.; Pitts, William Karl; Jarman, Kenneth D.; Seifert, Allen

    2017-07-01

    Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. However, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. The method is built on the theory of compressive sensing and the single pixel optical camera. The performance of the system is quantified using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how robust and secure such an inspection would be. In particular, it is found that an inspection with low noise ( < 1 %) and high undersampling ( > 256 ×) exhibits high robustness and security.

  17. A new omni-directional multi-camera system for high resolution surveillance

    NASA Astrophysics Data System (ADS)

    Cogal, Omer; Akin, Abdulkadir; Seyid, Kerem; Popovic, Vladan; Schmid, Alexandre; Ott, Beat; Wellig, Peter; Leblebici, Yusuf

    2014-05-01

    Omni-directional high resolution surveillance has a wide application range in defense and security fields. Early systems used for this purpose are based on parabolic mirror or fisheye lens where distortion due to the nature of the optical elements cannot be avoided. Moreover, in such systems, the image resolution is limited to a single image sensor's image resolution. Recently, the Panoptic camera approach that mimics the eyes of flying insects using multiple imagers has been presented. This approach features a novel solution for constructing a spherically arranged wide FOV plenoptic imaging system where the omni-directional image quality is limited by low-end sensors. In this paper, an overview of current Panoptic camera designs is provided. New results for a very-high resolution visible spectrum imaging and recording system inspired from the Panoptic approach are presented. The GigaEye-1 system, with 44 single cameras and 22 FPGAs, is capable of recording omni-directional video in a 360°×100° FOV at 9.5 fps with a resolution over (17,700×4,650) pixels (82.3MP). Real-time video capturing capability is also verified at 30 fps for a resolution over (9,000×2,400) pixels (21.6MP). The next generation system with significantly higher resolution and real-time processing capacity, called GigaEye-2, is currently under development. The important capacity of GigaEye-1 opens the door to various post-processing techniques in surveillance domain such as large perimeter object tracking, very-high resolution depth map estimation and high dynamicrange imaging which are beyond standard stitching and panorama generation methods.

  18. NV-CMOS HD camera for day/night imaging

    NASA Astrophysics Data System (ADS)

    Vogelsong, T.; Tower, J.; Sudol, Thomas; Senko, T.; Chodelka, D.

    2014-06-01

    SRI International (SRI) has developed a new multi-purpose day/night video camera with low-light imaging performance comparable to an image intensifier, while offering the size, weight, ruggedness, and cost advantages enabled by the use of SRI's NV-CMOS HD digital image sensor chip. The digital video output is ideal for image enhancement, sharing with others through networking, video capture for data analysis, or fusion with thermal cameras. The camera provides Camera Link output with HD/WUXGA resolution of 1920 x 1200 pixels operating at 60 Hz. Windowing to smaller sizes enables operation at higher frame rates. High sensitivity is achieved through use of backside illumination, providing high Quantum Efficiency (QE) across the visible and near infrared (NIR) bands (peak QE <90%), as well as projected low noise (<2h+) readout. Power consumption is minimized in the camera, which operates from a single 5V supply. The NVCMOS HD camera provides a substantial reduction in size, weight, and power (SWaP) , ideal for SWaP-constrained day/night imaging platforms such as UAVs, ground vehicles, fixed mount surveillance, and may be reconfigured for mobile soldier operations such as night vision goggles and weapon sights. In addition the camera with the NV-CMOS HD imager is suitable for high performance digital cinematography/broadcast systems, biofluorescence/microscopy imaging, day/night security and surveillance, and other high-end applications which require HD video imaging with high sensitivity and wide dynamic range. The camera comes with an array of lens mounts including C-mount and F-mount. The latest test data from the NV-CMOS HD camera will be presented.

  19. A Motionless Camera

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Omniview, a motionless, noiseless, exceptionally versatile camera was developed for NASA as a receiving device for guiding space robots. The system can see in one direction and provide as many as four views simultaneously. Developed by Omniview, Inc. (formerly TRI) under a NASA Small Business Innovation Research (SBIR) grant, the system's image transformation electronics produce a real-time image from anywhere within a hemispherical field. Lens distortion is removed, and a corrected "flat" view appears on a monitor. Key elements are a high resolution charge coupled device (CCD), image correction circuitry and a microcomputer for image processing. The system can be adapted to existing installations. Applications include security and surveillance, teleconferencing, imaging, virtual reality, broadcast video and military operations. Omniview technology is now called IPIX. The company was founded in 1986 as TeleRobotics International, became Omniview in 1995, and changed its name to Interactive Pictures Corporation in 1997.

  20. Face Liveness Detection Using Defocus

    PubMed Central

    Kim, Sooyeon; Ban, Yuseok; Lee, Sangyoun

    2015-01-01

    In order to develop security systems for identity authentication, face recognition (FR) technology has been applied. One of the main problems of applying FR technology is that the systems are especially vulnerable to attacks with spoofing faces (e.g., 2D pictures). To defend from these attacks and to enhance the reliability of FR systems, many anti-spoofing approaches have been recently developed. In this paper, we propose a method for face liveness detection using the effect of defocus. From two images sequentially taken at different focuses, three features, focus, power histogram and gradient location and orientation histogram (GLOH), are extracted. Afterwards, we detect forged faces through the feature-level fusion approach. For reliable performance verification, we develop two databases with a handheld digital camera and a webcam. The proposed method achieves a 3.29% half total error rate (HTER) at a given depth of field (DoF) and can be extended to camera-equipped devices, like smartphones. PMID:25594594

  1. Coded-aperture Compton camera for gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Farber, Aaron M.

    This dissertation describes the development of a novel gamma-ray imaging system concept and presents results from Monte Carlo simulations of the new design. Current designs for large field-of-view gamma cameras suitable for homeland security applications implement either a coded aperture or a Compton scattering geometry to image a gamma-ray source. Both of these systems require large, expensive position-sensitive detectors in order to work effectively. By combining characteristics of both of these systems, a new design can be implemented that does not require such expensive detectors and that can be scaled down to a portable size. This new system has significant promise in homeland security, astronomy, botany and other fields, while future iterations may prove useful in medical imaging, other biological sciences and other areas, such as non-destructive testing. A proof-of-principle study of the new gamma-ray imaging system has been performed by Monte Carlo simulation. Various reconstruction methods have been explored and compared. General-Purpose Graphics-Processor-Unit (GPGPU) computation has also been incorporated. The resulting code is a primary design tool for exploring variables such as detector spacing, material selection and thickness and pixel geometry. The advancement of the system from a simple 1-dimensional simulation to a full 3-dimensional model is described. Methods of image reconstruction are discussed and results of simulations consisting of both a 4 x 4 and a 16 x 16 object space mesh have been presented. A discussion of the limitations and potential areas of further study is also presented.

  2. Student Perceptions of High-Security School Environments

    ERIC Educational Resources Information Center

    Bracy, Nicole L.

    2011-01-01

    Public schools have transformed significantly over the past several decades in response to concerns about rising school violence. Today, most public schools are high-security environments employing police officers, security cameras, and metal detectors, as well as strict discipline policies to keep students in line and maintain safe campuses.…

  3. Use of wildlife webcams - Literature review and annotated bibliography

    USGS Publications Warehouse

    Ratz, Joan M.; Conk, Shannon J.

    2010-01-01

    The U.S. Fish and Wildlife Service National Conservation Training Center requested a literature review product that would serve as a resource to natural resource professionals interested in using webcams to connect people with nature. The literature review focused on the effects on the public of viewing wildlife through webcams and on information regarding installation and use of webcams. We searched the peer reviewed, published literature for three topics: wildlife cameras, virtual tourism, and technological nature. Very few publications directly addressed the effect of viewing wildlife webcams. The review of information on installation and use of cameras yielded information about many aspects of the use of remote photography, but not much specifically regarding webcams. Aspects of wildlife camera use covered in the literature review include: camera options, image retrieval, system maintenance and monitoring, time to assemble, power source, light source, camera mount, frequency of image recording, consequences for animals, and equipment security. Webcam technology is relatively new and more publication regarding the use of the technology is needed. Future research should specifically study the effect that viewing wildlife through webcams has on the viewers' conservation attitudes, behaviors, and sense of connectedness to nature.

  4. Super Resolution Algorithm for CCTVs

    NASA Astrophysics Data System (ADS)

    Gohshi, Seiichi

    2015-03-01

    Recently, security cameras and CCTV systems have become an important part of our daily lives. The rising demand for such systems has created business opportunities in this field, especially in big cities. Analogue CCTV systems are being replaced by digital systems, and HDTV CCTV has become quite common. HDTV CCTV can achieve images with high contrast and decent quality if they are clicked in daylight. However, the quality of an image clicked at night does not always have sufficient contrast and resolution because of poor lighting conditions. CCTV systems depend on infrared light at night to compensate for insufficient lighting conditions, thereby producing monochrome images and videos. However, these images and videos do not have high contrast and are blurred. We propose a nonlinear signal processing technique that significantly improves visual and image qualities (contrast and resolution) of low-contrast infrared images. The proposed method enables the use of infrared cameras for various purposes such as night shot and poor lighting environments under poor lighting conditions.

  5. Geovisualization for Smart Video Surveillance

    NASA Astrophysics Data System (ADS)

    Oves García, R.; Valentín, L.; Serrano, S. A.; Palacios-Alonso, M. A.; Sucar, L. Enrique

    2017-09-01

    Nowadays with the emergence of smart cities and the creation of new sensors capable to connect to the network, it is not only possible to monitor the entire infrastructure of a city, including roads, bridges, rail/subways, airports, communications, water, power, but also to optimize its resources, plan its preventive maintenance and monitor security aspects while maximizing services for its citizens. In particular, the security aspect is one of the most important issues due to the need to ensure the safety of people. However, if we want to have a good security system, it is necessary to take into account the way that we are going to present the information. In order to show the amount of information generated by sensing devices in real time in an understandable way, several visualization techniques are proposed for both local (involves sensing devices in a separated way) and global visualization (involves sensing devices as a whole). Taking into consideration that the information is produced and transmitted from a geographic location, the integration of a Geographic Information System to manage and visualize the behavior of data becomes very relevant. With the purpose of facilitating the decision-making process in a security system, we have integrated the visualization techniques and the Geographic Information System to produce a smart security system, based on a cloud computing architecture, to show relevant information about a set of monitored areas with video cameras.

  6. Development of SPIES (Space Intelligent Eyeing System) for smart vehicle tracing and tracking

    NASA Astrophysics Data System (ADS)

    Abdullah, Suzanah; Ariffin Osoman, Muhammad; Guan Liyong, Chua; Zulfadhli Mohd Noor, Mohd; Mohamed, Ikhwan

    2016-06-01

    SPIES or Space-based Intelligent Eyeing System is an intelligent technology which can be utilized for various applications such as gathering spatial information of features on Earth, tracking system for the movement of an object, tracing system to trace the history information, monitoring driving behavior, security and alarm system as an observer in real time and many more. SPIES as will be developed and supplied modularly will encourage the usage based on needs and affordability of users. SPIES are a complete system with camera, GSM, GPS/GNSS and G-Sensor modules with intelligent function and capabilities. Mainly the camera is used to capture pictures and video and sometimes with audio of an event. Its usage is not limited to normal use for nostalgic purpose but can be used as a reference for security and material of evidence when an undesirable event such as crime occurs. When integrated with space based technology of the Global Navigational Satellite System (GNSS), photos and videos can be recorded together with positioning information. A product of the integration of these technologies when integrated with Information, Communication and Technology (ICT) and Geographic Information System (GIS) will produce innovation in the form of information gathering methods in still picture or video with positioning information that can be conveyed in real time via the web to display location on the map hence creating an intelligent eyeing system based on space technology. The importance of providing global positioning information is a challenge but overcome by SPIES even in areas without GNSS signal reception for the purpose of continuous tracking and tracing capability

  7. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-03

    The Hubble Space Telescope (HST), with its normal routine temporarily interrupted, is about to be captured by the Space Shuttle Columbia prior to a week of servicing and upgrading by the STS-109 crew. The telescope was captured by the shuttle's Remote Manipulator System (RMS) robotic arm and secured on a work stand in Columbia's payload bay where 4 of the 7-member crew performed 5 space walks completing system upgrades to the HST. Included in those upgrades were: The replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. Launched March 1, 2002, the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.

  8. Digital Camera with Apparatus for Authentication of Images Produced from an Image File

    NASA Technical Reports Server (NTRS)

    Friedman, Gary L. (Inventor)

    1996-01-01

    A digital camera equipped with a processor for authentication of images produced from an image file taken by the digital camera is provided. The digital camera processor has embedded therein a private key unique to it, and the camera housing has a public key that is so uniquely related to the private key that digital data encrypted with the private key may be decrypted using the public key. The digital camera processor comprises means for calculating a hash of the image file using a predetermined algorithm, and second means for encrypting the image hash with the private key, thereby producing a digital signature. The image file and the digital signature are stored in suitable recording means so they will be available together. Apparatus for authenticating the image file as being free of any alteration uses the public key for decrypting the digital signature, thereby deriving a secure image hash identical to the image hash produced by the digital camera and used to produce the digital signature. The authenticating apparatus calculates from the image file an image hash using the same algorithm as before. By comparing this last image hash with the secure image hash, authenticity of the image file is determined if they match. Other techniques to address time-honored methods of deception, such as attaching false captions or inducing forced perspectives, are included.

  9. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-08

    After five days of service and upgrade work on the Hubble Space Telescope (HST), the STS-109 crew photographed the giant telescope in the shuttle's cargo bay. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where 4 of the 7-member crew performed 5 space walks completing system upgrades to the HST. Included in those upgrades were: The replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. Launched March 1, 2002, the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.

  10. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-07

    Inside the Space Shuttle Columbia's cabin, astronaut Nancy J. Currie, mission specialist, controlled the Remote Manipulator System (RMS) on the crew cabin's aft flight deck to assist fellow astronauts during the STS-109 mission Extra Vehicular Activities (EVA). The RMS was used to capture the telescope and secure it into Columbia's cargo bay. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the Hubble Space Telescope (HST). The Marshall Space Flight Center in Huntsville, Alabama had the responsibility for the design, development, and construction of the HST, which is the most powerful and sophisticated telescope ever built. STS-109 upgrades to the HST included: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  11. n/a

    NASA Image and Video Library

    2002-03-09

    After five days of service and upgrade work on the Hubble Space Telescope (HST), the STS-109 crew photographed the giant telescope returning to its normal routine. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where 4 of the 7-member crew performed 5 space walks completing system upgrades to the HST. Included in those upgrades were: The replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near- Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. Launched March 1, 2002, the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.

  12. Quantitative Evaluation of Surface Color of Tomato Fruits Cultivated in Remote Farm Using Digital Camera Images

    NASA Astrophysics Data System (ADS)

    Hashimoto, Atsushi; Suehara, Ken-Ichiro; Kameoka, Takaharu

    To measure the quantitative surface color information of agricultural products with the ambient information during cultivation, a color calibration method for digital camera images and a remote monitoring system of color imaging using the Web were developed. Single-lens reflex and web digital cameras were used for the image acquisitions. The tomato images through the post-ripening process were taken by the digital camera in both the standard image acquisition system and in the field conditions from the morning to evening. Several kinds of images were acquired with the standard RGB color chart set up just behind the tomato fruit on a black matte, and a color calibration was carried out. The influence of the sunlight could be experimentally eliminated, and the calibrated color information consistently agreed with the standard ones acquired in the system through the post-ripening process. Furthermore, the surface color change of the tomato on the tree in a greenhouse was remotely monitored during maturation using the digital cameras equipped with the Field Server. The acquired digital color images were sent from the Farm Station to the BIFE Laboratory of Mie University via VPN. The time behavior of the tomato surface color change during the maturing process could be measured using the color parameter calculated based on the obtained and calibrated color images along with the ambient atmospheric record. This study is a very important step in developing the surface color analysis for both the simple and rapid evaluation of the crop vigor in the field and to construct an ambient and networked remote monitoring system for food security, precision agriculture, and agricultural research.

  13. Parental Involvement in School and the Role of School Security Measures

    ERIC Educational Resources Information Center

    Mowen, Thomas J.

    2015-01-01

    Over the past three decades, the United States has experienced a significant increase in the use of security measures in public and private secondary schools. Measures including police officers, metal detectors, and security cameras are becoming more common in the hallways of American schools. Following this surge, a number of academics have…

  14. Integrated fingerprinting in secure digital cinema projection

    NASA Astrophysics Data System (ADS)

    Delannay, Damien; Delaigle, Jean-Francois; Macq, Benoit M. M.; Quisquater, Jean-Jacques; Mas Ribes, Joan M.; Boucqueau, Jean M.; Nivart, Jean-Francois

    2001-12-01

    This paper describes the functional model of a combined conditional access and fingerprinting copyright (-or projectionright) protection system in a digital cinema framework. In the cinema industry, a large part of early movie piracy comes from copies made in the theater itself with a camera. The evolution towards digital cinema broadcast enables watermark based fingerprinting protection systems. Besides an appropriate fingerprinting technology, a number of well defined security/cryptographic tools are integrated in order to guaranty the integrity of the whole system. The requirements are two-fold: On one side, we must ensure that the media content is only accessible at exhibition time (under specific authorization obtained after an ad-hoc film rental agreement) and contains the related exhibition fingerprint. At the other end, we must prove our ability to retrieve the fingerprint information from an illegal copy of the media.

  15. Versatile illumination platform and fast optical switch to give standard observation camera gated active imaging capacity

    NASA Astrophysics Data System (ADS)

    Grasser, R.; Peyronneaudi, Benjamin; Yon, Kevin; Aubry, Marie

    2015-10-01

    CILAS, subsidiary of Airbus Defense and Space, develops, manufactures and sales laser-based optronics equipment for defense and homeland security applications. Part of its activity is related to active systems for threat detection, recognition and identification. Active surveillance and active imaging systems are often required to achieve identification capacity in case for long range observation in adverse conditions. In order to ease the deployment of active imaging systems often complex and expensive, CILAS suggests a new concept. It consists on the association of two apparatus working together. On one side, a patented versatile laser platform enables high peak power laser illumination for long range observation. On the other side, a small camera add-on works as a fast optical switch to select photons with specific time of flight only. The association of the versatile illumination platform and the fast optical switch presents itself as an independent body, so called "flash module", giving to virtually any passive observation systems gated active imaging capacity in NIR and SWIR.

  16. Real-time millimeter-wave imaging radiometer for avionic synthetic vision

    NASA Astrophysics Data System (ADS)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.

    1994-07-01

    ThermoTrex Corporation (TTC) has developed an imaging radiometer, the passive microwave camera (PMC), that uses an array of frequency-scanned antennas coupled to a multi-channel acousto-optic (Bragg cell) spectrum analyzer to form visible images of a scene through acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output of the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. One application of this system could be its incorporation into an enhanced vision system to provide pilots with a clear view of the runway during fog and other adverse weather conditions. The unique PMC system architecture will allow compact large-aperture implementations because of its flat antenna sensor. Other potential applications include air traffic control, all-weather area surveillance, fire detection, and security. This paper describes the architecture of the TTC PMC and shows examples of images acquired with the system.

  17. 15 CFR 743.3 - Thermal imaging camera reporting.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Thermal imaging camera reporting. 743.3 Section 743.3 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS SPECIAL...

  18. Interacting forms of expertise in security governance: the example of CCTV surveillance at Geneva International Airport.

    PubMed

    Klauser, Francisco

    2009-06-01

    The paper investigates the multiple public-private exchanges and cooperation involved in the installation and development of CCTV surveillance at Geneva International Airport. Emphasis is placed on the interacting forms of authority and expertise of five parties: the user(s), owner and supplier of the camera system, as well as the technical managers of the airport and the Swiss regulatory bodies in airport security. While placing the issues of airport surveillance in the particular context of a specific range of projects and transformations relating to the developments of CCTV at Geneva Airport, the paper not only provides important insights into the micro-politics of surveillance at Geneva Airport, but aims to re-institute these as part of a broader 'problematic': the mediating role of expertise and the growing functional fragmentation of authority in contemporary security governance. On this basis, the paper also exemplifies the growing mutual interdependences between security and business interests in the ever growing 'surveillant assemblage' in contemporary security governance.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Andrew J.; Miller, Brian W.; Robinson, Sean M.

    Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. However, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. The method is built on the theory of compressive sensing and the single pixelmore » optical camera. The performance of the system is quantified here using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how such an inspection would be made which can maintain high robustness and security. In particular, it is found that an inspection with low noise (<1%) and high undersampling (>256×) exhibits high robustness and security.« less

  20. Systematic, appropriate, and cost-effective application of security technologies in U.S. public schools to reduce crime, violence, and drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, M.W.

    As problems of violence and crime become more prevalent in our schools (or at least the perception of their prevalence), more and more school districts will elect to use security technologies to control these problems. While the desired change in student and community attitudes will require significant systemic change through intense U.S. social programs, security technologies can greatly augment school staff today by providing services similar to having extra adults present. Technologies such as cameras, sensors, drug detection, biometric and personnel identification, lighting, barriers, weapon and explosives detection, anti-graffiti methods, and duress alarms can all be effective, given they aremore » used in appropriate applications, with realistic expectations and an understanding of limitations. Similar to a high-risk government facility, schools must consider a systems (`big picture`) approach to security, which includes the use of personnel and procedures as well as security technologies, such that the synergy created by all these elements together contributes more to the general `order maintenance` of the facility than could be achieved by separate measures not integrated or related.« less

  1. Orthogonal strip HPGe planar SmartPET detectors in Compton configuration

    NASA Astrophysics Data System (ADS)

    Boston, H. C.; Gillam, J.; Boston, A. J.; Cooper, R. J.; Cresswell, J.; Grint, A. N.; Mather, A. R.; Nolan, P. J.; Scraggs, D. P.; Turk, G.; Hall, C. J.; Lazarus, I.; Berry, A.; Beveridge, T.; Lewis, R.

    2007-10-01

    The evolution of Germanium detector technology over the last decade has lead to the possibility that they can be employed in medical and security imaging. The potential of excellent energy resolution coupled with good position information that Germanium affords removes the necessity for mechanical collimators that would be required in a conventional gamma camera system. By removing this constraint, the overall dose to the patient can be reduced or the throughput of the system can be increased. An additional benefit of excellent energy resolution is that tight gates can be placed on energies from either a multi-lined gamma source or from multi-nuclide sources increasing the number of sources that can be used in medical imaging. In terms of security imaging, segmented Germanium gives directionality and excellent spectroscopic information.

  2. OSIRIS-REx Asteroid Sample Return Mission Image Analysis

    NASA Astrophysics Data System (ADS)

    Chevres Fernandez, Lee Roger; Bos, Brent

    2018-01-01

    NASA’s Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) mission constitutes the “first-of-its-kind” project to thoroughly characterize a near-Earth asteroid. The selected asteroid is (101955) 1999 RQ36 (a.k.a. Bennu). The mission launched in September 2016, and the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. The spacecraft that will travel to, and collect a sample from, Bennu has five integrated instruments from national and international partners. NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch-And-Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample and document asteroid sample stowage. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Analysis of spacecraft imagery acquired by the TAGCAMS during cruise to the target asteroid Bennu was performed using custom codes developed in MATLAB. Assessment of the TAGCAMS in-flight performance using flight imagery was done to characterize camera performance. One specific area of investigation that was targeted was bad pixel mapping. A recent phase of the mission, known as the Earth Gravity Assist (EGA) maneuver, provided images that were used for the detection and confirmation of “questionable” pixels, possibly under responsive, using image segmentation analysis. Ongoing work on point spread function morphology and camera linearity and responsivity will also be used for calibration purposes and further analysis in preparation for proximity operations around Bennu. Said analyses will provide a broader understanding regarding the functionality of the camera system, which will in turn aid in the fly-down to the asteroid, as it will allow the pick of a suitable landing and sample location.

  3. Examining School Security Measures as Moderators of the Association between Homophobic Victimization and School Avoidance

    ERIC Educational Resources Information Center

    Fisher, Benjamin W.; Tanner-Smith, Emily E.

    2016-01-01

    Homophobic victimization is a pervasive problem in U.S. schools that leads to negative outcomes for students. Those who experience homophobic victimization are at greater risk for avoiding particular spaces in school because they feel unsafe or afraid. Visible school security measures (e.g., security guards, metal detectors, and cameras) offer…

  4. Examining School Security Measures as Moderators of the Association between Homophobic Victimization and School Avoidance

    ERIC Educational Resources Information Center

    Fisher, Benjamin W.; Tanner-Smith, Emily E.

    2015-01-01

    Homophobic victimization is a pervasive problem in U.S. schools that leads to negative outcomes for students. Those who experience homophobic victimization are at greater risk for avoiding particular spaces in school because they feel unsafe or afraid. Visible school security measures (e.g., security guards, metal detectors, and cameras) offer…

  5. Analysis of Vehicle-Based Security Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Jason M; Paul, Nate R

    Vehicle-to-vehicle (V2V) communications promises to increase roadway safety by providing each vehicle with 360 degree situational awareness of other vehicles in proximity, and by complementing onboard sensors such as radar or camera in detecting imminent crash scenarios. In the United States, approximately three hundred million automobiles could participate in a fully deployed V2V system if Dedicated Short-Range Communication (DSRC) device use becomes mandatory. The system s reliance on continuous communication, however, provides a potential means for unscrupulous persons to transmit false data in an attempt to cause crashes, create traffic congestion, or simply render the system useless. V2V communications mustmore » be highly scalable while retaining robust security and privacy preserving features to meet the intra-vehicle and vehicle-to-infrastructure communication requirements for a growing vehicle population. Oakridge National Research Laboratory is investigating a Vehicle-Based Security System (VBSS) to provide security and privacy for a fully deployed V2V and V2I system. In the VBSS an On-board Unit (OBU) generates short-term certificates and signs Basic Safety Messages (BSM) to preserve privacy and enhance security. This work outlines a potential VBSS structure and its operational concepts; it examines how a vehicle-based system might feasibly provide security and privacy, highlights remaining challenges, and explores potential mitigations to address those challenges. Certificate management alternatives that attempt to meet V2V security and privacy requirements have been examined previously by the research community including privacy-preserving group certificates, shared certificates, and functional encryption. Due to real-world operational constraints, adopting one of these approaches for VBSS V2V communication is difficult. Timely misbehavior detection and revocation are still open problems for any V2V system. We explore the alternative approaches that may be applicable to a VBSS, and suggest some additional research directions in order to find a practical solution that appropriately addresses security and privacy.« less

  6. Compact Video Microscope Imaging System Implemented in Colloid Studies

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2002-01-01

    Long description Photographs showing fiber-optic light source, microscope and charge-coupled discharge (CCD) camera head connected to camera body, CCD camera body feeding data to image acquisition board in PC, and Cartesian robot controlled via PC board. The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. CMIS can be used in situ with a minimum amount of user intervention. This system can scan, find areas of interest in, focus on, and acquire images automatically. Many multiple-cell experiments require microscopy for in situ observations; this is feasible only with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control. The software also has a user-friendly interface, which can be used independently of the hardware for further post-experiment analysis. CMIS has been successfully developed in the SML Laboratory at the NASA Glenn Research Center and adapted for use for colloid studies and is available for telescience experiments. The main innovations this year are an improved interface, optimized algorithms, and the ability to control conventional full-sized microscopes in addition to compact microscopes. The CMIS software-hardware interface is being integrated into our SML Analysis package, which will be a robust general-purpose image-processing package that can handle over 100 space and industrial applications.

  7. Secure Internet video conferencing for assessing acute medical problems in a nursing facility.

    PubMed Central

    Weiner, M.; Schadow, G.; Lindbergh, D.; Warvel, J.; Abernathy, G.; Dexter, P.; McDonald, C. J.

    2001-01-01

    Although video-based teleconferencing is becoming more widespread in the medical profession, especially for scheduled consultations, applications for rapid assessment of acute medical problems are rare. Use of such a video system in a nursing facility may be especially beneficial, because physicians are often not immediately available to evaluate patients. We have assembled and tested a portable, wireless conferencing system to prepare for a randomized trial of the system s influence on resource utilization and satisfaction. The system includes a rolling cart with video conferencing hardware and software, a remotely controllable digital camera, light, wireless network, and battery. A semi-automated paging system informs physicians of patient s study status and indications for conferencing. Data transmission occurs wirelessly in the nursing home and then through Internet cables to the physician s home. This provides sufficient bandwidth to support quality motion images. IPsec secures communications. Despite human and technical challenges, this system is affordable and functional. Images Figure 1 PMID:11825286

  8. Data Mining and Information Technology: Its Impact on Intelligence Collection and Privacy Rights

    DTIC Science & Technology

    2007-11-26

    sources include: Cameras - Digital cameras (still and video ) have been improving in capability while simultaneously dropping in cost at a rate...citizen is caught on camera 300 times each day.5 The power of extensive video coverage is magnified greatly by the nascent capability for voice and...software on security videos and tracking cell phone usage in the local area. However, it would only return the names and data of those who

  9. Web Camera Use in Developing Biology, Molecular Biology and Biochemistry Laboratories

    ERIC Educational Resources Information Center

    Ogren, Paul J.; Deibel, Michael; Kelly, Ian; Mulnix, Amy B.; Peck, Charlie

    2004-01-01

    The use of a network-ready color camera is described which is primarily marketed as a security device and is used for experiments in developmental biology, genetics and biochemistry laboratories and in special student research projects. Acquiring and analyzing project and archiving images is very important in microscopy, electrophoresis and…

  10. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-01

    Carrying the STS-109 crew of seven, the Space Shuttle Orbiter Columbia blasted from its launch pad as it began its 27th flight and 108th flight overall in NASA's Space Shuttle Program. Launched March 1, 2002, the goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST) which was developed, designed, and constructed by the Marshall Space Flight Center. Captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, the HST received the following upgrades: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Four of the crewmembers performed 5 space walks in the 10 days, 22 hours, and 11 minutes of the the STS-109 mission.

  11. Experiences in teleoperation of land vehicles

    NASA Technical Reports Server (NTRS)

    Mcgovern, Douglas E.

    1989-01-01

    Teleoperation of land vehicles allows the removal of the operator from the vehicle to a remote location. This can greatly increase operator safety and comfort in applications such as security patrol or military combat. The cost includes system complexity and reduced system performance. All feedback on vehicle performance and on environmental conditions must pass through sensors, a communications channel, and displays. In particular, this requires vision to be transmitted by close-circuit television with a consequent degradation of information content. Vehicular teleoperation, as a result, places severe demands on the operator. Teleoperated land vehicles have been built and tested by many organizations, including Sandia National Laboratories (SNL). The SNL fleet presently includes eight vehicles of varying capability. These vehicles have been operated using different types of controls, displays, and visual systems. Experimentation studying the effects of vision system characteristics on off-road, remote driving was performed for conditions of fixed camera versus steering-coupled camera and of color versus black and white video display. Additionally, much experience was gained through system demonstrations and hardware development trials. The preliminary experimental findings and the results of the accumulated operational experience are discussed.

  12. Interconnecting smartphone, image analysis server, and case report forms in clinical trials for automatic skin lesion tracking in clinical trials

    NASA Astrophysics Data System (ADS)

    Haak, Daniel; Doma, Aliaa; Gombert, Alexander; Deserno, Thomas M.

    2016-03-01

    Today, subject's medical data in controlled clinical trials is captured digitally in electronic case report forms (eCRFs). However, eCRFs only insufficiently support integration of subject's image data, although medical imaging is looming large in studies today. For bed-side image integration, we present a mobile application (App) that utilizes the smartphone-integrated camera. To ensure high image quality with this inexpensive consumer hardware, color reference cards are placed in the camera's field of view next to the lesion. The cards are used for automatic calibration of geometry, color, and contrast. In addition, a personalized code is read from the cards that allows subject identification. For data integration, the App is connected to an communication and image analysis server that also holds the code-study-subject relation. In a second system interconnection, web services are used to connect the smartphone with OpenClinica, an open-source, Food and Drug Administration (FDA)-approved electronic data capture (EDC) system in clinical trials. Once the photographs have been securely stored on the server, they are released automatically from the mobile device. The workflow of the system is demonstrated by an ongoing clinical trial, in which photographic documentation is frequently performed to measure the effect of wound incision management systems. All 205 images, which have been collected in the study so far, have been correctly identified and successfully integrated into the corresponding subject's eCRF. Using this system, manual steps for the study personnel are reduced, and, therefore, errors, latency and costs decreased. Our approach also increases data security and privacy.

  13. Fusion of thermal- and visible-band video for abandoned object detection

    NASA Astrophysics Data System (ADS)

    Beyan, Cigdem; Yigit, Ahmet; Temizel, Alptekin

    2011-07-01

    Timely detection of packages that are left unattended in public spaces is a security concern, and rapid detection is important for prevention of potential threats. Because constant surveillance of such places is challenging and labor intensive, automated abandoned-object-detection systems aiding operators have started to be widely used. In many studies, stationary objects, such as people sitting on a bench, are also detected as suspicious objects due to abandoned items being defined as items newly added to the scene and remained stationary for a predefined time. Therefore, any stationary object results in an alarm causing a high number of false alarms. These false alarms could be prevented by classifying suspicious items as living and nonliving objects. In this study, a system for abandoned object detection that aids operators surveilling indoor environments such as airports, railway or metro stations, is proposed. By analysis of information from a thermal- and visible-band camera, people and the objects left behind can be detected and discriminated as living and nonliving, reducing the false-alarm rate. Experiments demonstrate that using data obtained from a thermal camera in addition to a visible-band camera also increases the true detection rate of abandoned objects.

  14. Diffraction-based optical sensor detection system for capture-restricted environments

    NASA Astrophysics Data System (ADS)

    Khandekar, Rahul M.; Nikulin, Vladimir V.

    2008-04-01

    The use of digital cameras and camcorders in prohibited areas presents a growing problem. Piracy in the movie theaters results in huge revenue loss to the motion picture industry every year, but still image and video capture may present even a bigger threat if performed in high-security locations. While several attempts are being made to address this issue, an effective solution is yet to be found. We propose to approach this problem using a very commonly observed optical phenomenon. Cameras and camcorders use CCD and CMOS sensors, which include a number of photosensitive elements/pixels arranged in a certain fashion. Those are photosites in CCD sensors and semiconductor elements in CMOS sensors. They are known to reflect a small fraction of incident light, but could also act as a diffraction grating, resulting in the optical response that could be utilized to identify the presence of such a sensor. A laser-based detection system is proposed that accounts for the elements in the optical train of the camera, as well as the eye-safety of the people who could be exposed to optical beam radiation. This paper presents preliminary experimental data, as well as the proof-of-concept simulation results.

  15. Human tracking over camera networks: a review

    NASA Astrophysics Data System (ADS)

    Hou, Li; Wan, Wanggen; Hwang, Jenq-Neng; Muhammad, Rizwan; Yang, Mingyang; Han, Kang

    2017-12-01

    In recent years, automated human tracking over camera networks is getting essential for video surveillance. The tasks of tracking human over camera networks are not only inherently challenging due to changing human appearance, but also have enormous potentials for a wide range of practical applications, ranging from security surveillance to retail and health care. This review paper surveys the most widely used techniques and recent advances for human tracking over camera networks. Two important functional modules for the human tracking over camera networks are addressed, including human tracking within a camera and human tracking across non-overlapping cameras. The core techniques of human tracking within a camera are discussed based on two aspects, i.e., generative trackers and discriminative trackers. The core techniques of human tracking across non-overlapping cameras are then discussed based on the aspects of human re-identification, camera-link model-based tracking and graph model-based tracking. Our survey aims to address existing problems, challenges, and future research directions based on the analyses of the current progress made toward human tracking techniques over camera networks.

  16. Camera for Quasars in the Early Universe (CQUEAN)

    NASA Astrophysics Data System (ADS)

    Kim, Eunbin; Park, W.; Lim, J.; Jeong, H.; Kim, J.; Oh, H.; Pak, S.; Im, M.; Kuehne, J.

    2010-05-01

    The early universe of z ɳ is where the first stars, galaxies, and quasars formed, starting the re-ionization of the universe. The discovery and the study of quasars in the early universe allow us to witness the beginning of history of astronomical objects. In order to perform a medium-deep, medium-wide, imaging survey of quasars, we are developing an optical CCD camera, CQUEAN (Camera for QUasars in EArly uNiverse) which uses a 1024*1024 pixel deep-depletion CCD. It has an enhanced QE than conventional CCD at wavelength band around 1μm, thus it will be an efficient tool for observation of quasars at z > 7. It will be attached to the 2.1m telescope at McDonald Observatory, USA. A focal reducer is designed to secure a larger field of view at the cassegrain focus of 2.1m telescope. For long stable exposures, auto-guiding system will be implemented by using another CCD camera viewing an off-axis field. All these instruments will be controlled by the software written in python on linux platform. CQUEAN is expected to see the first light during summer in 2010.

  17. Spinoff 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Burnishing Techniques Strengthen Hip Implants; Signal Processing Methods Monitor Cranial Pressure; Ultraviolet-Blocking Lenses Protect, Enhance Vision; Hyperspectral Systems Increase Imaging Capabilities; Programs Model the Future of Air Traffic Management; Tail Rotor Airfoils Stabilize Helicopters, Reduce Noise; Personal Aircraft Point to the Future of Transportation; Ducted Fan Designs Lead to Potential New Vehicles; Winglets Save Billions of Dollars in Fuel Costs; Sensor Systems Collect Critical Aerodynamics Data; Coatings Extend Life of Engines and Infrastructure; Radiometers Optimize Local Weather Prediction; Energy-Efficient Systems Eliminate Icing Danger for UAVs; Rocket-Powered Parachutes Rescue Entire Planes; Technologies Advance UAVs for Science, Military; Inflatable Antennas Support Emergency Communication; Smart Sensors Assess Structural Health; Hand-Held Devices Detect Explosives and Chemical Agents; Terahertz Tools Advance Imaging for Security, Industry; LED Systems Target Plant Growth; Aerogels Insulate Against Extreme Temperatures; Image Sensors Enhance Camera Technologies; Lightweight Material Patches Allow for Quick Repairs; Nanomaterials Transform Hairstyling Tools; Do-It-Yourself Additives Recharge Auto Air Conditioning; Systems Analyze Water Quality in Real Time; Compact Radiometers Expand Climate Knowledge; Energy Servers Deliver Clean, Affordable Power; Solutions Remediate Contaminated Groundwater; Bacteria Provide Cleanup of Oil Spills, Wastewater; Reflective Coatings Protect People and Animals; Innovative Techniques Simplify Vibration Analysis; Modeling Tools Predict Flow in Fluid Dynamics; Verification Tools Secure Online Shopping, Banking; Toolsets Maintain Health of Complex Systems; Framework Resources Multiply Computing Power; Tools Automate Spacecraft Testing, Operation; GPS Software Packages Deliver Positioning Solutions; Solid-State Recorders Enhance Scientific Data Collection; Computer Models Simulate Fine Particle Dispersion; Composite Sandwich Technologies Lighten Components; Cameras Reveal Elements in the Short Wave Infrared; Deformable Mirrors Correct Optical Distortions; Stitching Techniques Advance Optics Manufacturing; Compact, Robust Chips Integrate Optical Functions; Fuel Cell Stations Automate Processes, Catalyst Testing; Onboard Systems Record Unique Videos of Space Missions; Space Research Results Purify Semiconductor Materials; and Toolkits Control Motion of Complex Robotics.

  18. Computer-aided diagnosis workstation and teleradiology network system for chest diagnosis using the web medical image conference system with a new information security solution

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kaneko, Masahiro; Kakinuma, Ryutaro; Moriyama, Noriyuki

    2010-03-01

    Diagnostic MDCT imaging requires a considerable number of images to be read. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. Because of such a background, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis. We also have developed the teleradiology network system by using web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. Our teleradiology network system can perform Web medical image conference in the medical institutions of a remote place using the web medical image conference system. We completed the basic proof experiment of the web medical image conference system with information security solution. We can share the screen of web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with the workstation that builds in some diagnostic assistance methods. Biometric face authentication used on site of teleradiology makes "Encryption of file" and "Success in login" effective. Our Privacy and information security technology of information security solution ensures compliance with Japanese regulations. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new teleradiology network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our teleradiology network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.

  19. Crime Control Strategies in School: Chicanas'/os' Perceptions and Criminalization

    ERIC Educational Resources Information Center

    Portillos, Edwardo L.; Gonzalez, Juan Carlos; Peguero, Anthony A.

    2012-01-01

    High schools throughout the United States experience problems with violence, drugs, and crime. School administrators have responded with policies and strategies designed to prevent school violence such as zero tolerance approaches, partnerships with law enforcement agencies, security camera installations, and hiring additional security personnel…

  20. Detection of unmanned aerial vehicles using a visible camera system.

    PubMed

    Hu, Shuowen; Goldman, Geoffrey H; Borel-Donohue, Christoph C

    2017-01-20

    Unmanned aerial vehicles (UAVs) flown by adversaries are an emerging asymmetric threat to homeland security and the military. To help address this threat, we developed and tested a computationally efficient UAV detection algorithm consisting of horizon finding, motion feature extraction, blob analysis, and coherence analysis. We compare the performance of this algorithm against two variants, one using the difference image intensity as the motion features and another using higher-order moments. The proposed algorithm and its variants are tested using field test data of a group 3 UAV acquired with a panoramic video camera in the visible spectrum. The performance of the algorithms was evaluated using receiver operating characteristic curves. The results show that the proposed approach had the best performance compared to the two algorithmic variants.

  1. Three-dimensional imaging of hold baggage for airport security

    NASA Astrophysics Data System (ADS)

    Kolokytha, S.; Speller, R.; Robson, S.

    2014-06-01

    This study describes a cost-effective check-in baggage screening system, based on "on-belt tomosynthesis" (ObT) and close-range photogrammetry, that is designed to address the limitations of the most common system used, conventional projection radiography. The latter's limitations can lead to loss of information and an increase in baggage handling time, as baggage is manually searched or screened with more advanced systems. This project proposes a system that overcomes such limitations creating a cost-effective automated pseudo-3D imaging system, by combining x-ray and optical imaging to form digital tomograms. Tomographic reconstruction requires a knowledge of the change in geometry between multiple x-ray views of a common object. This is uniquely achieved using a close range photogrammetric system based on a small network of web-cameras. This paper presents the recent developments of the ObT system and describes recent findings of the photogrammetric system implementation. Based on these positive results, future work on the advancement of the ObT system as a cost-effective pseudo-3D imaging of hold baggage for airport security is proposed.

  2. WATER PUMP HOUSE, TRA619, PUMP INSTALLATION. CAMERA FACING NORTHEAST CORNER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PUMP HOUSE, TRA-619, PUMP INSTALLATION. CAMERA FACING NORTHEAST CORNER. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON THE ORIGINAL NEGATIVE. INL NEGATIVE NO. 3998. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. Transition of advanced technology to military, homeland security, and law enforcement users

    NASA Astrophysics Data System (ADS)

    Jarrett, Stephen M.

    2004-09-01

    With the attack on the United States and the subsequent war on terror and the wars in Afghanistan and Iraq a need has been exposed for the transition of technology to all of our defenders both combat forces on the foreign battlefield and domestic forces here at home. The establishment of the Department of Homeland Security has also provided a focus on inserting technology to dramatically improve the capability of airport security forces, law enforcement, and all first responder networks. The drastic increase in the use of Special Forces in combat has also required new advanced technology capabilities at a much faster rate of development than the standard military procurement system. Technology developers must address the questions of interoperability, cost, commercialization, of how these groups will use the technology delivered and the adoption criteria of users in the deployment environment. The successful transition to the field must address the formation of complex concepts of operations in the user's adoption criteria. Prototype transition for two systems, a pocket infrared camera and an acoustic/seismic detector, will be highlighted in their effect on the wars in Iraq and Afghanistan and in the heightening of homeland security.

  4. System Security And Monitoring On Smart Home Using Android

    NASA Astrophysics Data System (ADS)

    Romadhon, A. S.

    2018-01-01

    Home security system is needed for homeowners who have a lot of activities, as a result, they often leave the house without locking the door and even leave the house in a state of lights that are not lit. In order to overcome this case, a system that can control and can monitor the state of the various devices contained in the house or smart home system is urgently required. The working principle of this smart home using android is when the homeowner sends a certain command using android, the command will be forwarded to the microcontroller and then it will be executed based on the parameters that have been determined. For example, it can turn off and on the light using android app. In this study, testing was conducted to a smart home prototype which is equipped with light bulbs, odour sensors, heat sensors, ultrasonic sensors, LDR, buzzer and camera. The test results indicate that the application has been able to control all the sensors of home appliances well.

  5. Security and Crime Prevention Strategies in California Public Schools.

    ERIC Educational Resources Information Center

    Nieto, Marcus

    Key findings are presented from a survey conducted by the California Research Bureau showing that most California school districts incorporate violence prevention program curricula with a strong police and security presence. Many schools have installed closed circuit video surveillance cameras, canine searches, and metal detectors. Unfortunately,…

  6. Lessons from UNSCOM and IAEA regarding remote monitoring and air sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupree, S.A.

    1996-01-01

    In 1991, at the direction of the United Nations Security Council, UNSCOM and IAEA developed plans for On-going Monitoring and Verification (OMV) in Iraq. The plans were accepted by the Security Council and remote monitoring and atmospheric sampling equipment has been installed at selected sites in Iraq. The remote monitoring equipment consists of video cameras and sensors positioned to observe equipment or activities at sites that could be used to support the development or manufacture of weapons of mass destruction, or long-range missiles. The atmospheric sampling equipment provides unattended collection of chemical samples from sites that could be used tomore » support the development or manufacture of chemical weapon agents. To support OMV in Iraq, UNSCOM has established the Baghdad Monitoring and Verification Centre. Imagery from the remote monitoring cameras can be accessed in near-real time from the Centre through RIF communication links with the monitored sites. The OMV program in Iraq has implications for international cooperative monitoring in both global and regional contexts. However, monitoring systems such as those used in Iraq are not sufficient, in and of themselves, to guarantee the absence of prohibited activities. Such systems cannot replace on-site inspections by competent, trained inspectors. However, monitoring similar to that used in Iraq can contribute to openness and confidence building, to the development of mutual trust, and to the improvement of regional stability.« less

  7. Seeing-Is-Believing: Using Camera Phones for Human-Verifiable Authentication

    DTIC Science & Technology

    2004-11-01

    the context of, e.g., a smart home (Section 7). Our implementation is detailed in Section 8, with a security analysis is Section 9. Section 10...establishment of security parame- ters [17]. This work considers a smart home , where a user may want to establish a security context for controlling...appliances or other devices in a smart - home . We refer to the security property discussed in this work as presence, where it is desirable that only users or

  8. Data fusion concept in multispectral system for perimeter protection of stationary and moving objects

    NASA Astrophysics Data System (ADS)

    Ciurapiński, Wieslaw; Dulski, Rafal; Kastek, Mariusz; Szustakowski, Mieczyslaw; Bieszczad, Grzegorz; Życzkowski, Marek; Trzaskawka, Piotr; Piszczek, Marek

    2009-09-01

    The paper presents the concept of multispectral protection system for perimeter protection for stationary and moving objects. The system consists of active ground radar, thermal and visible cameras. The radar allows the system to locate potential intruders and to control an observation area for system cameras. The multisensor construction of the system ensures significant improvement of detection probability of intruder and reduction of false alarms. A final decision from system is worked out using image data. The method of data fusion used in the system has been presented. The system is working under control of FLIR Nexus system. The Nexus offers complete technology and components to create network-based, high-end integrated systems for security and surveillance applications. Based on unique "plug and play" architecture, system provides unmatched flexibility and simplistic integration of sensors and devices in TCP/IP networks. Using a graphical user interface it is possible to control sensors and monitor streaming video and other data over the network, visualize the results of data fusion process and obtain detailed information about detected intruders over a digital map. System provides high-level applications and operator workload reduction with features such as sensor to sensor cueing from detection devices, automatic e-mail notification and alarm triggering.

  9. Usage of cornea and sclera back reflected images captured in security cameras for forensic and card games applications

    NASA Astrophysics Data System (ADS)

    Zalevsky, Zeev; Ilovitsh, Asaf; Beiderman, Yevgeny

    2013-10-01

    We present an approach allowing seeing objects that are hidden and that are not positioned in direct line of sight with security inspection cameras. The approach is based on inspecting the back reflections obtained from the cornea and the sclera of the eyes of people attending the inspected scene and which are positioned in front of the hidden objects we aim to image after performing proper calibration with point light source (e.g. a LED). The scene can be a forensic scene or for instance a casino in which the application is to see the cards of poker players seating in front of you.

  10. Development of a drone equipped with optimized sensors for nuclear and radiological risk characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudergui, K.; Carrel, F.; Domenech, T.

    2011-07-01

    The MOBISIC project, funded by the Systematic Paris-Region cluster, is being developed in the context of local crisis (attack bombing in urban environment, in confined space such as an underground train tunnel etc.) or specific event securing (soccer world cup, political meeting etc.). It consists in conceiving, developing and experimenting a mobile, modular ('plug and play') and multi-sensors securing system. In this project, CEA LIST has suggested different solutions for nuclear risks detection and identification. It results in embedding a CZT sensor and a gamma camera in an indoor drone. This article first presents the different modifications carried out onmore » the UAV and different sensors, and focuses then on the experimental performances. (authors)« less

  11. Novel X-ray backscatter technique for detection of dangerous materials: application to aviation and port security

    NASA Astrophysics Data System (ADS)

    Kolkoori, S.; Wrobel, N.; Osterloh, K.; Zscherpel, U.; Ewert, U.

    2013-09-01

    Radiological inspections, in general, are the nondestructive testing (NDT) methods to detect the bulk of explosives in large objects. In contrast to personal luggage, cargo or building components constitute a complexity that may significantly hinder the detection of a threat by conventional X-ray transmission radiography. In this article, a novel X-ray backscatter technique is presented for detecting suspicious objects in a densely packed large object with only a single sided access. It consists of an X-ray backscatter camera with a special twisted slit collimator for imaging backscattering objects. The new X-ray backscatter camera is not only imaging the objects based on their densities but also by including the influences of surrounding objects. This unique feature of the X-ray backscatter camera provides new insights in identifying the internal features of the inspected object. Experimental mock-ups were designed imitating containers with threats among a complex packing as they may be encountered in reality. We investigated the dependence of the quality of the X-ray backscatter image on (a) the exposure time, (b) multiple exposures, (c) the distance between object and slit camera, and (d) the width of the slit. At the end, the significant advantages of the presented X-ray backscatter camera in the context of aviation and port security are discussed.

  12. Automatic Generation of Passer-by Record Images using Internet Camera

    NASA Astrophysics Data System (ADS)

    Terada, Kenji; Atsuta, Koji

    Recently, many brutal crimes have shocked us. On the other hand, we have seen a decline in the number of solved crimes. Therefore, the importance of security and self-defense has increased more and more. As an example of self-defense, many surveillance cameras are set up in the buildings, homes and offices. But even if we want to detect a suspicious person, we cannot check the surveillance videos immediately so that huge number of image sequences is stored in each video system. In this paper, we propose an automatic method of generating passer-by record images by using internet camera. In first step, the process of recognizing passer-by is carried out using an image sequence obtained from the internet camera. Our method classifies the subject region into each person by using the space-time image. In addition, we obtain the information of the time, direction and number of passey-by persons from this space-time image. Next, the present method detects five characteristics: the gravity of center, the position of person's head, the brightness, the size, and the shape of person. Finaly, an image of each person is selected among the image sequence by integrating five characteristics, and is added into the passer-by record image. Some experimental results using a simple experimental system are also reported, which indicate effectiveness of the proposed method. In most scenes, the every persons was able to be detected by the proposed method and the passer-by record image was generated.

  13. Airborne Camera System for Real-Time Applications - Support of a National Civil Protection Exercise

    NASA Astrophysics Data System (ADS)

    Gstaiger, V.; Romer, H.; Rosenbaum, D.; Henkel, F.

    2015-04-01

    In the VABENE++ project of the German Aerospace Center (DLR), powerful tools are being developed to aid public authorities and organizations with security responsibilities as well as traffic authorities when dealing with disasters and large public events. One focus lies on the acquisition of high resolution aerial imagery, its fully automatic processing, analysis and near real-time provision to decision makers in emergency situations. For this purpose a camera system was developed to be operated from a helicopter with light-weight processing units and microwave link for fast data transfer. In order to meet end-users' requirements DLR works close together with the German Federal Office of Civil Protection and Disaster Assistance (BBK) within this project. One task of BBK is to establish, maintain and train the German Medical Task Force (MTF), which gets deployed nationwide in case of large-scale disasters. In October 2014, several units of the MTF were deployed for the first time in the framework of a national civil protection exercise in Brandenburg. The VABENE++ team joined the exercise and provided near real-time aerial imagery, videos and derived traffic information to support the direction of the MTF and to identify needs for further improvements and developments. In this contribution the authors introduce the new airborne camera system together with its near real-time processing components and share experiences gained during the national civil protection exercise.

  14. The Use Of Videography For Three-Dimensional Motion Analysis

    NASA Astrophysics Data System (ADS)

    Hawkins, D. A.; Hawthorne, D. L.; DeLozier, G. S.; Campbell, K. R.; Grabiner, M. D.

    1988-02-01

    Special video path editing capabilities with custom hardware and software, have been developed for use in conjunction with existing video acquisition hardware and firmware. This system has simplified the task of quantifying the kinematics of human movement. A set of retro-reflective markers are secured to a subject performing a given task (i.e. walking, throwing, swinging a golf club, etc.). Multiple cameras, a video processor, and a computer work station collect video data while the task is performed. Software has been developed to edit video files, create centroid data, and identify marker paths. Multi-camera path files are combined to form a 3D path file using the DLT method of cinematography. A separate program converts the 3D path file into kinematic data by creating a set of local coordinate axes and performing a series of coordinate transformations from one local system to the next. The kinematic data is then displayed for appropriate review and/or comparison.

  15. Minimalist identification system based on venous map for security applications

    NASA Astrophysics Data System (ADS)

    Jacinto G., Edwar; Martínez S., Fredy; Martínez S., Fernando

    2015-07-01

    This paper proposes a technique and an algorithm used to build a device for people identification through the processing of a low resolution camera image. The infrared channel is the only information needed, sensing the blood reaction with the proper wave length, and getting a preliminary snapshot of the vascular map of the back side of the hand. The software uses this information to extract the characteristics of the user in a limited area (region of interest, ROI), unique for each user, which applicable to biometric access control devices. This kind of recognition prototypes functions are expensive, but in this case (minimalist design), the biometric equipment only used a low cost camera and the matrix of IR emitters adaptation to construct an economic and versatile prototype, without neglecting the high level of effectiveness that characterizes this kind of identification method.

  16. Live video monitoring robot controlled by web over internet

    NASA Astrophysics Data System (ADS)

    Lokanath, M.; Akhil Sai, Guruju

    2017-11-01

    Future is all about robots, robot can perform tasks where humans cannot, Robots have huge applications in military and industrial area for lifting heavy weights, for accurate placements, for repeating the same task number of times, where human are not efficient. Generally robot is a mix of electronic, electrical and mechanical engineering and can do the tasks automatically on its own or under the supervision of humans. The camera is the eye for robot, call as robovision helps in monitoring security system and also can reach into the places where the human eye cannot reach. This paper presents about developing a live video streaming robot controlled from the website. We designed the web, controlling for the robot to move left, right, front and back while streaming video. As we move to the smart environment or IoT (Internet of Things) by smart devices the system we developed here connects over the internet and can be operated with smart mobile phone using a web browser. The Raspberry Pi model B chip acts as heart for this system robot, the sufficient motors, surveillance camera R pi 2 are connected to Raspberry pi.

  17. Clustering method for counting passengers getting in a bus with single camera

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Zhang, Yanning; Shao, Dapei; Li, Ying

    2010-03-01

    Automatic counting of passengers is very important for both business and security applications. We present a single-camera-based vision system that is able to count passengers in a highly crowded situation at the entrance of a traffic bus. The unique characteristics of the proposed system include, First, a novel feature-point-tracking- and online clustering-based passenger counting framework, which performs much better than those of background-modeling-and foreground-blob-tracking-based methods. Second, a simple and highly accurate clustering algorithm is developed that projects the high-dimensional feature point trajectories into a 2-D feature space by their appearance and disappearance times and counts the number of people through online clustering. Finally, all test video sequences in the experiment are captured from a real traffic bus in Shanghai, China. The results show that the system can process two 320×240 video sequences at a frame rate of 25 fps simultaneously, and can count passengers reliably in various difficult scenarios with complex interaction and occlusion among people. The method achieves high accuracy rates up to 96.5%.

  18. Managing an Archive of Images

    NASA Technical Reports Server (NTRS)

    Andres, Vince; Walter, David; Hallal, Charles; Jones, Helene; Callac, Chris

    2004-01-01

    The SSC Multimedia Archive is an automated electronic system to manage images, acquired both by film and digital cameras, for the Public Affairs Office (PAO) at Stennis Space Center (SSC). Previously, the image archive was based on film photography and utilized a manual system that, by today s standards, had become inefficient and expensive. Now, the SSC Multimedia Archive, based on a server at SSC, contains both catalogs and images for pictures taken both digitally and with a traditional, film-based camera, along with metadata about each image. After a "shoot," a photographer downloads the images into the database. Members of the PAO can use a Web-based application to search, view and retrieve images, approve images for publication, and view and edit metadata associated with the images. Approved images are archived and cross-referenced with appropriate descriptions and information. Security is provided by allowing administrators to explicitly grant access privileges to personnel to only access components of the system that they need to (i.e., allow only photographers to upload images, only PAO designated employees may approve images).

  19. Noisy Ocular Recognition Based on Three Convolutional Neural Networks.

    PubMed

    Lee, Min Beom; Hong, Hyung Gil; Park, Kang Ryoung

    2017-12-17

    In recent years, the iris recognition system has been gaining increasing acceptance for applications such as access control and smartphone security. When the images of the iris are obtained under unconstrained conditions, an issue of undermined quality is caused by optical and motion blur, off-angle view (the user's eyes looking somewhere else, not into the front of the camera), specular reflection (SR) and other factors. Such noisy iris images increase intra-individual variations and, as a result, reduce the accuracy of iris recognition. A typical iris recognition system requires a near-infrared (NIR) illuminator along with an NIR camera, which are larger and more expensive than fingerprint recognition equipment. Hence, many studies have proposed methods of using iris images captured by a visible light camera without the need for an additional illuminator. In this research, we propose a new recognition method for noisy iris and ocular images by using one iris and two periocular regions, based on three convolutional neural networks (CNNs). Experiments were conducted by using the noisy iris challenge evaluation-part II (NICE.II) training dataset (selected from the university of Beira iris (UBIRIS).v2 database), mobile iris challenge evaluation (MICHE) database, and institute of automation of Chinese academy of sciences (CASIA)-Iris-Distance database. As a result, the method proposed by this study outperformed previous methods.

  20. Multi-modal low cost mobile indoor surveillance system on the Robust Artificial Intelligence-based Defense Electro Robot (RAIDER)

    NASA Astrophysics Data System (ADS)

    Nair, Binu M.; Diskin, Yakov; Asari, Vijayan K.

    2012-10-01

    We present an autonomous system capable of performing security check routines. The surveillance machine, the Clearpath Husky robotic platform, is equipped with three IP cameras with different orientations for the surveillance tasks of face recognition, human activity recognition, autonomous navigation and 3D reconstruction of its environment. Combining the computer vision algorithms onto a robotic machine has given birth to the Robust Artificial Intelligencebased Defense Electro-Robot (RAIDER). The end purpose of the RAIDER is to conduct a patrolling routine on a single floor of a building several times a day. As the RAIDER travels down the corridors off-line algorithms use two of the RAIDER's side mounted cameras to perform a 3D reconstruction from monocular vision technique that updates a 3D model to the most current state of the indoor environment. Using frames from the front mounted camera, positioned at the human eye level, the system performs face recognition with real time training of unknown subjects. Human activity recognition algorithm will also be implemented in which each detected person is assigned to a set of action classes picked to classify ordinary and harmful student activities in a hallway setting.The system is designed to detect changes and irregularities within an environment as well as familiarize with regular faces and actions to distinguish potentially dangerous behavior. In this paper, we present the various algorithms and their modifications which when implemented on the RAIDER serves the purpose of indoor surveillance.

  1. Maritime microwave radar and electro-optical data fusion for homeland security

    NASA Astrophysics Data System (ADS)

    Seastrand, Mark J.

    2004-09-01

    US Customs is responsible for monitoring all incoming air and maritime traffic, including the island of Puerto Rico as a US territory. Puerto Rico offers potentially obscure points of entry to drug smugglers. This environment sets forth a formula for an illegal drug trade - based relatively near the continental US. The US Customs Caribbean Air and Marine Operations Center (CAMOC), located in Puntas Salinas, has the charter to monitor maritime and Air Traffic Control (ATC) radars. The CAMOC monitors ATC radars and advises the Air and Marine Branch of US Customs of suspicious air activity. In turn, the US Coast Guard and/or US Customs will launch air and sea assets as necessary. The addition of a coastal radar and camera system provides US Customs a maritime monitoring capability for the northwestern end of Puerto Rico (Figure 1). Command and Control of the radar and camera is executed at the CAMOC, located 75 miles away. The Maritime Microwave Surveillance Radar performs search, primary target acquisition and target tracking while the Midwave Infrared (MWIR) camera performs target identification. This wide area surveillance, using a combination of radar and MWIR camera, offers the CAMOC a cost and manpower effective approach to monitor, track and identify maritime targets.

  2. Internetting tactical security sensor systems

    NASA Astrophysics Data System (ADS)

    Gage, Douglas W.; Bryan, W. D.; Nguyen, Hoa G.

    1998-08-01

    The Multipurpose Surveillance and Security Mission Platform (MSSMP) is a distributed network of remote sensing packages and control stations, designed to provide a rapidly deployable, extended-range surveillance capability for a wide variety of military security operations and other tactical missions. The baseline MSSMP sensor suite consists of a pan/tilt unit with video and FLIR cameras and laser rangefinder. With an additional radio transceiver, MSSMP can also function as a gateway between existing security/surveillance sensor systems such as TASS, TRSS, and IREMBASS, and IP-based networks, to support the timely distribution of both threat detection and threat assessment information. The MSSMP system makes maximum use of Commercial Off The Shelf (COTS) components for sensing, processing, and communications, and of both established and emerging standard communications networking protocols and system integration techniques. Its use of IP-based protocols allows it to freely interoperate with the Internet -- providing geographic transparency, facilitating development, and allowing fully distributed demonstration capability -- and prepares it for integration with the IP-based tactical radio networks that will evolve in the next decade. Unfortunately, the Internet's standard Transport layer protocol, TCP, is poorly matched to the requirements of security sensors and other quasi- autonomous systems in being oriented to conveying a continuous data stream, rather than discrete messages. Also, its canonical 'socket' interface both conceals short losses of communications connectivity and simply gives up and forces the Application layer software to deal with longer losses. For MSSMP, a software applique is being developed that will run on top of User Datagram Protocol (UDP) to provide a reliable message-based Transport service. In addition, a Session layer protocol is being developed to support the effective transfer of control of multiple platforms among multiple control stations.

  3. Implementation of remote monitoring and managing switches

    NASA Astrophysics Data System (ADS)

    Leng, Junmin; Fu, Guo

    2010-12-01

    In order to strengthen the safety performance of the network and provide the big convenience and efficiency for the operator and the manager, the system of remote monitoring and managing switches has been designed and achieved using the advanced network technology and present network resources. The fast speed Internet Protocol Cameras (FS IP Camera) is selected, which has 32-bit RSIC embedded processor and can support a number of protocols. An Optimal image compress algorithm Motion-JPEG is adopted so that high resolution images can be transmitted by narrow network bandwidth. The architecture of the whole monitoring and managing system is designed and implemented according to the current infrastructure of the network and switches. The control and administrative software is projected. The dynamical webpage Java Server Pages (JSP) development platform is utilized in the system. SQL (Structured Query Language) Server database is applied to save and access images information, network messages and users' data. The reliability and security of the system is further strengthened by the access control. The software in the system is made to be cross-platform so that multiple operating systems (UNIX, Linux and Windows operating systems) are supported. The application of the system can greatly reduce manpower cost, and can quickly find and solve problems.

  4. Thermal human phantom for testing of millimeter wave cameras

    NASA Astrophysics Data System (ADS)

    Palka, Norbert; Ryniec, Radoslaw; Piszczek, Marek; Szustakowski, Mieczyslaw; Zyczkowski, Marek; Kowalski, Marcin

    2012-06-01

    Screening cameras working in millimetre band gain more and more interest among security society mainly due to their capability of finding items hidden under clothes. Performance of commercially available passive cameras is still limited due to not sufficient resolution and contrast in comparison to other wavelengths (visible or infrared range). Testing of such cameras usually requires some persons carrying guns, bombs or knives. Such persons can have different clothes or body temperature, what makes the measurements even more ambiguous. To avoid such situations we built a moving phantom of human body. The phantom consists of a polystyrene manikin which is covered with a number of small pipes with water. Pipes were next coated with a silicone "skin". The veins (pipes) are filled with water heated up to 37 C degrees to obtain the same temperature as human body. The phantom is made of non-metallic materials and is placed on a moving wirelessly-controlled platform with four wheels. The phantom can be dressed with a set of ordinary clothes and can be equipped with some dangerous (guns, bombs) and non-dangerous items. For tests we used a passive commercially available camera TS4 from ThruVision Systems Ltd. operating at 250 GHz. We compared the images taken from phantom and a man and we obtained good similarity both for naked as well as dressed man/phantom case. We also tested the phantom with different sets of clothes and hidden items and we got good conformity with persons.

  5. PROCESS WATER BUILDING, TRA605. CONTEXTUAL VIEW, CAMERA FACING SOUTHEAST. PROCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. CONTEXTUAL VIEW, CAMERA FACING SOUTHEAST. PROCESS WATER BUILDING AND ETR STACK ARE IN LEFT HALF OF VIEW. TRA-666 IS NEAR CENTER, ABUTTED BY SECURITY BUILDING; TRA-626, AT RIGHT EDGE OF VIEW BEHIND BUS. INL NEGATIVE NO. HD46-34-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. Intelligent Facial Recognition Systems: Technology advancements for security applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, C.L.

    1993-07-01

    Insider problems such as theft and sabotage can occur within the security and surveillance realm of operations when unauthorized people obtain access to sensitive areas. A possible solution to these problems is a means to identify individuals (not just credentials or badges) in a given sensitive area and provide full time personnel accountability. One approach desirable at Department of Energy facilities for access control and/or personnel identification is an Intelligent Facial Recognition System (IFRS) that is non-invasive to personnel. Automatic facial recognition does not require the active participation of the enrolled subjects, unlike most other biological measurement (biometric) systems (e.g.,more » fingerprint, hand geometry, or eye retinal scan systems). It is this feature that makes an IFRS attractive for applications other than access control such as emergency evacuation verification, screening, and personnel tracking. This paper discusses current technology that shows promising results for DOE and other security applications. A survey of research and development in facial recognition identified several companies and universities that were interested and/or involved in the area. A few advanced prototype systems were also identified. Sandia National Laboratories is currently evaluating facial recognition systems that are in the advanced prototype stage. The initial application for the evaluation is access control in a controlled environment with a constant background and with cooperative subjects. Further evaluations will be conducted in a less controlled environment, which may include a cluttered background and subjects that are not looking towards the camera. The outcome of the evaluations will help identify areas of facial recognition systems that need further development and will help to determine the effectiveness of the current systems for security applications.« less

  7. Teleradiology network system and computer-aided diagnosis workstation using the web medical image conference system with a new information security solution

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kaneko, Masahiro; Kakinuma, Ryutaru; Moriyama, Noriyuki

    2011-03-01

    We have developed the teleradiology network system with a new information security solution that provided with web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. We are studying the secret sharing scheme as a method safely to store or to transmit the confidential medical information used with the teleradiology network system. The confidential medical information is exposed to the risk of the damage and intercept. Secret sharing scheme is a method of dividing the confidential medical information into two or more tallies. Individual medical information cannot be decoded by using one tally at all. Our method has the function of RAID. With RAID technology, if there is a failure in a single tally, there is redundant data already copied to other tally. Confidential information is preserved at an individual Data Center connected through internet because individual medical information cannot be decoded by using one tally at all. Therefore, even if one of the Data Centers is struck and information is damaged, the confidential medical information can be decoded by using the tallies preserved at the data center to which it escapes damage. We can safely share the screen of workstation to which the medical image of Data Center is displayed from two or more web conference terminals at the same time. Moreover, Real time biometric face authentication system is connected with Data Center. Real time biometric face authentication system analyzes the feature of the face image of which it takes a picture in 20 seconds with the camera and defends the safety of the medical information. We propose a new information transmission method and a new information storage method with a new information security solution.

  8. Hand Grasping Synergies As Biometrics.

    PubMed

    Patel, Vrajeshri; Thukral, Poojita; Burns, Martin K; Florescu, Ionut; Chandramouli, Rajarathnam; Vinjamuri, Ramana

    2017-01-01

    Recently, the need for more secure identity verification systems has driven researchers to explore other sources of biometrics. This includes iris patterns, palm print, hand geometry, facial recognition, and movement patterns (hand motion, gait, and eye movements). Identity verification systems may benefit from the complexity of human movement that integrates multiple levels of control (neural, muscular, and kinematic). Using principal component analysis, we extracted spatiotemporal hand synergies (movement synergies) from an object grasping dataset to explore their use as a potential biometric. These movement synergies are in the form of joint angular velocity profiles of 10 joints. We explored the effect of joint type, digit, number of objects, and grasp type. In its best configuration, movement synergies achieved an equal error rate of 8.19%. While movement synergies can be integrated into an identity verification system with motion capture ability, we also explored a camera-ready version of hand synergies-postural synergies. In this proof of concept system, postural synergies performed well, but only when specific postures were chosen. Based on these results, hand synergies show promise as a potential biometric that can be combined with other hand-based biometrics for improved security.

  9. Invisible watermarking optical camera communication and compatibility issues of IEEE 802.15.7r1 specification

    NASA Astrophysics Data System (ADS)

    Le, Nam-Tuan

    2017-05-01

    Copyright protection and information security are two most considered issues of digital data following the development of internet and computer network. As an important solution for protection, watermarking technology has become one of the challenged roles in industry and academic research. The watermarking technology can be classified by two categories: visible watermarking and invisible watermarking. With invisible technique, there is an advantage on user interaction because of the visibility. By applying watermarking for communication, it will be a challenge and a new direction for communication technology. In this paper we will propose one new research on communication technology using optical camera communications (OCC) based invisible watermarking. Beside the analysis on performance of proposed system, we also suggest the frame structure of PHY and MAC layer for IEEE 802.15.7r1 specification which is a revision of visible light communication (VLC) standardization.

  10. Line-scan system for continuous hand authentication

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofeng; Kong, Lingsheng; Diao, Zhihui; Jia, Ping

    2017-03-01

    An increasing number of heavy machinery and vehicles have come into service, giving rise to a significant concern over protecting these high-security systems from misuse. Conventionally, authentication performed merely at the initial login may not be sufficient for detecting intruders throughout the operating session. To address this critical security flaw, a line-scan continuous hand authentication system with the appearance of an operating rod is proposed. Given that the operating rod is occupied throughout the operating period, it can be a possible solution for unobtrusively recording the personal characteristics for continuous monitoring. The ergonomics in the physiological and psychological aspects are fully considered. Under the shape constraints, a highly integrated line-scan sensor, a controller unit, and a gear motor with encoder are utilized. This system is suitable for both the desktop and embedded platforms with a universal serial bus interface. The volume of the proposed system is smaller than 15% of current multispectral area-based camera systems. Based on experiments on a database with 4000 images from 200 volunteers, a competitive equal error rate of 0.1179% is achieved, which is far more accurate than the state-of-the-art continuous authentication systems using other modalities.

  11. HALO: a reconfigurable image enhancement and multisensor fusion system

    NASA Astrophysics Data System (ADS)

    Wu, F.; Hickman, D. L.; Parker, Steve J.

    2014-06-01

    Contemporary high definition (HD) cameras and affordable infrared (IR) imagers are set to dramatically improve the effectiveness of security, surveillance and military vision systems. However, the quality of imagery is often compromised by camera shake, or poor scene visibility due to inadequate illumination or bad atmospheric conditions. A versatile vision processing system called HALO™ is presented that can address these issues, by providing flexible image processing functionality on a low size, weight and power (SWaP) platform. Example processing functions include video distortion correction, stabilisation, multi-sensor fusion and image contrast enhancement (ICE). The system is based around an all-programmable system-on-a-chip (SoC), which combines the computational power of a field-programmable gate array (FPGA) with the flexibility of a CPU. The FPGA accelerates computationally intensive real-time processes, whereas the CPU provides management and decision making functions that can automatically reconfigure the platform based on user input and scene content. These capabilities enable a HALO™ equipped reconnaissance or surveillance system to operate in poor visibility, providing potentially critical operational advantages in visually complex and challenging usage scenarios. The choice of an FPGA based SoC is discussed, and the HALO™ architecture and its implementation are described. The capabilities of image distortion correction, stabilisation, fusion and ICE are illustrated using laboratory and trials data.

  12. Robust and reliable banknote authentification and print flaw detection with opto-acoustical sensor fusion methods

    NASA Astrophysics Data System (ADS)

    Lohweg, Volker; Schaede, Johannes; Türke, Thomas

    2006-02-01

    The authenticity checking and inspection of bank notes is a high labour intensive process where traditionally every note on every sheet is inspected manually. However with the advent of more and more sophisticated security features, both visible and invisible, and the requirement of cost reduction in the printing process, it is clear that automation is required. As more and more print techniques and new security features will be established, total quality security, authenticity and bank note printing must be assured. Therefore, this factor necessitates amplification of a sensorial concept in general. We propose a concept for both authenticity checking and inspection methods for pattern recognition and classification for securities and banknotes, which is based on the concept of sensor fusion and fuzzy interpretation of data measures. In the approach different methods of authenticity analysis and print flaw detection are combined, which can be used for vending or sorting machines, as well as for printing machines. Usually only the existence or appearance of colours and their textures are checked by cameras. Our method combines the visible camera images with IR-spectral sensitive sensors, acoustical and other measurements like temperature and pressure of printing machines.

  13. Video coding for next-generation surveillance systems

    NASA Astrophysics Data System (ADS)

    Klasen, Lena M.; Fahlander, Olov

    1997-02-01

    Video is used as recording media in surveillance system and also more frequently by the Swedish Police Force. Methods for analyzing video using an image processing system have recently been introduced at the Swedish National Laboratory of Forensic Science, and new methods are in focus in a research project at Linkoping University, Image Coding Group. The accuracy of the result of those forensic investigations often depends on the quality of the video recordings, and one of the major problems when analyzing videos from crime scenes is the poor quality of the recordings. Enhancing poor image quality might add manipulative or subjective effects and does not seem to be the right way of getting reliable analysis results. The surveillance system in use today is mainly based on video techniques, VHS or S-VHS, and the weakest link is the video cassette recorder, (VCR). Multiplexers for selecting one of many camera outputs for recording is another problem as it often filters the video signal, and recording is limited to only one of the available cameras connected to the VCR. A way to get around the problem of poor recording is to simultaneously record all camera outputs digitally. It is also very important to build such a system bearing in mind that image processing analysis methods becomes more important as a complement to the human eye. Using one or more cameras gives a large amount of data, and the need for data compression is more than obvious. Crime scenes often involve persons or moving objects, and the available coding techniques are more or less useful. Our goal is to propose a possible system, being the best compromise with respect to what needs to be recorded, movements in the recorded scene, loss of information and resolution etc., to secure the efficient recording of the crime and enable forensic analysis. The preventative effective of having a well functioning surveillance system and well established image analysis methods is not to be neglected. Aspects of this next generation of digital surveillance systems are discussed in this paper.

  14. STS-109 Onboard Photo of Extra-Vehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an onboard photo of the Hubble Space Telescope (HST) power control unit (PCU), the heart of the HST's power system. STS-109 payload commander John M. Grunsfeld, joined by Astronaut Richard M. Lirnehan, turned off the telescope in order to replace its PCU while participating in the third of five spacewalks dedicated to servicing and upgrading the HST. Other upgrades performed were: replacement of the solar array panels; replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-Object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where crew members completed the system upgrades. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. Launched March 1, 2002 the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.

  15. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-01

    This is an onboard photo of the Hubble Space Telescope (HST) power control unit (PCU), the heart of the HST's power system. STS-109 payload commander John M. Grunsfeld, joined by Astronaut Richard M. Lirnehan, turned off the telescope in order to replace its PCU while participating in the third of five spacewalks dedicated to servicing and upgrading the HST. Other upgrades performed were: replacement of the solar array panels; replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-Object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where crew members completed the system upgrades. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. Launched March 1, 2002 the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.

  16. Smart sensing surveillance system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    Unattended ground sensor (UGS) networks have been widely used in remote battlefield and other tactical applications over the last few decades due to the advances of the digital signal processing. The UGS network can be applied in a variety of areas including border surveillance, special force operations, perimeter and building protection, target acquisition, situational awareness, and force protection. In this paper, a highly-distributed, fault-tolerant, and energyefficient Smart Sensing Surveillance System (S4) is presented to efficiently provide 24/7 and all weather security operation in a situation management environment. The S4 is composed of a number of distributed nodes to collect, process, and disseminate heterogeneous sensor data. Nearly all S4 nodes have passive sensors to provide rapid omnidirectional detection. In addition, Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR cameras are integrated to selected nodes to track the objects and capture associated imagery. These S4 camera-connected nodes will provide applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. In the S4, all the nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology, which can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The S4 utilizes a Service Oriented Architecture such that remote applications can interact with the S4 network and use the specific presentation methods. The S4 capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded environments and near perimeters and borders. The S4 is compliant with Open Geospatial Consortium - Sensor Web Enablement (OGC-SWE®) standards. It would be directly applicable to solutions for emergency response personnel, law enforcement, and other homeland security missions, as well as in applications requiring the interoperation of sensor networks with handheld or body-worn interface devices.

  17. Expanded opportunities of THz passive camera for the detection of concealed objects

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2013-10-01

    Among the security problems, the detection of object implanted into either the human body or animal body is the urgent problem. At the present time the main tool for the detection of such object is X-raying only. However, X-ray is the ionized radiation and therefore can not be used often. Other way for the problem solving is passive THz imaging using. In our opinion, using of the passive THz camera may help to detect the object implanted into the human body under certain conditions. The physical reason of such possibility arises from temperature trace on the human skin as a result of the difference in temperature between object and parts of human body. Modern passive THz cameras have not enough resolution in temperature to see this difference. That is why, we use computer processing to enhance the passive THz camera resolution for this application. After computer processing of images captured by passive THz camera TS4, developed by ThruVision Systems Ltd., we may see the pronounced temperature trace on the human body skin from the water, which is drunk by person, or other food eaten by person. Nevertheless, there are many difficulties on the way of full soution of this problem. We illustrate also an improvement of quality of the image captured by comercially available passive THz cameras using computer processing. In some cases, one can fully supress a noise on the image without loss of its quality. Using computer processing of the THz image of objects concealed on the human body, one may improve it many times. Consequently, the instrumental resolution of such device may be increased without any additional engineering efforts.

  18. Secure Video Surveillance System (SVSS) for unannounced safeguards inspections.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galdoz, Erwin G.; Pinkalla, Mark

    2010-09-01

    The Secure Video Surveillance System (SVSS) is a collaborative effort between the U.S. Department of Energy (DOE), Sandia National Laboratories (SNL), and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC). The joint project addresses specific requirements of redundant surveillance systems installed in two South American nuclear facilities as a tool to support unannounced inspections conducted by ABACC and the International Atomic Energy Agency (IAEA). The surveillance covers the critical time (as much as a few hours) between the notification of an inspection and the access of inspectors to the location in facility where surveillance equipment is installed.more » ABACC and the IAEA currently use the EURATOM Multiple Optical Surveillance System (EMOSS). This outdated system is no longer available or supported by the manufacturer. The current EMOSS system has met the project objective; however, the lack of available replacement parts and system support has made this system unsustainable and has increased the risk of an inoperable system. A new system that utilizes current technology and is maintainable is required to replace the aging EMOSS system. ABACC intends to replace one of the existing ABACC EMOSS systems by the Secure Video Surveillance System. SVSS utilizes commercial off-the shelf (COTS) technologies for all individual components. Sandia National Laboratories supported the system design for SVSS to meet Safeguards requirements, i.e. tamper indication, data authentication, etc. The SVSS consists of two video surveillance cameras linked securely to a data collection unit. The collection unit is capable of retaining historical surveillance data for at least three hours with picture intervals as short as 1sec. Images in .jpg format are available to inspectors using various software review tools. SNL has delivered two SVSS systems for test and evaluation at the ABACC Safeguards Laboratory. An additional 'proto-type' system remains at SNL for software and hardware testing. This paper will describe the capabilities of the new surveillance system, application and requirements, and the design approach.« less

  19. STS-109 MS Massimino and Newman replace Reaction Wheel assembly during EVA 2

    NASA Image and Video Library

    2002-03-05

    STS109-E-5401 (5 March 2002) --- With his feet secured on a platform connected to the remote manipulator system (RMS) robotic arm of the Space Shuttle Columbia, astronaut Michael J. Massimino, mission specialist, hovers over the shuttle's cargo bay while working in tandem with astronaut James H. Newman, mission specialist, during the STS-109 mission's second day of extravehicular activity (EVA). Inside Columbia's cabin, astronaut Nancy J. Currie, mission specialist, controlled the RMS. The image was recorded with a digital still camera.

  20. STS-109 MS Massimino and Newman replace Reaction Wheel assembly during EVA 2

    NASA Image and Video Library

    2002-03-05

    STS109-E-5402 (5 March 2002) --- With his feet secured on a platform connected to the remote manipulator system (RMS) robotic arm of the Space Shuttle Columbia, astronaut Michael J. Massimino, mission specialist, hovers over the shuttle's cargo bay while working in tandem with astronaut James H. Newman, mission specialist, during the STS-109 mission's second day of extravehicular activity (EVA). Inside Columbia's cabin, astronaut Nancy J. Currie, mission specialist, controlled the RMS. The image was recorded with a digital still camera.

  1. Smart sensing surveillance video system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Szu, Harold

    2016-05-01

    An intelligent video surveillance system is able to detect and identify abnormal and alarming situations by analyzing object movement. The Smart Sensing Surveillance Video (S3V) System is proposed to minimize video processing and transmission, thus allowing a fixed number of cameras to be connected on the system, and making it suitable for its applications in remote battlefield, tactical, and civilian applications including border surveillance, special force operations, airfield protection, perimeter and building protection, and etc. The S3V System would be more effective if equipped with visual understanding capabilities to detect, analyze, and recognize objects, track motions, and predict intentions. In addition, alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. The S3V System capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded environments. It would be directly applicable to solutions for emergency response personnel, law enforcement, and other homeland security missions, as well as in applications requiring the interoperation of sensor networks with handheld or body-worn interface devices.

  2. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-05

    Astronaut James H. Newman, mission specialist, floats about in the Space Shuttle Columbia's cargo bay while working in tandem with astronaut Michael J. Massimino (out of frame),mission specialist, during the STS-109 mission's second day of extravehicular activity (EVA). Inside Columbia's cabin, astronaut Nancy J. Currie, mission specialist, controlled the Remote Manipulator System (RMS) to assist the two in their work on the Hubble Space Telescope (HST). The RMS was used to capture the telescope and secure it into Columbia's cargo bay.Part of the giant telescope's base, latched down in the payload bay, can be seen behind Newman. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the HST. The Marshall Space Flight Center in Huntsville, Alabama had responsibility for the design, development, and contruction of the HST, which is the most powerful and sophisticated telescope ever built. STS-109 upgrades to the HST included: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  3. Noisy Ocular Recognition Based on Three Convolutional Neural Networks

    PubMed Central

    Lee, Min Beom; Hong, Hyung Gil; Park, Kang Ryoung

    2017-01-01

    In recent years, the iris recognition system has been gaining increasing acceptance for applications such as access control and smartphone security. When the images of the iris are obtained under unconstrained conditions, an issue of undermined quality is caused by optical and motion blur, off-angle view (the user’s eyes looking somewhere else, not into the front of the camera), specular reflection (SR) and other factors. Such noisy iris images increase intra-individual variations and, as a result, reduce the accuracy of iris recognition. A typical iris recognition system requires a near-infrared (NIR) illuminator along with an NIR camera, which are larger and more expensive than fingerprint recognition equipment. Hence, many studies have proposed methods of using iris images captured by a visible light camera without the need for an additional illuminator. In this research, we propose a new recognition method for noisy iris and ocular images by using one iris and two periocular regions, based on three convolutional neural networks (CNNs). Experiments were conducted by using the noisy iris challenge evaluation-part II (NICE.II) training dataset (selected from the university of Beira iris (UBIRIS).v2 database), mobile iris challenge evaluation (MICHE) database, and institute of automation of Chinese academy of sciences (CASIA)-Iris-Distance database. As a result, the method proposed by this study outperformed previous methods. PMID:29258217

  4. Conclusions

    NASA Astrophysics Data System (ADS)

    Ahonen, Pasi; Alahuhta, Petteri; Daskala, Barbara; Delaitre, Sabine; Hert, Paul De; Lindner, Ralf; Maghiros, Ioannis; Moscibroda, Anna; Schreurs, Wim; Verlinden, Michiel

    Some say that an increase in security does not necessarily mean a further encroachment on privacy - indeed, security is necessary to protect personal data and our privacy. Networks must be secure, our personal devices, reliable, dependable and trustworthy. But security is a multifaceted term, with many dimensions. We are of the view that an increase in security most likely will encroach upon our privacy in an ambient intelligence world. Surveillance cameras will continue to proliferate. We assume that, whatever the law is, whatever privacy protections government and business say they honour, our telecommunications, e-mails and Internet usage will be monitored to an increasing degree. The same will be true of our interfaces with the world of ambient intelligence.

  5. 15 CFR 740.16 - Additional permissive reexports (APR).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... North Korea and the commodity being reexported is controlled for national security reasons. (b..., South Korea, Spain, Sweden, Switzerland, Turkey, and the United Kingdom if: (i) Such cameras are fully...

  6. 15 CFR 740.16 - Additional permissive reexports (APR).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... North Korea and the commodity being reexported is controlled for national security reasons. (b..., South Korea, Spain, Sweden, Switzerland, Turkey, and the United Kingdom if: (i) Such cameras are fully...

  7. KSC-98pc774

    NASA Image and Video Library

    1998-06-25

    KENNEDY SPACE CENTER, FLA. -- Sgt. Mark Hines, of Kennedy Space Center (KSC) Security, checks out equipment used to operate the Forward Looking Infrared Radar (FLIR) installed on NASA's Huey UH-1 helicopter. The helicopter has also been outfitted with a portable global positioning satellite (GPS) system to support Florida's Division of Forestry as they fight the brush fires which have been plaguing the state as a result of extremely dry conditions and lightning storms. The FLIR includes a beach ball-sized infrared camera that is mounted on the helicopter's right siderail and a real-time television monitor and recorder installed inside. While the FLIR collects temperature data and images, the GPS system provides the exact coordinates of the fires being observed and transmits the data to the firefighters on the ground. KSC's security team routinely uses the FLIR equipment prior to Shuttle launch and landing activities to ensure that the area surrounding the launch pad and runway are clear of unauthorized personnel. KSC's Base Operations Contractor, EG&G Florida, operates the NASA-owned helicopter

  8. KSC-98pc775

    NASA Image and Video Library

    1998-06-25

    KENNEDY SPACE CENTER, FLA. -- NASA's Huey UH-1 helicopter lands at the Shuttle Landing Facility to pick up Kennedy Space Center (KSC) Security personnel who operate the Forward Looking Infrared Radar (FLIR) installed on board. The helicopter has also been outfitted with a portable global positioning satellite (GPS) system to support Florida's Division of Forestry as they fight the brush fires which have been plaguing the state as a result of extremely dry conditions and lightning storms. The FLIR includes a beach ball-sized infrared camera that is mounted on the helicopter's right siderail and a real-time television monitor and recorder installed inside. While the FLIR collects temperature data and images, the GPS system provides the exact coordinates of the fires being observed and transmits the data to the firefighters on the ground. KSC's security team routinely uses the FLIR equipment prior to Shuttle launch and landing activities to ensure that the area surrounding the launch pad and runway are clear of unauthorized personnel. KSC's Base Operations Contractor, EG&G Florida, operates the NASA-owned helicopter

  9. Detection of small surface vessels in near, medium, and far infrared spectral bands

    NASA Astrophysics Data System (ADS)

    Dulski, R.; Milewski, S.; Kastek, M.; Trzaskawka, P.; Szustakowski, M.; Ciurapinski, W.; Zyczkowski, M.

    2011-11-01

    Protection of naval bases and harbors requires close co-operation between security and access control systems covering land areas and those monitoring sea approach routes. The typical location of naval bases and harbors - usually next to a large city - makes it difficult to detect and identify a threat in the dense regular traffic of various sea vessels (i.e. merchant ships, fishing boats, tourist ships). Due to the properties of vessel control systems, such as AIS (Automatic Identification System), and the effectiveness of radar and optoelectronic systems against different targets it seems that fast motor boats called RIB (Rigid Inflatable Boat) could be the most serious threat to ships and harbor infrastructure. In the paper the process and conditions for the detection and identification of high-speed boats in the areas of ports and naval bases in the near, medium and far infrared is presented. Based on the results of measurements and recorded thermal images the actual temperature contrast delta T (RIB / sea) will be determined, which will further allow to specify the theoretical ranges of detection and identification of the RIB-type targets for an operating security system. The data will also help to determine the possible advantages of image fusion where the component images are taken in different spectral ranges. This will increase the probability of identifying the object by the multi-sensor security system equipped additionally with the appropriate algorithms for detecting, tracking and performing the fusion of images from the visible and infrared cameras.

  10. Image denoising and deblurring using multispectral data

    NASA Astrophysics Data System (ADS)

    Semenishchev, E. A.; Voronin, V. V.; Marchuk, V. I.

    2017-05-01

    Currently decision-making systems get widespread. These systems are based on the analysis video sequences and also additional data. They are volume, change size, the behavior of one or a group of objects, temperature gradient, the presence of local areas with strong differences, and others. Security and control system are main areas of application. A noise on the images strongly influences the subsequent processing and decision making. This paper considers the problem of primary signal processing for solving the tasks of image denoising and deblurring of multispectral data. The additional information from multispectral channels can improve the efficiency of object classification. In this paper we use method of combining information about the objects obtained by the cameras in different frequency bands. We apply method based on simultaneous minimization L2 and the first order square difference sequence of estimates to denoising and restoring the blur on the edges. In case of loss of the information will be applied an approach based on the interpolation of data taken from the analysis of objects located in other areas and information obtained from multispectral camera. The effectiveness of the proposed approach is shown in a set of test images.

  11. A&M. Radioactive parts security storage warehouses: TAN648 on left, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Radioactive parts security storage warehouses: TAN-648 on left, and dolly storage building, TAN-647, on right. Camera facing south. This was the front entry for the warehouse and the rear of the dolly storage building. Date: August 6, 2003. INEEL negative no. HD-36-2-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  12. Spacecraft automatic umbilical system

    NASA Technical Reports Server (NTRS)

    Goldin, R. W.; Jacquemin, G. G.; Johnson, W. H.

    1981-01-01

    An umbilical system design is described that incorporates all the features specified for a power system to payload interconnect capability. A proof-of-concept prototype of the umbilical system was built to determine experimentally the suitability of the threading characteristics of the ram mechanism and to verify freedom from cross threading. It is concluded that Berthing systems that utilize remote manipulator systems (RMS) can be simplified by using RMS targets, closed circuit TV cameras, tie into the RMS control system, and grapple-fixture and end-effector-like capture and secure mechanisms. To effect a remotely controlled umbilical interconnect in proximity with a manned spacecraft and to provide for extravehicular activity backup and maintenance capabilities, 18 different mechanisms are found to be necessary. The weight impact of proving for maintenance capability in a large multiple connector umbilical system was found to be in the order of +60 percent.

  13. Social Media and the Arab Spring: How Facebook, Twitter, and Camera Phones Changed the Egyptian Army’s Response to Revolution

    DTIC Science & Technology

    2012-06-08

    Definitions Importantly, as an operational definition of ‘social media,’ I include Facebook, Twitter, YouTube, and social networking sites not specifically...the aforementioned social networking sites . As an operational definition of ‘security operations’ for the purposes of this paper, I use the...the existence of camera phones, Facebook, Twitter, and other social networking sites , individuals’ behavior changed with the advent of the Internet

  14. Possibility of passive THz camera using for a temperature difference observing of objects placed inside the human body

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2014-06-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. We demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. We discuss some physical experiments, in which a person drinks hot, and warm, and cold water and he eats. After computer processing of images captured by passive THz camera TS4 we may see the pronounced temperature trace on skin of the human body. For proof of validity of our statement we make the similar physical experiment using the IR camera. Our investigation allows to increase field of the passive THz camera using for the detection of objects concealed in the human body because the difference in temperature between object and parts of human body will be reflected on the human skin. However, modern passive THz cameras have not enough resolution in a temperature to see this difference. That is why, we use computer processing to enhance the camera resolution for this application. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp.

  15. A Web-based telemedicine system for diabetic retinopathy screening using digital fundus photography.

    PubMed

    Wei, Jack C; Valentino, Daniel J; Bell, Douglas S; Baker, Richard S

    2006-02-01

    The purpose was to design and implement a Web-based telemedicine system for diabetic retinopathy screening using digital fundus cameras and to make the software publicly available through Open Source release. The process of retinal imaging and case reviewing was modeled to optimize workflow and implement use of computer system. The Web-based system was built on Java Servlet and Java Server Pages (JSP) technologies. Apache Tomcat was chosen as the JSP engine, while MySQL was used as the main database and Laboratory of Neuro Imaging (LONI) Image Storage Architecture, from the LONI-UCLA, as the platform for image storage. For security, all data transmissions were carried over encrypted Internet connections such as Secure Socket Layer (SSL) and HyperText Transfer Protocol over SSL (HTTPS). User logins were required and access to patient data was logged for auditing. The system was deployed at Hubert H. Humphrey Comprehensive Health Center and Martin Luther King/Drew Medical Center of Los Angeles County Department of Health Services. Within 4 months, 1500 images of more than 650 patients were taken at Humphrey's Eye Clinic and successfully transferred to King/Drew's Department of Ophthalmology. This study demonstrates an effective architecture for remote diabetic retinopathy screening.

  16. Rebuilding Iraq: DoD and State Department Have Improved Oversight and Coordination of Private Security Contractors in Iraq, but Further Actions are Needed to Sustain Improvements

    DTIC Science & Technology

    2008-07-01

    MNC-I Multi-National Corps-Iraq MNF-I Multi-National Force-Iraq PSC private security contractor RSO Regional Security Office TOC tactical...maritime and territorial jurisdiction’ to include a housing complex leased by the U.S. military on a military base in Germany where a sexual assault...and monitored by RSO personnel in the RSO TOC . Motorcade vehicles are equipped with video cameras that record and document motorcade movements and

  17. The OCA CCD Camera Controller

    DTIC Science & Technology

    1996-01-01

    multi CCD arrays for wide field telescopes with an array of 8x8 1K CCDs in use at Las Campanas Observatory in Chile . The same group is also involved...Verify key EPROM -292H VIH . VIH Program security bitl 1 29AH . VPP Program security’ bit 2 *. .298H -Vpp Verify security bits - 9HVIH ViI NOTE: 1...Pulsed from V.. to VIL and returned to VIH . EPROM PROGRAMMING AND VERIFICATION ..t= 21’C to-+27 ’rC:-VCC= 5V ±10%VS3 = OV. SYMBOL I .-- PARAMETER MIN MAX

  18. Appearance-based multimodal human tracking and identification for healthcare in the digital home.

    PubMed

    Yang, Mau-Tsuen; Huang, Shen-Yen

    2014-08-05

    There is an urgent need for intelligent home surveillance systems to provide home security, monitor health conditions, and detect emergencies of family members. One of the fundamental problems to realize the power of these intelligent services is how to detect, track, and identify people at home. Compared to RFID tags that need to be worn all the time, vision-based sensors provide a natural and nonintrusive solution. Observing that body appearance and body build, as well as face, provide valuable cues for human identification, we model and record multi-view faces, full-body colors and shapes of family members in an appearance database by using two Kinects located at a home's entrance. Then the Kinects and another set of color cameras installed in other parts of the house are used to detect, track, and identify people by matching the captured color images with the registered templates in the appearance database. People are detected and tracked by multisensor fusion (Kinects and color cameras) using a Kalman filter that can handle duplicate or partial measurements. People are identified by multimodal fusion (face, body appearance, and silhouette) using a track-based majority voting. Moreover, the appearance-based human detection, tracking, and identification modules can cooperate seamlessly and benefit from each other. Experimental results show the effectiveness of the human tracking across multiple sensors and human identification considering the information of multi-view faces, full-body clothes, and silhouettes. The proposed home surveillance system can be applied to domestic applications in digital home security and intelligent healthcare.

  19. Appearance-Based Multimodal Human Tracking and Identification for Healthcare in the Digital Home

    PubMed Central

    Yang, Mau-Tsuen; Huang, Shen-Yen

    2014-01-01

    There is an urgent need for intelligent home surveillance systems to provide home security, monitor health conditions, and detect emergencies of family members. One of the fundamental problems to realize the power of these intelligent services is how to detect, track, and identify people at home. Compared to RFID tags that need to be worn all the time, vision-based sensors provide a natural and nonintrusive solution. Observing that body appearance and body build, as well as face, provide valuable cues for human identification, we model and record multi-view faces, full-body colors and shapes of family members in an appearance database by using two Kinects located at a home's entrance. Then the Kinects and another set of color cameras installed in other parts of the house are used to detect, track, and identify people by matching the captured color images with the registered templates in the appearance database. People are detected and tracked by multisensor fusion (Kinects and color cameras) using a Kalman filter that can handle duplicate or partial measurements. People are identified by multimodal fusion (face, body appearance, and silhouette) using a track-based majority voting. Moreover, the appearance-based human detection, tracking, and identification modules can cooperate seamlessly and benefit from each other. Experimental results show the effectiveness of the human tracking across multiple sensors and human identification considering the information of multi-view faces, full-body clothes, and silhouettes. The proposed home surveillance system can be applied to domestic applications in digital home security and intelligent healthcare. PMID:25098207

  20. Face Recognition for Access Control Systems Combining Image-Difference Features Based on a Probabilistic Model

    NASA Astrophysics Data System (ADS)

    Miwa, Shotaro; Kage, Hiroshi; Hirai, Takashi; Sumi, Kazuhiko

    We propose a probabilistic face recognition algorithm for Access Control System(ACS)s. Comparing with existing ACSs using low cost IC-cards, face recognition has advantages in usability and security that it doesn't require people to hold cards over scanners and doesn't accept imposters with authorized cards. Therefore face recognition attracts more interests in security markets than IC-cards. But in security markets where low cost ACSs exist, price competition is important, and there is a limitation on the quality of available cameras and image control. Therefore ACSs using face recognition are required to handle much lower quality images, such as defocused and poor gain-controlled images than high security systems, such as immigration control. To tackle with such image quality problems we developed a face recognition algorithm based on a probabilistic model which combines a variety of image-difference features trained by Real AdaBoost with their prior probability distributions. It enables to evaluate and utilize only reliable features among trained ones during each authentication, and achieve high recognition performance rates. The field evaluation using a pseudo Access Control System installed in our office shows that the proposed system achieves a constant high recognition performance rate independent on face image qualities, that is about four times lower EER (Equal Error Rate) under a variety of image conditions than one without any prior probability distributions. On the other hand using image difference features without any prior probabilities are sensitive to image qualities. We also evaluated PCA, and it has worse, but constant performance rates because of its general optimization on overall data. Comparing with PCA, Real AdaBoost without any prior distribution performs twice better under good image conditions, but degrades to a performance as good as PCA under poor image conditions.

  1. Scaling-up camera traps: monitoring the planet's biodiversity with networks of remote sensors

    USGS Publications Warehouse

    Steenweg, Robin; Hebblewhite, Mark; Kays, Roland; Ahumada, Jorge A.; Fisher, Jason T.; Burton, Cole; Townsend, Susan E.; Carbone, Chris; Rowcliffe, J. Marcus; Whittington, Jesse; Brodie, Jedediah; Royle, Andy; Switalski, Adam; Clevenger, Anthony P.; Heim, Nicole; Rich, Lindsey N.

    2017-01-01

    Countries committed to implementing the Convention on Biological Diversity's 2011–2020 strategic plan need effective tools to monitor global trends in biodiversity. Remote cameras are a rapidly growing technology that has great potential to transform global monitoring for terrestrial biodiversity and can be an important contributor to the call for measuring Essential Biodiversity Variables. Recent advances in camera technology and methods enable researchers to estimate changes in abundance and distribution for entire communities of animals and to identify global drivers of biodiversity trends. We suggest that interconnected networks of remote cameras will soon monitor biodiversity at a global scale, help answer pressing ecological questions, and guide conservation policy. This global network will require greater collaboration among remote-camera studies and citizen scientists, including standardized metadata, shared protocols, and security measures to protect records about sensitive species. With modest investment in infrastructure, and continued innovation, synthesis, and collaboration, we envision a global network of remote cameras that not only provides real-time biodiversity data but also serves to connect people with nature.

  2. Hand-held hyperspectral imager for chemical/biological and environmental applications

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Piatek, Bob

    2004-03-01

    A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.

  3. Determination of Turning Characteristics of an Airship by Means of a Camera Obscura

    NASA Technical Reports Server (NTRS)

    Crowley, J W , Jr; Freeman, R G

    1925-01-01

    This investigation was carried out by the National Advisory Committee at Langley Field for the purpose of determining the adaptability of the camera obscura to the securing of turning characteristics of airships, and also of obtaining some of those characteristics of the C-7 airship. The method consisted in flying the airship in circling flight over a camera obscura and photographing it at known time intervals. The results show that the method used is highly satisfactory and that for the particular maneuver employed the turning diameter is 1,240 feet, corresponding to a turning coefficient of 6.4, and that the position of zero angle of yaw is at the nose of the airship.

  4. Temperature resolution enhancing of commercially available IR camera using computer processing

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2015-09-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. Using such THz camera, one can see a temperature difference on the human skin if this difference is caused by different temperatures inside the body. Because the passive THz camera is very expensive, we try to use the IR camera for observing of such phenomenon. We use a computer code that is available for treatment of the images captured by commercially available IR camera, manufactured by Flir Corp. Using this code we demonstrate clearly changing of human body skin temperature induced by water drinking. Nevertheless, in some cases it is necessary to use additional computer processing to show clearly changing of human body temperature. One of these approaches is developed by us. We believe that we increase ten times (or more) the temperature resolution of such camera. Carried out experiments can be used for solving the counter-terrorism problem and for medicine problems solving. Shown phenomenon is very important for the detection of forbidden objects and substances concealed inside the human body using non-destructive control without X-ray application. Early we have demonstrated such possibility using THz radiation.

  5. System Synchronizes Recordings from Separated Video Cameras

    NASA Technical Reports Server (NTRS)

    Nail, William; Nail, William L.; Nail, Jasper M.; Le, Doung T.

    2009-01-01

    A system of electronic hardware and software for synchronizing recordings from multiple, physically separated video cameras is being developed, primarily for use in multiple-look-angle video production. The system, the time code used in the system, and the underlying method of synchronization upon which the design of the system is based are denoted generally by the term "Geo-TimeCode(TradeMark)." The system is embodied mostly in compact, lightweight, portable units (see figure) denoted video time-code units (VTUs) - one VTU for each video camera. The system is scalable in that any number of camera recordings can be synchronized. The estimated retail price per unit would be about $350 (in 2006 dollars). The need for this or another synchronization system external to video cameras arises because most video cameras do not include internal means for maintaining synchronization with other video cameras. Unlike prior video-camera-synchronization systems, this system does not depend on continuous cable or radio links between cameras (however, it does depend on occasional cable links lasting a few seconds). Also, whereas the time codes used in prior video-camera-synchronization systems typically repeat after 24 hours, the time code used in this system does not repeat for slightly more than 136 years; hence, this system is much better suited for long-term deployment of multiple cameras.

  6. Leveraging Service Oriented Architecture to Enhance Information Sharing for Surface Transportation Security

    DTIC Science & Technology

    2008-09-01

    telephone, conference calls, emails, alert notifications, and blackberry . The RDTSF holds conference calls with its stakeholders to provide routine... tunnels ) is monitored by CCTV cameras with live feeds to WMATA’s Operations Control Center (OCC) to detect unauthorized entry into areas not intended for...message by email, blackberry and phone to the Security Coordinators. Dissemination of classified information however, is generally handled through the

  7. SAFER Under Vehicle Inspection Through Video Mosaic Building

    DTIC Science & Technology

    2004-01-01

    this work were taken using a Polaris Wp-300c Lipstick video camera mounted on a mobile platform. Infrared video was taken using a Raytheon PalmIR PRO...Tank- Automotive Research, Development and Engineering Center, US Army RDECOM, Warren, Michigan, USA. Keywords Inspection, Road vehicles, State...security, Robotics Abstract The current threats to US security, both military and civilian, have led to an increased interest in the development of

  8. DEMINERALIZER BUILDING,TRA608. CAMERA FACES EAST ALONG SOUTH WALL. INSTRUMENT PANEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DEMINERALIZER BUILDING,TRA-608. CAMERA FACES EAST ALONG SOUTH WALL. INSTRUMENT PANEL BOARD IS IN RIGHT HALF OF VIEW, WITH FOUR PUMPS BEYOND. SMALLER PUMPS FILL DEMINERALIZED WATER TANK ON SOUTH SIDE OF BUILDING. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 3997A. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. Space Shuttle Projects

    NASA Image and Video Library

    2001-08-01

    This is the insignia of the STS-109 Space Shuttle mission. Carrying a crew of seven, the Space Shuttle Orbiter Columbia was launched with goals of maintenance and upgrades to the Hubble Space Telescope (HST). The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. During the STS-109 mission, the telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm where four members of the crew performed five spacewalks completing system upgrades to the HST. Included in those upgrades were: The replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 27th flight of the Orbiter Columbia and the 108th flight overall in NASA's Space Shuttle Program.

  10. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-03

    This is a photo of the Hubble Space Telescope (HST),in its origianl configuration, berthed in the cargo bay of the Space Shuttle Columbia during the STS-109 mission silhouetted against the airglow of the Earth's horizon. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where 4 of the 7-member crew performed 5 spacewalks completing system upgrades to the HST. Included in those upgrades were: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. Launched March 1, 2002 the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.

  11. Hand Grasping Synergies As Biometrics

    PubMed Central

    Patel, Vrajeshri; Thukral, Poojita; Burns, Martin K.; Florescu, Ionut; Chandramouli, Rajarathnam; Vinjamuri, Ramana

    2017-01-01

    Recently, the need for more secure identity verification systems has driven researchers to explore other sources of biometrics. This includes iris patterns, palm print, hand geometry, facial recognition, and movement patterns (hand motion, gait, and eye movements). Identity verification systems may benefit from the complexity of human movement that integrates multiple levels of control (neural, muscular, and kinematic). Using principal component analysis, we extracted spatiotemporal hand synergies (movement synergies) from an object grasping dataset to explore their use as a potential biometric. These movement synergies are in the form of joint angular velocity profiles of 10 joints. We explored the effect of joint type, digit, number of objects, and grasp type. In its best configuration, movement synergies achieved an equal error rate of 8.19%. While movement synergies can be integrated into an identity verification system with motion capture ability, we also explored a camera-ready version of hand synergies—postural synergies. In this proof of concept system, postural synergies performed well, but only when specific postures were chosen. Based on these results, hand synergies show promise as a potential biometric that can be combined with other hand-based biometrics for improved security. PMID:28512630

  12. STS-109 Onboard Photo of Extra-Vehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an onboard photo of Astronaut John M. Grunsfield, STS-109 payload commander, participating in the third of five spacewalks to perform work on the Hubble Space Telescope (HST). On this particular walk, Grunsfield, joined by Astronaut Richard M. Lirnehan, turned off the telescope in order to replace its power control unit (PCU), the heart of the HST's power system. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where crew members completed system upgrades to the HST. Included in those upgrades were: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. Launched March 1, 2002 the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.

  13. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-06

    This is an onboard photo of Astronaut John M. Grunsfield, STS-109 payload commander, participating in the third of five spacewalks to perform work on the Hubble Space Telescope (HST). On this particular walk, Grunsfield, joined by Astronaut Richard M. Lirnehan, turned off the telescope in order to replace its power control unit (PCU), the heart of the HST's power system. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where crew members completed system upgrades to the HST. Included in those upgrades were: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. Launched March 1, 2002 the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.

  14. The sequence measurement system of the IR camera

    NASA Astrophysics Data System (ADS)

    Geng, Ai-hui; Han, Hong-xia; Zhang, Hai-bo

    2011-08-01

    Currently, the IR cameras are broadly used in the optic-electronic tracking, optic-electronic measuring, fire control and optic-electronic countermeasure field, but the output sequence of the most presently applied IR cameras in the project is complex and the giving sequence documents from the leave factory are not detailed. Aiming at the requirement that the continuous image transmission and image procession system need the detailed sequence of the IR cameras, the sequence measurement system of the IR camera is designed, and the detailed sequence measurement way of the applied IR camera is carried out. The FPGA programming combined with the SignalTap online observation way has been applied in the sequence measurement system, and the precise sequence of the IR camera's output signal has been achieved, the detailed document of the IR camera has been supplied to the continuous image transmission system, image processing system and etc. The sequence measurement system of the IR camera includes CameraLink input interface part, LVDS input interface part, FPGA part, CameraLink output interface part and etc, thereinto the FPGA part is the key composed part in the sequence measurement system. Both the video signal of the CmaeraLink style and the video signal of LVDS style can be accepted by the sequence measurement system, and because the image processing card and image memory card always use the CameraLink interface as its input interface style, the output signal style of the sequence measurement system has been designed into CameraLink interface. The sequence measurement system does the IR camera's sequence measurement work and meanwhile does the interface transmission work to some cameras. Inside the FPGA of the sequence measurement system, the sequence measurement program, the pixel clock modification, the SignalTap file configuration and the SignalTap online observation has been integrated to realize the precise measurement to the IR camera. Te sequence measurement program written by the verilog language combining the SignalTap tool on line observation can count the line numbers in one frame, pixel numbers in one line and meanwhile account the line offset and row offset of the image. Aiming at the complex sequence of the IR camera's output signal, the sequence measurement system of the IR camera accurately measures the sequence of the project applied camera, supplies the detailed sequence document to the continuous system such as image processing system and image transmission system and gives out the concrete parameters of the fval, lval, pixclk, line offset and row offset. The experiment shows that the sequence measurement system of the IR camera can get the precise sequence measurement result and works stably, laying foundation for the continuous system.

  15. Near-infrared face recognition utilizing open CV software

    NASA Astrophysics Data System (ADS)

    Sellami, Louiza; Ngo, Hau; Fowler, Chris J.; Kearney, Liam M.

    2014-06-01

    Commercially available hardware, freely available algorithms, and authors' developed software are synergized successfully to detect and recognize subjects in an environment without visible light. This project integrates three major components: an illumination device operating in near infrared (NIR) spectrum, a NIR capable camera and a software algorithm capable of performing image manipulation, facial detection and recognition. Focusing our efforts in the near infrared spectrum allows the low budget system to operate covertly while still allowing for accurate face recognition. In doing so a valuable function has been developed which presents potential benefits in future civilian and military security and surveillance operations.

  16. Cameras Reveal Elements in the Short Wave Infrared

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Goodrich ISR Systems Inc. (formerly Sensors Unlimited Inc.), based out of Princeton, New Jersey, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory, Marshall Space Flight Center, Kennedy Space Center, Goddard Space Flight Center, Ames Research Center, Stennis Space Center, and Langley Research Center to assist in advancing and refining indium gallium arsenide imaging technology. Used on the Lunar Crater Observation and Sensing Satellite (LCROSS) mission in 2009 for imaging the short wave infrared wavelengths, the technology has dozens of applications in military, security and surveillance, machine vision, medical, spectroscopy, semiconductor inspection, instrumentation, thermography, and telecommunications.

  17. 15 CFR 740.19 - Consumer Communications Devices (CCD).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; (11) Memory devices classified under ECCN 5A992 or designated EAR99; (12) “Information security... 5D992 or designated EAR99; (13) Digital cameras and memory cards classified under ECCN 5A992 or...

  18. Terahertz Real-Time Imaging Uncooled Arrays Based on Antenna-Coupled Bolometers or FET Developed at CEA-Leti

    NASA Astrophysics Data System (ADS)

    Simoens, François; Meilhan, Jérôme; Nicolas, Jean-Alain

    2015-10-01

    Sensitive and large-format terahertz focal plane arrays (FPAs) integrated in compact and hand-held cameras that deliver real-time terahertz (THz) imaging are required for many application fields, such as non-destructive testing (NDT), security, quality control of food, and agricultural products industry. Two technologies of uncooled THz arrays that are being studied at CEA-Leti, i.e., bolometer and complementary metal oxide semiconductor (CMOS) field effect transistors (FET), are able to meet these requirements. This paper reminds the followed technological approaches and focuses on the latest modeling and performance analysis. The capabilities of application of these arrays to NDT and security are then demonstrated with experimental tests. In particular, high technological maturity of the THz bolometer camera is illustrated with fast scanning of large field of view of opaque scenes achieved in a complete body scanner prototype.

  19. Gamma ray imager on the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, D. C., E-mail: pacedc@fusion.gat.com; Taussig, D.; Eidietis, N. W.

    2016-04-15

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1–60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less

  20. Gamma ray imager on the DIII-D tokamak

    DOE PAGES

    Pace, D. C.; Cooper, C. M.; Taussig, D.; ...

    2016-04-13

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1- 60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. In conclusion, first measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less

  1. Imaging with a small number of photons

    PubMed Central

    Morris, Peter A.; Aspden, Reuben S.; Bell, Jessica E. C.; Boyd, Robert W.; Padgett, Miles J.

    2015-01-01

    Low-light-level imaging techniques have application in many diverse fields, ranging from biological sciences to security. A high-quality digital camera based on a multi-megapixel array will typically record an image by collecting of order 105 photons per pixel, but by how much could this photon flux be reduced? In this work we demonstrate a single-photon imaging system based on a time-gated intensified camera from which the image of an object can be inferred from very few detected photons. We show that a ghost-imaging configuration, where the image is obtained from photons that have never interacted with the object, is a useful approach for obtaining images with high signal-to-noise ratios. The use of heralded single photons ensures that the background counts can be virtually eliminated from the recorded images. By applying principles of image compression and associated image reconstruction, we obtain high-quality images of objects from raw data formed from an average of fewer than one detected photon per image pixel. PMID:25557090

  2. Improvement of passive THz camera images

    NASA Astrophysics Data System (ADS)

    Kowalski, Marcin; Piszczek, Marek; Palka, Norbert; Szustakowski, Mieczyslaw

    2012-10-01

    Terahertz technology is one of emerging technologies that has a potential to change our life. There are a lot of attractive applications in fields like security, astronomy, biology and medicine. Until recent years, terahertz (THz) waves were an undiscovered, or most importantly, an unexploited area of electromagnetic spectrum. The reasons of this fact were difficulties in generation and detection of THz waves. Recent advances in hardware technology have started to open up the field to new applications such as THz imaging. The THz waves can penetrate through various materials. However, automated processing of THz images can be challenging. The THz frequency band is specially suited for clothes penetration because this radiation does not point any harmful ionizing effects thus it is safe for human beings. Strong technology development in this band have sparked with few interesting devices. Even if the development of THz cameras is an emerging topic, commercially available passive cameras still offer images of poor quality mainly because of its low resolution and low detectors sensitivity. Therefore, THz image processing is very challenging and urgent topic. Digital THz image processing is a really promising and cost-effective way for demanding security and defense applications. In the article we demonstrate the results of image quality enhancement and image fusion of images captured by a commercially available passive THz camera by means of various combined methods. Our research is focused on dangerous objects detection - guns, knives and bombs hidden under some popular types of clothing.

  3. Joint force protection advanced security system (JFPASS) "the future of force protection: integrate and automate"

    NASA Astrophysics Data System (ADS)

    Lama, Carlos E.; Fagan, Joe E.

    2009-09-01

    The United States Department of Defense (DoD) defines 'force protection' as "preventive measures taken to mitigate hostile actions against DoD personnel (to include family members), resources, facilities, and critical information." Advanced technologies enable significant improvements in automating and distributing situation awareness, optimizing operator time, and improving sustainability, which enhance protection and lower costs. The JFPASS Joint Capability Technology Demonstration (JCTD) demonstrates a force protection environment that combines physical security and Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) defense through the application of integrated command and control and data fusion. The JFPASS JCTD provides a layered approach to force protection by integrating traditional sensors used in physical security, such as video cameras, battlefield surveillance radars, unmanned and unattended ground sensors. The optimization of human participation and automation of processes is achieved by employment of unmanned ground vehicles, along with remotely operated lethal and less-than-lethal weapon systems. These capabilities are integrated via a tailorable, user-defined common operational picture display through a data fusion engine operating in the background. The combined systems automate the screening of alarms, manage the information displays, and provide assessment and response measures. The data fusion engine links disparate sensors and systems, and applies tailored logic to focus the assessment of events. It enables timely responses by providing the user with automated and semi-automated decision support tools. The JFPASS JCTD uses standard communication/data exchange protocols, which allow the system to incorporate future sensor technologies or communication networks, while maintaining the ability to communicate with legacy or existing systems.

  4. Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Koerber, Michael; Eberle, Bernd

    2017-03-01

    The continuous development of laser systems toward more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors, such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices. These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, micro-optoelectromechanical systems, such as a digital micromirror device (DMD), are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources, both pulsed lasers and continuous-wave (CW)-lasers are used. The laser-induced damage threshold is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructive device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects, such as persistent dead columns or rows of pixels in the sensor image.

  5. Miniaturized fundus camera

    NASA Astrophysics Data System (ADS)

    Gliss, Christine; Parel, Jean-Marie A.; Flynn, John T.; Pratisto, Hans S.; Niederer, Peter F.

    2003-07-01

    We present a miniaturized version of a fundus camera. The camera is designed for the use in screening for retinopathy of prematurity (ROP). There, but also in other applications a small, light weight, digital camera system can be extremely useful. We present a small wide angle digital camera system. The handpiece is significantly smaller and lighter then in all other systems. The electronics is truly portable fitting in a standard boardcase. The camera is designed to be offered at a compatible price. Data from tests on young rabbits' eyes is presented. The development of the camera system is part of a telemedicine project screening for ROP. Telemedical applications are a perfect application for this camera system using both advantages: the portability as well as the digital image.

  6. Camera systems in human motion analysis for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  7. User interface using a 3D model for video surveillance

    NASA Astrophysics Data System (ADS)

    Hata, Toshihiko; Boh, Satoru; Tsukada, Akihiro; Ozaki, Minoru

    1998-02-01

    These days fewer people, who must carry out their tasks quickly and precisely, are required in industrial surveillance and monitoring applications such as plant control or building security. Utilizing multimedia technology is a good approach to meet this need, and we previously developed Media Controller, which is designed for the applications and provides realtime recording and retrieval of digital video data in a distributed environment. In this paper, we propose a user interface for such a distributed video surveillance system in which 3D models of buildings and facilities are connected to the surveillance video. A novel method of synchronizing camera field data with each frame of a video stream is considered. This method records and reads the camera field data similarity to the video data and transmits it synchronously with the video stream. This enables the user interface to have such useful functions as comprehending the camera field immediately and providing clues when visibility is poor, for not only live video but also playback video. We have also implemented and evaluated the display function which makes surveillance video and 3D model work together using Media Controller with Java and Virtual Reality Modeling Language employed for multi-purpose and intranet use of 3D model.

  8. New concept high-speed and high-resolution color scanner

    NASA Astrophysics Data System (ADS)

    Nakashima, Keisuke; Shinoda, Shin'ichi; Konishi, Yoshiharu; Sugiyama, Kenji; Hori, Tetsuya

    2003-05-01

    We have developed a new concept high-speed and high-resolution color scanner (Blinkscan) using digital camera technology. With our most advanced sub-pixel image processing technology, approximately 12 million pixel image data can be captured. High resolution imaging capability allows various uses such as OCR, color document read, and document camera. The scan time is only about 3 seconds for a letter size sheet. Blinkscan scans documents placed "face up" on its scan stage and without any special illumination lights. Using Blinkscan, a high-resolution color document can be easily inputted into a PC at high speed, a paperless system can be built easily. It is small, and since the occupancy area is also small, setting it on an individual desk is possible. Blinkscan offers the usability of a digital camera and accuracy of a flatbed scanner with high-speed processing. Now, about several hundred of Blinkscan are mainly shipping for the receptionist operation in a bank and a security. We will show the high-speed and high-resolution architecture of Blinkscan. Comparing operation-time with conventional image capture device, the advantage of Blinkscan will make clear. And image evaluation for variety of environment, such as geometric distortions or non-uniformity of brightness, will be made.

  9. A multipurpose camera system for monitoring Kīlauea Volcano, Hawai'i

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.; Lee, Lopaka; Moniz, Cyril J.

    2015-01-01

    We describe a low-cost, compact multipurpose camera system designed for field deployment at active volcanoes that can be used either as a webcam (transmitting images back to an observatory in real-time) or as a time-lapse camera system (storing images onto the camera system for periodic retrieval during field visits). The system also has the capability to acquire high-definition video. The camera system uses a Raspberry Pi single-board computer and a 5-megapixel low-light (near-infrared sensitive) camera, as well as a small Global Positioning System (GPS) module to ensure accurate time-stamping of images. Custom Python scripts control the webcam and GPS unit and handle data management. The inexpensive nature of the system allows it to be installed at hazardous sites where it might be lost. Another major advantage of this camera system is that it provides accurate internal timing (independent of network connection) and, because a full Linux operating system and the Python programming language are available on the camera system itself, it has the versatility to be configured for the specific needs of the user. We describe example deployments of the camera at Kīlauea Volcano, Hawai‘i, to monitor ongoing summit lava lake activity. 

  10. Integrated homeland security system with passive thermal imaging and advanced video analytics

    NASA Astrophysics Data System (ADS)

    Francisco, Glen; Tillman, Jennifer; Hanna, Keith; Heubusch, Jeff; Ayers, Robert

    2007-04-01

    A complete detection, management, and control security system is absolutely essential to preempting criminal and terrorist assaults on key assets and critical infrastructure. According to Tom Ridge, former Secretary of the US Department of Homeland Security, "Voluntary efforts alone are not sufficient to provide the level of assurance Americans deserve and they must take steps to improve security." Further, it is expected that Congress will mandate private sector investment of over $20 billion in infrastructure protection between 2007 and 2015, which is incremental to funds currently being allocated to key sites by the department of Homeland Security. Nearly 500,000 individual sites have been identified by the US Department of Homeland Security as critical infrastructure sites that would suffer severe and extensive damage if a security breach should occur. In fact, one major breach in any of 7,000 critical infrastructure facilities threatens more than 10,000 people. And one major breach in any of 123 facilities-identified as "most critical" among the 500,000-threatens more than 1,000,000 people. Current visible, nightvision or near infrared imaging technology alone has limited foul-weather viewing capability, poor nighttime performance, and limited nighttime range. And many systems today yield excessive false alarms, are managed by fatigued operators, are unable to manage the voluminous data captured, or lack the ability to pinpoint where an intrusion occurred. In our 2006 paper, "Critical Infrastructure Security Confidence Through Automated Thermal Imaging", we showed how a highly effective security solution can be developed by integrating what are now available "next-generation technologies" which include: Thermal imaging for the highly effective detection of intruders in the dark of night and in challenging weather conditions at the sensor imaging level - we refer to this as the passive thermal sensor level detection building block Automated software detection for creating initial alerts - we refer to this as software level detection, the next level building block Immersive 3D visual assessment for situational awareness and to manage the reaction process - we refer to this as automated intelligent situational awareness, a third building block Wide area command and control capabilities to allow control from a remote location - we refer to this as the management and process control building block integrating together the lower level building elements. In addition, this paper describes three live installations of complete, total systems that incorporate visible and thermal cameras as well as advanced video analytics. Discussion of both system elements and design is extensive.

  11. Feral Cattle in the White Rock Canyon Reserve at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles D.; Hansen, Leslie A.

    2014-03-27

    At the request of the Los Alamos Field Office (the Field Office), Los Alamos National Security (LANS) biologists placed remote-triggered wildlife cameras in and around the mouth of Ancho Canyon in the White Rock Canyon Reserve (the Reserve) to monitor use by feral cattle. The cameras were placed in October 2012 and retrieved in January 2013. Two cameras were placed upstream in Ancho Canyon away from the Rio Grande along the perennial flows from Ancho Springs, two cameras were placed at the north side of the mouth to Ancho Canyon along the Rio Grande, and two cameras were placed atmore » the south side of the mouth to Ancho Canyon along the Rio Grande. The cameras recorded three different individual feral cows using this area as well as a variety of local native wildlife. This report details our results and issues associated with feral cattle in the Reserve. Feral cattle pose significant risks to human safety, impact cultural and biological resources, and affect the environmental integrity of the Reserve. Regional stakeholders have communicated to the Field Office that they support feral cattle removal.« less

  12. Exploring Operational Safeguards, Safety, and Security by Design to Address Real Time Threats in Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schanfein, Mark J.; Mladineo, Stephen V.

    2015-07-07

    Over the last few years, significant attention has been paid to both encourage application and provide domestic and international guidance for designing in safeguards and security in new facilities.1,2,3 However, once a facility is operational, safeguards, security, and safety often operate as separate entities that support facility operations. This separation is potentially a serious weakness should insider or outsider threats become a reality.Situations may arise where safeguards detects a possible loss of material in a facility. Will they notify security so they can, for example, check perimeter doors for tampering? Not doing so might give the advantage to an insidermore » who has already, or is about to, move nuclear material outside the facility building. If outsiders break into a facility, the availability of any information to coordinate the facility’s response through segregated alarm stations or a failure to include all available radiation sensors, such as safety’s criticality monitors can give the advantage to the adversary who might know to disable camera systems, but would most likely be unaware of other highly relevant sensors in a nuclear facility.This paper will briefly explore operational safeguards, safety, and security by design (3S) at a high level for domestic and State facilities, identify possible weaknesses, and propose future administrative and technical methods, to strengthen the facility system’s response to threats.« less

  13. New long-zoom lens for 4K super 35mm digital cameras

    NASA Astrophysics Data System (ADS)

    Thorpe, Laurence J.; Usui, Fumiaki; Kamata, Ryuhei

    2015-05-01

    The world of television production is beginning to adopt 4K Super 35 mm (S35) image capture for a widening range of program genres that seek both the unique imaging properties of that large image format and the protection of their program assets in a world anticipating future 4K services. Documentary and natural history production in particular are transitioning to this form of production. The nature of their shooting demands long zoom lenses. In their traditional world of 2/3-inch digital HDTV cameras they have a broad choice in portable lenses - with zoom ranges as high as 40:1. In the world of Super 35mm the longest zoom lens is limited to 12:1 offering a telephoto of 400mm. Canon was requested to consider a significantly longer focal range lens while severely curtailing its size and weight. Extensive computer simulation explored countless combinations of optical and optomechanical systems in a quest to ensure that all operational requests and full 4K performance could be met. The final lens design is anticipated to have applications beyond entertainment production, including a variety of security systems.

  14. System for real-time generation of georeferenced terrain models

    NASA Astrophysics Data System (ADS)

    Schultz, Howard J.; Hanson, Allen R.; Riseman, Edward M.; Stolle, Frank; Zhu, Zhigang; Hayward, Christopher D.; Slaymaker, Dana

    2001-02-01

    A growing number of law enforcement applications, especially in the areas of border security, drug enforcement and anti- terrorism require high-resolution wide area surveillance from unmanned air vehicles. At the University of Massachusetts we are developing an aerial reconnaissance system capable of generating high resolution, geographically registered terrain models (in the form of a seamless mosaic) in real-time from a single down-looking digital video camera. The efficiency of the processing algorithms, as well as the simplicity of the hardware, will provide the user with the ability to produce and roam through stereoscopic geo-referenced mosaic images in real-time, and to automatically generate highly accurate 3D terrain models offline in a fraction of the time currently required by softcopy conventional photogrammetry systems. The system is organized around a set of integrated sensor and software components. The instrumentation package is comprised of several inexpensive commercial-off-the-shelf components, including a digital video camera, a differential GPS, and a 3-axis heading and reference system. At the heart of the system is a set of software tools for image registration, mosaic generation, geo-location and aircraft state vector recovery. Each process is designed to efficiently handle the data collected by the instrument package. Particular attention is given to minimizing geospatial errors at each stage, as well as modeling propagation of errors through the system. Preliminary results for an urban and forested scene are discussed in detail.

  15. Restoration of hot pixels in digital imagers using lossless approximation techniques

    NASA Astrophysics Data System (ADS)

    Hadar, O.; Shleifer, A.; Cohen, E.; Dotan, Y.

    2015-09-01

    During the last twenty years, digital imagers have spread into industrial and everyday devices, such as satellites, security cameras, cell phones, laptops and more. "Hot pixels" are the main defects in remote digital cameras. In this paper we prove an improvement of existing restoration methods that use (solely or as an auxiliary tool) some average of the surrounding single pixel, such as the method of the Chapman-Koren study 1,2. The proposed method uses the CALIC algorithm and adapts it to a full use of the surrounding pixels.

  16. LAMOST CCD camera-control system based on RTS2

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Wang, Zheng; Li, Jian; Cao, Zi-Huang; Dai, Wei; Wei, Shou-Lin; Zhao, Yong-Heng

    2018-05-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device (CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2nd Version (RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-framework-based control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.

  17. KSC-98pc780

    NASA Image and Video Library

    1998-06-25

    KENNEDY SPACE CENTER, FLA. -- Sgt. Mark Hines, of Kennedy Space Center (KSC) Security, points out a view of a fire on the Forward Looking Infrared Radar (FLIR) video screen to Greg Dunn, of Florida's Division of Forestry, as KSC pilots fly NASA's Huey UH-1 helicopter over fires burning in Volusia County, Florida. The FLIR includes a beach-ball sized infrared camera that is mounted on the helicopter's right siderail and a real-time TV monitor and recorder installed inside. The helicopter has also been outfitted with a portable global positioning satellite (GPS) system to support the Division of Forestry as they fight the brush fires which have been plaguing the state as a result of extremely dry conditions and lightning storms. While the FLIR collects temperature data and images, the GPS system provides the exact coordinates of the fires being observed and transmits the data to the firefighters on the ground. KSC's security team routinely uses the FLIR equipment prior to Shuttle launch and landing activities to ensure that the area surrounding the launch pad and runway are clear of unauthorized personnel. KSC's Base Operations Contractor, EG&G Florida, operates the NASA-owned helicopter.

  18. Multi-resolution analysis for ear recognition using wavelet features

    NASA Astrophysics Data System (ADS)

    Shoaib, M.; Basit, A.; Faye, I.

    2016-11-01

    Security is very important and in order to avoid any physical contact, identification of human when they are moving is necessary. Ear biometric is one of the methods by which a person can be identified using surveillance cameras. Various techniques have been proposed to increase the ear based recognition systems. In this work, a feature extraction method for human ear recognition based on wavelet transforms is proposed. The proposed features are approximation coefficients and specific details of level two after applying various types of wavelet transforms. Different wavelet transforms are applied to find the suitable wavelet. Minimum Euclidean distance is used as a matching criterion. Results achieved by the proposed method are promising and can be used in real time ear recognition system.

  19. Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a DAST crystal.

    PubMed

    Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Takida, Yuma; Matsukawa, Takeshi; Minamide, Hiroaki

    2015-03-23

    Real-time terahertz (THz) wave imaging has wide applications in areas such as security, industry, biology, medicine, pharmacy, and the arts. This report describes real-time room-temperature THz imaging by nonlinear optical frequency up-conversion in an organic 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate (DAST) crystal, with high resolution reaching the diffraction limit. THz-wave images were converted to the near infrared region and then captured using an InGaAs camera in a tandem imaging system. The resolution of the imaging system was analyzed. Diffraction and interference of THz wave were observed in the experiments. Videos are supplied to show the interference pattern variation that occurs with sample moving and tilting.

  20. Motion Estimation Utilizing Range Detection-Enhanced Visual Odometry

    NASA Technical Reports Server (NTRS)

    Morris, Daniel Dale (Inventor); Chang, Hong (Inventor); Friend, Paul Russell (Inventor); Chen, Qi (Inventor); Graf, Jodi Seaborn (Inventor)

    2016-01-01

    A motion determination system is disclosed. The system may receive a first and a second camera image from a camera, the first camera image received earlier than the second camera image. The system may identify corresponding features in the first and second camera images. The system may receive range data comprising at least one of a first and a second range data from a range detection unit, corresponding to the first and second camera images, respectively. The system may determine first positions and the second positions of the corresponding features using the first camera image and the second camera image. The first positions or the second positions may be determined by also using the range data. The system may determine a change in position of the machine based on differences between the first and second positions, and a VO-based velocity of the machine based on the determined change in position.

  1. Differences in glance behavior between drivers using a rearview camera, parking sensor system, both technologies, or no technology during low-speed parking maneuvers.

    PubMed

    Kidd, David G; McCartt, Anne T

    2016-02-01

    This study characterized the use of various fields of view during low-speed parking maneuvers by drivers with a rearview camera, a sensor system, a camera and sensor system combined, or neither technology. Participants performed four different low-speed parking maneuvers five times. Glances to different fields of view the second time through the four maneuvers were coded along with the glance locations at the onset of the audible warning from the sensor system and immediately after the warning for participants in the sensor and camera-plus-sensor conditions. Overall, the results suggest that information from cameras and/or sensor systems is used in place of mirrors and shoulder glances. Participants with a camera, sensor system, or both technologies looked over their shoulders significantly less than participants without technology. Participants with cameras (camera and camera-plus-sensor conditions) used their mirrors significantly less compared with participants without cameras (no-technology and sensor conditions). Participants in the camera-plus-sensor condition looked at the center console/camera display for a smaller percentage of the time during the low-speed maneuvers than participants in the camera condition and glanced more frequently to the center console/camera display immediately after the warning from the sensor system compared with the frequency of glances to this location at warning onset. Although this increase was not statistically significant, the pattern suggests that participants in the camera-plus-sensor condition may have used the warning as a cue to look at the camera display. The observed differences in glance behavior between study groups were illustrated by relating it to the visibility of a 12-15-month-old child-size object. These findings provide evidence that drivers adapt their glance behavior during low-speed parking maneuvers following extended use of rearview cameras and parking sensors, and suggest that other technologies which augment the driving task may do the same. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    NASA Astrophysics Data System (ADS)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  3. 75 FR 63526 - In the Matter of: Camera Platforms International, Inc., Castleguard Energy, Inc., CD Warehouse...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... Robotics International, Inc., Cell Wireless Corp., Cellcom Corporation (n/k/a Cellcom I Corp.), and Central... securities of Cell Robotics International, Inc. because it has not filed any periodic reports since the...

  4. Feasibility study of using the RoboEarth cloud engine for rapid mapping and tracking with small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Armenakis, C.

    2014-11-01

    This paper presents the ongoing development of a small unmanned aerial mapping system (sUAMS) that in the future will track its trajectory and perform 3D mapping in near-real time. As both mapping and tracking algorithms require powerful computational capabilities and large data storage facilities, we propose to use the RoboEarth Cloud Engine (RCE) to offload heavy computation and store data to secure computing environments in the cloud. While the RCE's capabilities have been demonstrated with terrestrial robots in indoor environments, this paper explores the feasibility of using the RCE in mapping and tracking applications in outdoor environments by small UAMS. The experiments presented in this work assess the data processing strategies and evaluate the attainable tracking and mapping accuracies using the data obtained by the sUAMS. Testing was performed with an Aeryon Scout quadcopter. It flew over York University, up to approximately 40 metres above the ground. The quadcopter was equipped with a single-frequency GPS receiver providing positioning to about 3 meter accuracies, an AHRS (Attitude and Heading Reference System) estimating the attitude to about 3 degrees, and an FPV (First Person Viewing) camera. Video images captured from the onboard camera were processed using VisualSFM and SURE, which are being reformed as an Application-as-a-Service via the RCE. The 3D virtual building model of York University was used as a known environment to georeference the point cloud generated from the sUAMS' sensor data. The estimated position and orientation parameters of the video camera show increases in accuracy when compared to the sUAMS' autopilot solution, derived from the onboard GPS and AHRS. The paper presents the proposed approach and the results, along with their accuracies.

  5. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-01

    Carrying a crew of seven, the Space Shuttle Orbiter Columbia soared through some pre-dawn clouds into the sky as it began its 27th flight, STS-109. Launched March 1, 2002, the goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST). The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. During the STS-109 mission, the telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm. Here four members of the crew performed five spacewalks completing system upgrades to the HST. Included in those upgrades were: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  6. Lightweight helmet-mounted eye movement measurement system

    NASA Technical Reports Server (NTRS)

    Barnes, J. A.

    1978-01-01

    The helmet-mounted eye movement measuring system, weighs 1,530 grams; the weight of the present aviators' helmet in standard form with the visor is 1,545 grams. The optical head is standard NAC Eye-Mark. This optical head was mounted on a magnesium yoke which in turn was attached to a slide cam mounted on the flight helmet. The slide cam allows one to adjust the eye-to-optics system distance quite easily and to secure it so that the system will remain in calibration. The design of the yoke and slide cam is such that the subject can, in an emergency, move the optical head forward and upward to the stowed and locked position atop the helmet. This feature was necessary for flight safety. The television camera that is used in the system is a solid state General Electric TN-2000 with a charged induced device imager used as the vidicon.

  7. In-Situ Cameras for Radiometric Correction of Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Kautz, Jess S.

    The atmosphere distorts the spectrum of remotely sensed data, negatively affecting all forms of investigating Earth's surface. To gather reliable data, it is vital that atmospheric corrections are accurate. The current state of the field of atmospheric correction does not account well for the benefits and costs of different correction algorithms. Ground spectral data are required to evaluate these algorithms better. This dissertation explores using cameras as radiometers as a means of gathering ground spectral data. I introduce techniques to implement a camera systems for atmospheric correction using off the shelf parts. To aid the design of future camera systems for radiometric correction, methods for estimating the system error prior to construction, calibration and testing of the resulting camera system are explored. Simulations are used to investigate the relationship between the reflectance accuracy of the camera system and the quality of atmospheric correction. In the design phase, read noise and filter choice are found to be the strongest sources of system error. I explain the calibration methods for the camera system, showing the problems of pixel to angle calibration, and adapting the web camera for scientific work. The camera system is tested in the field to estimate its ability to recover directional reflectance from BRF data. I estimate the error in the system due to the experimental set up, then explore how the system error changes with different cameras, environmental set-ups and inversions. With these experiments, I learn about the importance of the dynamic range of the camera, and the input ranges used for the PROSAIL inversion. Evidence that the camera can perform within the specification set for ELM correction in this dissertation is evaluated. The analysis is concluded by simulating an ELM correction of a scene using various numbers of calibration targets, and levels of system error, to find the number of cameras needed for a full-scale implementation.

  8. Harpicon camera for HDTV

    NASA Astrophysics Data System (ADS)

    Tanada, Jun

    1992-08-01

    Ikegami has been involved in broadcast equipment ever since it was established as a company. In conjunction with NHK it has brought forth countless television cameras, from black-and-white cameras to color cameras, HDTV cameras, and special-purpose cameras. In the early days of HDTV (high-definition television, also known as "High Vision") cameras the specifications were different from those for the cameras of the present-day system, and cameras using all kinds of components, having different arrangements of components, and having different appearances were developed into products, with time spent on experimentation, design, fabrication, adjustment, and inspection. But recently the knowhow built up thus far in components, , printed circuit boards, and wiring methods has been incorporated in camera fabrication, making it possible to make HDTV cameras by metbods similar to the present system. In addition, more-efficient production, lower costs, and better after-sales service are being achieved by using the same circuits, components, mechanism parts, and software for both HDTV cameras and cameras that operate by the present system.

  9. An attentive multi-camera system

    NASA Astrophysics Data System (ADS)

    Napoletano, Paolo; Tisato, Francesco

    2014-03-01

    Intelligent multi-camera systems that integrate computer vision algorithms are not error free, and thus both false positive and negative detections need to be revised by a specialized human operator. Traditional multi-camera systems usually include a control center with a wall of monitors displaying videos from each camera of the network. Nevertheless, as the number of cameras increases, switching from a camera to another becomes hard for a human operator. In this work we propose a new method that dynamically selects and displays the content of a video camera from all the available contents in the multi-camera system. The proposed method is based on a computational model of human visual attention that integrates top-down and bottom-up cues. We believe that this is the first work that tries to use a model of human visual attention for the dynamic selection of the camera view of a multi-camera system. The proposed method has been experimented in a given scenario and has demonstrated its effectiveness with respect to the other methods and manually generated ground-truth. The effectiveness has been evaluated in terms of number of correct best-views generated by the method with respect to the camera views manually generated by a human operator.

  10. Smart sensing surveillance system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    An effective public safety sensor system for heavily-populated applications requires sophisticated and geographically-distributed infrastructures, centralized supervision, and deployment of large-scale security and surveillance networks. Artificial intelligence in sensor systems is a critical design to raise awareness levels, improve the performance of the system and adapt to a changing scenario and environment. In this paper, a highly-distributed, fault-tolerant, and energy-efficient Smart Sensing Surveillance System (S4) is presented to efficiently provide a 24/7 and all weather security operation in crowded environments or restricted areas. Technically, the S4 consists of a number of distributed sensor nodes integrated with specific passive sensors to rapidly collect, process, and disseminate heterogeneous sensor data from near omni-directions. These distributed sensor nodes can cooperatively work to send immediate security information when new objects appear. When the new objects are detected, the S4 will smartly select the available node with a Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR camera to track the objects and capture associated imagery. The S4 provides applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. Other imaging processes can be updated to meet specific requirements and operations. In the S4, all the sensor nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology. This UWB RF technology can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The Service Oriented Architecture of S4 enables remote applications to interact with the S4 network and use the specific presentation methods. In addition, the S4 is compliant with Open Geospatial Consortium - Sensor Web Enablement (OGC-SWE) standards to efficiently discover, access, use, and control heterogeneous sensors and their metadata. These S4 capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded environments. The S4 system is directly applicable to solutions for emergency response personnel, law enforcement, and other homeland security missions, as well as in applications requiring the interoperation of sensor networks with handheld or body-worn interface devices.

  11. Bringing SARA to School.

    ERIC Educational Resources Information Center

    Gavin, Thomas A.

    2000-01-01

    Well-designed problem-solving plans have something metal detectors and security cameras lack: proof of success. SARA, an acronym for Scanning, Analysis, Response, and Assessment, was shown to increase school safety in districts in Charlotte, North Carolina, and St. Petersburg, Florida. Program workings are explained. (MLH)

  12. Prism-based single-camera system for stereo display

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Cui, Xiaoyu; Wang, Zhiguo; Chen, Hongsheng; Fan, Heyu; Wu, Teresa

    2016-06-01

    This paper combines the prism and single camera and puts forward a method of stereo imaging with low cost. First of all, according to the principle of geometrical optics, we can deduce the relationship between the prism single-camera system and dual-camera system, and according to the principle of binocular vision we can deduce the relationship between binoculars and dual camera. Thus we can establish the relationship between the prism single-camera system and binoculars and get the positional relation of prism, camera, and object with the best effect of stereo display. Finally, using the active shutter stereo glasses of NVIDIA Company, we can realize the three-dimensional (3-D) display of the object. The experimental results show that the proposed approach can make use of the prism single-camera system to simulate the various observation manners of eyes. The stereo imaging system, which is designed by the method proposed by this paper, can restore the 3-D shape of the object being photographed factually.

  13. Observation of temperature trace, induced by changing of temperature inside the human body, on the human body skin using commercially available IR camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2015-05-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. In previous papers, we demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. For proof of validity of our statement we make the similar physical experiment using the IR camera. We show a possibility of temperature trace on human body skin, caused by changing of temperature inside the human body due to water drinking. We use as a computer code that is available for treatment of images captured by commercially available IR camera, manufactured by Flir Corp., as well as our developed computer code for computer processing of these images. Using both codes we demonstrate clearly changing of human body skin temperature induced by water drinking. Shown phenomena are very important for the detection of forbidden samples and substances concealed inside the human body using non-destructive control without X-rays using. Early we have demonstrated such possibility using THz radiation. Carried out experiments can be used for counter-terrorism problem solving. We developed original filters for computer processing of images captured by IR cameras. Their applications for computer processing of images results in a temperature resolution enhancing of cameras.

  14. Modernization of B-2 Data, Video, and Control Systems Infrastructure

    NASA Technical Reports Server (NTRS)

    Cmar, Mark D.; Maloney, Christian T.; Butala, Vishal D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal-vacuum facility with propellant systems capability. B-2 has completed a modernization effort of its facility legacy data, video and control systems infrastructure to accommodate modern integrated testing and Information Technology (IT) Security requirements. Integrated systems tests have been conducted to demonstrate the new data, video and control systems functionality and capability. Discrete analog signal conditioners have been replaced by new programmable, signal processing hardware that is integrated with the data system. This integration supports automated calibration and verification of the analog subsystem. Modern measurement systems analysis (MSA) tools are being developed to help verify system health and measurement integrity. Legacy hard wired digital data systems have been replaced by distributed Fibre Channel (FC) network connected digitizers where high speed sampling rates have increased to 256,000 samples per second. Several analog video cameras have been replaced by digital image and storage systems. Hard-wired analog control systems have been replaced by Programmable Logic Controllers (PLC), fiber optic networks (FON) infrastructure and human machine interface (HMI) operator screens. New modern IT Security procedures and schemes have been employed to control data access and process control flows. Due to the nature of testing possible at B-2, flexibility and configurability of systems has been central to the architecture during modernization.

  15. Modernization of B-2 Data, Video, and Control Systems Infrastructure

    NASA Technical Reports Server (NTRS)

    Cmar, Mark D.; Maloney, Christian T.; Butala, Vishal D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal-vacuum facility with propellant systems capability. B-2 has completed a modernization effort of its facility legacy data, video and control systems infrastructure to accommodate modern integrated testing and Information Technology (IT) Security requirements. Integrated systems tests have been conducted to demonstrate the new data, video and control systems functionality and capability. Discrete analog signal conditioners have been replaced by new programmable, signal processing hardware that is integrated with the data system. This integration supports automated calibration and verification of the analog subsystem. Modern measurement systems analysis (MSA) tools are being developed to help verify system health and measurement integrity. Legacy hard wired digital data systems have been replaced by distributed Fibre Channel (FC) network connected digitizers where high speed sampling rates have increased to 256,000 samples per second. Several analog video cameras have been replaced by digital image and storage systems. Hard-wired analog control systems have been replaced by Programmable Logic Controllers (PLC), fiber optic networks (FON) infrastructure and human machine interface (HMI) operator screens. New modern IT Security procedures and schemes have been employed to control data access and process control flows. Due to the nature of testing possible at B-2, flexibility and configurability of systems has been central to the architecture during modernization.

  16. Feasibility evaluation and study of adapting the attitude reference system to the Orbiter camera payload system's large format camera

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A design concept that will implement a mapping capability for the Orbital Camera Payload System (OCPS) when ground control points are not available is discussed. Through the use of stellar imagery collected by a pair of cameras whose optical axis are structurally related to the large format camera optical axis, such pointing information is made available.

  17. Traffic Sign Recognition with Invariance to Lighting in Dual-Focal Active Camera System

    NASA Astrophysics Data System (ADS)

    Gu, Yanlei; Panahpour Tehrani, Mehrdad; Yendo, Tomohiro; Fujii, Toshiaki; Tanimoto, Masayuki

    In this paper, we present an automatic vision-based traffic sign recognition system, which can detect and classify traffic signs at long distance under different lighting conditions. To realize this purpose, the traffic sign recognition is developed in an originally proposed dual-focal active camera system. In this system, a telephoto camera is equipped as an assistant of a wide angle camera. The telephoto camera can capture a high accuracy image for an object of interest in the view field of the wide angle camera. The image from the telephoto camera provides enough information for recognition when the accuracy of traffic sign is low from the wide angle camera. In the proposed system, the traffic sign detection and classification are processed separately for different images from the wide angle camera and telephoto camera. Besides, in order to detect traffic sign from complex background in different lighting conditions, we propose a type of color transformation which is invariant to light changing. This color transformation is conducted to highlight the pattern of traffic signs by reducing the complexity of background. Based on the color transformation, a multi-resolution detector with cascade mode is trained and used to locate traffic signs at low resolution in the image from the wide angle camera. After detection, the system actively captures a high accuracy image of each detected traffic sign by controlling the direction and exposure time of the telephoto camera based on the information from the wide angle camera. Moreover, in classification, a hierarchical classifier is constructed and used to recognize the detected traffic signs in the high accuracy image from the telephoto camera. Finally, based on the proposed system, a set of experiments in the domain of traffic sign recognition is presented. The experimental results demonstrate that the proposed system can effectively recognize traffic signs at low resolution in different lighting conditions.

  18. Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for scientific and engineering purposes

    NASA Astrophysics Data System (ADS)

    Pagnutti, Mary; Ryan, Robert E.; Cazenavette, George; Gold, Maxwell; Harlan, Ryan; Leggett, Edward; Pagnutti, James

    2017-01-01

    A comprehensive radiometric characterization of raw-data format imagery acquired with the Raspberry Pi 3 and V2.1 camera module is presented. The Raspberry Pi is a high-performance single-board computer designed to educate and solve real-world problems. This small computer supports a camera module that uses a Sony IMX219 8 megapixel CMOS sensor. This paper shows that scientific and engineering-grade imagery can be produced with the Raspberry Pi 3 and its V2.1 camera module. Raw imagery is shown to be linear with exposure and gain (ISO), which is essential for scientific and engineering applications. Dark frame, noise, and exposure stability assessments along with flat fielding results, spectral response measurements, and absolute radiometric calibration results are described. This low-cost imaging sensor, when calibrated to produce scientific quality data, can be used in computer vision, biophotonics, remote sensing, astronomy, high dynamic range imaging, and security applications, to name a few.

  19. Hand veins feature extraction using DT-CNNS

    NASA Astrophysics Data System (ADS)

    Malki, Suleyman; Spaanenburg, Lambert

    2007-05-01

    As the identification process is based on the unique patterns of the users, biometrics technologies are expected to provide highly secure authentication systems. The existing systems using fingerprints or retina patterns are, however, very vulnerable. One's fingerprints are accessible as soon as the person touches a surface, while a high resolution camera easily captures the retina pattern. Thus, both patterns can easily be "stolen" and forged. Beside, technical considerations decrease the usability for these methods. Due to the direct contact with the finger, the sensor gets dirty, which decreases the authentication success ratio. Aligning the eye with a camera to capture the retina pattern gives uncomfortable feeling. On the other hand, vein patterns of either a palm of the hand or a single finger offer stable, unique and repeatable biometrics features. A fingerprint-based identification system using Cellular Neural Networks has already been proposed by Gao. His system covers all stages of a typical fingerprint verification procedure from Image Preprocessing to Feature Matching. This paper performs a critical review of the individual algorithmic steps. Notably, the operation of False Feature Elimination is applied only once instead of 3 times. Furthermore, the number of iterations is limited to 1 for all used templates. Hence, the computational need of the feedback contribution is removed. Consequently the computational effort is drastically reduced without a notable chance in quality. This allows a full integration of the detection mechanism. The system is prototyped on a Xilinx Virtex II Pro P30 FPGA.

  20. Laser-induced damage threshold of camera sensors and micro-opto-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Körber, Michael; Eberle, Bernd

    2016-10-01

    The continuous development of laser systems towards more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices (CCD). These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, also micro-opto-electro-mechanical systems (MOEMS) like a digital micromirror device (DMD) are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources both pulsed lasers and continuous-wave (CW) lasers are used. The laser-induced damage threshold (LIDT) is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructed device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects like persisting dead columns or rows of pixels in the sensor image.

  1. Keeping Campuses Safe.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    1999-01-01

    Describes how colleges and universities are using technology, as well as traditional methods, to keep campuses safe and reduce crime. Topics include using free pizza in a successful contest to teach students about campus safety, installing security cameras, using access-control cards, providing adequate lighting, and creating a bicycle patrol…

  2. Tyurin works on a CPA in the hatch between the MPLM and Node 1

    NASA Image and Video Library

    2001-08-01

    ISS003-E-5136 (August 2001) --- Mikhail Tyurin of Rosaviakosmos, Expedition Three flight engineer, secures a connection on a Controller Power Assembly (CPA) in a hatchway on Unity Node 1. This image was taken with a digital still camera.

  3. Structure-From for Calibration of a Vehicle Camera System with Non-Overlapping Fields-Of in AN Urban Environment

    NASA Astrophysics Data System (ADS)

    Hanel, A.; Stilla, U.

    2017-05-01

    Vehicle environment cameras observing traffic participants in the area around a car and interior cameras observing the car driver are important data sources for driver intention recognition algorithms. To combine information from both camera groups, a camera system calibration can be performed. Typically, there is no overlapping field-of-view between environment and interior cameras. Often no marked reference points are available in environments, which are a large enough to cover a car for the system calibration. In this contribution, a calibration method for a vehicle camera system with non-overlapping camera groups in an urban environment is described. A-priori images of an urban calibration environment taken with an external camera are processed with the structure-frommotion method to obtain an environment point cloud. Images of the vehicle interior, taken also with an external camera, are processed to obtain an interior point cloud. Both point clouds are tied to each other with images of both image sets showing the same real-world objects. The point clouds are transformed into a self-defined vehicle coordinate system describing the vehicle movement. On demand, videos can be recorded with the vehicle cameras in a calibration drive. Poses of vehicle environment cameras and interior cameras are estimated separately using ground control points from the respective point cloud. All poses of a vehicle camera estimated for different video frames are optimized in a bundle adjustment. In an experiment, a point cloud is created from images of an underground car park, as well as a point cloud of the interior of a Volkswagen test car is created. Videos of two environment and one interior cameras are recorded. Results show, that the vehicle camera poses are estimated successfully especially when the car is not moving. Position standard deviations in the centimeter range can be achieved for all vehicle cameras. Relative distances between the vehicle cameras deviate between one and ten centimeters from tachymeter reference measurements.

  4. Relative and Absolute Calibration of a Multihead Camera System with Oblique and Nadir Looking Cameras for a Uas

    NASA Astrophysics Data System (ADS)

    Niemeyer, F.; Schima, R.; Grenzdörffer, G.

    2013-08-01

    Numerous unmanned aerial systems (UAS) are currently flooding the market. For the most diverse applications UAVs are special designed and used. Micro and mini UAS (maximum take-off weight up to 5 kg) are of particular interest, because legal restrictions are still manageable but also the payload capacities are sufficient for many imaging sensors. Currently a camera system with four oblique and one nadir looking cameras is under development at the Chair for Geodesy and Geoinformatics. The so-called "Four Vision" camera system was successfully built and tested in the air. A MD4-1000 UAS from microdrones is used as a carrier system. Light weight industrial cameras are used and controlled by a central computer. For further photogrammetric image processing, each individual camera, as well as all the cameras together have to be calibrated. This paper focuses on the determination of the relative orientation between the cameras with the „Australis" software and will give an overview of the results and experiences of test flights.

  5. Compact Autonomous Hemispheric Vision System

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Cunningham, Thomas J.; Werne, Thomas A.; Eastwood, Michael L.; Walch, Marc J.; Staehle, Robert L.

    2012-01-01

    Solar System Exploration camera implementations to date have involved either single cameras with wide field-of-view (FOV) and consequently coarser spatial resolution, cameras on a movable mast, or single cameras necessitating rotation of the host vehicle to afford visibility outside a relatively narrow FOV. These cameras require detailed commanding from the ground or separate onboard computers to operate properly, and are incapable of making decisions based on image content that control pointing and downlink strategy. For color, a filter wheel having selectable positions was often added, which added moving parts, size, mass, power, and reduced reliability. A system was developed based on a general-purpose miniature visible-light camera using advanced CMOS (complementary metal oxide semiconductor) imager technology. The baseline camera has a 92 FOV and six cameras are arranged in an angled-up carousel fashion, with FOV overlaps such that the system has a 360 FOV (azimuth). A seventh camera, also with a FOV of 92 , is installed normal to the plane of the other 6 cameras giving the system a > 90 FOV in elevation and completing the hemispheric vision system. A central unit houses the common electronics box (CEB) controlling the system (power conversion, data processing, memory, and control software). Stereo is achieved by adding a second system on a baseline, and color is achieved by stacking two more systems (for a total of three, each system equipped with its own filter.) Two connectors on the bottom of the CEB provide a connection to a carrier (rover, spacecraft, balloon, etc.) for telemetry, commands, and power. This system has no moving parts. The system's onboard software (SW) supports autonomous operations such as pattern recognition and tracking.

  6. The research of adaptive-exposure on spot-detecting camera in ATP system

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Jia, Jian-jun; Zhang, Liang; Wang, Jian-Yu

    2013-08-01

    High precision acquisition, tracking, pointing (ATP) system is one of the key techniques of laser communication. The spot-detecting camera is used to detect the direction of beacon in laser communication link, so that it can get the position information of communication terminal for ATP system. The positioning accuracy of camera decides the capability of laser communication system directly. So the spot-detecting camera in satellite-to-earth laser communication ATP systems needs high precision on target detection. The positioning accuracy of cameras should be better than +/-1μ rad . The spot-detecting cameras usually adopt centroid algorithm to get the position information of light spot on detectors. When the intensity of beacon is moderate, calculation results of centroid algorithm will be precise. But the intensity of beacon changes greatly during communication for distance, atmospheric scintillation, weather etc. The output signal of detector will be insufficient when the camera underexposes to beacon because of low light intensity. On the other hand, the output signal of detector will be saturated when the camera overexposes to beacon because of high light intensity. The calculation accuracy of centroid algorithm becomes worse if the spot-detecting camera underexposes or overexposes, and then the positioning accuracy of camera will be reduced obviously. In order to improve the accuracy, space-based cameras should regulate exposure time in real time according to light intensity. The algorithm of adaptive-exposure technique for spot-detecting camera based on metal-oxide-semiconductor (CMOS) detector is analyzed. According to analytic results, a CMOS camera in space-based laser communication system is described, which utilizes the algorithm of adaptive-exposure to adapting exposure time. Test results from imaging experiment system formed verify the design. Experimental results prove that this design can restrain the reduction of positioning accuracy for the change of light intensity. So the camera can keep stable and high positioning accuracy during communication.

  7. Electrostatic camera system functional design study

    NASA Technical Reports Server (NTRS)

    Botticelli, R. A.; Cook, F. J.; Moore, R. F.

    1972-01-01

    A functional design study for an electrostatic camera system for application to planetary missions is presented. The electrostatic camera can produce and store a large number of pictures and provide for transmission of the stored information at arbitrary times after exposure. Preliminary configuration drawings and circuit diagrams for the system are illustrated. The camera system's size, weight, power consumption, and performance are characterized. Tradeoffs between system weight, power, and storage capacity are identified.

  8. Slant path range gated imaging of static and moving targets

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Elmqvist, Magnus; Karlsson, Kjell; Gustafsson, Ove; Chevalier, Tomas

    2012-06-01

    This paper will report experiments and analysis of slant path imaging using 1.5 μm and 0.8 μm gated imaging. The investigation is a follow up on the measurement reported last year at the laser radar conference at SPIE Orlando. The sensor, a SWIR camera was collecting both passive and active images along a 2 km long path over an airfield. The sensor was elevated by a lift in steps from 1.6-13.5 meters. Targets were resolution charts and also human targets. The human target was holding various items and also performing certain tasks some of high of relevance in defence and security. One of the main purposes with this investigation was to compare the recognition of these human targets and their activities with the resolution information obtained from conventional resolution charts. The data collection of human targets was also made from out roof top laboratory at about 13 m height above ground. The turbulence was measured along the path with anemometers and scintillometers. The camera was collecting both passive and active images in the SWIR region. We also included the Obzerv camera working at 0.8 μm in some tests. The paper will present images for both passive and active modes obtained at different elevations and discuss the results from both technical and system perspectives.

  9. a Cloud-Based Architecture for Smart Video Surveillance

    NASA Astrophysics Data System (ADS)

    Valentín, L.; Serrano, S. A.; Oves García, R.; Andrade, A.; Palacios-Alonso, M. A.; Sucar, L. Enrique

    2017-09-01

    Turning a city into a smart city has attracted considerable attention. A smart city can be seen as a city that uses digital technology not only to improve the quality of people's life, but also, to have a positive impact in the environment and, at the same time, offer efficient and easy-to-use services. A fundamental aspect to be considered in a smart city is people's safety and welfare, therefore, having a good security system becomes a necessity, because it allows us to detect and identify potential risk situations, and then take appropriate decisions to help people or even prevent criminal acts. In this paper we present an architecture for automated video surveillance based on the cloud computing schema capable of acquiring a video stream from a set of cameras connected to the network, process that information, detect, label and highlight security-relevant events automatically, store the information and provide situational awareness in order to minimize response time to take the appropriate action.

  10. Quantum cascade lasers for defense and security

    NASA Astrophysics Data System (ADS)

    Day, Timothy; Pushkarsky, Michael; Caffey, Dave; Cecchetti, Kristen; Arp, Ron; Whitmore, Alex; Henson, Michael; Takeuchi, Eric B.

    2013-10-01

    Quantum cascade laser (QCL) systems are mature and at the vanguard of a new generation of products that support military applications such as Infrared Countermeasures (IRCM) and targeting. The demanding product requirements for aircraft platforms that include reduced size, weight, power consumption and cost (SWaP-C) extends to portable, battery powered handheld products. QCL technology operates throughout the mid-wave (MWIR) and long-wave (LWIR) infrared to provide new capabilities that leverage existing thermal imaging cameras. In addition to their suitability for aircraft platforms, QCL products are a natural fit to meet operator demands for small, lightweight pointer and beacon capabilities. Field-testing of high power, lightweight, battery operated devices has demonstrated their utility across a range of air and ground applications. This talk will present an overview of QCL technology and the Defense and Security products and capabilities that are enabled by it. This talk will also provide an overview of the extensive environmental and performance testing associated with products based on QCL technology.

  11. Visible School Security Measures and Student Academic Performance, Attendance, and Postsecondary Aspirations.

    PubMed

    Tanner-Smith, Emily E; Fisher, Benjamin W

    2016-01-01

    Many U.S. schools use visible security measures (security cameras, metal detectors, security personnel) in an effort to keep schools safe and promote adolescents' academic success. This study examined how different patterns of visible security utilization were associated with U.S. middle and high school students' academic performance, attendance, and postsecondary educational aspirations. The data for this study came from two large national surveys--the School Crime Supplement to the National Crime Victimization Survey (N = 38,707 students; 51% male, 77% White, MAge = 14.72) and the School Survey on Crime and Safety (N = 10,340 schools; average student composition of 50% male, 57% White). The results provided no evidence that visible security measures had consistent beneficial effects on adolescents' academic outcomes; some security utilization patterns had modest detrimental effects on adolescents' academic outcomes, particularly the heavy surveillance patterns observed in a small subset of high schools serving predominantly low socioeconomic students. The findings of this study provide no evidence that visible security measures have any sizeable effects on academic performance, attendance, or postsecondary aspirations among U.S. middle and high school students.

  12. Size Matters

    ERIC Educational Resources Information Center

    Gehring, John

    2004-01-01

    This article describes the immense size of Unity Junior High School in Cicero, Illinois and the opinions of various people regarding its size. The school has more than 2,700 students, seventeen acres, eighty-eight faculty lounges, and ninety-six security cameras. Administrators hope the school--"Cicero's crown jewel," as the school…

  13. 76 FR 28121 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    .... Security cameras. Snow removal equipment. Update airport master plan study phases I and II. Obstruction... general aviation area. Preconditioned air and fixed ground power. Airfield environmental assessment... Withdrawal: April 19, 2011. Decision Date: April 25, 2011. FOR FURTHER INFORMATION CONTACT: Anna Guss...

  14. Copyboard Quickly Makes Clean Printing Plates

    NASA Technical Reports Server (NTRS)

    Balandis, W. D.

    1985-01-01

    Vacuum-chuck eliminates glass and sponge artwork support. Vacuum copyboard allows camera-ready original slid on top plate for proper positioning, then holds securely for photography. Bleed valve allows vacuum in copyboard box adjusted for small or large originals. With new copyboard, time-consuming and costly procedures unnecessary.

  15. Real-time people counting system using a single video camera

    NASA Astrophysics Data System (ADS)

    Lefloch, Damien; Cheikh, Faouzi A.; Hardeberg, Jon Y.; Gouton, Pierre; Picot-Clemente, Romain

    2008-02-01

    There is growing interest in video-based solutions for people monitoring and counting in business and security applications. Compared to classic sensor-based solutions the video-based ones allow for more versatile functionalities, improved performance with lower costs. In this paper, we propose a real-time system for people counting based on single low-end non-calibrated video camera. The two main challenges addressed in this paper are: robust estimation of the scene background and the number of real persons in merge-split scenarios. The latter is likely to occur whenever multiple persons move closely, e.g. in shopping centers. Several persons may be considered to be a single person by automatic segmentation algorithms, due to occlusions or shadows, leading to under-counting. Therefore, to account for noises, illumination and static objects changes, a background substraction is performed using an adaptive background model (updated over time based on motion information) and automatic thresholding. Furthermore, post-processing of the segmentation results is performed, in the HSV color space, to remove shadows. Moving objects are tracked using an adaptive Kalman filter, allowing a robust estimation of the objects future positions even under heavy occlusion. The system is implemented in Matlab, and gives encouraging results even at high frame rates. Experimental results obtained based on the PETS2006 datasets are presented at the end of the paper.

  16. A Robust Mechanical Sensing System for Unmanned Sea Surface Vehicles

    NASA Technical Reports Server (NTRS)

    Kulczycki, Eric A.; Magnone, Lee J.; Huntsberger, Terrance; Aghazarian, Hrand; Padgett, Curtis W.; Trotz, David C.; Garrett, Michael S.

    2009-01-01

    The need for autonomous navigation and intelligent control of unmanned sea surface vehicles requires a mechanically robust sensing architecture that is watertight, durable, and insensitive to vibration and shock loading. The sensing system developed here comprises four black and white cameras and a single color camera. The cameras are rigidly mounted to a camera bar that can be reconfigured to mount multiple vehicles, and act as both navigational cameras and application cameras. The cameras are housed in watertight casings to protect them and their electronics from moisture and wave splashes. Two of the black and white cameras are positioned to provide lateral vision. They are angled away from the front of the vehicle at horizontal angles to provide ideal fields of view for mapping and autonomous navigation. The other two black and white cameras are positioned at an angle into the color camera's field of view to support vehicle applications. These two cameras provide an overlap, as well as a backup to the front camera. The color camera is positioned directly in the middle of the bar, aimed straight ahead. This system is applicable to any sea-going vehicle, both on Earth and in space.

  17. Head-coupled remote stereoscopic camera system for telepresence applications

    NASA Astrophysics Data System (ADS)

    Bolas, Mark T.; Fisher, Scott S.

    1990-09-01

    The Virtual Environment Workstation Project (VIEW) at NASA's Ames Research Center has developed a remotely controlled stereoscopic camera system that can be used for telepresence research and as a tool to develop and evaluate configurations for head-coupled visual systems associated with space station telerobots and remote manipulation robotic arms. The prototype camera system consists of two lightweight CCD video cameras mounted on a computer controlled platform that provides real-time pan, tilt, and roll control of the camera system in coordination with head position transmitted from the user. This paper provides an overall system description focused on the design and implementation of the camera and platform hardware configuration and the development of control software. Results of preliminary performance evaluations are reported with emphasis on engineering and mechanical design issues and discussion of related psychophysiological effects and objectives.

  18. An integrated port camera and display system for laparoscopy.

    PubMed

    Terry, Benjamin S; Ruppert, Austin D; Steinhaus, Kristen R; Schoen, Jonathan A; Rentschler, Mark E

    2010-05-01

    In this paper, we built and tested the port camera, a novel, inexpensive, portable, and battery-powered laparoscopic tool that integrates the components of a vision system with a cannula port. This new device 1) minimizes the invasiveness of laparoscopic surgery by combining a camera port and tool port; 2) reduces the cost of laparoscopic vision systems by integrating an inexpensive CMOS sensor and LED light source; and 3) enhances laparoscopic surgical procedures by mechanically coupling the camera, tool port, and liquid crystal display (LCD) screen to provide an on-patient visual display. The port camera video system was compared to two laparoscopic video systems: a standard resolution unit from Karl Storz (model 22220130) and a high definition unit from Stryker (model 1188HD). Brightness, contrast, hue, colorfulness, and sharpness were compared. The port camera video is superior to the Storz scope and approximately equivalent to the Stryker scope. An ex vivo study was conducted to measure the operative performance of the port camera. The results suggest that simulated tissue identification and biopsy acquisition with the port camera is as efficient as with a traditional laparoscopic system. The port camera was successfully used by a laparoscopic surgeon for exploratory surgery and liver biopsy during a porcine surgery, demonstrating initial surgical feasibility.

  19. Aerial surveillance vehicles augment security at shipping ports

    NASA Astrophysics Data System (ADS)

    Huck, Robert C.; Al Akkoumi, Muhammad K.; Cheng, Samuel; Sluss, James J., Jr.; Landers, Thomas L.

    2008-10-01

    With the ever present threat to commerce, both politically and economically, technological innovations provide a means to secure the transportation infrastructure that will allow efficient and uninterrupted freight-flow operations for trade. Currently, freight coming into United States ports is "spot checked" upon arrival and stored in a container yard while awaiting the next mode of transportation. For the most part, only fences and security patrols protect these container storage yards. To augment these measures, the authors propose the use of aerial surveillance vehicles equipped with video cameras and wireless video downlinks to provide a birds-eye view of port facilities to security control centers and security patrols on the ground. The initial investigation described in this paper demonstrates the use of unmanned aerial surveillance vehicles as a viable method for providing video surveillance of container storage yards. This research provides the foundation for a follow-on project to use autonomous aerial surveillance vehicles coordinated with autonomous ground surveillance vehicles for enhanced port security applications.

  20. A real-time camera calibration system based on OpenCV

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Wang, Hua; Guo, Huinan; Ren, Long; Zhou, Zuofeng

    2015-07-01

    Camera calibration is one of the essential steps in the computer vision research. This paper describes a real-time OpenCV based camera calibration system, and developed and implemented in the VS2008 environment. Experimental results prove that the system to achieve a simple and fast camera calibration, compared with MATLAB, higher precision and does not need manual intervention, and can be widely used in various computer vision system.

  1. Validation of the Microsoft Kinect® camera system for measurement of lower extremity jump landing and squatting kinematics.

    PubMed

    Eltoukhy, Moataz; Kelly, Adam; Kim, Chang-Young; Jun, Hyung-Pil; Campbell, Richard; Kuenze, Christopher

    2016-01-01

    Cost effective, quantifiable assessment of lower extremity movement represents potential improvement over standard tools for evaluation of injury risk. Ten healthy participants completed three trials of a drop jump, overhead squat, and single leg squat task. Peak hip and knee kinematics were assessed using an 8 camera BTS Smart 7000DX motion analysis system and the Microsoft Kinect® camera system. The agreement and consistency between both uncorrected and correct Kinect kinematic variables and the BTS camera system were assessed using interclass correlations coefficients. Peak sagittal plane kinematics measured using the Microsoft Kinect® camera system explained a significant amount of variance [Range(hip) = 43.5-62.8%; Range(knee) = 67.5-89.6%] in peak kinematics measured using the BTS camera system. Across tasks, peak knee flexion angle and peak hip flexion were found to be consistent and in agreement when the Microsoft Kinect® camera system was directly compared to the BTS camera system but these values were improved following application of a corrective factor. The Microsoft Kinect® may not be an appropriate surrogate for traditional motion analysis technology, but it may have potential applications as a real-time feedback tool in pathological or high injury risk populations.

  2. Security inspection in ports by anomaly detection using hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Rivera, Javier; Valverde, Fernando; Saldaña, Manuel; Manian, Vidya

    2013-05-01

    Applying hyperspectral imaging technology in port security is crucial for the detection of possible threats or illegal activities. One of the most common problems that cargo suffers is tampering. This represents a danger to society because it creates a channel to smuggle illegal and hazardous products. If a cargo is altered, security inspections on that cargo should contain anomalies that reveal the nature of the tampering. Hyperspectral images can detect anomalies by gathering information through multiple electromagnetic bands. The spectrums extracted from these bands can be used to detect surface anomalies from different materials. Based on this technology, a scenario was built in which a hyperspectral camera was used to inspect the cargo for any surface anomalies and a user interface shows the results. The spectrum of items, altered by different materials that can be used to conceal illegal products, is analyzed and classified in order to provide information about the tampered cargo. The image is analyzed with a variety of techniques such as multiple features extracting algorithms, autonomous anomaly detection, and target spectrum detection. The results will be exported to a workstation or mobile device in order to show them in an easy -to-use interface. This process could enhance the current capabilities of security systems that are already implemented, providing a more complete approach to detect threats and illegal cargo.

  3. Evaluation of camera-based systems to reduce transit bus side collisions : phase II.

    DOT National Transportation Integrated Search

    2012-12-01

    The sideview camera system has been shown to eliminate blind zones by providing a view to the driver in real time. In : order to provide the best integration of these systems, an integrated camera-mirror system (hybrid system) was : developed and tes...

  4. Real time moving scene holographic camera system

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L. (Inventor)

    1973-01-01

    A holographic motion picture camera system producing resolution of front surface detail is described. The system utilizes a beam of coherent light and means for dividing the beam into a reference beam for direct transmission to a conventional movie camera and two reflection signal beams for transmission to the movie camera by reflection from the front side of a moving scene. The system is arranged so that critical parts of the system are positioned on the foci of a pair of interrelated, mathematically derived ellipses. The camera has the theoretical capability of producing motion picture holograms of projectiles moving at speeds as high as 900,000 cm/sec (about 21,450 mph).

  5. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    PubMed Central

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  6. Robust human detection, tracking, and recognition in crowded urban areas

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike

    2014-06-01

    In this paper, we present algorithms we recently developed to support an automated security surveillance system for very crowded urban areas. In our approach for human detection, the color features are obtained by taking the difference of R, G, B spectrum and converting R, G, B to HSV (Hue, Saturation, Value) space. Morphological patch filtering and regional minimum and maximum segmentation on the extracted features are applied for target detection. The human tracking process approach includes: 1) Color and intensity feature matching track candidate selection; 2) Separate three parallel trackers for color, bright (above mean intensity), and dim (below mean intensity) detections, respectively; 3) Adaptive track gate size selection for reducing false tracking probability; and 4) Forward position prediction based on previous moving speed and direction for continuing tracking even when detections are missed from frame to frame. The Human target recognition is improved with a Super-Resolution Image Enhancement (SRIE) process. This process can improve target resolution by 3-5 times and can simultaneously process many targets that are tracked. Our approach can project tracks from one camera to another camera with a different perspective viewing angle to obtain additional biometric features from different perspective angles, and to continue tracking the same person from the 2nd camera even though the person moved out of the Field of View (FOV) of the 1st camera with `Tracking Relay'. Finally, the multiple cameras at different view poses have been geo-rectified to nadir view plane and geo-registered with Google- Earth (or other GIS) to obtain accurate positions (latitude, longitude, and altitude) of the tracked human for pin-point targeting and for a large area total human motion activity top-view. Preliminary tests of our algorithms indicate than high probability of detection can be achieved for both moving and stationary humans. Our algorithms can simultaneously track more than 100 human targets with averaged tracking period (time length) longer than the performance of the current state-of-the-art.

  7. Camera-based measurement of respiratory rates is reliable.

    PubMed

    Becker, Christoph; Achermann, Stefan; Rocque, Mukul; Kirenko, Ihor; Schlack, Andreas; Dreher-Hummel, Thomas; Zumbrunn, Thomas; Bingisser, Roland; Nickel, Christian H

    2017-06-01

    Respiratory rate (RR) is one of the most important vital signs used to detect whether a patient is in critical condition. It is part of many risk scores and its measurement is essential for triage of patients in emergency departments. It is often not recorded as measurement is cumbersome and time-consuming. We intended to evaluate the accuracy of camera-based measurements as an alternative measurement to the current practice of manual counting. We monitored the RR of healthy male volunteers with a camera-based prototype application and simultaneously by manual counting and by capnography, which was considered the gold standard. The four assessors were mutually blinded. We simulated normoventilation, hypoventilation and hyperventilation as well as deep, normal and superficial breathing depths to assess potential clinical settings. The volunteers were assessed while being undressed, wearing a T-shirt or a winter coat. In total, 20 volunteers were included. The results of camera-based measurements of RRs and capnography were in close agreement throughout all clothing styles and respiratory patterns (Pearson's correlation coefficient, r=0.90-1.00, except for one scenario, in which the volunteer breathed slowly dressed in a winter coat r=0.84). In the winter-coat scenarios, the camera-based prototype application was superior to human counters. In our pilot study, we found that camera-based measurements delivered accurate and reliable results. Future studies need to show that camera-based measurements are a secure alternative for measuring RRs in clinical settings as well.

  8. A detailed comparison of single-camera light-field PIV and tomographic PIV

    NASA Astrophysics Data System (ADS)

    Shi, Shengxian; Ding, Junfei; Atkinson, Callum; Soria, Julio; New, T. H.

    2018-03-01

    This paper conducts a comprehensive study between the single-camera light-field particle image velocimetry (LF-PIV) and the multi-camera tomographic particle image velocimetry (Tomo-PIV). Simulation studies were first performed using synthetic light-field and tomographic particle images, which extensively examine the difference between these two techniques by varying key parameters such as pixel to microlens ratio (PMR), light-field camera Tomo-camera pixel ratio (LTPR), particle seeding density and tomographic camera number. Simulation results indicate that the single LF-PIV can achieve accuracy consistent with that of multi-camera Tomo-PIV, but requires the use of overall greater number of pixels. Experimental studies were then conducted by simultaneously measuring low-speed jet flow with single-camera LF-PIV and four-camera Tomo-PIV systems. Experiments confirm that given a sufficiently high pixel resolution, a single-camera LF-PIV system can indeed deliver volumetric velocity field measurements for an equivalent field of view with a spatial resolution commensurate with those of multi-camera Tomo-PIV system, enabling accurate 3D measurements in applications where optical access is limited.

  9. Photogrammetry System and Method for Determining Relative Motion Between Two Bodies

    NASA Technical Reports Server (NTRS)

    Miller, Samuel A. (Inventor); Severance, Kurt (Inventor)

    2014-01-01

    A photogrammetry system and method provide for determining the relative position between two objects. The system utilizes one or more imaging devices, such as high speed cameras, that are mounted on a first body, and three or more photogrammetry targets of a known location on a second body. The system and method can be utilized with cameras having fish-eye, hyperbolic, omnidirectional, or other lenses. The system and method do not require overlapping fields-of-view if two or more cameras are utilized. The system and method derive relative orientation by equally weighting information from an arbitrary number of heterogeneous cameras, all with non-overlapping fields-of-view. Furthermore, the system can make the measurements with arbitrary wide-angle lenses on the cameras.

  10. 78 FR 60248 - Order Denying Export Privileges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Order Denying Export Privileges In the... commit an offense against the United States, that is, to willfully export from the United States to Belarus export-controlled items, including but not limited to L-3 x200xp Handheld Thermal Imaging Cameras...

  11. SafeSlinger: An Easy-to-use and Secure Approach for Human Trust Establishment

    DTIC Science & Technology

    2012-03-12

    communication modalities (Bluetooth, WiFi , 4G), camera, and sensors. Unfortunately, smartphone platforms suffer from many risks. Vulnerabilities exist in...December 2010. [31] Dave Neal. Defcon hackers get hacked over 4G. http://www.theinquirer.net/inquirer/news/ 16 2100989/defcon-hackers- hacked -4g

  12. 44 CFR 15.12 - Photographs and other depictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY GENERAL CONDUCT AT THE MT. WEATHER EMERGENCY ASSISTANCE CENTER AND AT THE... depictions at Mt. Weather. We prohibit taking photographs and making notes, sketches, or diagrams of buildings, grounds or other features of Mt. Weather, or the possession of a camera while at Mt. Weather...

  13. 44 CFR 15.12 - Photographs and other depictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY GENERAL CONDUCT AT THE MT. WEATHER EMERGENCY ASSISTANCE CENTER AND AT THE... depictions at Mt. Weather. We prohibit taking photographs and making notes, sketches, or diagrams of buildings, grounds or other features of Mt. Weather, or the possession of a camera while at Mt. Weather...

  14. 44 CFR 15.12 - Photographs and other depictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY GENERAL CONDUCT AT THE MT. WEATHER EMERGENCY ASSISTANCE CENTER AND AT THE... depictions at Mt. Weather. We prohibit taking photographs and making notes, sketches, or diagrams of buildings, grounds or other features of Mt. Weather, or the possession of a camera while at Mt. Weather...

  15. 44 CFR 15.12 - Photographs and other depictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY GENERAL CONDUCT AT THE MT. WEATHER EMERGENCY ASSISTANCE CENTER AND AT THE... depictions at Mt. Weather. We prohibit taking photographs and making notes, sketches, or diagrams of buildings, grounds or other features of Mt. Weather, or the possession of a camera while at Mt. Weather...

  16. 44 CFR 15.12 - Photographs and other depictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY GENERAL CONDUCT AT THE MT. WEATHER EMERGENCY ASSISTANCE CENTER AND AT THE... depictions at Mt. Weather. We prohibit taking photographs and making notes, sketches, or diagrams of buildings, grounds or other features of Mt. Weather, or the possession of a camera while at Mt. Weather...

  17. Eye on You

    ERIC Educational Resources Information Center

    Benne, Paul

    2008-01-01

    Many of today's movies and TV crime shows exaggerate the capabilities of mainstream security equipment. The 1998 thriller "Enemy of the State" is a case in point. It presents a video recording from a two-dimensional, stationary surveillance camera, which subsequently is manipulated by a secret government agency to produce 3-D, 180-degree footage…

  18. Spectral imaging of chemical compounds using multivariate optically enhanced filters integrated with InGaAs VGA cameras

    NASA Astrophysics Data System (ADS)

    Priore, Ryan J.; Jacksen, Niels

    2016-05-01

    Infrared hyperspectral imagers (HSI) have been fielded for the detection of hazardous chemical and biological compounds, tag detection (friend versus foe detection) and other defense critical sensing missions over the last two decades. Low Size/Weight/Power/Cost (SWaPc) methods of identification of chemical compounds spectroscopy has been a long term goal for hand held applications. We describe a new HSI concept for low cost / high performance InGaAs SWIR camera chemical identification for military, security, industrial and commercial end user applications. Multivariate Optical Elements (MOEs) are thin-film devices that encode a broadband, spectroscopic pattern allowing a simple broadband detector to generate a highly sensitive and specific detection for a target analyte. MOEs can be matched 1:1 to a discrete analyte or class prediction. Additionally, MOE filter sets are capable of sensing an orthogonal projection of the original sparse spectroscopic space enabling a small set of MOEs to discriminate a multitude of target analytes. This paper identifies algorithms and broadband optical filter designs that have been demonstrated to identify chemical compounds using high performance InGaAs VGA detectors. It shows how some of the initial models have been reduced to simple spectral designs and tested to produce positive identification of such chemicals. We also are developing pixilated MOE compressed detection sensors for the detection of a multitude of chemical targets in challenging backgrounds/environments for both commercial and defense/security applications. This MOE based, real-time HSI sensor will exhibit superior sensitivity and specificity as compared to currently fielded HSI systems.

  19. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  20. A versatile photogrammetric camera automatic calibration suite for multispectral fusion and optical helmet tracking

    NASA Astrophysics Data System (ADS)

    de Villiers, Jason; Jermy, Robert; Nicolls, Fred

    2014-06-01

    This paper presents a system to determine the photogrammetric parameters of a camera. The lens distortion, focal length and camera six degree of freedom (DOF) position are calculated. The system caters for cameras of different sensitivity spectra and fields of view without any mechanical modifications. The distortion characterization, a variant of Brown's classic plumb line method, allows many radial and tangential distortion coefficients and finds the optimal principal point. Typical values are 5 radial and 3 tangential coefficients. These parameters are determined stably and demonstrably produce superior results to low order models despite popular and prevalent misconceptions to the contrary. The system produces coefficients to model both the distorted to undistorted pixel coordinate transformation (e.g. for target designation) and the inverse transformation (e.g. for image stitching and fusion) allowing deterministic rates far exceeding real time. The focal length is determined to minimise the error in absolute photogrammetric positional measurement for both multi camera systems or monocular (e.g. helmet tracker) systems. The system determines the 6 DOF position of the camera in a chosen coordinate system. It can also determine the 6 DOF offset of the camera relative to its mechanical mount. This allows faulty cameras to be replaced without requiring a recalibration of the entire system (such as an aircraft cockpit). Results from two simple applications of the calibration results are presented: stitching and fusion of the images from a dual-band visual/ LWIR camera array, and a simple laboratory optical helmet tracker.

  1. Video systems for real-time oil-spill detection

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.; Lewis, P. L.; Woolever, G. F.

    1973-01-01

    Three airborne television systems are being developed to evaluate techniques for oil-spill surveillance. These include a conventional TV camera, two cameras operating in a subtractive mode, and a field-sequential camera. False-color enhancement and wavelength and polarization filtering are also employed. The first of a series of flight tests indicates that an appropriately filtered conventional TV camera is a relatively inexpensive method of improving contrast between oil and water. False-color enhancement improves the contrast, but the problem caused by sun glint now limits the application to overcast days. Future effort will be aimed toward a one-camera system. Solving the sun-glint problem and developing the field-sequential camera into an operable system offers potential for color 'flagging' oil on water.

  2. Localization and Mapping Using a Non-Central Catadioptric Camera System

    NASA Astrophysics Data System (ADS)

    Khurana, M.; Armenakis, C.

    2018-05-01

    This work details the development of an indoor navigation and mapping system using a non-central catadioptric omnidirectional camera and its implementation for mobile applications. Omnidirectional catadioptric cameras find their use in navigation and mapping of robotic platforms, owing to their wide field of view. Having a wider field of view, or rather a potential 360° field of view, allows the system to "see and move" more freely in the navigation space. A catadioptric camera system is a low cost system which consists of a mirror and a camera. Any perspective camera can be used. A platform was constructed in order to combine the mirror and a camera to build a catadioptric system. A calibration method was developed in order to obtain the relative position and orientation between the two components so that they can be considered as one monolithic system. The mathematical model for localizing the system was determined using conditions based on the reflective properties of the mirror. The obtained platform positions were then used to map the environment using epipolar geometry. Experiments were performed to test the mathematical models and the achieved location and mapping accuracies of the system. An iterative process of positioning and mapping was applied to determine object coordinates of an indoor environment while navigating the mobile platform. Camera localization and 3D coordinates of object points obtained decimetre level accuracies.

  3. Design and realization of an AEC&AGC system for the CCD aerial camera

    NASA Astrophysics Data System (ADS)

    Liu, Hai ying; Feng, Bing; Wang, Peng; Li, Yan; Wei, Hao yun

    2015-08-01

    An AEC and AGC(Automatic Exposure Control and Automatic Gain Control) system was designed for a CCD aerial camera with fixed aperture and electronic shutter. The normal AEC and AGE algorithm is not suitable to the aerial camera since the camera always takes high-resolution photographs in high-speed moving. The AEC and AGE system adjusts electronic shutter and camera gain automatically according to the target brightness and the moving speed of the aircraft. An automatic Gamma correction is used before the image is output so that the image is better for watching and analyzing by human eyes. The AEC and AGC system could avoid underexposure, overexposure, or image blurring caused by fast moving or environment vibration. A series of tests proved that the system meet the requirements of the camera system with its fast adjusting speed, high adaptability, high reliability in severe complex environment.

  4. Overview of a Hybrid Underwater Camera System

    DTIC Science & Technology

    2014-07-01

    meters), in increments of 200ps. The camera is also equipped with 6:1 motorized zoom lens. A precision miniature attitude, heading reference system ( AHRS ...LUCIE Control & Power Distribution System AHRS Pulsed LASER Gated Camera -^ Sonar Transducer (b) LUCIE sub-systems Proc. ofSPIEVol. 9111

  5. [Microeconomics of introduction of a PET system based on the revised Japanese National Insurance reimbursement system].

    PubMed

    Abe, Katsumi; Kosuda, Shigeru; Kusano, Shoichi; Nagata, Masayoshi

    2003-11-01

    It is crucial to evaluate an annual balance before-hand when an institution installs a PET system because the revised Japanese national insurance reimbursement system set the cost of a FDG PET study as 75,000 yen. A break-even point was calculated in an 8-hour or a 24-hour operation of a PET system, based on the total costs reported. The break-even points were as follows: 13.4, 17.7, 22.1 studies per day for the 1 cyclotron-1 PET camera, 1 cyclotron-2 PET cameras, 1 cyclotron-3 PET cameras system, respectively, in an ordinary PET system operation of 8 hours. The break-even points were 19.9, 25.5, 31.2 studies per day for the 1 cyclotron-1 PET camera, 1 cyclotron-2 PET cameras, 1 cyclotron-3 PET cameras system, respectively, in a full PET system operation of 24 hours. The results indicate no profit would accrue in an ordinary PET system operation of 8 hours. The annual profit and break-even point for the total cost including the initial investment would be respectively 530 million yen and 2.8 years in a 24-hour operation with 1 cyclotron-3 PET cameras system.

  6. MS Hadfield works on the SSRMS in the SLP during the first EVA for STS-100

    NASA Image and Video Library

    2001-04-22

    S100-E-5236 (22 April 2001) --- Astronaut Chris A. Hadfield, STS-100 mission specialist representing the Canadian Space Agency (CSA), stands on one Canadian-built robot arm to work with another one. Called Canadarm2, the newest addition to the International Space Station (ISS) was ferried up to the orbital outpost by the STS-100 crew. Hadfield's feet are secured on a special foot restraint attached to the end of the Remote Manipulator System (RMS) arm, which represents one of the standard shuttle components for the majority of the 100-plus STS missions thus far. The picture was recorded with a digital still camera.

  7. MS Hadfield works on the SSRMS in the SLP during the first EVA for STS-100

    NASA Image and Video Library

    2001-04-22

    S100-E-5239 (22 April 2001) --- Astronaut Chris A. Hadfield, STS-100 mission specialist representing the Canadian Space Agency (CSA), stands on one Canadian-built robot arm to work with another one. Called Canadarm2, the newest addition to the International Space Station (ISS) was ferried up to the orbital outpost by the STS-100 crew. Hadfield's feet are secured on a special foot restraint attached to the end of the Remote Manipulator System (RMS) arm, which represents one of the standard shuttle components for the majority of the 100-plus STS missions thus far. The picture was recorded with a digital still camera.

  8. MS Hadfield works on the SSRMS in the SLP during the first EVA for STS-100

    NASA Image and Video Library

    2001-04-22

    S100-E-5238 (22 April 2001) --- Astronaut Chris A. Hadfield, STS-100 mission specialist representing the Canadian Space Agency (CSA), stands on one Canadian-built robot arm to work with another one. Called Canadarm2, the newest addition to the International Space Station (ISS) was ferried up to the orbital outpost by the STS-100 crew. Hadfield's feet are secured on a special foot restraint attached to the end of the Remote Manipulator System (RMS) arm, which represents one of the standard shuttle components for the majority of the 100-plus STS missions thus far. The picture was recorded with a digital still camera.

  9. MS Hadfield works on the SSRMS in the SLP during the first EVA for STS-100

    NASA Image and Video Library

    2001-04-22

    S100-E-5243 (22 April 2001) --- Astronaut Chris A. Hadfield, STS-100 mission specialist representing the Canadian Space Agency (CSA), stands on one Canadian-built robot arm to work with another one. Called Canadarm2, the newest addition to the International Space Station (ISS) was ferried up to the orbital outpost by the STS-100 crew. Hadfield's feet are secured on a special foot restraint attached to the end of the Remote Manipulator System (RMS) arm, which represents one of the standard shuttle components for the majority of the 100-plus STS missions thus far. The picture was recorded with a digital still camera.

  10. Measurement of two-dimensional thickness of micro-patterned thin film based on image restoration in a spectroscopic imaging reflectometer.

    PubMed

    Kim, Min-Gab; Kim, Jin-Yong

    2018-05-01

    In this paper, we introduce a method to overcome the limitation of thickness measurement of a micro-patterned thin film. A spectroscopic imaging reflectometer system that consists of an acousto-optic tunable filter, a charge-coupled-device camera, and a high-magnitude objective lens was proposed, and a stack of multispectral images was generated. To secure improved accuracy and lateral resolution in the reconstruction of a two-dimensional thin film thickness, prior to the analysis of spectral reflectance profiles from each pixel of multispectral images, the image restoration based on an iterative deconvolution algorithm was applied to compensate for image degradation caused by blurring.

  11. Universal explosive detection system for homeland security applications

    NASA Astrophysics Data System (ADS)

    Lee, Vincent Y.; Bromberg, Edward E. A.

    2010-04-01

    L-3 Communications CyTerra Corporation has developed a high throughput universal explosive detection system (PassPort) to automatically screen the passengers in airports without requiring them to remove their shoes. The technical approach is based on the patented energetic material detection (EMD) technology. By analyzing the results of sample heating with an infrared camera, one can distinguish the deflagration or decomposition of an energetic material from other clutters such as flammables and general background substances. This becomes the basis of a universal explosive detection system that does not require a library and is capable of detecting trace levels of explosives with a low false alarm rate. The PassPort is a simple turnstile type device and integrates a non-intrusive aerodynamic sampling scheme that has been shown capable of detecting trace levels of explosives on shoes. A detailed description of the detection theory and the automated sampling techniques, as well as the field test results, will be presented.

  12. The development of large-aperture test system of infrared camera and visible CCD camera

    NASA Astrophysics Data System (ADS)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  13. Assessment of the DoD Embedded Media Program

    DTIC Science & Technology

    2004-09-01

    Classified and Sensitive Information ................... VII-22 3. Weapons Systems Video, Gun Camera Video, and Lipstick Cameras...Weapons Systems Video, Gun Camera Video, and Lipstick Cameras A SECDEF and CJCS message to commanders stated, “Put in place mechanisms and processes...of public communication activities.”126 The 10 February 2003 PAG stated, “Use of lipstick and helmet-mounted cameras on combat sorties is approved

  14. Passive 350 GHz Video Imaging Systems for Security Applications

    NASA Astrophysics Data System (ADS)

    Heinz, E.; May, T.; Born, D.; Zieger, G.; Anders, S.; Zakosarenko, V.; Meyer, H.-G.; Schäffel, C.

    2015-10-01

    Passive submillimeter-wave imaging is a concept that has been in the focus of interest as a promising technology for personal security screening for a number of years. In contradiction to established portal-based millimeter-wave scanning techniques, it allows for scanning people from a distance in real time with high throughput and without a distinct inspection procedure. This opens up new possibilities for scanning, which directly address an urgent security need of modern societies: protecting crowds and critical infrastructure from the growing threat of individual terror attacks. Considering the low radiometric contrast of indoor scenes in the submillimeter range, this objective calls for an extremely high detector sensitivity that can only be achieved using cooled detectors. Our approach to this task is a series of passive standoff video cameras for the 350 GHz band that represent an evolving concept and a continuous development since 2007. Arrays of superconducting transition-edge sensors (TES), operated at temperatures below 1 K, are used as radiation detectors. By this means, background limited performance (BLIP) mode is achieved, providing the maximum possible signal to noise ratio. At video rates, this leads to a temperature resolution well below 1 K. The imaging system is completed by reflector optics based on free-form mirrors. For object distances of 5-25 m, a field of view up to 2 m height and a diffraction-limited spatial resolution in the order of 1-2 cm is provided. Opto-mechanical scanning systems are part of the optical setup and capable of frame rates of up to 25 frames per second.

  15. Lytro camera technology: theory, algorithms, performance analysis

    NASA Astrophysics Data System (ADS)

    Georgiev, Todor; Yu, Zhan; Lumsdaine, Andrew; Goma, Sergio

    2013-03-01

    The Lytro camera is the first implementation of a plenoptic camera for the consumer market. We consider it a successful example of the miniaturization aided by the increase in computational power characterizing mobile computational photography. The plenoptic camera approach to radiance capture uses a microlens array as an imaging system focused on the focal plane of the main camera lens. This paper analyzes the performance of Lytro camera from a system level perspective, considering the Lytro camera as a black box, and uses our interpretation of Lytro image data saved by the camera. We present our findings based on our interpretation of Lytro camera file structure, image calibration and image rendering; in this context, artifacts and final image resolution are discussed.

  16. Real-time, T-ray imaging using a sub-terahertz gyrotron

    NASA Astrophysics Data System (ADS)

    Han, Seong-Tae; Torrezan, Antonio C.; Sirigiri, Jagadishwar R.; Shapiro, Michael A.; Temkin, Richard J.

    2012-06-01

    We demonstrated real-time, active, T-ray imaging using a 0.46 THz gyrotron capable of producing 16 W in continuous wave operation and a pyroelectric array camera with 124-by-124 pixels. An expanded Gaussian beam from the gyrotron was used to maintain the power density above the detection level of the pyroelectric array over the area of the irradiated object. Real-time imaging at a video rate of 48 Hz was achieved through the use of the built-in chopper of the camera. Potential applications include fast scanning for security purposes and for quality control of dry or frozen foods.

  17. Single-snapshot 2D color measurement by plenoptic imaging system

    NASA Astrophysics Data System (ADS)

    Masuda, Kensuke; Yamanaka, Yuji; Maruyama, Go; Nagai, Sho; Hirai, Hideaki; Meng, Lingfei; Tosic, Ivana

    2014-03-01

    Plenoptic cameras enable capture of directional light ray information, thus allowing applications such as digital refocusing, depth estimation, or multiband imaging. One of the most common plenoptic camera architectures contains a microlens array at the conventional image plane and a sensor at the back focal plane of the microlens array. We leverage the multiband imaging (MBI) function of this camera and develop a single-snapshot, single-sensor high color fidelity camera. Our camera is based on a plenoptic system with XYZ filters inserted in the pupil plane of the main lens. To achieve high color measurement precision of this system, we perform an end-to-end optimization of the system model that includes light source information, object information, optical system information, plenoptic image processing and color estimation processing. Optimized system characteristics are exploited to build an XYZ plenoptic colorimetric camera prototype that achieves high color measurement precision. We describe an application of our colorimetric camera to color shading evaluation of display and show that it achieves color accuracy of ΔE<0.01.

  18. Energy-efficient lighting system for television

    DOEpatents

    Cawthorne, Duane C.

    1987-07-21

    A light control system for a television camera comprises an artificial light control system which is cooperative with an iris control system. This artificial light control system adjusts the power to lamps illuminating the camera viewing area to provide only sufficient artificial illumination necessary to provide a sufficient video signal when the camera iris is substantially open.

  19. Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras.

    PubMed

    Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki

    2016-06-24

    Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system.

  20. Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras

    PubMed Central

    Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki

    2016-01-01

    Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system. PMID:27347961

  1. Practical vision based degraded text recognition system

    NASA Astrophysics Data System (ADS)

    Mohammad, Khader; Agaian, Sos; Saleh, Hani

    2011-02-01

    Rapid growth and progress in the medical, industrial, security and technology fields means more and more consideration for the use of camera based optical character recognition (OCR) Applying OCR to scanned documents is quite mature, and there are many commercial and research products available on this topic. These products achieve acceptable recognition accuracy and reasonable processing times especially with trained software, and constrained text characteristics. Even though the application space for OCR is huge, it is quite challenging to design a single system that is capable of performing automatic OCR for text embedded in an image irrespective of the application. Challenges for OCR systems include; images are taken under natural real world conditions, Surface curvature, text orientation, font, size, lighting conditions, and noise. These and many other conditions make it extremely difficult to achieve reasonable character recognition. Performance for conventional OCR systems drops dramatically as the degradation level of the text image quality increases. In this paper, a new recognition method is proposed to recognize solid or dotted line degraded characters. The degraded text string is localized and segmented using a new algorithm. The new method was implemented and tested using a development framework system that is capable of performing OCR on camera captured images. The framework allows parameter tuning of the image-processing algorithm based on a training set of camera-captured text images. Novel methods were used for enhancement, text localization and the segmentation algorithm which enables building a custom system that is capable of performing automatic OCR which can be used for different applications. The developed framework system includes: new image enhancement, filtering, and segmentation techniques which enabled higher recognition accuracies, faster processing time, and lower energy consumption, compared with the best state of the art published techniques. The system successfully produced impressive OCR accuracies (90% -to- 93%) using customized systems generated by our development framework in two industrial OCR applications: water bottle label text recognition and concrete slab plate text recognition. The system was also trained for the Arabic language alphabet, and demonstrated extremely high recognition accuracy (99%) for Arabic license name plate text recognition with processing times of 10 seconds. The accuracy and run times of the system were compared to conventional and many states of art methods, the proposed system shows excellent results.

  2. Composite video and graphics display for multiple camera viewing system in robotics and teleoperation

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B. (Inventor); Venema, Steven C. (Inventor)

    1991-01-01

    A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera.

  3. Composite video and graphics display for camera viewing systems in robotics and teleoperation

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B. (Inventor); Venema, Steven C. (Inventor)

    1993-01-01

    A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera.

  4. Tests of commercial colour CMOS cameras for astronomical applications

    NASA Astrophysics Data System (ADS)

    Pokhvala, S. M.; Reshetnyk, V. M.; Zhilyaev, B. E.

    2013-12-01

    We present some results of testing commercial colour CMOS cameras for astronomical applications. Colour CMOS sensors allow to perform photometry in three filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR colour system realized in colour CMOS sensors is close to the astronomical Johnson BVR system. The basic camera characteristics: read noise (e^{-}/pix), thermal noise (e^{-}/pix/sec) and electronic gain (e^{-}/ADU) for the commercial digital camera Canon 5D MarkIII are presented. We give the same characteristics for the scientific high performance cooled CCD camera system ALTA E47. Comparing results for tests of Canon 5D MarkIII and CCD ALTA E47 show that present-day commercial colour CMOS cameras can seriously compete with the scientific CCD cameras in deep astronomical imaging.

  5. Research on the electro-optical assistant landing system based on the dual camera photogrammetry algorithm

    NASA Astrophysics Data System (ADS)

    Mi, Yuhe; Huang, Yifan; Li, Lin

    2015-08-01

    Based on the location technique of beacon photogrammetry, Dual Camera Photogrammetry (DCP) algorithm was used to assist helicopters landing on the ship. In this paper, ZEMAX was used to simulate the two Charge Coupled Device (CCD) cameras imaging four beacons on both sides of the helicopter and output the image to MATLAB. Target coordinate systems, image pixel coordinate systems, world coordinate systems and camera coordinate systems were established respectively. According to the ideal pin-hole imaging model, the rotation matrix and translation vector of the target coordinate systems and the camera coordinate systems could be obtained by using MATLAB to process the image information and calculate the linear equations. On the basis mentioned above, ambient temperature and the positions of the beacons and cameras were changed in ZEMAX to test the accuracy of the DCP algorithm in complex sea status. The numerical simulation shows that in complex sea status, the position measurement accuracy can meet the requirements of the project.

  6. Low-cost digital dynamic visualization system

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Sajan, M. R.

    1995-05-01

    High speed photographic systems like the image rotation camera, the Cranz Schardin camera and the drum camera are typically used for recording and visualization of dynamic events in stress analysis, fluid mechanics, etc. All these systems are fairly expensive and generally not simple to use. Furthermore they are all based on photographic film recording systems requiring time consuming and tedious wet processing of the films. Currently digital cameras are replacing to certain extent the conventional cameras for static experiments. Recently, there is lot of interest in developing and modifying CCD architectures and recording arrangements for dynamic scene analysis. Herein we report the use of a CCD camera operating in the Time Delay and Integration (TDI) mode for digitally recording dynamic scenes. Applications in solid as well as fluid impact problems are presented.

  7. 4D light-field sensing system for people counting

    NASA Astrophysics Data System (ADS)

    Hou, Guangqi; Zhang, Chi; Wang, Yunlong; Sun, Zhenan

    2016-03-01

    Counting the number of people is still an important task in social security applications, and a few methods based on video surveillance have been proposed in recent years. In this paper, we design a novel optical sensing system to directly acquire the depth map of the scene from one light-field camera. The light-field sensing system can count the number of people crossing the passageway, and record the direction and intensity of rays at a snapshot without any assistant light devices. Depth maps are extracted from the raw light-ray sensing data. Our smart sensing system is equipped with a passive imaging sensor, which is able to naturally discern the depth difference between the head and shoulders for each person. Then a human model is built. Through detecting the human model from light-field images, the number of people passing the scene can be counted rapidly. We verify the feasibility of the sensing system as well as the accuracy by capturing real-world scenes passing single and multiple people under natural illumination.

  8. IMAX camera (12-IML-1)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The IMAX camera system is used to record on-orbit activities of interest to the public. Because of the extremely high resolution of the IMAX camera, projector, and audio systems, the audience is afforded a motion picture experience unlike any other. IMAX and OMNIMAX motion picture systems were designed to create motion picture images of superior quality and audience impact. The IMAX camera is a 65 mm, single lens, reflex viewing design with a 15 perforation per frame horizontal pull across. The frame size is 2.06 x 2.77 inches. Film travels through the camera at a rate of 336 feet per minute when the camera is running at the standard 24 frames/sec.

  9. Development of biostereometric experiments. [stereometric camera system

    NASA Technical Reports Server (NTRS)

    Herron, R. E.

    1978-01-01

    The stereometric camera was designed for close-range techniques in biostereometrics. The camera focusing distance of 360 mm to infinity covers a broad field of close-range photogrammetry. The design provides for a separate unit for the lens system and interchangeable backs on the camera for the use of single frame film exposure, roll-type film cassettes, or glass plates. The system incorporates the use of a surface contrast optical projector.

  10. A direct-view customer-oriented digital holographic camera

    NASA Astrophysics Data System (ADS)

    Besaga, Vira R.; Gerhardt, Nils C.; Maksimyak, Peter P.; Hofmann, Martin R.

    2018-01-01

    In this paper, we propose a direct-view digital holographic camera system consisting mostly of customer-oriented components. The camera system is based on standard photographic units such as camera sensor and objective and is adapted to operate under off-axis external white-light illumination. The common-path geometry of the holographic module of the system ensures direct-view operation. The system can operate in both self-reference and self-interference modes. As a proof of system operability, we present reconstructed amplitude and phase information of a test sample.

  11. Deep Space Positioning System

    NASA Technical Reports Server (NTRS)

    Vaughan, Andrew T. (Inventor); Riedel, Joseph E. (Inventor)

    2016-01-01

    A single, compact, lower power deep space positioning system (DPS) configured to determine a location of a spacecraft anywhere in the solar system, and provide state information relative to Earth, Sun, or any remote object. For example, the DPS includes a first camera and, possibly, a second camera configured to capture a plurality of navigation images to determine a state of a spacecraft in a solar system. The second camera is located behind, or adjacent to, a secondary reflector of a first camera in a body of a telescope.

  12. Real-time inspection by submarine images

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Zingaretti, Primo; Conte, Giuseppe

    1996-10-01

    A real-time application of computer vision concerning tracking and inspection of a submarine pipeline is described. The objective is to develop automatic procedures for supporting human operators in the real-time analysis of images acquired by means of cameras mounted on underwater remotely operated vehicles (ROV) Implementation of such procedures gives rise to a human-machine system for underwater pipeline inspection that can automatically detect and signal the presence of the pipe, of its structural or accessory elements, and of dangerous or alien objects in its neighborhood. The possibility of modifying the image acquisition rate in the simulations performed on video- recorded images is used to prove that the system performs all necessary processing with an acceptable robustness working in real-time up to a speed of about 2.5 kn, widely greater than that the actual ROVs and the security features allow.

  13. Smart mobility solution with multiple input Output interface.

    PubMed

    Sethi, Aartika; Deb, Sujay; Ranjan, Prabhat; Sardar, Arghya

    2017-07-01

    Smart wheelchairs are commonly used to provide solution for mobility impairment. However their usage is limited primarily due to high cost owing from sensors required for giving input, lack of adaptability for different categories of input and limited functionality. In this paper we propose a smart mobility solution using smartphone with inbuilt sensors (accelerometer, camera and speaker) as an input interface. An Emotiv EPOC+ is also used for motor imagery based input control synced with facial expressions in cases of extreme disability. Apart from traction, additional functions like home security and automation are provided using Internet of Things (IoT) and web interfaces. Although preliminary, our results suggest that this system can be used as an integrated and efficient solution for people suffering from mobility impairment. The results also indicate a decent accuracy is obtained for the overall system.

  14. Multisensor/multimission surveillance aircraft

    NASA Astrophysics Data System (ADS)

    Jobe, John T.

    1994-10-01

    The realignment of international powers, and the formation of new nations has resulted in increasing worldwide concern over border security, an expanding refugee problem, protection of fishery and mineral areas, and smuggling of all types. The focus on military services, to protect or defend against these threats of vital, national interest, is shifting to other government agencies and even commercial contractors to apply innovative and cost effective solutions. Previously, airborne surveillance and reconnaissance platforms have been large, mission dedicated military aircraft. The time has arrived for a smaller, more efficient, and more effective airborne capability. This paper briefly outlines a system of systems approach that smaller nations can afford to incorporate in their budgets, while greatly expanding their surveillance capability. The characteristics of specific cameras and sensors are purposely not addressed, so the emphasis can be placed on the integration of multiple sensors and capabilities.

  15. New opportunities for quality enhancing of images captured by passive THz camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2014-10-01

    As it is well-known, the passive THz camera allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. Obviously, efficiency of using the passive THz camera depends on its temperature resolution. This characteristic specifies possibilities of the detection for concealed object: minimal size of the object; maximal distance of the detection; image quality. Computer processing of the THz image may lead to many times improving of the image quality without any additional engineering efforts. Therefore, developing of modern computer code for its application to THz images is urgent problem. Using appropriate new methods one may expect such temperature resolution which will allow to see banknote in pocket of a person without any real contact. Modern algorithms for computer processing of THz images allow also to see object inside the human body using a temperature trace on the human skin. This circumstance enhances essentially opportunity of passive THz camera applications for counterterrorism problems. We demonstrate opportunities, achieved at present time, for the detection both of concealed objects and of clothes components due to using of computer processing of images captured by passive THz cameras, manufactured by various companies. Another important result discussed in the paper consists in observation of both THz radiation emitted by incandescent lamp and image reflected from ceramic floorplate. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp., and Capital Normal University (Beijing, China). All algorithms for computer processing of the THz images under consideration in this paper were developed by Russian part of author list. Keywords: THz wave, passive imaging camera, computer processing, security screening, concealed and forbidden objects, reflected image, hand seeing, banknote seeing, ceramic floorplate, incandescent lamp.

  16. Clinical applications of commercially available video recording and monitoring systems: inexpensive, high-quality video recording and monitoring systems for endoscopy and microsurgery.

    PubMed

    Tsunoda, Koichi; Tsunoda, Atsunobu; Ishimoto, ShinnIchi; Kimura, Satoko

    2006-01-01

    The exclusive charge-coupled device (CCD) camera system for the endoscope and electronic fiberscopes are in widespread use. However, both are usually stationary in an office or examination room, and a wheeled cart is needed for mobility. The total costs of the CCD camera system and electronic fiberscopy system are at least US Dollars 10,000 and US Dollars 30,000, respectively. Recently, the performance of audio and visual instruments has improved dramatically, with a concomitant reduction in their cost. Commercially available CCD video cameras with small monitors have become common. They provide excellent image quality and are much smaller and less expensive than previous models. The authors have developed adaptors for the popular mini-digital video (mini-DV) camera. The camera also provides video and acoustic output signals; therefore, the endoscopic images can be viewed on a large monitor simultaneously. The new system (a mini-DV video camera and an adaptor) costs only US Dollars 1,000. Therefore, the system is both cost-effective and useful for the outpatient clinic or casualty setting, or on house calls for the purpose of patient education. In the future, the authors plan to introduce the clinical application of a high-vision camera and an infrared camera as medical instruments for clinical and research situations.

  17. A Quasi-Static Method for Determining the Characteristics of a Motion Capture Camera System in a "Split-Volume" Configuration

    NASA Technical Reports Server (NTRS)

    Miller, Chris; Mulavara, Ajitkumar; Bloomberg, Jacob

    2001-01-01

    To confidently report any data collected from a video-based motion capture system, its functional characteristics must be determined, namely accuracy, repeatability and resolution. Many researchers have examined these characteristics with motion capture systems, but they used only two cameras, positioned 90 degrees to each other. Everaert used 4 cameras, but all were aligned along major axes (two in x, one in y and z). Richards compared the characteristics of different commercially available systems set-up in practical configurations, but all cameras viewed a single calibration volume. The purpose of this study was to determine the accuracy, repeatability and resolution of a 6-camera Motion Analysis system in a split-volume configuration using a quasistatic methodology.

  18. Streak camera receiver definition study

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Hunkler, L. T., Sr.; Letzring, S. A.; Jaanimagi, P.

    1990-01-01

    Detailed streak camera definition studies were made as a first step toward full flight qualification of a dual channel picosecond resolution streak camera receiver for the Geoscience Laser Altimeter and Ranging System (GLRS). The streak camera receiver requirements are discussed as they pertain specifically to the GLRS system, and estimates of the characteristics of the streak camera are given, based upon existing and near-term technological capabilities. Important problem areas are highlighted, and possible corresponding solutions are discussed.

  19. Personal Electronic Devices and the ISR Data Explosion: The Impact of Cyber Cameras on the Intelligence Community

    DTIC Science & Technology

    2015-06-01

    ground.aspx?p=1 Texas Tech Security Group, “Automated Open Source Intelligence ( OSINT ) Using APIs.” RaiderSec, Sunday 30 December 2012, http...Open Source Intelligence ( OSINT ) Using APIs,” RaiderSec, Sunday 30 December 2012, http://raidersec.blogspot.com/2012/12/automated-open- source

  20. Wired and Wireless Camera Triggering with Arduino

    NASA Astrophysics Data System (ADS)

    Kauhanen, H.; Rönnholm, P.

    2017-10-01

    Synchronous triggering is an important task that allows simultaneous data capture from multiple cameras. Accurate synchronization enables 3D measurements of moving objects or from a moving platform. In this paper, we describe one wired and four wireless variations of Arduino-based low-cost remote trigger systems designed to provide a synchronous trigger signal for industrial cameras. Our wireless systems utilize 315 MHz or 434 MHz frequencies with noise filtering capacitors. In order to validate the synchronization accuracy, we developed a prototype of a rotating trigger detection system (named RoTriDeS). This system is suitable to detect the triggering accuracy of global shutter cameras. As a result, the wired system indicated an 8.91 μs mean triggering time difference between two cameras. Corresponding mean values for the four wireless triggering systems varied between 7.92 and 9.42 μs. Presented values include both camera-based and trigger-based desynchronization. Arduino-based triggering systems appeared to be feasible, and they have the potential to be extended to more complicated triggering systems.

  1. Real-time person detection in low-resolution thermal infrared imagery with MSER and CNNs

    NASA Astrophysics Data System (ADS)

    Herrmann, Christian; Müller, Thomas; Willersinn, Dieter; Beyerer, Jürgen

    2016-10-01

    In many camera-based systems, person detection and localization is an important step for safety and security applications such as search and rescue, reconnaissance, surveillance, or driver assistance. Long-wave infrared (LWIR) imagery promises to simplify this task because it is less affected by background clutter or illumination changes. In contrast to a lot of related work, we make no assumptions about any movement of persons or the camera, i.e. persons may stand still and the camera may move or any combination thereof. Furthermore, persons may appear arbitrarily in near or far distances to the camera leading to low-resolution persons in far distances. To address this task, we propose a two-stage system, including a proposal generation method and a classifier to verify, if the detected proposals really are persons. In contradiction to use all possible proposals as with sliding window approaches, we apply Maximally Stable Extremal Regions (MSER) and classify the detected proposals afterwards with a Convolutional Neural Network (CNN). The MSER algorithm acts as a hot spot detector when applied to LWIR imagery. Because the body temperature of persons is usually higher than the background, they appear as hot spots in the image. However, the MSER algorithm is unable to distinguish between different kinds of hot spots. Thus, all further LWIR sources such as windows, animals or vehicles will be detected, too. Still by applying MSER, the number of proposals is reduced significantly in comparison to a sliding window approach which allows employing the high discriminative capabilities of deep neural networks classifiers that were recently shown in several applications such as face recognition or image content classification. We suggest using a CNN as classifier for the detected hot spots and train it to discriminate between person hot spots and all further hot spots. We specifically design a CNN that is suitable for the low-resolution person hot spots that are common with LWIR imagery applications and is capable of fast classification. Evaluation on several different LWIR person detection datasets shows an error rate reduction of up to 80 percent compared to previous approaches consisting of MSER, local image descriptors and a standard classifier such as an SVM or boosted decision trees. Further time measurements show that the proposed processing chain is capable of real-time person detection in LWIR camera streams.

  2. High-accuracy and robust face recognition system based on optical parallel correlator using a temporal image sequence

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Ishikawa, Mami; Ohta, Maiko; Kodate, Kashiko

    2005-09-01

    Face recognition is used in a wide range of security systems, such as monitoring credit card use, searching for individuals with street cameras via Internet and maintaining immigration control. There are still many technical subjects under study. For instance, the number of images that can be stored is limited under the current system, and the rate of recognition must be improved to account for photo shots taken at different angles under various conditions. We implemented a fully automatic Fast Face Recognition Optical Correlator (FARCO) system by using a 1000 frame/s optical parallel correlator designed and assembled by us. Operational speed for the 1: N (i.e. matching a pair of images among N, where N refers to the number of images in the database) identification experiment (4000 face images) amounts to less than 1.5 seconds, including the pre/post processing. From trial 1: N identification experiments using FARCO, we acquired low error rates of 2.6% False Reject Rate and 1.3% False Accept Rate. By making the most of the high-speed data-processing capability of this system, much more robustness can be achieved for various recognition conditions when large-category data are registered for a single person. We propose a face recognition algorithm for the FARCO while employing a temporal image sequence of moving images. Applying this algorithm to a natural posture, a two times higher recognition rate scored compared with our conventional system. The system has high potential for future use in a variety of purposes such as search for criminal suspects by use of street and airport video cameras, registration of babies at hospitals or handling of an immeasurable number of images in a database.

  3. Dynamic photoelasticity by TDI imaging

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Sajan, M. R.

    2001-06-01

    High speed photographic system like the image rotation camera, the Cranz Schardin camera and the drum camera are typically used for the recording and visualization of dynamic events in stress analysis, fluid mechanics, etc. All these systems are fairly expensive and generally not simple to use. Furthermore they are all based on photographic film recording system requiring time consuming and tedious wet processing of the films. Digital cameras are replacing the conventional cameras, to certain extent in static experiments. Recently, there is lots of interest in development and modifying CCD architectures and recording arrangements for dynamic scenes analysis. Herein we report the use of a CCD camera operating in the Time Delay and Integration mode for digitally recording dynamic photoelastic stress patterns. Applications in strobe and streak photoelastic pattern recording and system limitations will be explained in the paper.

  4. Fiber optic TV direct

    NASA Technical Reports Server (NTRS)

    Kassak, John E.

    1991-01-01

    The objective of the operational television (OTV) technology was to develop a multiple camera system (up to 256 cameras) for NASA Kennedy installations where camera video, synchronization, control, and status data are transmitted bidirectionally via a single fiber cable at distances in excess of five miles. It is shown that the benefits (such as improved video performance, immunity from electromagnetic interference and radio frequency interference, elimination of repeater stations, and more system configuration flexibility) can be realized if application of the proven fiber optic transmission concept is used. The control system will marry the lens, pan and tilt, and camera control functions into a modular based Local Area Network (LAN) control network. Such a system does not exist commercially at present since the Television Broadcast Industry's current practice is to divorce the positional controls from the camera control system. The application software developed for this system will have direct applicability to similar systems in industry using LAN based control systems.

  5. Levels of Autonomy and Autonomous System Performance Assessment for Intelligent Unmanned Systems

    DTIC Science & Technology

    2014-04-01

    LIDAR and camera sensors that is driven entirely by teleoperation would be AL 0. If that same robot used its LIDAR and camera data to generate a...obstacle detection, mapping, path planning 3 CMMAD semi- autonomous counter- mine system (Few 2010) Talon UGV, camera, LIDAR , metal detector...NCAP framework are performed on individual UMS components and do not require mission level evaluations. For example, bench testing of camera, LIDAR

  6. The imaging system design of three-line LMCCD mapping camera

    NASA Astrophysics Data System (ADS)

    Zhou, Huai-de; Liu, Jin-Guo; Wu, Xing-Xing; Lv, Shi-Liang; Zhao, Ying; Yu, Da

    2011-08-01

    In this paper, the authors introduced the theory about LMCCD (line-matrix CCD) mapping camera firstly. On top of the introduction were consists of the imaging system of LMCCD mapping camera. Secondly, some pivotal designs which were Introduced about the imaging system, such as the design of focal plane module, the video signal's procession, the controller's design of the imaging system, synchronous photography about forward and nadir and backward camera and the nadir camera of line-matrix CCD. At last, the test results of LMCCD mapping camera imaging system were introduced. The results as following: the precision of synchronous photography about forward and nadir and backward camera is better than 4 ns and the nadir camera of line-matrix CCD is better than 4 ns too; the photography interval of line-matrix CCD of the nadir camera can satisfy the butter requirements of LMCCD focal plane module; the SNR tested in laboratory is better than 95 under typical working condition(the solar incidence degree is 30, the reflectivity of the earth's surface is 0.3) of each CCD image; the temperature of the focal plane module is controlled under 30° in a working period of 15 minutes. All of these results can satisfy the requirements about the synchronous photography, the temperature control of focal plane module and SNR, Which give the guarantee of precision for satellite photogrammetry.

  7. Using Stereo Vision to Support the Automated Analysis of Surveillance Videos

    NASA Astrophysics Data System (ADS)

    Menze, M.; Muhle, D.

    2012-07-01

    Video surveillance systems are no longer a collection of independent cameras, manually controlled by human operators. Instead, smart sensor networks are developed, able to fulfil certain tasks on their own and thus supporting security personnel by automated analyses. One well-known task is the derivation of people's positions on a given ground plane from monocular video footage. An improved accuracy for the ground position as well as a more detailed representation of single salient people can be expected from a stereoscopic processing of overlapping views. Related work mostly relies on dedicated stereo devices or camera pairs with a small baseline. While this set-up is helpful for the essential step of image matching, the high accuracy potential of a wide baseline and the according good intersection geometry is not utilised. In this paper we present a stereoscopic approach, working on overlapping views of standard pan-tilt-zoom cameras which can easily be generated for arbitrary points of interest by an appropriate reconfiguration of parts of a sensor network. Experiments are conducted on realistic surveillance footage to show the potential of the suggested approach and to investigate the influence of different baselines on the quality of the derived surface model. Promising estimations of people's position and height are retrieved. Although standard matching approaches show helpful results, future work will incorporate temporal dependencies available from image sequences in order to reduce computational effort and improve the derived level of detail.

  8. Optical Meteor Systems Used by the NASA Meteoroid Environment Office

    NASA Technical Reports Server (NTRS)

    Kingery, A. M.; Blaauw, R. C.; Cooke, W. J.; Moser, D. E.

    2015-01-01

    The NASA Meteoroid Environment Office (MEO) uses two main meteor camera networks to characterize the meteoroid environment: an all sky system and a wide field system to study cm and mm size meteors respectively. The NASA All Sky Fireball Network consists of fifteen meteor video cameras in the United States, with plans to expand to eighteen cameras by the end of 2015. The camera design and All-Sky Guided and Real-time Detection (ASGARD) meteor detection software [1, 2] were adopted from the University of Western Ontario's Southern Ontario Meteor Network (SOMN). After seven years of operation, the network has detected over 12,000 multi-station meteors, including meteors from at least 53 different meteor showers. The network is used for speed distribution determination, characterization of meteor showers and sporadic sources, and for informing the public on bright meteor events. The NASA Wide Field Meteor Network was established in December of 2012 with two cameras and expanded to eight cameras in December of 2014. The two camera configuration saw 5470 meteors over two years of operation with two cameras, and has detected 3423 meteors in the first five months of operation (Dec 12, 2014 - May 12, 2015) with eight cameras. We expect to see over 10,000 meteors per year with the expanded system. The cameras have a 20 degree field of view and an approximate limiting meteor magnitude of +5. The network's primary goal is determining the nightly shower and sporadic meteor fluxes. Both camera networks function almost fully autonomously with little human interaction required for upkeep and analysis. The cameras send their data to a central server for storage and automatic analysis. Every morning the servers automatically generates an e-mail and web page containing an analysis of the previous night's events. The current status of the networks will be described, alongside with preliminary results. In addition, future projects, CCD photometry and broadband meteor color camera system, will be discussed.

  9. 241-AZ-101 Waste Tank Color Video Camera System Shop Acceptance Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WERRY, S.M.

    2000-03-23

    This report includes shop acceptance test results. The test was performed prior to installation at tank AZ-101. Both the camera system and camera purge system were originally sought and procured as a part of initial waste retrieval project W-151.

  10. Integrated inertial stellar attitude sensor

    NASA Technical Reports Server (NTRS)

    Brady, Tye M. (Inventor); Kourepenis, Anthony S. (Inventor); Wyman, Jr., William F. (Inventor)

    2007-01-01

    An integrated inertial stellar attitude sensor for an aerospace vehicle includes a star camera system, a gyroscope system, a controller system for synchronously integrating an output of said star camera system and an output of said gyroscope system into a stream of data, and a flight computer responsive to said stream of data for determining from the star camera system output and the gyroscope system output the attitude of the aerospace vehicle.

  11. The first satellite laser echoes recorded on the streak camera

    NASA Technical Reports Server (NTRS)

    Hamal, Karel; Prochazka, Ivan; Kirchner, Georg; Koidl, F.

    1993-01-01

    The application of the streak camera with the circular sweep for the satellite laser ranging is described. The Modular Streak Camera system employing the circular sweep option was integrated into the conventional Satellite Laser System. The experimental satellite tracking and ranging has been performed. The first satellite laser echo streak camera records are presented.

  12. Electronic camera-management system for 35-mm and 70-mm film cameras

    NASA Astrophysics Data System (ADS)

    Nielsen, Allan

    1993-01-01

    Military and commercial test facilities have been tasked with the need for increasingly sophisticated data collection and data reduction. A state-of-the-art electronic control system for high speed 35 mm and 70 mm film cameras designed to meet these tasks is described. Data collection in today's test range environment is difficult at best. The need for a completely integrated image and data collection system is mandated by the increasingly complex test environment. Instrumentation film cameras have been used on test ranges to capture images for decades. Their high frame rates coupled with exceptionally high resolution make them an essential part of any test system. In addition to documenting test events, today's camera system is required to perform many additional tasks. Data reduction to establish TSPI (time- space-position information) may be performed after a mission and is subject to all of the variables present in documenting the mission. A typical scenario would consist of multiple cameras located on tracking mounts capturing the event along with azimuth and elevation position data. Corrected data can then be reduced using each camera's time and position deltas and calculating the TSPI of the object using triangulation. An electronic camera control system designed to meet these requirements has been developed by Photo-Sonics, Inc. The feedback received from test technicians at range facilities throughout the world led Photo-Sonics to design the features of this control system. These prominent new features include: a comprehensive safety management system, full local or remote operation, frame rate accuracy of less than 0.005 percent, and phase locking capability to Irig-B. In fact, Irig-B phase lock operation of multiple cameras can reduce the time-distance delta of a test object traveling at mach-1 to less than one inch during data reduction.

  13. Modulated electron-multiplied fluorescence lifetime imaging microscope: all-solid-state camera for fluorescence lifetime imaging.

    PubMed

    Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; Geert Sander de Jong, Jan; van Geest, Bert; Stoop, Karel; Young, Ian Ted

    2012-12-01

    We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.

  14. Light-Directed Ranging System Implementing Single Camera System for Telerobotics Applications

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor); Li, Larry C. (Inventor); Cox, Brian J. (Inventor)

    1997-01-01

    A laser-directed ranging system has utility for use in various fields, such as telerobotics applications and other applications involving physically handicapped individuals. The ranging system includes a single video camera and a directional light source such as a laser mounted on a camera platform, and a remotely positioned operator. In one embodiment, the position of the camera platform is controlled by three servo motors to orient the roll axis, pitch axis and yaw axis of the video cameras, based upon an operator input such as head motion. The laser is offset vertically and horizontally from the camera, and the laser/camera platform is directed by the user to point the laser and the camera toward a target device. The image produced by the video camera is processed to eliminate all background images except for the spot created by the laser. This processing is performed by creating a digital image of the target prior to illumination by the laser, and then eliminating common pixels from the subsequent digital image which includes the laser spot. A reference point is defined at a point in the video frame, which may be located outside of the image area of the camera. The disparity between the digital image of the laser spot and the reference point is calculated for use in a ranging analysis to determine range to the target.

  15. Fuzzy logic control for camera tracking system

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  16. Variation in detection among passive infrared triggered-cameras used in wildlife research

    USGS Publications Warehouse

    Damm, Philip E.; Grand, James B.; Barnett, Steven W.

    2010-01-01

    Precise and accurate estimates of demographics such as age structure, productivity, and density are necessary in determining habitat and harvest management strategies for wildlife populations. Surveys using automated cameras are becoming an increasingly popular tool for estimating these parameters. However, most camera studies fail to incorporate detection probabilities, leading to parameter underestimation. The objective of this study was to determine the sources of heterogeneity in detection for trail cameras that incorporate a passive infrared (PIR) triggering system sensitive to heat and motion. Images were collected at four baited sites within the Conecuh National Forest, Alabama, using three cameras at each site operating continuously over the same seven-day period. Detection was estimated for four groups of animals based on taxonomic group and body size. Our hypotheses of detection considered variation among bait sites and cameras. The best model (w=0.99) estimated different rates of detection for each camera in addition to different detection rates for four animal groupings. Factors that explain this variability might include poor manufacturing tolerances, variation in PIR sensitivity, animal behavior, and species-specific infrared radiation. Population surveys using trail cameras with PIR systems must incorporate detection rates for individual cameras. Incorporating time-lapse triggering systems into survey designs should eliminate issues associated with PIR systems.

  17. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.

    PubMed

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-08-30

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments.

  18. Advanced microlens and color filter process technology for the high-efficiency CMOS and CCD image sensors

    NASA Astrophysics Data System (ADS)

    Fan, Yang-Tung; Peng, Chiou-Shian; Chu, Cheng-Yu

    2000-12-01

    New markets are emerging for digital electronic image device, especially in visual communications, PC camera, mobile/cell phone, security system, toys, vehicle image system and computer peripherals for document capture. To enable one-chip image system that image sensor is with a full digital interface, can make image capture devices in our daily lives. Adding a color filter to such image sensor in a pattern of mosaics pixel or wide stripes can make image more real and colorful. We can say 'color filter makes the life more colorful color filter is? Color filter means can filter image light source except the color with specific wavelength and transmittance that is same as color filter itself. Color filter process is coating and patterning green, red and blue (or cyan, magenta and yellow) mosaic resists onto matched pixel in image sensing array pixels. According to the signal caught from each pixel, we can figure out the environment image picture. Widely use of digital electronic camera and multimedia applications today makes the feature of color filter becoming bright. Although it has challenge but it is very worthy to develop the process of color filter. We provide the best service on shorter cycle time, excellent color quality, high and stable yield. The key issues of advanced color process have to be solved and implemented are planarization and micro-lens technology. Lost of key points of color filter process technology have to consider will also be described in this paper.

  19. Global calibration of multi-cameras with non-overlapping fields of view based on photogrammetry and reconfigurable target

    NASA Astrophysics Data System (ADS)

    Xia, Renbo; Hu, Maobang; Zhao, Jibin; Chen, Songlin; Chen, Yueling

    2018-06-01

    Multi-camera vision systems are often needed to achieve large-scale and high-precision measurement because these systems have larger fields of view (FOV) than a single camera. Multiple cameras may have no or narrow overlapping FOVs in many applications, which pose a huge challenge to global calibration. This paper presents a global calibration method for multi-cameras without overlapping FOVs based on photogrammetry technology and a reconfigurable target. Firstly, two planar targets are fixed together and made into a long target according to the distance between the two cameras to be calibrated. The relative positions of the two planar targets can be obtained by photogrammetric methods and used as invariant constraints in global calibration. Then, the reprojection errors of target feature points in the two cameras’ coordinate systems are calculated at the same time and optimized by the Levenberg–Marquardt algorithm to find the optimal solution of the transformation matrix between the two cameras. Finally, all the camera coordinate systems are converted to the reference coordinate system in order to achieve global calibration. Experiments show that the proposed method has the advantages of high accuracy (the RMS error is 0.04 mm) and low cost and is especially suitable for on-site calibration.

  20. Uav Cameras: Overview and Geometric Calibration Benchmark

    NASA Astrophysics Data System (ADS)

    Cramer, M.; Przybilla, H.-J.; Zurhorst, A.

    2017-08-01

    Different UAV platforms and sensors are used in mapping already, many of them equipped with (sometimes) modified cameras as known from the consumer market. Even though these systems normally fulfil their requested mapping accuracy, the question arises, which system performs best? This asks for a benchmark, to check selected UAV based camera systems in well-defined, reproducible environments. Such benchmark is tried within this work here. Nine different cameras used on UAV platforms, representing typical camera classes, are considered. The focus is laid on the geometry here, which is tightly linked to the process of geometrical calibration of the system. In most applications the calibration is performed in-situ, i.e. calibration parameters are obtained as part of the project data itself. This is often motivated because consumer cameras do not keep constant geometry, thus, cannot be seen as metric cameras. Still, some of the commercial systems are quite stable over time, as it was proven from repeated (terrestrial) calibrations runs. Already (pre-)calibrated systems may offer advantages, especially when the block geometry of the project does not allow for a stable and sufficient in-situ calibration. Especially for such scenario close to metric UAV cameras may have advantages. Empirical airborne test flights in a calibration field have shown how block geometry influences the estimated calibration parameters and how consistent the parameters from lab calibration can be reproduced.

  1. A novel camera localization system for extending three-dimensional digital image correlation

    NASA Astrophysics Data System (ADS)

    Sabato, Alessandro; Reddy, Narasimha; Khan, Sameer; Niezrecki, Christopher

    2018-03-01

    The monitoring of civil, mechanical, and aerospace structures is important especially as these systems approach or surpass their design life. Often, Structural Health Monitoring (SHM) relies on sensing techniques for condition assessment. Advancements achieved in camera technology and optical sensors have made three-dimensional (3D) Digital Image Correlation (DIC) a valid technique for extracting structural deformations and geometry profiles. Prior to making stereophotogrammetry measurements, a calibration has to be performed to obtain the vision systems' extrinsic and intrinsic parameters. It means that the position of the cameras relative to each other (i.e. separation distance, cameras angle, etc.) must be determined. Typically, cameras are placed on a rigid bar to prevent any relative motion between the cameras. This constraint limits the utility of the 3D-DIC technique, especially as it is applied to monitor large-sized structures and from various fields of view. In this preliminary study, the design of a multi-sensor system is proposed to extend 3D-DIC's capability and allow for easier calibration and measurement. The suggested system relies on a MEMS-based Inertial Measurement Unit (IMU) and a 77 GHz radar sensor for measuring the orientation and relative distance of the stereo cameras. The feasibility of the proposed combined IMU-radar system is evaluated through laboratory tests, demonstrating its ability in determining the cameras position in space for performing accurate 3D-DIC calibration and measurements.

  2. Depth Perception In Remote Stereoscopic Viewing Systems

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Von Sydow, Marika

    1989-01-01

    Report describes theoretical and experimental studies of perception of depth by human operators through stereoscopic video systems. Purpose of such studies to optimize dual-camera configurations used to view workspaces of remote manipulators at distances of 1 to 3 m from cameras. According to analysis, static stereoscopic depth distortion decreased, without decreasing stereoscopitc depth resolution, by increasing camera-to-object and intercamera distances and camera focal length. Further predicts dynamic stereoscopic depth distortion reduced by rotating cameras around center of circle passing through point of convergence of viewing axes and first nodal points of two camera lenses.

  3. Multi-color pyrometry imaging system and method of operating the same

    DOEpatents

    Estevadeordal, Jordi; Nirmalan, Nirm Velumylum; Tralshawala, Nilesh; Bailey, Jeremy Clyde

    2017-03-21

    A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.

  4. Single-camera stereo-digital image correlation with a four-mirror adapter: optimized design and validation

    NASA Astrophysics Data System (ADS)

    Yu, Liping; Pan, Bing

    2016-12-01

    A low-cost, easy-to-implement but practical single-camera stereo-digital image correlation (DIC) system using a four-mirror adapter is established for accurate shape and three-dimensional (3D) deformation measurements. The mirrors assisted pseudo-stereo imaging system can convert a single camera into two virtual cameras, which view a specimen from different angles and record the surface images of the test object onto two halves of the camera sensor. To enable deformation measurement in non-laboratory conditions or extreme high temperature environments, an active imaging optical design, combining an actively illuminated monochromatic source with a coupled band-pass optical filter, is compactly integrated to the pseudo-stereo DIC system. The optical design, basic principles and implementation procedures of the established system for 3D profile and deformation measurements are described in detail. The effectiveness and accuracy of the established system are verified by measuring the profile of a regular cylinder surface and displacements of a translated planar plate. As an application example, the established system is used to determine the tensile strains and Poisson's ratio of a composite solid propellant specimen during stress relaxation test. Since the established single-camera stereo-DIC system only needs a single camera and presents strong robustness against variations in ambient light or the thermal radiation of a hot object, it demonstrates great potential in determining transient deformation in non-laboratory or high-temperature environments with the aid of a single high-speed camera.

  5. Murine fundus fluorescein angiography: An alternative approach using a handheld camera.

    PubMed

    Ehrenberg, Moshe; Ehrenberg, Scott; Schwob, Ouri; Benny, Ofra

    2016-07-01

    In today's modern pharmacologic approach to treating sight-threatening retinal vascular disorders, there is an increasing demand for a compact, mobile, lightweight and cost-effective fluorescein fundus camera to document the effects of antiangiogenic drugs on laser-induced choroidal neovascularization (CNV) in mice and other experimental animals. We have adapted the use of the Kowa Genesis Df Camera to perform Fundus Fluorescein Angiography (FFA) in mice. The 1 kg, 28 cm high camera has built-in barrier and exciter filters to allow digital FFA recording to a Compact Flash memory card. Furthermore, this handheld unit has a steady Indirect Lens Holder that firmly attaches to the main unit, that securely holds a 90 diopter lens in position, in order to facilitate appropriate focus and stability, for photographing the delicate central murine fundus. This easily portable fundus fluorescein camera can effectively record exceptional central retinal vascular detail in murine laser-induced CNV, while readily allowing the investigator to adjust the camera's position according to the variable head and eye movements that can randomly occur while the mouse is optimally anesthetized. This movable image recording device, with efficiencies of space, time, cost, energy and personnel, has enabled us to accurately document the alterations in the central choroidal and retinal vasculature following induction of CNV, implemented by argon-green laser photocoagulation and disruption of Bruch's Membrane, in the experimental murine model of exudative macular degeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Mitigation of Atmospheric Effects on Imaging Systems

    DTIC Science & Technology

    2004-03-31

    focal length. The imaging system had two cameras: an Electrim camera sensitive in the visible (0.6 µ m) waveband and an Amber QWIP infrared camera...sensitive in the 9–micron region. The Amber QWIP infrared camera had 256x256 pixels, pixel pitch 38 mµ , focal length of 1.8 m, FOV of 5.4 x5.4 mr...each day. Unfortunately, signals from the different read ports of the Electrim camera picked up noise on their way to the digitizer, and this resulted

  7. Autocalibration of a projector-camera system.

    PubMed

    Okatani, Takayuki; Deguchi, Koichiro

    2005-12-01

    This paper presents a method for calibrating a projector-camera system that consists of multiple projectors (or multiple poses of a single projector), a camera, and a planar screen. We consider the problem of estimating the homography between the screen and the image plane of the camera or the screen-camera homography, in the case where there is no prior knowledge regarding the screen surface that enables the direct computation of the homography. It is assumed that the pose of each projector is unknown while its internal geometry is known. Subsequently, it is shown that the screen-camera homography can be determined from only the images projected by the projectors and then obtained by the camera, up to a transformation with four degrees of freedom. This transformation corresponds to arbitrariness in choosing a two-dimensional coordinate system on the screen surface and when this coordinate system is chosen in some manner, the screen-camera homography as well as the unknown poses of the projectors can be uniquely determined. A noniterative algorithm is presented, which computes the homography from three or more images. Several experimental results on synthetic as well as real images are shown to demonstrate the effectiveness of the method.

  8. ACT-Vision: active collaborative tracking for multiple PTZ cameras

    NASA Astrophysics Data System (ADS)

    Broaddus, Christopher; Germano, Thomas; Vandervalk, Nicholas; Divakaran, Ajay; Wu, Shunguang; Sawhney, Harpreet

    2009-04-01

    We describe a novel scalable approach for the management of a large number of Pan-Tilt-Zoom (PTZ) cameras deployed outdoors for persistent tracking of humans and vehicles, without resorting to the large fields of view of associated static cameras. Our system, Active Collaborative Tracking - Vision (ACT-Vision), is essentially a real-time operating system that can control hundreds of PTZ cameras to ensure uninterrupted tracking of target objects while maintaining image quality and coverage of all targets using a minimal number of sensors. The system ensures the visibility of targets between PTZ cameras by using criteria such as distance from sensor and occlusion.

  9. Use of Data Libraries for IAEA Nuclear Security Assessment Methodologies (NUSAM) [section 5.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shull, D.; Lane, M.

    2015-06-23

    Data libraries are essential for the characterization of the facility and provide the documented input which enables the facility assessment results and subsequent conclusions. Data Libraries are historical, verifiable, quantified, and applicable collections of testing data on different types of barriers, sensors, cameras, procedures, and/or personnel. Data libraries are developed and maintained as part of any assessment program or process. Data is collected during the initial stages of facility characterization to aid in the model and/or simulation development process. Data library values may also be developed through the use of state testing centers and/or site resources by testing different typesmore » of barriers, sensors, cameras, procedures, and/or personnel. If no data exists, subject matter expert opinion and manufacturer's specifications/ testing values can be the basis for initially assigning values, but are generally less reliable and lack appropriate confidence measures. The use of existing data libraries that have been developed by a state testing organization reduces the assessment costs by establishing standard delay, detection and assessment values for use by multiple sites or facilities where common barriers and alarms systems exist.« less

  10. Traffic monitoring with distributed smart cameras

    NASA Astrophysics Data System (ADS)

    Sidla, Oliver; Rosner, Marcin; Ulm, Michael; Schwingshackl, Gert

    2012-01-01

    The observation and monitoring of traffic with smart visions systems for the purpose of improving traffic safety has a big potential. Today the automated analysis of traffic situations is still in its infancy--the patterns of vehicle motion and pedestrian flow in an urban environment are too complex to be fully captured and interpreted by a vision system. 3In this work we present steps towards a visual monitoring system which is designed to detect potentially dangerous traffic situations around a pedestrian crossing at a street intersection. The camera system is specifically designed to detect incidents in which the interaction of pedestrians and vehicles might develop into safety critical encounters. The proposed system has been field-tested at a real pedestrian crossing in the City of Vienna for the duration of one year. It consists of a cluster of 3 smart cameras, each of which is built from a very compact PC hardware system in a weatherproof housing. Two cameras run vehicle detection and tracking software, one camera runs a pedestrian detection and tracking module based on the HOG dectection principle. All 3 cameras use sparse optical flow computation in a low-resolution video stream in order to estimate the motion path and speed of objects. Geometric calibration of the cameras allows us to estimate the real-world co-ordinates of detected objects and to link the cameras together into one common reference system. This work describes the foundation for all the different object detection modalities (pedestrians, vehicles), and explains the system setup, tis design, and evaluation results which we have achieved so far.

  11. Automatic lightning detection and photographic system

    NASA Technical Reports Server (NTRS)

    Wojtasinski, R. J.; Holley, L. D.; Gray, J. L.; Hoover, R. B. (Inventor)

    1972-01-01

    A system is presented for monitoring and recording lightning strokes within a predetermined area with a camera having an electrically operated shutter with means for advancing the film in the camera after activating the shutter. The system includes an antenna for sensing lightning strikes which, in turn, generates a signal that is fed to an electronic circuit which generates signals for operating the shutter of the camera. Circuitry is provided for preventing activation of the shutter as the film in the camera is being advanced.

  12. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  13. Real-time terahertz wave imaging by nonlinear optical frequency up-conversion in a 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate crystal

    NASA Astrophysics Data System (ADS)

    Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Matsukawa, Takeshi; Takida, Yuma; Minamide, Hiroaki

    2014-03-01

    Real-time terahertz (THz) wave imaging has wide applications in areas such as security, industry, biology, medicine, pharmacy, and arts. In this letter, we report on real-time room-temperature THz imaging by nonlinear optical frequency up-conversion in organic 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate crystal. The active projection-imaging system consisted of (1) THz wave generation, (2) THz-near-infrared hybrid optics, (3) THz wave up-conversion, and (4) an InGaAs camera working at 60 frames per second. The pumping laser system consisted of two optical parametric oscillators pumped by a nano-second frequency-doubled Nd:YAG laser. THz-wave images of handmade samples at 19.3 THz were taken, and videos of a sample moving and a ruler stuck with a black polyethylene film moving were supplied online to show real-time ability. Thanks to the high speed and high responsivity of this technology, real-time THz imaging with a higher signal-to-noise ratio than a commercially available THz micro-bolometer camera was proven to be feasible. By changing the phase-matching condition, i.e., by changing the wavelength of the pumping laser, we suggest THz imaging with a narrow THz frequency band of interest in a wide range from approximately 2 to 30 THz is possible.

  14. Development of an Extra-vehicular (EVA) Infrared (IR) Camera Inspection System

    NASA Technical Reports Server (NTRS)

    Gazarik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Pandolf, John; Jenkins, Rusty; Yates, Rusty

    2006-01-01

    Designed to fulfill a critical inspection need for the Space Shuttle Program, the EVA IR Camera System can detect crack and subsurface defects in the Reinforced Carbon-Carbon (RCC) sections of the Space Shuttle s Thermal Protection System (TPS). The EVA IR Camera performs this detection by taking advantage of the natural thermal gradients induced in the RCC by solar flux and thermal emission from the Earth. This instrument is a compact, low-mass, low-power solution (1.2cm3, 1.5kg, 5.0W) for TPS inspection that exceeds existing requirements for feature detection. Taking advantage of ground-based IR thermography techniques, the EVA IR Camera System provides the Space Shuttle program with a solution that can be accommodated by the existing inspection system. The EVA IR Camera System augments the visible and laser inspection systems and finds cracks and subsurface damage that is not measurable by the other sensors, and thus fills a critical gap in the Space Shuttle s inspection needs. This paper discusses the on-orbit RCC inspection measurement concept and requirements, and then presents a detailed description of the EVA IR Camera System design.

  15. Spectral types for objects in the Kiso survey. IV - Data for 81 stars

    NASA Technical Reports Server (NTRS)

    Wegner, Gary; Mcmahan, Robert K.

    1988-01-01

    Spectroscopy and spectral types for 81 ultraviolet-excess objects found in the Kiso Schmidt-camera survey are reported. The data were secured with the McGraw-Hill 1.3 m telescope at 8-A resolution covering the wavelength interval 4000 -7200 A using the Mark II spectrograph. Descriptions of the spectra of some of the more peculiar objects found in this sample are given and include 14 sub-dwarfs, 23 definite DA white dwarfs, including a magnetic one, and one DQ whie dwarf, eight quasars and emission-line objects, and a new composite DA + dM system. More spectroscopy of the new cataclysmic variable KUV 01584-0939 and a possibly related object is also described.

  16. Fusion of footsteps and face biometrics on an unsupervised and uncontrolled environment

    NASA Astrophysics Data System (ADS)

    Vera-Rodriguez, Ruben; Tome, Pedro; Fierrez, Julian; Ortega-Garcia, Javier

    2012-06-01

    This paper reports for the first time experiments on the fusion of footsteps and face on an unsupervised and not controlled environment for person authentication. Footstep recognition is a relatively new biometric based on signals extracted from people walking over floor sensors. The idea of the fusion between footsteps and face starts from the premise that in an area where footstep sensors are installed it is very simple to place a camera to capture also the face of the person that walks over the sensors. This setup may find application in scenarios like ambient assisted living, smart homes, eldercare, or security access. The paper reports a comparative assessment of both biometrics using the same database and experimental protocols. In the experimental work we consider two different applications: smart homes (small group of users with a large set of training data) and security access (larger group of users with a small set of training data) obtaining results of 0.9% and 5.8% EER respectively for the fusion of both modalities. This is a significant performance improvement compared with the results obtained by the individual systems.

  17. 15 CFR 742.4 - National security.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Requirements” section except those cameras in ECCN 6A003.b.4.b that have a focal plane array with 111,000 or... Albania, Australia, Austria, Belgium, Bulgaria, Canada, Croatia, Cyprus, Czech Republic, Denmark, Estonia....b.4.b that have a focal plane array with 111,000 or fewer elements and a frame rate of 60 Hz or less...

  18. Big Data: What Is It and Why Does It Matter?

    ERIC Educational Resources Information Center

    Waters, John K.

    2012-01-01

    Colleges and universities are swimming in an ever-widening sea of data. Human beings and machines together generate about 2.5 "quintillion" (10[superscript 18]) bytes every day, according to IBM's latest estimate. The sources of all that data are dizzyingly diverse: e-mail, blogs, click streams, security cameras, weather sensors, social networks,…

  19. Structured Tracking for Safety, Security, and Privacy: Algorithms for Fusing Noisy Estimates from Sensor, Robot, and Camera Networks

    DTIC Science & Technology

    2009-07-23

    negative log of the probability at each edge. 135 7.4 Simulation experiments All simulation experiments were implemented in Matlab and executed on PCs...Sensitivity . . . . 71 4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.5.1 Simulation Results...113 6.6.2 Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.7 Simulation Results

  20. A 3D photographic capsule endoscope system with full field of view

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Jeng, Wei-De; Lai, Chien-Cheng; Kung, Yi-Chinn; Tao, Kuan-Heng

    2013-09-01

    Current capsule endoscope uses one camera to capture the surface image in the intestine. It can only observe the abnormal point, but cannot know the exact information of this abnormal point. Using two cameras can generate 3D images, but the visual plane changes while capsule endoscope rotates. It causes that two cameras can't capture the images information completely. To solve this question, this research provides a new kind of capsule endoscope to capture 3D images, which is 'A 3D photographic capsule endoscope system'. The system uses three cameras to capture images in real time. The advantage is increasing the viewing range up to 2.99 times respect to the two camera system. The system can accompany 3D monitor provides the exact information of symptom points, helping doctors diagnose the disease.

  1. A Versatile Time-Lapse Camera System Developed by the Hawaiian Volcano Observatory for Use at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Orr, Tim R.; Hoblitt, Richard P.

    2008-01-01

    Volcanoes can be difficult to study up close. Because it may be days, weeks, or even years between important events, direct observation is often impractical. In addition, volcanoes are often inaccessible due to their remote location and (or) harsh environmental conditions. An eruption adds another level of complexity to what already may be a difficult and dangerous situation. For these reasons, scientists at the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory (HVO) have, for years, built camera systems to act as surrogate eyes. With the recent advances in digital-camera technology, these eyes are rapidly improving. One type of photographic monitoring involves the use of near-real-time network-enabled cameras installed at permanent sites (Hoblitt and others, in press). Time-lapse camera-systems, on the other hand, provide an inexpensive, easily transportable monitoring option that offers more versatility in site location. While time-lapse systems lack near-real-time capability, they provide higher image resolution and can be rapidly deployed in areas where the use of sophisticated telemetry required by the networked cameras systems is not practical. This report describes the latest generation (as of 2008) time-lapse camera system used by HVO for photograph acquisition in remote and hazardous sites on Kilauea Volcano.

  2. Empirical Study on Designing of Gaze Tracking Camera Based on the Information of User's Head Movement.

    PubMed

    Pan, Weiyuan; Jung, Dongwook; Yoon, Hyo Sik; Lee, Dong Eun; Naqvi, Rizwan Ali; Lee, Kwan Woo; Park, Kang Ryoung

    2016-08-31

    Gaze tracking is the technology that identifies a region in space that a user is looking at. Most previous non-wearable gaze tracking systems use a near-infrared (NIR) light camera with an NIR illuminator. Based on the kind of camera lens used, the viewing angle and depth-of-field (DOF) of a gaze tracking camera can be different, which affects the performance of the gaze tracking system. Nevertheless, to our best knowledge, most previous researches implemented gaze tracking cameras without ground truth information for determining the optimal viewing angle and DOF of the camera lens. Eye-tracker manufacturers might also use ground truth information, but they do not provide this in public. Therefore, researchers and developers of gaze tracking systems cannot refer to such information for implementing gaze tracking system. We address this problem providing an empirical study in which we design an optimal gaze tracking camera based on experimental measurements of the amount and velocity of user's head movements. Based on our results and analyses, researchers and developers might be able to more easily implement an optimal gaze tracking system. Experimental results show that our gaze tracking system shows high performance in terms of accuracy, user convenience and interest.

  3. Empirical Study on Designing of Gaze Tracking Camera Based on the Information of User’s Head Movement

    PubMed Central

    Pan, Weiyuan; Jung, Dongwook; Yoon, Hyo Sik; Lee, Dong Eun; Naqvi, Rizwan Ali; Lee, Kwan Woo; Park, Kang Ryoung

    2016-01-01

    Gaze tracking is the technology that identifies a region in space that a user is looking at. Most previous non-wearable gaze tracking systems use a near-infrared (NIR) light camera with an NIR illuminator. Based on the kind of camera lens used, the viewing angle and depth-of-field (DOF) of a gaze tracking camera can be different, which affects the performance of the gaze tracking system. Nevertheless, to our best knowledge, most previous researches implemented gaze tracking cameras without ground truth information for determining the optimal viewing angle and DOF of the camera lens. Eye-tracker manufacturers might also use ground truth information, but they do not provide this in public. Therefore, researchers and developers of gaze tracking systems cannot refer to such information for implementing gaze tracking system. We address this problem providing an empirical study in which we design an optimal gaze tracking camera based on experimental measurements of the amount and velocity of user’s head movements. Based on our results and analyses, researchers and developers might be able to more easily implement an optimal gaze tracking system. Experimental results show that our gaze tracking system shows high performance in terms of accuracy, user convenience and interest. PMID:27589768

  4. The Orbiter camera payload system's large-format camera and attitude reference system

    NASA Technical Reports Server (NTRS)

    Schardt, B. B.; Mollberg, B. H.

    1985-01-01

    The Orbiter camera payload system (OCPS) is an integrated photographic system carried into earth orbit as a payload in the Space Transportation System (STS) Orbiter vehicle's cargo bay. The major component of the OCPS is a large-format camera (LFC), a precision wide-angle cartographic instrument capable of producing high-resolution stereophotography of great geometric fidelity in multiple base-to-height ratios. A secondary and supporting system to the LFC is the attitude reference system (ARS), a dual-lens stellar camera array (SCA) and camera support structure. The SCA is a 70 mm film system that is rigidly mounted to the LFC lens support structure and, through the simultaneous acquisition of two star fields with each earth viewing LFC frame, makes it possible to precisely determine the pointing of the LFC optical axis with reference to the earth nadir point. Other components complete the current OCPS configuration as a high-precision cartographic data acquisition system. The primary design objective for the OCPS was to maximize system performance characteristics while maintaining a high level of reliability compatible with rocket launch conditions and the on-orbit environment. The full OCPS configuration was launched on a highly successful maiden voyage aboard the STS Orbiter vehicle Challenger on Oct. 5, 1984, as a major payload aboard the STS-41G mission.

  5. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J.; Rowe, R. Wanda; Zubal, I. George

    1986-01-07

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  6. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  7. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates

    USGS Publications Warehouse

    Hobbs, Michael T.; Brehme, Cheryl S.

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing.

  8. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates.

    PubMed

    Hobbs, Michael T; Brehme, Cheryl S

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing.

  9. Mobile healthcare applications: system design review, critical issues and challenges.

    PubMed

    Baig, Mirza Mansoor; GholamHosseini, Hamid; Connolly, Martin J

    2015-03-01

    Mobile phones are becoming increasingly important in monitoring and delivery of healthcare interventions. They are often considered as pocket computers, due to their advanced computing features, enhanced preferences and diverse capabilities. Their sophisticated sensors and complex software applications make the mobile healthcare (m-health) based applications more feasible and innovative. In a number of scenarios user-friendliness, convenience and effectiveness of these systems have been acknowledged by both patients as well as healthcare providers. M-health technology employs advanced concepts and techniques from multidisciplinary fields of electrical engineering, computer science, biomedical engineering and medicine which benefit the innovations of these fields towards healthcare systems. This paper deals with two important aspects of current mobile phone based sensor applications in healthcare. Firstly, critical review of advanced applications such as; vital sign monitoring, blood glucose monitoring and in-built camera based smartphone sensor applications. Secondly, investigating challenges and critical issues related to the use of smartphones in healthcare including; reliability, efficiency, mobile phone platform variability, cost effectiveness, energy usage, user interface, quality of medical data, and security and privacy. It was found that the mobile based applications have been widely developed in recent years with fast growing deployment by healthcare professionals and patients. However, despite the advantages of smartphones in patient monitoring, education, and management there are some critical issues and challenges related to security and privacy of data, acceptability, reliability and cost that need to be addressed.

  10. ARNICA, the Arcetri Near-Infrared Camera

    NASA Astrophysics Data System (ADS)

    Lisi, F.; Baffa, C.; Bilotti, V.; Bonaccini, D.; del Vecchio, C.; Gennari, S.; Hunt, L. K.; Marcucci, G.; Stanga, R.

    1996-04-01

    ARNICA (ARcetri Near-Infrared CAmera) is the imaging camera for the near-infrared bands between 1.0 and 2.5 microns that the Arcetri Observatory has designed and built for the Infrared Telescope TIRGO located at Gornergrat, Switzerland. We describe the mechanical and optical design of the camera, and report on the astronomical performance of ARNICA as measured during the commissioning runs at the TIRGO (December, 1992 to December 1993), and an observing run at the William Herschel Telescope, Canary Islands (December, 1993). System performance is defined in terms of efficiency of the camera+telescope system and camera sensitivity for extended and point-like sources. (SECTION: Astronomical Instrumentation)

  11. Video auto stitching in multicamera surveillance system

    NASA Astrophysics Data System (ADS)

    He, Bin; Zhao, Gang; Liu, Qifang; Li, Yangyang

    2012-01-01

    This paper concerns the problem of video stitching automatically in a multi-camera surveillance system. Previous approaches have used multiple calibrated cameras for video mosaic in large scale monitoring application. In this work, we formulate video stitching as a multi-image registration and blending problem, and not all cameras are needed to be calibrated except a few selected master cameras. SURF is used to find matched pairs of image key points from different cameras, and then camera pose is estimated and refined. Homography matrix is employed to calculate overlapping pixels and finally implement boundary resample algorithm to blend images. The result of simulation demonstrates the efficiency of our method.

  12. Video auto stitching in multicamera surveillance system

    NASA Astrophysics Data System (ADS)

    He, Bin; Zhao, Gang; Liu, Qifang; Li, Yangyang

    2011-12-01

    This paper concerns the problem of video stitching automatically in a multi-camera surveillance system. Previous approaches have used multiple calibrated cameras for video mosaic in large scale monitoring application. In this work, we formulate video stitching as a multi-image registration and blending problem, and not all cameras are needed to be calibrated except a few selected master cameras. SURF is used to find matched pairs of image key points from different cameras, and then camera pose is estimated and refined. Homography matrix is employed to calculate overlapping pixels and finally implement boundary resample algorithm to blend images. The result of simulation demonstrates the efficiency of our method.

  13. Detecting method of subjects' 3D positions and experimental advanced camera control system

    NASA Astrophysics Data System (ADS)

    Kato, Daiichiro; Abe, Kazuo; Ishikawa, Akio; Yamada, Mitsuho; Suzuki, Takahito; Kuwashima, Shigesumi

    1997-04-01

    Steady progress is being made in the development of an intelligent robot camera capable of automatically shooting pictures with a powerful sense of reality or tracking objects whose shooting requires advanced techniques. Currently, only experienced broadcasting cameramen can provide these pictures.TO develop an intelligent robot camera with these abilities, we need to clearly understand how a broadcasting cameraman assesses his shooting situation and how his camera is moved during shooting. We use a real- time analyzer to study a cameraman's work and his gaze movements at studios and during sports broadcasts. This time, we have developed a detecting method of subjects' 3D positions and an experimental camera control system to help us further understand the movements required for an intelligent robot camera. The features are as follows: (1) Two sensor cameras shoot a moving subject and detect colors, producing its 3D coordinates. (2) Capable of driving a camera based on camera movement data obtained by a real-time analyzer. 'Moving shoot' is the name we have given to the object position detection technology on which this system is based. We used it in a soccer game, producing computer graphics showing how players moved. These results will also be reported.

  14. Performance Characteristics For The Orbiter Camera Payload System's Large Format Camera (LFC)

    NASA Astrophysics Data System (ADS)

    MoIIberg, Bernard H.

    1981-11-01

    The Orbiter Camera Payload System, the OCPS, is an integrated photographic system which is carried into Earth orbit as a payload in the Shuttle Orbiter vehicle's cargo bay. The major component of the OCPS is a Large Format Camera (LFC) which is a precision wide-angle cartographic instrument that is capable of produc-ing high resolution stereophotography of great geometric fidelity in multiple base to height ratios. The primary design objective for the LFC was to maximize all system performance characteristics while maintaining a high level of reliability compatible with rocket launch conditions and the on-orbit environment.

  15. Eye gaze tracking for endoscopic camera positioning: an application of a hardware/software interface developed to automate Aesop.

    PubMed

    Ali, S M; Reisner, L A; King, B; Cao, A; Auner, G; Klein, M; Pandya, A K

    2008-01-01

    A redesigned motion control system for the medical robot Aesop allows automating and programming its movements. An IR eye tracking system has been integrated with this control interface to implement an intelligent, autonomous eye gaze-based laparoscopic positioning system. A laparoscopic camera held by Aesop can be moved based on the data from the eye tracking interface to keep the user's gaze point region at the center of a video feedback monitor. This system setup provides autonomous camera control that works around the surgeon, providing an optimal robotic camera platform.

  16. Calibration of the Nikon 200 for Close Range Photogrammetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheriff, Lassana; /City Coll., N.Y. /SLAC

    2010-08-25

    The overall objective of this project is to study the stability and reproducibility of the calibration parameters of the Nikon D200 camera with a Nikkor 20 mm lens for close-range photogrammetric surveys. The well known 'central perspective projection' model is used to determine the camera parameters for interior orientation. The Brown model extends it with the introduction of radial distortion and other less critical variables. The calibration process requires a dense network of targets to be photographed at different angles. For faster processing, reflective coded targets are chosen. Two scenarios have been used to check the reproducibility of the parameters.more » The first one is using a flat 2D wall with 141 coded targets and 12 custom targets that were previously measured with a laser tracker. The second one is a 3D Unistrut structure with a combination of coded targets and 3D reflective spheres. The study has shown that this setup is only stable during a short period of time. In conclusion, this camera is acceptable when calibrated before each use. Future work should include actual field tests and possible mechanical improvements, such as securing the lens to the camera body.« less

  17. Nondestructive evaluation using dipole model analysis with a scan type magnetic camera

    NASA Astrophysics Data System (ADS)

    Lee, Jinyi; Hwang, Jiseong

    2005-12-01

    Large structures such as nuclear power, thermal power, chemical and petroleum refining plants are drawing interest with regard to the economic aspect of extending component life in respect to the poor environment created by high pressure, high temperature, and fatigue, securing safety from corrosion and exceeding their designated life span. Therefore, technology that accurately calculates and predicts degradation and defects of aging materials is extremely important. Among different methods available, nondestructive testing using magnetic methods is effective in predicting and evaluating defects on the surface of or surrounding ferromagnetic structures. It is important to estimate the distribution of magnetic field intensity for applicable magnetic methods relating to industrial nondestructive evaluation. A magnetic camera provides distribution of a quantitative magnetic field with a homogeneous lift-off and spatial resolution. It is possible to interpret the distribution of magnetic field when the dipole model was introduced. This study proposed an algorithm for nondestructive evaluation using dipole model analysis with a scan type magnetic camera. The numerical and experimental considerations of the quantitative evaluation of several sizes and shapes of cracks using magnetic field images of the magnetic camera were examined.

  18. Pedestrian Detection Based on Adaptive Selection of Visible Light or Far-Infrared Light Camera Image by Fuzzy Inference System and Convolutional Neural Network-Based Verification.

    PubMed

    Kang, Jin Kyu; Hong, Hyung Gil; Park, Kang Ryoung

    2017-07-08

    A number of studies have been conducted to enhance the pedestrian detection accuracy of intelligent surveillance systems. However, detecting pedestrians under outdoor conditions is a challenging problem due to the varying lighting, shadows, and occlusions. In recent times, a growing number of studies have been performed on visible light camera-based pedestrian detection systems using a convolutional neural network (CNN) in order to make the pedestrian detection process more resilient to such conditions. However, visible light cameras still cannot detect pedestrians during nighttime, and are easily affected by shadows and lighting. There are many studies on CNN-based pedestrian detection through the use of far-infrared (FIR) light cameras (i.e., thermal cameras) to address such difficulties. However, when the solar radiation increases and the background temperature reaches the same level as the body temperature, it remains difficult for the FIR light camera to detect pedestrians due to the insignificant difference between the pedestrian and non-pedestrian features within the images. Researchers have been trying to solve this issue by inputting both the visible light and the FIR camera images into the CNN as the input. This, however, takes a longer time to process, and makes the system structure more complex as the CNN needs to process both camera images. This research adaptively selects a more appropriate candidate between two pedestrian images from visible light and FIR cameras based on a fuzzy inference system (FIS), and the selected candidate is verified with a CNN. Three types of databases were tested, taking into account various environmental factors using visible light and FIR cameras. The results showed that the proposed method performs better than the previously reported methods.

  19. PCI-based WILDFIRE reconfigurable computing engines

    NASA Astrophysics Data System (ADS)

    Fross, Bradley K.; Donaldson, Robert L.; Palmer, Douglas J.

    1996-10-01

    WILDFORCE is the first PCI-based custom reconfigurable computer that is based on the Splash 2 technology transferred from the National Security Agency and the Institute for Defense Analyses, Supercomputing Research Center (SRC). The WILDFORCE architecture has many of the features of the WILDFIRE computer, such as field- programmable gate array (FPGA) based processing elements, linear array and crossbar interconnection, and high- performance memory and I/O subsystems. New features introduced in the PCI-based WILDFIRE systems include memory/processor options that can be added to any processing element. These options include static and dynamic memory, digital signal processors (DSPs), FPGAs, and microprocessors. In addition to memory/processor options, many different application specific connectors can be used to extend the I/O capabilities of the system, including systolic I/O, camera input and video display output. This paper also discusses how this new PCI-based reconfigurable computing engine is used for rapid-prototyping, real-time video processing and other DSP applications.

  20. Research of Pedestrian Crossing Safety Facilities Based on the Video Detection

    NASA Astrophysics Data System (ADS)

    Li, Sheng-Zhen; Xie, Quan-Long; Zang, Xiao-Dong; Tang, Guo-Jun

    Since that the pedestrian crossing facilities at present is not perfect, pedestrian crossing is in chaos and pedestrians from opposite direction conflict and congest with each other, which severely affects the pedestrian traffic efficiency, obstructs the vehicle and bringing about some potential security problems. To solve these problems, based on video identification, a pedestrian crossing guidance system was researched and designed. It uses the camera to monitor the pedestrians in real time and sums up the number of pedestrians through video detection program, and a group of pedestrian's induction lamp array is installed at the interval of crosswalk, which adjusts color display according to the proportion of pedestrians from both sides to guide pedestrians from both opposite directions processing separately. The emulation analysis result from cellular automaton shows that the system reduces the pedestrian crossing conflict, shortens the time of pedestrian crossing and improves the safety of pedestrians crossing.

  1. Video model deformation system for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1983-01-01

    A photogrammetric closed circuit television system to measure model deformation at the National Transonic Facility is described. The photogrammetric approach was chosen because of its inherent rapid data recording of the entire object field. Video cameras are used to acquire data instead of film cameras due to the inaccessibility of cameras which must be housed within the cryogenic, high pressure plenum of this facility. A rudimentary theory section is followed by a description of the video-based system and control measures required to protect cameras from the hostile environment. Preliminary results obtained with the same camera placement as planned for NTF are presented and plans for facility testing with a specially designed test wing are discussed.

  2. Evaluation of thermal cameras in quality systems according to ISO 9000 or EN 45000 standards

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Krzysztof

    2001-03-01

    According to the international standards ISO 9001-9004 and EN 45001-45003 the industrial plants and the accreditation laboratories that implemented the quality systems according to these standards are required to evaluate an uncertainty of measurements. Manufacturers of thermal cameras do not offer any data that could enable estimation of measurement uncertainty of these imagers. Difficulties in determining the measurement uncertainty is an important limitation of thermal cameras for applications in the industrial plants and the cooperating accreditation laboratories that have implemented these quality systems. A set of parameters for characterization of commercial thermal cameras, a measuring set, some results of testing of these cameras, a mathematical model of uncertainty, and a software that enables quick calculation of uncertainty of temperature measurements with thermal cameras are presented in this paper.

  3. Evaluation of Acquisition Strategies for Image-Based Construction Site Monitoring

    NASA Astrophysics Data System (ADS)

    Tuttas, S.; Braun, A.; Borrmann, A.; Stilla, U.

    2016-06-01

    Construction site monitoring is an essential task for keeping track of the ongoing construction work and providing up-to-date information for a Building Information Model (BIM). The BIM contains the as-planned states (geometry, schedule, costs, ...) of a construction project. For updating, the as-built state has to be acquired repeatedly and compared to the as-planned state. In the approach presented here, a 3D representation of the as-built state is calculated from photogrammetric images using multi-view stereo reconstruction. On construction sites one has to cope with several difficulties like security aspects, limited accessibility, occlusions or construction activity. Different acquisition strategies and techniques, namely (i) terrestrial acquisition with a hand-held camera, (ii) aerial acquisition using a Unmanned Aerial Vehicle (UAV) and (iii) acquisition using a fixed stereo camera pair at the boom of the crane, are tested on three test sites. They are assessed considering the special needs for the monitoring tasks and limitations on construction sites. The three scenarios are evaluated based on the ability of automation, the required effort for acquisition, the necessary equipment and its maintaining, disturbance of the construction works, and on the accuracy and completeness of the resulting point clouds. Based on the experiences during the test cases the following conclusions can be drawn: Terrestrial acquisition has the lowest requirements on the device setup but lacks on automation and coverage. The crane camera shows the lowest flexibility but the highest grade of automation. The UAV approach can provide the best coverage by combining nadir and oblique views, but can be limited by obstacles and security aspects. The accuracy of the point clouds is evaluated based on plane fitting of selected building parts. The RMS errors of the fitted parts range from 1 to a few cm for the UAV and the hand-held scenario. First results show that the crane camera approach has the potential to reach the same accuracy level.

  4. High-performance dual-speed CCD camera system for scientific imaging

    NASA Astrophysics Data System (ADS)

    Simpson, Raymond W.

    1996-03-01

    Traditionally, scientific camera systems were partitioned with a `camera head' containing the CCD and its support circuitry and a camera controller, which provided analog to digital conversion, timing, control, computer interfacing, and power. A new, unitized high performance scientific CCD camera with dual speed readout at 1 X 106 or 5 X 106 pixels per second, 12 bit digital gray scale, high performance thermoelectric cooling, and built in composite video output is described. This camera provides all digital, analog, and cooling functions in a single compact unit. The new system incorporates the A/C converter, timing, control and computer interfacing in the camera, with the power supply remaining a separate remote unit. A 100 Mbyte/second serial link transfers data over copper or fiber media to a variety of host computers, including Sun, SGI, SCSI, PCI, EISA, and Apple Macintosh. Having all the digital and analog functions in the camera made it possible to modify this system for the Woods Hole Oceanographic Institution for use on a remote controlled submersible vehicle. The oceanographic version achieves 16 bit dynamic range at 1.5 X 105 pixels/second, can be operated at depths of 3 kilometers, and transfers data to the surface via a real time fiber optic link.

  5. Design and Development of a Novel Distance Learning Telementoring System Using Off-the-Shelf Materials and Software.

    PubMed

    Rosser, James C; Fleming, Jeffrey P; Legare, Timothy B; Choi, Katherine M; Nakagiri, Jamie; Griffith, Elliot

    2017-12-22

    To design and develop a distance learning (DL) system for the transference of laparoscopic surgery knowledge and skill constructed from off-the-shelf materials and commercially available software. Minimally invasive surgery offers significant benefits over traditional surgical procedures, but adoption rates for many procedures are low. Skill and confidence deficits are two of the culprits. DL combined with simulation training and telementoring may address these issues with scale. The system must be built to meet the instruction requirements of a proven laparoscopic skills course (Top Gun). Thus, the rapid sharing of multimedia educational materials, secure two-way audio/visual communications, and annotation and recording capabilities are requirements for success. These requirements are more in line with telementoring missions than standard distance learning efforts. A DL system with telementor, classroom, and laboratory stations was created. The telementor station consists of a desktop computer and headset with microphone. For the classroom station, a laptop is connected to a digital projector that displays the remote instructor and content. A tripod-mounted webcam provides classroom visualization and a Bluetooth® wireless speaker establishes audio. For the laboratory station, a laptop with universal serial bus (USB) expander is combined with a tabletop laparoscopic skills trainer, a headset with microphone, two webcams and a Bluetooth® speaker. The cameras are mounted on a standard tripod and an adjustable gooseneck camera mount clamp to provide an internal and external view of the training area. Internet meeting software provides audio/visual communications including transmission of educational materials. A DL system was created using off-the-shelf materials and commercially available software. It will allow investigations to evaluate the effectiveness of laparoscopic surgery knowledge and skill transfer utilizing DL techniques.

  6. A near infra-red video system as a protective diagnostic for electron cyclotron resonance heating operation in the Wendelstein 7-X stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preynas, M.; Laqua, H. P.; Marsen, S.

    The Wendelstein 7-X stellarator is a large nuclear fusion device based at Max-Planck-Institut für Plasmaphysik in Greifswald in Germany. The main plasma heating system for steady state operation in W7-X is electron cyclotron resonance heating (ECRH). During operation, part of plama facing components will be directly heated by the non-absorbed power of 1 MW rf beams of ECRH. In order to avoid damages of such components made of graphite tiles during the first operational phase, a near infra-red video system has been developed as a protective diagnostic for safe and secure ECRH operation. Both the mechanical design housing the cameramore » and the optical system are very flexible and respect the requirements of steady state operation. The full system including data acquisition and control system has been successfully tested in the vacuum vessel, including on-line visualization and data storage of the four cameras equipping the ECRH equatorial launchers of W7-X.« less

  7. An interactive web-based system using cloud for large-scale visual analytics

    NASA Astrophysics Data System (ADS)

    Kaseb, Ahmed S.; Berry, Everett; Rozolis, Erik; McNulty, Kyle; Bontrager, Seth; Koh, Youngsol; Lu, Yung-Hsiang; Delp, Edward J.

    2015-03-01

    Network cameras have been growing rapidly in recent years. Thousands of public network cameras provide tremendous amount of visual information about the environment. There is a need to analyze this valuable information for a better understanding of the world around us. This paper presents an interactive web-based system that enables users to execute image analysis and computer vision techniques on a large scale to analyze the data from more than 65,000 worldwide cameras. This paper focuses on how to use both the system's website and Application Programming Interface (API). Given a computer program that analyzes a single frame, the user needs to make only slight changes to the existing program and choose the cameras to analyze. The system handles the heterogeneity of the geographically distributed cameras, e.g. different brands, resolutions. The system allocates and manages Amazon EC2 and Windows Azure cloud resources to meet the analysis requirements.

  8. LSST camera control system

    NASA Astrophysics Data System (ADS)

    Marshall, Stuart; Thaler, Jon; Schalk, Terry; Huffer, Michael

    2006-06-01

    The LSST Camera Control System (CCS) will manage the activities of the various camera subsystems and coordinate those activities with the LSST Observatory Control System (OCS). The CCS comprises a set of modules (nominally implemented in software) which are each responsible for managing one camera subsystem. Generally, a control module will be a long lived "server" process running on an embedded computer in the subsystem. Multiple control modules may run on a single computer or a module may be implemented in "firmware" on a subsystem. In any case control modules must exchange messages and status data with a master control module (MCM). The main features of this approach are: (1) control is distributed to the local subsystem level; (2) the systems follow a "Master/Slave" strategy; (3) coordination will be achieved by the exchange of messages through the interfaces between the CCS and its subsystems. The interface between the camera data acquisition system and its downstream clients is also presented.

  9. Reconstructing Face Image from the Thermal Infrared Spectrum to the Visible Spectrum †

    PubMed Central

    Kresnaraman, Brahmastro; Deguchi, Daisuke; Takahashi, Tomokazu; Mekada, Yoshito; Ide, Ichiro; Murase, Hiroshi

    2016-01-01

    During the night or in poorly lit areas, thermal cameras are a better choice instead of normal cameras for security surveillance because they do not rely on illumination. A thermal camera is able to detect a person within its view, but identification from only thermal information is not an easy task. The purpose of this paper is to reconstruct the face image of a person from the thermal spectrum to the visible spectrum. After the reconstruction, further image processing can be employed, including identification/recognition. Concretely, we propose a two-step thermal-to-visible-spectrum reconstruction method based on Canonical Correlation Analysis (CCA). The reconstruction is done by utilizing the relationship between images in both thermal infrared and visible spectra obtained by CCA. The whole image is processed in the first step while the second step processes patches in an image. Results show that the proposed method gives satisfying results with the two-step approach and outperforms comparative methods in both quality and recognition evaluations. PMID:27110781

  10. Compton camera imaging and the cone transform: a brief overview

    NASA Astrophysics Data System (ADS)

    Terzioglu, Fatma; Kuchment, Peter; Kunyansky, Leonid

    2018-05-01

    While most of Radon transform applications to imaging involve integrations over smooth sub-manifolds of the ambient space, lately important situations have appeared where the integration surfaces are conical. Three of such applications are single scatter optical tomography, Compton camera medical imaging, and homeland security. In spite of the similar surfaces of integration, the data and the inverse problems associated with these modalities differ significantly. In this article, we present a brief overview of the mathematics arising in Compton camera imaging. In particular, the emphasis is made on the overdetermined data and flexible geometry of the detectors. For the detailed results, as well as other approaches (e.g. smaller-dimensional data or restricted geometry of detectors) the reader is directed to the relevant publications. Only a brief description and some references are provided for the single scatter optical tomography. This work was supported in part by NSF DMS grants 1211463 (the first two authors), 1211521 and 141877 (the third author), as well as a College of Science of Texas A&M University grant.

  11. Blue camera of the Keck cosmic web imager, fabrication and testing

    NASA Astrophysics Data System (ADS)

    Rockosi, Constance; Cowley, David; Cabak, Jerry; Hilyard, David; Pfister, Terry

    2016-08-01

    The Keck Cosmic Web Imager (KCWI) is a new facility instrument being developed for the W. M. Keck Observatory and funded for construction by the Telescope System Instrumentation Program (TSIP) of the National Science Foundation (NSF). KCWI is a bench-mounted spectrograph for the Keck II right Nasmyth focal station, providing integral field spectroscopy over a seeing-limited field up to 20" x 33" in extent. Selectable Volume Phase Holographic (VPH) gratings provide high efficiency and spectral resolution in the range of 1000 to 20000. The dual-beam design of KCWI passed a Preliminary Design Review in summer 2011. The detailed design of the KCWI blue channel (350 to 700 nm) is now nearly complete, with the red channel (530 to 1050 nm) planned for a phased implementation contingent upon additional funding. KCWI builds on the experience of the Caltech team in implementing the Cosmic Web Imager (CWI), in operation since 2009 at Palomar Observatory. KCWI adds considerable flexibility to the CWI design, and will take full advantage of the excellent seeing and dark sky above Mauna Kea with a selectable nod-and-shuffle observing mode. In this paper, models of the expected KCWI sensitivity and background subtraction capability are presented, along with a detailed description of the instrument design. The KCWI team is lead by Caltech (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (program oversight and observatory interfaces). The optical design of the blue camera for the Keck Cosmic Web Imager (KCWI) by Harland Epps of the University of California, Santa Cruz is a lens assembly consisting of eight spherical optical elements. Half the elements are calcium fluoride and all elements are air spaced. The design of the camera barrel is unique in that all the optics are secured in their respective cells with an RTV annulus without additional hardware such as retaining rings. The optical design and the robust lens mounting concept has allowed UCO/Lick to design a straightforward lens camera assembly. However, alignment sensitivity is a strict 15 μm for most elements. This drives the fabrication, assembly, and performance of the camera barrel.

  12. A system for extracting 3-dimensional measurements from a stereo pair of TV cameras

    NASA Technical Reports Server (NTRS)

    Yakimovsky, Y.; Cunningham, R.

    1976-01-01

    Obtaining accurate three-dimensional (3-D) measurement from a stereo pair of TV cameras is a task requiring camera modeling, calibration, and the matching of the two images of a real 3-D point on the two TV pictures. A system which models and calibrates the cameras and pairs the two images of a real-world point in the two pictures, either manually or automatically, was implemented. This system is operating and provides three-dimensional measurements resolution of + or - mm at distances of about 2 m.

  13. A compact high-definition low-cost digital stereoscopic video camera for rapid robotic surgery development.

    PubMed

    Carlson, Jay; Kowalczuk, Jędrzej; Psota, Eric; Pérez, Lance C

    2012-01-01

    Robotic surgical platforms require vision feedback systems, which often consist of low-resolution, expensive, single-imager analog cameras. These systems are retooled for 3D display by simply doubling the cameras and outboard control units. Here, a fully-integrated digital stereoscopic video camera employing high-definition sensors and a class-compliant USB video interface is presented. This system can be used with low-cost PC hardware and consumer-level 3D displays for tele-medical surgical applications including military medical support, disaster relief, and space exploration.

  14. Applications of a shadow camera system for energy meteorology

    NASA Astrophysics Data System (ADS)

    Kuhn, Pascal; Wilbert, Stefan; Prahl, Christoph; Garsche, Dominik; Schüler, David; Haase, Thomas; Ramirez, Lourdes; Zarzalejo, Luis; Meyer, Angela; Blanc, Philippe; Pitz-Paal, Robert

    2018-02-01

    Downward-facing shadow cameras might play a major role in future energy meteorology. Shadow cameras directly image shadows on the ground from an elevated position. They are used to validate other systems (e.g. all-sky imager based nowcasting systems, cloud speed sensors or satellite forecasts) and can potentially provide short term forecasts for solar power plants. Such forecasts are needed for electricity grids with high penetrations of renewable energy and can help to optimize plant operations. In this publication, two key applications of shadow cameras are briefly presented.

  15. Nonholonomic camera-space manipulation using cameras mounted on a mobile base

    NASA Astrophysics Data System (ADS)

    Goodwine, Bill; Seelinger, Michael J.; Skaar, Steven B.; Ma, Qun

    1998-10-01

    The body of work called `Camera Space Manipulation' is an effective and proven method of robotic control. Essentially, this technique identifies and refines the input-output relationship of the plant using estimation methods and drives the plant open-loop to its target state. 3D `success' of the desired motion, i.e., the end effector of the manipulator engages a target at a particular location with a particular orientation, is guaranteed when there is camera space success in two cameras which are adequately separated. Very accurate, sub-pixel positioning of a robotic end effector is possible using this method. To date, however, most efforts in this area have primarily considered holonomic systems. This work addresses the problem of nonholonomic camera space manipulation by considering the problem of a nonholonomic robot with two cameras and a holonomic manipulator on board the nonholonomic platform. While perhaps not as common in robotics, such a combination of holonomic and nonholonomic degrees of freedom are ubiquitous in industry: fork lifts and earth moving equipment are common examples of a nonholonomic system with an on-board holonomic actuator. The nonholonomic nature of the system makes the automation problem more difficult due to a variety of reasons; in particular, the target location is not fixed in the image planes, as it is for holonomic systems (since the cameras are attached to a moving platform), and there is a fundamental `path dependent' nature of nonholonomic kinematics. This work focuses on the sensor space or camera-space-based control laws necessary for effectively implementing an autonomous system of this type.

  16. Backing collisions: a study of drivers' eye and backing behaviour using combined rear-view camera and sensor systems.

    PubMed

    Hurwitz, David S; Pradhan, Anuj; Fisher, Donald L; Knodler, Michael A; Muttart, Jeffrey W; Menon, Rajiv; Meissner, Uwe

    2010-04-01

    Backing crash injures can be severe; approximately 200 of the 2,500 reported injuries of this type per year to children under the age of 15 years result in death. Technology for assisting drivers when backing has limited success in preventing backing crashes. Two questions are addressed: Why is the reduction in backing crashes moderate when rear-view cameras are deployed? Could rear-view cameras augment sensor systems? 46 drivers (36 experimental, 10 control) completed 16 parking trials over 2 days (eight trials per day). Experimental participants were provided with a sensor camera system, controls were not. Three crash scenarios were introduced. Parking facility at UMass Amherst, USA. 46 drivers (33 men, 13 women) average age 29 years, who were Massachusetts residents licensed within the USA for an average of 9.3 years. Interventions Vehicles equipped with a rear-view camera and sensor system-based parking aid. Subject's eye fixations while driving and researcher's observation of collision with objects during backing. Only 20% of drivers looked at the rear-view camera before backing, and 88% of those did not crash. Of those who did not look at the rear-view camera before backing, 46% looked after the sensor warned the driver. This study indicates that drivers not only attend to an audible warning, but will look at a rear-view camera if available. Evidence suggests that when used appropriately, rear-view cameras can mitigate the occurrence of backing crashes, particularly when paired with an appropriate sensor system.

  17. Backing collisions: a study of drivers’ eye and backing behaviour using combined rear-view camera and sensor systems

    PubMed Central

    Hurwitz, David S; Pradhan, Anuj; Fisher, Donald L; Knodler, Michael A; Muttart, Jeffrey W; Menon, Rajiv; Meissner, Uwe

    2012-01-01

    Context Backing crash injures can be severe; approximately 200 of the 2,500 reported injuries of this type per year to children under the age of 15 years result in death. Technology for assisting drivers when backing has limited success in preventing backing crashes. Objectives Two questions are addressed: Why is the reduction in backing crashes moderate when rear-view cameras are deployed? Could rear-view cameras augment sensor systems? Design 46 drivers (36 experimental, 10 control) completed 16 parking trials over 2 days (eight trials per day). Experimental participants were provided with a sensor camera system, controls were not. Three crash scenarios were introduced. Setting Parking facility at UMass Amherst, USA. Subjects 46 drivers (33 men, 13 women) average age 29 years, who were Massachusetts residents licensed within the USA for an average of 9.3 years. Interventions Vehicles equipped with a rear-view camera and sensor system-based parking aid. Main Outcome Measures Subject’s eye fixations while driving and researcher’s observation of collision with objects during backing. Results Only 20% of drivers looked at the rear-view camera before backing, and 88% of those did not crash. Of those who did not look at the rear-view camera before backing, 46% looked after the sensor warned the driver. Conclusions This study indicates that drivers not only attend to an audible warning, but will look at a rear-view camera if available. Evidence suggests that when used appropriately, rear-view cameras can mitigate the occurrence of backing crashes, particularly when paired with an appropriate sensor system. PMID:20363812

  18. Coincidence ion imaging with a fast frame camera

    NASA Astrophysics Data System (ADS)

    Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander H.; Fan, Lin; Li, Wen

    2014-12-01

    A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.

  19. Development of the radial neutron camera system for the HL-2A tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y. P., E-mail: zhangyp@swip.ac.cn; Yang, J. W.; Liu, Yi

    2016-06-15

    A new radial neutron camera system has been developed and operated recently in the HL-2A tokamak to measure the spatial and time resolved 2.5 MeV D-D fusion neutron, enhancing the understanding of the energetic-ion physics. The camera mainly consists of a multichannel collimator, liquid-scintillation detectors, shielding systems, and a data acquisition system. Measurements of the D-D fusion neutrons using the camera have been successfully performed during the 2015 HL-2A experiment campaign. The measurements show that the distribution of the fusion neutrons in the HL-2A plasma has a peaked profile, suggesting that the neutral beam injection beam ions in the plasmamore » have a peaked distribution. It also suggests that the neutrons are primarily produced from beam-target reactions in the plasma core region. The measurement results from the neutron camera are well consistent with the results of both a standard {sup 235}U fission chamber and NUBEAM neutron calculations. In this paper, the new radial neutron camera system on HL-2A and the first experimental results are described.« less

  20. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates

    PubMed Central

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing. PMID:28981533

  1. Engineering study for pallet adapting the Apollo laser altimeter and photographic camera system for the Lidar Test Experiment on orbital flight tests 2 and 4

    NASA Technical Reports Server (NTRS)

    Kuebert, E. J.

    1977-01-01

    A Laser Altimeter and Mapping Camera System was included in the Apollo Lunar Orbital Experiment Missions. The backup system, never used in the Apollo Program, is available for use in the Lidar Test Experiments on the STS Orbital Flight Tests 2 and 4. Studies were performed to assess the problem associated with installation and operation of the Mapping Camera System in the STS. They were conducted on the photographic capabilities of the Mapping Camera System, its mechanical and electrical interface with the STS, documentation, operation and survivability in the expected environments, ground support equipment, test and field support.

  2. Utilization and viability of biologically-inspired algorithms in a dynamic multiagent camera surveillance system

    NASA Astrophysics Data System (ADS)

    Mundhenk, Terrell N.; Dhavale, Nitin; Marmol, Salvador; Calleja, Elizabeth; Navalpakkam, Vidhya; Bellman, Kirstie; Landauer, Chris; Arbib, Michael A.; Itti, Laurent

    2003-10-01

    In view of the growing complexity of computational tasks and their design, we propose that certain interactive systems may be better designed by utilizing computational strategies based on the study of the human brain. Compared with current engineering paradigms, brain theory offers the promise of improved self-organization and adaptation to the current environment, freeing the programmer from having to address those issues in a procedural manner when designing and implementing large-scale complex systems. To advance this hypothesis, we discus a multi-agent surveillance system where 12 agent CPUs each with its own camera, compete and cooperate to monitor a large room. To cope with the overload of image data streaming from 12 cameras, we take inspiration from the primate"s visual system, which allows the animal to operate a real-time selection of the few most conspicuous locations in visual input. This is accomplished by having each camera agent utilize the bottom-up, saliency-based visual attention algorithm of Itti and Koch (Vision Research 2000;40(10-12):1489-1506) to scan the scene for objects of interest. Real time operation is achieved using a distributed version that runs on a 16-CPU Beowulf cluster composed of the agent computers. The algorithm guides cameras to track and monitor salient objects based on maps of color, orientation, intensity, and motion. To spread camera view points or create cooperation in monitoring highly salient targets, camera agents bias each other by increasing or decreasing the weight of different feature vectors in other cameras, using mechanisms similar to excitation and suppression that have been documented in electrophysiology, psychophysics and imaging studies of low-level visual processing. In addition, if cameras need to compete for computing resources, allocation of computational time is weighed based upon the history of each camera. A camera agent that has a history of seeing more salient targets is more likely to obtain computational resources. The system demonstrates the viability of biologically inspired systems in a real time tracking. In future work we plan on implementing additional biological mechanisms for cooperative management of both the sensor and processing resources in this system that include top down biasing for target specificity as well as novelty and the activity of the tracked object in relation to sensitive features of the environment.

  3. A telephoto camera system with shooting direction control by gaze detection

    NASA Astrophysics Data System (ADS)

    Teraya, Daiki; Hachisu, Takumi; Yendo, Tomohiro

    2015-05-01

    For safe driving, it is important for driver to check traffic conditions such as traffic lights, or traffic signs as early as soon. If on-vehicle camera takes image of important objects to understand traffic conditions from long distance and shows these to driver, driver can understand traffic conditions earlier. To take image of long distance objects clearly, the focal length of camera must be long. When the focal length is long, on-vehicle camera doesn't have enough field of view to check traffic conditions. Therefore, in order to get necessary images from long distance, camera must have long-focal length and controllability of shooting direction. In previous study, driver indicates shooting direction on displayed image taken by a wide-angle camera, a direction controllable camera takes telescopic image, and displays these to driver. However, driver uses a touch panel to indicate the shooting direction in previous study. It is cause of disturb driving. So, we propose a telephoto camera system for driving support whose shooting direction is controlled by driver's gaze to avoid disturbing drive. This proposed system is composed of a gaze detector and an active telephoto camera whose shooting direction is controlled. We adopt non-wear detecting method to avoid hindrance to drive. The gaze detector measures driver's gaze by image processing. The shooting direction of the active telephoto camera is controlled by galvanometer scanners and the direction can be switched within a few milliseconds. We confirmed that the proposed system takes images of gazing straight ahead of subject by experiments.

  4. New-generation security network with synergistic IP sensors

    NASA Astrophysics Data System (ADS)

    Peshko, Igor

    2007-09-01

    Global Dynamic Monitoring and Security Network (GDMSN) for real-time monitoring of (1) environmental and atmospheric conditions: chemical, biological, radiological and nuclear hazards, climate/man-induced catastrophe areas and terrorism threats; (2) water, soil, food chain quantifiers, and public health care; (3) large government/public/ industrial/ military areas is proposed. Each GDMSN branch contains stationary or mobile terminals (ground, sea, air, or space manned/unmanned vehicles) equipped with portable sensors. The sensory data are transferred via telephone, Internet, TV, security camera and other wire/wireless or optical communication lines. Each sensor is a self-registering, self-reporting, plug-and-play, portable unit that uses unified electrical and/or optical connectors and operates with IP communication protocol. The variant of the system based just on optical technologies cannot be disabled by artificial high-power radio- or gamma-pulses or sunbursts. Each sensor, being supplied with a battery and monitoring means, can be used as a separate portable unit. Military personnel, police officers, firefighters, miners, rescue teams, and nuclear power plant personnel may individually use these sensors. Terminals may be supplied with sensors essential for that specific location. A miniature "universal" optical gas sensor for specific applications in life support and monitoring systems was designed and tested. The sensor is based on the physics of absorption and/or luminescence spectroscopy. It can operate at high pressures and elevated temperatures, such as in professional and military diving equipment, submarines, underground shelters, mines, command stations, aircraft, space shuttles, etc. To enable this capability, the multiple light emitters, detectors and data processing electronics are located within a specially protected chamber.

  5. SPARTAN Near-IR Camera | SOAR

    Science.gov Websites

    SPARTAN Near-IR Camera SPARTAN Cookbook Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER Instrumentation at SOAR»SPARTAN Near-IR Camera SPARTAN Near-IR Camera System Overview The Spartan Infrared Camera is a high spatial resolution near-IR imager. Spartan has a focal plane conisisting of four "

  6. Control system for several rotating mirror camera synchronization operation

    NASA Astrophysics Data System (ADS)

    Liu, Ningwen; Wu, Yunfeng; Tan, Xianxiang; Lai, Guoji

    1997-05-01

    This paper introduces a single chip microcomputer control system for synchronization operation of several rotating mirror high-speed cameras. The system consists of four parts: the microcomputer control unit (including the synchronization part and precise measurement part and the time delay part), the shutter control unit, the motor driving unit and the high voltage pulse generator unit. The control system has been used to control the synchronization working process of the GSI cameras (driven by a motor) and FJZ-250 rotating mirror cameras (driven by a gas driven turbine). We have obtained the films of the same objective from different directions in different speed or in same speed.

  7. Evaluation of the MSFC facsimile camera system as a tool for extraterrestrial geologic exploration

    NASA Technical Reports Server (NTRS)

    Wolfe, E. W.; Alderman, J. D.

    1971-01-01

    Utility of the Marshall Space Flight (MSFC) facsimile camera system for extraterrestrial geologic exploration was investigated during the spring of 1971 near Merriam Crater in northern Arizona. Although the system with its present hard-wired recorder operates erratically, the imagery showed that the camera could be developed as a prime imaging tool for automated missions. Its utility would be enhanced by development of computer techniques that utilize digital camera output for construction of topographic maps, and it needs increased resolution for examining near field details. A supplementary imaging system may be necessary for hand specimen examination at low magnification.

  8. The use of consumer depth cameras for 3D surface imaging of people with obesity: A feasibility study.

    PubMed

    Wheat, J S; Clarkson, S; Flint, S W; Simpson, C; Broom, D R

    2018-05-21

    Three dimensional (3D) surface imaging is a viable alternative to traditional body morphology measures, but the feasibility of using this technique with people with obesity has not been fully established. Therefore, the aim of this study was to investigate the validity, repeatability and acceptability of a consumer depth camera 3D surface imaging system in imaging people with obesity. The concurrent validity of the depth camera based system was investigated by comparing measures of mid-trunk volume to a gold-standard. The repeatability and acceptability of the depth camera system was assessed in people with obesity at a clinic. There was evidence of a fixed systematic difference between the depth camera system and the gold standard but excellent correlation between volume estimates (r 2 =0.997), with little evidence of proportional bias. The depth camera system was highly repeatable - low typical error (0.192L), high intraclass correlation coefficient (>0.999) and low technical error of measurement (0.64%). Depth camera based 3D surface imaging was also acceptable to people with obesity. It is feasible (valid, repeatable and acceptable) to use a low cost, flexible 3D surface imaging system to monitor the body size and shape of people with obesity in a clinical setting. Copyright © 2018 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  9. Development of a camera casing suited for cryogenic and vacuum applications

    NASA Astrophysics Data System (ADS)

    Delaquis, S. C.; Gornea, R.; Janos, S.; Lüthi, M.; von Rohr, Ch Rudolf; Schenk, M.; Vuilleumier, J.-L.

    2013-12-01

    We report on the design, construction, and operation of a PID temperature controlled and vacuum tight camera casing. The camera casing contains a commercial digital camera and a lighting system. The design of the camera casing and its components are discussed in detail. Pictures taken by this cryo-camera while immersed in argon vapour and liquid nitrogen are presented. The cryo-camera can provide a live view inside cryogenic set-ups and allows to record video.

  10. Use and validation of mirrorless digital single light reflex camera for recording of vitreoretinal surgeries in high definition

    PubMed Central

    Khanduja, Sumeet; Sampangi, Raju; Hemlatha, B C; Singh, Satvir; Lall, Ashish

    2018-01-01

    Purpose: The purpose of this study is to describe the use of commercial digital single light reflex (DSLR) for vitreoretinal surgery recording and compare it to standard 3-chip charged coupling device (CCD) camera. Methods: Simultaneous recording was done using Sony A7s2 camera and Sony high-definition 3-chip camera attached to each side of the microscope. The videos recorded from both the camera systems were edited and sequences of similar time frames were selected. Three sequences that selected for evaluation were (a) anterior segment surgery, (b) surgery under direct viewing system, and (c) surgery under indirect wide-angle viewing system. The videos of each sequence were evaluated and rated on a scale of 0-10 for color, contrast, and overall quality Results: Most results were rated either 8/10 or 9/10 for both the cameras. A noninferiority analysis by comparing mean scores of DSLR camera versus CCD camera was performed and P values were obtained. The mean scores of the two cameras were comparable for each other on all parameters assessed in the different videos except of color and contrast in posterior pole view and color on wide-angle view, which were rated significantly higher (better) in DSLR camera. Conclusion: Commercial DSLRs are an affordable low-cost alternative for vitreoretinal surgery recording and may be used for documentation and teaching. PMID:29283133

  11. Use and validation of mirrorless digital single light reflex camera for recording of vitreoretinal surgeries in high definition.

    PubMed

    Khanduja, Sumeet; Sampangi, Raju; Hemlatha, B C; Singh, Satvir; Lall, Ashish

    2018-01-01

    The purpose of this study is to describe the use of commercial digital single light reflex (DSLR) for vitreoretinal surgery recording and compare it to standard 3-chip charged coupling device (CCD) camera. Simultaneous recording was done using Sony A7s2 camera and Sony high-definition 3-chip camera attached to each side of the microscope. The videos recorded from both the camera systems were edited and sequences of similar time frames were selected. Three sequences that selected for evaluation were (a) anterior segment surgery, (b) surgery under direct viewing system, and (c) surgery under indirect wide-angle viewing system. The videos of each sequence were evaluated and rated on a scale of 0-10 for color, contrast, and overall quality Results: Most results were rated either 8/10 or 9/10 for both the cameras. A noninferiority analysis by comparing mean scores of DSLR camera versus CCD camera was performed and P values were obtained. The mean scores of the two cameras were comparable for each other on all parameters assessed in the different videos except of color and contrast in posterior pole view and color on wide-angle view, which were rated significantly higher (better) in DSLR camera. Commercial DSLRs are an affordable low-cost alternative for vitreoretinal surgery recording and may be used for documentation and teaching.

  12. A high-speed digital camera system for the observation of rapid H-alpha fluctuations in solar flares

    NASA Technical Reports Server (NTRS)

    Kiplinger, Alan L.; Dennis, Brian R.; Orwig, Larry E.

    1989-01-01

    Researchers developed a prototype digital camera system for obtaining H-alpha images of solar flares with 0.1 s time resolution. They intend to operate this system in conjunction with SMM's Hard X Ray Burst Spectrometer, with x ray instruments which will be available on the Gamma Ray Observatory and eventually with the Gamma Ray Imaging Device (GRID), and with the High Resolution Gamma-Ray and Hard X Ray Spectrometer (HIREGS) which are being developed for the Max '91 program. The digital camera has recently proven to be successful as a one camera system operating in the blue wing of H-alpha during the first Max '91 campaign. Construction and procurement of a second and possibly a third camera for simultaneous observations at other wavelengths are underway as are analyses of the campaign data.

  13. Accuracy Potential and Applications of MIDAS Aerial Oblique Camera System

    NASA Astrophysics Data System (ADS)

    Madani, M.

    2012-07-01

    Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System) is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees) cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels) with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm) and (50 mm/50 mm)) were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance) for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining systematic errors were modeled by analyzing residuals using correction grid. The results of the final bundle adjustments are sufficient to enable Sanborn to produce DEM/DTM and orthophotos from the nadir imagery and create 3D models using georeferenced oblique imagery.

  14. Compensation for positioning error of industrial robot for flexible vision measuring system

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Liang, Yajun; Song, Jincheng; Sun, Zengyu; Zhu, Jigui

    2013-01-01

    Positioning error of robot is a main factor of accuracy of flexible coordinate measuring system which consists of universal industrial robot and visual sensor. Present compensation methods for positioning error based on kinematic model of robot have a significant limitation that it isn't effective in the whole measuring space. A new compensation method for positioning error of robot based on vision measuring technique is presented. One approach is setting global control points in measured field and attaching an orientation camera to vision sensor. Then global control points are measured by orientation camera to calculate the transformation relation from the current position of sensor system to global coordinate system and positioning error of robot is compensated. Another approach is setting control points on vision sensor and two large field cameras behind the sensor. Then the three dimensional coordinates of control points are measured and the pose and position of sensor is calculated real-timely. Experiment result shows the RMS of spatial positioning is 3.422mm by single camera and 0.031mm by dual cameras. Conclusion is arithmetic of single camera method needs to be improved for higher accuracy and accuracy of dual cameras method is applicable.

  15. PubMed Central

    Baum, S.; Sillem, M.; Ney, J. T.; Baum, A.; Friedrich, M.; Radosa, J.; Kramer, K. M.; Gronwald, B.; Gottschling, S.; Solomayer, E. F.; Rody, A.; Joukhadar, R.

    2017-01-01

    Introduction Minimally invasive operative techniques are being used increasingly in gynaecological surgery. The expansion of the laparoscopic operation spectrum is in part the result of improved imaging. This study investigates the practical advantages of using 3D cameras in routine surgical practice. Materials and Methods Two different 3-dimensional camera systems were compared with a 2-dimensional HD system; the operating surgeonʼs experiences were documented immediately postoperatively using a questionnaire. Results Significant advantages were reported for suturing and cutting of anatomical structures when using the 3D compared to 2D camera systems. There was only a slight advantage for coagulating. The use of 3D cameras significantly improved the general operative visibility and in particular the representation of spacial depth compared to 2-dimensional images. There was not a significant advantage for image width. Depiction of adhesions and retroperitoneal neural structures was significantly improved by the stereoscopic cameras, though this did not apply to blood vessels, ureter, uterus or ovaries. Conclusion 3-dimensional cameras were particularly advantageous for the depiction of fine anatomical structures due to improved spacial depth representation compared to 2D systems. 3D cameras provide the operating surgeon with a monitor image that more closely resembles actual anatomy, thus simplifying laparoscopic procedures. PMID:28190888

  16. Analysis of edge density fluctuation measured by trial KSTAR beam emission spectroscopy systema)

    NASA Astrophysics Data System (ADS)

    Nam, Y. U.; Zoletnik, S.; Lampert, M.; Kovácsik, Á.

    2012-10-01

    A beam emission spectroscopy (BES) system based on direct imaging avalanche photodiode (APD) camera has been designed for Korea Superconducting Tokamak Advanced Research (KSTAR) and a trial system has been constructed and installed for evaluating feasibility of the design. The system contains two cameras, one is an APD camera for BES measurement and another is a fast visible camera for position calibration. Two pneumatically actuated mirrors were positioned at front and rear of lens optics. The front mirror can switch the measurement between edge and core region of plasma and the rear mirror can switch between the APD and the visible camera. All systems worked properly and the measured photon flux was reasonable as expected from the simulation. While the measurement data from the trial system were limited, it revealed some interesting characteristics of KSTAR plasma suggesting future research works with fully installed BES system. The analysis result and the development plan will be presented in this paper.

  17. Real-time tracking and fast retrieval of persons in multiple surveillance cameras of a shopping mall

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; Baan, Jan; Landsmeer, Sander; Kruszynski, Chris; van Antwerpen, Gert; Dijk, Judith

    2013-05-01

    The capability to track individuals in CCTV cameras is important for e.g. surveillance applications at large areas such as train stations, airports and shopping centers. However, it is laborious to track and trace people over multiple cameras. In this paper, we present a system for real-time tracking and fast interactive retrieval of persons in video streams from multiple static surveillance cameras. This system is demonstrated in a shopping mall, where the cameras are positioned without overlapping fields-of-view and have different lighting conditions. The results show that the system allows an operator to find the origin or destination of a person more efficiently. The misses are reduced with 37%, which is a significant improvement.

  18. DETECTION OF WHITE DWARF COMPANIONS TO BLUE STRAGGLERS IN THE OPEN CLUSTER NGC 188: DIRECT EVIDENCE FOR RECENT MASS TRANSFER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosnell, Natalie M.; Mathieu, Robert D.; Geller, Aaron M.

    2014-03-01

    Several possible formation pathways for blue straggler stars have been developed recently, but no one pathway has yet been observationally confirmed for a specific blue straggler. Here we report the first findings from a Hubble Space Telescope Advanced Camera for Surveys/Solar Blind Channel far-UV photometric program to search for white dwarf companions to blue straggler stars. We find three hot and young white dwarf companions to blue straggler stars in the 7 Gyr open cluster NGC 188, indicating that mass transfer in these systems ended less than 300 Myr ago. These companions are direct and secure observational evidence that these blue straggler starsmore » were formed through mass transfer in binary stars. Their existence in a well-studied cluster environment allows for observational constraints of both the current binary system and the progenitor binary system, mapping the entire mass transfer history.« less

  19. 3D-printed eagle eye: Compound microlens system for foveated imaging

    PubMed Central

    Thiele, Simon; Arzenbacher, Kathrin; Gissibl, Timo; Giessen, Harald; Herkommer, Alois M.

    2017-01-01

    We present a highly miniaturized camera, mimicking the natural vision of predators, by 3D-printing different multilens objectives directly onto a complementary metal-oxide semiconductor (CMOS) image sensor. Our system combines four printed doublet lenses with different focal lengths (equivalent to f = 31 to 123 mm for a 35-mm film) in a 2 × 2 arrangement to achieve a full field of view of 70° with an increasing angular resolution of up to 2 cycles/deg field of view in the center of the image. The footprint of the optics on the chip is below 300 μm × 300 μm, whereas their height is <200 μm. Because the four lenses are printed in one single step without the necessity for any further assembling or alignment, this approach allows for fast design iterations and can lead to a plethora of different miniaturized multiaperture imaging systems with applications in fields such as endoscopy, optical metrology, optical sensing, surveillance drones, or security. PMID:28246646

  20. FPGA Based Adaptive Rate and Manifold Pattern Projection for Structured Light 3D Camera System †

    PubMed Central

    Lee, Sukhan

    2018-01-01

    The quality of the captured point cloud and the scanning speed of a structured light 3D camera system depend upon their capability of handling the object surface of a large reflectance variation in the trade-off of the required number of patterns to be projected. In this paper, we propose and implement a flexible embedded framework that is capable of triggering the camera single or multiple times for capturing single or multiple projections within a single camera exposure setting. This allows the 3D camera system to synchronize the camera and projector even for miss-matched frame rates such that the system is capable of projecting different types of patterns for different scan speed applications. This makes the system capturing a high quality of 3D point cloud even for the surface of a large reflectance variation while achieving a high scan speed. The proposed framework is implemented on the Field Programmable Gate Array (FPGA), where the camera trigger is adaptively generated in such a way that the position and the number of triggers are automatically determined according to camera exposure settings. In other words, the projection frequency is adaptive to different scanning applications without altering the architecture. In addition, the proposed framework is unique as it does not require any external memory for storage because pattern pixels are generated in real-time, which minimizes the complexity and size of the application-specific integrated circuit (ASIC) design and implementation. PMID:29642506

  1. Combined use of a priori data for fast system self-calibration of a non-rigid multi-camera fringe projection system

    NASA Astrophysics Data System (ADS)

    Stavroulakis, Petros I.; Chen, Shuxiao; Sims-Waterhouse, Danny; Piano, Samanta; Southon, Nicholas; Bointon, Patrick; Leach, Richard

    2017-06-01

    In non-rigid fringe projection 3D measurement systems, where either the camera or projector setup can change significantly between measurements or the object needs to be tracked, self-calibration has to be carried out frequently to keep the measurements accurate1. In fringe projection systems, it is common to use methods developed initially for photogrammetry for the calibration of the camera(s) in the system in terms of extrinsic and intrinsic parameters. To calibrate the projector(s) an extra correspondence between a pre-calibrated camera and an image created by the projector is performed. These recalibration steps are usually time consuming and involve the measurement of calibrated patterns on planes, before the actual object can continue to be measured after a motion of a camera or projector has been introduced in the setup and hence do not facilitate fast 3D measurement of objects when frequent experimental setup changes are necessary. By employing and combining a priori information via inverse rendering, on-board sensors, deep learning and leveraging a graphics processor unit (GPU), we assess a fine camera pose estimation method which is based on optimising the rendering of a model of a scene and the object to match the view from the camera. We find that the success of this calibration pipeline can be greatly improved by using adequate a priori information from the aforementioned sources.

  2. Securing quality of camera-based biomedical optics

    NASA Astrophysics Data System (ADS)

    Guse, Frank; Kasper, Axel; Zinter, Bob

    2009-02-01

    As sophisticated optical imaging technologies move into clinical applications, manufacturers need to guarantee their products meet required performance criteria over long lifetimes and in very different environmental conditions. A consistent quality management marks critical components features derived from end-users requirements in a top-down approach. Careful risk analysis in the design phase defines the sample sizes for production tests, whereas first article inspection assures the reliability of the production processes. We demonstrate the application of these basic quality principles to camera-based biomedical optics for a variety of examples including molecular diagnostics, dental imaging, ophthalmology and digital radiography, covering a wide range of CCD/CMOS chip sizes and resolutions. Novel concepts in fluorescence detection and structured illumination are also highlighted.

  3. Applications of iQID cameras

    NASA Astrophysics Data System (ADS)

    Han, Ling; Miller, Brian W.; Barrett, Harrison H.; Barber, H. Bradford; Furenlid, Lars R.

    2017-09-01

    iQID is an intensified quantum imaging detector developed in the Center for Gamma-Ray Imaging (CGRI). Originally called BazookaSPECT, iQID was designed for high-resolution gamma-ray imaging and preclinical gamma-ray single-photon emission computed tomography (SPECT). With the use of a columnar scintillator, an image intensifier and modern CCD/CMOS sensors, iQID cameras features outstanding intrinsic spatial resolution. In recent years, many advances have been achieved that greatly boost the performance of iQID, broadening its applications to cover nuclear and particle imaging for preclinical, clinical and homeland security settings. This paper presents an overview of the recent advances of iQID technology and its applications in preclinical and clinical scintigraphy, preclinical SPECT, particle imaging (alpha, neutron, beta, and fission fragment), and digital autoradiography.

  4. Alternative images for perpendicular parking : a usability test of a multi-camera parking assistance system.

    DOT National Transportation Integrated Search

    2004-10-01

    The parking assistance system evaluated consisted of four outward facing cameras whose images could be presented on a monitor on the center console. The images presented varied in the location of the virtual eye point of the camera (the height above ...

  5. A low-cost dual-camera imaging system for aerial applicators

    USDA-ARS?s Scientific Manuscript database

    Agricultural aircraft provide a readily available remote sensing platform as low-cost and easy-to-use consumer-grade cameras are being increasingly used for aerial imaging. In this article, we report on a dual-camera imaging system we recently assembled that can capture RGB and near-infrared (NIR) i...

  6. A smart telerobotic system driven by monocular vision

    NASA Technical Reports Server (NTRS)

    Defigueiredo, R. J. P.; Maccato, A.; Wlczek, P.; Denney, B.; Scheerer, J.

    1994-01-01

    A robotic system that accepts autonomously generated motion and control commands is described. The system provides images from the monocular vision of a camera mounted on a robot's end effector, eliminating the need for traditional guidance targets that must be predetermined and specifically identified. The telerobotic vision system presents different views of the targeted object relative to the camera, based on a single camera image and knowledge of the target's solid geometry.

  7. Improved iris localization by using wide and narrow field of view cameras for iris recognition

    NASA Astrophysics Data System (ADS)

    Kim, Yeong Gon; Shin, Kwang Yong; Park, Kang Ryoung

    2013-10-01

    Biometrics is a method of identifying individuals by their physiological or behavioral characteristics. Among other biometric identifiers, iris recognition has been widely used for various applications that require a high level of security. When a conventional iris recognition camera is used, the size and position of the iris region in a captured image vary according to the X, Y positions of a user's eye and the Z distance between a user and the camera. Therefore, the searching area of the iris detection algorithm is increased, which can inevitably decrease both the detection speed and accuracy. To solve these problems, we propose a new method of iris localization that uses wide field of view (WFOV) and narrow field of view (NFOV) cameras. Our study is new as compared to previous studies in the following four ways. First, the device used in our research acquires three images, one each of the face and both irises, using one WFOV and two NFOV cameras simultaneously. The relation between the WFOV and NFOV cameras is determined by simple geometric transformation without complex calibration. Second, the Z distance (between a user's eye and the iris camera) is estimated based on the iris size in the WFOV image and anthropometric data of the size of the human iris. Third, the accuracy of the geometric transformation between the WFOV and NFOV cameras is enhanced by using multiple matrices of the transformation according to the Z distance. Fourth, the searching region for iris localization in the NFOV image is significantly reduced based on the detected iris region in the WFOV image and the matrix of geometric transformation corresponding to the estimated Z distance. Experimental results showed that the performance of the proposed iris localization method is better than that of conventional methods in terms of accuracy and processing time.

  8. Very High-Speed Digital Video Capability for In-Flight Use

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Tseng, Ting; Reaves, Matthew; Mauldin, Kendall; Whiteman, Donald

    2006-01-01

    digital video camera system has been qualified for use in flight on the NASA supersonic F-15B Research Testbed aircraft. This system is capable of very-high-speed color digital imaging at flight speeds up to Mach 2. The components of this system have been ruggedized and shock-mounted in the aircraft to survive the severe pressure, temperature, and vibration of the flight environment. The system includes two synchronized camera subsystems installed in fuselage-mounted camera pods (see Figure 1). Each camera subsystem comprises a camera controller/recorder unit and a camera head. The two camera subsystems are synchronized by use of an MHub(TradeMark) synchronization unit. Each camera subsystem is capable of recording at a rate up to 10,000 pictures per second (pps). A state-of-the-art complementary metal oxide/semiconductor (CMOS) sensor in the camera head has a maximum resolution of 1,280 1,024 pixels at 1,000 pps. Exposure times of the electronic shutter of the camera range from 1/200,000 of a second to full open. The recorded images are captured in a dynamic random-access memory (DRAM) and can be downloaded directly to a personal computer or saved on a compact flash memory card. In addition to the high-rate recording of images, the system can display images in real time at 30 pps. Inter Range Instrumentation Group (IRIG) time code can be inserted into the individual camera controllers or into the M-Hub unit. The video data could also be used to obtain quantitative, three-dimensional trajectory information. The first use of this system was in support of the Space Shuttle Return to Flight effort. Data were needed to help in understanding how thermally insulating foam is shed from a space shuttle external fuel tank during launch. The cameras captured images of simulated external tank debris ejected from a fixture mounted under the centerline of the F-15B aircraft. Digital video was obtained at subsonic and supersonic flight conditions, including speeds up to Mach 2 and altitudes up to 50,000 ft (15.24 km). The digital video was used to determine the structural survivability of the debris in a real flight environment and quantify the aerodynamic trajectories of the debris.

  9. Bandit: Technologies for Proximity Operations of Teams of Sub-10Kg Spacecraft

    DTIC Science & Technology

    2007-10-16

    and adding a dedicated overhead camera system. As will be explained below, the forced-air system did not work and the existing system has proven too...erratic to justify the expense of the camera system. 6DOF Software Simulator. The existing Java-based graphical 6DOF simulator was to be improved for...proposed camera system for a nonfunctional table. The C-9 final report is enclosed. ["Prf flj ,er Figure 1. Forced-air table schematic Figure 2

  10. A Reconfigurable Real-Time Compressive-Sampling Camera for Biological Applications

    PubMed Central

    Fu, Bo; Pitter, Mark C.; Russell, Noah A.

    2011-01-01

    Many applications in biology, such as long-term functional imaging of neural and cardiac systems, require continuous high-speed imaging. This is typically not possible, however, using commercially available systems. The frame rate and the recording time of high-speed cameras are limited by the digitization rate and the capacity of on-camera memory. Further restrictions are often imposed by the limited bandwidth of the data link to the host computer. Even if the system bandwidth is not a limiting factor, continuous high-speed acquisition results in very large volumes of data that are difficult to handle, particularly when real-time analysis is required. In response to this issue many cameras allow a predetermined, rectangular region of interest (ROI) to be sampled, however this approach lacks flexibility and is blind to the image region outside of the ROI. We have addressed this problem by building a camera system using a randomly-addressable CMOS sensor. The camera has a low bandwidth, but is able to capture continuous high-speed images of an arbitrarily defined ROI, using most of the available bandwidth, while simultaneously acquiring low-speed, full frame images using the remaining bandwidth. In addition, the camera is able to use the full-frame information to recalculate the positions of targets and update the high-speed ROIs without interrupting acquisition. In this way the camera is capable of imaging moving targets at high-speed while simultaneously imaging the whole frame at a lower speed. We have used this camera system to monitor the heartbeat and blood cell flow of a water flea (Daphnia) at frame rates in excess of 1500 fps. PMID:22028852

  11. Method used to test the imaging consistency of binocular camera's left-right optical system

    NASA Astrophysics Data System (ADS)

    Liu, Meiying; Wang, Hu; Liu, Jie; Xue, Yaoke; Yang, Shaodong; Zhao, Hui

    2016-09-01

    To binocular camera, the consistency of optical parameters of the left and the right optical system is an important factor that will influence the overall imaging consistency. In conventional testing procedure of optical system, there lacks specifications suitable for evaluating imaging consistency. In this paper, considering the special requirements of binocular optical imaging system, a method used to measure the imaging consistency of binocular camera is presented. Based on this method, a measurement system which is composed of an integrating sphere, a rotary table and a CMOS camera has been established. First, let the left and the right optical system capture images in normal exposure time under the same condition. Second, a contour image is obtained based on the multiple threshold segmentation result and the boundary is determined using the slope of contour lines near the pseudo-contour line. Third, the constraint of gray level based on the corresponding coordinates of left-right images is established and the imaging consistency could be evaluated through standard deviation σ of the imaging grayscale difference D (x, y) between the left and right optical system. The experiments demonstrate that the method is suitable for carrying out the imaging consistency testing for binocular camera. When the standard deviation 3σ distribution of imaging gray difference D (x, y) between the left and right optical system of the binocular camera does not exceed 5%, it is believed that the design requirements have been achieved. This method could be used effectively and paves the way for the imaging consistency testing of the binocular camera.

  12. Measurement of reach envelopes with a four-camera Selective Spot Recognition (SELSPOT) system

    NASA Technical Reports Server (NTRS)

    Stramler, J. H., Jr.; Woolford, B. J.

    1983-01-01

    The basic Selective Spot Recognition (SELSPOT) system is essentially a system which uses infrared LEDs and a 'camera' with an infrared-sensitive photodetector, a focusing lens, and some A/D electronics to produce a digital output representing an X and Y coordinate for each LED for each camera. When the data are synthesized across all cameras with appropriate calibrations, an XYZ set of coordinates is obtained for each LED at a given point in time. Attention is given to the operating modes, a system checkout, and reach envelopes and software. The Video Recording Adapter (VRA) represents the main addition to the basic SELSPOT system. The VRA contains a microprocessor and other electronics which permit user selection of several options and some interaction with the system.

  13. A goggle navigation system for cancer resection surgery

    NASA Astrophysics Data System (ADS)

    Xu, Junbin; Shao, Pengfei; Yue, Ting; Zhang, Shiwu; Ding, Houzhu; Wang, Jinkun; Xu, Ronald

    2014-02-01

    We describe a portable fluorescence goggle navigation system for cancer margin assessment during oncologic surgeries. The system consists of a computer, a head mount display (HMD) device, a near infrared (NIR) CCD camera, a miniature CMOS camera, and a 780 nm laser diode excitation light source. The fluorescence and the background images of the surgical scene are acquired by the CCD camera and the CMOS camera respectively, co-registered, and displayed on the HMD device in real-time. The spatial resolution and the co-registration deviation of the goggle navigation system are evaluated quantitatively. The technical feasibility of the proposed goggle system is tested in an ex vivo tumor model. Our experiments demonstrate the feasibility of using a goggle navigation system for intraoperative margin detection and surgical guidance.

  14. Human detection in sensitive security areas through recognition of omega shapes using MACH filters

    NASA Astrophysics Data System (ADS)

    Rehman, Saad; Riaz, Farhan; Hassan, Ali; Liaquat, Muwahida; Young, Rupert

    2015-03-01

    Human detection has gained considerable importance in aggravated security scenarios over recent times. An effective security application relies strongly on detailed information regarding the scene under consideration. A larger accumulation of humans than the number of personal authorized to visit a security controlled area must be effectively detected, amicably alarmed and immediately monitored. A framework involving a novel combination of some existing techniques allows an immediate detection of an undesirable crowd in a region under observation. Frame differencing provides a clear visibility of moving objects while highlighting those objects in each frame acquired by a real time camera. Training of a correlation pattern recognition based filter on desired shapes such as elliptical representations of human faces (variants of an Omega Shape) yields correct detections. The inherent ability of correlation pattern recognition filters caters for angular rotations in the target object and renders decision regarding the existence of the number of persons exceeding an allowed figure in the monitored area.

  15. Software for minimalistic data management in large camera trap studies

    PubMed Central

    Krishnappa, Yathin S.; Turner, Wendy C.

    2014-01-01

    The use of camera traps is now widespread and their importance in wildlife studies well understood. Camera trap studies can produce millions of photographs and there is a need for software to help manage photographs efficiently. In this paper, we describe a software system that was built to successfully manage a large behavioral camera trap study that produced more than a million photographs. We describe the software architecture and the design decisions that shaped the evolution of the program over the study’s three year period. The software system has the ability to automatically extract metadata from images, and add customized metadata to the images in a standardized format. The software system can be installed as a standalone application on popular operating systems. It is minimalistic, scalable and extendable so that it can be used by small teams or individual researchers for a broad variety of camera trap studies. PMID:25110471

  16. Calibration of a dual-PTZ camera system for stereo vision

    NASA Astrophysics Data System (ADS)

    Chang, Yau-Zen; Hou, Jung-Fu; Tsao, Yi Hsiang; Lee, Shih-Tseng

    2010-08-01

    In this paper, we propose a calibration process for the intrinsic and extrinsic parameters of dual-PTZ camera systems. The calibration is based on a complete definition of six coordinate systems fixed at the image planes, and the pan and tilt rotation axes of the cameras. Misalignments between estimated and ideal coordinates of image corners are formed into cost values to be solved by the Nelder-Mead simplex optimization method. Experimental results show that the system is able to obtain 3D coordinates of objects with a consistent accuracy of 1 mm when the distance between the dual-PTZ camera set and the objects are from 0.9 to 1.1 meters.

  17. Geometrical calibration television measuring systems with solid state photodetectors

    NASA Astrophysics Data System (ADS)

    Matiouchenko, V. G.; Strakhov, V. V.; Zhirkov, A. O.

    2000-11-01

    The various optical measuring methods for deriving information about the size and form of objects are now used in difference branches- mechanical engineering, medicine, art, criminalistics. Measuring by means of the digital television systems is one of these methods. The development of this direction is promoted by occurrence on the market of various types and costs small-sized television cameras and frame grabbers. There are many television measuring systems using the expensive cameras, but accuracy performances of low cost cameras are also interested for the system developers. For this reason inexpensive mountingless camera SK1004CP (format 1/3', cost up to 40$) and frame grabber Aver2000 were used in experiments.

  18. Coincidence electron/ion imaging with a fast frame camera

    NASA Astrophysics Data System (ADS)

    Li, Wen; Lee, Suk Kyoung; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander; Fan, Lin

    2015-05-01

    A new time- and position- sensitive particle detection system based on a fast frame CMOS camera is developed for coincidence electron/ion imaging. The system is composed of three major components: a conventional microchannel plate (MCP)/phosphor screen electron/ion imager, a fast frame CMOS camera and a high-speed digitizer. The system collects the positional information of ions/electrons from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of MCPs processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of electron/ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide. We further show that a time resolution of 30 ps can be achieved when measuring electron TOF spectrum and this enables the new system to achieve a good energy resolution along the TOF axis.

  19. An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing

    USDA-ARS?s Scientific Manuscript database

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...

  20. Coincidence ion imaging with a fast frame camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Suk Kyoung; Cudry, Fadia; Lin, Yun Fei

    2014-12-15

    A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots onmore » each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide.« less

Top