Sample records for security sphere specifically

  1. Advertising's new medium: human experience.

    PubMed

    Rayport, Jeffrey F

    2013-03-01

    We live in a media-saturated world, where consumers are drowning in irrelevant messages delivered from the web, TV, radio, print, outdoor displays, and a proliferating array of mobile devices. Advertising strategies built on persuading through interruption, repetition, and brute ubiquity are increasingly ineffective. To win consumers' attention and trust, marketers must think less about what advertising says to its targets and more about what it does for them. Rayport outlines four domains of human experience: In the public sphere people move from one place or activity to another, both online and off. In the social sphere they interact with and relate to one another. In the tribal sphere they affiliate with groups to define or express their identity. In the psychological sphere they connect language with specific thoughts and feelings. Savvy marketers think about crafting messages that consumers will welcome in these domains. Zappos did that when it placed ads in airport security bins (the public sphere)--reaching people whose minds may be on their shoes. Nintendo identified young mothers who were willing to host Wii parties and provided them with everything they needed for these social-sphere events. Yelp's Elite Squad of reviewers have a heightened sense of tribal affiliation that makes them powerful brand ambassadors. Life is good Inc. is rooted in the psychological sphere: It advertises only through the optimism-promoting logo and slogan on its products.

  2. [Legislative and legal security of supervisory activities in the sphere of protection of consumers' rights and human well-being].

    PubMed

    Rumiantsev, G I; Kutsenko, G I; Polesskiĭ, V A

    2007-01-01

    Sanitary legislation plays an important role in supervisory activities ensuring the protection of consumers' rights and human well-being. The paper considers the basic laws and standard acts allowing for legal regulation in this sphere of activities.

  3. Specific surface area of overlapping spheres in the presence of obstructions

    NASA Astrophysics Data System (ADS)

    Jenkins, D. R.

    2013-02-01

    This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.

  4. Specific surface area of overlapping spheres in the presence of obstructions.

    PubMed

    Jenkins, D R

    2013-02-21

    This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.

  5. Russia and NATO Enlargement: The Assurances in 1990 and Their Implications

    DTIC Science & Technology

    2009-06-01

    to achieve “an agreement on the final legal settlement of the German question, which would serve our security interests and the cause of stability... intrinsically coupled to new security structures in Europe with no dominant player, particularly not the Soviet Union’s rival, the United States...main European security issues and would unconditionally acknowledge the CIS [Commonwealth of Independent States] as a sphere of vital interest to

  6. An Automated Flying-Insect-Detection System

    NASA Technical Reports Server (NTRS)

    Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert

    2005-01-01

    An automated flying-insect-detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect's wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing beat signatures are preprocessed (Fourier transformed) in real-time to display a periodic signal. These signals are sent to the end user where they are graphically displayed. All AFIDS data are pre-processed in the field with the use of a laptop computer equipped with LABVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation.

  7. The Problems of Coordination of the International Duties of the Kazakhstan Republic in the Social-Labour Sphere and National Law

    ERIC Educational Resources Information Center

    Buribayev, Yermek A.; Oryntayev, Zhambyl K.; Bekbossynov, Yermek; Mazhinbekov, Saken; Yessenbekova, Patima; Blasheva, Manshuk

    2016-01-01

    Background/Objectives: The research topicality is conditioned by the fact that the labour secure of the social and labour human rights is realized not only by the national law but also by the international law that is usually more progressive and establishes the generally accepted standards and norms of human rights in the social-labour sphere.…

  8. Approach to estimation of level of information security at enterprise based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    V, Stepanov L.; V, Parinov A.; P, Korotkikh L.; S, Koltsov A.

    2018-05-01

    In the article, the way of formalization of different types of threats of information security and vulnerabilities of an information system of the enterprise and establishment is considered. In a type of complexity of ensuring information security of application of any new organized system, the concept and decisions in the sphere of information security are expedient. One of such approaches is the method of a genetic algorithm. For the enterprises of any fields of activity, the question of complex estimation of the level of security of information systems taking into account the quantitative and qualitative factors characterizing components of information security is relevant.

  9. Coordinate measuring machine test standard apparatus and method

    DOEpatents

    Bieg, L.F.

    1994-08-30

    A coordinate measuring machine test standard apparatus and method are disclosed which includes a rotary spindle having an upper phase plate and an axis of rotation, a kinematic ball mount attached to the phase plate concentric with the axis of rotation of the phase plate, a groove mounted at the circumference of the phase plate, and an arm assembly which rests in the groove. The arm assembly has a small sphere at one end and a large sphere at the other end. The small sphere may be a coordinate measuring machine probe tip and may have variable diameters. The large sphere is secured in the kinematic ball mount and the arm is held in the groove. The kinematic ball mount includes at least three mounting spheres and the groove is an angular locating groove including at least two locking spheres. The arm may have a hollow inner core and an outer layer. The rotary spindle may be a ratio reducer. The device is used to evaluate the measuring performance of a coordinate measuring machine for periodic recertification, including 2 and 3 dimensional accuracy, squareness, straightness, and angular accuracy. 5 figs.

  10. Coordinate measuring machine test standard apparatus and method

    DOEpatents

    Bieg, Lothar F.

    1994-08-30

    A coordinate measuring machine test standard apparatus and method which iudes a rotary spindle having an upper phase plate and an axis of rotation, a kinematic ball mount attached to the phase plate concentric with the axis of rotation of the phase plate, a groove mounted at the circumference of the phase plate, and an arm assembly which rests in the groove. The arm assembly has a small sphere at one end and a large sphere at the other end. The small sphere may be a coordinate measuring machine probe tip and may have variable diameters. The large sphere is secured in the kinematic ball mount and the arm is held in the groove. The kinematic ball mount includes at least three mounting spheres and the groove is an angular locating groove including at least two locking spheres. The arm may have a hollow inner core and an outer layer. The rotary spindle may be a ratio reducer. The device is used to evaluate the measuring performance of a coordinate measuring machine for periodic recertification, including 2 and 3 dimensional accuracy, squareness, straightness, and angular accuracy.

  11. The policy of import substitution as the basis for economic security and well-being of society

    NASA Astrophysics Data System (ADS)

    Makasheva, Yu S.; Makasheva, N. P.; Gromova, A. S.; Andreeva, N. V.; Ishtunov, S. A.

    2016-09-01

    The study presents the analysis of import substitution opportunities on separate branches of economic activity, preceding the realization of import substitution policy with the aim to support national economic security, which is essential for the contemporary society welfare insurance. Currently, social well-being is considered to be the reflection of economic activity, the instrument of state influence on the society, as well as an indicator of the social security system. Due to the fact that Russia is integrated into the world economy, the foreign-economic policy currently is playing an important role in the development of national security and the state's interest to the spheres of economy considering external and internal threats. Decline in external economic conditions may result in serious consequences for the functioning and development of the country as well as for the trade and investment activities, which will further lead to the decline in export, withdrawal of capital, recession of industrial production, trade and investment sphere, fall of GDP and living standards. Thus, considering the current state of instability in the world economy and the growing political tension in relation to Russian Federation, the measures to increase economic security in the country should be taken. The policy of import substitution is considered to be one of the major solutions nowadays.

  12. 49 CFR 8.7 - Spheres of responsibility.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... assisted by the Director of Security and Administrative Management, who, in addition to other actions... 12968, Office of Management and Budget Directives, the regulations in this part, and related issuances...

  13. Generating perfect fluid spheres in general relativity

    NASA Astrophysics Data System (ADS)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-06-01

    Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.

  14. The Struggle Between Liberties and Authorities in the Information Age.

    PubMed

    Taddeo, Mariarosaria

    2015-10-01

    The "struggle between liberties and authorities", as described by Mill, refers to the tension between individual rights and the rules restricting them that are imposed by public authorities exerting their power over civil society. In this paper I argue that contemporary information societies are experiencing a new form of such a struggle, which now involves liberties and authorities in the cyber-sphere and, more specifically, refers to the tension between cyber-security measures and individual liberties. Ethicists, political philosophers and political scientists have long debated how to strike an ethically sound balance between security measures and individual rights. I argue that such a balance can only be reached once individual rights are clearly defined, and that such a definition cannot prescind from an analysis of individual well-being in the information age. Hence, I propose an analysis of individual well-being which rests on the capability approach, and I then identify a set of rights that individuals should claim for themselves. Finally, I consider a criterion for balancing the proposed set of individual rights with cyber-security measures in the information age.

  15. SPHERES: Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites: SPHERES/Astrobee Working Group (SAWG)

    NASA Technical Reports Server (NTRS)

    Benavides, Jose

    2017-01-01

    SPHERES/Astrobee Working Group (SAWG) Quarterly meeting. Membership includes MIT, FIT, AFS, DARPA, CASIS, SJSU, and NASA (HQ, KSC, JSC, MSFC, and ARC)Face-to-Face, twice a year Purpose: Information sharing across the SPHERES community Program office shares National Lab Facility availability Status of resources (batteries, CO2 tanks, etc.), Overall Calendar (scheduled Test Sessions, up mass return), and Updates on new PD, Investigations, and ISS infrastructure. Provide the SPHERES community (PD, investigators, etc.) with up-to-date information to determine opportunities to use the NL Facility Discuss proposed changes updates to SPHERES Nat Lab which may be required to support a specific activity or research. Discuss specific support requests made to the ISS Office.

  16. Metastable primordial germ cell-like state induced from mouse embryonic stem cells by Akt activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamano, Noriko; Kimura, Tohru, E-mail: tkimura@patho.med.osaka-u.ac.jp; Watanabe-Kushima, Shoko

    Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were culturedmore » on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.« less

  17. Forming MOFs into spheres by use of molecular gastronomy methods.

    PubMed

    Spjelkavik, Aud I; Aarti; Divekar, Swapnil; Didriksen, Terje; Blom, Richard

    2014-07-14

    A novel method utilizing hydrocolloids to prepare nicely shaped spheres of metal-organic frameworks (MOFs) has been developed. Microcrystalline CPO-27-Ni particles are dispersed in either alginate or chitosan solutions, which are added dropwise to solutions containing, respectively, either divalent group 2 cations or base that act as gelling agents. Well-shaped spheres are immediately formed, which can be dried into spheres containing mainly MOF (>95 wt %). The spheronizing procedures have been optimized with respect to maximum specific surface area, shape, and particle density of the final sphere. At optimal conditions, well-shaped 2.5-3.5 mm diameter CPO-27-Ni spheres with weight-specific surface areas <10 % lower than the nonformulated CPO-27-Ni precursor, and having sphere densities in the range 0.8 to 0.9 g cm(-3) and particle crushing strengths above 20 N, can be obtained. The spheres are well suited for use in fixed-bed catalytic or adsorption processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors.

    PubMed

    Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J; Mijowska, Ewa

    2012-05-29

    Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors.

  19. Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors

    NASA Astrophysics Data System (ADS)

    Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J.; Mijowska, Ewa

    2012-05-01

    Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors.

  20. 49 CFR 1.23 - Spheres of primary responsibility.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and technology, commercial space transportation, intelligence and security, and public affairs. (b... technology cooperation; international visitors' programs; economic regulation of the airline industry; and... any negotiated rulemaking relating to, or having an impact on, projects, programs, or funding...

  1. 49 CFR 1.23 - Spheres of primary responsibility.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and technology, commercial space transportation, intelligence and security, and public affairs. (b... technology cooperation; international visitors' programs; economic regulation of the airline industry; and... any negotiated rulemaking relating to, or having an impact on, projects, programs, or funding...

  2. Filter Bed of Packed Spheres

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Wang, T. G.

    1986-01-01

    Spheres sized and treated for desired sieve properties. Filter constructed from densely packed spheres restrained by screens. Hollow gas-filled plastic or metal spheres normally used. Manufactured within one percent or better diameter tolerance. Normally, all spheres in filter of same nominal diameter. Filter used as sieve to pass only particles smaller than given size or to retain particles larger than that size. Options available under filter concept make it easy to design for specific applications.

  3. Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors

    PubMed Central

    2012-01-01

    Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors. PMID:22643113

  4. Facile synthesis and electrochemical performances of hollow graphene spheres as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yao, Ran-Ran; Zhao, Dong-Lin; Bai, Li-Zhong; Yao, Ning-Na; Xu, Li

    2014-07-01

    The hollow graphene oxide spheres have been successfully fabricated from graphene oxide nanosheets utilizing a water-in-oil emulsion technique, which were prepared from natural flake graphite by oxidation and ultrasonic treatment. The hollow graphene oxide spheres were reduced to hollow graphene spheres at 500°C for 3 h under an atmosphere of Ar(95%)/H2(5%). The first reversible specific capacity of the hollow graphene spheres was as high as 903 mAh g-1 at a current density of 50 mAh g-1. Even at a high current density of 500 mAh g-1, the reversible specific capacity remained at 502 mAh g-1. After 60 cycles, the reversible capacity was still kept at 652 mAh g-1 at the current density of 50 mAh g-1. These results indicate that the prepared hollow graphene spheres possess excellent electrochemical performances for lithium storage. The high rate performance of hollow graphene spheres thanks to the hollow structure, thin and porous shells consisting of graphene sheets.

  5. The Industrial Age Versus The Information Age: Rethinking National Security in the 21st Century

    DTIC Science & Technology

    2001-02-01

    new Gobalization /Post-Cold War Environment. The distinctions also help in conceiving new factors of merit that might provide more relevant insight...distinction relates to the national security and military sphere would be the ability of a military to win battles. Within Western culture , at least, the... cultures , the cultural willingness to accept large numbers of casualties over a long period can have the same war-winning effect as winning battles

  6. The Coast Guard Proceedings of the Marine Safety and Security Council. Volume 72, Number 1, Spring 2015

    DTIC Science & Technology

    2015-01-01

    vapor-tight protection). This allows the team to make continuous entries into a contaminated area for at least 72 hours, before they need to restock...to secure a contamination source or to minimize human health or environmental impact. Tailored Response All NSF hazmat technicians are procient in...to identify unknown atmo- spheres and quantify contamination . The NSF also constantly evaluates new technology and advanced instru- ments that

  7. Understanding Where Americas Public Discussion Takes Place In Todays Society: Case Studies of Concealed Weapons Carry Reform

    DTIC Science & Technology

    2016-06-01

    media sources on the public discourse. This research compares and contrasts the roles and importance of traditional and social media in the public...alternative media , social media 15. NUMBER OF PAGES 73 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY...importance of traditional and social media in the public sphere today, as evidenced by the coverage of concealed-carry laws and related stories. The

  8. [Food in the contemporary context: consumption, political action and sustainability].

    PubMed

    Portilho, Fátima; Castañeda, Marcelo; de Castro, Inês Rugani Ribeiro

    2011-01-01

    The interdisciplinary field of reflections on food as politics goes through a process of expansion and overflow to the private sphere, and routine daily food consumption. This process seems to be a reflection of transformations in the global agrifood markets, the wide publicity and awareness of food hazards and the politicization of consumption. To the extent that individuals are to assume responsibility for the environmental and social consequences of their everyday choices, the specificity of political power in contemporary societies goes beyond the institutional level (food security and nutrition, social inequalities in access to food, agricultural policies and regulations advertising of food) to meet the private sphere. This paper shows, initially, some of the recent debates about the process of politicization of consumption and then explores a theoretical reflection on the ethical, political and ideological habits that relate to food consumption, including the locations and ways of acquiring and food preparation, the values of environmental preservation, solidarity with local producers and reflexive caution against food risks. Finally, points to a research agenda capable of capturing the processes of politicization of food and consumer practices in the field of political power.

  9. Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Fan, Yang; Yang, Xin; Zhu, Bing; Liu, Pei-Fang; Lu, Hai-Ting

    2014-12-01

    The polysaccharide carrageenan is used as a natural precursor to prepare micro-mesoporous carbon spheres. The carbon spheres were synthesized by hydrothermal carbonization of carrageenan, and subsequent chemical activation by KOH at different temperatures. The obtained micro-mesoporous carbon spheres have high surface area (up to 2502 m2 g-1) and large pore volume (up to 1.43 cm3 g-1). Moreover, the micro- and mesoporosity can be finely tuned be modifying the activation temperatures in the range of 700-900 °C. The carbon spheres activated at 900 °C present high specific capacitance of 230 F g-1 at a current density of 1 A g-1 and good ion transport kinetics. The good capacitive performance can be ascribed to the high specific surface area, well-controlled micro- and mesoporosity and narrow pore size distribution.

  10. Compact Microscope Imaging System With Intelligent Controls Improved

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2004-01-01

    The Compact Microscope Imaging System (CMIS) with intelligent controls is a diagnostic microscope analysis tool with intelligent controls for use in space, industrial, medical, and security applications. This compact miniature microscope, which can perform tasks usually reserved for conventional microscopes, has unique advantages in the fields of microscopy, biomedical research, inline process inspection, and space science. Its unique approach integrates a machine vision technique with an instrumentation and control technique that provides intelligence via the use of adaptive neural networks. The CMIS system was developed at the NASA Glenn Research Center specifically for interface detection used for colloid hard spheres experiments; biological cell detection for patch clamping, cell movement, and tracking; and detection of anode and cathode defects for laboratory samples using microscope technology.

  11. Linking rights and standards: the process of developing "rights-based" minimum standards on food security, nutrition and food aid.

    PubMed

    Young, Helen; Taylor, Anna; Way, Sally-Anne; Leaning, Jennifer

    2004-06-01

    This article examines the recent revision of the Sphere Minimum Standards in disaster response relating to food security, nutrition and food aid. It describes how the revision attempted to incorporate the principles of the Humanitarian Charter, as well as relevant human rights principles and values into the Sphere Minimum Standards. The initial aim of the revision was to ensure that the Sphere Minimum Standards better reflected the principles embodied in the Humanitarian Charter. This was later broadened to ensure that key legal standards and principles from human rights and humanitarian law were considered and also incorporated, in part to fill the "protection gap" within the existing standards. In relation to the food security, nutrition and food aid standards, it was agreed by participants in the process that the human right to adequate food and freedom from hunger should be incorporated. In relation to more general principles underlying the Humanitarian Charter, itself drawn largely from human rights and humanitarian law, it was agreed that there was a need to strengthen "protection" elements within the standards and a need to incorporate the basic principles of the right to life with dignity, non-discrimination, impartiality and participation, as well as to explore the relevance of the concept of the progressive realisation of the right to food. The questions raised in linking rights to operational standards required thought, on the one hand, about whether the technical standards reflected a deep understanding of the values expressed within the legal instruments, and whether the existing standards were adequate in relation to those legal rights. On the other hand, it also required reflection on how operational standards like Sphere could give concrete content to human rights, such as the right to food and the right to be free from hunger. However, there remain challenges in examining what a rights-based approach will mean in terms of the role of humanitarian agencies as duty-bearers of rights, given that the primary responsibility rests with state governments. It will also require reflection on the modes and mechanisms of accountability that are brought to bear in ensuring the implementation of the Minimum Standards.

  12. Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor

    NASA Astrophysics Data System (ADS)

    Hao, Zhi-Qiang; Cao, Jing-Pei; Wu, Yan; Zhao, Xiao-Yan; Zhuang, Qi-Qi; Wang, Xing-Yong; Wei, Xian-Yong

    2017-09-01

    Waste sugar solution (WSS), which contains abundant 2-keto-L-gulonic acid, is harmful to the environment if discharged directly. For value-added utilization of the waste resource, a novel process is developed for preparation of porous carbon spheres by hydrothermal carbonization (HTC) of WSS followed by KOH activation. Additionally, the possible preparation mechanism of carbon spheres is proposed. The effects of hydrothermal and activation parameters on the properties of the carbon sphere are also investigated. The carbon sphere is applied to electric double-layer capacitor and its electrochemical performance is studied. These results show that the carbon sphere obtained by HTC at 180 °C for 12 h with the WSS/deionized water volume ratio of 2/3 possess the highest specific capacitance under identical activation conditions. The specific capacitance of the carbon spheres can reach 296.1 F g-1 at a current density of 40 mA g-1. Besides, excellent cycle life and good capacitance retention (89.6%) are observed at 1.5 A g-1 after 5000 cycles. This study not only provides a facile and potential method for the WSS treatment, but also achieves the high value-added recycling of WSS for the preparation of porous carbon spheres with superior electrochemical properties.

  13. Large-scale protein/antibody patterning with limiting unspecific adsorption

    NASA Astrophysics Data System (ADS)

    Fedorenko, Viktoriia; Bechelany, Mikhael; Janot, Jean-Marc; Smyntyna, Valentyn; Balme, Sebastien

    2017-10-01

    A simple synthetic route based on nanosphere lithography has been developed in order to design a large-scale nanoarray for specific control of protein anchoring. This technique based on two-dimensional (2D) colloidal crystals composed of polystyrene spheres allows the easy and inexpensive fabrication of large arrays (up to several centimeters) by reducing the cost. A silicon wafer coated with a thin adhesion layer of chromium (15 nm) and a layer of gold (50 nm) is used as a substrate. PS spheres are deposited on the gold surface using the floating-transferring technique. The PS spheres were then functionalized with PEG-biotin and the defects by self-assembly monolayer (SAM) PEG to prevent unspecific adsorption. Using epifluorescence microscopy, we show that after immersion of sample on target protein (avidin and anti-avidin) solution, the latter are specifically located on polystyrene spheres. Thus, these results are meaningful for exploration of devices based on a large-scale nanoarray of PS spheres and can be used for detection of target proteins or simply to pattern a surface with specific proteins.

  14. A novel approach for fabricating NiO hollow spheres for gas sensors

    NASA Astrophysics Data System (ADS)

    Kuang, Chengwei; Zeng, Wen; Ye, Hong; Li, Yanqiong

    2018-03-01

    Hollow spheres are usually fabricated by hard template methods or soft template methods with soft surfactants, which is quiet tedious and time-consuming. In this paper, NiO hollow spheres with fluffy surface were successfully synthesized by a facile hydrothermal method and subsequent calcination, where bubbles acted as the template. NiO hollow spheres exhibited excellent gas sensing performances, which results from its hollow structure and high specific surface area. In addition, a possible evolution mechanism of NiO hollow spheres was proposed based on experimental results.

  15. Sociology, the public sphere, and modern government: a challenge to the dominance of Habermas.

    PubMed

    Wickham, Gary

    2010-03-01

    There is an unfortunate tendency within some branches of sociology - particularly those usually called 'critical', that is, those associated with 'critical social theory'- to treat with disdain the understanding of the public sphere that many modern governments use daily in making and implementing public policy. The majority of sociologists in those branches seem to prefer, as part and parcel of their normative commitments, Jürgen Habermas's Kantian understanding of the public sphere, which focuses primarily on reason and morality and insists that these two forces are of a higher order than politics and law. This paper offers a set of criticisms of the Habermas-Kant understanding, arguing that its focus on reason and morality, were it to become more widespread, would steer sociology into public policy irrelevance. The paper goes on to describe a very different understanding of the public sphere, a politico-legal or civil-peace understanding which operates as the public policy focus of those governments that have relegated questions of salvation (whether religious or ideological) to the private sphere. This understanding emerged from early modern attempts to carve out a domain of relative freedom and security against the deadly violence of religious disputation sweeping across Europe. The paper readily acknowledges that some 'non-critical' branches of sociology already employ a version of this understanding.

  16. N-Doped carbon spheres with hierarchical micropore-nanosheet networks for high performance supercapacitors.

    PubMed

    Wang, Shoupei; Zhang, Jianan; Shang, Pei; Li, Yuanyuan; Chen, Zhimin; Xu, Qun

    2014-10-18

    N-doped carbon spheres with hierarchical micropore-nanosheet networks (HPSCSs) were facilely fabricated by a one-step carbonization and activation process of N containing polymer spheres by KOH. With the synergy effect of the multiple structures, HPSCSs exhibit a very high specific capacitance of 407.9 F g(-1) at 1 mV s(-1) (1.2 times higher than that of porous carbon spheres) and a robust cycling stability for supercapacitors.

  17. Toward a Pedagogy of Ecological Responsibility: Learning to Reinhabit the Earth.

    ERIC Educational Resources Information Center

    Mische, Patricia M.

    1992-01-01

    Environmental damage harms the rights of future generations. Peace and disarmament are environmental issues necessitating rethinking of national security. Coevolutionary ethics involve balancing the individual with the common good and establishing equilibrium among the biosphere, technosphere, sociosphere, and the sphere of mind and spirit. (SK)

  18. Mesoporous carbon spheres with controlled porosity for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dexian; Fu, Aiping; Li, Hongliang; Wang, Yiqian; Guo, Peizhi; Liu, Jingquan; Zhao, Xiu Song

    2015-07-01

    Mesoporous carbon (MC) spheres with hierarchical pores, controlled pore volume and high specific surface areas have been prepared by a mass-producible spray drying assisted template method using sodium alginate as carbon precursor and commercial colloidal silica particles as hard template. The resulting MC spheres, possessing hierarchical pores in the range of 3-30 nm, are employed as conductive matrices for the preparation of cathode materials for lithium-sulfur batteries. A high pressure induced one-step impregnation of elemental sulfur into the pore of the MC spheres has been exploited. The electrochemical performances of sulfur-impregnated MC spheres (S-MC) derived from MC spheres with different pore volume and specific surface area but with the same sulfur loading ratio of 60 wt% (S-MC-X-60) have been investigated in details. The S-MC-4-60 composite cathode material displayed a high initial discharge capacity of 1388 mAhg-1 and a good cycling stability of 857 mAhg-1 after 100 cycles at 0.2C, and shows also excellent rate capability of 864 mAhg-1 at 2C. More importantly, the sulfur loading content in MC-4 spheres can reach as high as 80%, and it still can deliver a capacity of 569 mAhg-1 after 100 cycles at 0.2C.

  19. Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials.

    PubMed

    Chen, Hao; Zhou, Shuxue; Wu, Limin

    2014-06-11

    This paper reports the first nickel hydroxide-manganese dioxide-reduced graphene oxide (Ni(OH)2-MnO2-RGO) ternary hybrid sphere powders as supercapacitor electrode materials. Due to the abundant porous nanostructure, relatively high specific surface area, well-defined spherical morphology, and the synergetic effect of Ni(OH)2, MnO2, and RGO, the electrodes with the as-obtained Ni(OH)2-MnO2-RGO ternary hybrid spheres as active materials exhibited significantly enhanced specific capacitance (1985 F·g(-1)) and energy density (54.0 Wh·kg(-1)), based on the total mass of active materials. In addition, the Ni(OH)2-MnO2-RGO hybrid spheres-based asymmetric supercapacitor also showed satisfying energy density and electrochemical cycling stability.

  20. Multifunctional Inflatable Structure Being Developed for the PowerSphere Concept

    NASA Technical Reports Server (NTRS)

    Peterson, Todd T.

    2004-01-01

    NASA has funded a collaborative team of The Aerospace Corporation, ILC Dover, Lockheed Martin, and NASA Glenn Research Center to develop the Multifunctional Inflatable Structure (MIS) for a "PowerSphere" concept through a NASA Research Announcement. This power system concept has several advantages, including a high collection area, low weight and stowage volume, and the elimination of all solar array pointing mechanisms. The current 3-year effort will culminate with the fabrication and testing of a fully functional engineering development unit. The baseline design of the Power-Sphere consists of two opposing semispherical domes connected to a central spacecraft. Each semispherical dome consists of hexagonal and pentagonal solar cell panels that together form a geodetic sphere. Inflatable ultraviolet (UV) rigidizable tubular hinges between the solar cell panels and UV rigidizable isogrid center columns with imbedded flex circuitry form the MIS. The reference configuration for the PowerSphere is a 0.6-m-diameter (fully deployed) spacecraft with a total mass budget of 4 kg (1 kg for PowerSphere, 3 kg for spacecraft) capable of producing 29 W of electricity with 10-percent-efficient thin-film solar cells. In a stowed configuration, the solar cell panels will be folded sequentially to the outside of the instrument decks. The center column will be z-folded between the instrument decks and the spacecraft housing for packaging. The instrument panel will secure the z-folded stack with launch ties. After launch, once the release tie is triggered, the center column and hinge tubes will inflate and be rigidized in their final configurations by ultraviolet radiation. The overall PowerSphere deployment sequence is shown pictorially in the following illustration.

  1. Synthesis of rambutan-like MoS2/mesoporous carbon spheres nanocomposites with excellent performance for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Shouchuan; Hu, Ruirui; Dai, Peng; Yu, Xinxin; Ding, Zongling; Wu, Mingzai; Li, Guang; Ma, Yongqing; Tu, Chuanjun

    2017-02-01

    A novel rambutan-like composite of MoS2/mesoporous carbon spheres were synthesized by a simple two-step hydrothermal and post-annealing approach via using glucose as C source and Na2MoO4·2H2O and thiourea as Mo and S sources. It is found that the morphology and electrochemical properties can be effectively controlled by the change of the weight ratio of coated MoS2 sheets to carbon spheres. When used as electrode material for supercapacitor, the hybrid MoS2/carbon spheres show a high specific capacity of 411 F/g at a current density of 1 A/g and 272 F/g at a high discharge current density of 10 A/g. The annealing treatment at 700 °C transformed the core carbon spheres into mesoporous ones, which served as the conduction network and favor the enhancement of the specific capacitance. In addition, the strain released during the charge/discharge process can be accommodated and the structural integrity can be kept, improving the cycling life. After 1000 cycles, the capacitance retention of the hybrid MoS2/carbon spheres is 93.2%.

  2. Redefining Professional Knowledge in Athletic Training: Whose Knowledge Is It Anyway?

    ERIC Educational Resources Information Center

    McKeon, Patrick O.; Medina McKeon, Jennifer M.; Geisler, Paul R.

    2017-01-01

    Context: As athletic training continues to evolve as a profession, several epistemological considerations must be considered. These include how we generate professional knowledge and how we secure and legitimize it in both professional and public spheres. Objective: The purpose of this commentary is to provide an overview of how athletic training…

  3. Face-specific Replacement of Calcite by Amorphous Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Liesegang, M.; Milke, R.; Neusser, G.; Mizaikoff, B.

    2016-12-01

    Amorphous silica, composed of nanoscale spheres, is an important biomineral, alteration product of silicate rocks on the Earth's surface, and precursor material for stable silicate minerals. Despite constant progress in silica sphere synthesis, fundamental knowledge of natural silica particle interaction and ordering processes leading to colloidal crystals is absent so far. To understand the formation pathways of silica spheres in a geologic environment, we investigated silicified Cretaceous mollusk shell pseudomorphs from Coober Pedy (South Australia) using focused ion beam (FIB)-SEM tomography, petrographic microscopy, µ-XRD, and EMPA. The shells consist of replaced calcite crystals (<2 mm) composed of ordered arrays of uniform, close-packed silica spheres 300 ± 10 nm in size. Concentric layered spheres composed of 40 nm-sized subparticles provide evidence that, at least in the final stage, particle aggregation was the major sphere growth mechanism. Silica sphere arrays in periodically changing orientations perfectly replicate polysynthetic twinning planes of calcite. FIB-SEM tomography shows that cubic closed-packed sphere arrangements preserve the twin lamellae, while the twin plane consists of a submicrometer layer of randomly ordered spheres and vacancies. To transfer crystallographic information from parent to product, the advancement of synchronized dissolution and precipitation fronts along lattice planes is essential. We assume that the volume-preserving replacement process proceeds via a face-specific dissolution-precipitation mechanism with intermediate subparticle aggregation and subsequent layer-by-layer deposition of spheres along a planar surface. Porosity created during the replacement reaction allows permanent fluid access to the propagating reaction interface. Fluid pH and ionic strength remain constant throughout the replacement process, permitting continuous silica nanoparticle formation and diffusion-limited colloid aggregation. Our study provides a natural example of the transformation of an atomic crystal to an amorphous, mesoscale ordered material; thus, links the research fields of natural colloidal crystal formation, carbonate-silica replacement, and crystallization by oriented particle aggregation (CPA).

  4. Positron emission mammography (PEM): Effect of activity concentration, object size, and object contrast on phantom lesion detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Lawrence R.; Wang, Carolyn L.; Eissa, Marna

    2012-10-15

    Purpose: To characterize the relationship between lesion detection sensitivity and injected activity as a function of lesion size and contrast on the PEM (positron emission mammography) Flex Solo II scanner using phantom experiments. Methods: Phantom lesions (spheres 4, 8, 12, 16, and 20 mm diameter) were randomly located in uniform background. Sphere activity concentrations were 3 to 21 times the background activity concentration (BGc). BGc was a surrogate for injected activity; BGc ranged from 0.44-4.1 kBq/mL, corresponding to 46-400 MBq injections. Seven radiologists read 108 images containing zero, one, or two spheres. Readers used a 5-point confidence scale to scoremore » the presence of spheres. Results: Sensitivity was 100% for lesions {>=}12 mm under all conditions except for one 12 mm sphere with the lowest contrast and lowest BGc (60% sensitivity). Sensitivity was 100% for 8 mm spheres when either contrast or BGc was high, and 100% for 4 mm spheres only when both contrast and BGc were highest. Sphere contrast recovery coefficients (CRC) were 49%, 34%, 26%, 14%, and 2.8% for the largest to smallest spheres. Cumulative specificity was 98%. Conclusions: Phantom lesion detection sensitivity depends more on sphere size and contrast than on BGc. Detection sensitivity remained {>=}90% for injected activities as low as 100 MBq, for lesions {>=}8 mm. Low CRC in 4 mm objects results in moderate detection sensitivity even for 400 MBq injected activity, making it impractical to optimize injected activity for such lesions. Low CRC indicates that when lesions <8 mm are observed on PEM images they are highly tracer avid with greater potential of clinical significance. High specificity (98%) suggests that image statistical noise does not lead to false positive findings. These results apply to the 85 mm thick object used to obtain them; lesion detectability should be better (worse) for thinner (thicker) objects based on the reduced (increased) influence of photon attenuation.« less

  5. Nano-micro carbon spheres anchored on porous carbon derived from dual-biomass as high rate performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Shaobo; Zhao, Yang; Zhang, Baihui; Xia, Hui; Zhou, Jianfei; Xie, Wenke; Li, Hongjian

    2018-03-01

    Hierarchical nano-micro carbon spheres@rice straw-derived porous carbon composites are successfully synthesized by the in situ decoration of the porous carbon with carbon spheres from glucose under the assistance of cetyltrimethyl ammonium bromide micelles and further activated by KOH. The scanning electron microscope images clearly show the carbon spheres disperse homogeneously and orderly onto the surface and in the inner macropores of the porous carbon. The diameter of the carbon spheres varies from 475 nm to 1.6 μm, which can be easily controlled by introducing extra inducing agent. The optimal composites exhibit a large specific surface area (1122 m2 g-1), rich content of oxygen (14.2 wt %), and tunable hierarchical porous structure. When used as supercapacitor electrodes, the novel composites with abundant fruits present a high specific capacitance of 337 F g-1 at 1 A g-1, excellent rate retention of 83% from 1 to 20 A g-1 and a good cycling stability with 96% capacitance retention after 10000 cycles. In this strategy, the thought of shared ion-buffering reservoirs is proposed and the mutual promotion effects between the carbon spheres and porous carbon in the composites are also practically demonstrated to contribute the enhanced electrochemical performances.

  6. The U.S. Constitution: Foundation for Effective Government, Freedom and Creativity.

    ERIC Educational Resources Information Center

    Cannon, Mark W.

    In a speech given to judges, public officials, law teachers, lawyers, and students at the East China Institute of Politics and Law, Shanghai, the author discusses the U.S. Constitution. The U.S. Constitution made possible energetic government by majority rule, while also securing individual rights in their appropriate sphere. Not only does the…

  7. Smectic phases in hard particle mixtures: Koda's theory

    NASA Astrophysics Data System (ADS)

    Vesely, Franz J.

    Mixtures of parallel linear particles and spheres tend to demix upon compression. The linear species usually concentrates in regular layers, thus forming a smectic phase. With increasing concentration of spheres this 'smectic demixing' transition occurs at ever lower packing densities. For the specific case of hard spherocylinders and spheres Koda et al. [T. Koda, M. Numajiri, S. Ikeda, J. Phys. Jap., 65, 3551 (1996)] have explained the layering effect in terms of a second virial approximation to the free energy. We extend this approach from spherocylinders to other linear particles, namely fused spheres, ellipsoids and sphero-ellipsoids.

  8. Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage

    NASA Astrophysics Data System (ADS)

    Liu, Tianyuan; Kavian, Reza; Chen, Zhongming; Cruz, Samuel S.; Noda, Suguru; Lee, Seung Woo

    2016-02-01

    Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering that the carbon spheres were obtained in an aqueous glucose solution and no toxic or hazardous reagents were used, this process opens up a green and sustainable method for designing high performance, environmentally-friendly energy storage devices.Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering that the carbon spheres were obtained in an aqueous glucose solution and no toxic or hazardous reagents were used, this process opens up a green and sustainable method for designing high performance, environmentally-friendly energy storage devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07064c

  9. Tailored synthesis of monodispersed nano/submicron porous silicon oxycarbide (SiOC) spheres with improved Li-storage performance as an anode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Huimin; Yuan, Anbao; Xu, Jiaqiang

    2017-10-01

    A spherical silicon oxycarbide (SiOC) material (monodispersed nano/submicron porous SiOC spheres) is successfully synthesized via a specially designed synthetic strategy involving pyrolysis of phenyltriethoxysilane derived pre-ceramic polymer spheres at 900 °C. In order to prevent sintering of the pre-ceramic polymer spheres upon heating, a given amount of hollow porous SiO2 nanobelts which are separately prepared from tetraethyl orthosilicate with CuO nanobelts as templates are introduced into the pre-ceramic polymer spheres before pyrolysis. This material is investigated as an anode for lithium-ion batteries in comparison with the large-size bulk SiOC material synthesized under the similar conditions but without hollow SiO2 nanobelts. The maximum reversible specific capacity of ca. 900 mAh g-1 is delivered at the current density of 100 mA g-1 and ca. 98% of the initial capacity is remained after 100 cycles at 100 mA g-1 for the SiOC spheres material, which are much superior to the bulk SiOC material. The improved lithium storage performance in terms of specific capacity and cyclability is attributed to its particular morphology of monodisperse nano/submicron porous spheres as well as its modified composition and microstructure. This SiOC material has higher Li-storage activity and better stability against volume expansion during repeated lithiation and delithiation cycling.

  10. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    NASA Astrophysics Data System (ADS)

    Zhong, Kuo; Song, Kai; Clays, Koen

    2018-03-01

    In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal) lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs) of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM) inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  11. Outer-sphere Pb(II) adsorbed at specific surface sites on single crystal α-alumina

    USGS Publications Warehouse

    Bargar, John R.; Towle, Steven N.; Brown, Gordon E.; Parks, George A.

    1996-01-01

    Solvated Pb(II) ions were found to adsorb as structurally well-defined outer-sphere complexes at specific sites on the α-Al2O3 (0001) single crystal surface, as determined by grazing-incidence X-ray absorption fine structure (GI-XAFS) measurements. The XAFS results suggest that the distance between Pb(II) adions and the alumina surface is approximately 4.2 Å. In contrast, Pb(II) adsorbs as more strongly bound inner-sphere complexes on α-Al2O3 (102). The difference in reactivities of the two alumina surfaces has implications for modeling surface complexation reactions of contaminants in natural environments, catalysis, and compositional sector zoning of oxide crystals.

  12. Comparison of NiS2 and α-NiS hollow spheres for supercapacitors, non-enzymatic glucose sensors and water treatment.

    PubMed

    Wei, Chengzhen; Cheng, Cheng; Cheng, Yanyan; Wang, Yan; Xu, Yazhou; Du, Weimin; Pang, Huan

    2015-10-21

    NiS2 hollow spheres are successfully prepared by a one-step template free method. Meanwhile, α-NiS hollow spheres can also be synthesized via the calcination of the pre-obtained NiS2 hollow spheres at 400 °C for 1 h in air. The electrochemical performances of the as-prepared NiS2 and α-NiS hollow sphere products are evaluated. When used for supercapacitors, compared with NiS2 hollow spheres, the α-NiS hollow sphere electrode shows a large specific capacitance of 717.3 F g(-1) at 0.6 A g(-1) and a good cycle life. Furthermore, NiS2 and α-NiS hollow spheres are successfully applied to fabricate non-enzymatic glucose sensors. In particular, the α-NiS hollow spheres exhibit good catalytic activity for the oxidation of glucose, a fast amperometric response time of less than 5 s, and the detection limit is estimated to be 0.08 μM. More importantly, compared with other normally co-existing interfering species, such as ascorbic acid, uric acid and dopamine, the electrode modified with α-NiS hollow spheres shows good selectivity. Moreover, the α-NiS hollow spheres also present good capacity to remove Congo red organic pollutants from wastewater by their surface adsorption ability.

  13. Macroscopic Floquet topological crystalline steel and superconductor pump

    NASA Astrophysics Data System (ADS)

    Rossi, Anna M. E. B.; Bugase, Jonas; Fischer, Thomas M.

    2017-08-01

    The transport of a macroscopic steel sphere and a superconducting sphere on top of two-dimensional periodic magnetic patterns is studied experimentally and compared with the theory and with experiments on topological transport of magnetic colloids. Transport of the steel and superconducting sphere is achieved by moving an external permanent magnet on a closed loop around the two-dimensional crystal. The transport is topological, i.e., the spheres are transported by a primitive unit vector of the lattice when the external magnet loop winds around specific directions. We experimentally determine the set of directions the loops must enclose for nontrivial transport of the spheres into various directions. We show that the loops can be used to sort steel and superconducting spheres. We show that the topological transport is robust with respect to the scale of the system and therefore speculate on its down scalability to the molecular scale.

  14. Fe2O3 hollow sphere nanocomposites for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Wen, Yang; Xu, Bing; Lu, Lu; Ren, Reiming

    2018-02-01

    Nanomaterials have attracted increasing interest in electrochemical energy storage and conversion. Hollow sphere Fe2O3 nanocomposites were successfully prepared through facile low temperature water-bath method with carbon sphere as hard template. The morphology and microstructure of samples were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM), respectively. Through hydrolysis mechanism, using ferric chloride direct hydrolysis, iron hydroxide coated on the surface of carbon sphere, after high temperature calcination can form the hollow spherical iron oxide materials. Electrochemical performances of the hollow sphere Fe2O3 nanocomposites electrodes were investigated by cyclic voltammery (CV) and galvanostatic charge/discharge. The Pure hollow sphere Fe2O3 nanocomposites achieves a specific capacitance of 125 F g-1 at the current density of 85 mA g-1. The results indicate that the uniform dispersion of hollow ball structure can effectively reduce the particle reunion in the process of charging and discharging.

  15. Microwave-Assisted Solvothermal Synthesis of VO2 Hollow Spheres and Their Conversion into V2O5 Hollow Spheres with Improved Lithium Storage Capability.

    PubMed

    Pan, Jing; Zhong, Li; Li, Ming; Luo, Yuanyuan; Li, Guanghai

    2016-01-22

    Monodispersed hierarchically structured V2O5 hollow spheres were successfully obtained from orthorhombic VO2 hollow spheres, which are in turn synthesized by a simple template-free microwave-assisted solvothermal method. The structural evolution of VO2 hollow spheres has been studied and explained by a chemically induced self-transformation process. The reaction time and water content in the reaction solution have a great influence on the morphology and phase structure of the resulting products in the solvothermal reaction. The diameter of the VO2 hollow spheres can be regulated simply by changing vanadium ion content in the reaction solution. The VO2 hollow spheres can be transformed into V2O5 hollow spheres with nearly no morphological change by annealing in air. The nanorods composed of V2O5 hollow spheres have an average length of about 70 nm and width of about 19 nm. When used as a cathode material for lithium-ion batteries, the V2O5 hollow spheres display a diameter-dependent electrochemical performance, and the 440 nm hollow spheres show the highest specific discharge capacity of 377.5 mAhg(-1) at a current density of 50 mAg(-1) , and are better than the corresponding solid spheres and nanorod assemblies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Triassico: A Sphere Positioning System for Surface Studies with IBA Techniques

    NASA Astrophysics Data System (ADS)

    Fontana, Cristiano L.; Doyle, Barney L.

    We propose here a novel device, called the Triassico, to microscopically study the entire surface of millimeter-sized spheres. The sphere dimensions can be as small as 1 mm, and the upper limit defined only by the power and by the mechanical characteristics of the motors used. Three motorized driving rods are arranged so an equilateral triangle is formed by the rod's axes, on such a triangle the sphere sits. Movement is achieved by rotating the rods with precise relative speeds and by exploiting the friction between the sphere and the rods surfaces. The sphere can be held in place by gravity or by an opposing trio of rods. By rotating the rods with specific relative angular velocities, a net torque can be exerted on the sphere which then rotates. No repositioning of the sphere or of the motors is needed to cover the full surface with the investigating tools. An algorithm was developed to position the sphere at any arbitrary polar and azimuthal angle. The algorithm minimizes the number of rotations needed by the rods, in order to efficiently select a particular position on the sphere surface. A prototype Triassico was developed for the National Ignition Facility, of the Lawrence Livermore National Laboratory (Livermore, California, USA), as a sphere manipulation apparatus for ion microbeam analysis at Sandia National Laboratories (Albuquerque, NM, USA) of Xe-doped DT inertial confinement fusion fuel spheres. Other applications span from samples orientation, ball bearing manufacturing, or jewelry.

  17. Fixture for mounting small parts for processing

    DOEpatents

    Foreman, Larry R.; Gomez, Veronica M.; Thomas, Michael H.

    1990-01-01

    A fixture for mounting small parts, such as fusion target spheres or microelectronic components. A glass stalk is drawn and truncated near its tip. The truncated end of the glass stalk is dipped into silicone rubber forming an extending streamer. After the rubber cures for approximately 24 hours, a small part is touched to the streamer, and will be held securely throughout processing.

  18. Observing globular cluster RR Lyraes with the BYU West Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Jeffery, E. J.; Joner, M. D.; Walton, R. S.

    2016-05-01

    We have utilized the 0.9-meter telescope of the Brigham Young University West Mountain Observatory to secure data on six northern hemi- sphere globular clusters. Here we present observations of RR Lyrae stars located in these clusters. We compare light curves produced using both DAOPHOT and ISIS software packages. Light curve fitting is done with FITLC.

  19. Static latching arrangement and method

    DOEpatents

    Morrison, Larry

    1988-01-01

    A latching assembly for use in latching a cable to and unlatching it from a given object in order to move an object from one location to another is disclosed herein. This assembly includes a weighted sphere mounted to one end of a cable so as to rotate about a specific diameter of the sphere. The assembly also includes a static latch adapted for connection with the object to be moved. This latch includes an internal latching cavity for containing the sphere in a latching condition and a series of surfaces and openings which cooperate with the sphere in order to move the sphere into and out of the latching cavity and thereby connect the cable to and disconnect it from the latch without using any moving parts on the latch itself.

  20. Cobalt silicate hierarchical hollow spheres for lithium-ion batteries.

    PubMed

    Yang, Jun; Guo, Yuanyuan; Zhang, Yufei; Sun, Chencheng; Yan, Qingyu; Dong, Xiaochen

    2016-09-09

    In this paper, the synthesis of cobalt silicate novel hierarchical hollow spheres via a facile hydrothermal method is presented. With a unique hollow structure, the Co2SiO4 provides a large surface area, which can shorten the lithium ions diffusion length and effectively accommodate the volumetic variation during the lithiation/de-lithiation process. Serving as an anode material in lithium-ion battery application, the Co2SiO4 electrode demonstrates a high reversible specific capacity (first-cycle charge capacity of 948.6 mAh g(-1) at 100 mA g(-1)), a cycling durability (specific capacity of 791.4 mAh g(-1) after 100 cycles at 100 mA g(-1)), and a good rate capability (specific capacity of 349.4 mAh g(-1) at 10 A g(-1)). The results indicate that the cobalt silicate hierarchical hollow sphere holds the potential applications in energy storage electrodes.

  1. Diagnosis of a Poorly Performing Liquid Hydrogen Bulk Storage Sphere

    NASA Technical Reports Server (NTRS)

    Krenn, Angela G.

    2011-01-01

    There are two 850,000 gallon Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A and the other at Launch Pad B. The LH2 Sphere at Pad B has had a high boiloff rate since being brought into service in the 1960's. The daily commodity loss was estimated to be approximately double that of the Pad A sphere, and well above the minimum required by the sphere's specification. Additionally, after being re-painted in the late 1990's a "cold spot" appeared on the outer sphere which resulted in a poor paint bond, and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of Space Shuttle program service which provided a unique opportunity to diagnose the sphere's poor performance. The sphere was drained and inerted, and then opened from the annular relief device on the top where a series of boroscoping operations were accomplished. Boroscoping revealed a large Perlite insulation void in the region of the sphere where the cold spot was apparent. Perlite was then trucked in and off-loaded into the annular void region until the annulus was full. The sphere has not yet been brought back into service.

  2. Volumes and surface areas of pendular rings

    USGS Publications Warehouse

    Rose, W.

    1958-01-01

    A packing of spheres is taken as a suitable model of porous media. The packing may be regular and the sphere size may be uniform, but in general, both should be random. Approximations are developed to give the volumes and surface areas of pendular rings that exist at points of sphere contact. From these, the total free volume and interfacial specific surface area are derived as expressive of the textural character of the packing. It was found that the log-log plot of volumes and surface areas of pendular rings vary linearly with the angle made by the line joining the sphere centers and the line from the center of the largest sphere to the closest edge of the pendular ring. The relationship, moreover, was found not to be very sensitive to variation in the size ratio of the spheres in contact. It also was found that the addition of pendular ring material to various sphere packings results in an unexpected decrease in the surface area of the boundaries that confine the resulting pore space. ?? 1958 The American Institute of Physics.

  3. Movements of a Sphere Moving Over Smooth and Rough Inclines

    NASA Astrophysics Data System (ADS)

    Jan, Chyan-Deng

    1992-01-01

    The steady movements of a sphere over a rough incline in air, and over smooth and rough inclines in a liquid were studied theoretically and experimentally. The principle of energy conservation was used to analyze the translation velocities, rolling resistances, and drag coefficients of a sphere moving over the inclines. The rolling resistance to the movement of a sphere from the rough incline was presumed to be caused by collisions and frictional slidings. A varnished wooden board was placed on the bottom of an experimental tilting flume to form a smooth incline and a layer of spheres identical to the sphere moving over them was placed on the smooth wooden board to form a rough incline. Spheres used in the experiments were glass spheres, steel spheres, and golf balls. Experiments show that a sphere moving over a rough incline with negligible fluid drag in air can reach a constant translation velocity. This constant velocity was found to be proportional to the bed inclination (between 11 ^circ and 21^circ) and the square root of the sphere's diameter, but seemingly independent of the sphere's specific gravity. Two empirical coefficients in the theoretical expression of the sphere's translation velocity were determined by experiments. The collision and friction parts of the shear stress exerted on the interface between the moving sphere and rough incline were determined. The ratio of collision to friction parts appears to increase with increase in the bed inclination. These two parts seem to be of the same order of magnitude. The rolling resistances and the relations between the drag coefficient and Reynolds number for a sphere moving over smooth and rough inclines in a liquid, such as water or salad oil, were determined by a regression analysis based on experimental data. It was found that the drag coefficient for a sphere over the rough incline is larger than that for a sphere over the smooth incline, and both of which are much larger than that for a sphere in free fall. The relative magnitudes of the shear stresses due to drag, collision, and friction were also determined in terms of the Reynolds number.

  4. Analysis for Heat Transfer in a High Current-Passing Carbon Nanosphere Using Nontraditional Thermal Transport Model.

    PubMed

    Hol C Y; Chen, B C; Tsai, Y H; Ma, C; Wen, M Y

    2015-11-01

    This paper investigates the thermal transport in hollow microscale and nanoscale spheres subject to electrical heat source using nontraditional thermal transport model. Working as supercapacitor electrodes, carbon hollow micrometer- and nanometer-sized spheres needs excellent heat transfer characteristics to maintain high specific capacitance, long cycle life, and high power density. In the nanoscale regime, the prediction of heat transfer from the traditional heat conduction equation based on Fourier's law deviates from the measured data. Consequently, the electrical heat source-induced heat transfer characteristics in hollow micrometer- and nanometer-sized spheres are studied using nontraditional thermal transport model. The effects of parameters on heat transfer in the hollow micrometer- and nanometer-sized spheres are discussed in this study. The results reveal that the heat transferred into the spherical interior, temperature and heat flux in the hollow sphere decrease with the increasing Knudsen number when the radius of sphere is comparable to the mean free path of heat carriers.

  5. Robotics Programming Competition Spheres, Russian Part

    NASA Astrophysics Data System (ADS)

    Sadovski, Andrei; Kukushkina, Natalia; Biryukova, Natalia

    2016-07-01

    Spheres" such name was done to Russian part of the Zero Robotics project which is a student competition devoted to programming of SPHERES (SPHERES - Synchronized Position Hold Engage and Reorient Experimental Satellites are the experimental robotics devices which are capable of rotation and translation in all directions, http://ssl.mit.edu/spheres/), which perform different operations on the board of International Space Station. Competition takes place online on http://zerorobotics.mit.edu. The main goal is to develop a program for SPHERES to solve an annual challenge. The end of the tournament is the real competition in microgravity on the board of ISS with a live broadcast. The Russian part of the tournament has only two years history but the problems, organization and specific are useful for the other educational projects especially for the international ones. We introduce the history of the competition, its scientific and educational goals in Russia and describe the participation of Russian teams in 2014 and 2015 tournaments. Also we discuss the organizational problems.

  6. Hierarchical heterostructure of MoS2 flake anchored on TiO2 sphere for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Chanda, K.; Thakur, S.; Maiti, S.; Acharya, A.; Paul, T.; Besra, N.; Sarkar, S.; Das, A.; Sardar, K.; Chattopadhyay, K. K.

    2018-05-01

    Hierarchical architectures realized via rational coupling of several components not only boast synergy driven raised functionality compared to their structural constituents also exhibit noble interface phenomena, thus made them significantly pertinent from research and technological point of view. Here in, geometrically intricate hierarchical nanoform constituting MoS2 nanoflakes anchored on TiO2 sphere was realized via two steps hydrothermal protocol. Initially TiO2 sphere was synthesized using titanium isopropoxide assisted hydrothermal route followed by which the sphere was used as scaffold for secondary growth of MoS2. As synthesized hybrid sample displayed much improved electrochemical behavior than pristine TiO2 sphere. Assessed value of specific capacitance for the hybrid is found to 152.22 F/g at current density of 0.1A/g which is 30 fold than TiO2 sphere. This electrochemical performance enhancement can be accredited to high surface area of the hybrid sample.

  7. Fixture for mounting small parts for processing

    DOEpatents

    Foreman, L.R.; Gomez, V.M.; Thomas, M.H.

    1990-05-29

    A fixture for mounting small parts, such as fusion target spheres or microelectronic components is disclosed. A glass stalk is drawn and truncated near its tip. The truncated end of the glass stalk is dipped into silicone rubber forming an extending streamer. After the rubber cures for approximately 24 hours, a small part is touched to the streamer, and will be held securely throughout processing. 5 figs.

  8. Negotiating Livelihoods beyond Beijing: The Burden of Women Food Vendors in the Informal Economy of Limbe, Cameroon

    ERIC Educational Resources Information Center

    Fonchingong, Charles C.

    2005-01-01

    As a response to the trappings of globalisation and the commoditisation of the sphere of production, women continue to play a crucial role in securing livelihoods by guaranteeing access to food in rural, peri-urban, and urban areas. Based on a survey of food vendors, this paper evaluates women's input through informal earnings, the coping…

  9. Effect of Nanofiller Shape on Effective Thermal Conductivity of Fluoropolymer Composites

    DTIC Science & Technology

    2015-08-24

    SECURITY CLASSIFICATION OF: Filler particle size and shape influence interconnectivity within a polymer matrix and play a significant role in controlling...the effective thermal conductivity of a composite. This study examines the effect of nanofiller particle shape in a polytetrafluorethylene (PTFE...carbon fillers: nano-diamond spheres, carbon nanotubes (CNT) and graphene flakes. The experimental results are coupled with a particle connectivity model

  10. Lunar surface engineering properties experiment definition. Volume 2: Mechanics of rolling sphere-soil slope interaction

    NASA Technical Reports Server (NTRS)

    Hovland, H. J.; Mitchell, J. K.

    1971-01-01

    The soil deformation mode under the action of a rolling sphere (boulder) was determined, and a theory based on actual soil failure mechanism was developed which provides a remote reconnaissance technique for study of soil conditions using boulder track observations. The failure mechanism was investigated by using models and by testing an instrumented spherical wheel. The wheel was specifically designed to measure contact pressure, but it also provided information on the failure mechanism. Further tests included rolling some 200 spheres down sand slopes. Films were taken of the rolling spheres, and the tracks were measured. Implications of the results and reevaluation of the lunar boulder tracks are discussed.

  11. Carbon spheres-assisted strategy to prepare mesoporous manganese dioxide for supercapacitor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Siheng; Graduate University of Chinese Academy of Sciences, Beijing 100039; Qi Li, E-mail: qil@ciac.jl.cn

    Mesoporous MnO{sub 2} microstructures with large specific surface area have been successfully synthesized by an in-situ redox precipitation method in the presence of colloidal carbon spheres. The samples of them had much higher specific surface area, pore size and pore volume than those obtained via routes without carbon spheres. The morphology, chemical compositions and porous nature of products were fully characterized. Electrochemical measurements showed that these mesoporous MnO{sub 2} could function well when used as positive electrode materials for supercapacitor. Ideal electrochemical capacitive performances and cyclic stability after 2000 galvanostatic charge-discharge cycles could be observed in 1 M neutral Na{submore » 2}SO{sub 4} aqueous electrolyte with a working voltage of 1.7 V. - Graphical Abstract: Mesoporous MnO{sub 2} microstructures with large S{sub BET} were successfully synthesized by in-situ redox precipitation method in the presence of colloidal carbon spheres. Electrochemical measurements showed that these mesoporous MnO{sub 2} could be well used as electrode materials for supercapacitor. Highlights: Black-Right-Pointing-Pointer Mesoporous MnO{sub 2} was prepared by in-situ redox method assisted by carbon spheres. Black-Right-Pointing-Pointer S{sub BET}, pore size and volume were higher than MnO{sub 2} obtained without carbon spheres. Black-Right-Pointing-Pointer They could function well when used as electrode materials for supercapacitor. Black-Right-Pointing-Pointer Ideal capacitive behaviors and long cycling life showed after 2000 charge-discharge.« less

  12. An Automated Flying-Insect Detection System

    NASA Technical Reports Server (NTRS)

    Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert

    2007-01-01

    An automated flying-insect detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland-security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect s wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing-beat signatures are preprocessed (Fourier transformed) in real time to display a periodic signal. These signals are sent to the end user where they are graphically. All AFIDS data are preprocessed in the field with the use of a laptop computer equipped with LabVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al-GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing-beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation. Preliminary data indicate that AFIDS has sufficient sensitivity and frequency measuring capability to differentiate between male and female mosquitoes (Figure 1, bottom panel) and fruit flies (data not shown). Similar studies show that AFIDS can be utilized to detect discrete differences between two mosquito species, Aedes aegypti and Aedes albopictus. When fully deployable, a wireless network of AFIDS monitors could be used in combination with other remotely sensed data and visually displayed in a geographic information system (GIS) to provide real-time surveillance (see Figure 2). More accurate and sensitive insect population forecasts and effective rapid response and mitigation of insect issues would then be possible.

  13. Three-dimensional interconnected network of graphene-wrapped porous silicon spheres: in situ magnesiothermic-reduction synthesis and enhanced lithium-storage capabilities.

    PubMed

    Wu, Ping; Wang, Hui; Tang, Yawen; Zhou, Yiming; Lu, Tianhong

    2014-03-12

    A novel type of 3D porous Si-G micro/nanostructure (i.e., 3D interconnected network of graphene-wrapped porous silicon spheres, Si@G network) was constructed through layer-by-layer assembly and subsequent in situ magnesiothermic-reduction methodology. Compared with bare Si spheres, the as-synthesized Si@G network exhibits markedly enhanced anodic performance in terms of specific capacity, cycling stability, and rate capability, making it an ideal anode candidate for high-energy, long-life, and high-power lithium-ion batteries.

  14. Using Instant Messaging Systems as a Platform for Electronic Voting

    NASA Astrophysics Data System (ADS)

    Meletiadou, Anastasia; Grimm, Rüdiger

    Many Instant Messaging (IM) systems like Skype or Spark offer ex tended services such as file sharing, VoIP, or a shared whiteboard. As the name suggests, IM applications are predominantly used for spontaneous text-based communication for private or business purposes. In this paper we explore their potential to serve as platforms for secure collaborative applications like electronic contract negotiation, e-payment or electronic voting. Such applications have to deal with challenges like time constraints (“instant” com munication is desired), integration of media channels and the absence of one uni fying “sphere of control” covering all participants. In this paper, we address these challenges by discussing one particular secure collaborative application: secure decision processes for small groups. We provide the following contribu tions: (1) we define three varying scenarios and corresponding security require ments (2) we present an IM-based architecture implementing these scenarios, in cluding a Video-based authentication mechanism, and (3) we discuss poten tial attack patterns.

  15. Securing support for eye health policy in low- and middle-income countries: identifying stakeholders through a multi-level analysis.

    PubMed

    Morone, Piergiuseppe; Camacho Cuena, Eva; Kocur, Ivo; Banatvala, Nicholas

    2014-05-01

    This article empirically evaluates advocacy in low- and middle-income countries as a key tool for raising policy priority and securing high-level decision maker support in eye health. We used a unique data set based on a survey conducted by World Health Organization in 2011 on eye care and prevention of blindness in 82 low- and middle-income countries. The theoretical framework derives from the idea that a plethora of stakeholders at local and global level pressure national governments, acting in economic and the political spheres. Previously, eye care has not been investigated in such a framework. We found structural differences across countries with different income levels and proposed policy recommendations to secure high-level decision makers' support for promoting eye health. Three case studies suggest that, in order to secure more support and resources for eye health, domestic and international stakeholders must strengthen their engagement with ministries of health at political and above all economic levels.

  16. Confined Assembly of Hollow Carbon Spheres in Carbonaceous Nanotube: A Spheres-in-Tube Carbon Nanostructure with Hierarchical Porosity for High-Performance Supercapacitor.

    PubMed

    Chen, Ze; Ye, Sunjie; Evans, Stephen D; Ge, Yuanhang; Zhu, Zhifeng; Tu, Yingfeng; Yang, Xiaoming

    2018-05-01

    Carbonaceous nanotubes (CTs) represent one of the most popular and effective carbon electrode materials for supercapacitors, but the electrochemistry performance of CTs is largely limited by their relatively low specific surface area, insufficient usage of intratube cavity, low content of heteroatom, and poor porosity. An emerging strategy for circumventing these issues is to design novel porous CT-based nanostructures. Herein, a spheres-in-tube nanostructure with hierarchical porosity is successfully engineered, by encapsulating heteroatom-doping hollow carbon spheres into one carbonaceous nanotube (HCSs@CT). This intriguing nanoarchitecture integrates the merits of large specific surface area, good porosity, and high content of heteroatoms, which synergistically facilitates the transportation and exchange of ions and electrons. Accordingly, the as-prepared HCSs@CTs possess outstanding performances as electrode materials of supercapacitors, including superior capacitance to that of CTs, HCSs, and their mixtures, coupled with excellent cycling life, demonstrating great potential for applications in energy storage. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Ruiping; Ren, Feng; Yang, Jinlin; Su, Weiming; Sun, Zhiming; Zhang, Lei; Wang, Chang-an

    2016-03-01

    Hierarchically porous hybrid TiO2 hollow spheres were solvothermally synthesized successfully by using tetrabutyl titanate as titanium precursor and hydrated metal sulfates as soft templates. The as-prepared TiO2 spheres with hierarchically pore structures and high specific surface area and pore volume consisted of highly crystallized anatase TiO2 nanocrystals hybridized with a small amount of metal oxide from the hydrated sulfate. The proposed hydrated-sulfate assisted solvothermal (HAS) synthesis strategy was demonstrated to be widely applicable to various systems. Evaluation of the hybrid TiO2 hollow spheres for the photo-decomposition of methyl orange (MO) under visible-light irradiation revealed that they exhibited excellent photocatalytic activity and durability.

  18. Reflection measurements for luminescent powders

    NASA Astrophysics Data System (ADS)

    Kroon, R. E.

    2018-04-01

    Luminescent materials are useful in applications varying from lighting and display technologies to document security features and medical research, amongst many others. Measurement of the excitation range is an important consideration, and absorption bands are often determined from a decrease in the measured diffuse reflectance of the material using a ultraviolet-visible (UV-vis) spectrophotometer with an integrating sphere. Such a system may provide questionable results when used to measure the reflectance of a luminescence material, which is demonstrated for a Tb doped silica phosphor, because the system cannot differentiate between the reflected light and luminescence. It is shown that more reliable results are achieved for this phosphor by measuring the reflectance using a synchronous zero-offset scan in a fluorescence spectrometer equipped with an integrating sphere. This method is therefore recommended instead of traditional reflectance measurements using a UV-vis spectrophotometer for luminescent powders.

  19. Worldwide Report, Arms Control

    DTIC Science & Technology

    1985-12-19

    disarmament shows that the decisive factor in Soviet-U.S. relations remains the sphere of security, the core of which is the organically linked ...actiye in the United States for whom the very prospect of preconditions for curbing the arms race is patently not to their linking . Certain quarters in...distorting the essence of the issue of the organic link between preventing the mili- tarization of space and the reduction of nuclear arms on earth

  20. How Does the Gibbs Inequality Condition Affect the Stability and Detachment of Floating Spheres from the Free Surface of Water?

    PubMed

    Feng, Dong-xia; Nguyen, Anh V

    2016-03-01

    Floating objects on the air-water interfaces are central to a number of everyday activities, from walking on water by insects to flotation separation of valuable minerals using air bubbles. The available theories show that a fine sphere can float if the force of surface tension and buoyancies can support the sphere at the interface with an apical angle subtended by the circle of contact being larger than the contact angle. Here we show that the pinning of the contact line at the sharp edge, known as the Gibbs inequality condition, also plays a significant role in controlling the stability and detachment of floating spheres. Specifically, we truncated the spheres with different angles and used a force sensor device to measure the force of pushing the truncated spheres from the interface into water. We also developed a theoretical modeling to calculate the pushing force that in combination with experimental results shows different effects of the Gibbs inequality condition on the stability and detachment of the spheres from the water surface. For small angles of truncation, the Gibbs inequality condition does not affect the sphere detachment, and hence the classical theories on the floatability of spheres are valid. For large truncated angles, the Gibbs inequality condition determines the tenacity of the particle-meniscus contact and the stability and detachment of floating spheres. In this case, the classical theories on the floatability of spheres are no longer valid. A critical truncated angle for the transition from the classical to the Gibbs inequality regimes of detachment was also established. The outcomes of this research advance our understanding of the behavior of floating objects, in particular, the flotation separation of valuable minerals, which often contain various sharp edges of their crystal faces.

  1. The influence of size and charge of chitosan/polyglutamic acid hollow spheres on cellular internalization, viability and blood compatibility.

    PubMed

    Dash, Biraja C; Réthoré, Gildas; Monaghan, Michael; Fitzgerald, Kathleen; Gallagher, William; Pandit, Abhay

    2010-11-01

    Polymeric hollow spheres can be tailored as efficient carriers of various therapeutic molecules due to their tunable properties. However, the entry of these synthetic vehicles into cells, their cell viability and blood compatibility depend on their physical and chemical properties e.g. size, surface charge. Herein, we report the effect of size and surface charge on cell viability and cellular internalization behaviour and their effect on various blood components using chitosan/polyglutamic acid hollow spheres as a model system. Negatively charged chitosan/polyglutamic acid hollow spheres of various sizes 100, 300, 500 and 1000 nm were fabricated using a template based method and covalently surface modified using linear polyethylene glycol and methoxyethanol amine to create a gradient of surface charge from negative to neutrally charged spheres respectively. The results here suggest that both size and surface charge have a significant influence on the sphere's behaviour, most prominently on haemolysis, platelet activation, plasma recalcification time, cell viability and internalization over time. Additionally, cellular internalization behaviour and viability was found to vary with different cell types. These results are in agreement with those of inorganic spheres and liposomes, and can serve as guidelines for tailoring polymeric solid spheres for specific desired applications in biological and pharmaceutical fields, including the design of nanometer to submicron-sized delivery vehicles. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Molecular-scale hydrophobic interactions between hard-sphere reference solutes are attractive and endothermic.

    PubMed

    Chaudhari, Mangesh I; Holleran, Sinead A; Ashbaugh, Henry S; Pratt, Lawrence R

    2013-12-17

    The osmotic second virial coefficients, B2, for atomic-sized hard spheres in water are attractive (B2 < 0) and become more attractive with increasing temperature (ΔB2/ΔT < 0) in the temperature range 300 K ≤ T ≤ 360 K. Thus, these hydrophobic interactions are attractive and endothermic at moderate temperatures. Hydrophobic interactions between atomic-sized hard spheres in water are more attractive than predicted by the available statistical mechanical theory. These results constitute an initial step toward detailed molecular theory of additional intermolecular interaction features, specifically, attractive interactions associated with hydrophobic solutes.

  3. Bulk properties of two-phase disordered media. I. Cluster expansion for the effective dielectric constant of dispersions of penetrable spheres

    NASA Astrophysics Data System (ADS)

    Torquato, S.

    1984-12-01

    We derive a cluster expansion for the effective dielectric constant ɛ* of a dispersion of equal-sized spheres distributed with arbitrary degree of impenetrability. The degree of impenetrability is characterized by some parameter λ whose value varies between zero (in the case of randomly centered spheres, i.e., fully penetrable spheres) and unity (in the instance of totally impenetrable spheres). This generalizes the results of Felderhof, Ford, and Cohen who obtain a cluster expansion for ɛ* for the specific case of a dispersion of totally impenetrable spheres, i.e., the instance λ=1. We describe the physical significance of the contributions to the average polarization of the two-phase system which arise from inclusion-overlap effects. Using these results, we obtain a density expansion for ɛ*, which is exact through second order in the number density ρ, and give the physical interpretations of all of the cluster integrals that arise here. The use of a certain family of equilibrium sphere distributions is suggested in order to systematically study the effects of details of the microstructure on ɛ* through second order in ρ. We show, furthermore, that the second-order term can be written as a sum of the contribution from a reference system of totally impenetrable spheres and an excess contribution, which only involves effects due to overlap of pairs of inclusions. We also obtain an expansion for ɛ* which is exact through second order in φ2, where φ2 is the sphere volume fraction. We evaluate, for concreteness, some of the integrals that arise in this study, for arbitrary λ, in the permeable-sphere model and in the penetrable concentric-shell model introduced in this study.

  4. The Earth is flat when personally significant experiences with the sphericity of the Earth are absent.

    PubMed

    Carbon, Claus-Christian

    2010-07-01

    Participants with personal and without personal experiences with the Earth as a sphere estimated large-scale distances between six cities located on different continents. Cognitive distances were submitted to a specific multidimensional scaling algorithm in the 3D Euclidean space with the constraint that all cities had to lie on the same sphere. A simulation was run that calculated respective 3D configurations of the city positions for a wide range of radii of the proposed sphere. People who had personally experienced the Earth as a sphere, at least once in their lifetime, showed a clear optimal solution of the multidimensional scaling (MDS) routine with a mean radius deviating only 8% from the actual radius of the Earth. In contrast, the calculated configurations for people without any personal experience with the Earth as a sphere were compatible with a cognitive concept of a flat Earth. 2010 Elsevier B.V. All rights reserved.

  5. Origin of the sphere-to-rod transition in cationic micelles with aromatic counterions: specific ion hydration in the interfacial region matters.

    PubMed

    Geng, Yan; Romsted, Laurence S; Froehner, Sandro; Zanette, Dino; Magid, Linda J; Cuccovia, Iolanda M; Chaimovich, Hernan

    2005-01-18

    Sphere-to-rod transitions of cetyltrimethylammonium (CTA+) micelles with dichlorobenzoate counterions are remarkably substituent dependent. Simultaneous estimates of the interfacial molarities of H2O, MeOH, and Cl- and 2,6- and 3,5-dichlorobenzoate (2,6OBz and 3,5OBz) counterions were obtained by the chemical trapping method in mixed micelles of CTACl/CTA3,5OBz and CTACl/CTA2,6OBz without added salt. Increasing the CTA3,5OBz mole fraction produces a marked concurrent increase in interfacial 3,5OBz- and a decrease in interfacial H2O concentrations through the sphere-to-rod transition. No abrupt concentration changes are observed with increasing CTA2,6OBz mole fraction. Counterion-specific changes in the interfacial water concentration may be a major contributor to the delicate balance of forces governing micellar morphology.

  6. Nitrogen and phosphorus co-doped carbon hollow spheres derived from polypyrrole for high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Lv, Bingjie; Li, Peipei; Liu, Yan; Lin, Shanshan; Gao, Bifen; Lin, Bizhou

    2018-04-01

    Nitrogen and phosphorus co-doped carbon hollow spheres (NPCHSs) have been prepared by a carbonization and subsequent chemical activation route using dehydrated polypyrrole hollow spheres as the precursor and KOH as the activating agent. NPCHSs are interconnected into a unique 3D porous network, which endows the as-prepared carbon to exhibit a large specific surface area of 1155 m2 g-1 and a high specific capacitance of 232 F g-1 at a current density of 1 A g-1. The as-obtained NPCHSs present a high-level heteroatom doping with N, O and P contents of 11.4, 6.7 and 3.5 wt%, respectively. The capacitance of NPCHSs has been retained at 89.1% after 5000 charge-discharge cycles at a relatively high current density of 5 A g-1. Such excellent performance suggests that NPCHSs are attractive electrode candidates for electrical double layer capacitors.

  7. Satellite (Timed, Aura, Aqua) and In Situ (Meteorological Rockets, Balloons) Measurement Comparability

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Goldberg, Richard A.; Feofilov, A.; Rose, R.

    2010-01-01

    Measurements using the inflatable falling sphere often are requested to provide density data in support of special sounding rocket launchings into the mesosphere and thermosphere. To insure density measurements within narrow time frames and close in space, the inflatable falling sphere is launched within minutes of the major test. Sphere measurements are reliable for the most part, however, availability of these rocket systems has become more difficult and, in fact, these instruments no longer are manufactured resulting in a reduction of the meager stockpile of instruments. Sphere measurements also are used to validate remotely measured temperatures and have the advantage of measuring small-scale atmospheric features. Even so, with the dearth of remaining falling spheres perhaps it is time to consider whether the remote measurements are mature enough to stand alone. Presented are two field studies, one in 2003 from Northern Sweden and one in 2010 from the vicinity of Kwajalein Atoll that compare temperature retrievals between satellite and in situ failing spheres. The major satellite instruments employed are SABER, MLS, and AIRS. The comparisons indicate that remotely measured temperatures mimic the sphere temperature measurements quite well. The data also confirm that satellite retrievals, while not always at the exact location required for individual studies, are adaptable enough and highly useful. Although the falling sphere will provide a measurement at a specific location and time, satellites only pass a given location daily or less often. This report reveals that averaged satellite measurements can provide temperatures and densities comparable to the falling sphere.

  8. Bufalin inhibits the differentiation and proliferation of human osteosarcoma cell line hMG63-derived cancer stem cells.

    PubMed

    Chang, Yuewen; Zhao, Yongfang; Zhan, Hongsheng; Wei, Xiaoen; Liu, Tianjin; Zheng, Bo

    2014-02-01

    Cancer stem cells (CSCs) play an important role in drug resistance of tumor and are responsible for high recurrence rates. Agents that can suppress the proliferation and differentiation of CSCs would provide new opportunity to fight against tumor recurrence. In this study, we developed a new strategy to enrich CSCs in human osteosarcoma cell line hMG63. Using these CSCs as model, we tested the effect of bufalin, a traditional Chinese medicine, on the proliferation and differentiation of CSCs. hMG63 cells were cultured in poly-HEMA-treated dish and cancer stem cell-specific medium. In this nonadhesive culture system, hMG63 formed spheres, which were then collected and injected into the immunodeficient mice. Cisplatin was administered every 3 days for five times. The enriched xenograft tumors were cultured in cancer stem cell-specific medium again to form tumor spheres. Expression of cancer stem cell markers of these cells was measured by flow cytometry. These cells were then treated with bufalin, and the proliferation and differentiation ability were indicated by the expression level of molecular markers and the formation of sphere again in vitro. We obtained a low CD133+/CD44 cell population with high-level stem cell marker. When treated with bufalin, the sphere could not get attached to the flask and failed to differentiate, which was indicated by the stable expression of stem cell marker CD133 and OCT-4 in the condition permissive to differentiation. Treatment of bufalin also suppressed the single cells isolated from the sphere to form sphere again in the nonadhesive culture system, and a decreased expression of proliferation marker Ki67 was also detected in these cells. Sphere-formed and chemoresistant colon xenograft tumors in immunodeficient mice could enrich cancer stem cell population. Bufalin could inhibit proliferation and differentiation of CSCs.

  9. The Earth Is Flat when Personally Significant Experiences with the Sphericity of the Earth Are Absent

    ERIC Educational Resources Information Center

    Carbon, Claus-Christian

    2010-01-01

    Participants with personal and without personal experiences with the Earth as a sphere estimated large-scale distances between six cities located on different continents. Cognitive distances were submitted to a specific multidimensional scaling algorithm in the 3D Euclidean space with the constraint that all cities had to lie on the same sphere. A…

  10. Microsphere integrated microfluidic disk: synergy of two techniques for rapid and ultrasensitive dengue detection.

    PubMed

    Hosseini, Samira; Aeinehvand, Mohammad M; Uddin, Shah M; Benzina, Abderazak; Rothan, Hussin A; Yusof, Rohana; Koole, Leo H; Madou, Marc J; Djordjevic, Ivan; Ibrahim, Fatimah

    2015-11-09

    The application of microfluidic devices in diagnostic systems is well-established in contemporary research. Large specific surface area of microspheres, on the other hand, has secured an important position for their use in bioanalytical assays. Herein, we report a combination of microspheres and microfluidic disk in a unique hybrid platform for highly sensitive and selective detection of dengue virus. Surface engineered polymethacrylate microspheres with carefully designed functional groups facilitate biorecognition in a multitude manner. In order to maximize the utility of the microspheres' specific surface area in biomolecular interaction, the microfluidic disk was equipped with a micromixing system. The mixing mechanism (microballoon mixing) enhances the number of molecular encounters between spheres and target analyte by accessing the entire sample volume more effectively, which subsequently results in signal amplification. Significant reduction of incubation time along with considerable lower detection limits were the prime motivations for the integration of microspheres inside the microfluidic disk. Lengthy incubations of routine analytical assays were reduced from 2 hours to 5 minutes while developed system successfully detected a few units of dengue virus. Obtained results make this hybrid microsphere-microfluidic approach to dengue detection a promising avenue for early detection of this fatal illness.

  11. [Public sector and social and health policy reforms. An inventory on the eve of the new millennium].

    PubMed

    Gerschman, S

    1999-01-01

    This study reflects on reforms in health systems and social policies within the framework of the so-called public sector reforms. The point of departure is a review of various explanations for the crisis in the Welfare State, present in the literature from the 1990s. Social policies, at the heart of the crisis, are heavily challenged. What we intend to demonstrate is that this argument plays a specific role, that of introducing neoliberal changes into economic policy, in which the economic tools used generate abstention by the state from the social sphere, deregulation of national economies in favor of the free market, and the fundamentally oversized role of the international financial market. Within this context we analyze the social security and health system reforms. The final part of the article deals with current difficulties in social policies, focusing the debate on a mapping of possible alternatives for developing social and health policies.

  12. A new robust algorithm for computation of a triangle circumscribed sphere in E3 and a hypersphere simplex

    NASA Astrophysics Data System (ADS)

    Skala, Vaclav

    2016-06-01

    There are many applications in which a bounding sphere containing the given triangle E3 is needed, e.g. fast collision detection, ray-triangle intersecting in raytracing etc. This is a typical geometrical problem in E3 and it has also applications in computational problems in general. In this paper a new fast and robust algorithm of circumscribed sphere computation in the n-dimensional space is presented and specification for the E3 space is given, too. The presented method is convenient for use on GPU or with SSE or Intel's AVX instructions on a standard CPU.

  13. Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production.

    PubMed

    Zhou, Chao; Zhao, Yufei; Bian, Tong; Shang, Lu; Yu, Huijun; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui

    2013-10-28

    Hierarchical Sn2Nb2O7 hollow spheres were prepared for the first time via a facile hydrothermal route using bubbles generated in situ from the decomposition of urea as soft templates. The as-obtained hollow spheres with a large specific surface area of 58.3 m(2) g(-1) show improved visible-light-driven photocatalytic H2 production activity in lactic acid aqueous solutions, about 4 times higher than that of the bulk Sn2Nb2O7 sample prepared by a conventional high temperature solid state reaction method.

  14. CrossTalk. The Journal of Defense Software Engineering. Volume 25, Number 2

    DTIC Science & Technology

    2012-04-01

    attacks is expanding to engulf the compact world of smartphones . by Aditya K. Sood and Richard J. Enbody A Practical Approach to Securing and Managing...provide a vulnerable entry point to our mobile device informa- tion systems. As a result, hackers are able to quickly exploit software on smartphones ...MOBILE WORLD 4 CrossTalk—March/April 2012 Abstract. The sphere of malware attacks is expanding to engulf the compact world of smartphones . This paper

  15. Security Options for Malaysia in the 1990s.

    DTIC Science & Technology

    1987-05-08

    Malaysia Plan, p. 195. 2 0 Statement by Malaysia’s Deputy Defence Minister, Dato Abang Abu Bakar quoted by The New Straits Times (Kuala Lumpur: 13 March...Malaysia has a constitutional monarchy 4or& of government. The Yang Dipertuan Agong (King) is chosen every 5 years from among the Sultans (rulers) of...and Dutch spheres of influence. The Pangkor Treaty of 1874 between the British and the Sultan of Perak marked the beginning of British colonial rule

  16. The Security Concerns of the Baltic States as NATO Allies

    DTIC Science & Technology

    2013-08-01

    Defence Col- lege in Tartu, Estonia, the military higher college of Estonia, Latvia, and Lithuania. Dr. Corum was a pro - fessor at the U.S. Army...Estonia, along with Finland , became the most modern, literate, and advanced regions of the Old Russian Empire. A cultural revival in the 19th...States were part of Europe designated as the Soviet sphere of influence, along with Eastern Poland and parts of Romania and Finland . The Soviet

  17. Sphere-enhanced microwave ablation (sMWA) versus bland microwave ablation (bMWA): technical parameters, specific CT 3D rendering and histopathology.

    PubMed

    Gockner, T L; Zelzer, S; Mokry, T; Gnutzmann, D; Bellemann, N; Mogler, C; Beierfuß, A; Köllensperger, E; Germann, G; Radeleff, B A; Stampfl, U; Kauczor, H U; Pereira, P L; Sommer, C M

    2015-04-01

    This study was designed to compare technical parameters during ablation as well as CT 3D rendering and histopathology of the ablation zone between sphere-enhanced microwave ablation (sMWA) and bland microwave ablation (bMWA). In six sheep-livers, 18 microwave ablations were performed with identical system presets (power output: 80 W, ablation time: 120 s). In three sheep, transarterial embolisation (TAE) was performed immediately before microwave ablation using spheres (diameter: 40 ± 10 μm) (sMWA). In the other three sheep, microwave ablation was performed without spheres embolisation (bMWA). Contrast-enhanced CT, sacrifice, and liver harvest followed immediately after microwave ablation. Study goals included technical parameters during ablation (resulting power output, ablation time), geometry of the ablation zone applying specific CT 3D rendering with a software prototype (short axis of the ablation zone, volume of the largest aligned ablation sphere within the ablation zone), and histopathology (hematoxylin-eosin, Masson Goldner and TUNEL). Resulting power output/ablation times were 78.7 ± 1.0 W/120 ± 0.0 s for bMWA and 78.4 ± 1.0 W/120 ± 0.0 s for sMWA (n.s., respectively). Short axis/volume were 23.7 ± 3.7 mm/7.0 ± 2.4 cm(3) for bMWA and 29.1 ± 3.4 mm/11.5 ± 3.9 cm(3) for sMWA (P < 0.01, respectively). Histopathology confirmed the signs of coagulation necrosis as well as early and irreversible cell death for bMWA and sMWA. For sMWA, spheres were detected within, at the rim, and outside of the ablation zone without conspicuous features. Specific CT 3D rendering identifies a larger ablation zone for sMWA compared with bMWA. The histopathological signs and the detectable amount of cell death are comparable for both groups. When comparing sMWA with bMWA, TAE has no effect on the technical parameters during ablation.

  18. Optimal cloning of arbitrary mirror-symmetric distributions on the Bloch sphere: a proposal for practical photonic realization

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Miranowicz, Adam

    2012-02-01

    We study state-dependent quantum cloning that can outperform universal cloning (UC). This is possible by using some a priori information on a given quantum state to be cloned. Specifically, we propose a generalization and optical implementation of quantum optimal mirror phase-covariant cloning, which refers to optimal cloning of sets of qubits of known modulus of the expectation value of Pauli's Z operator. Our results can be applied to cloning of an arbitrary mirror-symmetric distribution of qubits on the Bloch sphere including in special cases UC and phase-covariant cloning. We show that the cloning is optimal by adapting our former optimality proof for axisymmetric cloning (Bartkiewicz and Miranowicz 2010 Phys. Rev. A 82 042330). Moreover, we propose an optical realization of the optimal mirror phase-covariant 1→2 cloning of a qubit, for which the mean probability of successful cloning varies from 1/6 to 1/3 depending on prior information on the set of qubits to be cloned. The qubits are represented by polarization states of photons generated by the type-I spontaneous parametric down-conversion. The scheme is based on the interference of two photons on an unbalanced polarization-dependent beam splitter with different splitting ratios for vertical and horizontal polarization components and the additional application of feedforward by means of Pockels cells. The experimental feasibility of the proposed setup is carefully studied including various kinds of imperfections and losses. Moreover, we briefly describe two possible cryptographic applications of the optimal mirror phase-covariant cloning corresponding to state discrimination (or estimation) and secure quantum teleportation.

  19. Numerical experiments on charging of a spherical body in a plasma with Maxwellian distributions of charged particles

    NASA Astrophysics Data System (ADS)

    Krasovsky, Victor L.; Kiselyov, Alexander A.

    2017-12-01

    New results of numerical simulation of collisionless plasma perturbation caused by a sphere absorbing electrons and ions are presented. Consideration is given to nonstationary phenomena accompanying the process of charging as well as to plasma steady state reached at long times. Corresponding asymptotic values of charges of the sphere and trapped-ion cloud around it have been found along with self-consistent electric field pattern depending on parameters of the unperturbed plasma. It is established that contribution of the trapped ions to screening of the charged sphere can be quite significant, so that the screening becomes essentially nonlinear in nature. A simple interconnection between the sphere radius, electron and ion Debye lengths has been revealed as the condition for maximum trapped-ion effect. Kinetic structure of the space charge induced in the plasma is discussed with relation to the specific form of the unperturbed charged particle distribution functions.

  20. Thermal Diffusivity and Thermal Conductivity of Dispersed Glass Sphere Composites Over a Range of Volume Fractions

    NASA Astrophysics Data System (ADS)

    Carson, James K.

    2018-06-01

    Glass spheres are often used as filler materials for composites. Comparatively few articles in the literature have been devoted to the measurement or modelling of thermal properties of composites containing glass spheres, and there does not appear to be any reported data on the measurement of thermal diffusivities over a range of filler volume fractions. In this study, the thermal diffusivities of guar-gel/glass sphere composites were measured using a transient comparative method. The addition of the glass beads to the gel increased the thermal diffusivity of the composite, more than doubling the thermal diffusivity of the composite relative to the diffusivity of the gel at the maximum glass volume fraction of approximately 0.57. Thermal conductivities of the composites were derived from the thermal diffusivity measurements, measured densities and estimated specific heat capacities of the composites. Two approaches to modelling the effective thermal diffusivity were considered.

  1. SPHERES tethered formation flight testbed: advancements in enabling NASA's SPECS mission

    NASA Astrophysics Data System (ADS)

    Chung, Soon-Jo; Adams, Danielle; Saenz-Otero, Alvar; Kong, Edmund; Miller, David W.; Leisawitz, David; Lorenzini, Enrico; Sell, Steve

    2006-06-01

    This paper reports on efforts to control a tethered formation flight spacecraft array for NASA's SPECS mission using the SPHERES test-bed developed by the MIT Space Systems Laboratory. Specifically, advances in methodology and experimental results realized since the 2005 SPIE paper are emphasized. These include a new test-bed setup with a reaction wheel assembly, a novel relative attitude measurement system using force torque sensors, and modeling of non-ideal tethers to account for tether vibration modes. The nonlinear equations of motion of multi-vehicle tethered spacecraft with elastic flexible tethers are derived from Lagrange's equations. The controllability analysis indicates that both array resizing and spin-up are fully controllable by the reaction wheels and the tether motor, thereby saving thruster fuel consumption. Based upon this analysis, linear and nonlinear controllers have been successfully implemented on the tethered SPHERES testbed, and tested at the NASA MSFC's flat floor facility using two and three SPHERES configurations.

  2. Bounds on the conductivity of a suspension of random impenetrable spheres

    NASA Astrophysics Data System (ADS)

    Beasley, J. D.; Torquato, S.

    1986-11-01

    We compare the general Beran bounds on the effective electrical conductivity of a two-phase composite to the bounds derived by Torquato for the specific model of spheres distributed throughout a matrix phase. For the case of impenetrable spheres, these bounds are shown to be identical and to depend on the microstructure through the sphere volume fraction φ2 and a three-point parameter ζ2, which is an integral over a three-point correlation function. We evaluate ζ2 exactly through third order in φ2 for distributions of impenetrable spheres. This expansion is compared to the analogous results of Felderhof and of Torquato and Lado, all of whom employed the superposition approximation for the three-particle distribution function involved in ζ2. The results indicate that the exact ζ2 will be greater than the value calculated under the superposition approximation. For reasons of mathematical analogy, the results obtained here apply as well to the determination of the thermal conductivity, dielectric constant, and magnetic permeability of composite media and the diffusion coefficient of porous media.

  3. Carbon-Coated Hierarchical SnO2 Hollow Spheres for Lithium Ion Batteries.

    PubMed

    Liu, Qiannan; Dou, Yuhai; Ruan, Boyang; Sun, Ziqi; Chou, Shu-Lei; Dou, Shi Xue

    2016-04-18

    Hierarchical SnO2 hollow spheres self-assembled from nanosheets were prepared with and without carbon coating. The combination of nanosized architecture, hollow structure, and a conductive carbon layer endows the SnO2 -based anode with improved specific capacity and cycling stability, making it more promising for use in lithium ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and characterization of nitrogen-doped graphene hollow spheres as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Kechan; Wang, Guoxu; Zhang, Hongliang; Yu, Yifeng; Liu, Lei; Chen, Aibing

    2017-07-01

    Recently, the rapid development of graphene industry in the world, especially in China, provides more opportunities for the further extension of the application field of graphene-based materials. Graphene has also been considered as a promising candidate for use in supercapacitors. Here, nitrogen-doped graphene hollow spheres (NGHS) have been successfully synthesized by using industrialized and pre-processed graphene oxide (GO) as raw material, SiO2 spheres as hard templates, and urea as reducing-doping agents. The results demonstrate that the content and pretreatment of GO sheets have important effect on the uniform spherical morphologies of the obtained samples. Industrialized GO and low-cost urea are used to prepare graphene hollow spheres, which can be a promising route to achieve mass production of NGHS. The obtained NGHS have a cavity of about 270 nm, specific surface area of 402.9 m2 g-1, ultrathin porous shells of 2.8 nm, and nitrogen content of 6.9 at.%. As electrode material for supercapacitors, the NGHS exhibit a specific capacitance of 159 F g-1 at a current density of 1 A g-1 in 6 M KOH aqueous electrolyte. Moreover, the NGHS exhibit superior cycling stability with 99.24% capacitive retention after 5000 charge/discharge cycles at a current density of 5 A g-1.

  5. Pseudo hard-sphere potential for use in continuous molecular-dynamics simulation of spherical and chain molecules

    NASA Astrophysics Data System (ADS)

    Jover, J.; Haslam, A. J.; Galindo, A.; Jackson, G.; Müller, E. A.

    2012-10-01

    We present a continuous pseudo-hard-sphere potential based on a cut-and-shifted Mie (generalized Lennard-Jones) potential with exponents (50, 49). Using this potential one can mimic the volumetric, structural, and dynamic properties of the discontinuous hard-sphere potential over the whole fluid range. The continuous pseudo potential has the advantage that it may be incorporated directly into off-the-shelf molecular-dynamics code, allowing the user to capitalise on existing hardware and software advances. Simulation results for the compressibility factor of the fluid and solid phases of our pseudo hard spheres are presented and compared both to the Carnahan-Starling equation of state of the fluid and published data, the differences being indistinguishable within simulation uncertainty. The specific form of the potential is employed to simulate flexible chains formed from these pseudo hard spheres at contact (pearl-necklace model) for mc = 4, 5, 7, 8, 16, 20, 100, 201, and 500 monomer segments. The compressibility factor of the chains per unit of monomer, mc, approaches a limiting value at reasonably small values, mc < 50, as predicted by Wertheim's first order thermodynamic perturbation theory. Simulation results are also presented for highly asymmetric mixtures of pseudo hard spheres, with diameter ratios of 3:1, 5:1, 20:1 over the whole composition range.

  6. Enthalpy-based equation of state for highly porous materials employing modified soft sphere fluid model

    NASA Astrophysics Data System (ADS)

    Nayak, Bishnupriya; Menon, S. V. G.

    2018-01-01

    Enthalpy-based equation of state based on a modified soft sphere model for the fluid phase, which includes vaporization and ionization effects, is formulated for highly porous materials. Earlier developments and applications of enthalpy-based approach had not accounted for the fact that shocked states of materials with high porosity (e.g., porosity more than two for Cu) are in the expanded fluid region. We supplement the well known soft sphere model with a generalized Lennard-Jones formula for the zero temperature isotherm, with parameters determined from cohesive energy, specific volume and bulk modulus of the solid at normal condition. Specific heats at constant pressure, ionic and electronic enthalpy parameters and thermal excitation effects are calculated using the modified approach and used in the enthalpy-based equation of state. We also incorporate energy loss from the shock due to expansion of shocked material in calculating porous Hugoniot. Results obtained for Cu, even up to initial porosities ten, show good agreement with experimental data.

  7. Modelling Broadband Scattering From Shelled Spheres in a Waveguide

    DTIC Science & Technology

    2007-10-01

    profonde. Le contenu spectral de l’echo produit par une cible peut varier de fagon appreciable en fonction de sa profondeur et de sa distance dans le...Canada’s leader in defence and National Security Science and Technology R&D pour la defense Canada Chef de file au Canada en matiere de science et...Copy No. nent Development Canada pour la defense Canada • ^g, M Defence Research and Recherche et deyeloppem r£ m> DEFENCE I « M

  8. The Impaction Force of Airborne Particles on Spheres and Cylinders

    DTIC Science & Technology

    1978-09-01

    oa8 c- 0 tw ni ni neIt ,5 "tU 0 fc 0N . -t r. "II l f 4 4 0 4 f f 4 ý l I " I w ~ C 001 00 0000 000000 40001 00 CoO eeoc swum~ ~~~~~~~ coo 0000 Cj UC L...number. The three gritip% .ru defined in Appendix ’M’of the DRB Security Regulations . 11) "Oualified requesters may obtain copies of this document from

  9. Acrylic Plastic Spherical Pressure Hull for Continental Shelf Depths

    DTIC Science & Technology

    1993-03-01

    the con- l and secure conduit for the instrumentation leads at cave surface of the sphere (figure 26). The meridi- any external pressure to which the...constant pressure monitoring. In-line pressure CEA-06-1 25WT-120 with a gage factor of 2.11, transducers sense chamber pressures and send a bonded to the...wired to a strain gage conditioner that sensed strain as an analog FINDINGS voltage corresponding to the change in resistance occuring in each gage as it

  10. Cu-modified carbon spheres/reduced graphene oxide as a high sensitivity of gas sensor for NO2 detection at room temperature

    NASA Astrophysics Data System (ADS)

    Su, Zhibin; Tan, Li; Yang, Ruiqiang; Zhang, Yu; Tao, Jin; Zhang, Nan; Wen, Fusheng

    2018-03-01

    Nitrogen dioxide (NO2) as one of the most serious air pollution is harmful to people's health, therefore high-performance gas sensors is critically needed. Here, Cu-modified carbon spheres/reduced graphene oxide (Cu@CS/RGO) composite have been prepared as NO2 gas sensor material. Carbon sphere in the interlayer of RGO can increase the specific surface area of RGO. Copper nanoparticles decorated on the surface of CS can effectively enhance the adsorption activity of RGO as supplier of free electrons. The experimental results showed that its particular structure improved the gas sensitivity of RGO at different NO2 concentrations at room temperature.

  11. Individualized adjustments to reference phantom internal organ dosimetry—scaling factors given knowledge of patient internal anatomy

    NASA Astrophysics Data System (ADS)

    Wayson, Michael B.; Bolch, Wesley E.

    2018-04-01

    Various computational tools are currently available that facilitate patient organ dosimetry in diagnostic nuclear medicine, yet they are typically restricted to reporting organ doses to ICRP-defined reference phantoms. The present study, while remaining computational phantom based, provides straightforward tools to adjust reference phantom organ dose for both internal photon and electron sources. A wide variety of monoenergetic specific absorbed fractions were computed using radiation transport simulations for tissue spheres of varying size and separation distance. Scaling methods were then constructed for both photon and electron self-dose and cross-dose, with data validation provided from patient-specific voxel phantom simulations, as well as via comparison to the scaling methodology given in MIRD Pamphlet No. 11. Photon and electron self-dose was found to be dependent on both radiation energy and sphere size. Photon cross-dose was found to be mostly independent of sphere size. Electron cross-dose was found to be dependent on sphere size when the spheres were in close proximity, owing to differences in electron range. The validation studies showed that this dataset was more effective than the MIRD 11 method at predicting patient-specific photon doses for at both high and low energies, but gave similar results at photon energies between 100 keV and 1 MeV. The MIRD 11 method for electron self-dose scaling was accurate for lower energies but began to break down at higher energies. The photon cross-dose scaling methodology developed in this study showed gains in accuracy of up to 9% for actual patient studies, and the electron cross-dose scaling methodology showed gains in accuracy up to 9% as well when only the bremsstrahlung component of the cross-dose was scaled. These dose scaling methods are readily available for incorporation into internal dosimetry software for diagnostic phantom-based organ dosimetry.

  12. Individualized adjustments to reference phantom internal organ dosimetry-scaling factors given knowledge of patient internal anatomy.

    PubMed

    Wayson, Michael B; Bolch, Wesley E

    2018-04-13

    Various computational tools are currently available that facilitate patient organ dosimetry in diagnostic nuclear medicine, yet they are typically restricted to reporting organ doses to ICRP-defined reference phantoms. The present study, while remaining computational phantom based, provides straightforward tools to adjust reference phantom organ dose for both internal photon and electron sources. A wide variety of monoenergetic specific absorbed fractions were computed using radiation transport simulations for tissue spheres of varying size and separation distance. Scaling methods were then constructed for both photon and electron self-dose and cross-dose, with data validation provided from patient-specific voxel phantom simulations, as well as via comparison to the scaling methodology given in MIRD Pamphlet No. 11. Photon and electron self-dose was found to be dependent on both radiation energy and sphere size. Photon cross-dose was found to be mostly independent of sphere size. Electron cross-dose was found to be dependent on sphere size when the spheres were in close proximity, owing to differences in electron range. The validation studies showed that this dataset was more effective than the MIRD 11 method at predicting patient-specific photon doses for at both high and low energies, but gave similar results at photon energies between 100 keV and 1 MeV. The MIRD 11 method for electron self-dose scaling was accurate for lower energies but began to break down at higher energies. The photon cross-dose scaling methodology developed in this study showed gains in accuracy of up to 9% for actual patient studies, and the electron cross-dose scaling methodology showed gains in accuracy up to 9% as well when only the bremsstrahlung component of the cross-dose was scaled. These dose scaling methods are readily available for incorporation into internal dosimetry software for diagnostic phantom-based organ dosimetry.

  13. Orientational ordering of lamellar structures on closed surfaces

    NASA Astrophysics Data System (ADS)

    Pȩkalski, J.; Ciach, A.

    2018-05-01

    Self-assembly of particles with short-range attraction and long-range repulsion interactions on a flat and on a spherical surface is compared. Molecular dynamics simulations are performed for the two systems having the same area and the density optimal for formation of stripes of particles. Structural characteristics, e.g., a cluster size distribution, a number of defects, and an orientational order parameter (OP), as well as the specific heat, are obtained for a range of temperatures. In both cases, the cluster size distribution becomes bimodal and elongated clusters appear at the temperature corresponding to the maximum of the specific heat. When the temperature decreases, orientational ordering of the stripes takes place and the number of particles per cluster or stripe increases in both cases. However, only on the flat surface, the specific heat has another maximum at the temperature corresponding to a rapid change of the OP. On the sphere, the crossover between the isotropic and anisotropic structures occur in a much broader temperature interval; the orientational order is weaker and occurs at significantly lower temperature. At low temperature, the stripes on the sphere form spirals and the defects resemble defects in the nematic phase of rods adsorbed at a sphere.

  14. Analysis of tumoral spheres growing in a multichamber microfluidic device.

    PubMed

    Belgorosky, Denise; Fernández-Cabada, Tamara; Peñaherrera-Pazmiño, Ana Belén; Langle, Yanina; Booth, Ross; Bhansali, Shekhar; Pérez, Maximiliano S; Eiján, Ana María; Lerner, Betiana

    2018-09-01

    Lab on a Chip (LOC) farming systems have emerged as a powerful tool for single cell studies combined with a non-adherent cell culture substrate and single cell capture chips for the study of single cell derived tumor spheres. Cancer is characterized by its cellular heterogeneity where only a small population of cancer stem cells (CSCs) are responsible for tumor metastases and recurrences. Thus, the in vitro strategy to the formation of a single cell-derived sphere is an attractive alternative to identify CSCs. In this study, we test the effectiveness of microdevices for analysis of heterogeneity within CSC populations and its interaction with different components of the extracellular matrix. CSC could be identify using specific markers related to its pluripotency and self-renewal characteristics such as the transcription factor Oct-4 or the surface protein CD44. The results confirm the usefulness of LOC as an effective method for quantification of CSC, through the formation of spheres under conditions of low adhesion or growing on components of the extracellular matrix. The device used is also a good alternative for evaluating the individual growth of each sphere and further identification of these CSC markers by immunofluorescence. In conclusion, LOC devices have not only the already known advantages, but they are also a promising tool since they use small amounts of reagents and are under specific culture parameters. LOC devices could be considered as a novel technology to be used as a complement or replacement of traditional studies on culture plates. © 2018 Wiley Periodicals, Inc.

  15. Incorporation of polyoxotungstate complexes in silica spheres and in situ formation of tungsten trioxide nanoparticles.

    PubMed

    Zhao, Yuanyuan; Fan, Haimei; Li, Wen; Bi, Lihua; Wang, Dejun; Wu, Lixin

    2010-09-21

    In this paper, we demonstrated a new convenient route for in situ fabrication of well separated small sized WO(3) nanoparticles in silica spheres, through a predeposition of surfactant encapsulated polyoxotungates as tungsten source, and followed by a calcination process. In a typical procedure, selected polyoxotungates with different charges were enwrapped with dioctadecyldimethylammonium cations through electrostatic interaction. Elemental analysis, thermogravimetric analysis, and spectral characterization confirmed the formation of prepared complexes with the anticipated chemical structure. The complexes were then phase-transferred into aqueous solution that predissolved surfactant cetyltrimethylammonium bromide, and finally incorporated into silica spheres through a joint sol-gel reaction with tetraethyl orthosilicate in a well dispersed state under the protection of organic layer for polyoxotungates from the alkaline reaction condition. Transmission electron microscopic images illustrated the well dispersed WO(3) nanoparticles in the size range of ca. 2.2 nm in the silica spheres after the calcination at 465 °C. The sizes of both the silica spheres and WO(3) nanoparticles could be adjusted independently through changing the doping content to a large extent. Meanwhile, the doped polyoxotungate complexes acted as the template for the mesoporous structure in silica spheres after the calcination. Along with the increase of doping content and surfactant, the mesopore size changed little (2.0-2.9 nm), but the specific surface areas increased quite a lot. Importantly, the WO(3)-nanoparticle-doped silica spheres displayed an interesting photovoltaic property, which is favorable for the funtionalization of these nanomaterials.

  16. In Vitro Analysis of Breast Cancer Cell Line Tumourspheres and Primary Human Breast Epithelia Mammospheres Demonstrates Inter- and Intrasphere Heterogeneity

    PubMed Central

    Vargas, Ana Cristina; Keith, Patricia; Reid, Lynne; Wockner, Leesa; Amiri, Marjan Askarian; Sarkar, Debina; Simpson, Peter T.; Clarke, Catherine; Schmidt, Chris W.; Reynolds, Brent A.

    2013-01-01

    Mammosphere and breast tumoursphere culture have gained popularity as in vitro assays for propagating and analysing normal and cancer stem cells. Whether the spheres derived from different sources or parent cultures themselves are indeed single entities enriched in stem/progenitor cells compared to other culture formats has not been fully determined. We surveyed sphere-forming capacity across 26 breast cell lines, immunophenotyped spheres from six luminal- and basal-like lines by immunohistochemistry and flow cytometry and compared clonogenicity between sphere, adherent and matrigel culture formats using in vitro functional assays. Analyses revealed morphological and molecular intra- and inter-sphere heterogeneity, consistent with adherent parental cell line phenotypes. Flow cytometry showed sphere culture does not universally enrich for markers previously associated with stem cell phenotypes, although we found some cell-line specific changes between sphere and adherent formats. Sphere-forming efficiency was significantly lower than adherent or matrigel clonogenicity and constant over serial passage. Surprisingly, self-renewal capacity of sphere-derived cells was similar/lower than other culture formats. We observed significant correlation between long-term-proliferating-cell symmetric division rates in sphere and adherent cultures, suggesting functional overlap between the compartments sustaining them. Experiments with normal primary human mammary epithelia, including sorted luminal (MUC1+) and basal/myoepithelial (CD10+) cells revealed distinct luminal-like, basal-like and mesenchymal entities amongst primary mammospheres. Morphological and colony-forming-cell assay data suggested mammosphere culture may enrich for a luminal progenitor phenotype, or induce reversion/relaxation of the basal/mesenchymal in vitro selection occurring with adherent culture. Overall, cell line tumourspheres and primary mammospheres are not homogenous entities enriched for stem cells, suggesting a more cautious approach to interpreting data from these assays and careful consideration of its limitations. Sphere culture may represent an alternative 3-dimensional culture system which rather than universally ‘enriching’ for stem cells, has utility as one of a suite of functional assays that provide a read-out of progenitor activity. PMID:23750209

  17. UC Irvine CHRS RainSphere - a new user friendly tool for analyzing global remotely sensed rainfall estimates

    NASA Astrophysics Data System (ADS)

    Nguyen, P.; Sorooshian, S.; Hsu, K. L.; Gao, X.; AghaKouchak, A.; Braithwaite, D.; Thorstensen, A. R.; Ashouri, H.; Tran, H.; Huynh, P.; Palacios, T.

    2016-12-01

    Center for Hydrometeorology and Remote Sensing (CHRS), University of California, Irvine has recently developed the CHRS RainSphere (hosted at http://rainsphere.eng.uci.edu) for scientific studies and applications using the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks - Climate Data Record (PERSIANN-CDR, Ashouri et al. 2015). PERSIANN-CDR is a long-term (33+ years) high-resolution (daily, 0.25 degree) global satellite precipitation dataset which is useful for climatological studies and water resources applications. CHRS RainSphere has functionalities allowing users to visualize and query spatiotemporal statistics of global daily satellite precipitation for the past three decades. With a couple of mouse-clicks, users can easily obtain a report of time series, spatial plots, and basic trend analysis of rainfall for various spatial domains of interest such as location, watershed, basin, political division and country for yearly, monthly, monthly by year or daily. Mann-Kendall test is implemented on CHRS RainSphere for statistically investigating whether there is a significant increasing/decreasing rainfall trend at a location or over a specific spatial domain. CHRS RainSphere has a range of capabilities and should appeal to a broad spectrum of users including climate scientists, water resources managers and planners, and engineers. CHRS RainSphere can also be a useful educational tool for the general public to investigate climate change and variability. The video tutorial on CHRS RainSphere is available at https://www.youtube.com/watch?v=eI2-f88iGlY&feature=youtu.be. A demonstration of CHRS RainSphere will be included in the presentation.

  18. Comparison of Temperature Measurements in the Middle Atmosphere by Satellite with Profiles Obtained by Meteorological Rockets

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.; Schmidlin, Francis J.; Feofilov, Artem; Bedrick, M.; Rose, R. Lynn

    2012-01-01

    Measurements using the inflatable falling sphere technique have occasionally been used to obtain temperature results from density data and thereby provide comparison with temperature profiles obtained by satellite sounders in the mesosphere and stratosphere. To insure density measurements within narrow time frames and close in space, the inflatable falling sphere is launched within seconds of the nearly overhead satellite pass. Sphere measurements can be used to validate remotely measured temperatures but also have the advantage of measuring small-scale atmospheric features. Even so, with the dearth of remaining falling spheres available (the manufacture of these systems has been discontinued), it may be time to consider whether the remote measurements are mature enough to stand alone. Three field studies are considered, one in 2003 from Northern Sweden, and two in 2010 from the vicinity of Kwajalein Atoll in the South Pacific and from Barking Sands, Hawaii. All three sites are used to compare temperature retrievals between satellite and in situ falling spheres. The major satellite instruments employed are SABER, MLS, and AIRS. The comparisons indicate that remotely measured temperatures mimic the sphere temperature measurements quite well. The data also confirm that satellite retrievals, while not always at the exact location required for detailed studies in space and time, compare sufficiently well to be highly useful. Although the falling sphere will provide a measurement at a specific location and time, satellites only pass a given location daily or less frequently. This report reveals that averaged satellite measurements can provide temperatures and densities comparable to those obtained from the falling sphere, thereby providing a reliable measure of global temperature

  19. Sphere-Enhanced Microwave Ablation (sMWA) Versus Bland Microwave Ablation (bMWA): Technical Parameters, Specific CT 3D Rendering and Histopathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gockner, T. L., E-mail: theresa.gockner@med.uni-heidelberg.de; Zelzer, S., E-mail: s.zelzer@dkfz-heidelberg.de; Mokry, T., E-mail: theresa.mokry@med.uni-heidelberg.de

    PurposeThis study was designed to compare technical parameters during ablation as well as CT 3D rendering and histopathology of the ablation zone between sphere-enhanced microwave ablation (sMWA) and bland microwave ablation (bMWA).MethodsIn six sheep-livers, 18 microwave ablations were performed with identical system presets (power output: 80 W, ablation time: 120 s). In three sheep, transarterial embolisation (TAE) was performed immediately before microwave ablation using spheres (diameter: 40 ± 10 μm) (sMWA). In the other three sheep, microwave ablation was performed without spheres embolisation (bMWA). Contrast-enhanced CT, sacrifice, and liver harvest followed immediately after microwave ablation. Study goals included technical parameters during ablation (resulting power output,more » ablation time), geometry of the ablation zone applying specific CT 3D rendering with a software prototype (short axis of the ablation zone, volume of the largest aligned ablation sphere within the ablation zone), and histopathology (hematoxylin-eosin, Masson Goldner and TUNEL).ResultsResulting power output/ablation times were 78.7 ± 1.0 W/120 ± 0.0 s for bMWA and 78.4 ± 1.0 W/120 ± 0.0 s for sMWA (n.s., respectively). Short axis/volume were 23.7 ± 3.7 mm/7.0 ± 2.4 cm{sup 3} for bMWA and 29.1 ± 3.4 mm/11.5 ± 3.9 cm{sup 3} for sMWA (P < 0.01, respectively). Histopathology confirmed the signs of coagulation necrosis as well as early and irreversible cell death for bMWA and sMWA. For sMWA, spheres were detected within, at the rim, and outside of the ablation zone without conspicuous features.ConclusionsSpecific CT 3D rendering identifies a larger ablation zone for sMWA compared with bMWA. The histopathological signs and the detectable amount of cell death are comparable for both groups. When comparing sMWA with bMWA, TAE has no effect on the technical parameters during ablation.« less

  20. A general route to hollow mesoporous rare-earth silicate nanospheres as a catalyst support.

    PubMed

    Jin, Renxi; Yang, Yang; Zou, Yongcun; Liu, Xianchun; Xing, Yan

    2014-02-17

    Hollow mesoporous structures have recently aroused intense research interest owing to their unique structural features. Herein, an effective and precisely controlled synthesis of hollow rare-earth silicate spheres with mesoporous shells is reported for the first time, produced by a simple hydrothermal method, using silica spheres as the silica precursors. The as-prepared hollow rare-earth silicate spheres have large specific surface area, high pore volume, and controllable structure parameters. The results demonstrate that the selection of the chelating reagent plays critical roles in forming the hollow mesoporous structures. In addition, a simple and low-energy-consuming approach to synthesize highly stable and dispersive gold nanoparticle-yttrium silicate (AuNPs/YSiO) hollow nanocomposites has also been developed. The reduction of 4-nitrophenol with AuNPs/YSiO hollow nanocomposites as the catalyst has clearly demonstrated that the hollow rare-earth silicate spheres are good carriers for Au nanoparticles. This strategy can be extended as a general approach to prepare multifunctional yolk-shell structures with diverse compositions and morphologies simply by replacing silica spheres with silica-coated nanocomposites. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Can the Equivalent Sphere Model Approximate Organ Doses in Space Radiation Environments?

    NASA Technical Reports Server (NTRS)

    Zi-Wei, Lin

    2007-01-01

    In space radiation calculations it is often useful to calculate the dose or dose equivalent in blood-forming organs (BFO). the skin or the eye. It has been customary to use a 5cm equivalent sphere to approximate the BFO dose. However previous studies have shown that a 5cm sphere gives conservative dose values for BFO. In this study we use a deterministic radiation transport with the Computerized Anatomical Man model to investigate whether the equivalent sphere model can approximate organ doses in space radiation environments. We find that for galactic cosmic rays environments the equivalent sphere model with an organ-specific constant radius parameter works well for the BFO dose equivalent and marginally well for the BFO dose and the dose equivalent of the eye or the skin. For solar particle events the radius parameters for the organ dose equivalent increase with the shielding thickness, and the model works marginally for BFO but is unacceptable for the eye or the skin The ranges of the radius parameters are also shown and the BFO radius parameters are found to be significantly larger than 5 cm in all eases.

  2. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments.

    PubMed

    Lee, K W; Sheu, R J

    2015-04-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with (252)Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing (252)Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6_8 extended-range sphere versus the 6″ standard sphere). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. NiO/NiWO4 Composite Yolk-Shell Spheres with Nanoscale NiO Outer Layer for Ultrasensitive and Selective Detection of Subppm-level p-Xylene.

    PubMed

    Kim, Tae-Hyung; Kwak, Chang-Hoon; Lee, Jong-Heun

    2017-09-20

    NiO/NiWO 4 composite yolk-shell spheres with a nanoscale NiO outer layer were prepared using one-pot ultrasonic spray pyrolysis and their gas sensing characteristics were studied. The NiO/NiWO 4 yolk-shell spheres exhibited an extremely high response to 5 ppm p-xylene (ratio of resistance to gas and air = 343.5) and negligible cross-responses to 5 ppm ethanol, ammonia, carbon monoxide, hydrogen, and benzene, whereas pure NiO yolk-shell spheres showed very low responses and selectivity to all the analyte gases. The detection limit for p-xylene was as low as 22.7 ppb. This ultrasensitive and selective detection of p-xylene is attributed to a synergistic catalytic effect between NiO and NiWO 4 , high gas accessibility with large specific surface area, and increased chemiresistive variation due to the formation of a heterojunction. The NiO/NiWO 4 yolk-shell spheres with a thin NiO outer layer can be used to detect subppm-level p-xylene in a highly sensitive and selective manner for monitoring indoor air pollution.

  4. Pseudo hard-sphere potential for use in continuous molecular-dynamics simulation of spherical and chain molecules.

    PubMed

    Jover, J; Haslam, A J; Galindo, A; Jackson, G; Müller, E A

    2012-10-14

    We present a continuous pseudo-hard-sphere potential based on a cut-and-shifted Mie (generalized Lennard-Jones) potential with exponents (50, 49). Using this potential one can mimic the volumetric, structural, and dynamic properties of the discontinuous hard-sphere potential over the whole fluid range. The continuous pseudo potential has the advantage that it may be incorporated directly into off-the-shelf molecular-dynamics code, allowing the user to capitalise on existing hardware and software advances. Simulation results for the compressibility factor of the fluid and solid phases of our pseudo hard spheres are presented and compared both to the Carnahan-Starling equation of state of the fluid and published data, the differences being indistinguishable within simulation uncertainty. The specific form of the potential is employed to simulate flexible chains formed from these pseudo hard spheres at contact (pearl-necklace model) for m(c) = 4, 5, 7, 8, 16, 20, 100, 201, and 500 monomer segments. The compressibility factor of the chains per unit of monomer, m(c), approaches a limiting value at reasonably small values, m(c) < 50, as predicted by Wertheim's first order thermodynamic perturbation theory. Simulation results are also presented for highly asymmetric mixtures of pseudo hard spheres, with diameter ratios of 3:1, 5:1, 20:1 over the whole composition range.

  5. Preparation and characterization of mesoporous TiO2-sphere-supported Au-nanoparticle catalysts with high activity for CO oxidation at ambient temperature

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Huang, Shouying; Zhu, Baolin; Zhang, Shoumin; Huang, Weiping

    2016-11-01

    Mesoporous TiO2-sphere-supported Au-nanoparticles (Au/m-TiO2-spheres) catalysts have been synthesized by a simple method using tetrabutyl titanate as TiO2 precursor and characterized with XRD, BET, ICP, SEM, TEM, UV-Vis DRS, XPS, as well as FT-IR. The samples with the size in the range of 200-400 nm were almost perfectly spherical. The average diameter of pores was about 3.6 nm, and the mesopore size distribution was in the range of 2-6 nm with a narrow distribution. When the catalyst was calcined at 300 °C, the Au NPs with the size ca. 5 nm were highly dispersed on the surfaces of m-TiO2 spheres and partially embedded in the supports. Remarkably, the specific surface area of the Au/m-TiO2-spheres was as high as 117 m2 g-1. The CO-adsorbed catalyst showed an apparent IR adsorption peak at 1714 cm-1 that matched with bridging model CO. It means the catalysts should be of high catalytic activity for the CO oxidation due to they could adsorb and activate CO commendably. When Au-content was 0.48 wt.%, the Au/m-TiO2-spheres could convert CO completely into CO2 at ambient temperature.

  6. Solvent-induced synthesis of nitrogen-doped hollow carbon spheres with tunable surface morphology for supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Yuan, Ren-Lu; Zhang, Ning; Ke, Chang-Ce; Ma, Shao-Xia; Zhang, Ru-Liang; Liu, Lei

    2018-04-01

    Nitrogen doped hollow carbon spheres (NHCSs) with tunable surface morphology have been prepared through one-pot carbonization method by using melamine-formaldehyde spheres as template and resorcinol-based resin as carbon precursor in ethanol-water solution. Well-dispersed NHCSs with particle size of 800 nm were obtained and the surface of NHCSs turn from smooth to tough, wrinkled, and finally concave by increasing the ethanol concentration. The fabricated NHCSs possessed high nitrogen content (3.99-4.83%) and hierarchical micro-dual mesoporous structure with surface area range of 265-405 m2 g-1 and total pore volume of 0.18-0.29 cm3 g-1, which contributed to high specific capacitance, excellent rate capability and long cycle life.

  7. MCDU-8-A Computer Code for One-Dimensional Blast Wave Problems

    DTIC Science & Technology

    1975-07-01

    medium surrounding the explosion is assuned to be air obeying an ideal gas equation of state with a constant specific heat ratio, y2, of 1.4. The...characteristics Explosive blast Pentolite spheres ■ 20.\\ASSTRACT (Continue on reverie eld* II neceeemry end Identify by block number) he method...INVOLVING THE. SUDDEN RELEASE OF A HIGHLY COMPRESSED AIR SPHERE 11 V. A SAMPLE PROBLEM INVOLVING A BLAST WAVE RESULTING FROM THE DETONATION OF A

  8. Mental and social health in disasters: the Sphere standards and post-tsunami psychosocial interventions in Asia.

    PubMed

    Henderson, Silja E K; Elsass, Peter; Berliner, Peter

    2016-07-01

    The primary objective of this paper is to examine and inform the mental health and psychosocial support standards of the 2011 edition of the Sphere Project's Humanitarian Charter and Minimum Standards in Humanitarian Response. This is done through a qualitative analysis of internal evaluation documents, reflecting four long-term humanitarian psychosocial programmes in different countries in post-tsunami Asia. The analysis yielded three overall conclusions. First, the Sphere standards on mental health and psychosocial support generally are highly relevant to long-term psychosocial interventions after disasters such as the Indian Ocean tsunami of 26 December 2004, and their application in such settings may improve the quality of the response. Second, some of the standards in the current Sphere handbook may lack sufficient guidance to ensure the quality of humanitarian response required. Third, the long-term intervention approach poses specific challenges to programming, a problem that could be addressed by including additional guidance in the publication. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.

  9. Hierarchical VOOH hollow spheres for symmetrical and asymmetrical supercapacitor devices.

    PubMed

    Jing, Xuyang; Wang, Cong; Feng, Wenjing; Xing, Na; Jiang, Hanmei; Lu, Xiangyu; Zhang, Yifu; Meng, Changgong

    2018-01-01

    Hierarchical VOOH hollow spheres with low crystallinity composed of nanoparticles were prepared by a facile and template-free method, which involved a precipitation of precursor microspheres in aqueous solution at room temperature and subsequent hydrothermal reaction. Quasi-solid-state symmetric and asymmetric supercapacitor (SSC and ASC) devices were fabricated using hierarchical VOOH hollow spheres as the electrodes, and the electrochemical properties of the VOOH//VOOH SSC device and the VOOH//AC ASC device were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results demonstrated that the electrochemical performance of the VOOH//AC ASC device was better than that of the VOOH//VOOH SSC device. After 3000 cycles, the specific capacitance of the VOOH//AC ASC device retains 83% of the initial capacitance, while the VOOH//VOOH SSC device retains only 7.7%. Findings in this work proved that hierarchical VOOH hollow spheres could be a promising candidate as an ideal electrode material for supercapacitor devices.

  10. Hierarchical VOOH hollow spheres for symmetrical and asymmetrical supercapacitor devices

    NASA Astrophysics Data System (ADS)

    Jing, Xuyang; Wang, Cong; Feng, Wenjing; Xing, Na; Jiang, Hanmei; Lu, Xiangyu; Zhang, Yifu; Meng, Changgong

    2018-01-01

    Hierarchical VOOH hollow spheres with low crystallinity composed of nanoparticles were prepared by a facile and template-free method, which involved a precipitation of precursor microspheres in aqueous solution at room temperature and subsequent hydrothermal reaction. Quasi-solid-state symmetric and asymmetric supercapacitor (SSC and ASC) devices were fabricated using hierarchical VOOH hollow spheres as the electrodes, and the electrochemical properties of the VOOH//VOOH SSC device and the VOOH//AC ASC device were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results demonstrated that the electrochemical performance of the VOOH//AC ASC device was better than that of the VOOH//VOOH SSC device. After 3000 cycles, the specific capacitance of the VOOH//AC ASC device retains 83% of the initial capacitance, while the VOOH//VOOH SSC device retains only 7.7%. Findings in this work proved that hierarchical VOOH hollow spheres could be a promising candidate as an ideal electrode material for supercapacitor devices.

  11. Scattering of a longitudinal Bessel beam by a sphere embedded in an isotropic elastic solid.

    PubMed

    Leão-Neto, J P; Lopes, J H; Silva, G T

    2017-11-01

    The scattering of a longitudinal Bessel beam of arbitrary order by a sphere embedded in an isotropic solid matrix is theoretically analyzed. The spherical inclusion can be made of a viscoelastic, elastic, or fluid-filled isotropic material. In the analysis, the absorbing, scattering, and extinction efficiency factors are obtained, e.g., the corresponding power per characteristic beam intensity per sphere's cross-section area. Furthermore, the extended optical theorem, which expresses the extinction efficiency in terms of an integral of the longitudinal scattering function is derived. Several features of zeroth- and first-order Bessel beams scattering in solids are illustrated considering a polymer adhesive (cured) sphere embedded in a stainless steel matrix. For instance, omnidirectional scattering can be achieved by choosing specific values of the half-cone angle of the Bessel beam, which is the beam's geometrical parameter. Additionally, it is demonstrated that mode suppression leads to lower absorption inside the inclusion when compared to plane wave scattering results.

  12. Evaluation of ceramic packed-rod regenerator matrices

    NASA Technical Reports Server (NTRS)

    Lawless, W. N.; Arenz, R. W.

    1981-01-01

    An extensive evaluation of a modified cryocooler with various regenerator matrices is reported. The matrices examined are 0.015 in. diam. Pb spheres and 0.008, 0.015, and 0.030 in. diam. rods of a 0.2% SnCl2 doped ceramic labelled LS-8A. Specific heat and thermal conductivity data on these rod materials are also reported. The chronic pulverization/dusting problem common to Pb spheres was investigated. During a 1000 hr life test with 0.0008 in. diam. rods there was no degradation of the refrigerator performance, and a subsequent examination of the rods themselves revealed no evidence of breakage or pulverization. The load temperature characteristics for the rod packed regenerators were inferior to that for the Pb spheres, the effect being to shift the Pb spheres load curve up in temperature. This temperature shift was 5.0, 7.4, and 11.6K for the 0.0008, 0.015, and 0.030 in. diam. rods, respectively.

  13. An intersecting chord method for minimum circumscribed sphere and maximum inscribed sphere evaluations of sphericity error

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Xu, Guanghua; Zhang, Qing; Liang, Lin; Liu, Dan

    2015-11-01

    As one of the Geometrical Product Specifications that are widely applied in industrial manufacturing and measurement, sphericity error can synthetically scale a 3D structure and reflects the machining quality of a spherical workpiece. Following increasing demands in the high motion performance of spherical parts, sphericity error is becoming an indispensable component in the evaluation of form error. However, the evaluation of sphericity error is still considered to be a complex mathematical issue, and the related research studies on the development of available models are lacking. In this paper, an intersecting chord method is first proposed to solve the minimum circumscribed sphere and maximum inscribed sphere evaluations of sphericity error. This new modelling method leverages chord relationships to replace the characteristic points, thereby significantly reducing the computational complexity and improving the computational efficiency. Using the intersecting chords to generate a virtual centre, the reference sphere in two concentric spheres is simplified as a space intersecting structure. The position of the virtual centre on the space intersecting structure is determined by characteristic chords, which may reduce the deviation between the virtual centre and the centre of the reference sphere. In addition,two experiments are used to verify the effectiveness of the proposed method with real datasets from the Cartesian coordinates. The results indicate that the estimated errors are in perfect agreement with those of the published methods. Meanwhile, the computational efficiency is improved. For the evaluation of the sphericity error, the use of high performance computing is a remarkable change.

  14. orbis (sphaera), circulus, via, iter, orbita -- on the terminological identification of the essential paradigm change in astronomy by Johannes Kepler. (German Title: orbis (sphaera), circulus, via, iter, orbita} -- zur terminologischen Kennzeichnung des wesentlichsten Paradigmawechsels in der Astronomie durch Johannes Kepler)

    NASA Astrophysics Data System (ADS)

    Krafft, Fritz

    2011-08-01

    The use of modern terminology hinders to understand historical astronomical texts and often misleads the reader. Therefore, this study tries to reconstruct the ideas of the way the planets seem to move against the sphere of fixed stars in a non-teleological manner, that means in the original view and with original terms. The study proceeds historically and explains: (1) Aristotle's system of homocentric spheres being hollow spheres of ether turning equally round the earth in the centre of the world, a number of which makes the apparatus of the movement of a planet which produces its apparently unequal motion. (2) Ptolemy's reductionistic system of geometric circles (eccentric deferents, epicycles etc.), which are indeed great circles on non-concentric hollow spheres, whereupon they turn around equally. The space which they take up in all is surrounded by an inner and an outer concentric spherical surface and makes the sphere of the planet. (3) John's of Sacrobosco transferring of the geometric astronomy to the Latin of Middle Ages and the commentators' precision of the Greek-Latin terms. (4) The tradition of the "Theorica planetarum" which makes this geometry physics by allotting every partial moving to a partial material hollow sphere (with spherical surfaces of different centricity) or full sphere of an epicycle (orbes particulares or partialis), a number of which makes the entire sphere of each planet (orbis totalis or totus). - Copernicus also stood within this tradition, except that his entire spheres differ from the earlier ones in size or thickness (because he eliminated the partly very big synodic epicycles and allocated their effect as a mere parallactic one to the yearly moving of the earth) and in the great intervening spaces between each other (a result of measuring the true distances of the planets on the basis of these parallactic effects). (5) Tycho Brahe's refutation of the unchangingness and unpermeableness and therefore solidity of all etherial spheres, what had been the fundamental condition for creating the indirect ways of the planets in all astronomical systems with partial or entire spheres engaging one another. It was particularly Kepler who recognizes that as a result celestial physics requires a complete change. (6) Kepler's replacement of celestial physics. He did not think any more that the apparent (unequal) way of a planet indirectly results from the combination of several equal movements of etherial partial and entire spheres. His planets move their true and real way caused directly by the joint effect of two corporal forces moving the planets both around the sun and to and from it, which latter makes the planet's speed indeed naturally unequal. For this "real way" he coins in late 1604 the specific term "orbita" (the modern "orbit", the German "Bahn". This term then little by little replaced the former non-specific, general description of the apparent or real way (as "via, iter, ambitus, circulus, circuitus" etc.), and Kepler used it increasingly from its introduction (initially frequently joined to a describing definition of this "way") up to the exclusive use in the fifth book of the "Epitome", after this "orbita" had changed its shape from a perfect eccentric circle to an oval and finally an elliptic form. This way Kepler marks the paradigm change of astronomy caused by himself also terminologically.

  15. Microsphere integrated microfluidic disk: synergy of two techniques for rapid and ultrasensitive dengue detection

    PubMed Central

    Hosseini, Samira; Aeinehvand, Mohammad M.; Uddin, Shah M.; Benzina, Abderazak; Rothan, Hussin A.; Yusof, Rohana; Koole, Leo H.; Madou, Marc J.; Djordjevic, Ivan; Ibrahim, Fatimah

    2015-01-01

    The application of microfluidic devices in diagnostic systems is well-established in contemporary research. Large specific surface area of microspheres, on the other hand, has secured an important position for their use in bioanalytical assays. Herein, we report a combination of microspheres and microfluidic disk in a unique hybrid platform for highly sensitive and selective detection of dengue virus. Surface engineered polymethacrylate microspheres with carefully designed functional groups facilitate biorecognition in a multitude manner. In order to maximize the utility of the microspheres’ specific surface area in biomolecular interaction, the microfluidic disk was equipped with a micromixing system. The mixing mechanism (microballoon mixing) enhances the number of molecular encounters between spheres and target analyte by accessing the entire sample volume more effectively, which subsequently results in signal amplification. Significant reduction of incubation time along with considerable lower detection limits were the prime motivations for the integration of microspheres inside the microfluidic disk. Lengthy incubations of routine analytical assays were reduced from 2 hours to 5 minutes while developed system successfully detected a few units of dengue virus. Obtained results make this hybrid microsphere-microfluidic approach to dengue detection a promising avenue for early detection of this fatal illness. PMID:26548806

  16. Evaluation of high specific-heat ceramic for regenerator use at temperatures between 2-30 K

    NASA Technical Reports Server (NTRS)

    Lawless, W. N.

    1979-01-01

    Specific heat, thermal conductivity (both in the range 2-30 K), and microhardness data were measured on the ceramics labelled LS-8, LS-8A, and LS-8A doped with CsI, SnCl2, and AgCl. A work hardened sample of LS-8A was also studied in an effort to determine the feasibility of using these types of LS-8 materials to replace Pb spheres in the regenerator of the JPL cryocooler. The LS-8A materials are all more than an order of magnitude harder than Pb, and the dopants do not significantly improve the hardness. However, the SnCl2 dopant has a remarkable effect in improving the specific heat and thermal conductivity of LS-8A. The SnCl2 doping level which maximized the regenerator enthalpy change in going from an unloaded to a loaded condition was found to be 0.2 percent SnCl2 in LS-8A. It was also found that the enthalpy change for a regenerator employing the LS-8A material is more than three times larger than for the Pb spheres case. The use of rods, rather than spheres, of optimally doped LS-8A in regenerators is discussed.

  17. Reactor Physics Measurements and Benchmark Specifications for Oak Ridge Highly Enriched Uranium Sphere (ORSphere)

    DOE PAGES

    Marshall, Margaret A.

    2014-11-04

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an effort to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with themore » GODIVA I experiments. Additionally, various material reactivity worths, the surface material worth coefficient, the delayed neutron fraction, the prompt neutron decay constant, relative fission density, and relative neutron importance were all measured. The critical assembly, material reactivity worths, the surface material worth coefficient, and the delayed neutron fraction were all evaluated as benchmark experiment measurements. The reactor physics measurements are the focus of this paper; although for clarity the critical assembly benchmark specifications are briefly discussed.« less

  18. Modeling Regional Seismic Waves

    DTIC Science & Technology

    1991-03-25

    e r . E (u )", e r "S(u 2) (2b) where S is the stress dyadic . The displacement and stress dyadic can be 128 conveniently expressed in terms of the...Yr-, Mo., Day) 15 PAGE COUNT sciertiuic No. I FRom3/24!89 TOZjjL(? 25 March 1991 184 16. SUPPLEMENTARY NOTATIONI F1 L GROU AT C D S U lB UB E T E M...earthquakes, will ti- e wave fields from a.. zff center explosion in a embedded sphere. 20 DISTRIBUTION/AVAILABILITY OF AB3STRACT 21. ABSTRACT SECURITY

  19. Catalytic dimer nanomotors: continuum theory and microscopic dynamics.

    PubMed

    Reigh, Shang Yik; Kapral, Raymond

    2015-04-28

    Synthetic chemically-powered motors with various geometries have potentially new applications involving dynamics on very small scales. Self-generated concentration and fluid flow fields, which depend on geometry, play essential roles in motor dynamics. Sphere-dimer motors, comprising linked catalytic and noncatalytic spheres, display more complex versions of such fields, compared to the often-studied spherical Janus motors. By making use of analytical continuum theory and particle-based simulations we determine the concentration fields, and both the complex structure of the near-field and point-force dipole nature of the far-field behavior of the solvent velocity field that are important for studies of collective motor motion. We derive the dependence of motor velocity on geometric factors such as sphere size and dimer bond length and, thus, show how to construct motors with specific characteristics.

  20. The registered distance of the celestial sphere: some historical cross-cultural data.

    PubMed

    Plug, C

    1989-02-01

    Estimates of the diameters of the sun and moon expressed in centimetres have been reported by several authors in the past. These estimates imply that the sizes of the sun and moon are perceived as if these bodies are only some tens of metres distant. In this study five units of length that were used by ancient astronomers to estimate arcs on the celestial sphere were investigated. The purpose was to determine whether the lengths and angles represented by these units imply a specific registered distance of the star sphere. The sizes of the Babylonian cubit, Arab fitr and shibr, Greek eclipse digit, and Chinese chang support the conclusion that the registered distance of the stars was about 10 to 40 metres in these four cultures over the last two millennia.

  1. Locating responsibility: the Sphere Humanitarian Charter and its rationale.

    PubMed

    Darcy, James

    2004-06-01

    Criticised by some as a technical initiative that neglects core principles, Sphere was seen by its originators precisely as an articulation of principle. The Humanitarian Charter was the main vehicle through which this was expressed, but its relationship to the Minimum Standards has remained a matter of uncertainty. Specifically, it was unclear in the original (1999) edition of Sphere how the concept of rights informed the Minimum Standards. The revised (2004) edition goes some way to clarifying this in the way the standards are framed, yet the link between the standards and the charter remains unclear. The concern with the quality and accountability of humanitarian assistance, which motivated the attempt to establish system-wide standards through the Sphere Project, was accompanied by a desire to establish such actions in a wider framework of legal and political responsibility. In part, this reflects the conditional nature of the undertaking that agencies make when they adopt Sphere. This aspect of the charter has been neglected, but it is fundamental to an understanding of the standards and their application. This paper considers the rationale of the Sphere Humanitarian Charter and the conceptual model that underpins it. It discusses the relationship between the charter and the Minimum Standards, and the sense in which the latter are properly called "rights-based" (explored further in a related paper herein by Young and Taylor). The author was closely involved in the conception and drafting of the charter, and this paper attempts to convey some of the thinking that lay behind it.

  2. Employee-Organization Pro-environmental Values Fit and Pro-environmental Behavior: The Role of Supervisors' Personal Values.

    PubMed

    Lu, Hui; Liu, Xia; Chen, Hong; Long, Ruyin

    2017-12-18

    This study examines the relationship among the employees-organization pro-environmental values fit (E-O PEVs fit), supervisors' PEVs and employees' pro-environmental behaviors (PEB). Informed by the PEB, organizational values and employee-organization fit literature, we propose and test hypotheses that under egoistic, altruistic and biosphere-value orientations, E-O PEVs fit versus non-fit have significant effects on employees' private-sphere PEB and public-sphere PEB, identifying supervisors' PEVs as a moderator. An empirical investigation indicates that the effect of E-O PEVs fit on employees' private-sphere PEB and public-sphere PEB varies as the value orientation differs. More specifically, under the context of altruistic and biosphere-value orientations, if the organizational PEVs do not match the employees' PEVs, especially when the former exceeds the latter, employees' PEB will rise as the organizational PEVs increase. As for egoistic value orientation, when organizational PEVs exceed employees' PEVs, not only will public-sphere PEB stop decreasing and tend to stabilize, but also private-sphere PEB will rise to a slight degree. Furthermore, compared with altruistic and biospheric values dimensions, supervisors who promote egoistic PEVs will have a more significant effect on the relationship between global E-O PEVs fit and employees' PEB. Finally, we suggest that the goals of an organization and its supervisors need to be combined within the actual situation of Chinese corporations to truly implement corporate green practices by balancing the profit goal and the environmental goal.

  3. A comparison of the fragmentation thresholds and inertial cavitation doses of different ultrasound contrast agents

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shiang; Matula, Thomas J.; Brayman, Andrew A.; Crum, Lawrence A.

    2003-01-01

    Contrast bubble destruction is important in several new diagnostic and therapeutic applications. The pressure threshold of destruction is determined by the shell material, while the propensity for of the bubbles to undergo inertial cavitation (IC) depends both on the gas and shell properties of the ultrasound contrast agent (UCA). The ultrasonic fragmentation thresholds of three specific UCAs (Optison, Sonazoid, and biSpheres), each with different shell and gas properties, were determined under various acoustic conditions. The acoustic emissions generated by the agents, or their derivatives, characteristic of IC after fragmentation, was also compared, using cumulated broadband-noise emissions (IC ``dose''). Albumin-shelled Optison and surfactant-shelled Sonazoid had low fragmentation thresholds (mean=0.13 and 0.15 MPa at 1.1 MHz, 0.48 and 0.58 MPa at 3.5 MHz, respectively), while polymer-shelled biSpheres had a significant higher threshold (mean=0.19 and 0.23 MPa at 1.1 MHz, 0.73 and 0.96 MPa for thin- and thick-shell biSpheres at 3.5 MHz, respectively, p<0.01). At comparable initial concentrations, surfactant-shelled Sonazoid produced a much larger IC dose after shell destruction than did either biSpheres or Optison (p<0.01). Thick-shelled biSpheres had the highest fragmentation threshold and produced the lowest IC dose. More than two and five acoustic cycles, respectively, were necessary for the thin- and thick-shell biSpheres to reach a steady-state fragmentation threshold.

  4. Self-template synthesis of double shelled ZnS-NiS1.97 hollow spheres for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Wei, Chengzhen; Ru, Qinglong; Kang, Xiaoting; Hou, Haiyan; Cheng, Cheng; Zhang, Daojun

    2018-03-01

    In this work, double shelled ZnS-NiS1.97 hollow spheres have been achieved via a simple self-template route, which involves the synthesis of Zn-Ni solid spheres precursors as the self-template and then transformation into double shelled ZnS-NiS1.97 hollow spheres by sulfidation treatment. The as-prepared double shelled ZnS-NiS1.97 hollow spheres possess a high surface area (105.26 m2 g-1) and porous structures. Benefiting from the combined characteristics of novel structures, multi-component, high surface area and porous. When applied as electrode materials for supercapacitors, the double shelled ZnS-NiS1.97hollow spheres deliver a large specific capacitance of 696.8C g-1 at 5.0 A g-1 and a remarkable long lifespan cycling stability (less 5.5% loss after 6000 cycles). Moreover, an asymmetric supercapacitor (ASC) was assembled by utilizing ZnS-NiS1.97 (positive electrode) and activated carbon (negative electrode) as electrode materials. The as-assembled device possesses an energy density of 36 W h kg-1, which can be yet retained 25.6 W h kg-1 even at a power density of 2173.8 W Kg-1, indicating its promising applications in electrochemical energy storage. More importantly, the self-template route is a simple and versatile strategy for the preparation of metal sulfides electrode materials with desired structures, chemical compositions and electrochemical performances.

  5. General Method for the Synthesis of Hollow Mesoporous Carbon Spheres with Tunable Textural Properties.

    PubMed

    Mezzavilla, Stefano; Baldizzone, Claudio; Mayrhofer, Karl J J; Schüth, Ferdi

    2015-06-17

    A versatile synthetic procedure to prepare hollow mesoporous carbon spheres (HMCS) is presented here. This approach is based on the deposition of a homogeneous hybrid polymer/silica composite shell on the outer surface of silica spheres through the surfactant-assisted simultaneous polycondensation of silica and polymer precursors in a colloidal suspension. Such composite materials can be further processed to give hollow mesoporous carbon spheres. The flexibility of this method allows for independent control of the morphological (i.e., core diameter and shell thickness) and textural features of the carbon spheres. In particular, it is demonstrated that the size of the pores within the mesoporous shell can be precisely tailored over an extended range (2-20 nm) by simply adjusting the reaction conditions. In a similar fashion, also the specific carbon surface area as well as the total shell porosity can be tuned. Most importantly, the textural features can be adjusted without affecting the dimension or the morphology of the spheres. The possibility to directly modify the shell textural properties by varying the synthetic parameters in a scalable process represents a distinct asset over the multistep hard-templating (nanocasting) routes. As an exemplary application, Pt nanoparticles were encapsulated in the mesoporous shell of HMCS. The resulting Pt@HMCS catalyst showed an enhanced stability during the oxygen reduction reaction, one of the most important reactions in electrocatalysis. This new synthetic procedure could allow the expansion, perhaps even beyond the lab-scale, of advanced carbon nanostructured supports for applications in catalysis.

  6. [Comparison of mental health state and psychological capacities between college students with and without siblings].

    PubMed

    Zhang, Xiao-yuan; Yu, Shou-yi; Zhao, Jiu-bo; Li, Jian-ming; Xiao, Rong

    2007-04-01

    To compare the differences in mental health state and psychological capacities between Chinese college students with and without siblings. The psychological status and capacities were evaluated with SCL-90, the Self-Esteem Scale, Spheres of Control Scale, Security Questionnaire and Cattell 16-PF Questionnaire in 427 college students, and among the students who presented valid responses, 139 with and 139 without siblings were selected for this comparative study. The total score and average score of SCL-90 in college students without siblings were significantly lower than those in students with siblings (P<0.05); the scores of factors C, E, and F of 16-PF were significantly higher but the score of factor O significantly lower in the former group (P<0.05). The scores of certainty in control, interpersonal security and total score of security were significantly higher in the students without siblings (P<0.01). The mental health state and some of the psychological capacities are generally better in college students with siblings than in those without siblings.

  7. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor

    NASA Astrophysics Data System (ADS)

    Xiong, Ya; Zhu, Zongye; Ding, Degong; Lu, Wenbo; Xue, Qingzhong

    2018-06-01

    In the present study, multi-shelled ZnCo2O4 yolk-shell spheres have been successfully prepared by using carbonaceous microspheres as templates. It is found that the multi-shelled ZnCo2O4 yolk-shell spheres based sensor shows optimal sensing performances (response value of 38.2, response/recovery time of 19 s/71 s) toward 500 ppm acetone at 200 °C. In addition, this sensor exhibits a low detection limit of 0.5 ppm acetone (response value of 1.36) and a good selectivity toward hydrogen, methane, ethanol, ammonia and carbon dioxide. Furthermore, it is demonstrated that acetone gas response of multi-shelled ZnCo2O4 yolk-shell spheres is significantly better than that of ZnCo2O4 nanotubes and ZnCo2O4 nanosheets. High acetone response of the multi-shelled ZnCo2O4 yolk-shell spheres is attributed to the enhanced gas accessibility of the multi-shell morphology caused by the small crystalline size and high specific surface area while the short response/recovery time is mainly related to the rapid gas diffusion determined by the highly porous structure. Our work puts forward an exciting opportunity in designing various yolk-shelled structures for multipurpose applications.

  8. Hierarchical FeTiO3-TiO2 hollow spheres for efficient simulated sunlight-driven water oxidation.

    PubMed

    Han, Taoran; Chen, Yajie; Tian, Guohui; Wang, Jian-Qiang; Ren, Zhiyu; Zhou, Wei; Fu, Honggang

    2015-10-14

    Oxygen generation is the key step for the photocatalytic overall water splitting and considered to be kinetically more challenging than hydrogen generation. Here, an effective water oxidation catalyst of hierarchical FeTiO3-TiO2 hollow spheres are prepared via a two-step sequential solvothermal processes and followed by thermal treatment. The existence of an effective heterointerface and built-in electric field in the surface space charge region in FeTiO3-TiO2 hollow spheres plays a positive role in promoting the separation of photoinduced electron-hole pairs. Surface photovoltage, transient-state photovoltage, fluorescence and electrochemical characterization are used to investigate the transfer process of photoinduced charge carriers. The photogenerated charge carriers in the hierarchical FeTiO3-TiO2 hollow spheres with a proper molar ratio display much higher separation efficiency and longer lifetime than those in the FeTiO3 alone. Moreover, it is suggested that the hierarchical porous hollow structure can contribute to the enhancement of light utilization, surface active sites and material transportation through the framework walls. This specific synergy significantly contributes to the remarkable improvement of the photocatalytic water oxidation activity of the hierarchical FeTiO3-TiO2 hollow spheres under simulated sunlight (AM1.5).

  9. Monomer functionalized silica coated with Ag nanoparticles for enhanced SERS hotspots

    NASA Astrophysics Data System (ADS)

    Newmai, M. Boazbou; Verma, Manoj; Kumar, P. Senthil

    2018-05-01

    Mesoporous silica (SiO2) spheres are well-known for their excellent chromatographic properties such as the relatively high specific surface, large pore volume, uniform particle size, narrow pore size distribution with favorable pore connectivity; whereas the noble metal Ag nanoparticles have unique size/shape dependant surface plasmon resonance with wide ranging applications. Thus, the desire to synchronize both their properties for specific applications has naturally prompted research in the design and synthesis of core-shell type novel nanoAg@mesoSiO2 nanocomposites, which display potential utility in applications such as photothermal therapy, photocatalysis, molecular sensing, and photovoltaics. In the present work, SiO2 spheres were carefully functionalized with the monomer, N-vinyl pyrrolidone (NVP), which cohesively controls the uniform mass transfer of Ag+ metal ions, thereby enabling its sequential reduction to zerovalent Ag (in the presence of slightly excess NaOH) by electron transfer from nucleophilic attack of the NVP vinyl group by the water molecules even under ambient conditions. Complete metal nanoshell coverage of the silica surface was obtained after multiple Ag deposition cycles, as systematically confirmed from the BET, TEM, optical and FTIR characterization. Our present Ag-coated silica spheres were directly utilized as viable SERS substrates with high sensitivity in contrast with other long chain polymer/surfactant coated silica spheres, owing to the presence of significant number of nanogaps enhanced SERS 'hotspots', which were methodically analyzed utilizing two example analytes, such as crystal violet (CV) and calendula officinalis (CaF).

  10. Controllable fabrication of urchin-like Co3O4 hollow spheres for high-performance supercapacitors and lithium-ion batteries.

    PubMed

    Chen, Fashen; Liu, Xiaohe; Zhang, Zhian; Zhang, Ning; Pan, Anqiang; Liang, Shuquan; Ma, Renzhi

    2016-09-27

    Urchin-like cobalt oxide (Co 3 O 4 ) hollow spheres can be successfully prepared by thermal decomposition of cobalt carbonate hydroxide hydrate (Co(CO 3 ) 0.5 (OH)·0.11H 2 O) obtained by template-assisted hydrothermal synthesis. The morphology, crystal structure evolution and thermal decomposition behaviors of the as-prepared products have been carefully investigated. A plausible formation mechanism of the urchin-like Co 3 O 4 hollow spheres in the presence of hexadecyl trimethyl ammonium bromide (CTAB) as the surfactant template is proposed. The urchin-like Co 3 O 4 hollow spheres are further constructed as electrode materials for high-performance supercapacitors with a high specific capacitance of 460 F g -1 at a current density of 4 A g -1 and excellent cycling stability. Furthermore, as anode materials for lithium-ion batteries (LIBs), superior lithium storage performance of 1342.2 mA h g -1 (0.1 C) and 1122.7 mA h g -1 (0.2 C) can also be achieved. The excellent performances can be ascribed to the unique hierarchical urchin-like hollow structure of the electrode materials, which offers a large specific surface area, short electron and ion diffusion paths and high permeability while being directly in contact with the electrolyte. Moreover, the hollow structure with sufficient internal void spaces can self-accommodate volume change during electrochemical reactions, which improves the structural stability and integrity.

  11. Construction of the food and nutrition security policy in Brazil: strategies and challenges in the promotion of intersectorality at the federal government level.

    PubMed

    Burlandy, Luciene

    2009-01-01

    This article analyzes institutional strategies of the Brazilian federal government that aim at promoting intersectorality in the field of Food and Nutrition Security (FNS), based on bibliographic review and document analysis. It is assumed that, although formal institutionality in this government level is not enough to promote intersectorality, it is important in process induction. It follows that the combination of different institutional mechanisms favors intersectorality, such as: the existence and location of councils integrated by government sectors and civil society in the presidency; political support by the presidency and inclusion of the issue as being strategic in the governmental agenda; assembly of institutional spaces that articulate the highest government spheres and that integrate technical levels; programs that integrate food production, commercialization, and consumption. Challenges concern interrelation with economic policy and the construction of budget agreed among sectors, integrated to policy management and monitoring.

  12. Quantum Key Recycling with 8-state encoding (The Quantum One-Time Pad is more interesting than we thought)

    NASA Astrophysics Data System (ADS)

    Škorić, Boris; de Vries, Manon

    Perfect encryption of quantum states using the Quantum One-Time Pad (QOTP) requires two classical key bits per qubit. Almost-perfect encryption, with information-theoretic security, requires only slightly more than 1. We slightly improve lower bounds on the key length. We show that key length n+2log1ɛ suffices to encrypt n qubits in such a way that the cipherstate’s L1-distance from uniformity is upperbounded by ɛ. For a stricter security definition involving the ∞-norm, we prove sufficient key length n+logn+2log1ɛ+1+1nlog1δ+logln21-ɛ, where δ is a small probability of failure. Our proof uses Pauli operators, whereas previous results on the ∞-norm needed Haar measure sampling. We show how to QOTP-encrypt classical plaintext in a nontrivial way: we encode a plaintext bit as the vector ±(1,1,1)/3 on the Bloch sphere. Applying the Pauli encryption operators results in eight possible cipherstates which are equally spread out on the Bloch sphere. This encoding, especially when combined with the half-keylength option of QOTP, has advantages over 4-state and 6-state encoding in applications such as Quantum Key Recycling (QKR) and Unclonable Encryption (UE). We propose a key recycling scheme that is more efficient and can tolerate more noise than a recent scheme by Fehr and Salvail. For 8-state QOTP encryption with pseudorandom keys, we do a statistical analysis of the cipherstate eigenvalues. We present numerics up to nine qubits.

  13. On the Effect of Sphere-Overlap on Super Coarse-Grained Models of Protein Assemblies

    NASA Astrophysics Data System (ADS)

    Degiacomi, Matteo T.

    2018-05-01

    Ion mobility mass spectrometry (IM/MS) can provide structural information on intact protein complexes. Such data, including connectivity and collision cross sections (CCS) of assemblies' subunits, can in turn be used as a guide to produce representative super coarse-grained models. These models are constituted by ensembles of overlapping spheres, each representing a protein subunit. A model is considered plausible if the CCS and sphere-overlap levels of its subunits fall within predetermined confidence intervals. While the first is determined by experimental error, the latter is based on a statistical analysis on a range of protein dimers. Here, we first propose a new expression to describe the overlap between two spheres. Then we analyze the effect of specific overlap cutoff choices on the precision and accuracy of super coarse-grained models. Finally, we propose a method to determine overlap cutoff levels on a per-case scenario, based on collected CCS data, and show that it can be applied to the characterization of the assembly topology of symmetrical homo-multimers. [Figure not available: see fulltext.

  14. Integrating spheres for improved skin photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Glennie, Diana L.; Farrell, Thomas J.; Hayward, Joseph E.; Patterson, Michael S.

    2010-09-01

    The prescribed radiant exposures for photodynamic therapy (PDT) of superficial skin cancers are chosen empirically to maximize the success of the treatment while minimizing adverse reactions for the majority of patients. They do not take into account the wide range of tissue optical properties for human skin, contributing to relatively low treatment success rates. Additionally, treatment times can be unnecessarily long for large treatment areas if the laser power is not sufficient. Both of these concerns can be addressed by the incorporation of an integrating sphere into the irradiation apparatus. The light fluence rate can be increased by as much as 100%, depending on the tissue optical properties. This improvement can be determined in advance of treatment by measuring the reflectance from the tissue through a side port on the integrating sphere, allowing for patient-specific treatment times. The sphere is also effective at improving beam flatness, and reducing the penumbra, creating a more uniform light field. The side port reflectance measurements are also related to the tissue transport albedo, enabling an approximation of the penetration depth, which is useful for real-time light dosimetry.

  15. Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid

    PubMed Central

    Sapozhnikov, Oleg A.; Bailey, Michael R.

    2013-01-01

    A theoretical approach is developed to calculate the radiation force of an arbitrary acoustic beam on an elastic sphere in a liquid or gas medium. First, the incident beam is described as a sum of plane waves by employing conventional angular spectrum decomposition. Then, the classical solution for the scattering of a plane wave from an elastic sphere is applied for each plane-wave component of the incident field. The net scattered field is expressed as a superposition of the scattered fields from all angular spectrum components of the incident beam. With this formulation, the incident and scattered waves are superposed in the far field to derive expressions for components of the radiation stress tensor. These expressions are then integrated over a spherical surface to analytically describe the radiation force on an elastic sphere. Limiting cases for particular types of incident beams are presented and are shown to agree with known results. Finally, the analytical expressions are used to calculate radiation forces associated with two specific focusing transducers. PMID:23363086

  16. The single-scattering properties of black carbon aggregates determined from the geometric-optics surface-wave approach and the T-matrix method

    NASA Astrophysics Data System (ADS)

    Takano, Y.; Liou, K. N.; Kahnert, M.; Yang, P.

    2013-08-01

    The single-scattering properties of eight black carbon (BC, soot) fractal aggregates, composed of primary spheres from 7 to 600, computed by the geometric-optics surface-wave (GOS) approach coupled with the Rayleigh-Gans-Debye (RGD) adjustment for size parameters smaller than approximately 2, are compared with those determined from the superposition T-matrix method. We show that under the condition of random orientation, the results from GOS/RGD are in general agreement with those from T-matrix in terms of the extinction and absorption cross-sections, the single-scattering co-albedo, and the asymmetry factor. When compared with the specific absorption (m2/g) measured in the laboratory, we illustrate that using the observed radii of primary spheres ranging from 3.3 to 25 nm, the theoretical values determined from GOS/RGD for primary sphere numbers of 100-600 are within the range of measured values. The GOS approach can be effectively applied to aggregates composed of a large number of primary spheres (e.g., >6000) and large size parameters (≫2) in terms of computational efforts.

  17. Synthesis of uniform layered protonated titanate hierarchical spheres and their transformation to anatase TiO2 for lithium-ion batteries.

    PubMed

    Wu, Hao Bin; Lou, Xiong Wen David; Hng, Huey Hoon

    2012-02-13

    Layered protonated titanates (LPTs), a class of interesting inorganic layered materials, have been widely studied because of their many unique properties and their use as precursors to many important TiO(2)-based functional materials. In this work, we have developed a facile solvothermal method to synthesize hierarchical spheres (HSs) assembled from ultrathin LPT nanosheets. These LPT hierarchical spheres possess a porous structure with a large specific surface area and high stability. Importantly, the size and morphology of the LPT hierarchical spheres are easily tunable by varying the synthesis conditions. These LPT HSs can be easily converted to anatase TiO(2) HSs without significant structural alteration. Depending on the calcination atmosphere of air or N(2), pure anatase TiO(2) HSs or carbon-supported TiO(2) HSs, respectively, can be obtained. Remarkably, both types of TiO(2) HSs manifest excellent cyclability and rate capability when evaluated as anode materials for high-power lithium-ion batteries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The Mexican Social Security counterreform: pensions for profit.

    PubMed

    Laurell, A C

    1999-01-01

    The social security counterreform, initiated in 1997, forms part of the neoliberal reorganization of Mexican society. The reform implies a profound change in the guiding principles of social security, as the public model based on integrality, solidarity, and redistribution is replaced by a model based on private administration of funds and services, individualization of entitlement, and reduction of rights. Its economic purpose is to move social services and benefits into the direct sphere of private capital accumulation. Although these changes will involve the whole social security system--old-age and disability pensions, health care, child care, and workers' compensation--they are most immediately evident in the pension scheme. The pay-as-you-go scheme is being replaced by privately managed individual retirement accounts which especially favor the big financial groups. These groups are gaining control over huge amounts of capital, are authorized to charge a high commission, and run no financial risks. The privatization of the system requires decisive state intervention with a legal change and a sizable state subsidy (1 to 1.5 percent of GNP) over five decades. The supposed positive impact on economic growth and employment is uncertain. A review of the new law and of the estimates of future annuities reveals shrinking pension coverage and inadequate incomes from pensions.

  19. [Food and nutritional security: situation analysis of decentralization in the national public policy].

    PubMed

    Vasconcellos, Ana Beatriz Pinto de Almeida; Moura, Leides Barroso Azevedo de

    2018-03-01

    The aim of this study was to analyze the situation with the decentralization of the Brazilian National System of Food and Nutritional Security (SISAN), created in 2006 under the Brazilian National Food and Nutritional Security Act (LOSAN). Based on the criteria for joining SISAN, as set out in Decree 7,272 of August 25, 2010, the authors analyzed data from the basic information surveys of the Brazilian Institute of Geography and Statistics, 2014 (Estadic e Munic/2014). The results show that decentralization of SISAN is still incipient at the municipal level, although all the states of Brazil have already joined the system. The social assistance sector has played an outstanding role in coordinating SISAN at the state and municipal levels, while in the latter the health sector has also played a relevant role. The analysis of food and nutritional security activities conducted to date, based on the sources of federal, state, and municipal funds, further shows that the federal sphere has still not played a strong inductive role capable of leading the expansion of SISAN. More effective funding mechanisms and the assignment of responsibilities to the states and municipalities are relevant factors for consolidating the system's state-level base and expanding the municipal base in the search for an identity and capillarity for SISAN.

  20. Solutions for the conductivity of multi-coated spheres and spherically symmetric inclusion problems

    NASA Astrophysics Data System (ADS)

    Pham, Duc Chinh

    2018-02-01

    Variational results on the macroscopic conductivity (thermal, electrical, etc.) of the multi-coated sphere assemblage have been used to derive the explicit expression of the respective field (thermal, electrical, etc.) within the spheres in d dimensions (d=2,3). A differential substitution approach has been developed to construct various explicit expressions or determining equations for the effective spherically symmetric inclusion problems, which include those with radially variable conductivity, different radially variable transverse and normal conductivities, and those involving imperfect interfaces, in d dimensions. When the volume proportion of the outermost spherical shell increases toward 1, one obtains the respective exact results for the most important specific cases: the dilute solutions for the compound inhomogeneities suspended in a major matrix phase. Those dilute solution results are also needed for other effective medium approximation schemes.

  1. Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor

    NASA Astrophysics Data System (ADS)

    Liu, Simin; Cai, Yijin; Zhao, Xiao; Liang, Yeru; Zheng, Mingtao; Hu, Hang; Dong, Hanwu; Jiang, Sanping; Liu, Yingliang; Xiao, Yong

    2017-08-01

    Development of facile and scalable synthesis process for the fabrication of nanoporous carbon materials with large specific surface areas, well-defined nanostructure, and high electrochemical activity is critical for the high performance energy storage applications. The key issue is the dedicated balance between the ultrahigh surface area and highly porous but interconnected nanostructure. Here, we demonstrate the fabrication of new sulfur doped nanoporous carbon sphere (S-NCS) with the ultrahigh surface area up to 3357 m2 g-1 via a high-temperature hydrothermal carbonization and subsequent KOH activation process. The as-prepared S-NCS which integrates the advantages of ultrahigh porous structure, well-defined nanospherical and modification of heteroatom displays excellent electrochemical performance. The best performance is obtained on S-NCS prepared by the hydrothermal carbonization of sublimed sulfur and glucose, S-NCS-4, reaching a high specific capacitance (405 F g-1 at a current density of 0.5 A g-1) and outstanding cycle stability. Moreover, the symmetric supercapacitor is assembled by S-NCS-4 displays a superior energy density of 53.5 Wh kg-1 at the power density of 74.2 W kg-1 in 1.0 M LiPF6 EC/DEC. The synthesis method is simple and scalable, providing a new route to prepare highly porous and heteroatom-doped nanoporous carbon spheres for high performance energy storage applications.

  2. Theory of adsorption in a polydisperse templated porous material: Hard sphere systems

    NASA Astrophysics Data System (ADS)

    RŻysko, Wojciech; Sokołowski, Stefan; Pizio, Orest

    2002-03-01

    A theoretical description of adsorption in a templated porous material, formed by an equilibrium quench of a polydisperse fluid composed of matrix and template particles and subsequent removal of the template particles is presented. The approach is based on the solution of the replica Ornstein-Zernike equations with Percus-Yevick and hypernetted chain closures. The method of solution uses expansions of size-dependent correlation functions into Fourier series, as described by Lado [J. Chem. Phys. 108, 6441 (1998)]. Specific calculations have been carried out for model systems, composed of hard spheres.

  3. Vector splines on the sphere with application to the estimation of vorticity and divergence from discrete, noisy data

    NASA Technical Reports Server (NTRS)

    Wahba, G.

    1982-01-01

    Vector smoothing splines on the sphere are defined. Theoretical properties are briefly alluded to. The appropriate Hilbert space norms used in a specific meteorological application are described and justified via a duality theorem. Numerical procedures for computing the splines as well as the cross validation estimate of two smoothing parameters are given. A Monte Carlo study is described which suggests the accuracy with which upper air vorticity and divergence can be estimated using measured wind vectors from the North American radiosonde network.

  4. Conformal structure of massless scalar amplitudes beyond tree level

    NASA Astrophysics Data System (ADS)

    Banerjee, Nabamita; Banerjee, Shamik; Bhatkar, Sayali Atul; Jain, Sachin

    2018-04-01

    We show that the one-loop on-shell four-point scattering amplitude of massless ϕ 4 scalar field theory in 4D Minkowski space time, when Mellin transformed to the Celestial sphere at infinity, transforms covariantly under the global conformal group (SL(2, ℂ)) on the sphere. The unitarity of the four-point scalar amplitudes is recast into this Mellin basis. We show that the same conformal structure also appears for the two-loop Mellin amplitude. Finally we comment on some universal structure for all loop four-point Mellin amplitudes specific to this theory.

  5. Geometrical-optics code for computing the optical properties of large dielectric spheres.

    PubMed

    Zhou, Xiaobing; Li, Shusun; Stamnes, Knut

    2003-07-20

    Absorption of electromagnetic radiation by absorptive dielectric spheres such as snow grains in the near-infrared part of the solar spectrum cannot be neglected when radiative properties of snow are computed. Thus a new, to our knowledge, geometrical-optics code is developed to compute scattering and absorption cross sections of large dielectric particles of arbitrary complex refractive index. The number of internal reflections and transmissions are truncated on the basis of the ratio of the irradiance incident at the nth interface to the irradiance incident at the first interface for a specific optical ray. Thus the truncation number is a function of the angle of incidence. Phase functions for both near- and far-field absorption and scattering of electromagnetic radiation are calculated directly at any desired scattering angle by using a hybrid algorithm based on the bisection and Newton-Raphson methods. With these methods a large sphere's absorption and scattering properties of light can be calculated for any wavelength from the ultraviolet to the microwave regions. Assuming that large snow meltclusters (1-cm order), observed ubiquitously in the snow cover during summer, can be characterized as spheres, one may compute absorption and scattering efficiencies and the scattering phase function on the basis of this geometrical-optics method. A geometrical-optics method for sphere (GOMsphere) code is developed and tested against Wiscombe's Mie scattering code (MIE0) and a Monte Carlo code for a range of size parameters. GOMsphere can be combined with MIE0 to calculate the single-scattering properties of dielectric spheres of any size.

  6. Deconvolution of Raman spectroscopic signals for electrostatic, H-bonding, and inner-sphere interactions between ions and dimethyl phosphate in solution

    PubMed Central

    Christian, Eric L; Anderson, Vernon E.; Harris, Michael E

    2011-01-01

    Quantitative analysis of metal ion-phosphodiester interactions is a significant experimental challenge due to the complexities introduced by inner-sphere, outer-sphere (H-bonding with coordinated water), and electrostatic interactions that are difficult to isolate in solution studies. Here, we provide evidence that inner-sphere, H-bonding and electrostatic interactions between ions and dimethyl phosphate can be deconvoluted through peak fitting in the region of the Raman spectrum for the symmetric stretch of non-bridging phosphate oxygens (νsPO 2-). An approximation of the change in vibrational spectra due to different interaction modes is achieved using ions capable of all or a subset of the three forms of metal ion interaction. Contribution of electrostatic interactions to ion-induced changes to the Raman νsPO2- signal could be modeled by monitoring attenuation of νsPO2- in the presence of tetramethylammonium, while contribution of H-bonding and inner-sphere coordination could be approximated from the intensities of altered νsPO2- vibrational modes created by an interaction with ammonia, monovalent or divalent ions. A model is proposed in which discrete spectroscopic signals for inner-sphere, H-bonding, and electrostatic interactions are sufficient to account for the total observed change in νsPO2- signal due to interaction with a specific ion capable of all three modes of interaction. Importantly, the quantitative results are consistent with relative levels of coordination predicted from absolute electronegativity and absolute hardness of alkali and alkaline earth metals. PMID:21334281

  7. The Potential and Electric Fields of a Conducting Sphere in the Presence of a Charged Conducting Plane

    DTIC Science & Technology

    1989-06-01

    polynomials : Po(cos 8) = 1 , P1(cos 8) = cos 0 P 2(cos 8) = (3 cos 20 - 1)/2 P3 (cos 8) = [(5 cos28 - 3) cos 0]/2 8 and the general relations, p/(-cos...AP DD Form 1473. JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE Unclassified Foreword Thirty- some years ago Nick...1) and P. (cos 8) , (2) where n = 0, 1, 2, ..., and the Pn(cos 0) are the Legendre polynomials [13]. For convenience, we list the first few Legendre

  8. Metal-Matrix/Hollow-Ceramic-Sphere Composites

    NASA Technical Reports Server (NTRS)

    Baker, Dean M.

    2011-01-01

    A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.

  9. Human rights assessment in Parc Jean Marie Vincent, Port-au-Prince, Haiti.

    PubMed

    Cullen, Kimberly A; Ivers, Louise C

    2010-12-15

    Months after a 7.0 magnitude earthquake hit Port-au-Prince, Haiti, over one million remain homeless and living in spontaneous internally displaced person (IDP) camps. Billions of dollars from aid organizations and government agencies have been pledged toward the relief effort, yet many basic human needs, including food, shelter, and sanitation, continue to be unmet. The Sphere Project, "Humanitarian Charter and Minimum Standards in Disaster Response," identifies the minimum standards to be attained in disaster response. From a human rights perspective and utilizing key indicators from the Sphere Project as benchmarks, this article reports on an assessment of the living conditions approximately 12 weeks after the earthquake in Parc Jean Marie Vincent, a spontaneous IDP camp in Port-au-Prince. A stratified random sample of households in the camp, proportionate to the number of families living in each sector, was selected. Interview questions were designed to serve as "key indicators" for the Sphere Project minimum standards. A total of 486 interviews were completed, representing approximately 5% of households in each of the five sectors of the camp. Our assessment identified the relative achievements and shortcomings in the provision of relief services in Parc Jean Marie Vincent. At the time of this survey, the Sphere Project minimum standards for access to health care and quantity of water per person per day were being met. Food, shelter, sanitation, and security were below minimum accepted standard and of major concern. The formal assessment reported here was completed by September 2010, and is necessarily limited to conditions in Haiti before the cholera outbreak in October. Copyright © 2010 Cullen and Ivers. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  10. [Physicians, journalists and patients as public spheres in West Germany. The example of the journal "Der Spiegel" (1947-1955)].

    PubMed

    Prüll, Cay-Rüdiger

    2010-01-01

    Until today, it is still unexplored, how modern (scientific) medicine in Western Germany could negotiate its social position in the public sphere and how it was represented in the media. This paper will contribute to the analysis of this problem by investigating all entries on "medicine" in the journal "Der Spiegel" during the period 1947 to 1955, when Western Germany was built up. It is possible to show that the journal was a market place where specific public spheres as e.g. physicians, patients or journalists could discuss medical topics. This way, on the one hand, "Der Spiegel" grasped contemporary notions on medicine and the medical market, which made itself felt in later years of Western Germany. On the other hand, the journal itself molded the discussions about a scientific medicine, which was to be not only innovative but also democratic.

  11. One-step formation of TiO2 hollow spheres via a facile microwave-assisted process for photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Mohamad Alosfur, Firas K.; Ridha, Noor J.; Hafizuddin Haji Jumali, Mohammad; Radiman, S.

    2018-04-01

    Mesoporous TiO2 hollow spherical nanostructures with high surface areas were successfully prepared using a microwave method. The prepared hollow spheres had a size range between 200 and 500 nm. The spheres consisted of numerous smaller TiO2 nanoparticles with an average diameter of 8 nm. The particles had an essentially mesoporous structure, with a pore size in the range of 2-50 nm. The results confirmed that the synthesised of anatase TiO2 nanoparticles with specific surface area approximately 172.3 m2 g-1. The effect of ultraviolet and visible light irradiation and catalyst dosage on the TiO2 photocatalytic activity was studied by measuring the degradation rate of methylene blue. The maximum dye degradation performances with low catalyst loading (30 mg) were 99% and 63.4% using the same duration of ultraviolet and visible light irradiation, respectively (120 min).

  12. Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: example of a high-order Bessel beam of quasi-standing waves.

    PubMed

    Mitri, F G

    2009-04-01

    The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.

  13. Archaic artifacts resembling celestial spheres

    NASA Astrophysics Data System (ADS)

    Dimitrakoudis, S.; Papaspyrou, P.; Petoussis, V.; Moussas, X.

    We present several bronze artifacts from the Archaic Age in Greece (750-480 BC) that resemble celestial spheres or forms of other astronomical significance. They are studied in the context of the Dark Age transition from Mycenaean Age astronomical themes to the philosophical and practical revival of astronomy in the Classical Age with its plethora of astronomical devices. These artifacts, mostly votive in nature are spherical in shape and appear in a variety of forms their most striking characteristic being the depiction of meridians and/or an equator. Most of those artifacts come from Thessaly, and more specifically from the temple of Itonia Athena at Philia, a religious center of pan-Hellenic significance. Celestial spheres, similar in form to the small artifacts presented in this study, could be used to measure latitudes, or estimate the time at a known place, and were thus very useful in navigation.

  14. Acquisition of Long-Duration, Low-Gravity Slosh Data Utilizing Existing ISS Equipment (SPHERES) for Calibration of CFD Models of Coupled Fluid-Vehicle Behavior

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey

    2013-01-01

    Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the NASA Game Changing Development Program (GCD) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1). The tank geometry simulates a launch vehicle upper stage propellant tank and the maneuvers replicate those of real vehicles. The design includes inertial sensors, data acquisition, image capture and data storage interfaces to the SPHERES VERTIGO computer system on board the flight article assembly. The design also includes mechanical and electronic interfaces to the existing SPHERES hardware, which include self-contained packages that can operate in conjunction with the existing SPHERES electronics

  15. Acquisition of Long-Duration, Low-Gravity Slosh Data Utilizing Existing ISS Equipment (SPHERES) for Calibration of CFD Models of Coupled Fluid-Vehicle Behavior

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey

    2012-01-01

    Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the Office of the Chief Technologist (OCT) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1 ). The tank geometry simulates a launch vehicle upper stage propellant tank and the maneuvers replicate those of real vehicles. The design includes inertial sensors, data acquisition, image capture and data storage interfaces to the SPHERES VERTIGO computer system on board the flight article assembly. The design also includes mechanical and electronic interfaces to the existing SPHERES hardware, which include self-contained packages that can operate in conjunction with the existing SPHERES electronics.

  16. Creatine supports propagation and promotes neuronal differentiation of inner ear progenitor cells.

    PubMed

    Di Santo, Stefano; Mina, Amir; Ducray, Angélique; Widmer, Hans R; Senn, Pascal

    2014-05-07

    Long-term propagation of inner ear-derived progenitor/stem cells beyond the third generation and differentiation into inner ear cell types has been shown to be feasible, but challenging. We investigated whether the known neuroprotective guanidine compound creatine (Cr) promotes propagation of inner ear progenitor/stem cells as mitogen-expanded neurosphere cultures judged from the formation of spheres over passages. In addition, we studied whether Cr alone or in combination with brain-derived neurotrophic factor (BDNF) promotes neuronal differentiation of inner ear progenitors. For this purpose, early postnatal rat spiral ganglia, utricle, and organ of Corti-derived progenitors were grown as floating spheres in the absence (controls) or presence of Cr (5 mM) from passage 3 onward. Similarly, dissociated sphere-derived cultures were differentiated for 14 days in the presence or absence of Cr (5 mM) and spiral ganglia sphere-derived cultures in a combination of Cr with the neurotrophin BDNF (50 ng/ml). We found that the cumulative total number of spheres over all passages was significantly higher after Cr supplementation as compared with controls in all the three inner ear cultures. In contrast, sphere sizes were not affected by the administration of Cr. Administration of Cr during differentiation of spiral ganglia cells resulted in a significantly higher density of β-III-tubulin-positive cells compared with controls, whereas densities of myosin VIIa-positive cells in cultures of utricle and organ of Corti were not affected by the treatment. Importantly, a combination of Cr with the neurotrophin BDNF resulted in further significantly increased densities of β-III-tubulin-positive cells in cultures of spiral ganglia cells as compared with single treatments. In sum, Cr promoted continuing propagation of rat inner ear-derived progenitor cells and supported specifically in combination with BDNF the differentiation of neuronal cell types from spiral ganglion-derived spheres.

  17. Design and Synthesis of Hierarchical SiO2@C/TiO2 Hollow Spheres for High-Performance Supercapacitors.

    PubMed

    Zhang, Ying; Zhao, Yan; Cao, Shunsheng; Yin, Zhengliang; Cheng, Li; Wu, Limin

    2017-09-06

    TiO 2 has been widely investigated as an electrode material because of its long cycle life and good durability, but the relatively low theoretical capacity restricts its practical application. Herein, we design and synthesize novel hierarchical SiO 2 @C/TiO 2 (HSCT) hollow spheres via a template-directed method. These unique HSCT hollow spheres combine advantages from both TiO 2 such as cycle stability and SiO 2 with a high accessible area and ionic transport. In particular, the existence of a C layer is able to enhance the electrical conductivity. The SiO 2 layer with a porous structure can increase the ion diffusion channels and accelerate the ion transfer from the outer to the inner layers. The electrochemical measurements demonstrate that the HSCT-hollow-sphere-based electrode manifests a high specific capacitance of 1018 F g -1 at 1 A g -1 which is higher than those for hollow TiO 2 (113 F g -1 ) and SiO 2 /TiO 2 (252 F g -1 ) electrodes, and substantially higher than those of all the previously reported TiO 2 -based electrodes.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Yang, Feng; Lee, Sungsik

    Facile fabrication of manganese oxide (MnO x, 0 < x < 2) and nitrogen (N) co-doped carbon microspheres (MnO x-N-CS) has been firstly developed by one-pot construction of Mn-functionalized melamine-formaldehyde (Mn-MF) resin spheres before pyrolysis. The resulting hybrids bear evenly dispersed MnO x and N moieties in situ anchored on hierarchically porous carbon microspheres formed simultaneously. The capacitive performance is greatly tailored by varying the Mn/melamine molar ratio in the synthetic mixture and pyrolysis temperature. It is found that the MnO x-N-CS hybrid (0.008 wt% Mn, pyrolyzed at 800 °C) exhibits the highest specific capacitance up to 258 F gmore » –1 at a scan rate of 1 mV s –1 (in 6 M KOH), and keeps a high capacitance retention ratio of 98% after 5000 cycles. The synergism between MnO x, N moieties and carbon spheres proves to be responsible for the remarkably improved performance, as compared to the pure carbon sphere and MnO x (N)-doped carbon sphere. Lastly, the well-developed MnO x-N-CS hybrids highlight the great potentials for widespread supercapacitor applications.« less

  19. Silicon hollow sphere anode with enhanced cycling stability by a template-free method

    NASA Astrophysics Data System (ADS)

    Chen, Song; Chen, Zhuo; Luo, Yunjun; Xia, Min; Cao, Chuanbao

    2017-04-01

    Silicon is a promising alternative anode material since it has a ten times higher theoretical specific capacity than that of a traditional graphite anode. However, the poor cycling stability due to the huge volume change of Si during charge/discharge processes has seriously hampered its widespread application. To address this challenge, we design a silicon hollow sphere nanostructure by selective etching and a subsequent magnesiothermic reduction. The Si hollow spheres exhibit enhanced electrochemical properties compared to the commercial Si nanoparticles. The initial discharge and charge capacities of the Si hollow sphere anode are 2215.8 mAh g-1 and 1615.1 mAh g-1 with a high initial coulombic efficiency (72%) at a current density of 200 mA g-1, respectively. In particular, the reversible capacity is 1534.5 mAh g-1 with a remarkable 88% capacity retention against the second cycle after 100 cycles, over four times the theoretical capacity of the traditional graphite electrode. Therefore, our work demonstrates the considerable potential of silicon structures for displacing commercial graphite, and might open up new opportunities to rationally design various nanostructured materials for lithium ion batteries.

  20. Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages

    PubMed Central

    Raggi, Chiara; Correnti, Margherita; Sica, Antonio; Andersen, Jesper B.; Cardinale, Vincenzo; Alvaro, Domenico; Chiorino, Giovanna; Forti, Elisa; Glaser, Shannon; Alpini, Gianfranco; Destro, Annarita; Sozio, Francesca; Di Tommaso, Luca; Roncalli, Massimo; Banales, Jesus M.; Coulouarn, Cédric; Bujanda, Luis; Torzilli, Guido; Invernizzi, Pietro

    2017-01-01

    Background & Aims A therapeutically challenging subset of cells, termed cancer stem cells (CSCs) are responsible for cholangiocarcinoma (CCA) clinical severity. Presence of tumor-associated macrophages (TAMs) has prognostic significance in CCA and other malignancies. Thus, we hypothesized that CSCs may actively shape their tumor-supportive immune niche. Methods CCA cells were cultured in 3D conditions to generate spheres. CCA sphere analysis of in vivo tumorigenic-engraftment in immune-deficient mice and molecular characterization was performed. The in vitro and in vivo effect of CCA spheres on macrophage precursors was tested after culturing healthy donor cluster of differentiation (CD)14+ with CCA-sphere conditioned medium. Results CCA spheres engrafted in 100% of transplanted mice and revealed a significant 20.3-fold increase in tumor-initiating fraction (p = 0.0011) and a sustained tumorigenic potential through diverse xenograft-generations. Moreover, CCA spheres were highly enriched for CSC, liver cancer and embryonic stem cell markers both at gene and protein levels. Next, fluorescence-activated cell sorting analysis showed that in the presence of CCA sphere conditioned medium, CD14+ macrophages expressed key markers (CD68, CD115, human leukocyte antigen-D related, CD206) indicating that CCA sphere conditioned medium was a strong macrophage-activator. Gene expression profile of CCA sphere activated macrophages revealed unique molecular TAM-like features confirmed by high invasion capacity. Also, freshly isolated macrophages from CCA resections recapitulated a similar molecular phenotype of in vitro-educated macrophages. Consistent with invasive features, the largest CD163+ set was found in the tumor front of human CCA specimens (n = 23) and correlated with a high level of serum cancer antigen 19.9 (n = 17). Among mediators released by CCA spheres, only interleukin (IL)13, IL34 and osteoactivin were detected and further confirmed in CCA patient sera (n = 12). Surprisingly, a significant association of IL13, IL34 and osteoactivin with sphere stem-like genes was provided by a CCA database (n = 104). In vitro combination of IL13, IL34, osteoactivin was responsible for macrophage-differentiation and invasion, as well as for in vivo tumor-promoting effect. Conclusion CCA-CSCs molded a specific subset of stem-like associated macrophages thus providing a rationale for a synergistic therapeutic strategy for CCA-disease. Lay summary Immune plasticity represents an important hallmark of tumor outcome. Since cancer stem cells are able to manipulate stromal cells to their needs, a better definition of the key dysregulated immune subtypes responsible for cooperating in supporting tumor initiation may facilitate the development of new therapeutic approaches. Considering that human cholangiocarcinoma represents a clinical emergency, it is essential to move to predictive models in order to understand the adaptive process of macrophage component (imprinting, polarization and maintenance) engaged by tumor stem-like compartment. PMID:27593106

  1. Multiple conformational states of the hammerhead ribozyme, broad time range of relaxation and topology of dynamics

    PubMed Central

    Menger, Marcus; Eckstein, Fritz; Porschke, Dietmar

    2000-01-01

    The dynamics of a hammerhead ribozyme was analyzed by measurements of fluorescence-detected temperature jump relaxation. The ribozyme was substituted at different positions by 2-aminopurine (2-AP) as fluorescence indicator; these substitutions do not inhibit catalysis. The general shape of relaxation curves reported from different positions of the ribozyme is very similar: a fast decrease of fluorescence, mainly due to physical quenching, is followed by a slower increase of fluorescence due to conformational relaxation. In most cases at least three relaxation time constants in the time range from a few microseconds to ~200 ms are required for fitting. Although the relaxation at different positions of the ribozyme is similar in general, suggesting a global type of ribozyme dynamics, a close examination reveals differences, indicating an individual local response. For example, 2-AP in a tetraloop reports mainly the local loop dynamics known from isolated loops, whereas 2-AP located at the core, e.g. at the cleavage site or its vicinity, also reports relatively large amplitudes of slower components of the ribozyme dynamics. A variant with an A→G substitution in domain II, resulting in an inactive form, leads to the appearance of a particularly slow relaxation process (τ ≈200 ms). Addition of Mg2+ ions induces a reduction of amplitudes and in most cases a general increase of time constants. Differences between the hammerhead variants are clearly demonstrated by subtraction of relaxation curves recorded under corresponding conditions. The changes induced in the relaxation response by Mg2+ are very similar to those induced by Ca2+. The relaxation data do not provide any evidence for formation of Mg2+-inner sphere complexes in hammerhead ribozymes, because a Mg2+-specific relaxation effect was not visible. However, a Mg2+-specific effect was found for a dodeca-riboadenylate substituted with 2-AP, showing that the fluorescence of 2-AP is able to indicate inner sphere complexation. Amplitudes and time constants show that the equilibrium constant of inner sphere complexation is 1.2, corresponding to 55% inner sphere state of the Mg2+ complexes; the rate constant 6.6 × 103 s–1 for inner sphere complexation is relatively low and shows the existence of some barrier(s) on the way to inner sphere complexes. PMID:11071929

  2. Can we use the equivalent sphere model to approximate organ doses in space radiation environments?

    NASA Astrophysics Data System (ADS)

    Lin, Zi-Wei

    For space radiation protection one often calculates the dose or dose equivalent in blood forming organs (BFO). It has been customary to use a 5cm equivalent sphere to approximate the BFO dose. However, previous studies have concluded that a 5cm sphere gives a very different dose from the exact BFO dose. One study concludes that a 9cm sphere is a reasonable approximation for the BFO dose in solar particle event (SPE) environments. In this study we investigate the reason behind these observations and extend earlier studies by studying whether BFO, eyes or the skin can be approximated by the equivalent sphere model in different space radiation environments such as solar particle events and galactic cosmic ray (GCR) environments. We take the thickness distribution functions of the organs from the CAM (Computerized Anatomical Man) model, then use a deterministic radiation transport to calculate organ doses in different space radiation environments. The organ doses have been evaluated with a water or aluminum shielding from 0 to 20 g/cm2. We then compare these exact doses with results from the equivalent sphere model and determine in which cases and at what radius parameters the equivalent sphere model is a reasonable approximation. Furthermore, we propose to use a modified equivalent sphere model with two radius parameters to represent the skin or eyes. For solar particle events, we find that the radius parameters for the organ dose equivalent increase significantly with the shielding thickness, and the model works marginally for BFO but is unacceptable for eyes or the skin. For galactic cosmic rays environments, the equivalent sphere model with one organ-specific radius parameter works well for the BFO dose equivalent, marginally well for the BFO dose and the dose equivalent of eyes or the skin, but is unacceptable for the dose of eyes or the skin. The BFO radius parameters are found to be significantly larger than 5 cm in all cases, consistent with the conclusion of an earlier study. The radius parameters for the dose equivalent in GCR environments are approximately between 10 and 11 cm for the BFO, 3.7 to 4.8 cm for eyes, and 3.5 to 5.6 cm for the skin; while the radius parameters are between 10 and 13 cm for the BFO dose. In the proposed modified equivalent sphere model, the range of each of the two radius parameters for the skin (or eyes) is much tighter than that in the equivalent sphere model with one radius parameter. Our results thus show that the equivalent sphere model works better in galactic cosmic rays environments than in solar particle events. The model works well or marginally well for BFO but usually does not work for eyes or the skin. A modified model with two radius parameters works much better in approximating the dose and dose equivalent in eyes or the skin.

  3. Self-template synthesis of yolk-shelled NiCo2O4 spheres for enhanced hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Jiao, Xinyan; Liu, Peng; Ouyang, Yu; Xia, Xifeng; Lei, Wu; Hao, Qingli

    2018-01-01

    A self-template method is developed for hierarchically yolk-shelled NiCo2O4 spheres (YS-NiCo2O4) through a controlled hydrolysis process and followed by a thermal annealing treatment. The yolk-shelled NiCo2O4 spheres possess out-shell consisting of hundreds of ultrathin sheets with 3-5 nm in thickness and solid yolk composing of a large number of nanoparticles. The YS-NiCo2O4 generates a large specific surface area of 169.6 m2 g-1. Benefit from the large specific surface area and rich oxygen vacancy, the as-fabricated YS-NiCo2O4 as electrode materials for supercapacitor exhibits high specific capacitance of 835.7 F g-1 at 0.5 A g-1, an enhanced rate capability and excellent electrochemical stability with 93% retention after 10,000 cycles even at 10 A g-1. Moreover, a hybrid supercapacitor combined with YS-NiCo2O4 and graphene shows a high energy density of 34.7 Wh kg-1 at the power density of 395.0 W kg-1 at 0.5 A g-1, even at 20 A g-1, the hybrid supercapacitor still delivers the energy density of about 12.1 Wh kg-1 and the power density of 11697 W kg-1. The desirable performance of yolk-shelled NiCo2O4 suggests it to be a promising material as supercapacitor electrodes.

  4. The role of the Biological Weapons Convention in disease surveillance and response.

    PubMed

    Enemark, Christian

    2010-11-01

    This article assesses the role and significance of the Biological Weapons Convention (BWC) with respect to infectious disease surveillance and response to outbreaks. Increasingly, the BWC is being used as a platform for addressing infectious disease threats arising naturally as well as traditional concerns about malicious dissemination of pathogenic microorganisms. The latter have long had a place on the security agenda, but natural disease outbreaks too are now being partially 'securitized' through the use of the BWC as a forum for exchanging information and ideas on disease surveillance and response. The article focuses on two prominent issues discussed at recent meetings of BWC member states: enhancing capacity for disease surveillance and response; and responding to allegations of biological weapons use and investigating outbreaks deemed suspicious. It concludes, firstly, that the BWC supports the efforts of international health organizations to enhance disease surveillance and response capacity worldwide. And secondly, that the BWC, rather than the World Health Organization (WHO), is the appropriate institution to deal with biological weapons allegations and investigations of suspicious outbreaks. The overall message is that securitization in the health sphere cuts both ways. Adding a security dimension (BW) alongside the task of detecting and responding to naturally occurring disease outbreaks is beneficial, but requiring a non-security organization (the WHO) to assume a security role would be counterproductive.

  5. Wet-Spun Superelastic Graphene Aerogel Millispheres with Group Effect.

    PubMed

    Zhao, Xiaoli; Yao, Weiquan; Gao, Weiwei; Chen, Hao; Gao, Chao

    2017-09-01

    Graphene aerogel has attracted great attention due to its unique properties, such as ultralow density, superelasticity, and high specific surface area. It shows huge potential in energy devices, high-performance pressure sensors, contaminates adsorbents, and electromagnetic wave absorbing materials. However, there still remain some challenges to further promote the development and real application of graphene aerogel including cost-effective scalable fabrication and miniaturization with group effect. This study shows millimeter-scale superelastic graphene aerogel spheres (GSs) with group effect and multifunctionality. The GSs are continuously fabricated on a large scale by wet spinning of graphene oxide liquid crystals followed by facile drying and thermal annealing. Such GS has an unusual core-shell structure with excellent elasticity and specific strength. Significantly, both horizontally and vertically grouped spheres exhibit superelasticity comparable to individual spheres, enabling it to fully recover at 95% strain, and even after 1000 compressive cycles at 70% strain, paving the way to wide applications such as pressure-elastic and adsorbing materials. The GS shows a press-fly behavior with an extremely high jump velocity up to 1.2 m s -1 . For the first time, both free and oil-adsorbed GSs are remotely manipulated on water by electrostatic charge due to their ultralow density and hydrophobic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development of a Course on Complex Humanitarian Emergencies: Preparation for the Impact of Climate Change.

    PubMed

    Williams, Holly; Downes, Elizabeth

    2017-11-01

    The effects of climate change are far-reaching and multifactorial, with potential impacts on food security and conflict. Large population movements, whether from the aftermath of natural disasters or resulting from conflict, can precipitate the need for humanitarian response in what can become complex humanitarian emergencies (CHEs). Nurses need to be prepared to respond to affected communities in need, whether the emergency is domestic or global. The purpose of the article is to describe a novel course for nursing students interested in practice within the confines of CHEs and natural disasters. The authors used the Sphere Humanitarian Charter and Minimum Standards as a practical framework to inform the course development. They completed a review of the literature on the interaction on climate change, conflict and health, and competencies related to working CHEs. Resettled refugees, as well as experts in the area of humanitarian response, recovery, and mitigation from the Centers for Disease Control and Prevention and nongovernmental organizations further informed the development of the course. This course prepares the nursing workforce to respond appropriately to large population movements that may arise from the aftermath of natural disasters or conflict, both of which can comprise a complex humanitarian disaster. Using The Sphere Project e-learning course, students learn about the Sphere Project, which works to ensure accountability and quality in humanitarian response and offers core minimal standards for technical assistance. These guidelines are seen globally as the gold standard for humanitarian response and address many of the competencies for disaster nursing (http://www.sphereproject.org/learning/e-learning-course/). © 2017 Sigma Theta Tau International.

  7. Directionally Interacting Spheres and Rods Form Ordered Phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyan; Mahynski, Nathan A.; Gang, Oleg

    The structures formed by mixtures of dissimilarly shaped nanoscale objects can significantly enhance our ability to produce nanoscale architectures. However, understanding their formation is a complex problem due to the interplay of geometric effects (entropy) and energetic interactions at the nanoscale. Spheres and rods are perhaps the most basic geometrical shapes and serve as convenient models of such dissimilar objects. The ordered phases formed by each of these individual shapes have already been explored, but, when mixed, spheres and rods have demonstrated only limited structural organization to date. We show using experiments and theory that the introduction of directional attractionsmore » between rod ends and isotropically interacting spherical nanoparticles (NPs) through DNA base pairing leads to the formation of ordered three-dimensional lattices. The spheres and rods arrange themselves in a complex alternating manner, where the spheres can form either a face-centered cubic (FCC) or hexagonal close-packed (HCP) lattice, or a disordered phase, as observed by in situ X-ray scattering. Increasing NP diameter at fixed rod length yields an initial transition from a disordered phase to the HCP crystal, energetically stabilized by rod-rod attraction across alternating crystal layers, as revealed by theory. In the limit of large NPs, the FCC structure is instead stabilized over the HCP by rod entropy. Thus, we propose that directionally specific attractions in mixtures of anisotropic and isotropic objects offer insight into unexplored self-assembly behavior of noncomplementary shaped particles.« less

  8. Directionally Interacting Spheres and Rods Form Ordered Phases

    DOE PAGES

    Liu, Wenyan; Mahynski, Nathan A.; Gang, Oleg; ...

    2017-05-10

    The structures formed by mixtures of dissimilarly shaped nanoscale objects can significantly enhance our ability to produce nanoscale architectures. However, understanding their formation is a complex problem due to the interplay of geometric effects (entropy) and energetic interactions at the nanoscale. Spheres and rods are perhaps the most basic geometrical shapes and serve as convenient models of such dissimilar objects. The ordered phases formed by each of these individual shapes have already been explored, but, when mixed, spheres and rods have demonstrated only limited structural organization to date. We show using experiments and theory that the introduction of directional attractionsmore » between rod ends and isotropically interacting spherical nanoparticles (NPs) through DNA base pairing leads to the formation of ordered three-dimensional lattices. The spheres and rods arrange themselves in a complex alternating manner, where the spheres can form either a face-centered cubic (FCC) or hexagonal close-packed (HCP) lattice, or a disordered phase, as observed by in situ X-ray scattering. Increasing NP diameter at fixed rod length yields an initial transition from a disordered phase to the HCP crystal, energetically stabilized by rod-rod attraction across alternating crystal layers, as revealed by theory. In the limit of large NPs, the FCC structure is instead stabilized over the HCP by rod entropy. Thus, we propose that directionally specific attractions in mixtures of anisotropic and isotropic objects offer insight into unexplored self-assembly behavior of noncomplementary shaped particles.« less

  9. A family of solutions to the Einstein-Maxwell system of equations describing relativistic charged fluid spheres

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Sharma, Ranjan

    2018-05-01

    In this paper, we present a formalism to generate a family of interior solutions to the Einstein-Maxwell system of equations for a spherically symmetric relativistic charged fluid sphere matched to the exterior Reissner-Nordström space-time. By reducing the Einstein-Maxwell system to a recurrence relation with variable rational coefficients, we show that it is possible to obtain closed-form solutions for a specific range of model parameters. A large class of solutions obtained previously are shown to be contained in our general class of solutions. We also analyse the physical viability of our new class of solutions.

  10. Estimated critical conditions for UO[sub 2]F[sub 2]--H[sub 2]O systems in fully water-reflected spherical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, W.C.; Turner, J.C.

    1992-12-01

    The purpose of this report is to document reference calculations performed using the SCALE-4.0 code system to determine the critical parameters of UO[sub 2]F[sub 2]-H[sub 2]O spheres. The calculations are an extension of those documented in ORNL/CSD/TM-284. Specifically, the data for low-enriched UO[sub 2]F[sub 2]-H[sub 2]O spheres have been extended to highly enriched uranium. These calculations, together with those reported in ORNL/CSD/TM-284, provide a consistent set of critical parameters (k[sub [infinity

  11. Designing an extended energy range single-sphere multi-detector neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Gómez-Ros, J. M.; Bedogni, R.; Moraleda, M.; Esposito, A.; Pola, A.; Introini, M. V.; Mazzitelli, G.; Quintieri, L.; Buonomo, B.

    2012-06-01

    This communication describes the design specifications for a neutron spectrometer consisting of 31 thermal neutron detectors, namely Dysprosium activation foils, embedded in a 25 cm diameter polyethylene sphere which includes a 1 cm thick lead shell insert that degrades the energy of neutrons through (n,xn) reactions, thus allowing to extension of the energy range of the response up to hundreds of MeV neutrons. The new spectrometer, called SP2 (SPherical SPectrometer), relies on the same detection mechanism as that of the Bonner Sphere Spectrometer, but with the advantage of determining the whole neutron spectrum in a single exposure. The Monte Carlo transport code MCNPX was used to design the spectrometer in terms of sphere diameter, number and position of the detectors, position and thickness of the lead shell, as well as to obtain the response matrix for the final configuration. This work focuses on evaluating the spectrometric capabilities of the SP2 design by simulating the exposure of SP2 in neutron fields representing different irradiation conditions (test spectra). The simulated SP2 readings were then unfolded with the FRUIT unfolding code, in the absence of detailed pre-information, and the unfolded spectra were compared with the known test spectra. The results are satisfactory and allowed approving the production of a prototypal spectrometer.

  12. The person's conception of the structures of developing intellect: early adolescence to middle age.

    PubMed

    Demetriou, A; Efklides, A

    1989-08-01

    According to experiential structuralism, thought abilities have six capacity spheres: experimental, propositional, quantitative, imaginal, qualitative, and metacognitive. The first five are applied to the environment. The metacognitive capacity is applied to the others, serving as the interface between reality and the cognitive system or between any of the other capacities. To test this postulate, 648 subjects aged 12 to 40 years, solved eight tasks that were addressed, in pairs, to the first four capacity spheres. One of the tasks in each pair tapped the first and the other the third formal level of the sphere. Having solved the tasks, the subjects were required to rate each pair of tasks in terms of similarity of operations, difficulty, and success of solution. Factor analysis of difficulty and success evaluation scores revealed the same capacity-specific factors as the analysis of performance scores. Factor analysis of similarity scores differentiated between same- and different-sphere pairs. Analysis of variance showed that difficulty and success evaluation scores preserved performance differences between the first and the third formal tasks. Cognitive level, age, socioeconomic status, and sex were related to the metacognitive measures in ways similar to their relations to performance measures. These findings were integrated into a model aimed at capturing real-time metacognitive functioning.

  13. Facile fabrication of MnO x and N co-doped hierarchically porous carbon microspheres for high-performance supercapacitors

    DOE PAGES

    Yang, Ying; Yang, Feng; Lee, Sungsik; ...

    2016-01-16

    Facile fabrication of manganese oxide (MnO x, 0 < x < 2) and nitrogen (N) co-doped carbon microspheres (MnO x-N-CS) has been firstly developed by one-pot construction of Mn-functionalized melamine-formaldehyde (Mn-MF) resin spheres before pyrolysis. The resulting hybrids bear evenly dispersed MnO x and N moieties in situ anchored on hierarchically porous carbon microspheres formed simultaneously. The capacitive performance is greatly tailored by varying the Mn/melamine molar ratio in the synthetic mixture and pyrolysis temperature. It is found that the MnO x-N-CS hybrid (0.008 wt% Mn, pyrolyzed at 800 °C) exhibits the highest specific capacitance up to 258 F gmore » –1 at a scan rate of 1 mV s –1 (in 6 M KOH), and keeps a high capacitance retention ratio of 98% after 5000 cycles. The synergism between MnO x, N moieties and carbon spheres proves to be responsible for the remarkably improved performance, as compared to the pure carbon sphere and MnO x (N)-doped carbon sphere. Lastly, the well-developed MnO x-N-CS hybrids highlight the great potentials for widespread supercapacitor applications.« less

  14. Numerical Solution of Light Scattered from and Transmitted through a Rough Dielectric Surface with Applications to Periodic Roughness and Isolated Structures

    NASA Technical Reports Server (NTRS)

    Sun, Wenbo; Videnn, Gorden; Lin, Bing; Hu, Yongxiang

    2007-01-01

    Light scattering and transmission by rough surfaces are of considerable interest in a variety of applications including remote sensing and characterization of surfaces. In this work, the finite-difference time domain technique is applied to calculate the scattered and transmitted electromagnetic fields of an infinite periodic rough surface. The elements of Mueller matrix for scattered light are calculated by an integral of the near fields over a significant number of periods of the surface. The normalized Mueller matrix elements of the scattered light and the spatial distribution of the transmitted flux for a monolayer of micron-sized dielectric spheres on a silicon substrate are presented. The numerical results show that the nonzero Mueller matrix elements of the system of the monolayer of dielectric spheres on a silicon substrate have specific maxima at some scattering angles. These maxima may be used in characterization of the feature of the system. For light transmitted through the monolayer of spheres, our results show that the transmitted energy focuses around the ray passing through centers of the spheres. At other locations, the transmitted flux is very small. The technique also may be used to calculate the perturbance of the electromagnetic field due to the presence of an isolated structure on the substrate.

  15. Synthesis of hierarchical mesoporous lithium nickel cobalt manganese oxide spheres with high rate capability for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tong, Wei; Huang, Yudai; Cai, Yanjun; Guo, Yong; Wang, Xingchao; Jia, Dianzeng; Sun, Zhipeng; Pang, Weikong; Guo, Zaiping; Zong, Jun

    2018-01-01

    Hierarchical mesoporous LiNi1/3Co1/3Mn1/3O2 spheres have been synthesized by urea-assisted solvothermal method with adding Triton X-100. The structure and morphology of the as-prepared materials were analyzed by X-ray diffraction and electron microscope. The results show that the as-prepared samples can be indexed as hexagonal layered structure with hierarchical architecture, and the possible formation mechanism is speculated. When evaluated as cathode material, the hierarchical mesoporous LiNi1/3Co1/3Mn1/3O2 spheres show good electrochemical properties with high initial discharge capacity of 129.9 mAh g-1, and remain the discharge capacity of 95.5 mAh g-1 after 160 cycles at 10C. The excellent electrochemical performance of the as-prepared sample can be attributed to its stable hierarchical mesoporous framework in conjunction with large specific surface, low cation mixing and small particle size. They not only provide a large number of reaction sites for surface or interface reaction, but also shorten the diffusion length of Li+ ions. Meanwhile, the mesoporous spheres composed of nanoparticles can contribute to high rate ability and buffer volume changes during charge/discharge process.

  16. Can the Equivalent Sphere Model Approximate Organ Doses in Space?

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2007-01-01

    For space radiation protection it is often useful to calculate dose or dose,equivalent in blood forming organs (BFO). It has been customary to use a 5cm equivalent sphere to. simulate the BFO dose. However, many previous studies have concluded that a 5cm sphere gives very different dose values from the exact BFO values. One study [1] . concludes that a 9 cm sphere is a reasonable approximation for BFO'doses in solar particle event environments. In this study we use a deterministic radiation transport [2] to investigate the reason behind these observations and to extend earlier studies. We take different space radiation environments, including seven galactic cosmic ray environments and six large solar particle events, and calculate the dose and dose equivalent in the skin, eyes and BFO using their thickness distribution functions from the CAM (Computerized Anatomical Man) model [3] The organ doses have been evaluated with a water or aluminum shielding of an areal density from 0 to 20 g/sq cm. We then compare with results from the equivalent sphere model and determine in which cases and at what radius parameters the equivalent sphere model is a reasonable approximation. Furthermore, we address why the equivalent sphere model is not a good approximation in some cases. For solar particle events, we find that the radius parameters for the organ dose equivalent increase significantly with the shielding thickness, and the model works marginally for BFO but is unacceptable for the eye or the skin. For galactic cosmic rays environments, the equivalent sphere model with an organ-specific constant radius parameter works well for the BFO dose equivalent, marginally well for the BFO dose and the dose equivalent of the eye or the skin, but is unacceptable for the dose of the eye or the skin. The ranges of the radius parameters are also being investigated, and the BFO radius parameters are found to be significantly, larger than 5 cm in all cases, consistent with the conclusion of an earlier study [I]. The radius parameters for the dose equivalent in GCR environments are approximately between 10 and I I cm for the BFO, 3.7 to 4.8 cm for the eye, and 3.5 to 5.6 cm for the skin; while the radius parameters are between 10 and 13 cm for the BFO dose.

  17. Direct Numerical Simulation of Fluid Flow and Mass Transfer in Particle Clusters

    PubMed Central

    2018-01-01

    In this paper, an efficient ghost-cell based immersed boundary method is applied to perform direct numerical simulation (DNS) of mass transfer problems in particle clusters. To be specific, a nine-sphere cuboid cluster and a random-generated spherical cluster consisting of 100 spheres are studied. In both cases, the cluster is composed of active catalysts and inert particles, and the mutual influence of particles on their mass transfer performance is studied. To simulate active catalysts the Dirichlet boundary condition is imposed at the external surface of spheres, while the zero-flux Neumann boundary condition is applied for inert particles. Through our studies, clustering is found to have negative influence on the mass transfer performance, which can be then improved by dilution with inert particles and higher Reynolds numbers. The distribution of active/inert particles may lead to large variations of the cluster mass transfer performance, and individual particle deep inside the cluster may possess a high Sherwood number. PMID:29657359

  18. Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

    PubMed Central

    Juhl, Anika C; Schneider, Artur; Ufer, Boris; Brezesinski, Torsten

    2016-01-01

    Summary Hollow carbon spheres (HCS) with a nanoporous shell are promising for the use in lithium–sulfur batteries because of the large internal void offering space for sulfur and polysulfide storage and confinement. However, there is an ongoing discussion whether the cavity is accessible for sulfur. Yet no valid proof of cavity filling has been presented, mostly due to application of unsuitable high-vacuum methods for the analysis of sulfur distribution. Here we describe the distribution of sulfur in hollow carbon spheres by powder X-ray diffraction and Raman spectroscopy along with results from scanning electron microscopy and nitrogen physisorption. The results of these methods lead to the conclusion that the cavity is not accessible for sulfur infiltration. Nevertheless, HCS/sulfur composite cathodes with areal sulfur loadings of 2.0 mg·cm−2 were investigated electrochemically, showing stable cycling performance with specific capacities of about 500 mAh·g−1 based on the mass of sulfur over 500 cycles. PMID:27826497

  19. The effects of Constitutional Amendment 29 on the regional allocation of public funds for the National Health Service in Brazil.

    PubMed

    Piola, Sérgio Francisco; de França, José Rivaldo Mello; Nunes, André

    2016-02-01

    This article analyzes the effects of Constitutional Amendment 29 in financing the Brazilian National Health Service, SUS, between 2000 and 2010. The aim was to analyze how the resources that were allocated by the three spheres of government were used on a general basis and in specific regions. Analysis was also conducted on the possible repercussions of the Amendment in the allocation of finances for SUS. The results showed: an important increase in the designated resources that were used by the three spheres of government during the aforementioned period. There was an increase in real terms of 112% in consolidated spending and an 89% increase in spending per capita by the three spheres. There was also more participation from the States, the Federal District and the Municipalities in financing the system. However, in spite of the increase in the use of financial resources, regional inequalities, in relation to spending per capita, remained practically unchanged.

  20. Beta Atomic Contacts: Identifying Critical Specific Contacts in Protein Binding Interfaces

    PubMed Central

    Liu, Qian; Kwoh, Chee Keong; Hoi, Steven C. H.

    2013-01-01

    Specific binding between proteins plays a crucial role in molecular functions and biological processes. Protein binding interfaces and their atomic contacts are typically defined by simple criteria, such as distance-based definitions that only use some threshold of spatial distance in previous studies. These definitions neglect the nearby atomic organization of contact atoms, and thus detect predominant contacts which are interrupted by other atoms. It is questionable whether such kinds of interrupted contacts are as important as other contacts in protein binding. To tackle this challenge, we propose a new definition called beta (β) atomic contacts. Our definition, founded on the β-skeletons in computational geometry, requires that there is no other atom in the contact spheres defined by two contact atoms; this sphere is similar to the van der Waals spheres of atoms. The statistical analysis on a large dataset shows that β contacts are only a small fraction of conventional distance-based contacts. To empirically quantify the importance of β contacts, we design βACV, an SVM classifier with β contacts as input, to classify homodimers from crystal packing. We found that our βACV is able to achieve the state-of-the-art classification performance superior to SVM classifiers with distance-based contacts as input. Our βACV also outperforms several existing methods when being evaluated on several datasets in previous works. The promising empirical performance suggests that β contacts can truly identify critical specific contacts in protein binding interfaces. β contacts thus provide a new model for more precise description of atomic organization in protein quaternary structures than distance-based contacts. PMID:23630569

  1. SU-E-T-510: Calculation of High Resolution and Material-Specific Photon Energy Deposition Kernels.

    PubMed

    Huang, J; Childress, N; Kry, S

    2012-06-01

    To calculate photon energy deposition kernels (EDKs) used for convolution/superposition dose calculation at a higher resolution than the original Mackie et al. 1988 kernels and to calculate material-specific kernels that describe how energy is transported and deposited by secondary particles when the incident photon interacts in a material other than water. The high resolution EDKs for various incident photon energies were generated using the EGSnrc user-code EDKnrc, which forces incident photons to interact at the center of a 60 cm radius sphere of water. The simulation geometry is essentially the same as the original Mackie calculation but with a greater number of scoring voxels (48 radial, 144 angular bins). For the material-specific EDKs, incident photons were forced to interact at the center of a 1 mm radius sphere of material (lung, cortical bone, silver, or titanium) surrounded by a 60 cm radius water sphere, using the original scoring voxel geometry implemented by Mackie et al. 1988 (24 radial, 48 angular bins). Our Monte Carlo-calculated high resolution EDKs showed excellent agreement with the Mackie kernels, with our kernels providing more information about energy deposition close to the interaction site. Furthermore, our EDKs resulted in smoother dose deposition functions due to the finer resolution and greater number of simulation histories. The material-specific EDK results show that the angular distribution of energy deposition is different for incident photons interacting in different materials. Calculated from the angular dose distribution for 300 keV incident photons, the expected polar angle for dose deposition () is 28.6° for water, 33.3° for lung, 36.0° for cortical bone, 44.6° for titanium, and 58.1° for silver, showing a dependence on the material in which the primary photon interacts. These high resolution and material-specific EDKs have implications for convolution/superposition dose calculations in heterogeneous patient geometries, especially at material interfaces. © 2012 American Association of Physicists in Medicine.

  2. 49 CFR 172.704 - Training requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROVISIONS, HAZARDOUS MATERIALS COMMUNICATIONS, EMERGENCY RESPONSE INFORMATION, TRAINING REQUIREMENTS, AND... communication standards of this subchapter. (2) Function-specific training. (i) Each hazmat employee must be... must include company security objectives, organizational security structure, specific security...

  3. Numerical simulation of a sphere moving down an incline with identical spheres placed equally apart

    USGS Publications Warehouse

    Ling, Chi-Hai; Jan, Chyan-Deng; Chen, Cheng-lung; Shen, Hsieh Wen

    1992-01-01

    This paper describes a numerical study of an elastic sphere moving down an incline with a string of identical spheres placed equally apart. Two momentum equations and a moment equation formulated for the moving sphere are solved numerically for the instantaneous velocity of the moving sphere on an incline with different angles of inclination. Input parameters for numerical simulation include the properties of the sphere (the radius, density, Poison's ratio, and Young's Modulus of elasticity), the coefficient of friction between the spheres, and a damping coefficient of the spheres during collision.

  4. [Self-esteem level and correlation to risk behaviour of students at the University of Almería (Spain)].

    PubMed

    Muñoz-París, M José; Ruiz-Muñoz, Ana del Mar

    2008-01-01

    To evaluate self-esteem levels in college students at the University of Almería (Spain) and their possible correlation with risk behaviors, specifically, drug use and sexual behavior. We performed an observational, descriptive, cross-sectional, prolective study. A self-completed questionnaire was used to gather data. Students attending specific university services of the University of Almería were selected by non-probabilistic sampling. Self-esteem was measured using Cooersmith's scale. In the 123 students studied, self-esteem was very low in 7.9%, medium-low in 29.3%, medium in 12.2 %, medium-high in 46.3% and very high in 4.9 %. No significant differences were found between the sexes. No significant correlation was found between sexual behavior and level of self-esteem. Consumption of alcohol, cannabis, cocaine, designer drugs, and amphetamines was higher in groups with higher self-esteem. Self-esteem is important in every sphere of life and can be considered a basic human need. Self-esteem increases the level of personal security and has been described as a protective factor against risk behaviors. However, our data indicate increased drug consumption among young people with higher self-esteem. Given the importance of the topic and the novelty of our results, in future studies we intend to broaden the sample and perform probabilistic stratified sampling in order to extrapolate the results to the entire population of the University of Almería.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tingting; Northeast Petroleum University at Qinhuangdao, Qinhuangdao 066004; Shao, Guangjie, E-mail: shaoguangjie@ysu.edu.cn

    A method of pulse electrodeposition under supergravity field was proposed to synthesize MnO{sub 2}-graphene composites. Supergravity is very efficient for promoting mass transfer and decreasing concentration polarization during the electrodeposition process. The synthesis was conducted on our homemade supergravity equipment. The strength of supergravity field depended on the rotating speed of the ring electrode. 3D flower like MnO{sub 2} spheres composed of nanoflakes were acquired when the rotating speed was 3000 rpm. Graphene nanosheets play as a role of conductive substrates for MnO{sub 2} growing. The composites are evaluated as electrode materials for supercapacitors. Electrochemical results show that the maximummore » specific capacitance of the MnO{sub 2}-graphene composite is 595.7 F g{sup −1} at a current density of 0.5 A g{sup −1}. In addition, the composite exhibits excellent cycle stability with no capacitance attenuation after 1000 cycles. The approach provides new ideas for developing supercapacitor electrode materials with high performance. - Graphical abstract: 3D flower like MnO{sub 2} spheres composed of nanoflakes were acquired at 3000 rpm. - Highlights: • MnO{sub 2}-graphene composites were prepared by pulse electrodeposition under supergravity. • 3D flower like MnO{sub 2} spheres are anchored on the graphene nanosheets. • The MnO{sub 2}-graphene electrode exhibits a specific capacitance of 595.7 F g{sup −1}.« less

  6. The Chain-Link Fence Model: A Framework for Creating Security Procedures

    ERIC Educational Resources Information Center

    Houghton, Robert F.

    2013-01-01

    A long standing problem in information technology security is how to help reduce the security footprint. Many specific proposals exist to address specific problems in information technology security. Most information technology solutions need to be repeatable throughout the course of an information systems lifecycle. The Chain-Link Fence Model is…

  7. Water Surface Impact and Ricochet of Deformable Elastomeric Spheres

    NASA Astrophysics Data System (ADS)

    Hurd, Randy C.

    Soft and deformable silicone rubber spheres ricochet from a water surface when rigid spheres and disks (or skipping stones) cannot. This dissertation investigates why these objects are able to skip so successfully. High speed cameras allow us to see that these unique spheres deform significantly as they impact the water surface, flattening into pancake-like shapes with greater area. Though the water entry behavior of deformable spheres deviates from that of rigid spheres, our research shows that if this deformation is accounted for, their behavior can be predicted from previously established methods. Soft spheres skip more easily because they deform significantly when impacting the water surface. We present a diagram which enables the prediction of a ricochet from sphere impact conditions such as speed and angle. Experiments and mathematical representations of the sphere skipping both show that these deformable spheres skip more readily because deformation momentarily increases sphere area and produces an attack angle with the water which is favorable to skipping. Predictions from our mathematical representation of sphere skipping agree strongly with observations from experiments. Even when a sphere was allowed to skip multiple times in the laboratory, the mathematical predictions show good agreement with measured impact conditions through subsequent skipping events. While studying multiple impact events in an outdoor setting, we discovered a previously unidentified means of skipping, which is unique to deformable spheres. This new skipping occurs when a relatively soft sphere first hits the water at a high speed and low impact angle and the sphere begins to rotate very quickly. This quick rotation causes the sphere to stretch into a shape similar to an American football and maintain this shape while it spins. The sphere is observed to move nearly parallel with the water surface with the tips of this "football" dipping into the water as it rotates and the sides passing just over the surface. This sequence of rapid impact events give the impression that the sphere is walking across the water surface.

  8. Collinear swimmer propelling a cargo sphere at low Reynolds number.

    PubMed

    Felderhof, B U

    2014-11-01

    The swimming velocity and rate of dissipation of a linear chain consisting of two or three little spheres and a big sphere is studied on the basis of low Reynolds number hydrodynamics. The big sphere is treated as a passive cargo, driven by the tail of little spheres via hydrodynamic and direct elastic interaction. The fundamental solution of Stokes equations in the presence of a sphere with a no-slip boundary condition, as derived by Oseen, is used to model the hydrodynamic interactions between the big sphere and the little spheres.

  9. Approximate analysis of the formation of a buoyant solid sphere in a supercooled melt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, A.D.; Wilson, D.G.; Alexiades, V.

    1986-03-01

    A mathematical model is presented for the idealized formation and development of a buoyant sphere solidifying in an infinite pool of supercooled liquid. The solid and liquid are of the same pure material and the solid is less dense than the liquid. Initially the liquid is at a uniform temperature that is below its equilibrium freezing temperature, T/sub cr/, but above the so called hypercooled temperature, T/sub cr/ - H/c/sub L/. Here H and c/sub L/ are the latent heat of solidification and the specific heat of the liquid, respectively. An approximate solution is derived based on the Megerlin approximationmore » method. 11 refs.« less

  10. The adsorption of rare earth ions using carbonized polydopamine nano shells

    DOE PAGES

    Sun, Xiaoqi; Luo, Huimin; Mahurin, Shannon Mark; ...

    2016-01-07

    Herein we report the structure effects of nano carbon shells prepared by carbonized polydopamine for rare earth elements (REEs) adsorption for the first time. The solid carbon sphere, 60 nm carbon shell and 500 nm carbon shell were prepared and investigated for adsorption and desorption of REEs. The adsorption of carbon shells for REEs was found to be better than the solid carbon sphere. The effect of acidities on the adsorption and desorption properties was discussed in this study. The good adsorption performance of carbon shells can be attributed to their porous structure, large specific surface area, amine group andmore » carbonyl group of dopamine.« less

  11. Metallic-nanoparticles-enhanced fluorescence from individual micron-sized aerosol particles on-the-fly.

    PubMed

    Sivaprakasam, Vasanthi; Hart, Matthew B; Jain, Vaibhav; Eversole, Jay D

    2014-08-11

    Fluorescence spectra from individual aerosol particles that were either coated or embedded with metallic nanoparticles (MNPs) was acquired on-the-fly using 266 nm and 355 nm excitation. Using aqueous suspensions of MNPs with either polystyrene latex (PSL) spheres or dissolved proteins (tryptophan or ovalbumin), we generated PSL spheres coated with MNPs, or protein clusters embedded with MNPs as aerosols. Both enhanced and quenched fluorescence intensities were observed as a function of MNP concentration. Optimizing MNP material, size and spacing should yield enhanced sensitivity for specific aerosol materials that could be exploited to improve detection limits of single-particle, on-the-fly fluorescence or Raman based spectroscopic sensors.

  12. The ``False Colour'' Problem

    NASA Astrophysics Data System (ADS)

    Serra, Jean

    The emergence of new data in multidimensional function lattices is studied. A typical example is the apparition of false colours when (R,G,B) images are processed. Two lattice models are specially analysed. Firstly, one considers a mixture of total and marginal orderings where the variations of some components are governed by other ones. This constraint yields the “pilot lattices”. The second model is a cylindrical polar representation in n dimensions. In this model, data that are distributed on the unit sphere of n - 1 dimensions need to be ordered. The proposed orders, and lattices are specific to each image. They are obtained from Voronoi tesselation of the unit sphere The case of four dimensions is treated in detail and illustrated.

  13. International Review of Frameworks for Impact Evaluation of Appliance Standards, Labeling, and Incentives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Nan; Romankiewicz, John; Vine, Edward

    2012-12-15

    In recent years, the number of energy efficiency policies implemented has grown very rapidly as energy security and climate change have become top policy issues for many governments around the world. Within the sphere of energy efficiency policy, governments (federal and local), electric utilities, and other types of businesses and institutions are implementing a wide variety of programs to spread energy efficiency practices in industry, buildings, transport, and electricity. As programs proliferate, there is an administrative and business imperative to evaluate the savings and processes of these programs to ensure that program funds spent are indeed leading to a moremore » energy-efficient economy.« less

  14. Stem/progenitor cells derived from the cochlear sensory epithelium give rise to spheres with distinct morphologies and features.

    PubMed

    Diensthuber, Marc; Oshima, Kazuo; Heller, Stefan

    2009-06-01

    Nonmammalian vertebrates regenerate lost sensory hair cells by means of asymmetric division of supporting cells. Inner ear or lateral line supporting cells in birds, amphibians, and fish consequently serve as bona fide stem cells resulting in high regenerative capacity of hair cell-bearing organs. Hair cell regeneration does not happen in the mammalian cochlea, but cells with proliferative capacity can be isolated from the neonatal cochlea. These cells have the ability to form clonal floating colonies, so-called spheres, when cultured in nonadherent conditions. We noticed that the sphere population derived from mouse cochlear sensory epithelium cells was heterogeneous, consisting of morphologically distinct sphere types, hereby classified as solid, transitional, and hollow. Cochlear sensory epithelium-derived stem/progenitor cells initially give rise to small solid spheres, which subsequently transition into hollow spheres, a change that is accompanied by epithelial differentiation of the majority of sphere cells. Only solid spheres, and to a lesser extent, transitional spheres, appeared to harbor self-renewing stem cells, whereas hollow spheres could not be consistently propagated. Solid spheres contained significantly more rapidly cycling Pax-2-expressing presumptive otic progenitor cells than hollow spheres. Islet-1, which becomes upregulated in nascent sensory patches, was also more abundant in solid than in hollow spheres. Likewise, hair cell-like cells, characterized by the expression of multiple hair cell markers, differentiated in significantly higher numbers in cell populations derived from solid spheres. We conclude that cochlear sensory epithelium cell populations initially give rise to small solid spheres that have self-renewing capacity before they subsequently convert into hollow spheres, a process that is accompanied by loss of stemness and reduced ability to spontaneously give rise to hair cell-like cells. Solid spheres might, therefore, represent the most suitable sphere type for cell-based assays or animal model transplantation studies aimed at development of cell replacement therapies.

  15. Homeland Security

    EPA Pesticide Factsheets

    Provides an overview of EPA's homeland security roles and responsibilities, and links to specific homeland security issues: water security, research, emergency response, recovery, and waste management.

  16. Measurement of the Casimir Force between Two Spheres

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Somers, David A. T.; Munday, Jeremy N.

    2018-01-01

    Complex interaction geometries offer a unique opportunity to modify the strength and sign of the Casimir force. However, measurements have traditionally been limited to sphere-plate or plate-plate configurations. Prior attempts to extend measurements to different geometries relied on either nanofabrication techniques that are limited to only a few materials or slight modifications of the sphere-plate geometry due to alignment difficulties of more intricate configurations. Here, we overcome this obstacle to present measurements of the Casimir force between two gold spheres using an atomic force microscope. Force measurements are alternated with topographical scans in the x -y plane to maintain alignment of the two spheres to within approximately 400 nm (˜1 % of the sphere radii). Our experimental results are consistent with Lifshitz's theory using the proximity force approximation (PFA), and corrections to the PFA are bounded using nine sphere-sphere and three sphere-plate measurements with spheres of varying radii.

  17. Viscous constraints on predator:food size ratios in microscale feeding

    NASA Astrophysics Data System (ADS)

    Jabbarzadeh, Mehdi; Fu, Henry

    2014-11-01

    Small organisms such as protists or copepods may try to capture food by manipulating food with cilia, limbs, or feeding appendages. At these small scales, viscous flow may complicate the ability of a feeding appendage to closely approach a food particle. As a simplified but tractable model of such feeding approach, we consider the problem of two spheres approaching in a Stokes fluid. The first ``feeding'' sphere, which represents a body part or feeding appendage, is pushed with a constant force towards a force-free ``food'' sphere. When the feeding sphere reaches within a cutoff distance of the food sphere we assume that nonhydrodynamic interactions lead to capture. We examine approach for a range of size ratios between the feeding and food sphere. To investigate the approach efficiency, we examine the time required for the feeding sphere to capture the food sphere, as well as how far the feeding sphere must move before it captures the food sphere. We also examine the effect of varying the cutoff distance for capture. We find that hydrodynamic interactions strongly affect the results when the size of the spheres is comparable. We describe what relative sizes between feeding sphere and food particles may be most effective for food capture.

  18. In praise of counter-conduct.

    PubMed

    Davidson, Arnold I

    2011-01-01

    Without access to Michel Foucault's courses, it was extremely difficult to understand his reorientation from an analysis of the strategies and tactics of power immanent in the modern discourse on sexuality (1976) to an analysis of the ancient forms and modalities of relation to oneself by which one constituted oneself as a moral subject of sexual conduct (1984). In short, Foucault's passage from the political to the ethical dimension of sexuality seemed sudden and inexplicable. Moreover, it was clear from his published essays and interviews that this displacement of focus had consequences far beyond the specific domain of the history of sexuality. "Security, Territory, Population" (Foucault, 2007) contains a conceptual hinge, a key concept, that allows us to link together the political and ethical axes of Foucault's thought. Indeed, it is Foucault's analysis of the notions of conduct and counter-conduct in his lecture of 1 March 1978 that seems to me to constitute one of the richest and most brilliant moments in the entire course. Is is astonishing, and of profound significance, that the autonomous sphere of conduct has been more or less invisible in the history of modern (as opposed to ancient) moral and political philosophy. This article argues that a new attention should be given to this notion, both in Foucault's work and more generally.

  19. A Rhetoric of Controversy.

    ERIC Educational Resources Information Center

    Phillips, Kendall R.

    1999-01-01

    Contributes to scholarship advancing the understanding of human communication by exploring the concept of controversy within a theoretical framework which does not presume the existence of a public sphere. Suggests an alternative perspective based on the intersection of moments of opportunity and specific sites of discourse. Applies this…

  20. More than Solutions: Empowering Students to Think Strategically and Tactically

    ERIC Educational Resources Information Center

    Del Gandio, Jason

    2017-01-01

    Courses: Communication Activism; Public Advocacy; Social Movements; Public Speaking; Persuasion; Argumentation; Public Sphere. Objectives: This semester-long activity helps students implement a solutions--strategies--tactics framework into their advocacy work. More specifically, students learn to (1) designate, research, and assess the causes of…

  1. Modeling the assessment of the economic factors impact on the development of social entrepreneurship

    NASA Astrophysics Data System (ADS)

    Absalyamov, T.; Kundakchyan, R.; Zulfakarova, L.; Zapparova, Z.

    2017-12-01

    The article deals with the research of modern trends in the development of social entrepreneurship in Russia. The results of the research allow the authors to identify a system of factors that affect the development of entrepreneurship in the modern Russian economy. Moreover, the authors argue the regional specificity of the development of social entrepreneurship. The paper considers specific features and formulates the main limitations of the development of entrepreneurship and the competitive environment in the social sphere. The authors suggest an econometric model for assessing the influence of economic factors on the development of socially-oriented entrepreneurship and present an algorithm for calculating its components. The results of the econometric analysis identify the main factors of the change in the performance indicators of entrepreneurial activity and determine the degree of their impact on social entrepreneurship. The results and conclusions can serve as an estimation of the socioeconomic consequences of the sustainability disruption of the entrepreneurial potential realization in the social sphere.

  2. Fabrication of hierarchical porous hollow carbon spheres with few-layer graphene framework and high electrochemical activity for supercapacitor

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Hong, Min; Chen, Jiafu; Hu, Tianzhao; Xu, Qun

    2018-06-01

    Porous amorphous carbons with large number of defects and dangling bonds indicate great potential application in energy storage due to high specific surface area and strong adsorption properties, but poor conductivity and pore connection limit their practical application. Here few-layer graphene framework with high electrical conductivity is embedded and meanwhile hierarchical porous structure is constructed in amorphous hollow carbon spheres (HCSs) by catalysis of Fe clusters of angstrom scale, which are loaded in the interior of crosslinked polystyrene via a novel method. These unique HCSs effectively integrate the inherent properties from two-dimensional sp2-hybridized carbon, porous amorphous carbon, hierarchical pore structure and thin shell, leading to high specific capacitance up to 561 F g-1 at a current density of 0.5 A g-1 as an electrode of supercapacitor with excellent recyclability, which is much higher than those of other reported porous carbon materials up to present.

  3. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2001-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  4. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2000-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.

  5. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2004-01-13

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  6. Quantitation of tumor uptake with molecular breast imaging.

    PubMed

    Bache, Steven T; Kappadath, S Cheenu

    2017-09-01

    We developed scatter and attenuation-correction techniques for quantifying images obtained with Molecular Breast Imaging (MBI) systems. To investigate scatter correction, energy spectra of a 99m Tc point source were acquired with 0-7-cm-thick acrylic to simulate scatter between the detector heads. System-specific scatter correction factor, k, was calculated as a function of thickness using a dual energy window technique. To investigate attenuation correction, a 7-cm-thick rectangular phantom containing 99m Tc-water simulating breast tissue and fillable spheres simulating tumors was imaged. Six spheres 10-27 mm in diameter were imaged with sphere-to-background ratios (SBRs) of 3.5, 2.6, and 1.7 and located at depths of 0.5, 1.5, and 2.5 cm from the center of the water bath for 54 unique tumor scenarios (3 SBRs × 6 sphere sizes × 3 depths). Phantom images were also acquired in-air under scatter- and attenuation-free conditions, which provided ground truth counts. To estimate true counts, T, from each tumor, the geometric mean (GM) of the counts within a prescribed region of interest (ROI) from the two projection images was calculated as T=C1C2eμtF, where C are counts within the square ROI circumscribing each sphere on detectors 1 and 2, μ is the linear attenuation coefficient of water, t is detector separation, and the factor F accounts for background activity. Four unique F definitions-standard GM, background-subtraction GM, MIRD Primer 16 GM, and a novel "volumetric GM"-were investigated. Error in T was calculated as the percentage difference with respect to in-air. Quantitative accuracy using the different GM definitions was calculated as a function of SBR, depth, and sphere size. Sensitivity of quantitative accuracy to ROI size was investigated. We developed an MBI simulation to investigate the robustness of our corrections for various ellipsoidal tumor shapes and detector separations. Scatter correction factor k varied slightly (0.80-0.95) over a compressed breast thickness range of 6-9 cm. Corrected energy spectra recovered general characteristics of scatter-free spectra. Quantitatively, photopeak counts were recovered to <10% compared to in-air conditions after scatter correction. After GM attenuation correction, mean errors (95% confidence interval, CI) for all 54 imaging scenarios were 149% (-154% to +455%), -14.0% (-38.4% to +10.4%), 16.8% (-14.7% to +48.2%), and 2.0% (-14.3 to +18.3%) for the standard GM, background-subtraction GM, MIRD 16 GM, and volumetric GM, respectively. Volumetric GM was less sensitive to SBR and sphere size, while all GM methods were insensitive to sphere depth. Simulation results showed that Volumetric GM method produced a mean error within 5% over all compressed breast thicknesses (3-14 cm), and that the use of an estimated radius for nonspherical tumors increases the 95% CI to at most ±23%, compared with ±16% for spherical tumors. Using DEW scatter- and our Volumetric GM attenuation-correction methodology yielded accurate estimates of tumor counts in MBI over various tumor sizes, shapes, depths, background uptake, and compressed breast thicknesses. Accurate tumor uptake can be converted to radiotracer uptake concentration, allowing three patient-specific metrics to be calculated for quantifying absolute uptake and relative uptake change for assessment of treatment response. © 2017 American Association of Physicists in Medicine.

  7. An Analog Earth Climate Model

    NASA Astrophysics Data System (ADS)

    Varekamp, J. C.

    2010-12-01

    The earth climate is broadly governed by the radiative power of the sun as well as the heat retention and convective cooling of the atmosphere. I have constructed an analog earth model for an undergraduate climate class that simulates mean climate using these three parameters. The ‘earth’ is a hollow, black, bronze sphere (4 cm diameter) mounted on a thin insulated rod, and illuminated by two opposite optic fibers, with light focused on the sphere by a set of lenses. The sphere is encased in a large double-walled aluminum cylinder (34 cm diameter by 26 cm high) with separate water cooling jackets at the top, bottom, and sides. The cylinder can be filled with a gas of choice at a variety of pressures or can be run in vacuum. The exterior is cladded with insulation, and the temperature of the sphere, atmosphere and walls is monitored with thermocouples. The temperature and waterflow of the three cooling jackets can be monitored to establish the energy output of the whole system; the energy input is the energy yield of the two optic fibers. A small IR transmissive lens at the top provides the opportunity to hook up the fiber of a hyper spectrometer to monitor the emission spectrum of the black ‘earth’ sphere. A pressure gauge and gas inlet-outlet system for flushing of the cell completes it. The heat yield of the cooling water at the top is the sum of the radiative and convective components, whereas the bottom jacket only carries off the radiative heat of the sphere. Undergraduate E&ES students at Wesleyan University have run experiments with dry air, pure CO2, N2 and Ar at 1 atmosphere, and a low vacuum run was accomplished to calibrate the energy input. For each experiment, the lights are flipped on, the temperature acquisition routine is activated, and the sphere starts to warm up until an equilibrium temperature has been reached. The lights are then flipped off and the cooling sequence towards ambient is registered. The energy input is constant for a given experiment. For each time increment the radiative heat loss of the sphere is calculated from the Stefan Boltzman expression using the observed temperature at that time. The heating of the ‘earth sphere’ is accounted for in the energy balance equation by applying the temperature increase per time increment with the specific heat of bronze. The remaining energy term is the sum of the convective cooling and greenhouse effect. The heat budgets of the cooling trajectories were calculated analogous, with radiative and convective cooling causing the temperature drop per time increment. The greenhouse component again is lumped with the convective term. Equilibrium temperatures of 50-70 C were reached, with ambient temperature at 22 C. Somewhat surprising, experiments with radiatively neutral pure Argon gas yielded the highest equilibrium temperatures. Argon had the lowest specific heat of the gases used, and the observed equilibrium temperatures for different cell gases broadly scaled inversely with the heat capacity of those gases. Apparently, the efficiency of the free convective cooling strongly impacts the equilibrium temperatures. The greenhouse effects possibly have only a minor impact on final temperature as a result of the short cell pathlength. Experiments at higher cell filling pressures may provide more insight in this.

  8. [The urgent problems of the improvement of the environment management system based on the analysis of health risk assessment].

    PubMed

    Avaliani, S L; Novikov, S M; Shashina, T A; Dodina, N S; Kislitsin, V A; Mishina, A L

    2014-01-01

    The lack of adequate legislative and regulatory framework for ensuring minimization of the health risks in the field of environmental protection is the obstacle for the application of the risk analysis methodology as a leading tool for administrative activity in Russia. "Principles of the state policy in the sphere of ensuring chemical and biological safety of the Russian Federation for the period up to 2025 and beyond", approved by the President of the Russian Federation on 01 November 2013, No PR-25 73, are aimed at the legal support for the health risk analysis methodology. In the article there have been supposed the main stages of the operative control of the environmental quality, which lead to the reduction of the health risk to the acceptable level. The further improvement of the health risk analysis methodology in Russia should contribute to the implementation of the state policy in the sphere of chemical and biological safety through the introduction of complex measures on neutralization of chemical and biological threats to the human health and the environment, as well as evaluation of the economic effectiveness of these measures. The primary step should be the legislative securing of the quantitative value for the term: "acceptable risk".

  9. Leadership Matters: Prime Minister Koizumi’s Role in the Normalization of Japan’s Post-9/11 Security Policy

    DTIC Science & Technology

    2008-12-01

    normalization of Japan’s post-9/11 security policy and discuss why it took his specific brand of leadership to allow Japan’s security policy to...security policy and discuss why it took his specific brand of leadership to allow Japan’s security policy to expand. vi THIS PAGE INTENTIONALLY LEFT...performance will demonstrate that institutional reasons alone will not make the position of prime minister stronger or more effective . The literature

  10. A Model Based Security Testing Method for Protocol Implementation

    PubMed Central

    Fu, Yu Long; Xin, Xiao Long

    2014-01-01

    The security of protocol implementation is important and hard to be verified. Since the penetration testing is usually based on the experience of the security tester and the specific protocol specifications, a formal and automatic verification method is always required. In this paper, we propose an extended model of IOLTS to describe the legal roles and intruders of security protocol implementations, and then combine them together to generate the suitable test cases to verify the security of protocol implementation. PMID:25105163

  11. A model based security testing method for protocol implementation.

    PubMed

    Fu, Yu Long; Xin, Xiao Long

    2014-01-01

    The security of protocol implementation is important and hard to be verified. Since the penetration testing is usually based on the experience of the security tester and the specific protocol specifications, a formal and automatic verification method is always required. In this paper, we propose an extended model of IOLTS to describe the legal roles and intruders of security protocol implementations, and then combine them together to generate the suitable test cases to verify the security of protocol implementation.

  12. Preparation of flower-like TiO2 sphere/reduced graphene oxide composites for photocatalytic degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Woong; Park, Mira; Kim, Hak Yong; Park, Soo-Jin

    2016-07-01

    In this study, novel flower-like TiO2 sphere (FTS)/reduced graphene oxide (rGO) composites (FTS-G) were synthesized via a hydrothermal method. The photocatalytic performance of the FTS-G composites was evaluated through the photodegradation of rhodamine B (Rh B) and trichloroethylene (TCE) under simulated solar light irradiation. The rGO to FTS ratio in the composites significantly affected photocatalytic activity. The photocatalytic activities of FTS-Gs in the degradation of Rh B and TCE were superior to that of pure FTS. Of all the FTS-G composites tested, FTS-G with 1 wt% rGO (FTS-G-1) had the greatest photocatalytic activity, while FTS-G composites with rGO contents over 1 wt% had lower photocatalytic activities. Additionally, it is expected that the synthesis of FTS with a high specific surface area and well-developed pore structure and simultaneous conversion of GO to graphene-like rGO without the use of strong reducing agents could be a promising strategy to prepare other carbon-based flower-like TiO2 sphere composite photocatalysts.

  13. Infiltrating sulfur into a highly porous carbon sphere as cathode material for lithium–sulfur batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiaohui; Kim, Dul-Sun; Ahn, Hyo-Jun

    2014-10-15

    Highlights: • A highly porous carbon (HPC) with regular spherical morphology was synthesized. • Sulfur/HPC composites were prepared by melt–diffusion method. • Sulfur/HPC composites showed improved cyclablity and long-term cycle life. - Abstract: Sulfur composite material with a highly porous carbon sphere as the conducting container was prepared. The highly porous carbon sphere was easily synthesized with resorcinol–formaldehyde precursor as the carbon source. The morphology of the carbon was observed with field emission scanning electron microscope and transmission electron microscope, which showed a well-defined spherical shape. Brunauer–Emmett–Teller analysis indicated that it possesses a high specific surface area of 1563 m{supmore » 2} g{sup −1} and a total pore volume of 2.66 cm{sup 3} g{sup −1} with a bimodal pore size distribution, which allow high sulfur loading and easy transportation of lithium ions. Sulfur carbon composites with varied sulfur contents were prepared by melt–diffusion method and lithium sulfur cells with the sulfur composites showed improved cyclablity and long-term cycle life.« less

  14. [Characterization of stem cells derived from the neonatal auditory sensory epithelium].

    PubMed

    Diensthuber, M; Heller, S

    2010-11-01

    In contrast to regenerating hair cell-bearing organs of nonmammalian vertebrates the adult mammalian organ of Corti appears to have lost its ability to maintain stem cells. The result is a lack of regenerative ability and irreversible hearing loss following auditory hair cell death. Unexpectedly, the neonatal auditory sensory epithelium has recently been shown to harbor cells with stem cell features. The origin of these cells within the cochlea's sensory epithelium is unknown. We applied a modified neurosphere assay to identify stem cells within distinct subregions of the neonatal mouse auditory sensory epithelium. Sphere cells were characterized by multiple markers and morphologic techniques. Our data reveal that both the greater and the lesser epithelial ridge contribute to the sphere-forming stem cell population derived from the auditory sensory epithelium. These self-renewing sphere cells express a variety of markers for neural and otic progenitor cells and mature inner ear cell types. Stem cells can be isolated from specific regions of the auditory sensory epithelium. The distinct features of these cells imply a potential application in the development of a cell replacement therapy to regenerate the damaged sensory epithelium.

  15. Application of gold nanoparticles as contrast agents in confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Lemelle, A.; Veksler, B.; Kozhevnikov, I. S.; Akchurin, G. G.; Piletsky, S. A.; Meglinski, I.

    2009-01-01

    Confocal laser scanning microscopy (CLSM) is a modern high-resolution optical technique providing detailed image of tissue structure with high (down to microns) spatial resolution. Aiming at a concurrent improvement of imaging depth and image quality the CLSM requires the use of contrast agents. Commonly employed fluorescent contrast agents, such as fluorescent dyes and proteins, suffer from toxicity, photo-bleaching and overlapping with the tissues autofluorescence. Gold nanoparticles are potentially highly attractive to be applied as a contrast agent since they are not subject to photo-bleaching and can target biochemical cells markers associated with the specific diseases. In current report we consider the applicability of gold nano-spheres as a contrast agent to enhance quality of CLSM images of skin tissues in vitro versus the application of optical clearing agent, such as glycerol. The enhancement of CLSM image contrast was observed with an application of gold nano-spheres diffused within the skin tissues. We show that optical clearing agents such as a glycerol provide better CLSM image contrast than gold nano-spheres.

  16. Axial acoustic radiation force on a sphere in Gaussian field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Rongrong; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen

    2015-10-28

    Based on the finite series method, the acoustical radiation force resulting from a Gaussian beam incident on a spherical object is investigated analytically. When the position of the particles deviating from the center of the beam, the Gaussian beam is expanded as a spherical function at the center of the particles and the expanded coefficients of the Gaussian beam is calculated. The analytical expression of the acoustic radiation force on spherical particles deviating from the Gaussian beam center is deduced. The acoustic radiation force affected by the acoustic frequency and the offset distance from the Gaussian beam center is investigated.more » Results have been presented for Gaussian beams with different wavelengths and it has been shown that the interaction of a Gaussian beam with a sphere can result in attractive axial force under specific operational conditions. Results indicate the capability of manipulating and separating spherical spheres based on their mechanical and acoustical properties, the results provided here may provide a theoretical basis for development of single-beam acoustical tweezers.« less

  17. Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries.

    PubMed

    Rui, Xianhong; Zhu, Jixin; Sim, Daohao; Xu, Chen; Zeng, Yi; Hng, Huey Hoon; Lim, Tuti Mariana; Yan, Qingyu

    2011-11-01

    Reduced graphene oxide (rGO) supported highly porous polycrystalline V(2)O(5) spheres (V(2)O(5)/rGO) were prepared by using a solvothermal approach followed by an annealing process. Initially, reduced vanadium oxide (rVO) nanoparticles with sizes in the range of 10-50 nm were formed through heterogeneous nucleation on rGO sheets during the solvothermal process. These rVO nanoparticles were oxidized to V(2)O(5) after the annealing process in air at 350 °C and assembled into polycrystalline porous spheres with sizes of 200-800 nm. The weight ratio between the rGO and V(2)O(5) is tunable by changing the weight ratio of the precursors, which in turn affects the morphology of V(2)O(5)/rGO composites. The V(2)O(5)/rGO composites display superior cathode performances with highly reversible specific capacities, good cycling stabilities and excellent rate capabilities (e.g. 102 mA h g(-1) at 19 C).

  18. Electromagnetic Energy Localization and Characterization of Composites

    DTIC Science & Technology

    2013-01-01

    polyhedrons ), and [39] (spheres and a complex yet symmetric structure). With time-domain EM analysis, regular shapes, such as cubes, spheres, and regular...spheres), [40] (spheres, crosses, cylinders, and polyhedrons ), and [41] (spheres and cylinders); and 3-D random mixtures using a frequency-domain finite...element method [42] ( polyhedrons ), and [43], [44] (spheres). Such steady-state analyses are limited as they, for example, do not capture temporal

  19. Phase diagram of heteronuclear Janus dumbbells

    NASA Astrophysics Data System (ADS)

    O'Toole, Patrick; Giacometti, Achille; Hudson, Toby

    Using Aggregation-Volume-Bias Monte Carlo simulations along with Successive Umbrella Sampling and Histogram Re-weighting, we study the phase diagram of a system of dumbbells formed by two touching spheres having variable sizes, as well as different interaction properties. The first sphere ($h$) interacts with all other spheres belonging to different dumbbells with a hard-sphere potential. The second sphere ($s$) interacts via a square-well interaction with other $s$ spheres belonging to different dumbbells and with a hard-sphere potential with all remaining $h$ spheres. We focus on the region where the $s$ sphere is larger than the $h$ sphere, as measured by a parameter $1\\le \\alpha\\le 2 $ controlling the relative size of the two spheres. As $\\alpha \\to 2$ a simple fluid of square-well spheres is recovered, whereas $\\alpha \\to 1$ corresponds to the Janus dumbbell limit, where the $h$ and $s$ spheres have equal sizes. Many phase diagrams falling into three classes are observed, depending on the value of $\\alpha$. The $1.8 \\le \\alpha \\le 2$ is dominated by a gas-liquid phase separation very similar to that of a pure square-well fluid with varied critical temperature and density. When $1.3 \\le \\alpha \\le 1.8$ we find a progressive destabilization of the gas-liquid phase diagram by the onset of self-assembled structures, that eventually lead to a metastability of the gas-liquid transition below $\\alpha=1.2$.

  20. Design of materials configurations for enhanced phononic and electronic properties

    NASA Astrophysics Data System (ADS)

    Daraio, Chiara

    The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new theories and models. Potential applications include (1) designing of a sound scrambler/decoder for secure voice communications, (2) improving invisibility of submarine to acoustic detection signal, (3) noise and shock wave mitigation for protection of vibration sensitive devices such as head mounted vision devices, (4) drastic compression of acoustic signals into centimeter regime impulses for artificial ear implants, hearing aid and devices for ease of conversion to electronic signals and processing, and acoustic delay lines for communication applications.

  1. Terminal energy distribution of blast waves from bursting spheres

    NASA Technical Reports Server (NTRS)

    Adamczyk, A. A.; Strehlow, R. A.

    1977-01-01

    The calculation results for the total energy delivered to the surroundings by the burst of an idealized massless sphere containing an ideal gas are presented. The logic development of various formulas for sphere energy is also presented. For all types of sphere bursts the fraction of the total initial energy available in the sphere that is delivered to the surroundings is shown to lie between that delivered for the constant pressure addition of energy to a source region and that delivered by isentropic expansion of the sphere. The relative value of E sub/Q increases at fixed sphere pressure/surrounding pressure as sphere temperature increases because the velocity of sound increases.

  2. Promotion of Cancer Stem-Like Cell Properties in Hepatitis C Virus-Infected Hepatocytes

    PubMed Central

    Kwon, Young-Chan; Bose, Sandip K.; Steele, Robert; Meyer, Keith; Di Bisceglie, Adrian M.; Ray, Ratna B.

    2015-01-01

    ABSTRACT We have previously reported that hepatitis C virus (HCV) infection of primary human hepatocytes (PHH) induces the epithelial mesenchymal transition (EMT) state and extends hepatocyte life span (S. K. Bose, K. Meyer, A. M. Di Bisceglie, R. B. Ray, and R. Ray, J Virol 86:13621–13628, 2012, http://dx.doi.org/10.1128/JVI.02016-12). These hepatocytes displayed sphere formation on ultralow binding plates and survived for more than 12 weeks. The sphere-forming hepatocytes expressed a number of cancer stem-like cell (CSC) markers, including high levels of the stem cell factor receptor c-Kit. The c-Kit receptor is regarded as one of the CSC markers in hepatocellular carcinoma (HCC). Analysis of c-Kit mRNA displayed a significant increase in the liver biopsy specimens of chronically HCV-infected patients. We also found c-Kit is highly expressed in transformed human hepatocytes (THH) infected in vitro with cell culture-grown HCV genotype 2a. Further studies suggested that HCV core protein significantly upregulates c-Kit expression at the transcriptional level. HCV infection of THH led to a significant increase in the number of spheres displayed on ultralow binding plates and in enhanced EMT and CSC markers and tumor growth in immunodeficient mice. The use of imatinib or dasatinib as a c-Kit inhibitor reduced the level of sphere-forming cells in culture. The sphere-forming cells were sensitive to treatment with sorafenib, a multikinase inhibitor, that is used for HCC treatment. Further, stattic, an inhibitor of the Stat3 molecule, induced sphere-forming cell death. A combination of sorafenib and stattic had a significantly stronger effect, leading to cell death. These results suggested that HCV infection potentiates CSC generation, and selected drugs can be targeted to efficiently inhibit cell growth. IMPORTANCE HCV infection may develop into HCC as an end-stage liver disease. We focused on understanding the mechanism for the risk of HCC from chronic HCV infection and identified targets for treatment. HCV-infected primary and transformed human hepatocytes (PHH or THH) generated CSC. HCV-induced spheres were highly sensitive to cell death from sorafenib and stattic treatment. Thus, our study is highly significant for HCV-associated HCC, with the potential for developing a target-specific strategy for improved therapies. PMID:26355082

  3. Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Su, Danyang; Yang, Jinping; Wang, Jing

    2017-09-01

    3d transition-metal oxides, especially Fe3O4, as anode materials for the lithium-ion batteries have been attracting intensive attentions in recent years due to their high energy capacity and low toxicity. A new Fe3O4/C composite with hollow spheres in porous three-dimensional (3D) nanostructure, which was synthesized by a facile solvothermal method using FeCl3·6H2O and porous spongy carbon as raw materials. The specific surface area and microstructures of composite were characterized by nitrogen adsorption-desorption isotherm method, FE-SEM and HR-TEM. A homogeneous distribution of hollow Fe3O4 spheres (diameter ranges from 120 nm to 150 nm) in the spongy carbon (pore size > 200 nm) conductive 3D-network significantly reduced the lithium-ion diffusion length and increased the electrochemical reaction area, and further more enhanced the lithium ion battery performance, such as discharge capacity and cycle life. As an anode material for the lithium-ion battery, the title composite exhibit excellent electrochemical properties. The Fe3O4/C composite electrode achieved a relatively high reversible specific capacity of 1450.1 mA h g-1 in the first cycle at 100 mA g-1, and excellent rate capability (69% retention at 1000 mA g-1) with good cycle stability (only 10% loss after 100 cycles).

  4. Secure password-based authenticated key exchange for web services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Fang; Meder, Samuel; Chevassut, Olivier

    This paper discusses an implementation of an authenticated key-exchange method rendered on message primitives defined in the WS-Trust and WS-SecureConversation specifications. This IEEE-specified cryptographic method (AuthA) is proven-secure for password-based authentication and key exchange, while the WS-Trust and WS-Secure Conversation are emerging Web Services Security specifications that extend the WS-Security specification. A prototype of the presented protocol is integrated in the WSRF-compliant Globus Toolkit V4. Further hardening of the implementation is expected to result in a version that will be shipped with future Globus Toolkit releases. This could help to address the current unavailability of decent shared-secret-based authentication options inmore » the Web Services and Grid world. Future work will be to integrate One-Time-Password (OTP) features in the authentication protocol.« less

  5. RETRAINING BY PRIVATE INDUSTRY.

    ERIC Educational Resources Information Center

    HOOS, IDA R.

    SEVERAL SAN FRANCISCO BAY AREA COMPANIES WERE EXAMINED FOR SPECIFIC PROGRAMS FOR DISPLACED EMPLOYEES. ARMOUR AND COMPANY SOUGHT TO GUIDE DISPLACED EMPLOYEES TO CLASSES OR COURSES OF ACTION OUTSIDE ITS OWN SPHERE OF OPERATION. LOCKHEED HAS PROVIDED UNUSUALLY WELL FOR UPGRADING AND RETRAINING, MAINLY BECAUSE OF INDUSTRY FLUCTUATIONS AND RAPID…

  6. Processing of cenosphere-cement/asphalt composite materials and evaluation of their mechanical and acoustic properties

    DOT National Transportation Integrated Search

    2004-04-09

    Cenospheres are hollow, aluminum silicate spheres, between 10-300mm in diameter. Their low specific gravity (0.67) make them ideal replacements for fine sand for producing low density concrete. In this research, the moisture uptake and loss by cenosp...

  7. Aptamer Based Microsphere Biosensor for Thrombin Detection

    PubMed Central

    Zhu, Hongying; Suter, Jonathan D.; White, Ian M.; Fan, Xudong

    2006-01-01

    We have developed an optical microsphere resonator biosensor using aptamer as receptor for the measurement of the important biomolecule thrombin. The sphere surface is modified with anti-thrombin aptamer, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the sphere surface is monitored by the spectral position of the microsphere's whispering gallery mode resonances. A detection limit on the order of 1 NIH Unit/mL is demonstrated. Control experiments with non-aptamer oligonucleotide and BSA are also carried out to confirm the specific binding between aptamer and thrombin. We expect that this demonstration will lead to the development of highly sensitive biomarker sensors based on aptamer with lower cost and higher throughput than current technology.

  8. Selective encapsulation by Janus particles

    NASA Astrophysics Data System (ADS)

    Li, Wei; Ruth, Donovan; Gunton, James D.; Rickman, Jeffrey M.

    2015-06-01

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  9. Anti-gravity device

    NASA Technical Reports Server (NTRS)

    Palsingh, S. (Inventor)

    1975-01-01

    An educational toy useful in demonstrating fundamental concepts regarding the laws of gravity is described. The device comprises a sphere 10 of radius r resting on top of sphere 12 of radius R. The center of gravity of sphere 10 is displaced from its geometrical center by distance D. The dimensions are so related that D((R+r)/r) is greater than r. With the center of gravity of sphere 10 lying on a vertical line, the device is in equilibrium. When sphere 10 is rolled on the surface of sphere 12 it will return to its equilibrium position upon release. This creates an illusion that sphere 10 is defying the laws of gravity. In reality, due to the above noted relationship of D, R, and r, the center of gravity of sphere 10 rises from its equilibrium position as it rolls a short distance up or down the surface of sphere 12.

  10. 49 CFR 1554.103 - Security Directives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... necessary to respond to a threat assessment or to a specific threat against civil aviation, TSA issues a..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT REPAIR STATION SECURITY Security Measures... each Security Directive TSA issues to the repair station within the time prescribed. Each repair...

  11. Security Evolution.

    ERIC Educational Resources Information Center

    De Patta, Joe

    2003-01-01

    Examines how to evaluate school security, begin making schools safe, secure schools without turning them into fortresses, and secure schools easily and affordably; the evolution of security systems into information technology systems; using schools' high-speed network lines; how one specific security system was developed; pros and cons of the…

  12. Functionalized bioengineered spider silk spheres improve nuclease resistance and activity of oligonucleotide therapeutics providing a strategy for cancer treatment.

    PubMed

    Kozlowska, Anna Karolina; Florczak, Anna; Smialek, Maciej; Dondajewska, Ewelina; Mackiewicz, Andrzej; Kortylewski, Marcin; Dams-Kozlowska, Hanna

    2017-09-01

    Cell-selective delivery and sensitivity to serum nucleases remain major hurdles to the clinical application of RNA-based oligonucleotide therapeutics, such as siRNA. Spider silk shows great potential as a biomaterial due to its biocompatibility and biodegradability. Self-assembling properties of silk proteins allow for processing into several different morphologies such as fibers, scaffolds, films, hydrogels, capsules and spheres. Moreover, bioengineering of spider silk protein sequences can functionalize silk by adding peptide moieties with specific features including binding or cell recognition domains. We demonstrated that modification of silk protein by adding the nucleic acid binding domain enabled the development of a novel oligonucleotide delivery system that can be utilized to improve pharmacokinetics of RNA-based therapeutics, such as CpG-siRNA. The MS2 bioengineered silk was functionalized with poly-lysine domain (KN) to generate hybrid silk MS2KN. CpG-siRNA efficiently bound to MS2KN in contrary to control MS2. Both MS2KN complexes and spheres protected CpG-siRNA from degradation by serum nucleases. CpG-siRNA molecules encapsulated into MS2KN spheres were efficiently internalized and processed by TLR9-positive macrophages. Importantly, CpG-STAT3siRNA loaded in silk spheres showed delayed and extended target gene silencing compared to naked oligonucleotides. The prolonged Stat3 silencing resulted in the more pronounced downregulation of interleukin 6 (IL-6), a proinflammatory cytokine and upstream activator of STAT3, which limits the efficacy of TLR9 immunostimulation. Our results demonstrate the feasibility of using spider silk spheres as a carrier of therapeutic nucleic acids. Moreover, the modified kinetic and activity of the CpG-STAT3siRNA embedded into silk spheres is likely to improve immunotherapeutic effects in vivo. We demonstrated that modification of silk protein by adding the nucleic acid binding domain enabled the development of a novel oligonucleotide delivery system that can be utilized to improve pharmacokinetics of RNA-based therapeutics. Although, the siRNA constructs have already given very promising results in the cancer therapy, the in vivo application of RNA-based oligonucleotide therapeutics still is limited due to their sensitivity to serum nucleases and some toxicity. We propose a carrier for RNA-based therapeutics that is made of bioengineered spider silk. We showed that functionalized bioengineered spider silk spheres not only protected RNA-based therapeutics from degradation by serum nucleases, but what is more important the embedding of siRNA into silk spheres delayed and extended target gene silencing compared with naked oligonucleotides. Moreover, we showed that plain silk spheres did not have unspecific effect on target gene levels proving not only to be non-cytotoxic but also very neutral vehicles in terms of TLR9/STAT3 activation in macrophages. We demonstrated advantages of novel delivery technology in safety and efficacy comparing with delivery of naked CpG-STAT3siRNA therapeutics. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. On Issue of Algorithm Forming for Assessing Investment Attractiveness of Region Through Its Technospheric Security

    NASA Astrophysics Data System (ADS)

    Filimonova, L. A.; Skvortsova, N. K.

    2017-11-01

    The article examines the problematic aspects of assessing the investment attractiveness of a region associated with the consideration of methodological issues that require refinement from the point of view of its technospheric security. Such issues include the formation of a sound system of indicators for the assessment of man-made risk which has a particular impact on the level of investment attractiveness of the region. In the context of the instability of the economic situation in Russia, the problem of man-made risks assessing in the context of the regional investment attractiveness based on an integrated approach and taking into account such principles as flexibility, adaptability, innovative orientation has not only lost its relevance but was also transformed into one of the most important conditions for ensuring the effective management of all spheres of the regional activities. The article poses the classical problem of making decisions on the results of the assessment of the investment attractiveness of the region in a matrix format evaluating the utility function. The authors of the article recommended a universal risk assessment model with its subsequent synthesis into technospheric security for the comprehensive assessment of regional investment attractiveness. The principal distinguishing feature of the study results are the schemes for manipulation in the evaluation activity associated with the selection of the optimality criteria groups and models for their study. These iterations make it possible to substantiate the choice of the solution for preserving the technospheric security of the region, a field of compromises or an “ideal” solution to the problem of the regional investment attractiveness loss.

  14. An Unusual Rolling-Sphere Phenomenon.

    ERIC Educational Resources Information Center

    Cromer, Alan

    1996-01-01

    Discusses the theory behind a study of motion where a hollow plastic sphere racing against a steel sphere in two parallel sections of inclined channeling always reaches the bottom first; once on the floor, however, the steel sphere travels faster, speeding past the plastic sphere when both are about one meter from the base of the track. (JRH)

  15. Porous Ceramic Spheres From Cation Exchange Beads

    NASA Technical Reports Server (NTRS)

    Dynys, Fred

    2005-01-01

    This document is a slide presentation that examines the use of a simple templating process to produce hollow ceramic spheres with a pore size of 1 to 10 microns. Using ion exchange process it was determined that the method produces porous ceramic spheres with a unique structure: (i.e., inner sphere surrounded by an outer sphere.)

  16. 7 CFR 1942.114 - Security.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 13 2011-01-01 2009-01-01 true Security. 1942.114 Section 1942.114 Agriculture... Security. Specific requirements for security for each loan will be included in the letter of conditions. Loans must be secured by the best security position practicable, in a manner which will adequately...

  17. 7 CFR 1942.114 - Security.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 13 2012-01-01 2012-01-01 false Security. 1942.114 Section 1942.114 Agriculture... Security. Specific requirements for security for each loan will be included in the letter of conditions. Loans must be secured by the best security position practicable, in a manner which will adequately...

  18. 7 CFR 1942.114 - Security.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 13 2014-01-01 2013-01-01 true Security. 1942.114 Section 1942.114 Agriculture... Security. Specific requirements for security for each loan will be included in the letter of conditions. Loans must be secured by the best security position practicable, in a manner which will adequately...

  19. 7 CFR 1942.114 - Security.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 13 2013-01-01 2013-01-01 false Security. 1942.114 Section 1942.114 Agriculture... Security. Specific requirements for security for each loan will be included in the letter of conditions. Loans must be secured by the best security position practicable, in a manner which will adequately...

  20. 7 CFR 1942.114 - Security.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Security. 1942.114 Section 1942.114 Agriculture... Security. Specific requirements for security for each loan will be included in the letter of conditions. Loans must be secured by the best security position practicable, in a manner which will adequately...

  1. Script-like attachment representations in dreams containing current romantic partners.

    PubMed

    Selterman, Dylan; Apetroaia, Adela; Waters, Everett

    2012-01-01

    Recent research has demonstrated parallels between romantic attachment styles and general dream content. The current study examined partner-specific attachment representations alongside dreams that contained significant others. The general prediction was that dreams would follow the "secure base script," and a general correspondence would emerge between secure attachment cognitions in waking life and in dreams. Sixty-one undergraduate student participants in committed dating relationships of six months duration or longer completed the Secure Base Script Narrative Assessment at Time 1, and then completed a dream diary for 14 consecutive days. Blind coders scored dreams that contained significant others using the same criteria for secure base content in laboratory narratives. Results revealed a significant association between relationship-specific attachment security and the degree to which dreams about romantic partners followed the secure base script. The findings illuminate our understanding of mental representations with regards to specific attachment figures. Implications for attachment theory and clinical applications are discussed.

  2. Finite-size radiation force correction for inviscid spheres in standing waves.

    PubMed

    Marston, Philip L

    2017-09-01

    Yosioka and Kawasima gave a widely used approximation for the acoustic radiation force on small liquid spheres surrounded by an immiscible liquid in 1955. Considering the liquids to be inviscid with negligible thermal dissipation, in their approximation the force on the sphere is proportional to the sphere's volume and the levitation position in a vertical standing wave becomes independent of the size. The analysis given here introduces a small correction term proportional to the square of the sphere's radius relative to the aforementioned small-sphere force. The significance of this term also depends on the relative density and sound velocity of the sphere. The improved approximation is supported by comparison with the exact partial-wave-series based radiation force for ideal fluid spheres in ideal fluids.

  3. Adipose-Derived Stem Cell Delivery into Collagen Gels Using Chitosan Microspheres

    DTIC Science & Technology

    2010-02-17

    Porous CSM of uniform size and composition were prepared and used as a stem cell carrier. ASC were allowed to attach to the microspheres and infiltrate...and viable, could be retrieved from the spheres, and maintained expression of stem - cell -specific markers. Electron microscopic evaluation of the cell

  4. The Geopolitical Context of United States Intervention in North America.

    ERIC Educational Resources Information Center

    Rice, Marion J.

    1988-01-01

    Examines the general concept of intervention and analyzes specific types of U.S. intervention from a geopolitical perspective. Considers the variables relating to the geography of intervention such as land mass, terrain, population, level of development, political stability, cultural heritage, sphere of influence, expansion, and acquisition of…

  5. Do Ethics Classes Teach Ethics?

    ERIC Educational Resources Information Center

    Curzer, Howard J.; Sattler, Sabrina; DuPree, Devin G.; Smith-Genthôs, K. Rachelle

    2014-01-01

    The ethics assessment industry is currently dominated by the second version of the Defining Issues Test (DIT2). In this article, we describe an alternative assessment instrument called the Sphere-Specific Moral Reasoning and Theory Survey (SMARTS), which measures the respondent's level of moral development in several respects. We describe eight…

  6. Dispersivity of Bidisperse Packings of Spheres and Evidence for Distinct Random Structures

    NASA Astrophysics Data System (ADS)

    Scheven, U. M.

    2018-05-01

    The intrinsic longitudinal and transverse dispersivity of bidisperse random packings of spheres with size ratio 5 ∶1 was determined by pulsed field gradient nuclear magnetic resonance, in the dilute regime where small spheres occupy between 0% and 5% of the packings' volume. Small spheres plugging pores systematically raise the mechanical transverse and longitudinal dispersivity above that of reference packings of monodisperse spheres. NMR-derived porosities, widths of velocity distributions, and dispersivities reveal distinct states of structural disorder above and below a relative sphere concentration n /N =1 , where n and N are the number densities of small and large spheres.

  7. Spectroscopic and DFT Studies of Second Sphere Variants of the Type 1 Copper Site in Azurin: Covalent and Non-Local Electrostatic Contributions to Reduction Potentials

    PubMed Central

    Hadt, Ryan G.; Sun, Ning; Marshall, Nicholas M.; Hodgson, Keith O.; Hedman, Britt; Lu, Yi; Solomon, Edward I.

    2012-01-01

    The reduction potentials (E0) of type 1 (T1) or blue copper (BC) sites in proteins and enzymes with identical first coordination spheres around the redox active copper ion can vary by ~400 mV. Here, we use a combination of low temperature electronic absorption and magnetic circular dichroism, electron paramagnetic resonance, resonance Raman, and S K-edge X-ray absorption spectroscopies to investigate a series of second sphere variants—F114P, N47S, and F114N in Pseudomonas aeruginosa azurin (Az)—which modulate hydrogen bonding to and protein derived dipoles nearby the Cu-S(Cys) bond. Density functional theory (DFT) calculations correlated to the experimental data allow for the fractionation of the contributions to tuning E0 into covalent and non-local electrostatic components. These are found to be significant, comparable in magnitude, and additive for active H-bonds, while passive H-bonds are mostly non-local electrostatic in nature. For dipoles, these terms can be additive to or oppose one another. This study provides a methodology for uncoupling covalency from non-local electrostatics, which, when coupled to X-ray crystallographic data, distinguishes specific local interactions from more long range protein/active interactions, while affording further insight into the second sphere mechanisms available to the protein to tune the E0 of electron transfer sites in biology. PMID:22985400

  8. N, S co-doped carbon spheres with highly dispersed CoO as non-precious metal catalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Chen, Linlin; Guo, Xingpeng; Zhang, Guoan

    2017-08-01

    It is still a great challenge in preparing non-precious metal catalysts with high activity and long-term stability to substitute for precious metal catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we report a novel and facile catalyst-N, S co-doped carbon spheres with highly dispersed CoO (CoO@NS-CSs), where biomass glucose spheres act as carbon precursor and H2S, NH3 derived from the decomposition of thiourea not only provide N, S sources but also can etch carbon spheres to produce nanoporous structure. CoO@NS-CSs catalyst exhibits excellent ORR activity with a high onset potential of 0.946 V vs. RHE (reversible hydrogen electrode) and a half-wave potential of 0.821 V vs. RHE through a four-electron pathway in alkaline solution, which is comparable to commercial Pt/C catalyst (onset potential: 0.926 V vs. RHE, half-wave potential: 0.827 V vs. RHE). Furthermore, both the long-term stability and methanol-tolerance of CoO@NS-CSs catalyst are superior to those of commercial Pt/C catalyst. The excellent ORR performance of CoO@NS-CSs catalyst can be attributed to its micro-mesopore structure, high specific surface area (667 m2 g-1), and highly dispersed CoO. This work manifests that the obtained CoO@NS-CSs catalyst is promising to be applied to fuel cells.

  9. On the Concentration Gradient across a Spherical Source Washed by Slow Flow

    PubMed Central

    Jaffe, Lionel

    1965-01-01

    A model has been numerically analyzed to help interpret the orienting effects of flow upon cells. The model is a sphere steadily and uniformly emitting a diffusible stuff into a medium otherwise free of it and moving past with Stokes flow. Its properties depend primarily upon the Peclet number, Pe, equal to a · v∞/D, i.e., the sphere's radius, a, times the free stream speed, v∞, over the stuff's diffusion constant, D. As Pe rises, and washing becomes more effective, the average surface concentration, C̄s a falls (Figs. 2 and 5) and the residual material becomes relatively concentrated on the sphere's lee pole (Figs. 2 and 4). Specifically, as Pe rises from 0.1 to 1, the relative concentration gradient, G, rises from 0.7 to 5.0 per cent and to the point where it is rising at about 8 per cent per decade; by Pe 1000, G = 22.1 per cent. From Pe 1 through 1000, G/(1 - C̄s a), or the gradient per concentration deficiency remains at about 26 per cent suggesting that G approaches a ceiling of about 26 per cent. Also from Pe 1 through 1000, the average mass transfer co-efficient nearly equals that previously calculated for spheres maintaining constant surface concentration instead of flux. The complete differential equation without approximations, the Gauss-Seidel method, and an approximation for the outer boundary condition were used. PMID:14268954

  10. Security Analysis of DTN Architecture and Bundle Protocol Specification for Space-Based Networks

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2009-01-01

    A Delay-Tolerant Network (DTN) Architecture (Request for Comment, RFC-4838) and Bundle Protocol Specification, RFC-5050, have been proposed for space and terrestrial networks. Additional security specifications have been provided via the Bundle Security Specification (currently a work in progress as an Internet Research Task Force internet-draft) and, for link-layer protocols applicable to Space networks, the Licklider Transport Protocol Security Extensions. This document provides a security analysis of the current DTN RFCs and proposed security related internet drafts with a focus on space-based communication networks, which is a rather restricted subset of DTN networks. Note, the original focus and motivation of DTN work was for the Interplanetary Internet . This document does not address general store-and-forward network overlays, just the current work being done by the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) Space Internetworking Services Area (SIS) - DTN working group under the DTN and Bundle umbrellas. However, much of the analysis is relevant to general store-and-forward overlays.

  11. 33 CFR 101.405 - Maritime Security (MARSEC) Directives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Maritime Security (MARSEC... SECURITY MARITIME SECURITY MARITIME SECURITY: GENERAL Control Measures for Security § 101.405 Maritime... necessary to respond to a threat assessment or to a specific threat against the maritime elements of the...

  12. Security auditing: a prescription for keeping protection programs healthy.

    PubMed

    Luizzo, Anthony

    2010-01-01

    The different aspects of security auditing and the role of the security auditor is explained in detail by the author in this primer for security professionals with specific advice on what should be included in a security audit report.

  13. Biomolecule-assisted construction of cadmium sulfide hollow spheres with structure-dependent photocatalytic activity.

    PubMed

    Wei, Chengzhen; Zang, Wenzhe; Yin, Jingzhou; Lu, Qingyi; Chen, Qun; Liu, Rongmei; Gao, Feng

    2013-02-25

    In this study, we report the synthesis of monodispersive solid and hollow CdS spheres with structure-dependent photocatalytic abilities for dye photodegradation. The monodispersive CdS nanospheres were constructed with the assistance of the soulcarboxymthyi chitosan biopolymer under hydrothermal conditions. The solid CdS spheres were corroded by ammonia to form hollow CdS nanospheres through a dissolution-reprecipitation mechanism. Their visible-light photocatalytic activities were investigated, and the results show that both the solid and the hollow CdS spheres have visible-light photocatalytic abilities for the photodegradation of dyes. The photocatalytic properties of the CdS spheres were demonstrated to be structure dependent. Although the nanoparticles comprising the hollow spheres have larger sizes than those comprising the solid spheres, the hollow CdS spheres have better photocatalytic performances than the solid CdS spheres, which can be attributed to the special hollow structure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A Formal Specification and Verification Method for the Prevention of Denial of Service in Ada Services

    DTIC Science & Technology

    1988-03-01

    Mechanism; Computer Security. 16. PRICE CODE 17. SECURITY CLASSIFICATION IS. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMrrATION OF ABSTRACT...denial of service. This paper assumes that the reader is a computer science or engineering professional working in the area of formal specification and...recovery from such events as deadlocks and crashes can be accounted for in the computation of the waiting time for each service in the service hierarchy

  15. Planetary Education and Outreach Using the NOAA Science on a Sphere

    NASA Technical Reports Server (NTRS)

    Simon-Miller, A. A.; Williams, D. R.; Smith, S. M.; Friedlander, J. S.; Mayo, L. A.; Clark, P. E.; Henderson, M. A.

    2011-01-01

    Science On a Sphere (SOS) is a large visualization system, developed by the National Oceanic and Atmospheric Administration (NOAH), that uses computers running Redhat Linux and four video projectors to display animated data onto the outside of a sphere. Said another way, SOS is a stationary globe that can show dynamic, animated images in spherical form. Visualization of cylindrical data maps show planets, their atmosphere, oceans, and land, in very realistic form. The SOS system uses 4 video projectors to display images onto the sphere. Each projector is driven by a separate computer, and a fifth computer is used to control the operation of the display computers. Each computer is a relatively powerful PC with a high-end graphics card. The video projectors have native XGA resolution. The projectors are placed at the corners of a 30' x 30' square with a 68" carbon fiber sphere suspended in the center of the square. The equator of the sphere is typically located 86" off the floor. SOS uses common image formats such as JPEG, or TIFF in a very specific, but simple form; the images are plotted on an equatorial cylindrical equidistant projection, or as it is commonly known, a latitude/longitude grid, where the image is twice as wide as it is high (rectangular). 2048x] 024 is the minimum usable spatial resolution without some noticeable pixelation. Labels and text can be applied within the image, or using a timestamp-like feature within the SOS system software. There are two basic modes of operation for SOS: displaying a single image or an animated sequence of frames. The frame or frames can be setup to rotate or tilt, as in a planetary rotation. Sequences of images that animate through time produce a movie visualization, with or without an overlain soundtrack. After the images are processed, SOS will display the images in sequence and play them like a movie across the entire sphere surface. Movies can be of any arbitrary length, limited mainly by disk space and can be animated at frame rates up to 30 frames per second. Transitions, special effects, and other computer graphics techniques can be added to a sequence through the use of off-the-shelf software, like Final Cut Pro. However, one drawback is that the Sphere cannot be used in the same manner as a flat movie screen; images cannot be pushed to a "side", a highlighted area must be viewable to all sides of the room simultaneously, and some transitions do not work as well as others. We discuss these issues and workarounds in our poster.

  16. Porous Si spheres encapsulated in carbon shells with enhanced anodic performance in lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hui; Wu, Ping, E-mail: zjuwuping@njnu.edu.cn; Shi, Huimin

    2014-07-01

    Highlights: • In situ magnesiothermic reduction route for the formation of porous Si@C spheres. • Unique microstructural characteristics of both porous sphere and carbon matrix. • Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous Si–C micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO{sub 2} spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance inmore » term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g{sup −1} after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g{sup −1}), which is much higher than that of bare Si spheres (430.7 mA h g{sup −1})« less

  17. 48 CFR 53.303-DD-254 - Department of Defense DD Form 254, Contract Security Classification Specification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Department of Defense DD Form 254, Contract Security Classification Specification. 53.303-DD-254 Section 53.303-DD-254 Federal... Illustrations of Forms 53.303-DD-254 Department of Defense DD Form 254, Contract Security Classification...

  18. 48 CFR 53.303-DD-254 - Department of Defense DD Form 254, Contract Security Classification Specification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Department of Defense DD Form 254, Contract Security Classification Specification. 53.303-DD-254 Section 53.303-DD-254 Federal... Illustrations of Forms 53.303-DD-254 Department of Defense DD Form 254, Contract Security Classification...

  19. 48 CFR 53.303-DD-254 - Department of Defense DD Form 254, Contract Security Classification Specification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Department of Defense DD Form 254, Contract Security Classification Specification. 53.303-DD-254 Section 53.303-DD-254 Federal... Illustrations of Forms 53.303-DD-254 Department of Defense DD Form 254, Contract Security Classification...

  20. 48 CFR 53.303-DD-254 - Department of Defense DD Form 254, Contract Security Classification Specification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Department of Defense DD Form 254, Contract Security Classification Specification. 53.303-DD-254 Section 53.303-DD-254 Federal... Illustrations of Forms 53.303-DD-254 Department of Defense DD Form 254, Contract Security Classification...

  1. 48 CFR 53.303-DD-254 - Department of Defense DD Form 254, Contract Security Classification Specification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Department of Defense DD Form 254, Contract Security Classification Specification. 53.303-DD-254 Section 53.303-DD-254 Federal... Illustrations of Forms 53.303-DD-254 Department of Defense DD Form 254, Contract Security Classification...

  2. Interaction of a shock wave with multiple spheres suspended in different arrangements

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Te; Sui, Zhen-Zhen; Shi, Hong-Hui

    2018-03-01

    In this study, the unsteady drag force, Fd, drag coefficient, Cd, and the relevant dynamic behaviors of waves caused by the interaction between a planar incident shock wave and a multi-sphere model are investigated by using imbedded accelerometers and a high-speed Schlieren system. The shock wave is produced in a horizontal 200 mm inner diameter circular shock tube with a 2000 mm × 200 mm × 200 mm transparent test section. The time history of Cd is obtained based on band-block and low-pass Fast Fourier Transformation filtering combined with Savitzky-Golay polynomial smoothing for the measured acceleration. The effects of shock Mach number, Ms, geometry of multi-sphere model, nondimensional distance between sphere centers, H, and channel blockage are analyzed. We find that all time histories of Cd have a similar double-peak shaped main structure. It is due to wave reflection, diffraction, interference, and convergence at different positions of the spheres. The peak Fd increases, whereas the peak Cd decreases monotonically with increasing Ms. The increase of shock strength due to shock focusing by upstream spheres increases the peak Fd of downstream spheres. Both the increase in sphere number and the decrease in distance between spheres promote wave interference between neighboring spheres. As long as the wave interference times are shorter than the peak times, the peak Fd and Cd are higher compared to a single sphere.

  3. The effect of disorder of small spheres on the photonic properties of the inverse binary NaCl-like structure

    NASA Astrophysics Data System (ADS)

    Pattabhiraman, Harini; Dijkstra, Marjolein

    2017-09-01

    Inverse opal structures are experimentally realisable photonic band gap materials. They suffer from the drawback of possessing band gaps that are extremely susceptible to structural disorders. A binary colloidal NaCl lattice, which is also experimentally realisable, is a promising alternative to these opals. In this work, we systematically analyse the effect of structural disorder of the small spheres on the photonic properties of an inverse binary NaCl lattice with a size ratio of 0.30 between the small and large spheres. The types of structural disorders studied include the position of the small spheres in the octahedral void of the large spheres, polydispersity in size of the small spheres, and the fraction of small spheres in the crystal. We find a low susceptibility of the band gap of the inverse NaCl lattice to the disorder of the small spheres.

  4. Identification of tumor-initiating cells derived from two canine rhabdomyosarcoma cell lines

    PubMed Central

    KISHIMOTO, Takuya Evan; YASHIMA, Shoko; NAKAHIRA, Rei; ONOZAWA, Eri; AZAKAMI, Daigo; UJIKE, Makoto; OCHIAI, Kazuhiko; ISHIWATA, Toshiyuki; TAKAHASHI, Kimimasa; MICHISHITA, Masaki

    2017-01-01

    Cancer stem cells or tumor-initiating cells (TICs) are a small subpopulation of cells that have the capacity to self-renew, differentiate and initiate tumors. These cells may function in tumor initiation, aggression and recurrence. Whether spheres derived from canine rhabdomyosarcoma cells have stem cell-like properties is unclear. We induced sphere formation in the canine rhabdomyosarcoma cell lines, CMS-C and CMS-J, and characterized the spheres in vitro and in vivo. Sphere-forming cells were more resistant to vincristine, mitoxantrone and doxorubicin than adherent cells. Xenograft transplantation demonstrated that 1 × 103 sphere-forming cells derived from CMS-C were sufficient for tumor formation. The sphere assay showed that the sphere-forming cells were present in these tumors. These results suggest that the spheres derived from canine rhabdomyosarcoma cells may possess characteristics of TICs. This study provides the foundation for elucidating the contribution of TICs to rhabdomyosarcoma tumorigenesis. PMID:28529244

  5. Identification of tumor-initiating cells derived from two canine rhabdomyosarcoma cell lines.

    PubMed

    Kishimoto, Takuya Evan; Yashima, Shoko; Nakahira, Rei; Onozawa, Eri; Azakami, Daigo; Ujike, Makoto; Ochiai, Kazuhiko; Ishiwata, Toshiyuki; Takahashi, Kimimasa; Michishita, Masaki

    2017-07-07

    Cancer stem cells or tumor-initiating cells (TICs) are a small subpopulation of cells that have the capacity to self-renew, differentiate and initiate tumors. These cells may function in tumor initiation, aggression and recurrence. Whether spheres derived from canine rhabdomyosarcoma cells have stem cell-like properties is unclear. We induced sphere formation in the canine rhabdomyosarcoma cell lines, CMS-C and CMS-J, and characterized the spheres in vitro and in vivo. Sphere-forming cells were more resistant to vincristine, mitoxantrone and doxorubicin than adherent cells. Xenograft transplantation demonstrated that 1 × 10 3 sphere-forming cells derived from CMS-C were sufficient for tumor formation. The sphere assay showed that the sphere-forming cells were present in these tumors. These results suggest that the spheres derived from canine rhabdomyosarcoma cells may possess characteristics of TICs. This study provides the foundation for elucidating the contribution of TICs to rhabdomyosarcoma tumorigenesis.

  6. In vitro and in vivo study of the application of volvox spheres to co-culture vehicles in liver tissue engineering.

    PubMed

    Chang, Siou Han; Huang, Han Hsiang; Kang, Pei Leun; Wu, Yu Chian; Chang, Ming-Huang; Kuo, Shyh Ming

    2017-11-01

    Volvox sphere is a biomimetic concept of a natural Volvox, wherein a large outer sphere contains smaller inner spheres, which can encapsulate cells and provide a double-layer three-dimensional environment for culturing cells. This study simultaneously encapsulated rat mesenchymal stem cells (MSCs) and AML12 hepatocytes in volvox spheres and extensively evaluated the effects of various culturing modes on cell functions and fates. The results showed that compared with a static flask culture, MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin (ALB) expression and a 2.5-fold increase in cytokeratin 18 expression in a dynamic bioreactor. Moreover, the restorative effects of volvox spheres encapsulating cells on retrorsine-exposed CCl 4 -induced liver injuries in rats were evaluated. The data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of the new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl 4 . Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury. In this study, we used a volvox sphere, which is a unique design that mimics the natural Volvox, that consists of a large outer sphere that contains smaller inner spheres, which provide a three-dimensional environment to culture cells. The purpose of this study is to co-culture mesenchymal stem cells (MSCs) and AML12 liver cells in volvox spheres and evaluate two different culture methods, dynamic bioreactor and static culture flask,on the cultured cells. In addition, we aimed to evaluate the restorative effects of volvox spheres encapsulating MSCs and/or AML12 liver cells on rats with retrorsine-exposed CCl 4 -induced liver injuries. The results showed that MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin expression and a 2.5-fold increase in cytokeratin 18 expression ina dynamic bioreactor. Moreover, the data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl 4 . Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Measurement of neutron spectra in the AWE workplace using a Bonner sphere spectrometer.

    PubMed

    Danyluk, Peter

    2010-12-01

    A Bonner sphere spectrometer has been used to measure the neutron spectra in eight different workplace areas at AWE (Atomic Weapons Establishment). The spectra were analysed by the National Physical Laboratory using their principal unfolding code STAY'SL and the results were also analysed by AWE using a bespoke parametrised unfolding code. The bespoke code was designed specifically for the AWE workplace and is very simple to use. Both codes gave results, in good agreement. It was found that the measured fluence rate varied from 2 to 70 neutrons cm⁻² s⁻¹ (± 10%) and the ambient dose equivalent H*(10) varied from 0.5 to 57 µSv h⁻¹ (± 20%). A detailed description of the development and use of the bespoke code is presented.

  8. Selective encapsulation by Janus particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei, E-mail: wel208@mrl.ucsb.edu; Ruth, Donovan; Gunton, James D.

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored,more » as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.« less

  9. Estimated critical conditions for UO{sub 2}F{sub 2}--H{sub 2}O systems in fully water-reflected spherical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, W.C.; Turner, J.C.

    1992-12-01

    The purpose of this report is to document reference calculations performed using the SCALE-4.0 code system to determine the critical parameters of UO{sub 2}F{sub 2}-H{sub 2}O spheres. The calculations are an extension of those documented in ORNL/CSD/TM-284. Specifically, the data for low-enriched UO{sub 2}F{sub 2}-H{sub 2}O spheres have been extended to highly enriched uranium. These calculations, together with those reported in ORNL/CSD/TM-284, provide a consistent set of critical parameters (k{sub {infinity}}, volume, mass, mass of water) for UO{sub 2}F{sub 2} and water over the full range of enrichment and moderation ratio.

  10. Fe-Catalyzed Synthesis of Porous Carbons Spheres with High Graphitization Degree for High-Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Shi, Hongwei; Zhuo, Xin; Hu, Yalin

    2017-10-01

    We have developed a facile and efficient Fe-catalyzed method for fabrication of porous carbons spheres with high graphitization degree (GNPCs) using glucose as carbon precursor at relatively low carbonization temperature. GNPCs not only have relatively large accessible ion surface area to accommodate greater capacity but also high graphitization degree to accelerate ion diffusion. As a typical application, we demonstrate that GNPCs exhibit excellent electrochemical performance for use in supercapacitors, with high specific capacity of 150.6 F g-1 at current density of 1 A g-1 and good rate capability and superior cycling stability over 10,000 cycles, confirming their potential application for energy storage. Moreover, it is believed that this method offers a new strategy for synthesis of porous carbons with high graphitization degree.

  11. [Forensic-psychiatric criteria for evaluating the capacity to take decisions freely and consciously and to express one's will].

    PubMed

    Kocur, Józef; Trendak, Wiesława

    2009-01-01

    The report presents the current views on the development, course, as well as mechanisms underlying some disorders in the sphere of motivational processes, and especially in the sphere of will expression, aspirations and actions. The authors also analyze various aspects of the effect that is exerted by such disorders on such mental and psychosomatic functions that determine the validity of will declaration. The report emphasizes the necessity for separate evaluation of the ability to consciously or freely express will and reach decisions. Another important issue discussed in the paper is the prerequisite of including the effect of a given specific legal situation and factors other than psychopathological that can modify motivation, behavior and actions undertaken by the evaluated person.

  12. Synthesis of nano grade hollow silica sphere via a soft template method.

    PubMed

    Tsai, Ming-Shyong; Li, Miao Ju; Yen, Fu-Hsu

    2008-06-01

    The nano grade hollow silica sphere (HSS) was synthesized by a novel soft template method. We found that the precipitate of aluminate had a porous structure that could be the soft template for HSS. After mixing the colloidal silica with the aluminate precipitate, the bubble trapped in this porous structure could form the nano grade HSS. The aluminate precipitate was removed by adjusting the pH of the slurry to approximately 1. The outside diameter, the specific surface, and the mean pore size diameter of the forming HSS were 60-90 nm, 571 m2/g, and 3 nm, respectively. The formed HSS was collected by modifying the surface with Si(OCH3)3CHCH2 (VTMO) and then filtrating the precipitated gel in the n-butanol and ethanol solvent system.

  13. Active Optics: stress polishing of toric mirrors for the VLT SPHERE adaptive optics system.

    PubMed

    Hugot, Emmanuel; Ferrari, Marc; El Hadi, Kacem; Vola, Pascal; Gimenez, Jean Luc; Lemaitre, Gérard R; Rabou, Patrick; Dohlen, Kjetil; Puget, Pascal; Beuzit, Jean Luc; Hubin, Norbert

    2009-05-20

    The manufacturing of toric mirrors for the Very Large Telescope-Spectro-Polarimetric High-Contrast Exoplanet Research instrument (SPHERE) is based on Active Optics and stress polishing. This figuring technique allows minimizing mid and high spatial frequency errors on an aspherical surface by using spherical polishing with full size tools. In order to reach the tight precision required, the manufacturing error budget is described to optimize each parameter. Analytical calculations based on elasticity theory and finite element analysis lead to the mechanical design of the Zerodur blank to be warped during the stress polishing phase. Results on the larger (366 mm diameter) toric mirror are evaluated by interferometry. We obtain, as expected, a toric surface within specification at low, middle, and high spatial frequencies ranges.

  14. Red mud carbonation using carbon dioxide: Effects of carbonate and calcium ions on goethite surface properties and settling.

    PubMed

    Liang, Gaojie; Chen, Wenmi; Nguyen, Anh V; Nguyen, Tuan A H

    2018-05-01

    Carbonation using CO 2 appears as an attractive solution for disposing of red mud suspensions, an aluminum industry hazardous waste since it also offers an option for CO 2 sequestration. Here we report the novel findings that CO 3 2- together with Ca 2+ can significantly affect the surface properties and settling of goethite, a major component of red mud. Specifically, their effects on the goethite surface chemistry, colloidal interaction forces and settling in alkaline solutions are investigated. The surface potential becomes more negative by the formation of carbonate inner-sphere complexes on goethite surface. It is consistent with the strong repulsion, decreased particle size and settling velocity with increased carbonate concentrations as measured by atomic force microscopy, particle size analysis, and particle settling. Adding Ca 2+ that forms outer-sphere complexes with pre-adsorbed carbonate changes goethite surface charge negligibly. Changing repulsion to the attraction between goethite surfaces by increasing calcium dosage indicates the surface bridging, in accordance with the increased settling velocity. The adverse effect of carbonate on goethite flocculation is probably due to its specific chemisorption and competition with flocculants. By forming outer-sphere complexes together with the flocculant-calcium bridging effect, calcium ions can eliminate the negative influence of carbonate and improve the flocculation of goethite particles. These findings contribute to a better understanding of goethite particle interaction with salt ions and flocculants in controlling the particle behavior in the handling processes, including the red mud carbonation. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Relating regional characteristics of left atrial shape to presence of scar in patients with atrial fibrillation

    NASA Astrophysics Data System (ADS)

    Sanatkhani, Soroosh; Oladosu, Michael; Chera, Karandeep; Nedios, Sotirios; Menon, Prahlad G.

    2018-03-01

    Pulmonary vein isolation (PVI) is an established procedure for atrial fibrillation (AF) patients. Pre-procedural screening is necessary prior to PVI in order to reduce the likelihood of AF recurrence and improve overall success rate of the procedure. However, current reliable methods to determine AF triggers are invasive. In this paper, we present an approach to relate the regional characteristics of left atrial (LA) shape to existence of low-voltage areas (LVA) which indicate the presence of scar in invasive exams. A cohort of 29 AF patient-specific clinical images were each segmented into 3D surface bodies representing the LA. Iterative closest point based similarity transformation was used to find the best fit sphere to each patient-specific LA and the mean deviation of LA wall to this sphere of best fit was determined using a signed point-to-surface regional distance metric. Regional departure from the best-fit sphere was reduced into a metric of global LA sphericity. Next, the LA was divided into six regions to perform an analysis of regional sphericity. Regional sphericity analysis revealed that sphericity of the inferior-posterior LA region was found to be related to several clinical variables, including a direct correlation with body mass index (BMI) and an inverse correlation with left ventricular ejection fraction (EF), which presents a diseased heart that has been asymmetrically inflated. Our observations therefore demonstrate promise in being leveraged as a non-invasive patient selection tool to increase the success rate of PVI procedures.

  16. Sphericity determination using resonant ultrasound spectroscopy

    DOEpatents

    Dixon, Raymond D.; Migliori, Albert; Visscher, William M.

    1994-01-01

    A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a "best" spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere.

  17. Sphericity determination using resonant ultrasound spectroscopy

    DOEpatents

    Dixon, R.D.; Migliori, A.; Visscher, W.M.

    1994-10-18

    A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a 'best' spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere. 14 figs.

  18. Between butch/femme: On the performance of race, gender, and sexuality in a YouTube web series.

    PubMed

    Day, Faithe

    2017-11-27

    Drawing on a legacy of Black television and film production, Black web series remediate earlier media forms in order to usher in a twenty-first-century revival of indie Black cultural production. Specifically, video sharing and social media platforms operate as a sphere in which content creators and users are afforded unique opportunities to engage with video content and each other on a variety of levels. Focusing on the YouTube media sphere, one can also observe the myriad ways in which the performance of race, gender, and sexuality influences the types of discourse that circulate within these sites. In watching and analyzing Black queer web series on YouTube, I examine how the performance of gender and sexuality by Black queer women within and outside of web series are policed and protected by both community insiders and outsiders. Utilizing an ethnographic framework, which includes a critical discourse analysis of the YouTube comments for the series Between Women, as well as a textual analysis of series content, this project draws conclusions about the role that the politics of pleasure, performance, and the public sphere play in the recognition and/or refusal of queer sexuality within Black communities.

  19. Synthesis and characterization of polylactide/doxorubicin/magnetic nanoparticles composites for drug delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mhlanga, Nikiwe; Ray, Suprakas Sinha; DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, 0001

    Magnetic iron oxide nanoparticles have potential to transform conventional therapeutics, through targeted delivery by external magnetic field modulation. Conventional drug delivery lacks specificity; both normal and infected cells are exposed to toxic drugs. Consequently, the toxicity towards healthy cells leads to detrimental side effects which are formidable. However, iron oxide research in biomedicine has been hindered by their lack of stability. This study reports on the stabilization of iron oxide by polylactide (PLA). Besides affording stable iron oxide, PLA is also good for sustained delivery of the drug. PLA/doxorubicin/magnetic nanoparticles (PLA/DOX/MNPs) spheres were synthesized by solvent evaporation method and DOXmore » anticancer drug was encapsulated. The spheres were characterized using scanning electron microscope, Fourier transform infrared microscope, thermogravimetric analyzer and UV-visible spectroscopy, which ascertained formation of the anticipated spheres and incorporation of DOX. In vitro drug release studies were carried out in both phosphate buffer (pH 7.4) and acetate buffer (pH 4.6) and they showed the same trend in both mediums. Drug release kinetics followed Higuchi model, which proved drug release by diffusion via a diffusion gradient.« less

  20. Determination of surface energies of hot-melt extruded sugar-starch pellets.

    PubMed

    Yeung, Chi-Wah; Rein, Hubert

    2018-02-01

    Hot-melt extruded sugar-starch pellets are an alternative for commercial sugar spheres, but their coating properties remain to be studied. Both the European Pharmcopoeia 8.6 and the United States Pharmacopoeia 40 specify the composition of sugar-starch pellets without giving requirements for the manufacturing process. Due to various fabrication techniques, the physicochemical properties of pellets may differ. Therefore, the adhesion energies of three coating dispersions (sustained, enteric and immediate release) on different types of pellets were investigated. In this context, the surface energies of various kinds of corn starch (normal, waxy, high-amylose) and sucrose pellets were analyzed using the sessile drop method, whereas the surface tensions of the coating dispersions were examined using the pendant drop method. The adhesion forces were calculated from the results of these studies. Furthermore, sugar spheres were characterized in terms of particle size distribution, porosity and specific surface area. An increase of the pellets' sucrose content leads to a more porous surface structure, which gives them an enhanced wetting behavior with coating dispersions. The adhesion energies of extruded sugar-starch pellets are similar to those of commercial sugar spheres, which comply with pharmacopeial requirements. Both types of pellets are equally suited for coating.

  1. Generalized Lorenz equations on a three-sphere

    NASA Astrophysics Data System (ADS)

    Saiki, Yoshitaka; Sander, Evelyn; Yorke, James A.

    2017-06-01

    Edward Lorenz is best known for one specific three-dimensional differential equation, but he actually created a variety of related N-dimensional models. In this paper, we discuss a unifying principle for these models and put them into an overall mathematical framework. Because this family of models is so large, we are forced to choose. We sample the variety of dynamics seen in these models, by concentrating on a four-dimensional version of the Lorenz models for which there are three parameters and the norm of the solution vector is preserved. We can therefore restrict our focus to trajectories on the unit sphere S 3 in ℝ4. Furthermore, we create a type of Poincaré return map. We choose the Poincaré surface to be the set where one of the variables is 0, i.e., the Poincaré surface is a two-sphere S 2 in ℝ3. Examining different choices of our three parameters, we illustrate the wide variety of dynamical behaviors, including chaotic attractors, period doubling cascades, Standard-Map-like structures, and quasiperiodic trajectories. Note that neither Standard-Map-like structure nor quasiperiodicity has previously been reported for Lorenz models.

  2. An Examination of Alternative Multidimensional Scaling Techniques

    ERIC Educational Resources Information Center

    Papazoglou, Sofia; Mylonas, Kostas

    2017-01-01

    The purpose of this study is to compare alternative multidimensional scaling (MDS) methods for constraining the stimuli on the circumference of a circle and on the surface of a sphere. Specifically, the existing MDS-T method for plotting the stimuli on the circumference of a circle is applied, and its extension is proposed for constraining the…

  3. Minorities and the Quest for Human Dignity.

    ERIC Educational Resources Information Center

    de Ortego y Gasca, Felipe

    Distorted images of American minorities are reflected in all spheres of American life, including academic and public policies. Some specific examples include: (1) Harvard's 1922 quota system for Jews, the university's pattern of white supremacy, and bias in its scholarly research; (2) the relocation of Japanese Americans during World War II; (3)…

  4. The University, Democracy and the Public Sphere

    ERIC Educational Resources Information Center

    Holmwood, John

    2017-01-01

    This article takes a historical approach to the rise and fall of the public university, relating its fate to specific developments in public policy. Particular attention will be paid to the United Kingdom since it has developed an explicit drive towards the marketization of higher education in the context of an earlier commitment to public higher…

  5. Analysing "Migrant" Membership Frames through Education Policy Discourse: An Example of Restrictive "Integration" Policy within Europe

    ERIC Educational Resources Information Center

    Dubois-Shaik, Farah

    2014-01-01

    This article proposes combining discourse theory and perspectives on political membership developments in Western European societies. It combines theories and examples of policy discourses about "migrant integration" in the Swiss national context in the sphere of education. This examination aims to deconstruct specific membership framing…

  6. Sexism in Political Thought and Its Refutation: A Schematic Overview.

    ERIC Educational Resources Information Center

    Fox, Siegrun F.

    The document examines Western political thought in terms of women's and men's expected spheres of concern, the proper male and female nature, and the sex-specific allocation of social values. In addition, the author applies her conclusions to contemporary political issues in the United States. Aristotle, Cicero, Aquinas, Rousseau, and Hegel made a…

  7. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane

    PubMed Central

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-01-01

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time. PMID:28429740

  8. Use of the method for addressing the challenges of resources procurement management at a mining enterprise

    NASA Astrophysics Data System (ADS)

    Petrova, T. V.; Strekalov, S. V.; Novichikhin, A. V.

    2017-09-01

    The article is devoted to the analysis of possible application of the total cost of ownership method for the purchase of resources at a mining enterprise. The description of the total cost of ownership method and experience of using this method in other spheres is provided. The article identifies the essential components needed to calculate the total cost of ownership of a resource. Particular attention is paid to the ratio of the price of the purchased resource and the total cost of ownership. To justify the relevance of application of this method at a mining enterprise for resources purchase, the technical and economic conditions of mining enterprises have been analyzed, which are quite specific and force to introduce certain adjustments to the application of the considered method and opens up new possibilities for its use. Specific spheres for application of this method at a mining enterprise are determined. The main result of the study is the proposed practical recommendations for the introduction and extension of the practice of using the method when a mining enterprise purchases resources.

  9. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane

    NASA Astrophysics Data System (ADS)

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-04-01

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time.

  10. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane.

    PubMed

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-04-21

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time.

  11. Sphere based fluid systems

    NASA Technical Reports Server (NTRS)

    Elleman, Daniel D. (Inventor); Wang, Taylor G. (Inventor)

    1989-01-01

    Systems are described for using multiple closely-packed spheres. In one system for passing fluid, a multiplicity of spheres lie within a container, with all of the spheres having the same outside diameter and with the spheres being closely nested in one another to create multiple interstitial passages of a known size and configuration and smooth walls. The container has an inlet and outlet for passing fluid through the interstitial passages formed between the nested spheres. The small interstitial passages can be used to filter out material, especially biological material such as cells in a fluid, where the cells can be easily destroyed if passed across sharp edges. The outer surface of the spheres can contain a material that absorbs a constitutent in the flowing fluid, such as a particular contamination gas, or can contain a catalyst to chemically react the fluid passing therethrough, the use of multiple small spheres assuring a large area of contact of these surfaces of the spheres with the fluid. In a system for storing and releasing a fluid such as hydrogen as a fuel, the spheres can include a hollow shell containing the fluid to be stored, and located within a compressable container that can be compressed to break the shells and release the stored fluid.

  12. Establishment of prostate cancer spheres from a prostate cancer cell line after phenethyl isothiocyanate treatment and discovery of androgen-dependent reversible differentiation between sphere and neuroendocrine cells.

    PubMed

    Chen, Yamei; Cang, Shundong; Han, Liying; Liu, Christina; Yang, Patrick; Solangi, Zeeshan; Lu, Quanyi; Liu, Delong; Chiao, J W

    2016-05-03

    Prostate cancer can transform from androgen-responsive to an androgen-independent phenotype. The mechanism responsible for the transformation remains unclear. We studied the effects of an epigenetic modulator, phenethyl isothiocyanate (PEITC), on the androgen-responsive LNCaP cells. After treatment with PEITC, floating spheres were formed with characteristics of prostate cancer stem cells (PCSC). These spheres were capable of self-renewal in media with and without androgen. They have been maintained in both types of media as long term cultures. Upon androgen deprivation, the adherent spheres differentiated to neuroendocrine cells (NEC) with decreased proliferation, expression of androgen receptor, and PSA. NEC reverse differentiated to spheres when androgen was replenished. The sphere cells expressed surface marker CD44 and had enhanced histone H3K4 acetylation, DNMT1 down-regulation and GSTP1 activation. We hypothesize that PEITC-mediated alteration in epigenomics of LNCaP cells may give rise to sphere cells, whereas reversible androgenomic alterations govern the shuttling between sphere PCSC and progeny NEC. Our findings identify unrecognized properties of prostate cancer sphere cells with multi-potential plasticity. This system will facilitate development of novel therapeutic agents and allow further exploration into epigenomics and androgenomics governing the transformation to hormone refractory prostate cancer.

  13. Human errors and violations in computer and information security: the viewpoint of network administrators and security specialists.

    PubMed

    Kraemer, Sara; Carayon, Pascale

    2007-03-01

    This paper describes human errors and violations of end users and network administration in computer and information security. This information is summarized in a conceptual framework for examining the human and organizational factors contributing to computer and information security. This framework includes human error taxonomies to describe the work conditions that contribute adversely to computer and information security, i.e. to security vulnerabilities and breaches. The issue of human error and violation in computer and information security was explored through a series of 16 interviews with network administrators and security specialists. The interviews were audio taped, transcribed, and analyzed by coding specific themes in a node structure. The result is an expanded framework that classifies types of human error and identifies specific human and organizational factors that contribute to computer and information security. Network administrators tended to view errors created by end users as more intentional than unintentional, while errors created by network administrators as more unintentional than intentional. Organizational factors, such as communication, security culture, policy, and organizational structure, were the most frequently cited factors associated with computer and information security.

  14. Electric field-assisted formation of organically modified hydroxyapatite (ormoHAP) spheres in carboxymethylated gelatin gels.

    PubMed

    Heinemann, C; Heinemann, S; Kruppke, B; Worch, H; Thomas, J; Wiesmann, H P; Hanke, T

    2016-10-15

    A biomimetic strategy was developed in order to prepare organically modified hydroxyapatite (ormoHAP) with spherical shape. The technical approach is based on electric field-assisted migration of calcium ions and phosphate ions into a hydrogel composed of carboxymethylated gelatin. The electric field as well as the carboxymethylation using glucuronic acid (GlcA) significantly accelerates the mineralization process, which makes the process feasible for lab scale production of ormoHAP spheres and probably beyond. A further process was developed for gentle separation of the ormoHAP spheres from the gelatin gel without compromising the morphology of the mineral. The term ormoHAP was chosen since morphological analyses using electron microscopy (SEM, TEM) and element analysis (EDX, FT-IR, XRD) confirmed that carboxymethylated gelatin molecules use to act as organic templates for the formation of nanocrystalline HAP. The hydroxyapatite (HAP) crystals self-organize to form hollow spheres with diameters ranging from 100 to 500nm. The combination of the biocompatible chemical composition and the unique structure of the nanocomposites is considered to be a useful basis for future applications in functionalized degradable biomaterials. A novel bioinspired mineralization process was developed based on electric field-assisted migration of calcium and phosphate ions into biochemically carboxymethylated gelatin acting as organic template. Advantages over conventional hydroxyapatite include particle size distribution and homogeneity as well as achievable mechanical properties of relevant composites. Moreover, specifically developed calcium ion or phosphate ion release during degradation can be useful to adjust the fate of bone cells in order to manipulate remodeling processes. The hollow structure of the spheres can be useful for embedding drugs in the core, encapsulated by the highly mineralized outer shell. In this way, controlled drug release could be achieved, which enables advanced strategies for threating bone-related diseases, e.g. osteoporosis and multiple myeloma. Copyright © 2016. Published by Elsevier Ltd.

  15. Computer Network Security: Best Practices for Alberta School Jurisdictions.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    This paper provides a snapshot of the computer network security industry and addresses specific issues related to network security in public education. The following topics are covered: (1) security policy, including reasons for establishing a policy, risk assessment, areas to consider, audit tools; (2) workstations, including physical security,…

  16. 49 CFR 1548.19 - Security Directives and Information Circulars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Security Directives and Information Circulars... CARRIER SECURITY § 1548.19 Security Directives and Information Circulars. (a) TSA may issue an Information... security measures are necessary to respond to a threat assessment, or to a specific threat against civil...

  17. Long-range Coulomb forces and localized bonds.

    PubMed

    Preiser; Lösel; Brown; Kunz; Skowron

    1999-10-01

    The ionic model is shown to be applicable to all compounds in which the atoms carry a net charge and their electron density is spherically symmetric regardless of the covalent character of the bonding. By examining the electric field generated by an array of point charges placed at the positions of the ions in over 40 inorganic compounds, we show that the Coulomb field naturally partitions itself into localized regions (bonds) which are characterized by the electric flux that links neighbouring ions of opposite charge. This flux is identified with the bond valence, and Gauss' law with the valence-sum rule, providing a secure theoretical foundation for the bond-valence model. The localization of the Coulomb field provides an unambiguous definition of coordination number and our calculations show that, in addition to the expected primary coordination sphere, there are a number of weak bonds between cations and the anions in the second coordination sphere. Long-range Coulomb interactions are transmitted through the crystal by the application of Gauss' law at each of the intermediate atoms. Bond fluxes have also been calculated for compounds containing ions with non-spherical electron densities (e.g. cations with stereoactive lone electron pairs). In these cases the point-charge model continues to describe the distant field, but multipoles must be added to the point charges to give the correct local field.

  18. Evaluating Security Controls Based on Key Performance Indicators and Stakeholder Mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheldon, Frederick T; Abercrombie, Robert K; Mili, Ali

    2008-01-01

    Good security metrics are required to make good decisions about how to design security countermeasures, to choose between alternative security architectures, and to improve security during operations. Therefore, in essence, measurement can be viewed as a decision aid. The lack of sound practical security metrics is severely hampering progress in the development of secure systems. The Cyberspace Security Econometrics System (CSES) offers the following advantages over traditional measurement systems: (1) CSES reflects the variances that exist amongst different stakeholders of the same system. Different stakeholders will typically attach different stakes to the same requirement or service (e.g., a service maymore » be provided by an information technology system or process control system, etc.). (2) For a given stakeholder, CSES reflects the variance that may exist among the stakes she/he attaches to meeting each requirement. The same stakeholder may attach different stakes to satisfying different requirements within the overall system specification. (3) For a given compound specification (e.g., combination(s) of commercial off the shelf software and/or hardware), CSES reflects the variance that may exist amongst the levels of verification and validation (i.e., certification) performed on components of the specification. The certification activity may produce higher levels of assurance across different components of the specification than others. Consequently, this paper introduces the basis, objectives and capabilities for the CSES including inputs/outputs and the basic structural and mathematical underpinnings.« less

  19. On determining specifications and selections of alternative technologies for airport checked-baggage security screening.

    PubMed

    Feng, Qianmei

    2007-10-01

    Federal law mandates that every checked bag at all commercial airports be screened by explosive detection systems (EDS), explosive trace detection systems (ETD), or alternative technologies. These technologies serve as critical components of airport security systems that strive to reduce security risks at both national and global levels. To improve the operational efficiency and airport security, emerging image-based technologies have been developed, such as dual-energy X-ray (DX), backscatter X-ray (BX), and multiview tomography (MVT). These technologies differ widely in purchasing cost, maintenance cost, operating cost, processing rate, and accuracy. Based on a mathematical framework that takes into account all these factors, this article investigates two critical issues for operating screening devices: setting specifications for continuous security responses by different technologies; and selecting technology or combination of technologies for efficient 100% baggage screening. For continuous security responses, specifications or thresholds are used for classifying threat items from nonthreat items. By investigating the setting of specifications on system security responses, this article assesses the risk and cost effectiveness of various technologies for both single-device and two-device systems. The findings provide the best selection of image-based technologies for both single-device and two-device systems. Our study suggests that two-device systems outperform single-device systems in terms of both cost effectiveness and accuracy. The model can be readily extended to evaluate risk and cost effectiveness of multiple-device systems for airport checked-baggage security screening.

  20. Cavitation and radicals drive the sonochemical synthesis of functional polymer spheres

    DOE PAGES

    Narayanan, Badri; Deshmukh, Sanket A.; Shrestha, Lok Kumar; ...

    2016-07-25

    Sonochemical synthesis can lead to a dramatic increase in the kinetics of formation of polymer spheres (templates for carbon spheres) compared to the modified Stober silica method applied to produce analogous polymer spheres. Reactive molecular dynamics simulations of the sonochemical process indicate a significantly enhanced rate of polymer sphere formation starting from resorcinol and formaldehyde precursors. The associated chemical reaction kinetics enhancement due to sonication is postulated to arise from the localized lowering of atomic densities, localized heating, and generation of radicals due to cavitation collapse in aqueous systems. This dramatic increase in reaction rates translates into enhanced nucleation andmore » growth of the polymer spheres. Finally, the results are of broad significance to understanding mechanisms of sonication induced synthesis as well as technologies utilizing polymers spheres.« less

  1. Cavitation and radicals drive the sonochemical synthesis of functional polymer spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, Badri, E-mail: bnarayanan@anl.gov; Deshmukh, Sanket A.; Sankaranarayanan, Subramanian K. R. S., E-mail: ssankaranarayanan@anl.gov

    2016-07-25

    Sonochemical synthesis can lead to a dramatic increase in the kinetics of formation of polymer spheres (templates for carbon spheres) compared to the modified Stöber silica method applied to produce analogous polymer spheres. Reactive molecular dynamics simulations of the sonochemical process indicate a significantly enhanced rate of polymer sphere formation starting from resorcinol and formaldehyde precursors. The associated chemical reaction kinetics enhancement due to sonication is postulated to arise from the localized lowering of atomic densities, localized heating, and generation of radicals due to cavitation collapse in aqueous systems. This dramatic increase in reaction rates translates into enhanced nucleation andmore » growth of the polymer spheres. The results are of broad significance to understanding mechanisms of sonication induced synthesis as well as technologies utilizing polymers spheres.« less

  2. Effect of vaginal spheres and pelvic floor muscle training in women with urinary incontinence: a randomized, controlled trial.

    PubMed

    Porta-Roda, Oriol; Vara-Paniagua, Jesús; Díaz-López, Miguel A; Sobrado-Lozano, Pilar; Simó-González, Marta; Díaz-Bellido, Paloma; Reula-Blasco, María C; Muñoz-Garrido, Francisco

    2015-08-01

    To compare the efficacy and safety of Kegel exercises performed with or without, vaginal spheres as treatment for women with urinary incontinence. Multicentre parallel-group, open, randomized controlled trial. Women were allocated to either a pelvic floor muscle-training program consisting of Kegel exercises performed twice daily, 5 days/week at home, over 6 months with vaginal spheres, or to the same program without spheres. The primary endpoint was women's report of urinary incontinence at 6 months using the International Consultation on Incontinence Questionnaire-Short Form (ICIQ-UI-SF). Secondary outcome measures were the 1 hr pad-test, King's Health Questionnaire (KHQ) and a five-point Likert scale for subjective evaluation. Adherence was measured with the Morisky-Green test. Thirty-seven women were randomized to the spheres group and 33 to the control group. The primary endpoint was evaluated in 65 women (35 in the spheres group vs. 30 controls). ICIQ-UI-SF results improved significantly at 1-month follow-up in the spheres group (P < 0.01) and at 6 months in the controls. The 1 hr pad-test improved in the spheres group but not in the control group. No significant differences were found in the KHQ results or in the subjective evaluation of efficacy and safety. Adherence was higher in the spheres group but differences were not significant. Mild transient side effects were reported in four patients in the spheres group and one in the control group. Both treatments improved urinary incontinence but women who performed the exercises with vaginal spheres showed an earlier improvement. Vaginal spheres were well tolerated and safe. © 2014 Wiley Periodicals, Inc.

  3. 45 CFR 164.306 - Security standards: General rules.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... RELATED REQUIREMENTS SECURITY AND PRIVACY Security Standards for the Protection of Electronic Protected Health Information § 164.306 Security standards: General rules. (a) General requirements. Covered... covered entity to reasonably and appropriately implement the standards and implementation specifications...

  4. 45 CFR 164.306 - Security standards: General rules.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... RELATED REQUIREMENTS SECURITY AND PRIVACY Security Standards for the Protection of Electronic Protected Health Information § 164.306 Security standards: General rules. (a) General requirements. Covered... and appropriately implement the standards and implementation specifications as specified in this...

  5. Network Security Validation Using Game Theory

    NASA Astrophysics Data System (ADS)

    Papadopoulou, Vicky; Gregoriades, Andreas

    Non-functional requirements (NFR) such as network security recently gained widespread attention in distributed information systems. Despite their importance however, there is no systematic approach to validate these requirements given the complexity and uncertainty characterizing modern networks. Traditionally, network security requirements specification has been the results of a reactive process. This however, limited the immunity property of the distributed systems that depended on these networks. Security requirements specification need a proactive approach. Networks' infrastructure is constantly under attack by hackers and malicious software that aim to break into computers. To combat these threats, network designers need sophisticated security validation techniques that will guarantee the minimum level of security for their future networks. This paper presents a game-theoretic approach to security requirements validation. An introduction to game theory is presented along with an example that demonstrates the application of the approach.

  6. 48 CFR 3025.7002-3 - Specific application of trade agreements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Specific application of trade agreements. 3025.7002-3 Section 3025.7002-3 Federal Acquisition Regulations System DEPARTMENT OF HOMELAND SECURITY, HOMELAND SECURITY ACQUISITION REGULATION (HSAR) SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION 3025.7002-3 Specific application of...

  7. 48 CFR 3025.7002-3 - Specific application of trade agreements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 7 2012-10-01 2012-10-01 false Specific application of trade agreements. 3025.7002-3 Section 3025.7002-3 Federal Acquisition Regulations System DEPARTMENT OF HOMELAND SECURITY, HOMELAND SECURITY ACQUISITION REGULATION (HSAR) SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION 3025.7002-3 Specific application of...

  8. 48 CFR 3025.7002-3 - Specific application of trade agreements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true Specific application of trade agreements. 3025.7002-3 Section 3025.7002-3 Federal Acquisition Regulations System DEPARTMENT OF HOMELAND SECURITY, HOMELAND SECURITY ACQUISITION REGULATION (HSAR) SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION 3025.7002-3 Specific application of...

  9. 48 CFR 3025.7002-3 - Specific application of trade agreements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false Specific application of trade agreements. 3025.7002-3 Section 3025.7002-3 Federal Acquisition Regulations System DEPARTMENT OF HOMELAND SECURITY, HOMELAND SECURITY ACQUISITION REGULATION (HSAR) SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION 3025.7002-3 Specific application of...

  10. iSAP: Interactive Sparse Astronomical Data Analysis Packages

    NASA Astrophysics Data System (ADS)

    Fourt, O.; Starck, J.-L.; Sureau, F.; Bobin, J.; Moudden, Y.; Abrial, P.; Schmitt, J.

    2013-03-01

    iSAP consists of three programs, written in IDL, which together are useful for spherical data analysis. MR/S (MultiResolution on the Sphere) contains routines for wavelet, ridgelet and curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and Independent Component Analysis on the Sphere. MR/S has been designed for the PLANCK project, but can be used for many other applications. SparsePol (Polarized Spherical Wavelets and Curvelets) has routines for polarized wavelet, polarized ridgelet and polarized curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and blind source separation on the Sphere. SparsePol has been designed for the PLANCK project. MS-VSTS (Multi-Scale Variance Stabilizing Transform on the Sphere), designed initially for the FERMI project, is useful for spherical mono-channel and multi-channel data analysis when the data are contaminated by a Poisson noise. It contains routines for wavelet/curvelet denoising, wavelet deconvolution, multichannel wavelet denoising and deconvolution.

  11. Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 2: Analysis of the ERBE integrating sphere ground calibration

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Taylor, Deborah B.

    1987-01-01

    An explicit solution of the spectral radiance leaving an arbitrary point on the wall of a spherical cavity with diffuse reflectivity is obtained. The solution is applicable to spheres with an arbitrary number of openings of any size and shape, an arbitrary number of light sources with possible non-diffuse characteristics, a non-uniform sphere wall temperature distribution, non-uniform and non-diffuse sphere wall emissivity and non-uniform but diffuse sphere wall spectral reflectivity. A general measurement equation describing the output of a sensor with a given field of view, angular and spectral response measuring the sphere output is obtained. The results are applied to the Earth Radiation Budget Experiment (ERBE) integrating sphere. The sphere wall radiance uniformity, loading effects and non-uniform wall temperature effects are investigated. It is shown that using appropriate interpretation and processing, a high-accuracy short-wave calibration of the ERBE sensors can be achieved.

  12. Ceramic Spheres From Cation Exchange Beads

    NASA Technical Reports Server (NTRS)

    Dynys, F. W.

    2003-01-01

    Porous ZrO2 and hollow TiO2 spheres were synthesized from a strong acid cation exchange resin. Spherical cation exchange beads, polystyrene based polymer, were used as a morphological-directing template. Aqueous ion exchange reaction was used to chemically bind (ZrO)(2+) ions to the polystyrene structure. The pyrolysis of the polystyrene at 600 C produces porous ZrO2 spheres with a surface area of 24 sq m/g with a mean sphere size of 42 microns. Hollow TiO2 spheres were synthesized by using the beads as a micro-reactor. A direct surface reaction - between titanium isopropoxide and the resin beads forms a hydrous TiO2 shell around the polystyrene core. The pyrolysis of the polystyrene core at 600 C produces hollow anatase spheres with a surface area of 42 sq m/g with a mean sphere size of 38 microns. The formation of ceramic spheres was studied by XRD, SEM and B.E.T. nitrogen adsorption measurements.

  13. Simulations of two sedimenting-interacting spheres with different sizes and initial configurations using immersed boundary method

    NASA Astrophysics Data System (ADS)

    Liao, Chuan-Chieh; Hsiao, Wen-Wei; Lin, Ting-Yu; Lin, Chao-An

    2015-06-01

    Numerical investigations are carried out for the drafting, kissing and tumbling (DKT) phenomenon of two freely falling spheres within a long container by using an immersed-boundary method. The method is first validated with flows induced by a sphere settling under gravity in a small container for which experimental data are available. The hydrodynamic interactions of two spheres are then studied with different sizes and initial configurations. When a regular sphere is placed below the larger one, the duration of kissing decreases in pace with the increase in diameter ratio. On the other hand, the time duration of the kissing stage increases in tandem with the increase in diameter ratio as the large sphere is placed below the regular one, and there is no DKT interactions beyond threshold diameter ratio. Also, the gap between homogeneous spheres remains constant at the terminal velocity, whereas the gaps between the inhomogeneous spheres increase due to the differential terminal velocity.

  14. Beyond-proximity-force-approximation Casimir force between two spheres at finite temperature

    NASA Astrophysics Data System (ADS)

    Bimonte, Giuseppe

    2018-04-01

    A recent experiment [J. L. Garrett, D. A. T. Somers, and J. N. Munday, Phys. Rev. Lett. 120, 040401 (2018), 10.1103/PhysRevLett.120.040401] measured for the first time the gradient of the Casimir force between two gold spheres at room temperature. The theoretical analysis of the data was carried out using the standard proximity force approximation (PFA). A fit of the data, using a parametrization of the force valid for the sphere-plate geometry, was used by the authors to place a bound on deviations from PFA. Motivated by this work, we compute the Casimir force between two gold spheres at finite temperature. The semianalytic formula for the Casimir force that we construct is valid for all separations, and can be easily used to interpret future experiments in both the sphere-plate and sphere-sphere configurations. We describe the correct parametrization of the corrections to PFA for two spheres that should be used in data analysis.

  15. Development and fabrication of insulator seals for thermionic diodes

    NASA Technical Reports Server (NTRS)

    Poirier, V. L.

    1972-01-01

    Eight different types of cermet seals for thermionic diodes were investigated: (1) 1 micron Al2O3 with Nb spheres; (2) 200 A Al2O3 with Nb spheres; (3) 1 micron Al2O3 with Nb 1% Zr spheres; (4) 200 A Al2O3 with Nb 1% Zr spheres; (5) Pure Y2O3 with Nb 1% Zr spheres; (6) Y2O3 3% ZrO2 with Nb 1% Zr spheres; (7) Y2O3 10% ZrO2 with Nb 1% Zr spheres; and (8) ZrO2 12% Y2O3 with Nb 1% Zr spheres. Investigations were made to determine the most favorable fabrication techniques and the effect of the bonding cycle, (length of bonding time and shutdown sequences). The analysis of the seals included tensile test, vacuum test, electrical test and metallurgical examination. At the conclusion of the development phase, 36 seals were fabricated for delivery for evaluation.

  16. Carbonaceous spheres—an unusual template for solid metal oxide mesoscale spheres: Application to ZnO spheres

    NASA Astrophysics Data System (ADS)

    Patrinoiu, Greta; Calderón-Moreno, Jose Maria; Culita, Daniela C.; Birjega, Ruxandra; Ene, Ramona; Carp, Oana

    2013-06-01

    A green template route for the synthesis of mesoscale solid ZnO spheres was ascertained. The protocol involves a double coating of the carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. The composites were characterized by FTIR spectroscopy, thermal analysis, scanning electron microscopy while the obtained ZnO spheres by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, N2 adsorption-desorption isotherms and photoluminescence investigations. A growth mechanism of the solid spheres is advanced based on these results. While the spheres' diameters and the mean size values of ZnO are independent on deposition order, the surface area and the external porosity are fairly dependent. The photoluminescence measurements showed interesting emission features, with emission bands in the violet to orange region. The spheres present high photocatalytical activity towards the degradation of phenol under UV irradiation, the main reaction being its mineralization.

  17. [Topical issues of biological safety under current conditions. Part 3. Scientific provision for the national regulation of the biological safety framework in its broad interpretation].

    PubMed

    Onishchenko, G G; Smolensky, V Yu; Ezhlova, E B; Demina, Yu V; Toporkov, V P; Toporkov, A V; Lyapin, M N; Kutyrev, V V

    2014-01-01

    Consequent of investigation concerned with biological safety (BS) framework development in its broad interpretation, reflected in the Russian Federation State Acts, identified have been conceptual entity parameters of the up-to-date broad interpretation of BS, which have formed a part of the developed by the authors system for surveillance (prophylaxis, localization, indication, identification, and diagnostics) and control (prophylaxis, localization, and response/elimination) over the emergency situations of biological (sanitary-epidemiological) character. The System functionality is activated through supplying the content with information data which are concerned with monitoring and control of specific internal and external threats in the sphere of BS provision fixed in the Supplement 2 of the International Health Regulations (IHR, 2005), and with the previously characterized nomenclature of hazardous biological factors. The system is designed as a network-based research-and-practice tool for evaluation of the situation in the sphere of BS provision, as well as assessment of efficacy of management decision making as regards BS control and proper State policy implementation. Most of the system elements either directly or indirectly relate to the scope of activities conducted by Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human Welfare, being substantial argument for allocating coordination functions in the sphere of BS provision to this government agency and consistent with its function as the State Coordinator on IHR (2005). The data collected serve as materials to Draft Federal Law "Concerning biological safety provision of the population".

  18. Active Control of Vortex Induced Vibrations of a Tethered Sphere in a Uniform Air Flow

    NASA Astrophysics Data System (ADS)

    van Hout, Rene; Greenblatt, David; Zvi Katz, Amit

    2011-11-01

    VIV of two heavy tethered spheres (D = 40 mm, m* = msphere/ ρfVsphere = 21 and 67, L* = L / D = 2.50) were studied in a wind tunnel under uniform free stream velocities up to U* = U /fn D = 15.9, with and without acoustic control. Control was achieved using two speakers mounted on either side of the spheres and driven in-phase at f= 35Hz (f* = 22.3). In the non-controlled case, the bifurcation map of transverse sphere oscillation amplitude, Ay, showed stationary motion as well as periodic and non-stationary oscillations with increasing U*. For m* = 21, Aymax was about twice as large as for m* = 67. Acoustic control dampened Aymax in the periodic region (m* = 67) and increased Aymax in the non-stationary region for both spheres. Sphere boundary layer dynamics in the three different bifurcation regions were studied using time resolved PIV with a horizontal laser sheet positioned at the center of the sphere. The field of view was 55 × 55 mm2 containing one quarter of the sphere. Results will be presented on the vortex dynamics near the sphere's surface with and without acoustic control.

  19. Controllable in situ synthesis of epsilon manganese dioxide hollow structure/RGO nanocomposites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Lin, Mei; Chen, Bolei; Wu, Xiao; Qian, Jiasheng; Fei, Linfeng; Lu, Wei; Chan, Lai Wa Helen; Yuan, Jikang

    2016-01-01

    Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the electroactive surface area and improve the electrical conductivity, thus further facilitating the charge transport. The MnO2HS/RGO composite exhibits a high capacitance of 272 F g-1 at 3 A g-1 (92% retention) even after 1000 cycles. The prominent electrochemical performance might be attributed to the combination of the pseudo-capacitance of the MnO2 nanospheres with a hollow structure and to the good electrical conductivity of the RGO sheets. This work explores a new concept in designing metal oxides/RGO composites as electrode materials.Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the electroactive surface area and improve the electrical conductivity, thus further facilitating the charge transport. The MnO2HS/RGO composite exhibits a high capacitance of 272 F g-1 at 3 A g-1 (92% retention) even after 1000 cycles. The prominent electrochemical performance might be attributed to the combination of the pseudo-capacitance of the MnO2 nanospheres with a hollow structure and to the good electrical conductivity of the RGO sheets. This work explores a new concept in designing metal oxides/RGO composites as electrode materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07900d

  20. SPHERES HALO

    NASA Image and Video Library

    2017-06-23

    iss052e006482 (6/23/2017) --- Astronaut Peggy Whitson is photographed during a test session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Halo investigation in the Kibo module. The SPHERES Halo investigation studies the possibility of launching several separate components and then attaching them once they are in space. The investigation upgrades the International Space Station’s fleet of SPHERES to enable each SPHERE to communicate with six external objects at the same time, testing new control and remote assembly methods.

  1. Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Mario Ivan; Drumm, Clifton R.

    Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.

  2. Eddy currents in a conducting sphere

    NASA Technical Reports Server (NTRS)

    Bergman, John; Hestenes, David

    1986-01-01

    This report analyzes the eddy current induced in a solid conducting sphere by a sinusoidal current in a circular loop. Analytical expressions for the eddy currents are derived as a power series in the vectorial displacement of the center of the sphere from the axis of the loop. These are used for first order calculations of the power dissipated in the sphere and the force and torque exerted on the sphere by the electromagnetic field of the loop.

  3. The electromagnetic radiation from simple sources in the presence of a homogeneous dielectric sphere

    NASA Technical Reports Server (NTRS)

    Mason, V. B.

    1973-01-01

    In this research, the effect of a homogeneous dielectric sphere on the electromagnetic radiation from simple sources is treated as a boundary value problem, and the solution is obtained by the technique of dyadic Green's functions. Exact representations of the electric fields in the various regions due to a source located inside, outside, or on the surface of a dielectric sphere are formulated. Particular attention is given to the effect of sphere size, source location, dielectric constant, and dielectric loss on the radiation patterns and directivity of small spheres (less than 5 wavelengths in diameter) using the Huygens' source excitation. The computed results are found to closely agree with those measured for waveguide-excited plexiglas spheres. Radiation patterns for an extended Huygens' source and for curved electric dipoles located on the sphere's surface are also presented. The resonance phenomenon associated with the dielectric sphere is studied in terms of the modal representation of the radiated fields. It is found that when the sphere is excited at certain frequencies, much of the energy is radiated into the sidelobes. The addition of a moderate amount of dielectric loss, however, quickly attenuates this resonance effect. A computer program which may be used to calculate the directivity and radiation pattern of a Huygens' source located inside or on the surface of a lossy dielectric sphere is listed.

  4. Delivery of chemotherapeutics using spheres made of bioengineered spider silks derived from MaSp1 and MaSp2 proteins.

    PubMed

    Jastrzebska, Katarzyna; Florczak, Anna; Kucharczyk, Kamil; Lin, Yinnan; Wang, Qin; Mackiewicz, Andrzej; Kaplan, David L; Dams-Kozlowska, Hanna

    2018-02-01

    Analysis of the properties and chemotherapeutics delivery potential of spheres made of bioengineered spider silks MS1 and MS2. MS1 and MS2 derived from Nephila clavipes dragline silks - MaSp1 and MaSp2, respectively - formed spheres that were compared in terms of physicochemical properties, cytotoxicity and loading/release of chemotherapeutics. MS2 spheres were more dispersed, smaller, of solid core, of higher beta-sheet structure content, and of opposite (negative) charge than MS1 spheres. Preloaded MS2 showed greater applicability for mitoxantrone, while postloaded for etoposide delivery compared with MS1 spheres. However, MS1 spheres were a better choice for doxorubicin delivery than MS2. Bioengineered silks can be tailored to develop a system with optimal drug loading and release properties.

  5. 75 FR 1070 - Cargo Securing Methods for Packages in Transport Vehicles or Freight Containers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2009-1079] Cargo Securing Methods for... for comments. SUMMARY: The Coast Guard seeks comments from the public on methods for securing cargo in... proper condition for transportation. Currently, the specific method for securing cargo is left to the...

  6. Antiterrorist Software

    NASA Technical Reports Server (NTRS)

    Clark, David A.

    1998-01-01

    In light of the escalation of terrorism, the Department of Defense spearheaded the development of new antiterrorist software for all Government agencies by issuing a Broad Agency Announcement to solicit proposals. This Government-wide competition resulted in a team that includes NASA Lewis Research Center's Computer Services Division, who will develop the graphical user interface (GUI) and test it in their usability lab. The team launched a program entitled Joint Sphere of Security (JSOS), crafted a design architecture (see the following figure), and is testing the interface. This software system has a state-ofthe- art, object-oriented architecture, with a main kernel composed of the Dynamic Information Architecture System (DIAS) developed by Argonne National Laboratory. DIAS will be used as the software "breadboard" for assembling the components of explosions, such as blast and collapse simulations.

  7. Easily cracked: scientific instruments in states of disrepair.

    PubMed

    Schaffer, Simon

    2011-12-01

    There has been much scholarly attention to definitions of the term "scientific instrument." Rather more mundane work by makers, curators, and users is devoted to instruments' maintenance and repair. A familiar argument holds that when a tool breaks, its character and recalcitrance become evident. Much can be gained from historical study of instruments' breakages, defects, and recuperation. Maintenance and repair technologies have been a vital aspect of relations between makers and other users. Their history illuminates systems of instruction, support, and abuse. These systems were, for example, evident in the development of astronomical instruments around 1800 within and beyond the European sphere. Episodes from that milieu are used to explore how instrument users sought autonomy, how instruments' mutable character was defined, and how judgments of instruments' failure or success were ever secured.

  8. Heat insulating device for low temperature liquefied gas storage tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, T.; Nishimoto, T.; Sawada, K.

    1978-05-02

    Hitachi Shipbuilding and Engineering Co., Ltd.'s insulation method for spherical LNG containers solves various problems associated with insulating a sphere's three-dimensional curved surface; equalizing the thickness of the insulation, insulating the junctions between insulation blocks, and preventing seawater or LNG from penetrating the insulation barrier in the event of a rupture in the tank and ship's hull. The design incorporates a number of blocks or plates of rigid foam-insulating material bonded to the outer wall; seats for receiving pressing jigs for the bonding operation are secured to the outer wall in the joints between the insulating blocks. The joints aremore » filled with soft synthetic foam (embedding the seats), a moistureproof layer covers the insulating blocks and joints, and a waterproof material covers the moistureproof layer.« less

  9. [Improvement of sanitary and epidemiological safety of rail transport--a requirement of the new legislation of the Russian Federation].

    PubMed

    2012-01-01

    Brief analysis of the legal framework in recent years, both in the sphere of technical regulation, and in the field of sanitary and epidemiological welfare of the population is presented in this article. The necessity of inclusion in the technical regulations for the safety of railway rolling stock and elements of railway infrastructure the requirements for sanitary-epidemiological safety and hygiene regulations has been proved. Fragments of technical regulations for railway equipment and infrastructure elements, including the basic requirements for the sanitary-epidemiological security are presented. The position of authors in the processing of the regulatory framework in the field of sanitary-epidemiological welfare of population in standardization documents in accordance with the requirements of federal law "On technical regulation" has been reflected.

  10. Three-Dimensional Modeling of Low-Mode Asymmetries in OMEGA Cryogenic Implosions

    NASA Astrophysics Data System (ADS)

    Anderson, K. S.; McKenty, P. W.; Shvydky, A.; Collins, T. J. B.; Forrest, C. J.; Knauer, J. P.; Marozas, J. A.; Marshall, F. J.; Radha, P. B.; Sefkow, A. B.; Marinak, M. M.

    2017-10-01

    In direct-drive inertial confinement fusion implosions, long-wavelength asymmetries resulting from target offset, laser power imbalance, beam mispointing, etc. can be highly detrimental to target performance. Characterizing the effects of these asymmetry sources requires 3-D simulations performed in full-sphere geometry to accurately capture the evolution of shell perturbations and hot-spot flow. This paper will present 3-D HYDRA simulations characterizing the impact of these perturbation sources on yield and shell modulation. Various simulated observables are generated, and trends are analyzed and compared with experimental data. This material is based on work supported by the Department of Energy National Nuclear Security Administration under Award Numbers DE-NA0001944 and performed under the auspices of the LLNL under Contract No. DE-AC52-07NA27344.

  11. Analysis and solutions of security issues in Ethernet PON

    NASA Astrophysics Data System (ADS)

    Meng, Yu; Jiang, Tao; Xiao, Dingzhong

    2005-02-01

    Ethernet Passive Optical Network (EPON), which combines the low cost Ethernet equipment and economic fiber infrastructure, is being considered as a promising solution for Fiber-To-The-Home (FTTH). However, since EPON is an optical shared medium network, some unique features make it more vulnerable to security attacks. In this paper, the key security threats of EPON are firstly analyzed. And then, considering some specific properties which might be utilized for security, such as the safety of transmissions in upstream direction, some novel methods are presented to solve security problems. Firstly, based on some modification about registration, the mechanism of access control is achieved. Secondly, we implement an AES-128 symmetrical encryption and decryption in the EPON system. The AES-128 algorithm can process data blocks of 128 bits, but the length of Ethernet frame is variable. How to deal with the last block, which is not up to 128 bits, is discussed in detail. Finally, key update is accomplished through a vendor specific OAM frame in order to enhance the level of security. The proposed mechanism will remain in conformance with P2MP specification defined by 802.3ah TF, and can supply a complete security solution for EPON.

  12. Evaluating Common Privacy Vulnerabilities in Internet Service Providers

    NASA Astrophysics Data System (ADS)

    Kotzanikolaou, Panayiotis; Maniatis, Sotirios; Nikolouzou, Eugenia; Stathopoulos, Vassilios

    Privacy in electronic communications receives increased attention in both research and industry forums, stemming from both the users' needs and from legal and regulatory requirements in national or international context. Privacy in internet-based communications heavily relies on the level of security of the Internet Service Providers (ISPs), as well as on the security awareness of the end users. This paper discusses the role of the ISP in the privacy of the communications. Based on real security audits performed in national-wide ISPs, we illustrate privacy-specific threats and vulnerabilities that many providers fail to address when implementing their security policies. We subsequently provide and discuss specific security measures that the ISPs can implement, in order to fine-tune their security policies in the context of privacy protection.

  13. Gazprom and Russia: The economic rationality of Russian foreign energy policy

    NASA Astrophysics Data System (ADS)

    Kaloudis, Stergos Carl Thornton

    Charges of imperialism underpinned by coercive economic tactics are some of the accusations leveled against Vladimir Putin's foreign energy policy during his presidential tenure. However, after the traditional policies of coercion failed to secure Russian interests in Europe during the 1990's, this dissertation argues Putin adopted a radically different approach upon his rise to the Presidency. Driven by public demand to continue the domestic subsidization of natural gas and realizing that the chief avenue for securing revenue was in gas sales to Europe, this project suggests that Putin developed a new foreign energy policy approach meant to secure Russian interests. This transformation was accomplished by the Presidential Administration's efforts during Putin's tenure to bring the Russian natural gas monopoly, Gazprom, under its control. Dubbed Persuasive Politics, this paradigm suggests that the foreign energy policies of the Presidential Administration and Gazprom during Putin's tenure were underpinned by the rational economic argument that the only route to Russian resurgence in the medium term was through profitable economic relations with the European states. To test this theoretical approach the author employs a case study analysis of Russian relations with the European Union member state Greece as well as the non-EU state of Ukraine. The intent is to identify how a mutually beneficial relationship was constructed to persuade both governments through the utilization of economic inducements that cooperation with Russia in the natural gas sphere was in their own best interest.

  14. Smart SPHERES: A Telerobotic Free-Flyer for Intravehicular Activities in Space

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Micire, Mark J.; Morse, Ted; Park, Eric; Provencher, Chris; To, Vinh; Wheeler, D. W.; Mittman, David; Torres, R. Jay; Smith, Ernest

    2013-01-01

    Smart SPHERES is a prototype free-flying space robot based on the SPHERES platform. Smart SPHERES can be remotely operated by astronauts inside a spacecraft, or by mission controllers on the ground. We developed Smart SPHERES to perform a variety of intravehicular activities (IVA), such as operations inside the International Space Station (ISS). These IVA tasks include environmental monitoring surveys (radiation, sound levels, etc.), inventory, and mobile camera work. In this paper, we first discuss the motivation for free-flying space robots. We then describe the development of the Smart SPHERES prototype, including avionics, software, and data communications. Finally, we present results of initial flight tests on-board the ISS.

  15. Remote measurement of material properties from radiation force induced vibration of an embedded sphere.

    PubMed

    Chen, Shigao; Fatemi, Mostafa; Greenleaf, James F

    2002-09-01

    A quantitative model is presented for a sphere vibrated by two ultrasound beams of frequency omega1 and omega2. Due to the interference of two sound beams, the radiation force has a dynamic component of frequency omega2-omega1. The radiation impedance and mechanical impedance of the sphere are then used to compute the vibration speed of the sphere. Vibration speed versus vibration frequency is measured by laser vibrometer on several spheres, both in water and in gel phantom. These experimental results are used to verify the model. This method can be used to estimate the material properties of the medium (e.g., shear modulus) surrounding the sphere.

  16. Smart SPHERES: A Telerobotic Free-Flyer for Intravehicular Activities in Space

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Micire, Mark J.; Morse, Ted; Park, Eric; Provencher, Chris

    2013-01-01

    Smart SPHERES is a prototype free-flying space robot based on the SPHERES platform. Smart SPHERES can be remotely operated by astronauts inside a spacecraft, or by mission controllers on the ground. We developed Smart SPHERES to perform a variety of intravehicular activities (IVA), such as operations inside the International Space Station (ISS). These IVA tasks include environmental monitoring surveys (radiation, sound levels, etc.), inventory, and mobile camera work. In this paper, we first discuss the motivation for free- flying space robots. We then describe the development of the Smart SPHERES prototype, including avionics, software, and data communications. Finally, we present results of initial flight tests on-board the ISS.

  17. 49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the formula: S = PD / 4tE Where: S = Wall stress in psi; P = Test pressure prescribed for water jacket... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a water... thickness. The minimum wall thickness must be such that the wall stress at the minimum specified test...

  18. The Use of Planisphere to Locate Planets

    ERIC Educational Resources Information Center

    Kwok, Ping-Wai

    2013-01-01

    Planisphere is a simple and useful tool in locating constellations of the night sky at a specific time, date and geographic location. However it does not show the planet positions because planets are not fixed on the celestial sphere. It is known that the planet orbital planes are nearly coplanar and close to the ecliptic plane. By making…

  19. Does Bilingualism Have an Economic Value in the Ethnically Mixed Regions of Slovenia?

    ERIC Educational Resources Information Center

    Limon, David; Novak Lukanovic, Sonja

    2017-01-01

    The paper considers whether bilingualism has an economic value in Slovenia's two ethnically mixed regions, or whether its value is more related to identity, and restricted primarily to the personal, educational and cultural spheres. Specifically, it asks whether bilingualism is rewarded on the labour market and what local people think about this…

  20. Specific Linguistic Profiles in a Creole-Speaking Area: Children's Speech on Reunion Island

    ERIC Educational Resources Information Center

    Lebon-Eyquem, Mylène

    2015-01-01

    Linguists use the concept of "diglossia" to describe any sociolinguistic situation where a low-prestige dialect coexists with a high-prestige one and these dialects are used in different social spheres. Recent observations on Reunion Island have challenged this view because people mix French and Creole extensively in the same utterance…

  1. Blackfolds in (anti)-de Sitter backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armas, Jay; Obers, Niels A.

    2011-04-15

    We construct different neutral blackfold solutions in Anti-de Sitter and de Sitter background spacetimes in the limit where the cosmological constant is taken to be much smaller than the horizon size. This includes a class of blackfolds with horizons that are products of odd-spheres times a transverse sphere, for which the thermodynamic stability is also studied. Moreover, we exhibit a specific case in which the same blackfold solution can describe different limiting black hole spacetimes therefore illustrating the geometric character of the blackfold approach. Furthermore, we show that the higher-dimensional Kerr-(Anti)-de Sitter black hole allows for ultraspinning regimes in themore » same limit under consideration and demonstrate that this is correctly described by a pancaked blackfold geometry. We also give evidence for the possibility of saturating the rigidity theorem in these backgrounds.« less

  2. Highly uniform distribution of Pt nanoparticles on N-doped hollow carbon spheres with enhanced durability for oxygen reduction reaction

    DOE PAGES

    Shi, Qiurong; Zhu, Chengzhou; Engelhard, Mark H.; ...

    2017-01-19

    Here, carbon-supported Pt nanostructures currently exhibited great potential in polymer electrolyte membrane fuel cells. Nitrogen-doped hollow carbon spheres (NHCSs) with extra low density and high specific surface area are promising carbon support for loading Pt NPs. The doped heteroatom of nitrogen could not only contribute to the active activity for the oxygen reduction reaction (ORR), but also shows a strong interaction with Pt NPs for entrapping them from dissolution/migration. This synergetic effect/interaction resulted in the uniform dispersion and strong combination of the Pt NPs on the carbon support and thus play a significant role in hindering the degradation of themore » catalytic activities of Pt NPs. As expected, the as-obtained Pt/NHCSs displayed improved catalytic activity and superior durability toward ORR.« less

  3. Boundary integral equation analysis for suspension of spheres in Stokes flow

    NASA Astrophysics Data System (ADS)

    Corona, Eduardo; Veerapaneni, Shravan

    2018-06-01

    We show that the standard boundary integral operators, defined on the unit sphere, for the Stokes equations diagonalize on a specific set of vector spherical harmonics and provide formulas for their spectra. We also derive analytical expressions for evaluating the operators away from the boundary. When two particle are located close to each other, we use a truncated series expansion to compute the hydrodynamic interaction. On the other hand, we use the standard spectrally accurate quadrature scheme to evaluate smooth integrals on the far-field, and accelerate the resulting discrete sums using the fast multipole method (FMM). We employ this discretization scheme to analyze several boundary integral formulations of interest including those arising in porous media flow, active matter and magneto-hydrodynamics of rigid particles. We provide numerical results verifying the accuracy and scaling of their evaluation.

  4. The effects of inter-cavity separation on optical coupling in dielectric bispheres.

    PubMed

    Ashili, Shashanka P; Astratov, Vasily N; Sykes, E Charles H

    2006-10-02

    The optical coupling between two size-mismatched spheres was studied by using one sphere as a local source of light with whispering gallery modes (WGMs) and detecting the intensity of the light scattered by a second sphere playing the part of a receiver of electromagnetic energy. We developed techniques to control inter-cavity gap sizes between microspheres with ~30nm accuracy. We demonstrate high efficiencies (up to 0.2-0.3) of coupling between two separated cavities with strongly detuned eigenstates. At small separations (<1 microm) between the spheres, the mechanism of coupling is interpreted in terms of the Fano resonance between discrete level (true WGMs excited in a source sphere) and a continuum of "quasi"-WGMs with distorted shape which can be induced in the receiving sphere. At larger separations the spectra detected from the receiving sphere originate from scattering of the radiative modes.

  5. Thermodynamic properties of non-conformal soft-sphere fluids with effective hard-sphere diameters.

    PubMed

    Rodríguez-López, Tonalli; del Río, Fernando

    2012-01-28

    In this work we study a set of soft-sphere systems characterised by a well-defined variation of their softness. These systems represent an extension of the repulsive Lennard-Jones potential widely used in statistical mechanics of fluids. This type of soft spheres is of interest because they represent quite accurately the effective intermolecular repulsion in fluid substances and also because they exhibit interesting properties. The thermodynamics of the soft-sphere fluids is obtained via an effective hard-sphere diameter approach that leads to a compact and accurate equation of state. The virial coefficients of soft spheres are shown to follow quite simple relationships that are incorporated into the equation of state. The approach followed exhibits the rescaling of the density that produces a unique equation for all systems and temperatures. The scaling is carried through to the level of the structure of the fluids.

  6. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-01

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  7. Fabrication of hexagonal star-shaped and ring-shaped patterns arrays by Mie resonance sphere-lens-lithography

    NASA Astrophysics Data System (ADS)

    Liu, Xianchao; Wang, Jun; Li, Ling; Gou, Jun; Zheng, Jie; Huang, Zehua; Pan, Rui

    2018-05-01

    Mie resonance sphere-lens-lithography has proved to be a good candidate for fabrication of large-area tunable surface nanopattern arrays. Different patterns on photoresist surface are obtained theoretically by adjusting optical coupling among neighboring spheres with different gap sizes. The effect of light reflection from the substrate on the pattern produced on the photoresist with a thin thickness is also discussed. Sub-micron hexagonal star-shaped and ring-shaped patterns arrays are achieved with close-packed spheres arrays and spheres arrays with big gaps, respectively. Changing of star-shaped vertices is induced by different polarization of illumination. Experimental results agree well with the simulation. By using smaller resonance spheres, sub-400 nm star-shaped and ring-shaped patterns can be realized. These tunable patterns are different from results of previous reports and have enriched pattern morphology fabricated by sphere-lens-lithography, which can find application in biosensor and optic devices.

  8. Interaction and charge transfer between dielectric spheres: Exact and approximate analytical solutions.

    PubMed

    Lindén, Fredrik; Cederquist, Henrik; Zettergren, Henning

    2016-11-21

    We present exact analytical solutions for charge transfer reactions between two arbitrarily charged hard dielectric spheres. These solutions, and the corresponding exact ones for sphere-sphere interaction energies, include sums that describe polarization effects to infinite orders in the inverse of the distance between the sphere centers. In addition, we show that these exact solutions may be approximated by much simpler analytical expressions that are useful for many practical applications. This is exemplified through calculations of Langevin type cross sections for forming a compound system of two colliding spheres and through calculations of electron transfer cross sections. We find that it is important to account for dielectric properties and finite sphere sizes in such calculations, which for example may be useful for describing the evolution, growth, and dynamics of nanometer sized dielectric objects such as molecular clusters or dust grains in different environments including astrophysical ones.

  9. One-pot template-free synthesis of uniform-sized fullerene-like magnetite hollow spheres

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Zhang, Yue; Liu, Zheng; Zhou, Xinrui; Zhang, Xinmei; Zeng, Lintao

    2015-11-01

    Uniform-sized Fe3O4 hollow spheres with average diameter of 250 nm and shell thickness of ∼50 nm have been successfully synthesized through a simple hydrothermal route with the presence of di-n-propylamine (DPA) as a weak-base. The reaction time and DPA amount play important roles in the formation of the magnetite hollow spheres. The structures of the products were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectra, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The results show that the single-crystalline Fe3O4 hollow spheres are composed of well-aligned magnetite nanoparticles (NPs). The magnetic property investigation shows that these hollow spheres have a higher saturation magnetization (Ms) than the solid spheres. Furthermore, a possible mechanism for the formation of magnetite hollow spheres is proposed based on the experimental observations.

  10. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors.

    PubMed

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-26

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  11. Molecular-based design and emerging applications of nanoporous carbon spheres

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Wickramaratne, Nilantha P.; Qiao, Shi Zhang; Jaroniec, Mietek

    2015-08-01

    Over the past decade, considerable progress has been made in the synthesis and applications of nanoporous carbon spheres ranging in size from nanometres to micrometres. This Review presents the primary techniques for preparing nanoporous carbon spheres and the seminal research that has inspired their development, presented potential applications and uncovered future challenges. First we provide an overview of the synthesis techniques, including the Stöber method and those based on templating, self-assembly, emulsion and hydrothermal carbonization, with special emphasis on the design and functionalization of nanoporous carbon spheres at the molecular level. Next, we cover the key applications of these spheres, including adsorption, catalysis, separation, energy storage and biomedicine -- all of which might benefit from the regular geometry, good liquidity, tunable porosity and controllable particle-size distribution offered by nanoporous carbon spheres. Finally, we present the current challenges and opportunities in the development and commercial applications of nanoporous carbon spheres.

  12. Molecular-based design and emerging applications of nanoporous carbon spheres.

    PubMed

    Liu, Jian; Wickramaratne, Nilantha P; Qiao, Shi Zhang; Jaroniec, Mietek

    2015-08-01

    Over the past decade, considerable progress has been made in the synthesis and applications of nanoporous carbon spheres ranging in size from nanometres to micrometres. This Review presents the primary techniques for preparing nanoporous carbon spheres and the seminal research that has inspired their development, presented potential applications and uncovered future challenges. First we provide an overview of the synthesis techniques, including the Stöber method and those based on templating, self-assembly, emulsion and hydrothermal carbonization, with special emphasis on the design and functionalization of nanoporous carbon spheres at the molecular level. Next, we cover the key applications of these spheres, including adsorption, catalysis, separation, energy storage and biomedicine — all of which might benefit from the regular geometry, good liquidity, tunable porosity and controllable particle-size distribution offered by nanoporous carbon spheres. Finally, we present the current challenges and opportunities in the development and commercial applications of nanoporous carbon spheres.

  13. Use of equivalent spheres to model the relation between radar reflectivity and optical extinction of ice cloud particles.

    PubMed

    Donovan, David Patrick; Quante, Markus; Schlimme, Ingo; Macke, Andreas

    2004-09-01

    The effect of ice crystal size and shape on the relation between radar reflectivity and optical extinction is examined. Discrete-dipole approximation calculations of 95-GHz radar reflectivity and ray-tracing calculations are applied to ice crystals of various habits and sizes. Ray tracing was used primarily to calculate optical extinction and to provide approximate information on the lidar backscatter cross section. The results of the combined calculations are compared with Mie calculations applied to collections of different types of equivalent spheres. Various equivalent sphere formulations are considered, including equivalent radar-lidar spheres; equivalent maximum dimension spheres; equivalent area spheres, and equivalent volume and equivalent effective radius spheres. Marked differences are found with respect to the accuracy of different formulations, and certain types of equivalent spheres can be used for useful prediction of both the radar reflectivity at 95 GHz and the optical extinction (but not lidar backscatter cross section) over a wide range of particle sizes. The implications of these results on combined lidar-radar ice cloud remote sensing are discussed.

  14. SPHERES National Lab Facility

    NASA Technical Reports Server (NTRS)

    Benavides, Jose

    2014-01-01

    SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.

  15. Self-assembled clusters of spheres related to spherical codes.

    PubMed

    Phillips, Carolyn L; Jankowski, Eric; Marval, Michelle; Glotzer, Sharon C

    2012-10-01

    We consider the thermodynamically driven self-assembly of spheres onto the surface of a central sphere. This assembly process forms self-limiting, or terminal, anisotropic clusters (N-clusters) with well-defined structures. We use Brownian dynamics to model the assembly of N-clusters varying in size from two to twelve outer spheres and free energy calculations to predict the expected cluster sizes and shapes as a function of temperature and inner particle diameter. We show that the arrangements of outer spheres at finite temperatures are related to spherical codes, an ideal mathematical sequence of points corresponding to the densest possible sphere packings. We demonstrate that temperature and the ratio of the diameters of the inner and outer spheres dictate cluster morphology. We present a surprising result for the equilibrium structure of a 5-cluster, for which the square pyramid arrangement is preferred over a more symmetric structure. We show this result using Brownian dynamics, a Monte Carlo simulation, and a free energy approximation. Our results suggest a promising way to assemble anisotropic building blocks from constituent colloidal spheres.

  16. Theoretical and experimental studies on silica-coated carbon spheres composites

    NASA Astrophysics Data System (ADS)

    Guo, Xingmei; Liu, Haixing; Shen, Yinghua; Niu, Mei; Yang, Yongzhen; Liu, Xuguang

    2013-10-01

    In order to prepare carbon-based photonic crystals, first of all, theoretical modeling calculation was used to predict the bandgap characteristics of silica-coated carbon spheres. Then, silica-coated carbon spheres composites were synthesized using tetraethyl orthosilicate as precursor of silica by a sol-gel method combined with Stöber method. Effect of reaction conditions on surface coating of carbon spheres with silica, including the pH, the amount of precursor and reaction time, was emphasized. The morphology and structure of the composites and the effect coating of carbon spheres with silica were characterized by field-emission scanning electron microscopy, high resolution transmission electron microscopy and Fourier-transform infrared spectrometry. The coating ratio of silica was investigated by thermogravimetry. The results show that pH value played an important role in coating reaction, the dosage of the precursor and reaction time had significant effect on coating layer thickness, that is, coating ratio. Carbon spheres coated with silica had good dispersibility and dispersion stability in water and ethanol, which is preconditions of reactivity of carbon spheres in liquid phase and lays the basis for the application of carbon spheres.

  17. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water.

    PubMed

    Jetly, Aditya; Vakarelski, Ivan U; Thoroddsen, Sigurdur T

    2018-02-28

    We investigate the effect of thin air layers naturally sustained on superhydrophobic surfaces on the terminal velocity and drag force of metallic spheres free falling in water. The surface of 20 mm to 60 mm steel or tungsten-carbide spheres is rendered superhydrophobic by a simple coating process that uses a commercially available hydrophobic agent. By comparing the free fall of unmodified spheres and superhydrophobic spheres in a 2.5 meter tall water tank, it is demonstrated that even a very thin air layer (∼1-2 μm) that covers the freshly dipped superhydrophobic sphere can reduce the drag force on the spheres by up to 80%, at Reynolds numbers from 10 5 to 3 × 10 5 , owing to an early drag crisis transition. This study complements prior investigations on the drag reduction efficiency of model gas layers sustained on heated metal spheres falling in liquid by the Leidenfrost effect. The drag reduction effects are expected to have significant implications for the development of sustainable air-layer-based energy saving technologies.

  18. Century of the Seas: Unlocking Indian Maritime Strategy in the 21st Century

    DTIC Science & Technology

    2017-09-01

    Ensuring Secure Seas. Finally, this thesis examines India’s economic policies, specifically maritime trade, as well as domestic politics, to see how...they engage and shape Indian maritime strategy. These findings present a combined analysis of economic , security, and political factors mentioned above...Ensuring Secure Seas. Finally, this thesis examines India’s economic policies, specifically maritime trade, as well as domestic politics, to see how

  19. Formation of aggregated nanoparticle spheres through femtosecond laser surface processing

    NASA Astrophysics Data System (ADS)

    Tsubaki, Alfred T.; Koten, Mark A.; Lucis, Michael J.; Zuhlke, Craig; Ianno, Natale; Shield, Jeffrey E.; Alexander, Dennis R.

    2017-10-01

    A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.

  20. Squeeze flow between a sphere and a textured wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chastel, T.; Mongruel, A., E-mail: anne.mongruel@upmc.fr

    2016-02-15

    The motion of a millimetric sphere, translating in a viscous fluid towards a wettable textured wall, is investigated experimentally. The textures consist of square arrays of cylindrical or square micro-pillars, the height, width, and spacing of which are varied, keeping the periodicity small compared to the sphere radius. An interferometric device is used to measure the sphere vertical displacement, for distances between the sphere and the base of the pillars smaller than 0.1 sphere radius, and with a resolution of 200 nm. At a given distance from the top of the pillars, the sphere velocity is found to be significantlymore » larger than the corresponding velocity for a smooth solid wall. A squeeze flow model of two adjacent fluid layers is developed in the lubrication approximation, one fluid layer having an effective viscosity that reflects the viscous dissipation through the array of pillars. The pressure field in the gap between the sphere and the textured surface is then used to obtain the drag force on the sphere and hence its velocity. Adjustment of the model to the velocity measurements yields the effective viscosity for a given texture. Finally, a correlation between the effective viscosity and the geometry of the pillar array is proposed.« less

  1. Dynamic analysis of trapping and escaping in dual beam optical trap

    NASA Astrophysics Data System (ADS)

    Li, Wenqiang; Hu, Huizhu; Su, Heming; Li, Zhenggang; Shen, Yu

    2016-10-01

    In this paper, we simulate the dynamic movement of a dielectric sphere in optical trap. This dynamic analysis can be used to calibrate optical forces, increase trapping efficiency and measure viscous coefficient of surrounding medium. Since an accurate dynamic analysis is based on a detailed force calculation, we calculate all forces a sphere receives. We get the forces of dual-beam gradient radiation pressure on a micron-sized dielectric sphere in the ray optics regime and utilize Einstein-Ornstein-Uhlenbeck to deal with its Brownian motion forces. Hydrodynamic viscous force also exists when the sphere moves in liquid. Forces from buoyance and gravity are also taken into consideration. Then we simulate trajectory of a sphere when it is subject to all these forces in a dual optical trap. From our dynamic analysis, the sphere can be trapped at an equilibrium point in static water, although it permanently fluctuates around the equilibrium point due to thermal effects. We go a step further to analyze the effects of misalignment of two optical traps. Trapping and escaping phenomena of the sphere in flowing water are also simulated. In flowing water, the sphere is dragged away from the equilibrium point. This dragging distance increases with the decrease of optical power, which results in escaping of the sphere with optical power below a threshold. In both trapping and escaping process we calculate the forces and position of the sphere. Finally, we analyze a trapping region in dual optical tweezers.

  2. Pressure mapping for sphere and half-sphere enhanced diamond anvil cells using synchrotron x-ray diffraction and fluorescence techniques

    NASA Astrophysics Data System (ADS)

    Liu, H.; Liu, L. L.; Cai, Z.; Shu, J.

    2015-12-01

    The measurement for equation of state (EoS) of materials under pressure conditions above 200 GPa is a long-standing challenging subject. Recently, second stage anvil, which was loaded inside the diamond anvil cell (DAC), had been reported by various groups. This method could generate pressure over 300 GPa, or above 600 GPa from the EoS measurement of Re metal between the tiny anvil or 2 half-spheres. Several alternative approaches, using ruby balls, or glassy carbon, or diamond, with single sphere, 2 half-spheres, or multi spheres geometry inside DAC, were tested. The NIST X-ray powder standard, ZnO was selected as pressure marker. Focused ion beam (FIB) was used to cut the half-sphere from diamond anvil top directly to avoid the difficulty of alignment. The synchrotron x-ray diffraction with fine beam size down to 100 nm using zone plate set-up was used to map the pressure gradient at the sphere or half-sphere zone inside DAC. The pressure could be boosted at center of sphere by up to 10 - 70 GPa at about 200 GPa conditions. From broken anvils, trace element analysis using fine focusing synchrotron x-ray fluorescence method revealed the potential anvil damage from FIB cutting the diamond anvil tip, which might decrease the strength of anvils. Fine touch from FIB cutting at final stage using low ion beam current is suggested.

  3. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be seriallymore » passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells.« less

  4. Preparation of SiO2-Protecting Metallic Fe Nanoparticle/SiO2 Composite Spheres for Biomedical Application

    PubMed Central

    Hsieh, Pin-Wei; Tseng, Ching-Li; Kuo, Dong-Hau

    2015-01-01

    Functionalized Fe nanoparticles (NPs) have played an important role in biomedical applications. In this study, metallic Fe NPs were deposited on SiO2 spheres to form a Fe/SiO2 composite. To protect the Fe from oxidation, a thin SiO2 layer was coated on the Fe/SiO2 spheres thereafter. The size and morphology of the SiO2@Fe/SiO2 composite spheres were examined by transmission electron microscopy (TEM). The iron form and its content and magnetic properties were examined by X-ray diffraction (XRD), inductively-coupled plasma mass spectrometry (ICP-MS) and a superconducting quantum interference device (SQUID). The biocompatibility of the SiO2@Fe/SiO2 composite spheres was examined by Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) tests. The intracellular distribution of the SiO2@Fe/SiO2 composite spheres was observed using TEM. XRD analysis revealed the formation of metallic iron on the surface of the SiO2 spheres. According to the ICP-MS and SQUID results, using 0.375 M FeCl3·6H2O for Fe NPs synthesis resulted in the highest iron content and magnetization of the SiO2@Fe/SiO2 spheres. Using a dye loading experiment, a slow release of a fluorescence dye from SiO2@Fe/SiO2 composite spheres was confirmed. The SiO2@Fe/SiO2 composite spheres co-cultured with L929 cells exhibit biocompatibility at concentrations <16.25 µg/mL. The TEM images show that the SiO2@Fe/SiO2 composite spheres were uptaken into the cytoplasm and retained in the endosome. The above results demonstrate that the SiO2@Fe/SiO2 composite spheres could be used as a multi-functional agent, such as a magnetic resonance imaging (MRI) contrast agent or drug carriers in biomedical applications.

  5. The Limitations of an Exclusively Colloidal View of Protein Solution Hydrodynamics and Rheology

    PubMed Central

    Sarangapani, Prasad S.; Hudson, Steven D.; Migler, Kalman B.; Pathak, Jai A.

    2013-01-01

    Proteins are complex macromolecules with dynamic conformations. They are charged like colloids, but unlike colloids, charge is heterogeneously distributed on their surfaces. Here we overturn entrenched doctrine that uncritically treats bovine serum albumin (BSA) as a colloidal hard sphere by elucidating the complex pH and surface hydration-dependence of solution viscosity. We measure the infinite shear viscosity of buffered BSA solutions in a parameter space chosen to tune competing long-range repulsions and short-range attractions (2 mg/mL ≤ [BSA] ≤ 500 mg/mL and 3.0 ≤ pH ≤ 7.4). We account for surface hydration through partial specific volume to define volume fraction and determine that the pH-dependent BSA intrinsic viscosity never equals the classical hard sphere result (2.5). We attempt to fit our data to the colloidal rheology models of Russel, Saville, and Schowalter (RSS) and Krieger-Dougherty (KD), which are each routinely and successfully applied to uniformly charged suspensions and to hard-sphere suspensions, respectively. We discover that the RSS model accurately describes our data at pH 3.0, 4.0, and 5.0, but fails at pH 6.0 and 7.4, due to steeply rising solution viscosity at high concentration. When we implement the KD model with the maximum packing volume fraction as the sole floating parameter while holding the intrinsic viscosity constant, we conclude that the model only succeeds at pH 6.0 and 7.4. These findings lead us to define a minimal framework for models of crowded protein solution viscosity wherein critical protein-specific attributes (namely, conformation, surface hydration, and surface charge distribution) are addressed. PMID:24268154

  6. What is a good life? Selecting capabilities to assess women's quality of life in rural Malawi.

    PubMed

    Greco, Giulia; Skordis-Worrall, Jolene; Mkandawire, Bryan; Mills, Anne

    2015-04-01

    There is growing interest in using Sen's Capability Approach to assess quality of life and to evaluate social policies. This paper describes the formative stages of developing a quality of life measure: the selection of the relevant capabilities. This measure is intended to provide a more comprehensive outcome measure for the evaluation of complex interventions such as Maimwana womens' groups, a community based participatory intervention to improve maternal health in rural Malawi. Fifteen focus group discussions with 129 women were conducted to explore relevant concepts of quality of life in rural Malawi. Data collection started in October 2009. Findings were elicited based on framework analysis. The findings portray a complex and highly nuanced perception that women in rural Malawi have of their life and wellbeing. Quality of life was described using a variety of dimensions that are highly interconnected. Quality of life emerges to be not only shaped by the realisation of basic material needs such as being sufficiently nourished and adequately sheltered, but is also highly dependent on complex feelings, relations and social norms. The full exposition of wellbeing with its domains was organised into a framework constituting six different spheres of wellbeing: physical strength, inner wellbeing, household wellbeing, community relations, economic security and happiness. Despite the list being developed in a specific context and for a specific group of people, the similarities with lists developed in other contexts, with different methods and for different purposes, are considerable. This suggests that there are a number of core aspects of wellbeing considered a minimum requirement for a life of human dignity, that should be included in any attempt to assess quality of life and human development across populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. 40 CFR 211.110-2 - National security exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.110-2 National security exemptions. (a) A new product which is produced to conform with specifications developed by national security agency... security exemption shall be void ab initio with respect to each new product, originally intended for a...

  8. Beyond a series of security nets: Applying STAMP & STPA to port security

    DOE PAGES

    Williams, Adam D.

    2015-11-17

    Port security is an increasing concern considering the significant role of ports in global commerce and today’s increasingly complex threat environment. Current approaches to port security mirror traditional models of accident causality -- ‘a series of security nets’ based on component reliability and probabilistic assumptions. Traditional port security frameworks result in isolated and inconsistent improvement strategies. Recent work in engineered safety combines the ideas of hierarchy, emergence, control and communication into a new paradigm for understanding port security as an emergent complex system property. The ‘System-Theoretic Accident Model and Process (STAMP)’ is a new model of causality based on systemsmore » and control theory. The associated analysis process -- System Theoretic Process Analysis (STPA) -- identifies specific technical or procedural security requirements designed to work in coordination with (and be traceable to) overall port objectives. This process yields port security design specifications that can mitigate (if not eliminate) port security vulnerabilities related to an emphasis on component reliability, lack of coordination between port security stakeholders or economic pressures endemic in the maritime industry. As a result, this article aims to demonstrate how STAMP’s broader view of causality and complexity can better address the dynamic and interactive behaviors of social, organizational and technical components of port security.« less

  9. Beyond a series of security nets: Applying STAMP & STPA to port security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Adam D.

    Port security is an increasing concern considering the significant role of ports in global commerce and today’s increasingly complex threat environment. Current approaches to port security mirror traditional models of accident causality -- ‘a series of security nets’ based on component reliability and probabilistic assumptions. Traditional port security frameworks result in isolated and inconsistent improvement strategies. Recent work in engineered safety combines the ideas of hierarchy, emergence, control and communication into a new paradigm for understanding port security as an emergent complex system property. The ‘System-Theoretic Accident Model and Process (STAMP)’ is a new model of causality based on systemsmore » and control theory. The associated analysis process -- System Theoretic Process Analysis (STPA) -- identifies specific technical or procedural security requirements designed to work in coordination with (and be traceable to) overall port objectives. This process yields port security design specifications that can mitigate (if not eliminate) port security vulnerabilities related to an emphasis on component reliability, lack of coordination between port security stakeholders or economic pressures endemic in the maritime industry. As a result, this article aims to demonstrate how STAMP’s broader view of causality and complexity can better address the dynamic and interactive behaviors of social, organizational and technical components of port security.« less

  10. Intuitive Physics of Collision Effects on Simulated Spheres Differing in Size, Velocity, and Material

    ERIC Educational Resources Information Center

    Vicovaro, Michele

    2012-01-01

    This is an intuitive physics study of collision events. In two experiments the participants were presented with a simulated 3D scene showing one sphere moving horizontally towards another stationary sphere. The moving sphere stopped just before colliding with the stationary one. Participants were asked to rate the positions which both spheres…

  11. The Interweave of Public and Private: Women's Challenge to American Society.

    ERIC Educational Resources Information Center

    Lopata, Helena Znaniecka

    1993-01-01

    Analyzes social and ideological changes in U.S. society that resulted in definition of world as containing two spheres, private sphere of women and public sphere of men, and consequences of this view. Argues that the two-spheres imagery was ideological tool used to justify restrictions on women's involvement in economic and political activity and…

  12. Three-sphere low-Reynolds-number swimmer with a cargo container.

    PubMed

    Golestanian, R

    2008-01-01

    A recently introduced model for an autonomous swimmer at low Reynolds number that is comprised of three spheres connected by two arms is considered when one of the spheres has a large radius. The Stokes hydrodynamic flow associated with the swimming strokes and net motion of this system can be studied analytically using the Stokes Green's function of a point force in front of a sphere of arbitrary radius R provided by Oseen. The swimming velocity is calculated, and shown to scale as 1/R3 with the radius of the sphere.

  13. SPHERES Slosh Run

    NASA Image and Video Library

    2014-01-22

    ISS038-E-033888 (22 Jan. 2014) --- A new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, already on the station, is featured in this image photographed by an Expedition 38 crew member in the International Space Station's Kibo laboratory. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding a plastic tank with green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.

  14. SPHERES Slosh Run

    NASA Image and Video Library

    2014-01-22

    ISS038-E-033890 (22 Jan. 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, works with a new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, which are already on the station. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding the plastic tank with the green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.

  15. Free-Flight Test of a Technique for Inflating an NASA 12-Foot-Diameter Sphere at High Altitudes

    NASA Technical Reports Server (NTRS)

    Kehlet, Alan B.; Patterson, Herbert G.

    1959-01-01

    A free-flight test has been conducted to check a technique for inflating an NASA 12-foot-diameter inflatable sphere at high altitudes. Flight records indicated that the nose section was successfully separated from the booster rocket, that the sphere was ejected, and that the nose section was jettisoned from the fully inflated sphere. On the basis of preflight and flight records, it is believed that the sphere was fully inflated by the time of peak altitude (239,000 feet). Calculations showed that during descent, jettison of the nose section occurred above an altitude of 150,000 feet. The inflatable sphere was estimated to start to deform during descent at an altitude of about 120,000 feet.

  16. Effective transport properties of composites of spheres

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.

    1994-06-01

    The effective linear transport properties of composites of spheres may be studied by the methods of statistical physics. The analysis leads to an exact cluster expansion. The resulting expression for the transport coefficients may be evaluated approximately as the sum of a mean field contribution and correction terms, given by cluster integrals over two-sphere and three-sphere correlation functions. Calculations of this nature have been performed for the effective dielectric constant, as well as the effective elastic constants of composites of spheres. Accurate numerical data for the effective properties may be obtained by computer simulation. An efficient formulation uses multiple expansion in Cartesian coordinates and periodic boundary conditions. Extensive numerical results have been obtained for the effective dielectric constant of a suspension of randomly distributed spheres.

  17. The SPHERE Data Center: a reference for high contrast imaging processing

    NASA Astrophysics Data System (ADS)

    Delorme, P.; Meunier, N.; Albert, D.; Lagadec, E.; Le Coroller, H.; Galicher, R.; Mouillet, D.; Boccaletti, A.; Mesa, D.; Meunier, J.-C.; Beuzit, J.-L.; Lagrange, A.-M.; Chauvin, G.; Sapone, A.; Langlois, M.; Maire, A.-L.; Montargès, M.; Gratton, R.; Vigan, A.; Surace, C.

    2017-12-01

    The objective of the SPHERE Data Center is to optimize the scientific return of SPHERE at the VLT, by providing optimized reduction procedures, services to users and publicly available reduced data. This paper describes our motivation, the implementation of the service (partners, infrastructure and developments), services, description of the on-line data, and future developments. The SPHERE Data Center is operational and has already provided reduced data with a good reactivity to many observers. The first public reduced data have been made available in 2017. The SPHERE Data Center is gathering a strong expertise on SPHERE data and is in a very good position to propose new reduced data in the future, as well as improved reduction procedures.

  18. Remote measurement of material properties from radiation force induced vibration of an embedded sphere

    NASA Astrophysics Data System (ADS)

    Chen, Shigao; Fatemi, Mostafa; Greenleaf, James F.

    2002-09-01

    A quantitative model is presented for a sphere vibrated by two ultrasound beams of frequency omega1 and omega2. Due to the interference of two sound beams, the radiation force has a dynamic component of frequency omega]2-[omega1. The radiation impedance and mechanical impedance of the sphere are then used to compute the vibration speed of the sphere. Vibration speed versus vibration frequency is measured by laser vibrometer on several spheres, both in water and in gel phantom. These experimental results are used to verify the model. This method can be used to estimate the material properties of the medium (e.g., shear modulus) surrounding the sphere. copyright 2002 Acoustical Society of America.

  19. 17 CFR 229.1201 - (Item 1201) General instructions to oil and gas industry-specific disclosures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false (Item 1201) General instructions to oil and gas industry-specific disclosures. 229.1201 Section 229.1201 Commodity and Securities... instructions to oil and gas industry-specific disclosures. (a) If oil and gas producing activities are material...

  20. 17 CFR 229.1201 - (Item 1201) General instructions to oil and gas industry-specific disclosures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 2 2012-04-01 2012-04-01 false (Item 1201) General instructions to oil and gas industry-specific disclosures. 229.1201 Section 229.1201 Commodity and Securities... instructions to oil and gas industry-specific disclosures. (a) If oil and gas producing activities are material...

  1. Magnesium-binding architectures in RNA crystal structures: validation, binding preferences, classification and motif detection

    PubMed Central

    Zheng, Heping; Shabalin, Ivan G.; Handing, Katarzyna B.; Bujnicki, Janusz M.; Minor, Wladek

    2015-01-01

    The ubiquitous presence of magnesium ions in RNA has long been recognized as a key factor governing RNA folding, and is crucial for many diverse functions of RNA molecules. In this work, Mg2+-binding architectures in RNA were systematically studied using a database of RNA crystal structures from the Protein Data Bank (PDB). Due to the abundance of poorly modeled or incorrectly identified Mg2+ ions, the set of all sites was comprehensively validated and filtered to identify a benchmark dataset of 15 334 ‘reliable’ RNA-bound Mg2+ sites. The normalized frequencies by which specific RNA atoms coordinate Mg2+ were derived for both the inner and outer coordination spheres. A hierarchical classification system of Mg2+ sites in RNA structures was designed and applied to the benchmark dataset, yielding a set of 41 types of inner-sphere and 95 types of outer-sphere coordinating patterns. This classification system has also been applied to describe six previously reported Mg2+-binding motifs and detect them in new RNA structures. Investigation of the most populous site types resulted in the identification of seven novel Mg2+-binding motifs, and all RNA structures in the PDB were screened for the presence of these motifs. PMID:25800744

  2. Characterization of cultivated murine lacrimal gland epithelial cells

    PubMed Central

    Kobayashi, Shinya; Kawashima, Motoko; Okada, Naoko; Mishima, Kenji; Saito, Ichiro; Ito, Masataka; Shimmura, Shigeto; Tsubota, Kazuo

    2012-01-01

    Purpose To date, mouse lacrimal gland epithelial cells have been cultured successfully but only in cases involving newborn mouse lacrimal glands. In this work, we attempted to cultivate and characterize adult mouse lacrimal gland epithelial cells. Methods Lacrimal glands were removed from newborn mice (C57B/6) and isolated lacrimal gland epithelial cells were seeded onto tissue culture treated or low adherent culture dishes in Cnt-07 culture medium with or without cholera toxin. Cultivated cells were characterized by immunostaining with pan-cytokeratin, α-smooth muscle actin, and lactoferrin antibodies. Lacrimal gland cells from 7-week-old green fluorescent protein (GFP) and non-GFP (C57B/6) mice were mixed and seeded onto uncoated dishes to assess sphere-forming efficiency. Cells were also seeded onto 3T3 cell feeder layers to assess colony forming efficiency. Results Lacrimal gland epithelial cells were selectively cultured with cholera toxin, and cell type was verified by pan-cytokeratin and α-smooth muscle actin immunostaining. Sphere formation from single cells of adult mice was observed using specific medium and low adherent culture dishes. These cells could also undergo colony formation on 3T3 feeder cells. Conclusions Adult mouse lacrimal gland epithelial cells were successfully cultivated in cholera toxin-containing medium, and were observed to form spheres from single cells. PMID:22665974

  3. Physical characteristics of indigestible solids affect emptying from the fasting human stomach.

    PubMed Central

    Meyer, B; Beglinger, C; Neumayer, M; Stalder, G A

    1989-01-01

    Gastric emptying of indigestible solids depends on their size. It is not clear whether physical characteristics other than particle size affect emptying of indigestible solids from the fasting human stomach. We studied gastric emptying of three differently shaped particles, (cubes, spheres, rods) of either hard or soft consistency during the fasting state in human volunteers. The shape of indigestible particles did not affect their emptying. The area under the gastric emptying curve (AUC: particles x hour) was for hard cubes 24.7 (2.2), for hard spheres 27.9 (1.6), for hard rods 26.9 (2.7). All soft particles emptied faster than their identically shaped hard counterparts, but there was no difference among the three shapes (AUC for soft cubes: 29.2 (3.0), for soft spheres 32.0 (1.8), for soft rods 34.1 (1.2). If gastric emptying of hard and soft particles was compared independently of their shape, soft particles emptied significantly faster than hard ones: AUC 31.8 (1.2) v 26.5 (1.3) (p less than 0.01). In conclusion, the consistency but not the shape significantly affects gastric emptying. Specific physical characteristics other than size and shape may affect gastric emptying of indigestible particles which may be of importance in the design of drugs. PMID:2599438

  4. SCF-Xα-SW electron densities with the overlapping sphere approximation

    NASA Astrophysics Data System (ADS)

    McMaster, Blair N.; Smith, Vedene H., Jr.; Salahub, Dennis R.

    Self consistent field-Xα-scattered wave (SCF-Xα-SW) calculations have been performed for a series of eight first and second row homonuclear diatomic molecules using both the touching (TS) and 25 per cent overlapping sphere (OS) versions. The OS deformation density maps exhibit much better quantitative agreement with those from other Xα methods, which do not employ the spherical muffin-tin (MT) potential approximation, than do the TS maps. The OS version thus compensates very effectively for the errors involved in the MT approximation in computing electron densities. A detailed comparison between the TS- and OS-Xα-SW orbitals reveals that the reasons for this improvement are surprisingly specific. The dominant effect of the OS approximation is to increase substantially the electron density near the midpoint of bonding σ orbitals, with a consequent reduction of the density behind the atoms. A similar effect occurs for the bonding π orbitals but is less pronounced. These effects are due to a change in hybridization of the orbitals, with the OS approximation increasing the proportion of the subdominant partial waves and hence changing the shapes of the orbitals. It is this increased orbital polarization which so effectively compensates for the lack of (non-spherically symmetric) polarization components in the MT potential, when overlapping spheres are used.

  5. Diverse assembly behavior in colloidal Platonic polyhedral sphere clusters

    NASA Astrophysics Data System (ADS)

    Marson, Ryan; Teich, Erin; Dshemuchadse, Julia; Glotzer, Sharon; Larson, Ronald

    We simulate the self-assembly of colloidal ``polyhedral sphere clusters (PSCs)'', which consist of equal-sized spheres placed at the vertices of a polyhedron such that they just touch along each edge. These colloidal building blocks have recently been experimentally fabricated; here we predict crystal structures that would appear in the phase diagram of resulting particle assemblies. We use Brownian dynamics (BD) simulations of rigid body clusters performed in the open-source GPU-based HOOMD-Blue particle simulation package to show the assembly behavior of the 5 Platonic PSCs. The simulations contain as many as 4096 individual polyhedra, across over 30 different densities per cluster geometry, with some ordered phases possessing unit cells with 20 or more particles. We observe the formation of not only traditional cubic structures such as BCC and FCC, but also more complex phases having structure symmetries with Pearson symbols - hP7, cP20, cI2, mP6, and hR3. The observations reported here will serve as a guide for future colloidal assembly experiments using an expanded library of PSCs, consisting of other regular and irregular polyhedra, allowing researchers to target specific arrangements of ``halo'' and ``core'' particles for technologically relevant applications including photonics and structural color.

  6. High-permeability functionalized silicone magnetic microspheres with low autofluorescence for biomedical applications

    PubMed Central

    Evans, Benjamin A.; Ronecker, Julia C.; Han, David T.; Glass, Daniel R.; Train, Tonya L.; Deatsch, Alison E.

    2017-01-01

    Functionalized magnetic microspheres are widely used for cell separations, isolation of proteins and other biomolecules, in vitro diagnostics, tissue engineering, and microscale force spectroscopy. We present here the synthesis and characterization of a silicone magnetic microsphere which can be produced in diameters ranging from 0.5 to 50 μm via emulsion polymerization of a silicone ferrofluid precursor. This bottom-up approach to synthesis ensures a uniform magnetic concentration across all sizes, leading to significant advances in magnetic force generation. We demonstrate that in a size range of 5–20 μm, these spheres supply a full order of magnitude greater magnetic force than leading commercial products. In addition, the unique silicone matrix exhibits autofluorescence two orders of magnitude lower than polystyrene microspheres. Finally, we demonstrate the ability to chemically functionalize our silicone microspheres using a standard EDC reaction, and show that our folate-functionalized silicone microspheres specifically bind to targeted HeLa and Jurkat cells. These spheres show tremendous potential for replacing magnetic polystyrene spheres in applications which require either large magnetic forces or minimal autofluorescence, since they represent order-of-magnitude improvements in each. In addition, the unique silicone matrix and proven biocompatibility suggest that they may be useful for encapsulation and targeted delivery of lipophilic pharmaceuticals. PMID:26952493

  7. Microscopic physical biomarkers in carbonate hot springs: implications in the search for life on Mars

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Albert, F. G.; Chafetz, H. S.; Combie, J.; Graham, C. R.; Kieft, T. L.; Kivett, S. J.; McKay, D. S.; Steele, A.; Taunton, A. E.; hide

    2000-01-01

    Physical evidence of life (physical biomarkers) from the deposits of carbonate hot springs were documented at the scale of microorganisms--submillimeter to submicrometer. The four moderate-temperature (57 to 72 degrees C), neutral pH springs reported on in this study, support diverse communities of bacteria adapted to specific physical and chemical conditions. Some of the microbes coexist with travertine deposits in endolithic communities. In other cases, the microbes are rapidly coated and destroyed by precipitates but leave distinctive mineral fabrics. Some microbes adapted to carbonate hot springs produce an extracellular polymeric substance which forms a three-dimensional matrix with living cells and cell remains, known as a biofilm. Silicon and iron oxides often coat the biofilm, leading to long-term preservation. Submicrometer mineralized spheres composed of calcium fluoride or silica are common in carbonate hot spring deposits. Sphere formation is biologically mediated, but the spheres themselves are apparently not fossils or microbes. Additionally, some microbes selectively weather mineral surfaces in distinctive patterns. Hot spring deposits have been cited as prime locations for exobiological exploration of Mars. The presence of preserved microscopic physical biomarkers at all four sites supports a strategy of searching for evidence of life in hot spring deposits on Mars.

  8. Preparation of flower-like TiO{sub 2} sphere/reduced graphene oxide composites for photocatalytic degradation of organic pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tae-Woong; Park, Mira; Kim, Hak Yong

    In this study, novel flower-like TiO{sub 2} sphere (FTS)/reduced graphene oxide (rGO) composites (FTS-G) were synthesized via a hydrothermal method. The photocatalytic performance of the FTS-G composites was evaluated through the photodegradation of rhodamine B (Rh B) and trichloroethylene (TCE) under simulated solar light irradiation. The rGO to FTS ratio in the composites significantly affected photocatalytic activity. The photocatalytic activities of FTS-Gs in the degradation of Rh B and TCE were superior to that of pure FTS. Of all the FTS-G composites tested, FTS-G with 1 wt% rGO (FTS-G-1) had the greatest photocatalytic activity, while FTS-G composites with rGO contentsmore » over 1 wt% had lower photocatalytic activities. Additionally, it is expected that the synthesis of FTS with a high specific surface area and well-developed pore structure and simultaneous conversion of GO to graphene-like rGO without the use of strong reducing agents could be a promising strategy to prepare other carbon-based flower-like TiO{sub 2} sphere composite photocatalysts. - Graphical abstract: Schematic illustration of high photocatalytic activity for FTS-G composites. Display Omitted.« less

  9. Hemispherical Laue camera

    DOEpatents

    Li, James C. M.; Chu, Sungnee G.

    1980-01-01

    A hemispherical Laue camera comprises a crystal sample mount for positioning a sample to be analyzed at the center of sphere of a hemispherical, X-radiation sensitive film cassette, a collimator, a stationary or rotating sample mount and a set of standard spherical projection spheres. X-radiation generated from an external source is directed through the collimator to impinge onto the single crystal sample on the stationary mount. The diffracted beam is recorded on the hemispherical X-radiation sensitive film mounted inside the hemispherical film cassette in either transmission or back-reflection geometry. The distances travelled by X-radiation diffracted from the crystal to the hemispherical film are the same for all crystal planes which satisfy Bragg's Law. The recorded diffraction spots or Laue spots on the film thereby preserve both the symmetry information of the crystal structure and the relative intensities which are directly related to the relative structure factors of the crystal orientations. The diffraction pattern on the exposed film is compared with the known diffraction pattern on one of the standard spherical projection spheres for a specific crystal structure to determine the orientation of the crystal sample. By replacing the stationary sample support with a rotating sample mount, the hemispherical Laue camera can be used for crystal structure determination in a manner previously provided in conventional Debye-Scherrer cameras.

  10. Digital PET compliance to EARL accreditation specifications.

    PubMed

    Koopman, Daniëlle; Groot Koerkamp, Maureen; Jager, Pieter L; Arkies, Hester; Knollema, Siert; Slump, Cornelis H; Sanches, Pedro G; van Dalen, Jorn A

    2017-12-01

    Our aim was to evaluate if a recently introduced TOF PET system with digital photon counting technology (Philips Healthcare), potentially providing an improved image quality over analogue systems, can fulfil EANM research Ltd (EARL) accreditation specifications for tumour imaging with FDG-PET/CT. We have performed a phantom study on a digital TOF PET system using a NEMA NU2-2001 image quality phantom with six fillable spheres. Phantom preparation and PET/CT acquisition were performed according to the European Association of Nuclear Medicine (EANM) guidelines. We made list-mode ordered-subsets expectation maximization (OSEM) TOF PET reconstructions, with default settings, three voxel sizes (4 × 4 × 4 mm 3 , 2 × 2 × 2 mm 3 and 1 × 1 × 1 mm 3 ) and with/without point spread function (PSF) modelling. On each PET dataset, mean and maximum activity concentration recovery coefficients (RC mean and RC max ) were calculated for all phantom spheres and compared to EARL accreditation specifications. The RCs of the 4 × 4 × 4 mm 3 voxel dataset without PSF modelling proved closest to EARL specifications. Next, we added a Gaussian post-smoothing filter with varying kernel widths of 1-7 mm. EARL specifications were fulfilled when using kernel widths of 2 to 4 mm. TOF PET using digital photon counting technology fulfils EARL accreditation specifications for FDG-PET/CT tumour imaging when using an OSEM reconstruction with 4 × 4 × 4 mm 3 voxels, no PSF modelling and including a Gaussian post-smoothing filter of 2 to 4 mm.

  11. Complying with the Campus Security Act--1990. Title II--Crime Awareness and Campus Security.

    ERIC Educational Resources Information Center

    National Association of Student Personnel Administrators, Inc.

    This paper offers guidelines to colleges and universities which must comply with requirements of the Student Right-to-Know and Campus Security Act of 1990, specifically Title II, Crime Awareness and Campus Security. An introduction outlines some measures that campuses are urged to adopt such as campus-wide committees to review security policies,…

  12. 76 FR 31350 - Cruise Vessel Safety and Security Act of 2010, Available Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2011-0357] Cruise Vessel Safety and Security Act of 2010, Available Technology AGENCY: Coast Guard, DHS. ACTION: Notice of request for comments... Security and Safety Act of 2010(CVSSA), specifically related to video recording and overboard detection...

  13. Influence of TiO2 hollow sphere size on its photo-reduction activity for toxic Cr(VI) removal.

    PubMed

    Cai, Jiabai; Wu, Xueqing; Zheng, Fengying; Li, Shunxing; Wu, Yaling; Lin, Yanping; Lin, Liting; Liu, Biwen; Chen, Qiaoying; Lin, Luxiu

    2017-03-15

    After polystyrene@titanium dioxide (PS@TiO 2 ) composite with different size was calcined at designated temperature, TiO 2 hollow sphere with controllable size was obtained for high efficient photo-reduction of Cr(VI). The feature of the TiO 2 hollow sphere was investigated by SEM, TEM, XRD, UV-Vis, and photoluminescence. The photo-reduction of Cr(VI) were measured for the performance assessment of the TiO 2 hollow sphere, Cr(VI) was used as an electron acceptor. After irradiation for 2h, the photo-reduction rate of Cr(VI) (pH=2.82) for TiO 2 (450nm) was 96%, which exhibited an increase of 5% and 8% compared with TiO 2 (370nm) and TiO 2 (600nm). The absorption edges of TiO 2 hollow sphere (450nm) was largest with the increasing of hollow sphere size from 370 to 600nm. The optimal hollow sphere size of TiO 2 was 450nm for the photo-reduction of Cr(VI), because the light-harvesting efficiency (the best of absorption edge) and photo-generated electron-hole separation rate (the best of photo-reduction rate) of TiO 2 hollow sphere were controlled by its hollow sphere size. In addition, we find that the behavior of the hydrogen production was inhibited by the coexistence Cr(VI) solution. This study can improve our understanding of the mechanism for the activity enhancement by the optimal hollow sphere size of TiO 2 . Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Hierarchical Self-Organization of Perylene Bisimides into Supramolecular Spheres and Periodic Arrays Thereof.

    PubMed

    Sahoo, Dipankar; Peterca, Mihai; Aqad, Emad; Partridge, Benjamin E; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Percec, Virgil

    2016-11-09

    Perylene bisimide derivatives (PBIs) are known to form only columnar or lamellar assemblies. There is no known example of a PBI self-assembling into a supramolecular sphere. Therefore, periodic and quasiperiodic arrays generated from spherical assemblies produced from PBIs are also not known. Here, a PBI functionalized at its imide groups with a second generation self-assembling dendron is reported to self-assemble into supramolecular spheres. These spheres self-organize in a body-centered cubic (BCC) periodic array, rarely encountered for self-assembling dendrons but often encountered in block copolymers. These supramolecular spheres also assemble into a columnar hexagonal array in which the supramolecular columns are unexpectedly and unprecedentedly made from spheres. At lower temperature, two additional columnar hexagonal phases consisting of symmetric and asymmetric tetrameric crowns of PBI are observed. Structural and retrostructural analysis via X-ray diffraction (XRD), molecular modeling, molecular simulation, and solid state NMR suggests that inversion of the symmetric tetrameric crowns at high temperature mediates their transformation into supramolecular spheres. The tetrameric crowns of PBIs are able to form an isotropic sphere in the cubic phase due to rapid molecular motion at high temperature, unobservable by XRD but demonstrated by solid state NMR studies. This mechanism of hierarchical self-organization of PBI into supramolecular spheres is most probably general and can be applied to other related planar molecules to generate new functions.

  15. Dependence on sphere size of the phase behavior of mixtures of rods and spheres

    NASA Astrophysics Data System (ADS)

    Urakami, Naohito; Imai, Masayuki

    2003-07-01

    By the addition of chondroitin sulfate (Chs) to the aqueous suspension of tobacco mosaic virus (TMV), the aggregation of TMV occurs at very dilute TMV concentration compared with the addition of polyethylene oxide (PEO). The difference of physical behavior between Chs and PEO is the chain conformation in solution. The Chs chain has a semirigid nature, whereas the PEO chain has a flexible nature. In this study, the Chs and PEO chains are simplified to spherical particles having different size, and we use the spherocylinder model for TMV particle. The effect of the sphere size on the phase behaviors in the mixtures of rods and spheres is investigated by Monte Carlo simulations. By the addition of small spheres, the system transforms from the miscible isotropic phase to the miscible nematic phase. On the other hand, by the addition of large spheres, the system changes from the miscible isotropic phase to the immiscible nematic phase through the immiscible isotropic phase. The different phase behaviors between the small and the large spheres originate from the difference of overlapping volume of the depletion zone. In addition, we perform the Monte Carlo simulations in the case that semirigid chains are used as the Chs chain models. The same phase behaviors are observed as the mixtures of rods and large spheres. Thus the sphere model captures the phase behaviors of rod and polymer mixture systems.

  16. A Security Architecture for Grid-enabling OGC Web Services

    NASA Astrophysics Data System (ADS)

    Angelini, Valerio; Petronzio, Luca

    2010-05-01

    In the proposed presentation we describe an architectural solution for enabling a secure access to Grids and possibly other large scale on-demand processing infrastructures through OGC (Open Geospatial Consortium) Web Services (OWS). This work has been carried out in the context of the security thread of the G-OWS Working Group. G-OWS (gLite enablement of OGC Web Services) is an international open initiative started in 2008 by the European CYCLOPS , GENESI-DR, and DORII Project Consortia in order to collect/coordinate experiences in the enablement of OWS's on top of the gLite Grid middleware. G-OWS investigates the problem of the development of Spatial Data and Information Infrastructures (SDI and SII) based on the Grid/Cloud capacity in order to enable Earth Science applications and tools. Concerning security issues, the integration of OWS compliant infrastructures and gLite Grids needs to address relevant challenges, due to their respective design principles. In fact OWS's are part of a Web based architecture that demands security aspects to other specifications, whereas the gLite middleware implements the Grid paradigm with a strong security model (the gLite Grid Security Infrastructure: GSI). In our work we propose a Security Architectural Framework allowing the seamless use of Grid-enabled OGC Web Services through the federation of existing security systems (mostly web based) with the gLite GSI. This is made possible mediating between different security realms, whose mutual trust is established in advance during the deployment of the system itself. Our architecture is composed of three different security tiers: the user's security system, a specific G-OWS security system, and the gLite Grid Security Infrastructure. Applying the separation-of-concerns principle, each of these tiers is responsible for controlling the access to a well-defined resource set, respectively: the user's organization resources, the geospatial resources and services, and the Grid resources. While the gLite middleware is tied to a consolidated security approach based on X.509 certificates, our system is able to support different kinds of user's security infrastructures. Our central component, the G-OWS Security Framework, is based on the OASIS WS-Trust specifications and on the OGC GeoRM architectural framework. This allows to satisfy advanced requirements such as the enforcement of specific geospatial policies and complex secure web service chained requests. The typical use case is represented by a scientist belonging to a given organization who issues a request to a G-OWS Grid-enabled Web Service. The system initially asks the user to authenticate to his/her organization's security system and, after verification of the user's security credentials, it translates the user's digital identity into a G-OWS identity. This identity is linked to a set of attributes describing the user's access rights to the G-OWS services and resources. Inside the G-OWS Security system, access restrictions are applied making use of the enhanced Geospatial capabilities specified by the OGC GeoXACML. If the required action needs to make use of the Grid environment the system checks if the user is entitled to access a Grid infrastructure. In that case his/her identity is translated to a temporary Grid security token using the Short Lived Credential Services (IGTF Standard). In our case, for the specific gLite Grid infrastructure, some information (VOMS Attributes) is plugged into the Grid Security Token to grant the access to the user's Virtual Organization Grid resources. The resulting token is used to submit the request to the Grid and also by the various gLite middleware elements to verify the user's grants. Basing on the presented framework, the G-OWS Security Working Group developed a prototype, enabling the execution of OGC Web Services on the EGEE Production Grid through the federation with a Shibboleth based security infrastructure. Future plans aim to integrate other Web authentication services such as OpenID, Kerberos and WS-Federation.

  17. Tessellating the Sphere with Regular Polygons

    ERIC Educational Resources Information Center

    Soto-Johnson, Hortensia; Bechthold, Dawn

    2004-01-01

    Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.

  18. Rogue Cops and Health Care: What Do We Want from Public Writing?

    ERIC Educational Resources Information Center

    Wells, Susan

    1996-01-01

    Argues that writing teachers and scholars need to build a public sphere in which their students can imagine themselves taking a role as a writer. Suggests that the sphere is always constructed and that it cannot, in present society, be unitary. Illustrates such a sphere by examining President Bill Clinton's construction of a public sphere in his…

  19. Improved AFM Mapping of ICF Target Surfaces

    NASA Astrophysics Data System (ADS)

    Olson, D. K.; Drake, T.; Frey, D.; Huang, H.; Stephens, R. B.

    2003-10-01

    Targets for Inertial Confinement Fusion (ICF) research are made from spherical shells with very strict requirements on surface smoothness. Hydrodynamic instabilities are amplified by the presence of surface defects, greatly reducing the gain of ICF targets. Sub-micron variations in the surface can be examined using an Atomic Force Microscope. The current sphere mapping assembly at General Atomics is designed to trace near the equator of a rotating sphere under the AFM head. Spheres are traced on three mutually orthogonal planes. The ˜10 mm piezo-electric actuator range limits how far off the equator we can scan spheres of millimeter diameter. Because only a small fraction of the target's surface can be covered, localized high-mode defects are difficult to detect. In order to meet the needs of ICF research, we need to scan more surface area of the sphere with the AFM. By integrating an additional stepping motor to the sphere mapping assembly, we will be able to recenter the piezo driver of the AFM while mapping. This additional ability allows us to increase the amount of the sphere's surface we are able to scan with the AFM by extending the range of the AFM from the sphere's equator.

  20. Image method for induced surface charge from many-body system of dielectric spheres

    NASA Astrophysics Data System (ADS)

    Qin, Jian; de Pablo, Juan J.; Freed, Karl F.

    2016-09-01

    Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)3ɛ, where a is the sphere radius, R the average inter-sphere separation, and ɛ the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.

  1. The role of connectedness in haptic object perception.

    PubMed

    Plaisier, Myrthe A; van Polanen, Vonne; Kappers, Astrid M L

    2017-03-02

    We can efficiently detect whether there is a rough object among a set of smooth objects using our sense of touch. We can also quickly determine the number of rough objects in our hand. In this study, we investigated whether the perceptual processing of rough and smooth objects is influenced if these objects are connected. In Experiment 1, participants were asked to identify whether there were exactly two rough target spheres among smooth distractor spheres, while we recorded their response times. The spheres were connected to form pairs: rough spheres were paired together and smooth spheres were paired together ('within pairs arrangement'), or a rough and a smooth sphere were connected ('between pairs arrangement'). Participants responded faster when the spheres in a pair were identical. In Experiment 2, we found that the advantage for within pairs arrangements was not driven by feature saliency. Overall our results show that haptic information is processed faster when targets were connected together compared to when targets were connected to distractors.

  2. Development of paclitaxel-TyroSpheres for topical skin treatment

    PubMed Central

    Kilfoyle, Brian E.; Sheihet, Larisa; Zhang, Zheng; Laohoo, Marissa; Kohn, Joachim; Michniak-Kohn, Bozena B.

    2012-01-01

    A potential topical psoriasis therapy has been developed consisting of tyrosine-derived nanospheres (TyroSpheres) with encapsulated anti-proliferative paclitaxel. TyroSpheres provide enhancement of paclitaxel solubility (almost 4,000 times greater than PBS) by effective encapsulation and enable sustained, dose-controlled release over 72 hours under conditions mimicking skin permeation. TyroSpheres offer potential in the treatment of psoriasis, a disease resulting from over-proliferation of keratinocytes in the basal layer of the epidermis, by (a) enabling delivery of paclitaxel into the epidermis at concentrations >100 ng/cm2 of skin surface area and (b) enhancing the cytotoxicity of loaded paclitaxel to human keratinocytes (IC50 of paclitaxel-TyroSpheres was approximately 45% lower than that of free paclitaxel). TyroSpheres were incorporated into a gel-like viscous formulation to improve their flow characteristics with no impact on homogeneity, release or skin distribution of the payload. The findings reported here confirm that the TyroSpheres provide a platform for paclitaxel topical administration allowing skin drug localization and minimal systemic escape. PMID:22732474

  3. Osteogenic potency of a 3-dimensional scaffold-free bonelike sphere of periodontal ligament stem cells in vitro.

    PubMed

    Singhatanadgit, Weerachai; Varodomrujiranon, Manatsanan

    2013-12-01

    The present study aimed to investigate the osteogenic potency of scaffold-free 3-dimensional (3D) spheres of periodontal ligament stem cells (PDLSCs). The osteogenic potency of PDLSC spheres was determined by the ability to form mineralization and to express key osteogenesis-associated genes. The alkaline phosphatase (ALP) activity and the protein content of PDLSC spheres were also measured. The 3D sphere developed its osteogenic potency in a time-dependent manner, containing approximately 10-fold higher mineralization, 5-fold higher protein content, and 4-fold greater ALP activity than those in the controls. The expression of key osteogenic genes was also upregulated in the 3D PDLSC spheres. Cellular outgrowth was observed when reintroduced into 2D culture. PDLSCs were able to undergo osteogenic differentiation in a scaffold-free 3D culture, producing bonelike mineralization in vitro. This suggests, at least in vitro, the osteogenic potency of the 3D PDLSC spheres. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. IImage method for induced surface charge from many-body system of dielectric spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Jian; de Pablo, Juan J.; Freed, Karl F.

    2016-09-28

    Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)(3) epsilon, where a is the sphere radius, R the average inter-sphere separation,more » and. the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.« less

  5. Rebound and jet formation of a fluid-filled sphere

    NASA Astrophysics Data System (ADS)

    Killian, Taylor W.; Klaus, Robert A.; Truscott, Tadd T.

    2012-12-01

    This study investigates the impact dynamics of hollow elastic spheres partially filled with fluid. Unlike an empty sphere, the internal fluid mitigates some of the rebound through an impulse driven exchange of energy wherein the fluid forms a jet inside the sphere. Surprisingly, this occurs on the second rebound or when the free surface is initially perturbed. Images gathered through experimentation show that the fluid reacts more quickly to the impact than the sphere, which decouples the two masses (fluid and sphere), imparts energy to the fluid, and removes rebound energy from the sphere. The experimental results are analyzed in terms of acceleration, momentum and an energy method suggesting an optimal fill volume in the neighborhood of 30%. While the characteristics of the fluid (i.e., density, viscosity, etc.) affect the fluid motion (i.e., type and size of jet formation), the rebound characteristics remain similar for a given fluid volume independent of fluid type. Implications of this work are a potential use of similar passive damping systems in sports technology and marine engineering.

  6. Cu3V2O8 hollow spheres in photocatalysis and primary lithium batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Shaoyan; Sun, Yan; Li, Chunsheng; Ci, Lijie

    2013-11-01

    In this paper, Cu3V2O8 hollow spheres have been successfully synthesized via a liquid precipitation method with colloidal carbon spheres as template followed by a subsequent heat treatment process. On the basis of XRD analysis, SEM observation, and TG-DSC analysis of the precursor and products, the formation mechanism of Cu3V2O8 hollow spheres was proposed. UV-vis diffuse reflectance spectra showed that the Cu3V2O8 hollow spheres exhibit strong absorption in a wide wavelength range from UV to visible light. The photocatalytic activity experiment indicated that the as-prepared Cu3V2O8 hollow spheres exhibited good photocatalytic activity in degradation of methyl orange (MO) under 150-W xenon arc lamp light irradiation. Furthermore, electrochemical measurements showed that the Cu3V2O8 hollow spheres exhibited high discharge capacity and excellent high-rate capability, indicating potential cathode candidates for primary lithium batteries used in long-term implantable cardiac defibrillators (ICDs).

  7. Steady Shear Viscosities of Two Hard Sphere Colloidal Dispersions

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengdong; Chaikin, Paul M.; Phan, See-Eng; Russel, William B.; Zhu, Jixiang

    1996-03-01

    Though hard spheres have the simplest inter-particle potential, the many body hydrodynamic interactions are complex and the rheological properties of dispersions are not fully understood in the concentrated regime. We studied two model systems: colloidal poly-(Methyl Methacrylate) spheres with a grafted layer of poly-(12-hydroxy stearic acid) (PMMA/PHSA) and spherical Silica particles (PST-5, Nissan Chemical Industries, Ltd, Tokyo, Japan). Steady shear viscosities were measured by a Zimm viscometer. The high shear relative viscosity of the dispersions compares well with other hard sphere systems, but the low shear relative viscosity of PMMA/PHSA dispersions is η / η 0 = 50 at φ = 0.5 , higher than η / η 0 = 22 for other hard sphere systems, consistent with recently published data (Phys. Rev. Lett. 75(1995)958). Bare Silica spheres are used to clarify the effect of the grafted layer. With the silica spheres, volume fraction can be determined independent of intrinsic viscosity measurements; also, higher concentrated dispersions can be made.

  8. Optical levitation of 10-ng spheres with nano-g acceleration sensitivity

    NASA Astrophysics Data System (ADS)

    Monteiro, Fernando; Ghosh, Sumita; Fine, Adam Getzels; Moore, David C.

    2017-12-01

    We demonstrate optical levitation of SiO2 spheres with masses ranging from 0.1 to 30 ng. In high vacuum, we observe that the measured acceleration sensitivity improves for larger masses and obtain a sensitivity of 0.4 ×10-6g /√{Hz } for a 12-ng sphere, more than an order of magnitude better than previously reported for optically levitated masses. In addition, these techniques permit long integration times and a mean acceleration of (-0.7 ±2.4 [stat] ±0.2 [syst] ) ×10-9g is measured in 1.4 ×104 s. Spheres larger than 10 ng are found to lose mass in high vacuum where heating due to absorption of the trapping laser dominates radiative cooling. This absorption constrains the maximum size of spheres that can be levitated and allows a measurement of the absorption of the trapping light for the commercially available spheres tested here. Spheres consisting of material with lower absorption may allow larger objects to be optically levitated in high vacuum.

  9. Chinese Armillary Spheres

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    The armillary sphere was perhaps the most important type of astronomical instrument in ancient China. It was first invented by Luoxia Hong in the first century BC. After Han times, the structure of the armillary sphere became increasingly sophisticated by including more and more rings representing various celestial movements as recognized by the Chinese astronomers. By the eighth century, the Chinese armillary sphere consisted of three concentric sets of rings revolving on the south-north polar axis. The relative position of the rings could be adjusted to reflect the precession of the equinoxes and the regression of the Moon's nodes along the ecliptic. To counterbalance the defect caused by too many rings, Guo Shoujing from the late thirteenth century constructed the Simplified Instruments which reorganized the rings of the armillary sphere into separate instruments for measuring equatorial coordinates and horizontal coordinates. The armillary sphere was still preserved because it was a good illustration of celestial movements. A fifteenth-century replica of Guo Shoujing's armillary sphere still exists today.

  10. Scattering characteristics of relativistically moving concentrically layered spheres

    NASA Astrophysics Data System (ADS)

    Garner, Timothy J.; Lakhtakia, Akhlesh; Breakall, James K.; Bohren, Craig F.

    2018-02-01

    The energy extinction cross section of a concentrically layered sphere varies with velocity as the Doppler shift moves the spectral content of the incident signal in the sphere's co-moving inertial reference frame toward or away from resonances of the sphere. Computations for hollow gold nanospheres show that the energy extinction cross section is high when the Doppler shift moves the incident signal's spectral content in the co-moving frame near the wavelength of the sphere's localized surface plasmon resonance. The energy extinction cross section of a three-layer sphere consisting of an olivine-silicate core surrounded by a porous and a magnetite layer, which is used to explain extinction caused by interstellar dust, also depends strongly on velocity. For this sphere, computations show that the energy extinction cross section is high when the Doppler shift moves the spectral content of the incident signal near either of olivine-silicate's two localized surface phonon resonances at 9.7 μm and 18 μm.

  11. Convenient and large-scale synthesis of nitrogen-rich hierarchical porous carbon spheres for supercapacitors and CO2 capture

    NASA Astrophysics Data System (ADS)

    Chang, Binbin; Zhang, Shouren; Yin, Hang; Yang, Baocheng

    2017-08-01

    Herein, considering the great potential of nitrogen-doped hierarchical porous carbons in energy storage and CO2 capture, we designed a convenient and easily large-scale production strategy for preparing nitrogen-doped hierarchical porous carbon sphere (NHPCS) materials. In this synthesis route, spherical resorcinol-formaldehyde (RF) resins were selected as carbon precursor, and then the ZnCl2-impregnated RF resin spheres were carbonized in a NH3 atmosphere at a temperature range of 600-800 °C. During the one-step heat-treatment process, nitrogen atom could be efficiently incorporated into the carbon skeleton, and the interconnected and hierarchical pore structure with different micro/mesopore proportion could be generated and tuned by adjusting the activating agent ZnCl2 dosage and carbonization temperature. The resultant nitrogen-doped hierarchical porous carbon sphere materials exhibited a satisfactory charge storage capacity, and the optimal sample of NHPCS-2-8 with a high mesopore proportion obtained at 800 °C with a ZnCl2/RF mass ratio of 2:1 presented a specific capacitance of 273.8 F g-1 at a current density of 0.5 A g-1. More importantly, the assembled NHPCS-2-8-based symmetric capacitor displayed a high energy density of 17.2 Wh kg-1 at a power density of 178.9 W kg-1 within a voltage window of 0 ∼ 1.8 V in 0.5 M Na2SO4 aqueous electrolyte. In addition, the CO2 capture application of these NHPCS materials was also explored, and the optimal sample of NHPCS-0-8 with a large micropore proportion prepared at 800 °C exhibited an exceptional CO2 uptake capacity at ambient pressures of up to 4.23 mmol g-1 at 0 °C.

  12. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in themore » malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133{sup +} cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.« less

  13. Effect of surface mobility on the particle sliding along a bubble or a solid sphere.

    PubMed

    Wang, Weixing; Zhou, Zhiang; Nandakumar, K; Xu, Zhenghe; Masliyah, Jacob H

    2003-03-01

    The sliding velocity of glass beads on a spherical surface, made either of an air bubble or of a glass sphere held stationary, is measured to investigate the effect of surface mobility on the particle sliding velocity. The sliding process is recorded with a digital camera and analyzed frame by frame. The sliding glass bead was found to accelerate with increasing angular position on the collector's surface. It reaches a maximum velocity at an angular position of about 100 degrees and then, under certain conditions, the glass bead leaves the surface of the collector. The sliding velocity of the glass bead depends strongly on the surface mobility of a bubble, decreasing with decreasing surface mobility. By a mobile surface we mean one which cannot set up resistive forces to an applied stress on the surface. The sliding velocity on a rigid surface, such as a glass sphere, is much lower than that on a mobile bubble surface. The sliding velocity can be described through a modified Stokes equation. A numerical factor in the modified Stokes equation is determined by fitting the experimental data and is found to increase with decreasing surface mobility. Hydrophobic glass beads sliding on a hydrophobic glass sphere were found to stick at the point of impact without sliding if the initial angular position of the impact is less than some specific angle, which is defined as the critical sticking angle. The sticking of the glass beads can be attributed to the capillary contracting force created by the formation of a cavity due to spontaneous receding of the nonwetting liquid from the contact zone. The relationship between the critical sticking angle and the particle size is established based on the Yushchenko [J. Colloid Interface Sci. 96 (1983) 307] analysis.

  14. Hollow SnO2@Co3O4 core-shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Huang, Sheng-Yun; Wang, Tao; Zhang, Kai; Yuen, Matthew M. F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-12-01

    Hollow SnO2@Co3O4 spheres are fabricated using 300 nm spherical SiO2 particles as template. Then three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are successfully obtained through self-assembly in hydrothermal process from graphene oxide nanosheets and metal oxide hollow spheres. The three-dimensional graphene foams encapsulated architectures could greatly improve the capacity, cycling stability and rate capability of hollow SnO2@Co3O4 spheres electrodes due to the highly conductive networks and flexible buffering matrix. The three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are promising electrode materials for supercapacitors and lithium-ion batteries.

  15. A Grand Canonical Monte Carlo simulation program for computing ion distributions around biomolecules in hard sphere solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The GIBS software program is a Grand Canonical Monte Carlo (GCMC) simulation program (written in C++) that can be used for 1) computing the excess chemical potential of ions and the mean activity coefficients of salts in homogeneous electrolyte solutions; and, 2) for computing the distribution of ions around fixed macromolecules such as, nucleic acids and proteins. The solvent can be represented as neutral hard spheres or as a dielectric continuum. The ions are represented as charged hard spheres that can interact via Coulomb, hard-sphere, or Lennard-Jones potentials. In addition to hard-sphere repulsions, the ions can also be made tomore » interact with the solvent hard spheres via short-ranged attractive square-well potentials.« less

  16. A Study on the Armillary Spheres of the Confucianists in Joseon Dynasty

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sam; Kim, Sang Hyuk; Lee, Min Soo; Jeong, Jang Hae

    2010-12-01

    Armillary sphere, generally known as, not only astronomical instrument for observing astronomical phenomena but also symbolizes the royal authority and royal political ideology which is based on Confucianism. Among the well-reputed Confucian scholars were built their own armillary spheres. However, these armillary spheres which exist are damaged and most of parts of its have been lost. We analyzed and measured the remnants of armillary spheres which were made by Toegye Lee Hwang, Uam Song Si-Yeol and Goedam Bae Sang-Yeol who were well-reputed Confucian scholars in Joseon Dynasty, and have been executed the restorations of Toegye Lee Hwang and Song Si-Yeols armillary sphere based on the drawings which were drawn as the original form by analysis and measurement of its remnants.

  17. Corrected Mean-Field Model for Random Sequential Adsorption on Random Geometric Graphs

    NASA Astrophysics Data System (ADS)

    Dhara, Souvik; van Leeuwaarden, Johan S. H.; Mukherjee, Debankur

    2018-03-01

    A notorious problem in mathematics and physics is to create a solvable model for random sequential adsorption of non-overlapping congruent spheres in the d-dimensional Euclidean space with d≥ 2 . Spheres arrive sequentially at uniformly chosen locations in space and are accepted only when there is no overlap with previously deposited spheres. Due to spatial correlations, characterizing the fraction of accepted spheres remains largely intractable. We study this fraction by taking a novel approach that compares random sequential adsorption in Euclidean space to the nearest-neighbor blocking on a sequence of clustered random graphs. This random network model can be thought of as a corrected mean-field model for the interaction graph between the attempted spheres. Using functional limit theorems, we characterize the fraction of accepted spheres and its fluctuations.

  18. Visualization of natural convection heat transfer on a sphere

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Young; Chung, Bum-Jin

    2017-12-01

    Natural convection heat transfer phenomena on spheres were investigated by adopting mass transfer experiments based on analogy concept. The diameters of spheres were varied from 0.01 m to 0.12 m, which correspond to the Rayleigh numbers of 1.69×108-2.91×1011. The measured mass transfer coefficients agreed well with the existing correlations. The copper electroplating patterns on the spheres visualized the local heat transfer depending on angular distance. The streak plating patterns were observed on the upper part of the sphere, resulting from the wavy flow patterns caused by the instability.

  19. Magnetic torque on a rotating superconducting sphere

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.

    1975-01-01

    The London theory of superconductivity is used to calculate the torque on a superconducting sphere rotating in a uniform applied magnetic field. The London theory is combined with classical electrodynamics for a calculation of the direct effect of excess charge on a rotating superconducting sphere. Classical electrodynamics, with the assumption of a perfect Meissner effect, is used to calculate the torque on a superconducting sphere rotating in an arbitrary magnetic induction; this macroscopic approach yields results which are correct to first order. Using the same approach, the torque due to a current loop encircling the rotating sphere is calculated.

  20. Swimming of an assembly of rigid spheres at low Reynolds number.

    PubMed

    Felderhof, B U

    2014-11-01

    A matrix formulation is derived for the calculation of the swimming speed and the power required for swimming of an assembly of rigid spheres immersed in a viscous fluid of infinite extent. The spheres may have arbitrary radii and may interact with elastic forces. The analysis is based on the Stokes mobility matrix of the set of spheres, defined in low Reynolds number hydrodynamics. For small amplitude, swimming optimization of the swimming speed at given power leads to an eigenvalue problem. The method allows straightforward calculation of the swimming performance of structures modeled as assemblies of interacting rigid spheres.

  1. Effect of fluid inertia on the motion of a collinear swimmer.

    PubMed

    Felderhof, B U

    2016-12-01

    The swimming of a two-sphere system and of a three-sphere chain in an incompressible viscous fluid is studied on the basis of simplified equations of motion which take account of both Stokes friction and added mass effects. The analysis is based on an explicit expression for the asymptotic periodic swimming velocity and a corresponding evaluation of the mean rate of dissipation. The mean swimming velocity of the two-sphere system is found to be nonvanishing provided that the two spheres are not identical. The swimming of a comparable chain of three identical spheres is much more efficient.

  2. Carbon dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization using soft drink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Gun-Hee; Shin, Yongsoon; Arey, Bruce W.

    An eco-friendly and economical method for the formation of uniform-sized carbon spheres by hydrothermal dehydration/condensation of a commercial carbonated beverage at 200 oC is reported. CO2 dissolved in the beverage accelerates the dehydration kinetics of the dissolved sugar molecules leading to production of homogeneous carbon spheres having a diameter less than 850 nm. In the presence of CO2, the rough surface of these carbon spheres likely results from continuous Ostwald ripening of constituent microscopic carbon-containing spheres that are formed by subsequent polymerization of intermediate HMF molecules.

  3. 4-channels coherent perfect absorption (CPA)-type demultiplexer using plasmonic nano spheres

    NASA Astrophysics Data System (ADS)

    Soltani, Mohamadreza; Keshavarzi, Rasul

    2017-10-01

    The current research represents a nanoscale and compact 4-channels plasmonic demultiplexer. It includes eight coherent perfect absorption (CPA) - type filters. The operation principle is based on the absorbable formation of a conductive path in the dielectric layer of a plasmonic nano-spheres waveguide. Since the CPA efficiency depends strongly on the number of plasmonic nano-spheres and the nano spheres location, an efficient binary optimization method based on the Particle Swarm Optimization algorithm is used to design an optimized array of the plasmonic nano-sphere in order to achieve the maximum absorption coefficient in the 'off' state.

  4. Education and Fear: Black and Gay in the Public Sphere of HIV Prevention

    ERIC Educational Resources Information Center

    Spieldenner, Andrew R.; Castro, Christian F.

    2010-01-01

    In the third decade of HIV/AIDS in the U.S., African American gay and bisexual men constitute the largest growing part of those testing HIV-positive. Education and prevention efforts are being refocused on this population, but there has been a dearth of research on health promotion efforts specifically tailored for this marginalized group. This…

  5. [On health protection for members of Russian Federation national sports teams].

    PubMed

    Uĭba, V V; Kotenko, K V

    2013-01-01

    The article covers main results of activities provided by Federal Medical and Biologic Agency on medical, sanitary and biologic support of Russian Federation national sport teams members. Through example of Bournazian FMBC of FMBA of Russian, Sports Medicine and Rehabilitation Center, the authors represented results of scientific, educational and clinical work of specific establishment in this sphere.

  6. An Investigation of Factors Related to the Retention of Teachers in Rural Middle Schools

    ERIC Educational Resources Information Center

    Dixon, Timothy M.

    2012-01-01

    Studies about factors specific to rural middle-school teachers' decisions to remain in the profession are limited. Within a framework of Boylan's spheres of influence, the purpose of this qualitative descriptive case study was to investigate the factors that teachers considered to be most important in decisions to remain teaching in a rural middle…

  7. Measurement of steep aspheric surfaces using improved two-wavelength phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiong; Wang, Shaopu; Hu, Yao; Hao, Qun

    2017-10-01

    Optical components with aspheric surfaces can improve the imaging quality of optical systems, and also provide extra advantages such as lighter weight, smaller volume and simper structure. In order to satisfy these performance requirements, the surface error of aspheric surfaces, especially high departure aspheric surfaces must be measured accurately and conveniently. The major obstacle of traditional null-interferometry for aspheric surface under test is that specific and complex null optics need to be designed to fully compensate for the normal aberration of the aspheric surface under test. However, non-null interferometry partially compensating for the aspheric normal aberration can test aspheric surfaces without specific null optics. In this work, a novel non-null test approach of measuring the deviation between aspheric surfaces and the best reference sphere by using improved two-wavelength phase shifting interferometer is described. With the help of the calibration based on reverse iteration optimization, we can effectively remove the retrace error and thus improve the accuracy. Simulation results demonstrate that this method can measure the aspheric surface with the departure of over tens of microns from the best reference sphere, which introduces approximately 500λ of wavefront aberration at the detector.

  8. Controllable growth of polyaniline nanowire arrays on hierarchical macro/mesoporous graphene foams for high-performance flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Yu, Pingping; Zhao, Xin; Li, Yingzhi; Zhang, Qinghua

    2017-01-01

    Free-standing hierarchical macro/mesoporous flexible graphene foam have been constructed by rational intergration ofwell dispersed graphene oxide sheets and amino-modified polystyrene (PS) spheres through a facile ;templating and embossing; technique. The three dimensional (3D) macro/mesoporous flexible graphene foam not only inherits the uniform porous structures of graphene foam, but also contains hierarchical macro/mesopores on the struts by sacrificing PS spheres and the activation of KOH, which could providing rapid pathways for ionic and electronic transport to high specific capacitance. Vertically polyaniline (PANI) nanowire arrays are then uniformly deposited onto the hierarchical macro/mesoporous graphene foam(fRGO-F/PANI) by a simple in situ polymerization, which show a high specific capacitance of 939 F g-1. Thanks to the synergistic function of 3D bicontinuous hierarchical porous structure of graphene foam and effective immobilization of PANI nanowires on the struts, the assembled symmetric supercapctior with fRGO-F/PANI as electrodes exhibits a maximum energy density and power density of 20.9 Wh kg-1 and 103.2 kW kg-1, respectively. Moreover, it also displays an excellent cyclic stability with a 88.7% retention after 5000 cycles.

  9. Ultraviolet refractometry using field-based light scattering spectroscopy

    PubMed Central

    Fu, Dan; Choi, Wonshik; Sung, Yongjin; Oh, Seungeun; Yaqoob, Zahid; Park, YongKeun; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angular scattering distribution of single microspheres immersed in homogeneous media is measured over the wavelength range 260 to 315 nm using quantitative phase microscopy. By least square fitting the observed scattering distribution with Mie scattering theory, the refractive index of either the sphere or the immersion medium can be determined provided that one is known a priori. Using this method, we have measured the refractive index dispersion of SiO2 spheres and bovine serum albumin (BSA) solutions in the deep UV region. Specific refractive index increments of BSA are also extracted. Typical accuracy of the present refractive index technique is ≤0.003. The precision of refractive index measurements is ≤0.002 and that of specific refractive index increment determination is ≤0.01 mL/g. PMID:20372622

  10. The Planet Formation Imager (PFI) Project

    NASA Astrophysics Data System (ADS)

    Aarnio, Alicia; Monnier, John; Kraus, Stefan; Ireland, Michael

    2016-07-01

    Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar birth. Although important work is being done both in theory and observation, a full understanding of the physics of planet formation can only be achieved by opening observational windows able to directly witness the process in action. The key requirement is then to probe planet-forming systems at the natural spatial scales over which material is being assembled. By definition, this is the so-called Hill Sphere, which delineates the region of influence of a gravitating body within its surrounding environment. The Planet Formation Imager project has crystallized around this challenging goal: to deliver resolved images of Hill-Sphere-sized structures within candidate planet-hosting disks in the nearest star-forming regions. In this contribution I outline the primary science case of PFI and give an overview about the work of the PFI science and technical working group and present radiation-hydrodynamics simulations from which we derive preliminary specifications that guide the design of the facility. Finally, I give an overview about the technologies that we are investigating in order to meet the specifications.

  11. Aviation Security: Vulnerabilities in, and Alternatives for, Preboard Screening Security Operations

    DTIC Science & Technology

    2001-09-25

    establishing the certification program. This regulation is particularly significant because it is to include requirements mandated by the Airport Security Improvement...Assessment of Airport Security Screener Performance and Retention, Sept. 15, 2000. Page 8 GAO-01-1171T Criteria for Assessing Shifting responsibility for...airline and airport security officials to assess each option for reassigning screening responsibility against the key criteria- Specifically, we asked

  12. Security and Privacy Preservation in Human-Involved Networks

    NASA Astrophysics Data System (ADS)

    Asher, Craig; Aumasson, Jean-Philippe; Phan, Raphael C.-W.

    This paper discusses security within human-involved networks, with a focus on social networking services (SNS). We argue that more secure networks could be designed using semi-formal security models inspired from cryptography, as well as notions like that of ceremony, which exploits human-specific abilities and psychology to assist creating more secure protocols. We illustrate some of our ideas with the example of the SNS Facebook.

  13. Development of a new-generation active falling sphere

    NASA Technical Reports Server (NTRS)

    Croskey, C. L.; Mitchell, J. D.; Schiano, J. L.; Kenkre, N. V.; Cresci, D. J.

    1997-01-01

    A new generation falling sphere, designed to measure winds and temperatures, is described. This sphere combines nanotechnology accelerometers and GaAs radiofrequency transmitters in a 100 g to 150 g package. This new instrumentation can be added to the standard inflatable sphere launched by a rocket or separately deployed from a larger rocket in which it is carried as part of a much larger scientific instrument package.

  14. An Ontology Based Approach to Information Security

    NASA Astrophysics Data System (ADS)

    Pereira, Teresa; Santos, Henrique

    The semantically structure of knowledge, based on ontology approaches have been increasingly adopted by several expertise from diverse domains. Recently ontologies have been moved from the philosophical and metaphysics disciplines to be used in the construction of models to describe a specific theory of a domain. The development and the use of ontologies promote the creation of a unique standard to represent concepts within a specific knowledge domain. In the scope of information security systems the use of an ontology to formalize and represent the concepts of security information challenge the mechanisms and techniques currently used. This paper intends to present a conceptual implementation model of an ontology defined in the security domain. The model presented contains the semantic concepts based on the information security standard ISO/IEC_JTC1, and their relationships to other concepts, defined in a subset of the information security domain.

  15. Facile synthesis and microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere and multi-shelled NiO hollow sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hongjing, E-mail: wuhongjing@mail.nwpu.edu.cn; Wu, Guanglei, E-mail: wuguanglei@mail.xjtu.edu.cn; Wu, Qiaofeng

    2014-11-15

    We reported the preparation of C@Ni–NiO core–shell hybrid solid spheres or multi-shelled NiO hollow spheres by combining a facile hydrothermal route with a calcination process in H{sub 2} or air atmosphere, respectively. The synthesized C@Ni–NiO core–shell solid spheres with diameters of approximately 2–6 μm were in fact built from dense NiO nanoparticles coated by random two-dimensional metal Ni nanosheets without any visible pores. The multi-shelled NiO hollow spheres were built from particle-like ligaments and there are a lot of pores with size of several nanometers on the surface. Combined Raman spectra with X-ray photoelectron spectra (XPS), it suggested that themore » defects in the samples play a limited role in the dielectric loss. Compared with the other samples, the permeability of the samples calcined in H{sub 2} and air was increased slightly and the natural resonance frequency shifted to higher frequency (7, 11 and 14 GHz, respectively), leading to an enhancement of microwave absorption property. For the sample calcined in H{sub 2}, an optimal reflection loss less than − 10 was obtained at 7 GHz with a matching thickness of 5.0 mm. Our study demonstrated the potential application of C@Ni–NiO core–shell hybrid solid sphere or multi-shelled NiO hollow sphere as a more efficient electromagnetic (EM) wave absorber. - Highlights: • C@Ni–NiO core–shell hybrid solid sphere was synthesized by a facile method. • Multi-shelled NiO hollow sphere was synthesized by a facile method. • It suggested that the defects in the samples play a limited role in dielectric loss. • The permeability of the samples calcined in H{sub 2} and air was increased. • Microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere was investigated.« less

  16. Spherical Magnetic Vortex in an External Potential Field: A Dissipative Contraction

    NASA Astrophysics Data System (ADS)

    Solov'ev, A. A.

    2013-09-01

    We consider the dissipative evolution of a spherical magnetic vortex with a force-free internal structure, located in a resistive medium and held in equilibrium by the potential external field. The magnetic field inside the sphere is force-free (the model of Chandrasekhar in Proc. Natl. Acad. Sci. 42, 1, 1956). Topologically, it is a set of magnetic toroids enclosed in spherical layers. A new exact MHD solution has been derived, describing a slow, uniform, radial compression of a magnetic spheroid under the pressure of an ambient field, when the plasma density and pressure are growing inside it. There is no dissipation in the potential field outside the sphere, but inside the sphere, where the current density can be high enough, the magnetic energy is continuously converted into heat. Joule dissipation lowers the magnetic pressure inside the sphere, which balances the pressure of the ambient field. This results in radial contraction of the magnetic sphere with a speed defined by the conductivity of the plasma and the characteristic spatial scale of the magnetic field inside the sphere. Formally, the sphere shrinks to zero within a finite time interval (magnetic collapse). The time of compression can be relatively small, within a day, even for a sphere with a radius of about 1 Mm, if the magnetic helicity trapped initially in the sphere (which is proportional to the number of magnetic toroids in the sphere) is quite large. The magnetic system is open along its axis of symmetry. On this axis, the magnetic and electric fields are strictly radial and sign-variable along the radius, so the plasma will be ejected along the axis of magnetic sphere outwards in both directions (as jets) at a rate much higher than the diffusive one, and the charged particles will be accelerated unevenly, in spurts, creating quasi-regular X-ray spikes. The applications of the solution to solar flares are discussed.

  17. Architectural design for space tourism

    NASA Astrophysics Data System (ADS)

    Martinez, Vera

    2009-01-01

    The paper describes the main issues for the design of an appropriately planned habitat for tourists in space. Due study and analysis of the environment of space stations (ISS, MIR, Skylab) delineate positive and negative aspects of architectonical design. Analysis of the features of architectonical design for touristic needs and verification of suitability with design for space habitat. Space tourism environment must offer a high degree of comfort and suggest correct behavior of the tourists. This is intended for the single person as well as for the group. Two main aspects of architectural planning will be needed: the design of the private sphere and the design of the public sphere. To define the appearance of environment there should be paid attention to some main elements like the materiality of surfaces used; the main shapes of areas and the degree of flexibility and adaptability of the environment to specific needs.

  18. Versatile robotic probe calibration for position tracking in ultrasound imaging.

    PubMed

    Bø, Lars Eirik; Hofstad, Erlend Fagertun; Lindseth, Frank; Hernes, Toril A N

    2015-05-07

    Within the field of ultrasound-guided procedures, there are a number of methods for ultrasound probe calibration. While these methods are usually developed for a specific probe, they are in principle easily adapted to other probes. In practice, however, the adaptation often proves tedious and this is impractical in a research setting, where new probes are tested regularly. Therefore, we developed a method which can be applied to a large variety of probes without adaptation. The method used a robot arm to move a plastic sphere submerged in water through the ultrasound image plane, providing a slow and precise movement. The sphere was then segmented from the recorded ultrasound images using a MATLAB programme and the calibration matrix was computed based on this segmentation in combination with tracking information. The method was tested on three very different probes demonstrating both great versatility and high accuracy.

  19. Versatile robotic probe calibration for position tracking in ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Eirik Bø, Lars; Fagertun Hofstad, Erlend; Lindseth, Frank; Hernes, Toril A. N.

    2015-05-01

    Within the field of ultrasound-guided procedures, there are a number of methods for ultrasound probe calibration. While these methods are usually developed for a specific probe, they are in principle easily adapted to other probes. In practice, however, the adaptation often proves tedious and this is impractical in a research setting, where new probes are tested regularly. Therefore, we developed a method which can be applied to a large variety of probes without adaptation. The method used a robot arm to move a plastic sphere submerged in water through the ultrasound image plane, providing a slow and precise movement. The sphere was then segmented from the recorded ultrasound images using a MATLAB programme and the calibration matrix was computed based on this segmentation in combination with tracking information. The method was tested on three very different probes demonstrating both great versatility and high accuracy.

  20. Panoramic stereo sphere vision

    NASA Astrophysics Data System (ADS)

    Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian

    2013-01-01

    Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.

  1. Synthesis and characterization of hollow magnetic nanospheres modified with Au nanoparticles for bio-encapsulation

    NASA Astrophysics Data System (ADS)

    Seisno, Satoshi; Suga, Kent; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    Hollow magnetic nanospheres modified with Au nanoparticles were successfully synthesized. Au/SiO2 nanospheres fabricated by a radiochemical process were used as templates for ferrite templating. After the ferrite plating process, Au/SiO2 templates were fully coated with magnetite nanoparticles. Dissolution of the SiO2 core lead to the formation of hollow magnetic nanospheres with Au nanoparticles inside. The hollow magnetic nanospheres consisted of Fe3O4 grains, with an average diameter of 60 nm, connected to form the sphere wall, inside which Au grains with an average diameter of 7.2 nm were encapsulated. The Au nanoparticles immobilized on the SiO2 templates contributed to the adsorption of the Fe ion precursor and/or Fe3O4 seeds. These hollow magnetic nanospheres are proposed as a new type of nanocarrier, as the Au grains could specifically immobilize biomolecules inside the hollow sphere.

  2. 49 CFR 802.20 - Security records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Security records. 802.20 Section 802.20... RULES IMPLEMENTING THE PRIVACY ACT OF 1974 Specific Exemptions § 802.20 Security records. Pursuant to, and limited by, 5 U.S.C. 552a(k)(5), the NTSB's system of records, which contains the Security Records...

  3. 49 CFR 802.20 - Security records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Security records. 802.20 Section 802.20... RULES IMPLEMENTING THE PRIVACY ACT OF 1974 Specific Exemptions § 802.20 Security records. Pursuant to, and limited by, 5 U.S.C. 552a(k)(5), the NTSB's system of records, which contains the Security Records...

  4. 49 CFR 802.20 - Security records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Security records. 802.20 Section 802.20... RULES IMPLEMENTING THE PRIVACY ACT OF 1974 Specific Exemptions § 802.20 Security records. Pursuant to, and limited by, 5 U.S.C. 552a(k)(5), the NTSB's system of records, which contains the Security Records...

  5. 49 CFR 802.20 - Security records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Security records. 802.20 Section 802.20... RULES IMPLEMENTING THE PRIVACY ACT OF 1974 Specific Exemptions § 802.20 Security records. Pursuant to, and limited by, 5 U.S.C. 552a(k)(5), the NTSB's system of records, which contains the Security Records...

  6. Information Data Security Specialists' and Business Leaders' Experiences Regarding Communication Challenges

    ERIC Educational Resources Information Center

    Lopez, Robert H.

    2012-01-01

    The problem addressed was the need to maintain data security in the field of information technology. Specifically, the breakdown of communication between business leaders and data security specialists create risks to data security. The purpose of this qualitative phenomenological study was to determine which factors would improve communication…

  7. 77 FR 65215 - In the Matter of Licensee Identified in Attachment 1 and all Other Persons Who Obtain Safeguards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-25

    ... a computing environment that has adequate computer security controls in place to prevent... NRC intends to issue a security Order to this Licensee in the near future. The Order will require compliance with specific Additional Security Measures to enhance the security for certain radioactive...

  8. Rheological Studies of Komatiite Liquids by In-Situ Falling Sphere Viscometry

    NASA Astrophysics Data System (ADS)

    O Dwyer, L.; Lesher, C. E.; Baxter, G.; Clark, A.; Fuss, T.; Tangeman, J.; Wang, Y.

    2005-12-01

    The rheological properties of komatiite liquids at high pressures and temperatures are being investigated by the in situ falling sphere technique, using the T-25 multianvil apparatus at the GSECARS 13 ID-D-D beamline at the Advanced Photon Source, ANL. The refractory and fluid nature of komatiite and other ultramafic liquids relevant to the Earth's deep interior, presents unique challenges for this approach. To reduce the density contrast between the melt and the marker sphere, and thus increase the Stoke's travel time, we have begun testing various composite spheres composed of refractory silicates and metals. Two successful custom designs are zirconia silicate mantled by Pt and Pt mantled by forsterite. These custom spheres contain sufficient Pt to absorb x-rays, while containing sufficient low-density refractory silicate so that marker sphere densities are in the range of 4-6 g/cc. These relatively more buoyant spheres increase travel time. These custom spheres, together with Re or Pt marker spheres, have been used to determine the viscosity of Gorgona anhydrous komatiite around 1600 ° C between 3.5 and 6 GPa. Initial experiments yield viscosities of 2.8 Pa s at 3.5 GPa, 5.3 Pa s at 4.6 GPa and 7.6 Pa s at 6 GPa. The observed positive pressure dependence of viscosity is consistent with recent results on pyrolite composition liquids and suggests that the activation volume for highly depolymerized melts will be positive for at least upper mantle conditions. The development of low-density, x-ray detectable marker spheres has applications in studies of melt density, whereby in situ detection of sink-float behavior during heating and compression cycles may be possible.

  9. AIE-doped poly(ionic liquid) photonic spheres: a single sphere-based customizable sensing platform for the discrimination of multi-analytes† †Electronic supplementary information (ESI) available: Synthesis and characterization of the AIE luminogen, experimental details, response profiles and results of the multivariate analysis. See DOI: 10.1039/c7sc02409f Click here for additional data file.

    PubMed Central

    Zhang, Wanlin; Gao, Ning; Cui, Jiecheng; Wang, Chen; Wang, Shiqiang; Zhang, Guanxin; Dong, Xiaobiao

    2017-01-01

    By simultaneously exploiting the unique properties of ionic liquids and aggregation-induced emission (AIE) luminogens, as well as photonic structures, a novel customizable sensing system for multi-analytes was developed based on a single AIE-doped poly(ionic liquid) photonic sphere. It was found that due to the extraordinary multiple intermolecular interactions involved in the ionic liquid units, one single sphere could differentially interact with broader classes of analytes, thus generating response patterns with remarkable diversity. Moreover, the optical properties of both the AIE luminogen and photonic structure integrated in the poly(ionic liquid) sphere provide multidimensional signal channels for transducing the involved recognition process in a complementary manner and the acquisition of abundant and sufficient sensing information could be easily achieved on only one sphere sensor element. More importantly, the sensing performance of our poly(ionic liquid) photonic sphere is designable and customizable through a simple ion-exchange reaction and target-oriented multi-analyte sensing can be conveniently realized using a selective receptor species, such as counterions, showing great flexibility and extendibility. The power of our single sphere-based customizable sensing system was exemplified by the successful on-demand detection and discrimination of four multi-analyte challenge systems: all 20 natural amino acids, nine important phosphate derivatives, ten metal ions and three pairs of enantiomers. To further demonstrate the potential of our spheres for real-life application, 20 amino acids in human urine and their 26 unprecedented complex mixtures were also discriminated between by the single sphere-based array. PMID:28989662

  10. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration.

    PubMed

    He, Fupo; Qian, Guowen; Ren, Weiwei; Li, Jiyan; Fan, Peirong; Shi, Haishan; Shi, Xuetao; Deng, Xin; Wu, Shanghua; Ye, Jiandong

    2017-04-24

    Polymer sphere-based scaffolds, which are prepared by bonding the adjacent spheres via sintering the randomly packed spheres, feature uniform pore structure, full three-dimensional (3D) interconnection, and considerable mechanical strength. However, bioceramic sphere-based scaffolds fabricated by this method have never been reported. Due to high melting temperature of bioceramic, only limited diffusion rate can be achieved when sintering the bioceramic spheres, which is far from enough to form robust bonding between spheres. In the present study, for the first time we fabricated 3D interconnected β-tricalcium phosphate ceramic sphere-based (PG/TCP) scaffolds by introducing phosphate-based glass (PG) as sintering additive and placing uniaxial pressure during the sintering process. The sintering mechanism of PG/TCP scaffolds was unveiled. The PG/TCP scaffolds had hierarchical pore structure, which was composed by interconnected macropores (>200 μm) among spheres, pores (20–120 μm) in the interior of spheres, and micropores (1–3 μm) among the grains. During the sintering process, partial PG reacted with β-TCP, forming β-Ca2P2O7; metal ions from PG substituted to Ca2+ sites of β-TCP. The mechanical properties (compressive strength 2.8–10.6 MPa; compressive modulus 190–620 MPa) and porosity (30%–50%) of scaffolds could be tailored by manipulating the sintering temperatures. The introduction of PG accelerated in vitro degradation of scaffolds, and the PG/TCP scaffolds showed good cytocompatibility. This work may offer a new strategy to prepare bioceramic scaffolds with satisfactory physicochemical properties for application in bone regeneration.

  11. National Aviation Security Policy, Strategy, and Mode-Specific Plans: Background and Considerations for Congress

    DTIC Science & Technology

    2009-02-02

    aviation security . The approach to aviation security was largely shaped by past events, such as the bombing of Pan Am flight 103 in December 1988, rather...community. Following the September 11, 2001, attacks, U.S. aviation security policy and strategy was closely linked to the changes called for in the...have been considered security sensitive thus limiting public discourse on the DHS strategy for aviation security . However, in June 2006 President

  12. Prospective relations between family conflict and adolescent maladjustment: security in the family system as a mediating process.

    PubMed

    Cummings, E Mark; Koss, Kalsea J; Davies, Patrick T

    2015-04-01

    Conflict in specific family systems (e.g., interparental, parent-child) has been implicated in the development of a host of adjustment problems in adolescence, but little is known about the impact of family conflict involving multiple family systems. Furthermore, questions remain about the effects of family conflict on symptoms of specific disorders and adjustment problems and the processes mediating these effects. The present study prospectively examines the impact of family conflict and emotional security about the family system on adolescent symptoms of specific disorders and adjustment problems, including the development of symptoms of anxiety, depression, conduct problems, and peer problems. Security in the family system was examined as a mediator of these relations. Participants included 295 mother-father-adolescent families (149 girls) participating across three annual time points (grades 7-9). Including auto-regressive controls for initial levels of emotional insecurity and multiple adjustment problems (T1), higher-order emotional insecurity about the family system (T2) mediated relations between T1 family conflict and T3 peer problems, anxiety, and depressive symptoms. Further analyses supported specific patterns of emotional security/insecurity (i.e., security, disengagement, preoccupation) as mediators between family conflict and specific domains of adolescent adjustment. Family conflict was thus found to prospectively predict the development of symptoms of multiple specific adjustment problems, including symptoms of depression, anxiety, conduct problems, and peer problems, by elevating in in adolescent's emotional insecurity about the family system. The clinical implications of these findings are considered.

  13. Efficient swimming of an assembly of rigid spheres at low Reynolds number.

    PubMed

    Felderhof, B U

    2015-08-01

    The swimming of an assembly of rigid spheres immersed in a viscous fluid of infinite extent is studied in low-Reynolds-number hydrodynamics. The instantaneous swimming velocity and rate of dissipation are expressed in terms of the time-dependent displacements of sphere centers about their collective motion. For small-amplitude swimming with periodically oscillating displacements, optimization of the mean swimming speed at given mean power leads to an eigenvalue problem involving a velocity matrix and a power matrix. The corresponding optimal stroke permits generalization to large-amplitude motion in a model of spheres with harmonic interactions and corresponding actuating forces. The method allows straightforward calculation of the swimming performance of structures modeled as assemblies of interacting rigid spheres. A model of three collinear spheres with motion along the common axis is studied as an example.

  14. Capture and separation of l-histidine through optimized zinc-decorated magnetic silica spheres.

    PubMed

    Cardoso, Vanessa F; Sebastián, Víctor; Silva, Carlos J R; Botelho, Gabriela; Lanceros-Méndez, Senentxu

    2017-09-01

    Zinc-decorated magnetic silica spheres were developed, optimized and tested for the capture and separation of l-histidine. The magnetic silica spheres were prepared using a simple sol-gel method and show excellent magnetic characteristics, adsorption capacity toward metal ions, and stability in aqueous solution in a wide pH range. The binding capacity of zinc-decorated magnetic silica spheres to histidine proved to be strongly influenced by the morphology, composition and concentration of metal at the surface of the magnetic silica spheres and therefore these parameters should be carefully controlled in order to maximize the performance for protein purification purposes. Optimized zinc-decorated magnetic silica spheres demonstrate a binding capacity to l-histidine of approximately 44mgg -1 at the optimum binding pH buffer. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Facilitating Cohort Discovery by Enhancing Ontology Exploration, Query Management and Query Sharing for Large Clinical Data Repositories.

    PubMed

    Tao, Shiqiang; Cui, Licong; Wu, Xi; Zhang, Guo-Qiang

    2017-01-01

    To help researchers better access clinical data, we developed a prototype query engine called DataSphere for exploring large-scale integrated clinical data repositories. DataSphere expedites data importing using a NoSQL data management system and dynamically renders its user interface for concept-based querying tasks. DataSphere provides an interactive query-building interface together with query translation and optimization strategies, which enable users to build and execute queries effectively and efficiently. We successfully loaded a dataset of one million patients for University of Kentucky (UK) Healthcare into DataSphere with more than 300 million clinical data records. We evaluated DataSphere by comparing it with an instance of i2b2 deployed at UK Healthcare, demonstrating that DataSphere provides enhanced user experience for both query building and execution.

  16. Facilitating Cohort Discovery by Enhancing Ontology Exploration, Query Management and Query Sharing for Large Clinical Data Repositories

    PubMed Central

    Tao, Shiqiang; Cui, Licong; Wu, Xi; Zhang, Guo-Qiang

    2017-01-01

    To help researchers better access clinical data, we developed a prototype query engine called DataSphere for exploring large-scale integrated clinical data repositories. DataSphere expedites data importing using a NoSQL data management system and dynamically renders its user interface for concept-based querying tasks. DataSphere provides an interactive query-building interface together with query translation and optimization strategies, which enable users to build and execute queries effectively and efficiently. We successfully loaded a dataset of one million patients for University of Kentucky (UK) Healthcare into DataSphere with more than 300 million clinical data records. We evaluated DataSphere by comparing it with an instance of i2b2 deployed at UK Healthcare, demonstrating that DataSphere provides enhanced user experience for both query building and execution. PMID:29854239

  17. The photoacoustic effect generated by an incompressible sphere.

    PubMed

    Diebold, Gerald J; Beveridge, Andrew C; Hamilton, Theron J

    2002-11-01

    An incompressible sphere with a vanishing thermal expansivity suspended in a fluid can generate a photoacoustic effect when the heat deposited in the sphere by a light beam diffuses into the surrounding liquid causing it to expand and launch a sound wave. The properties of the photoacoustic effect for the sphere are found using a Green's function solution to the wave equation for pressure with Neumann boundary conditions. The results of the calculation show that the acoustic wave for fast heat liberation is an outgoing compressive pulse followed by a reflected pulse whose time profile is modified as a result of frequency dependent reflection from the sphere. For slow heat release by the sphere, the photoacoustic effect is shown to be proportional to the first time derivative of the heat flux at the particle-fluid interface.

  18. Shape-controlled synthesis and properties of dandelion-like manganese sulfide hollow spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Wei; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083; Chen, Gen

    2012-09-15

    Graphical abstract: Dandelion-like MnS hollow spheres assembled with nanorods could be successfully synthesized in large quantities through a simple and convenient hydrothermal synthetic method under mild conditions using soluble hydrated manganese chloride as Mn source, L-cysteine as both a precipitator and complexing reagent. The dandelion-like MnS hollow spheres might have potential applications in microdevices and magnetic cells. Highlights: ► MnS hollow spheres assembled with nanorods could be synthesized. ► The morphologies and sizes of final products could be controlled. ► Possible formation mechanism of MnS hollow spheres is proposed. -- Abstract: Dandelion-like gamma-manganese (II) sulfide (MnS) hollow spheres assembled withmore » nanorods have been prepared via a hydrothermal process in the presence of L-cysteine and polyvinylpyrrolidone (PVP). L-cysteine was employed as not only sulfur source, but also coordinating reagent for the synthesis of dandelion-like MnS hollow spheres. The morphology, structure and properties of as-prepared products have been investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM) and photoluminescence spectra (PL). The probable formation mechanism of as-prepared MnS hollow spheres was discussed on the basis of the experimental results. This strategy may provide an effective method for the fabrication of other metal sulfides hollow spheres.« less

  19. Electric-field-induced forces between two surfaces filled with an insulating liquid: the role of adsorbed water

    NASA Astrophysics Data System (ADS)

    Wang, Yong Jian; Xu, Zuli; Sheng, Ping; Tong, Penger

    2014-06-01

    A systematic study of the electric-field-induced forces between a solid glass sphere and a flat gold-plated substrate filled with an insulating liquid has been carried out. Using atomic force microscopy, we measure the electrostatic force f(s, V) between the sphere and substrate as a function of the surface separation s and applied voltage V. The measured f(s, V) is found to be well described by an equation for a conducting sphere. Further force measurements for the "wet" porous glass spheres filled with an aqueous solution of urea and the dried porous glass spheres filled with (dry) air suggest that there is a water layer of a few nanometers in thickness adsorbed on the hydrophilic glass surface under ambient conditions. This adsorbed water layer is more conductive than the dielectric core of the glass sphere, making the sphere surface to be at a potential close to that of the cantilever electrode. As a result, the electric field is strongly concentrated in the gap region between the glass sphere and gold-plate substrate and thus their electrostatic attraction is enhanced. This surface conductivity effect is further supported by the thermal gravimetric analysis (TGA) and force response measurements to a time-dependent electric field. The experiment clearly demonstrates that the adsorption of a conductive water layer on a hydrophilic surface plays a dominant role in determining the electrostatic interaction between the dielectric sphere and substrate.

  20. Unsteady sedimentation of a sphere in wormlike micellar fluids

    NASA Astrophysics Data System (ADS)

    Zhang, Yiran; Muller, Susan J.

    2018-04-01

    The unsteady sedimentation of a sphere in wormlike micellar fluids is studied experimentally through shear and extensional rheometry, sphere trajectory tracking, and particle image velocimetry. Unsteady sphere sedimentation characterized by fluctuations in the sphere settling velocity was observed for a range of sphere size and density in two non-shear-banding wormlike micellar solutions, a cetylpyridinium chloride (CpCl)-sodium salicylate (NaSal) solution and a cetyltrimethylammonium p-toluenesulfonate (CTAT)-NaCl solution. The onset of the transition from steady to unsteady sphere motion is characterized by an extensional Deborah number, D eext , defined locally in the negative wake of the falling sphere. This instability criterion is in agreement with previous findings by Mohammadigoushki and Muller [J. Rheol. 60, 587 (2016), 10.1122/1.4948800] in the wormlike micelle system of cetyltrimethylammonium bromide (CTAB) and NaSal, and appears to be universally valid independent of micelle chemistry or solution rheology (e.g., shear banding or not). Moreover, the frequency at which the sphere velocity fluctuates is found to be linearly correlated with an average shear Deborah number D es , which is a measure of the overall flow strength. This suggests that a constant critical strain is accumulated before the flow instability takes place in each velocity oscillation. The velocity fluctuations are found to become increasingly disordered with increasing elastic Mach number, M ae , indicating that the interactions between the flow instability and elastic wave propagation result in more chaotic velocity fluctuations.

  1. Synthesis of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color.

    PubMed

    Su, Xin; Chang, Jie; Wu, Suli; Tang, Bingtao; Zhang, Shufen

    2016-03-21

    Monodisperse semiconductor colloidal spheres with a high refractive index hold great potential for building photonic crystals with a strong band gap, but the difficulty in separating the nucleation and growth processes makes it challenging to prepare highly uniform semiconductor colloidal spheres. Herein, real monodisperse Cu2O spheres were prepared via a hot-injection & heating-up two-step method using diethylene glycol as a milder reducing agent. The diameter of the as prepared Cu2O spheres can be tuned from 90 nm to 190 nm precisely. The SEM images reveal that the obtained Cu2O spheres have a narrow size distribution, which permits their self-assembly to form photonic crystals. The effects of precursor concentration and heating rates on the size and morphology of the Cu2O spheres were investigated in detail. The results indicate that the key points of the method include the burst nucleation to form seeds at a high temperature followed by rapid cooling to prevent agglomeration, and appropriate precursor concentration as well as a moderate growth rate during the further growth process. Importantly, photonic crystal films exhibiting a brilliant structural color were fabricated with the obtained monodisperse Cu2O spheres as building blocks, proving the possibility of making photonic crystals with a strong band gap. The developed method was also successfully applied to prepare monodisperse CdS spheres with diameters in the range from 110 nm to 210 nm.

  2. Extremely halophilic archaea from ancient salt sediments and their possible survival in halite fluid inclusions

    NASA Astrophysics Data System (ADS)

    Stan-Lotter, H.; Fendrihan, S.; Gerbl, F. W.; Dornmayr-Pfaffenhuemer, M.; Frethem, C.

    2008-09-01

    Halophilic archaebacteria (haloarchaea) thrive in environments with salt concentrations approaching saturation, such as natural brines, marine solar salterns and alkaline salt lakes; they have also been isolated from ancient subsurface salt sediments of great geological age (195-280 million years) and some of those strains were described as novel species (1). The cells survived perhaps while being enclosed within small fluid inclusions in the halite. The characterization of subsurface microbial life is of astrobiological relevance since extraterrestrial halite has been detected and since microbial life on Mars, if existent, may have retreated into the subsurface. We attempted to simulate the embedding process of extremely halophilic archaea and to analyse any cellular changes which might occur. When enclosing haloarchaea in laboratory grown halite, cells accumulated preferentially in fluid inclusions, as could be demonstrated by pre-staining with fluorescent dyes. With increased time of embedding, rod-shaped cells of Halobacterium salinarum strains were found to assume roundish morphologies. Upon dissolution of the salt crystals, these spheres were stable and viable for months when kept in buffers containing 4 M NaCl. Scanning electron microscopy (SEM) following fixation with glutaraldehyde suggested a potentially gradual transformation from rods to spheres. This notion was supported by fluorescence microscopy of Halobacterium cells, following embedding in halite and staining with SYTO 9. One-dimensional protein patterns of rods and spheres, following SDS polyacrylamide gel electrophoresis, were similar except that the S-layer protein appeared reduced by about 15 - 20 % in spheres. The reddish-orange pigmentation of spheres was much lighter compared to that of rod-shaped cells, suggesting lowered concentrations of carotenoids; this was confirmed by extraction and spectrometry of pigments. The data suggested that Halobacterium cells are capable of forming specific cellular structures upon embedding in fluid inclusions of halite. It is tempting to speculate that such structures may be responsible for long term survival in ancient geological materials such as salt sediments, including extraterrestrial salt. (1) Fendrihan S., Legat A., Pfaffenhuemer M., Gruber C., Weidler W., Gerbl F.W., Stan-Lotter H. (2006) Extremely halophilic archaea and the issue of long-term microbial survival. Reviews in Environmental Science and Bio/technology 5, 1569-1605.

  3. Process for making hollow carbon spheres

    DOEpatents

    Luhrs, Claudia C.; Phillips, Jonathan; Richard, Monique N.; Knapp, Angela Michelle

    2013-04-16

    A hollow carbon sphere having a carbon shell and an inner core is disclosed. The hollow carbon sphere has a total volume that is equal to a volume of the carbon shell plus an inner free volume within the carbon shell. The inner free volume is at least 25% of the total volume. In some instances, a nominal diameter of the hollow carbon sphere is between 10 and 180 nanometers.

  4. Science on a Sphere exhibit

    NASA Image and Video Library

    2009-03-31

    Students from Xavier University Preparatory School in New Orleans view the newest exhibit at StenniSphere, the visitor center at NASA's John C. Stennis Space Center - Science on a Sphere, a 68-inch global presentation of planetary data. StenniSphere is only the third NASA visitor center to offer the computer system, which uses four projectors to display data on a globe and present a dynamic, revolving, animated view of Earth and other planets.

  5. Science on a Sphere exhibit

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Students from Xavier University Preparatory School in New Orleans view the newest exhibit at StenniSphere, the visitor center at NASA's John C. Stennis Space Center - Science on a Sphere, a 68-inch global presentation of planetary data. StenniSphere is only the third NASA visitor center to offer the computer system, which uses four projectors to display data on a globe and present a dynamic, revolving, animated view of Earth and other planets.

  6. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-013914 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  7. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014615 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (top), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  8. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014147 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (foreground), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  9. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014536 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  10. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014444 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  11. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-015415 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson, Expedition 40 commander; and Reid Wiseman (partially obscured), flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  12. Damping and scattering of electromagnetic waves by small ferrite spheres suspended in an insulator

    NASA Technical Reports Server (NTRS)

    Englert, Gerald W.

    1992-01-01

    The intentional degradation of electromagnetic waves by their penetration into a media comprised of somewhat sparsely distributed energy absorbing ferrite spheres suspended in an electrical insulator is investigated. Results are presented in terms of generalized parameters involving wave length and sphere size, sphere resistivity, permeability, and spacing; their influence on dissipation of wave power by eddy currents, magnetic hysteresis, and scattering is shown.

  13. Construction of adhesion maps for contacts between a sphere and a half-space: Considering size effects of the sphere.

    PubMed

    Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Yang, Weixu

    2015-11-15

    Previous adhesion maps, such as the JG (Johnson-Greenwood) and YCG (Yao-Ciavarella-Gao) maps, are used to guide the selection of Bradley, DMT, M-D, JKR and Hertz models. However, when the size of the contact sphere decreases to the small scale, the applicability of JG and YCG maps is limited because the assumptions regarding the contact region profile, interaction between contact bodies and sphere shape in the classical models constituting these two maps are no longer valid. To avoid this limitation, in this paper, a new numerical model considering size effects of the sphere is established first and then introduced into the new adhesion maps together with the YGG (Yao-Guduru-Gao) model and Hertz model. Regimes of these models in the new map under a certain sphere radius are demarcated by the criteria related to the relative force differences and the ratio of contact radius to sphere radius. In addition, the approaches at pull-off, jump-in and jump-out for different Tabor parameters and sphere radii are provided in the new maps. Finally, to make the new maps more feasible, the numerical results of approaches, force and contact radius involved in the maps are formularized by using the piecewise fitting. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Information Security: Serious Weakness Put State Department and FAA Operations at Risk

    DOT National Transportation Integrated Search

    1998-05-19

    Testimony focuses on the results of recent reviews of computer security at the Department of State and the Federal Aviation Administration (FAA). Makes specific recommendations for improving State and FAA's information security posture. Highlights be...

  15. Elastic two-sphere swimmer in Stokes flow

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Khot, Aditi; Elfring, Gwynn J.

    2017-04-01

    Swimming at low Reynolds number in Newtonian fluids is only possible through nonreciprocal body deformations due to the kinematic reversibility of the Stokes equations. We consider here a model swimmer consisting of two linked spheres, wherein one sphere is rigid and the other an incompressible neo-Hookean solid. The two spheres are connected by a rod that changes its length periodically. We show that the deformations of the body are nonreciprocal despite the reversible actuation and hence the elastic two-sphere swimmer propels forward. Our results indicate that even weak elastic deformations of a body can affect locomotion and may be exploited in designing artificial microswimmers.

  16. Hard sphere perturbation theory for thermodynamics of soft-sphere model liquid

    NASA Astrophysics Data System (ADS)

    Mon, K. K.

    2001-09-01

    It is a long-standing consensus in the literature that hard sphere perturbation theory (HSPT) is not accurate for dense soft sphere model liquids, interacting with repulsive r-n pair potentials for small n. In this paper, we show that if the intrinsic error of HSPT for soft sphere model liquids is accounted for, then this is not completely true. We present results for n=4, 6, 9, 12 which indicate that, even first order variational HSPT can provide free energy upper bounds to within a few percent at densities near freezing when corrected for the intrinsic error of the HSPT.

  17. Template-free magnesium oxide hollow sphere inclusion in organic-inorganic hybrid films via sol-gel reaction.

    PubMed

    Kang, Eun-Seok; Takahashi, Masahide; Tokuda, Yomei; Yoko, Toshinobu

    2006-06-06

    Magnesium oxide hollow spheres without a template core were conveniently prepared by stabilized bubble formation in a hybrid solution containing a magnesium acetate precursor, thus avoiding the complicated preparation process using a template. The hollow sphere could be aligned along the radial striation by spin coating, and its diameter from a micrometer to submicrometer dimension could be easily modified by the solution composition. It was also possible to control the open or closed hollow sphere by changing the solvent. Thus, the produced magnesium oxide hollow sphere is envisioned to have applications in many areas such as medicine, analysis, optics, and so on.

  18. Hopkins during SPHERES Slosh Run

    NASA Image and Video Library

    2014-01-22

    ISS038-E-033884 (22 Jan. 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, holds a plastic container partially filled with green-colored water which will be used in a new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, which are already on the station. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding the plastic tank with the green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.

  19. Method for producing small hollow spheres

    DOEpatents

    Hendricks, C.D.

    1979-01-09

    Method is disclosed for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T [approx gt] 600 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10[sup 3] [mu]m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants. 1 fig.

  20. Method and apparatus for producing small hollow spheres

    DOEpatents

    Hendricks, Charles D.

    1979-01-01

    Method and apparatus for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T.gtoreq.600.degree. C.). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10.sup.3 .mu.m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants.

Top