Sample records for security zone lake

  1. 76 FR 63202 - Security Zones; Captain of the Port Lake Michigan Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ...-AA87 Security Zones; Captain of the Port Lake Michigan Zone AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: Based on a review of safety and security zones around critical infrastructure in the... Chicago Harbor & Burnham Park Harbor--Safety and Security Zone regulation and the Security Zones; Captain...

  2. 76 FR 48751 - Security Zones; Captain of the Port Lake Michigan Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ...-AA87 Security Zones; Captain of the Port Lake Michigan Zone AGENCY: Coast Guard, DHS. ACTION: Notice of... in the Chicago area, the Captain of the Port Sector Lake Michigan has determined that to better... critical infrastructure in the Chicago area. Based on this review, the Captain of the Port Sector Lake...

  3. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Harbor, to the northwest point. (b) Effective times and dates. This safety and security zone will be in... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone...

  4. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″W and 41°51′11″ N, 087°36′22″ W. (b...

  5. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″ W and 41°51′11″ N, 087°36′22″ W. (b...

  6. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″W and 41°51′11″ N, 087°36′22″ W. (b...

  7. 75 FR 18755 - Security Zone; Calcasieu River and Ship Channel, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ...-AA87 Security Zone; Calcasieu River and Ship Channel, LA AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: The Coast Guard is disestablishing the permanent safety zone at Trunkline LNG in Lake Charles, LA and replacing it with a security zone with new boundaries. The Coast Guard is also establishing two...

  8. 78 FR 25410 - Safety Zone; Tall Ship Safety Zones; War of 1812 Bicentennial Commemoration, Great Lakes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2013-0192] RIN 1625-AA00 Safety Zone; Tall Ship Safety Zones; War of 1812 Bicentennial Commemoration, Great Lakes AGENCY... 2013 and the War of 1812 Bicentennial Commemoration. These safety zones will ensure the safety of...

  9. [Land layout for lake tourism based on ecological restraint].

    PubMed

    Wang, Jian-Ying; Li, Jiang-Feng; Zou, Li-Lin; Liu, Shi-Bin

    2012-10-01

    To avoid the decrease and deterioration of lake wetlands and the other ecological issues such as lake water pollution that were caused by the unreasonable exploration of lake tourism, a land layout for the tourism development of Liangzi Lake with the priority of ecological security pattern was proposed, based on the minimal cumulative resistance model and by using GIS technology. The study area was divided into four ecological function zones, i. e., core protection zone, ecological buffer zone, ecotone zone, and human activity zone. The core protection zone was the landscape region of ecological source. In the protection zone, new tourism land was forbidden to be increased, and some of the existing fundamental tourism facilities should be removed while some of them should be upgraded. The ecological buffer zone was the landscape region with resistance value ranged from 0 to 4562. In the buffer zone, expansion of tourism land should be forbidden, the existing tourism land should be downsized, and human activities should be isolated from ecological source by converting the human environment to the natural environment as far as possible. The ecotone zone was the landscape region with resistance value ranged from 4562 to 30797. In this zone, the existing tourism land was distributed in patches, tourism land could be expanded properly, and the lake forestry ecological tourism should be developed widely. The human activity zone was the landscape region with resistance value ranged from 30797 to 97334, which would be the key area for the land layout of lake tourism. It was suggested that the land layout for tourism with the priority of landscape ecological security pattern would be the best choice for the lake sustainable development.

  10. 33 CFR 165.T09-0073 - Safety and Security Zones; Tall Ships Challenge 2010; Great Lakes; Cleveland, OH; Bay City, MI...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zones; Tall Ships Challenge 2010; Great Lakes; Cleveland, OH; Bay City, MI; Duluth, MN; Green Bay, WI; Sturgeon Bay...; Cleveland, OH; Bay City, MI; Duluth, MN; Green Bay, WI; Sturgeon Bay, WI; Chicago, IL; Erie, PA. (a...

  11. 76 FR 79536 - Security Zones; Captain of the Port Lake Michigan; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... ACTION: Final rule. SUMMARY: The Coast Guard is revising the contact information for Security Zones in... Federal holidays. FOR FURTHER INFORMATION CONTACT: If you have questions on this rule, contact or email... exist in 33 CFR 165.910. Persons desiring to transit the areas of these security zones must contact the...

  12. 33 CFR 165.930 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety Zone, Brandon Road Lock... Guard District § 165.930 Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION...

  13. 77 FR 32394 - Safety Zones: Catawba Island Club Fire Works, Catawba Island Club, Port Clinton, OH; Racing for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0374] RIN 1625-AA00 Safety Zones: Catawba Island Club Fire Works, Catawba Island Club, Port Clinton, OH; Racing for Recovery, Lake Erie, Sterling State Park, Monroe, MI; Put-in-Bay Fireworks, Fox's the Dock Pier, South Bass...

  14. Identification of landslide-prone zones in the geomorphically and climatically sensitive Mandakini valley, (central Himalaya), for disaster governance using the Weights of Evidence method

    NASA Astrophysics Data System (ADS)

    Poonam; Rana, Naresh; Champati ray, Parshant Kumar; Bisht, Pinkey; Bagri, Dhirendra Singh; Wasson, Robert James; Sundriyal, Yashpal

    2017-05-01

    The entire Himalayan region is prone to disasters, with many people being vulnerable to hydroclimatic threats such as extreme rainfall-driven floods, glacial lake outburst floods (GLOFs), landslide lake outburst floods (LLOFs), and landslides triggered by rainfall. Landslides and floods are related, as the former cause the lakes that burst, and floods can undercut slopes and cause landslides. During the past 200 years, landslides and floods caused by LLOFs in the Garhwal Himalaya have occurred in 1894, 1970, and 1978; but the most disastrous event, in terms of loss of life and economic impact, occurred in June 2013, which was a result of extreme rainfall in the Higher Himalaya and breaching of a moraine-dammed lake, very short-lived LLOFs, and rainfall-induced runoff and landslides. Outmigration from the area as a result of the 2013 event has caused anxiety about the future of the economy and also concerns about security of a state that has an international border. As a contribution to planning and reconstruction to secure the livelihoods of the local people and to entice migrants to return, this paper identifies zones in the Mandakini valley susceptible to landslides using a 'Weights of Evidence' approach. The roles of climate, geology, and geomorphology of the valley are also given attention to explain the reasons for the disastrous event of June 2013. The results of the research presented here may be an important input to disaster governance.

  15. 77 FR 41686 - Safety Zone; Sheffield Lake Fireworks, Lake Erie, Sheffield Lake, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ...-AA00 Safety Zone; Sheffield Lake Fireworks, Lake Erie, Sheffield Lake, OH AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Erie, Sheffield Lake, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie...

  16. 33 CFR 165.910 - Security Zones; Captain of the Port Lake Michigan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the shoreline at 41°23′45″ N, 88°16′18″ W; then east to the shoreline at 41°23′39″ N, 88°16′09″ W... southeast back to the shoreline at 42°19′31″ N, 86°18′50″ W; then following along the shoreline back to the... Plant. All waters of Lake Michigan encompassed by a line starting on the shoreline at 42°26′36″ N, 87°48...

  17. 33 CFR 165.910 - Security Zones; Captain of the Port Lake Michigan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the shoreline at 41°23′45″ N, 88°16′18″ W; then east to the shoreline at 41°23′39″ N, 88°16′09″ W... southeast back to the shoreline at 42°19′31″ N, 86°18′50″ W; then following along the shoreline back to the... Plant. All waters of Lake Michigan encompassed by a line starting on the shoreline at 42°26′36″ N, 87°48...

  18. 33 CFR 165.910 - Security Zones; Captain of the Port Lake Michigan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the shoreline at 41°23′45″ N, 88°16′18″ W; then east to the shoreline at 41°23′39″ N, 88°16′09″ W... southeast back to the shoreline at 42°19′31″ N, 86°18′50″ W; then following along the shoreline back to the... Plant. All waters of Lake Michigan encompassed by a line starting on the shoreline at 42°26′36″ N, 87°48...

  19. 33 CFR 165.805 - Security Zones; Calcasieu River and Ship Channel, Louisiana.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... authorized by the Captain of the Port. Coast Guard patrol assets will be on scene with flashing blue lights... regulations, contact Marine Safety Unit Lake Charles at (337) 491-7800 or the on scene patrol vessel. (5) All... municipal law enforcement agencies. (c) Informational broadcasts: The Captain of the Port, Port Arthur will...

  20. 78 FR 53675 - Safety Zone; Lake Erie Heritage Foundation, Battle of Lake Erie Reenactment; Lake Erie, Put-in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ...-AA00 Safety Zone; Lake Erie Heritage Foundation, Battle of Lake Erie Reenactment; Lake Erie, Put-in-Bay... temporary safety zone in the waters of Lake Erie in the vicinity of Put-In-Bay, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during Battle of Lake Erie Reenactment near Put-In...

  1. 77 FR 39638 - Safety Zone; Barbara Harder Wedding Fireworks, Lake Erie, Lake View, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ...-AA00 Safety Zone; Barbara Harder Wedding Fireworks, Lake Erie, Lake View, NY AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Erie, Lake View, NY. This safety zone is intended to restrict vessels from a portion of Lake Erie...

  2. 75 FR 13232 - Safety Zone; Lake Mead Intake Construction, Lake Mead, Boulder City, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ...-AA00 Safety Zone; Lake Mead Intake Construction, Lake Mead, Boulder City, NV AGENCY: Coast Guard, DHS... waters of Lake Mead in support of the construction project for Lake Mead's Intake 3. This safety zone is... for the placement of an Intake Pipe from Lake Mead throughout 2010. This safety zone is necessary to...

  3. 75 FR 33506 - Safety and Security Zones; Tall Ships Challenge 2010, Great Lakes, Cleveland, OH, Bay City, MI...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ..., Federalism, if it has a substantial direct effect on State or local governments and would either preempt... a State, local, or tribal government, in the aggregate, or by the private sector of $100,000,000 or... as proposed. Indian Tribal Governments This rule does not have tribal implications under Executive...

  4. 78 FR 21260 - Safety Zone; Lubbers Cup Regatta; Spring Lake, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ...-AA00 Safety Zone; Lubbers Cup Regatta; Spring Lake, MI AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Spring Lake in Spring Lake, Michigan. This safety zone is intended to restrict vessels from a portion of Spring Lake due to...

  5. 75 FR 33741 - Safety Zone; Tracey/Thompson Wedding, Lake Erie, Catawba Island, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ...-AA00 Safety Zone; Tracey/Thompson Wedding, Lake Erie, Catawba Island, OH AGENCY: Coast Guard, DHS... zone on Lake Erie, Catawba Island, Ohio. This temporary safety zone is intended to restrict vessels from portions of Lake Erie during the Tracey/Thompson Wedding Fireworks. This temporary safety zone is...

  6. 78 FR 53677 - Safety Zone; Battle of Lake Erie Fireworks, Lake Erie, Put-In-Bay, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ...-AA00 Safety Zone; Battle of Lake Erie Fireworks, Lake Erie, Put-In- Bay, OH AGENCY: Coast Guard, DHS... waters of Lake Erie, Put-In-Bay, Ohio. This zone is intended to restrict vessels from a portion of Lake Erie during the Battle of Lake Erie Fireworks. [[Page 53678

  7. 78 FR 30765 - Safety Zone; Bay Village Independence Day Fireworks, Lake Erie, Bay Village, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ...-AA00 Safety Zone; Bay Village Independence Day Fireworks, Lake Erie, Bay Village, OH AGENCY: Coast... zone on Lake Erie, Bay Village, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during the Bay Village Independence Day Fireworks display. This temporary safety zone is...

  8. 77 FR 39420 - Safety Zone; Bay Village Independence Day Fireworks, Lake Erie, Bay Village, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ...-AA00 Safety Zone; Bay Village Independence Day Fireworks, Lake Erie, Bay Village, OH AGENCY: Coast... zone on Lake Erie, Bay Village, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during the Bay Village Independence Day Fireworks display. This temporary safety zone is...

  9. 75 FR 34932 - Safety Zone; Michigan City Super Boat Grand Prix, Lake Michigan, Michigan City, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ...-AA00 Safety Zone; Michigan City Super Boat Grand Prix, Lake Michigan, Michigan City, IN AGENCY: Coast... zone on Lake Michigan near Michigan City, Indiana. This zone is intended to restrict vessels from a... of proposed rulemaking (NPRM) entitled Safety Zone; Michigan City Super Boat Grand Prix, Lake...

  10. 75 FR 18451 - Safety and Security Zones; Tall Ships Challenge 2010, Great Lakes; Cleveland, OH; Bay City, MI...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... that we can contact you if we have questions regarding your submission. To submit your comment online... Federal Register (73 FR 3316). Public Meeting We do not now plan to hold a public meeting. But you may...) explaining why you think it qualifies and how and to what degree this rule would economically affect it...

  11. 78 FR 17869 - Safety Zone; Desert Storm Shootout; Lake Havasu, Lake Havasu City, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ...-AA00 Safety Zone; Desert Storm Shootout; Lake Havasu, Lake Havasu City, AZ AGENCY: Coast Guard, DHS... navigable waters of the Colorado River in Lake Havasu, Lake Havasu City, Arizona in support of the Desert... Coast Guard to establish safety zones (33 U.S.C 1221 et seq.). Lake Racer LLC is sponsoring the Desert...

  12. 76 FR 23524 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... safety zone from Brandon Road Lock and Dam to Lake Michigan. This proposed safety zone will cover 77.... This TIR established a 77 mile long safety zone from Brandon Road Lock to Lake Michigan in Chicago, IL...

  13. 78 FR 45059 - Safety Zone; Sherman Private Party Fireworks, Lake Michigan, Winnetka, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ...-AA00 Safety Zone; Sherman Private Party Fireworks, Lake Michigan, Winnetka, IL AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Michigan near Winnetka, IL. This safety zone is intended to restrict vessels from a portion of Lake...

  14. 78 FR 11094 - Safety Zone; Lake Worth Dredge Operations, Lake Worth Inlet; West Palm Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... 1625-AA00 Safety Zone; Lake Worth Dredge Operations, Lake Worth Inlet; West Palm Beach, FL AGENCY... safety zone on Lake Worth Inlet, West Palm Beach, Florida, to provide for the safety of life and vessels..., dredging operations will be conducted on Lake Worth Inlet in West Palm Beach, Florida. These operations...

  15. Forging the Link: Using a Conservative Mixing Framework to Characterize Connections between Rivers and Great Lakes in River-lake Transition Zones

    EPA Science Inventory

    River-to-Great Lake transition zones are hydrologically, biogeochemically and biologically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. Our goal is to characterize the biogeochemical properties of the river-lake transition zones and under...

  16. 78 FR 49684 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

  17. 76 FR 58110 - Safety Zone; Giannangeli Wedding Fireworks, Lake St. Clair, Harrison Township, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ...-AA00 Safety Zone; Giannangeli Wedding Fireworks, Lake St. Clair, Harrison Township, MI AGENCY: Coast... zone on Lake St. Clair, Harrison Township, MI. This zone is intended to restrict vessels from a portion of Lake St. Clair during the Giannangeli Wedding Fireworks. DATES: This rule is effective and will be...

  18. 78 FR 36662 - Safety Zone; Fairport Harbor Mardi Gras, Lake Erie, Fairport, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ...-AA00 Safety Zone; Fairport Harbor Mardi Gras, Lake Erie, Fairport, OH AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Erie, Fairport Harbor, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during...

  19. 33 CFR 165.T11-281 - Safety Zone; Lake Mead Intake Construction; Lake Mead, Boulder City, NV.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone; Lake Mead Intake Construction; Lake Mead, Boulder City, NV. 165.T11-281 Section 165.T11-281 Navigation and Navigable Waters... Coast Guard District § 165.T11-281 Safety Zone; Lake Mead Intake Construction; Lake Mead, Boulder City...

  20. Deep structure beneath Lake Ontario: Crustal-scale Grenville subdivisions

    USGS Publications Warehouse

    Forsyth, D. A.; Milkereit, B.; Zelt, Colin A.; White, D. J.; Easton, R. M.; Hutchinson, Deborah R.

    1994-01-01

    Lake Ontario marine seismic data reveal major Grenville crustal subdivisions beneath central and southern Lake Ontario separated by interpreted shear zones that extend to the lower crust. A shear zone bounded transition between the Elzevir and Frontenac terranes exposed north of Lake Ontario is linked to a seismically defined shear zone beneath central Lake Ontario by prominent aeromagnetic and gravity anomalies, easterly dipping wide-angle reflections, and fractures in Paleozoic strata. We suggest the central Lake Ontario zone represents crustal-scale deformation along an Elzevir–Frontenac boundary zone that extends from outcrop to the south shore of Lake Ontario.Seismic images from Lake Ontario and the exposed western Central Metasedimentary Belt are dominated by crustal-scale shear zones and reflection geometries featuring arcuate reflections truncated at their bases by apparent east-dipping linear reflections. The images show that zones analogous to the interpreted Grenville Front Tectonic Zone are also present within the Central Metasedimentary Belt and support models of northwest-directed crustal shortening for Grenvillian deep crustal deformation beneath most of southeastern Ontario.A Precambrian basement high, the Iroquoian high, is defined by a thinning of generally horizontal Paleozoic strata over a crestal area above the basement shear zone beneath central Lake Ontario. The Iroquoian high helps explain the peninsular extension into Lake Ontario forming Prince Edward County, the occurrence of Precambrian inlier outcrops in Prince Edward County, and Paleozoic fractures forming the Clarendon–Linden structure in New York.

  1. 77 FR 65478 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River...

  2. 77 FR 60044 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River...

  3. 75 FR 64673 - Safety Zone, Brandon Road Lock and, Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... Zone, Brandon Road Lock and, Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and... Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Ship and...: The Coast Guard will enforce Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des...

  4. 78 FR 65874 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including...

  5. 76 FR 43896 - Safety Zone; Kathleen Whelan Wedding Fireworks, Lake St. Clair, Grosse Pointe Farms, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ...-AA00 Safety Zone; Kathleen Whelan Wedding Fireworks, Lake St. Clair, Grosse Pointe Farms, MI AGENCY... safety zone on Lake St. Clair, Grosse Pointe Farms, MI. This zone is intended to restrict vessels from a portion of Lake St. Clair during the Kathleen Whelan Wedding Fireworks. DATES: This rule is effective from...

  6. 76 FR 21637 - Safety Zone; Ford Estate Wedding Fireworks, Lake St. Clair, Grosse Pointe Shores, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ...-AA00 Safety Zone; Ford Estate Wedding Fireworks, Lake St. Clair, Grosse Pointe Shores, MI AGENCY: Coast... zone on Lake St. Clair, Grosse Pointe Shores, MI. This zone is intended to restrict vessels from a portion of Lake St. Clair River during the Ford Estate Wedding Fireworks. DATES: This rule is effective...

  7. 75 FR 34362 - Safety Zone; Festivals & Fireworks Celebration, East Moran Bay, Lake Huron, St. Ignace, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ...-AA00 Safety Zone; Festivals & Fireworks Celebration, East Moran Bay, Lake Huron, St. Ignace, MI AGENCY... safety zone on East Moran Bay, Lake Huron, St. Ignace, MI. This zone is intended to restrict vessels from... portion of East Moran Bay, Lake Huron, St. Ignace, MI between 9 p.m. and 11 p.m. on June 26, July 10, July...

  8. 75 FR 20920 - Safety Zone; Lake Havasu Grand Prix, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ...-AA00 Safety Zone; Lake Havasu Grand Prix, Lake Havasu, AZ AGENCY: Coast Guard, DHS. ACTION: Temporary... of Lake Havasu on the Colorado River in Lake Havasu City, Arizona for the Lake Havasu Grand Prix... established in support of the Lake Havasu Grand Prix, a marine event that includes participating vessels...

  9. 77 FR 22495 - Safety Zone; Lake Pontchartrain, New Orleans, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ...-AA00 Safety Zone; Lake Pontchartrain, New Orleans, LA AGENCY: Coast Guard, DHS. ACTION: Temporary final... from the South shores of Lake Pontchartrain adjacent to the East bank of the Lakefront Airport runways... proposed rulemaking (NPRM) entitled Safety Zone, Lake Pontchartrain, New Orleans, LA in the Federal...

  10. Biogeochemical zonation of sulfur during the discharge of groundwater to lake in desert plateau (Dakebo Lake, NW China).

    PubMed

    Su, Xiaosi; Cui, Geng; Wang, Huang; Dai, Zhenxue; Woo, Nam-Chil; Yuan, Wenzhen

    2018-06-01

    As one of the important elements of controlling the redox system within the hyporheic and hypolentic zone, sulfur is involved in a series of complex biogeochemical processes such as carbon cycle, water acidification, formation of iron and manganese minerals, redox processes of trace metal elements and a series of important ecological processes. Previous studies on biogeochemistry of the hyporheic and hypolentic zones mostly concentrated on nutrients of nitrogen and phosphorus, heavy metals and other pollutants. Systematic study of biogeochemical behavior of sulfur and its main controlling factors within the lake hypolentic zone is very urgent and important. In this paper, a typical desert plateau lake, Dakebo Lake in northwestern China, was taken for example within which redox zonation and biogeochemical characteristics of sulfur affected by hydrodynamic conditions were studied based on not only traditional hydrochemical analysis, but also environmental isotope evidence. In the lake hypolentic zone of the study area, due to the different hydrodynamic conditions, vertical profile of sulfur species and environmental parameters differ at the two sites of the lake (western side and center). Reduction of sulfate, deposition and oxidation of sulfide, dissolution and precipitation of sulfur-bearing minerals occurred are responded well to Eh, dissolved oxygen, pH, organic carbon and microorganism according to which the lake hypolentic zone can be divided into reduced zone containing H 2 S, reduced zone containing no H 2 S, transition zone and oxidized zone. The results of this study provide valuable insights for understanding sulfur conversion processes and sulfur biogeochemical zonation within a lake hypolentic zone in an extreme plateau arid environment and for protecting the lake-wetland ecosystem in arid and semiarid regions.

  11. 75 FR 21990 - Safety Zone; Extended Debris Removal in the Lake Champlain Bridge Construction Zone (Between...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ...-AA00 Safety Zone; Extended Debris Removal in the Lake Champlain Bridge Construction Zone (Between... surrounding the Lake Champlain Bridge construction zone between Chimney Point, VT and Crown Point, NY. This... of debris from the old Crown Point bridge demolition. The debris must be cleared from the navigable...

  12. 75 FR 35652 - Safety Zone; Northern California Annual Fireworks Events, Fourth of July Fireworks, South Lake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... Zone; Northern California Annual Fireworks Events, Fourth of July Fireworks, South Lake Tahoe Gaming... will enforce Lights on the Lake Fireworks Display safety zone for South Lake Tahoe, from 8:30 a.m. on... the Lake Fireworks in 33 CFR 165.1191 on July 4, 2010, from 8:30 a.m. on July 1, 2010 through 10 p.m...

  13. Monitoring wetland of Poyang Lake National Nature Reserve zone by remote sensing

    NASA Astrophysics Data System (ADS)

    Le, Xinghua; Fan, Zhewen; Fang, Yu; Yu, Yuping; Zhang, Yun

    2008-10-01

    In order to monitor the wetland of the Poyang Lake national nature reserve zone, we selected three different seasons TM image data which were achieved individually in April 23th in 1988, Nov 2nd in 1994, and Jan 1st in 2000. Based on the band 5, band 4 and band 3of TM image, we divided the land coverage of Poyang Lake national nature reserve zone into three classes--water field, meadow field and the other land use by rule of maximum likelihood. Using the outcome data to make the statistical analysis, combining with the GIS overlay function operation, the land coverage changes of the Poyang Lake national nature reserve zone can be achieved. Clipped by the Poyang Lake national nature reserve zone boundary, the land coverage changes of Poyang Lake national nature reserve zone in three different years can be attained. Compared with the different wetland coverage data in year of 1988, 1994, 2000, the Poyang Lake national nature reserve zone eco-environment can be inferred from it. After analyzing the land coverage changes data, we draw the conclusion that the effort of Poyang Lake national nature reserve administration bureaucracy has worked well in certain sense.

  14. 77 FR 62440 - Safety Zone; Wounded Warriors Benefit, Lake Erie, Huron, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ...-AA00 Safety Zone; Wounded Warriors Benefit, Lake Erie, Huron, OH AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the waters of Lake Erie, East Huron, Ohio. This regulation is intended to restrict vessels from portions of Lake Erie...

  15. 75 FR 22228 - Regulated Navigation Area; Lake Champlain Bridge Construction Zone, NY and VT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ...-AA11 Regulated Navigation Area; Lake Champlain Bridge Construction Zone, NY and VT AGENCY: Coast Guard... establishing a regulated navigation area around the construction zone of the Lake Champlain Bridge between... on all vessels transiting the navigable waters of Lake Champlain in the vicinity of the bridge...

  16. 78 FR 17097 - Safety Zone; Lake Havasu Triathlon; Lake Havasu City, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ...-AA00 Safety Zone; Lake Havasu Triathlon; Lake Havasu City, AZ AGENCY: Coast Guard, DHS. ACTION... waters of Lake Havasu and the London Bridge Channel for the Lake Havasu Triathlon. This temporary safety... participants. The waterside swim course consists of 1500 meters in Lake Havasu and the London Bridge Channel...

  17. Numerical simulation of steady state three-dimensional groundwater flow near lakes

    USGS Publications Warehouse

    Winter, Thomas C.

    1978-01-01

    Numerical simulation of three-dimensional groundwater flow near lakes shows that the continuity of the boundary encompassing the local groundwater flow system associated with a lake is the key to understanding the interaction of a lake with the groundwater system. The continuity of the boundary can be determined by the presence of a stagnation zone coinciding with the side of the lake nearest the downgradient side of the groundwater system. For most settings modeled in this study the stagnation zone underlies the lakeshore, and it generally follows its curvature. The length of the stagnation zone is controlled by the geometry of the lake's drainage basin divide on the side of the lake nearest the downgradient side of the groundwater system. In the case of lakes that lose water to the groundwater system, three-dimensional modeling also allows for estimating the area of lake bed through which outseepage takes place. Analysis of the effects of size and lateral and vertical distribution of aquifers within the groundwater system on the outseepage from lakes shows that the position of the center point of the aquifer relative to the littoral zone on the side of the lake nearest the downgradient side of the groundwater system is a critical factor. If the center point is downslope from this part of the littoral zone, the local flow system boundary tends to be weak or outseepage occurs. If the center point is upslope from this littoral zone, the stagnation zone tends to be stronger (to have a higher head in relation to lake level), and outseepage is unlikely to occur.

  18. 77 FR 52681 - Reorganization and Expansion of Foreign-Trade Zone 87 Lake Charles, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... Foreign-Trade Zone 87 Lake Charles, LA Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as amended (19 U.S.C. 81a-81u), the Foreign-Trade Zones Board (the Board) adopts the following Order: Whereas, the Lake Charles Harbor & Terminal District, grantee of Foreign-Trade Zone 87...

  19. Satellite-based Paleo and Recent Lake Changes across the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Luo, J.; Shah, C. A.; Kroll, C. N.; Li, X.; Yao, T.; Wu, Y.

    2007-12-01

    The Tibetan Plateau, home to the world's largest high-altitude lake group, is experiencing significant climate change with a pronounced temperature rise of 0.16°C per decade. Tibetan lakes have been impacted greatly, and in return they serve as a sensitive indicator of regional and global climate and water cycle variability. Past lake dynamics is essential for us to better understand the current and inferred future lake changes. Owing to fact that paleo lake shores have been extensively preserved on this remote plateau, paleo lake change since the late Pleistocene (about 25 ka BP) can be inferred with the assistance of digital elevation models from paleo shorelines visible on high-resolution imagery. We have recovered the lake extent more than 650 major contemporary lakes occupying a total area of 21,613 km2, and it turns out that these lakes were broken from original 173 late Pleistocene mega lakes. The total lake area shrinkage and water loss are conservatively estimated at 42,109 km2 and 2,936 km3 respectively. Nearly two-thirds of late Pleistocene lake area has disappeared. More recent lake dynamics over the past 30 years is monitored using archived satellite data, and only minor changes are found in most areas. The detected paleo and recent lake changes exhibit strong spatial patterns. Three distinct zones of paleo changes can be identified trending in the northeast to the southwest direction. Lakes in the first zone have only minor water-level drops (less than 20 meters). The second zone is the moderate zone, with 20-60 meter water level drops. Lakes in the third zone have the greatest water-level drop, up to 285 meters. Paleo shorelines are found extensively in this zone. The spatial distribution of the zones is found highly related to the Quaternary glaciation patterns. Glacial dynamics and stream network changes and other factors may explain the detected recent lake changes. It is found that glacial dynamics has the greatest impact on the detected paleo and recent lake changes, and will continue to play a critical role on Tibetan lake dynamics in the near future.

  20. 76 FR 27251 - Safety Zone; Coughlin Wedding Fireworks, Lake St. Clair, Harrison Township, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ...-AA00 Safety Zone; Coughlin Wedding Fireworks, Lake St. Clair, Harrison Township, MI AGENCY: Coast Guard... Lake St. Clair, Harrison Township, MI. This safety zone is intended to restrict vessels from a portion of Lake St. Clair during the Coughlin Wedding Fireworks. DATES: This rule is effective from 10 p.m...

  1. 76 FR 37650 - Safety Zone; Northern California Annual Fireworks Events, Fourth of July Fireworks, South Lake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Zone; Northern California Annual Fireworks Events, Fourth of July Fireworks, South Lake Tahoe Gaming... will enforce the safety zone for the annual Fourth of July Fireworks, South Lake Tahoe Gaming Alliance (Lights on the Lake Fireworks Display). This action is necessary to control vessel traffic and to ensure...

  2. 75 FR 34936 - Safety Zone; Chicago Tall Ships Fireworks, Lake Michigan, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ...-AA00 Safety Zone; Chicago Tall Ships Fireworks, Lake Michigan, Chicago, IL AGENCY: Coast Guard, DHS... waters of Lake Michigan within Chicago Harbor, Chicago, Illinois. This zone is intended to restrict... CWO2 Jon Grob, U.S. Coast Guard, Sector Lake Michigan, telephone (414)747-7188, e-mail [email protected

  3. 78 FR 37712 - Safety Zone; Chicago Match Cup Race; Lake Michigan; Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... Zone; Chicago Match Cup Race; Lake Michigan; Chicago, IL AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the safety zone on Lake Michigan near Chicago... the Captain of the Port, Lake Michigan. DATES: This regulation will be enforced at the dates and times...

  4. 75 FR 34934 - Safety Zone; Fireworks for the Virginia Lake Festival, Buggs Island Lake, Clarksville, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ...-AA00 Safety Zone; Fireworks for the Virginia Lake Festival, Buggs Island Lake, Clarksville, VA AGENCY... Fireworks for the Virginia Lake Festival event. This action is intended to restrict vessel traffic movement... Virginia Lake Festival, Buggs Island Lake, Clarksville, VA (a) Regulated Area. The following area is a...

  5. 77 FR 38490 - Safety Zone; Mentor Harbor Yachting Club Fireworks, Lake Erie, Mentor, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ...-AA00 Safety Zone; Mentor Harbor Yachting Club Fireworks, Lake Erie, Mentor, OH AGENCY: Coast Guard, DHS... Erie, Mentor, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during the Mentor Harbor Yachting Club fireworks display. This temporary safety zone is necessary to protect...

  6. 77 FR 49349 - Safety Zone; Chicago Air and Water Show, Lake Michigan, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... Zone; Chicago Air and Water Show, Lake Michigan, Chicago, IL AGENCY: Coast Guard, DHS. ACTION... Water Show safety zone on Lake Michigan near Lincoln Park. This action is necessary to accurately reflect the enforcement dates and times for this safety zone due to changes made in this year's air show...

  7. 76 FR 35106 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago..., DHS. ACTION: Final rule. SUMMARY: The Coast Guard is establishing a permanent safety zone from Brandon... Safety Zones; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary...

  8. 76 FR 37646 - Safety Zone; Northern California Annual Fireworks Events, Fourth of July Fireworks, Lake Tahoe, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Zone; Northern California Annual Fireworks Events, Fourth of July Fireworks, Lake Tahoe, CA AGENCY... annual safety zone for the Fourth of July Fireworks, Lake Tahoe, California, located off Incline Village...,000 foot safety zone for the annual Fourth of July Fireworks Display in 33 CFR 165.1191 on July 4...

  9. 77 FR 40515 - Safety Zone; Detroit Symphony Orchestra at Ford House Fireworks, Lake St. Clair, Grosse Pointe...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ...-AA00 Safety Zone; Detroit Symphony Orchestra at Ford House Fireworks, Lake St. Clair, Grosse Pointe... Detroit Symphony Orchestra at the Ford House Fireworks. This zone will be effective and enforced from 10.... 165.T09-0600 Safety Zone; Detroit Symphony Orchestra at Ford House Fireworks, Lake St. Clair, Grosse...

  10. 75 FR 22333 - Safety Zone; Michigan City Super Boat Grand Prix, Lake Michigan, Michigan City, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ...-AA00 Safety Zone; Michigan City Super Boat Grand Prix, Lake Michigan, Michigan City, IN AGENCY: Coast... temporary safety zone on Lake Michigan near Michigan City, Indiana. This zone is intended to restrict... ensure the safety of vessels from the hazards associated with the Michigan City Super Boat Grand Prix...

  11. 76 FR 2829 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  12. 77 FR 20295 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  13. 78 FR 36092 - Safety Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... Coast Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan...

  14. 78 FR 36091 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

  15. 77 FR 35854 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  16. 75 FR 52462 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  17. 78 FR 40635 - Safety Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ... Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... Coast Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan...

  18. 75 FR 73966 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  19. 76 FR 2579 - Safety Zone; Lake Mead Intake Construction, Lake Mead, Boulder City, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ...-AA00 Safety Zone; Lake Mead Intake Construction, Lake Mead, Boulder City, NV AGENCY: Coast Guard, DHS... waters of Lake Mead in support of the construction project for Lake Mead's Intake 3 during the first 6... blasting operations for the placement of a water intake pipe in Lake Mead during the first 6 months of 2011...

  20. 75 FR 26094 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... establishing a temporary safety zone from Brandon Road Lock and Dam to Lake Michigan. This temporary safety...

  1. 78 FR 39597 - Safety Zone; “Lights on the Lake” Fourth of July Fireworks, South Lake Tahoe, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... Zone; ``Lights on the Lake'' Fourth of July Fireworks, South Lake Tahoe, CA AGENCY: Coast Guard, DHS... the ``Lights on the Lake'' Fourth of July Fireworks display, South Lake Tahoe, CA in the Captain of...) for the ``Lights on the Lake'' Fourth of July Fireworks, South Lake Tahoe, CA in 33 CFR 165.1191...

  2. A spatial classification and database for management, research, and policy making: The Great Lakes aquatic habitat framework

    USGS Publications Warehouse

    Wang, Lizhu; Riseng, Catherine M.; Mason, Lacey; Werhrly, Kevin; Rutherford, Edward; McKenna, James E.; Castiglione, Chris; Johnson, Lucinda B.; Infante, Dana M.; Sowa, Scott P.; Robertson, Mike; Schaeffer, Jeff; Khoury, Mary; Gaiot, John; Hollenhurst, Tom; Brooks, Colin N.; Coscarelli, Mark

    2015-01-01

    Managing the world's largest and most complex freshwater ecosystem, the Laurentian Great Lakes, requires a spatially hierarchical basin-wide database of ecological and socioeconomic information that is comparable across the region. To meet such a need, we developed a spatial classification framework and database — Great Lakes Aquatic Habitat Framework (GLAHF). GLAHF consists of catchments, coastal terrestrial, coastal margin, nearshore, and offshore zones that encompass the entire Great Lakes Basin. The catchments captured in the database as river pour points or coastline segments are attributed with data known to influence physicochemical and biological characteristics of the lakes from the catchments. The coastal terrestrial zone consists of 30-m grid cells attributed with data from the terrestrial region that has direct connection with the lakes. The coastal margin and nearshore zones consist of 30-m grid cells attributed with data describing the coastline conditions, coastal human disturbances, and moderately to highly variable physicochemical and biological characteristics. The offshore zone consists of 1.8-km grid cells attributed with data that are spatially less variable compared with the other aquatic zones. These spatial classification zones and their associated data are nested within lake sub-basins and political boundaries and allow the synthesis of information from grid cells to classification zones, within and among political boundaries, lake sub-basins, Great Lakes, or within the entire Great Lakes Basin. This spatially structured database could help the development of basin-wide management plans, prioritize locations for funding and specific management actions, track protection and restoration progress, and conduct research for science-based decision making.

  3. 77 FR 49401 - Safety Zones; Revolution 3 Triathlon, Lake Erie, Sandusky Bay, Cedar Point, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ...-AA00 Safety Zones; Revolution 3 Triathlon, Lake Erie, Sandusky Bay, Cedar Point, OH AGENCY: Coast Guard... permanent safety zones on Lake Erie near Sandusky, OH. This action is necessary to provide for the safety of... injuries or fatalities. The Captain of the Port Detroit proposes to establish this safety zone to protect...

  4. Faulting along the southern margin of Reelfoot Lake, Tennessee

    USGS Publications Warehouse

    Van Arsdale, R.; Purser, J.; Stephenson, W.; Odum, J.

    1998-01-01

    The Reelfoot Lake basin, Tennessee, is structurally complex and of great interest seismologically because it is located at the junction of two seismicity trends of the New Madrid seismic zone. To better understand the structure at this location, a 7.5-km-long seismic reflection profile was acquired on roads along the southern margin of Reelfoot Lake. The seismic line reveals a westerly dipping basin bounded on the west by the Reelfoot reverse fault zone, the Ridgely right-lateral transpressive fault zone on the east, and the Cottonwood Grove right-lateral strike-slip fault in the middle of the basin. The displacement history of the Reelfoot fault zone appears to be the same as the Ridgely fault zone, thus suggesting that movement on these fault zones has been synchronous, perhaps since the Cretaceous. Since the Reelfoot and Ridgely fault systems are believed responsible for two of the mainshocks of 1811-1812, the fault history revealed in the Reelfoot Lake profile suggests that multiple mainshocks may be typical of the New Madrid seismic zone. The Ridgely fault zone consists of two northeast-striking faults that lie at the base of and within the Mississippi Valley bluff line. This fault zone has 15 m of post-Eocene, up-to-the-east displacement and appears to locally control the eastern limit of Mississippi River migration. The Cottonwood Grove fault zone passes through the center of the seismic line and has approximately 5 m up-to-the-east displacement. Correlation of the Cottonwood Grove fault with a possible fault scarp on the floor of Reelfoot Lake and the New Markham fault north of the lake suggests the Cottonwood Grove fault may change to a northerly strike at Reelfoot Lake, thereby linking the northeast-trending zones of seismicity in the New Madrid seismic zone.

  5. 76 FR 70704 - Foreign-Trade Zone 87-Lake Charles, LA; Application for Reorganization/Expansion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-15

    ... Charles, LA; Application for Reorganization/Expansion An application has been submitted to the Foreign-Trade Zones Board (the Board) by the Lake Charles Harbor & Terminal District, grantee of FTZ 87, requesting authority to reorganize and expand the zone in Lake Charles. The application was submitted...

  6. 77 FR 35857 - Safety Zone, Fireworks Display, Lake Superior; Duluth, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... 1625-AA00 Safety Zone, Fireworks Display, Lake Superior; Duluth, MN AGENCY: Coast Guard, DHS. ACTION... of Lake Superior during the Duluth Fourth Fest fireworks display. This temporary safety zone is necessary to protect spectators and vessels from the hazards associated with fireworks displays. DATES: This...

  7. 75 FR 19246 - Safety Zone; Desert Storm, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ...-AA00 Safety Zone; Desert Storm, Lake Havasu, AZ AGENCY: Coast Guard, DHS. ACTION: Temporary final rule... navigable waters of the Colorado River in Lake Havasu, Lake Havasu City, Arizona in support of the Desert.... Background and Purpose The Lake Racer LLC is sponsoring the Desert Storm Charity Poker Run and Exhibition Run...

  8. 33 CFR 165.910 - Security Zones; Captain of the Port Lake Michigan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the southeast corner of the Jardine Water Filtration Plant at 41°53′36″ N, 87°36′10″ W, to the northeast corner of the Navy Pier at 41°53′32″ N, 87°35′55″ W; then following the Navy Pier, seawall, and... Nuclear Power Plant encompassed by a line starting on the shoreline at 41°23′45″ N, 88°16′18″ W; then east...

  9. 33 CFR 165.910 - Security Zones; Captain of the Port Lake Michigan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the southeast corner of the Jardine Water Filtration Plant at 41°53′36″ N, 87°36′10″ W, to the northeast corner of the Navy Pier at 41°53′32″ N, 87°35′55″ W; then following the Navy Pier, seawall, and... Nuclear Power Plant encompassed by a line starting on the shoreline at 41°23′45″ N, 88°16′18″ W; then east...

  10. 75 FR 38723 - Safety Zone; St. Ignace 4th of July Fireworks, East Moran Bay, Lake Huron, St. Ignace, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ...-AA00 Safety Zone; St. Ignace 4th of July Fireworks, East Moran Bay, Lake Huron, St. Ignace, MI AGENCY... safety zone on East Moran Bay, Lake Huron, St. Ignace, Michigan. This zone is intended to restrict vessels from a portion of East Moran Bay during the St. Ignace 4th of July Fireworks display, July 4, 2010...

  11. 78 FR 36426 - Safety Zone; Queen's Cup; Lake Michigan; Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ...-AA00 Safety Zone; Queen's Cup; Lake Michigan; Milwaukee, WI AGENCY: Coast Guard, DHS. ACTION: Temporary... Lake Michigan due to the 2013 Queen's Cup Race. This temporary safety zone is necessary to protect the... Queen's Cup Regatta. The Queen's Cup Regatta is a race from Milwaukee, WI to Ludington, MI that is...

  12. 77 FR 40511 - Safety Zone; GR Symphony Fireworks Display, Kalamazoo Lake, Saugatuck, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ...-AA00 Safety Zone; GR Symphony Fireworks Display, Kalamazoo Lake, Saugatuck, MI AGENCY: Coast Guard, DHS... Kalamazoo Lake during the GR Symphony Fireworks display. This temporary safety zone is necessary to protect spectators and vessels from the hazards associated with a fireworks display. DATES: This rule will be...

  13. The Honey Lake fault zone, northeastern California: Its nature, age, and displacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, D.L.; Saucedo, G.J.; Grose, T.L.T.

    The Honey Lake fault zone of northeastern California is composed of en echelon, northwest trending faults that form the boundary between the Sierra Nevada and the Basin Ranges provinces. As such the Honey Lake fault zone can be considered part of the Sierra Nevada frontal fault system. It is also part of the Walker Lane of Nevada. Faults of the Honey Lake zone are vertical with right-lateral oblique displacements. The cumulative vertical component of displacement along the fault zone is on the order of 800 m and right-lateral displacement is at least 10 km (6 miles) but could be considerablymore » more. Oligocene to Miocene (30 to 22 Ma) age rhyolite tuffs can be correlated across the zone, but mid-Miocene andesites do not appear to be correlative indicating the faulting began in early to mid-Miocene time. Volcanic rocks intruded along faults of the zone, dated at 16 to 8 Ma, further suggest that faulting in the Honey Lake zone was initiated during mid-Miocene time. Late Quaternary to Holocene activity is indicated by offset of the 12,000 year old Lake Lahontan high stand shoreline and the surface rupture associated with the 1950 Fort Sage earthquake.« less

  14. 78 FR 77594 - Safety Zone; Barge Launches; Gulfport Lake; Gulfport, MS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... 1625-AA00 Safety Zone; Barge Launches; Gulfport Lake; Gulfport, MS AGENCY: Coast Guard, DHS. ACTION... Lake, Gulfport, MS. This action is necessary for the protection of persons and vessels on navigable waters during the launching of barges in Gulfport Lake, Gulfport, MS, particularly small craft in the...

  15. 78 FR 5474 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2013-0029] Great Lakes Pilotage Advisory... Meeting. SUMMARY: The Great Lakes Pilotage Advisory Committee (GLPAC) will meet on February 11, 2013, in... Homeland Security and the Coast Guard on matters relating to Great Lakes pilotage, including review of...

  16. 78 FR 38725 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2013-0568] Great Lakes Pilotage Advisory... Meeting. SUMMARY: The Great Lakes Pilotage Advisory Committee (GLPAC) will meet virtually on July 15, 2013... recommendations to the Secretary of Homeland Security and the Coast Guard on matters relating to Great Lakes...

  17. 75 FR 35296 - Safety Zones; 2010 Muskegon Summer Celebration Air Show, Muskegon Lake, Muskegon, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ...-AA00 Safety Zones; 2010 Muskegon Summer Celebration Air Show, Muskegon Lake, Muskegon, MI AGENCY: Coast... portions of Muskegon Lake due to the 2010 Muskegon Summer Celebration Air Show. These temporary safety... 2010 Muskegon Summer Celebration Air Show. The Captain of the Port, Sector Lake Michigan, has...

  18. 77 FR 9879 - Safety Zone; Lake Pontchartrain, New Orleans, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ...-AA00 Safety Zone; Lake Pontchartrain, New Orleans, LA AGENCY: Coast Guard, DHS. ACTION: Notice of... of the South shores of Lake Pontchartrain adjacent to the East bank of the Lakefront Airport runways... Blue Angels Air Show, to take place over the waters of Lake Pontchartrain. The Blue Angels Air Show is...

  19. 75 FR 32664 - Safety Zone; Milwaukee Air and Water Show, Lake Michigan, Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    .... ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a safety zone on Lake Michigan... of Lake Michigan due to a large-scale air show and a fireworks display. This temporary safety zone is... air show and fireworks display. DATES: This regulation is effective from 12:01 a.m. on June 10, 2010...

  20. A conceptual framework for Lake Michigan coastal/nearshore ecosystems, with application to Lake Michigan Lakewide Management Plan (LaMP) objectives

    USGS Publications Warehouse

    Seelbach, Paul W.; Fogarty, Lisa R.; Bunnell, David Bo; Haack, Sheridan K.; Rogers, Mark W.

    2013-01-01

    The Lakewide Management Plans (LaMPs) within the Great Lakes region are examples of broad-scale, collaborative resource-management efforts that require a sound ecosystems approach. Yet, the LaMP process is lacking a holistic framework that allows these individual actions to be planned and understood within the broader context of the Great Lakes ecosystem. In this paper we (1) introduce a conceptual framework that unifies ideas and language among Great Lakes managers and scientists, whose focus areas range from tributary watersheds to open-lake waters, and (2) illustrate how the framework can be used to outline the geomorphic, hydrologic biological, and societal processes that underlie several goals of the Lake Michigan LaMP, thus providing a holistic and fairly comprehensive roadmap for tackling these challenges. For each selected goal, we developed a matrix that identifies the key ecosystem processes within the cell for each lake zone and each discipline; we then provide one example where a process is poorly understood and a second where a process is understood, but its impact or importance is unclear. Implicit in these objectives was our intention to highlight the importance of the Great Lakes coastal/nearshore zone. Although the coastal/nearshore zone is the important linkage zone between the watershed and open-lake zones—and is the zone where most LaMP issues are focused--scientists and managers have a relatively poor understanding of how the coastal/nearshore zone functions. We envision follow-up steps including (1) collaborative development of a more detailed and more complete conceptual model of how (and where) identified processes are thought to function, and (2) a subsequent gap analysis of science and monitoring priorities.

  1. The Kramer deposit of southern California--Preliminary insights on the origins of zoned lacustrine evaporite borate deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swihart, G.H.; McBay, E.H.; Smith, D.H.

    1992-01-01

    Lacustrine evaporite borate deposits span the range from mineralogically unzoned or poorly zoned to concentrically or complexly zoned types. Deposits often contain an inner ulexite or probertite (Na-Ca borates) zone and an outer colemanite (Ca borate) zone. A few deposits contain an innermost borax (Na borate) zone. Boron isotopic analyses of core material from the zoned borax-ulexite-colemanite Kramer deposit have been made with the aim of providing a better understanding of the processes of zone formation. Samples from 6 depths over a 63 foot interval in the borax zone yield a [delta] B-11 range of +0.1 to +2.3 permil. Twomore » samples in the portion of the ulexite zone below the borax zone, vertically separated from one another by 20 feet, yield identical results of [delta]B-11 = [minus]2.1 permit. Three ulexite samples from a 10 foot interval above the borax zone produced results in the range [delta]B-11 = [minus]4.6 to [minus]5.5 permil. A number of possible origins for ulexite at Kramer have been proposed: (1) primary precipitation from the lake brines; (2) postdepositional alteration of the borax zone margin by Ca-rich groundwater; (3) mixing of seeping lake brines and Ca-rich groundwater in muds around the lake. Given the small variation in B isotopic composition exhibited in the borax zone, mechanisms 1 and 2 would produce upper and lower portions of the ulexite zone with similar isotopic compositions. In the third scenario, the difference in composition of the upper and lower ulexites could be due to distance from the lake and relative proportions of seeped lake brine (B-11-rich) and clay adsorbed B (B-10-rich). Furthermore, the cotton ball form of the ulexite in this core is identical to that of ulexite forming today just beneath the surface of dry lakes in NV and CA.« less

  2. The Interdependence of Lake Ice and Climate in Central North America. [correlation between freeze/than cycles of lakes and regional weather variations

    NASA Technical Reports Server (NTRS)

    Jelacic, A. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A comparison of lake freeze transition zone migration with the movement of large pressure centers reveals the following consistencies: (1) polar continental cyclones originate within and/or travel along the trend of the transition zone; (2) polar continental anticyclones fail to cross the transition zone; (3) polar outbreak anticyclones pass through the transition zone, apparently unaffected. In addition, storm centers associated with the transition zone undergo significant intensification manifest by a deepening of the pressure through and increased precipitation outside the zone.

  3. Phytoplankton assemblages in high-elevation lakes in the northern Cascade Mountains, Washington State, USA

    USGS Publications Warehouse

    Larson, Gary L.; McIntire, C.D.; Truitt, R.E.; Liss, W.J.; Hoffman, Robert L.; Deimling, E.; Lomnicky, G.A.

    1998-01-01

    Phytoplankton assemblages in high-elevation lakes of North Cascades National Park Service Complex were studied during the open-water period in 1989. Collectively, 93 taxa were identified in 55 samples from 51 lakes. Based on cell densities, cyanobacteria had the highest relative abundance (36.7 %), followed by chlorophytes (29.8 %), and chrysophytes (19.6 %). Aphanocapsa delicatissima had the highest proportional abundance (14.0 %). Only 15.1 % percent of the taxa occurred in more than 20 samples. Phytoplankton cell densities increased following a gradient of increasing lake-water temperature, alkalinity, and concentration of total Kjeldahl-N with decreasing lake elevation. Chrysophytes and cyanobacteria were quantitatively (relative abundance) the most important taxa in alpine and subalpine lakes, whereas cyanobacteria had the highest relative abundances in high-forest and low-forest lakes. Chlorophytes had their highest relative abundance in high-forest lakes. Although low in relative abundance, diatoms and dinoflagellates were most abundant in alpine lakes. An ordination by correspondence analysis indicated that most alpine, subalpine, and high-forest lakes had similar floras. Although a few subalpine lakes exhibited deviations from this pattern, the main differences in phytoplankton composition were found in a group of low-forest and high-forest lakes. Canonical correspondence analysis (CCA) provided evidence that the distribution of samples and taxa in ordination space was correlated with a gradient of decreasing lake elevation and increasing water temperature, alkalinity, and concentration of nitrogen. When CCA was used to examine relationships among phytoplankton taxa and vegetation zones, a continuous distribution of taxa was found from the low-forest zone to the subalpine zone, with a large number of taxa occurring primarily in the subalpine and high-forest zones. Three phytoplankton taxa occurred primarily in alpine lakes, whereas five taxa co-occurred in alpine, subalpine, and high forest zones. Collectively, lake elevation and associated changes in water quality and concentrations of nutrients, especially nitrogen, appeared to be the primary physical and chemical factors influencing the taxonomic structures of phytoplankton assemblages.

  4. 77 FR 37321 - Safety Zone, Barrel Recovery, Lake Superior; Duluth, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... 1625-AA00 Safety Zone, Barrel Recovery, Lake Superior; Duluth, MN AGENCY: Coast Guard, DHS. ACTION... suspected to contain munitions waste materials which were dumped in the 1960's in a portion of Lake Superior... offshore in a portion of Lake Superior approximately 50 years ago. C. Discussion of the Final Rule The...

  5. Operational control of Eurasian watermilfoil and impacts to the native submersed aquatic macrophyte community in Lake Pend Oreille, Idaho

    USDA-ARS?s Scientific Manuscript database

    Lake Pend Oreille is the largest (36,000 ha or 91,000 acres) freshwater lake in Idaho. Approximately 27% or 10,000 ha of the lake is littoral zone habitat supporting aquatic plant growth. Eurasian watermilfoil (Myriophyllum spicatum L.) has invaded large areas of this littoral zone habitat, with e...

  6. 76 FR 65609 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal...

  7. Cyanotoxins in inland lakes of the continental United States: Photic Zone Occurrence and potential recreational health risks in the 2007 Survey of the Nation's lakes

    EPA Science Inventory

    The largest spatial survey of cylindrospermosins, microcystins, and saxitoxins in the United States was conducted as part of the 2007 U.S. Survey of the Nation’s Lakes. Integrated photic zone samples were collected from 1,161 lakes during May-September 2007. Cyanotoxin, cya...

  8. Towards a Detailed Seismic Structure of the Valley of Mexico's Xochimilco Lake Zone.

    NASA Astrophysics Data System (ADS)

    Rabade, S.; Sanchez-Sanchez, J.; Ayala Hernandez, M.; Macias, M. A.; Aguilar Calderon, L. A.; Alcántara, L.; Almora Mata, D.; Castro Parra, G.; Delgado, R.; Leonardo Suárez, M.; Molina Avila, I.; Mora, A.; Perez-Yanez, C.; Ruiz, A. L.; Sandoval, H.; Torres Noguez, M.; Vazquez Larquet, R.; Velasco Miranda, J. M.; Aguirre, J.; Ramirez-Guzmán, L.

    2017-12-01

    Six centuries of gradual, intentional sediment filling in the Xochimilco Lake Zone have drastically reduced the size of the lake. The basin structure and the lake's clay limits and thickness are poorly constrained, and yet, essential to explain the city's anomalous ground motion. Therefore, we conducted an experiment to define the 3D velocity model of Mexico's capital; the CDMX-E3D. The initial phase involved the deployment of a moving set of 18-broadband stations with an interstation distance of 500m over a period of 19 weeks. We collected the data and analyzed the results for the Xochimilco Lake Zone using H/V Spectral Ratios (Nakamura, 1989), which provided an improved fundamental period map of the region. Results show that periods in the former lake zone have larger variability than values previously estimated. In order to obtain group velocity maps at different periods, we estimated Green's functions from ambient noise cross-correlations following standard methodologies to invert Rayleigh wave travel times (Bensen et al., 2007). Preliminary result show very low-velocity zones (100 m/s) and thick sediment layers in most of the former Xochimilco Lake area. This Project was funded by the Secretaria de Ciencia, Tecnología e Innovación (SECITI) of Mexico City. Project SECITI/073/2016.

  9. 78 FR 30762 - Safety Zone; 2013 Fish Festival Fireworks, Lake Erie, Vermilion, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ...-AA00 Safety Zone; 2013 Fish Festival Fireworks, Lake Erie, Vermilion, OH AGENCY: Coast Guard, DHS... during the 2013 Fish Festival Fireworks display. This temporary safety zone is necessary to protect... necessary to ensure the safety of spectators and vessels during the 2013 Fish Festival Fireworks. This zone...

  10. 75 FR 61619 - Safety Zone; IJSBA World Finals, Lower Colorado River, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ...-AA00 Safety Zone; IJSBA World Finals, Lower Colorado River, Lake Havasu, AZ AGENCY: Coast Guard, DHS... Sports Boating Association (IJSBA) World Finals. This temporary safety zone is necessary to provide for... notice of proposed rulemaking (NPRM) entitled Safety Zone; IJSBA World Finals in the Federal Register (75...

  11. Zooplankton variability and larval striped bass foraging: Evaluating potential match/mismatch regulation

    USGS Publications Warehouse

    Chick, J.H.; Van Den Avyle, M.J.

    1999-01-01

    We quantified temporal and spatial variability of zooplankton in three potential nursery sites (river, transition zone, lake) for larval striped bass (Morone saxatilis) in Lake Marion, South Carolina, during April and May 1993-1995. In two of three years, microzooplankton (rotifers and copepod nauplii) density was significantly greater in the lake site than in the river or transition zone. Macrozooplankton (>200 ??m) composition varied among the three sites in all years with adult copepods and cladocerans dominant at the lake, and juvenile Corbicula fluminea dominant at the river and transition zone. Laboratory feeding experiments, simulating both among-site (site treatments) and within-site (density treatments) variability, were conducted in 1995 to quantify the effects of the observed zooplankton variability on foraging success of larval striped bass. A greater proportion of larvae fed in the lake than in the river or transition-zone treatments across all density treatments: mean (x), 10x and 100x. Larvae also ingested significantly more dry mass of prey in the lake treatment in both the mean and 10x density treatments. Field zooplankton and laboratory feeding data suggest that both spatial and temporal variability of zooplankton influence larval striped bass foraging. Prey density levels that supported successful foraging in our feeding experiments occurred in the lake during late April and May in 1994 and 1995 but were never observed in the river or transition zone. Because the rivers flowing into Lake Marion are regulated, it may be possible to devise flow management schemes that facilitate larval transport to the lake and thereby increase the proportion of larvae matched to suitable prey resources.

  12. 77 FR 50929 - Security Zones; 2012 RNC Bridge Security Zones, Captain of the Port St. Petersburg Zone, Tampa, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ...-AA87 Security Zones; 2012 RNC Bridge Security Zones, Captain of the Port St. Petersburg Zone, Tampa, FL... temporary security zones around certain bridges on the waters of Pinellas County and Tampa Bay, Florida..., or mooring on waters within 50 yards of the designated bridges during the times that the security...

  13. 75 FR 65448 - Foreign-Trade Zone 22-Chicago, IL, Application for Subzone Baxter Healthcare Corporation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 60-2010] Foreign-Trade Zone 22-Chicago, IL, Application for Subzone Baxter Healthcare Corporation (Pharmaceutical and Biological Product... Healthcare Corporation (Baxter), located near Round Lake (Lake County), Illinois. The application was...

  14. 77 FR 38492 - Safety Zone; Olcott Fireworks, Lake Ontario, Olcott, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... 1625-AA00 Safety Zone; Olcott Fireworks, Lake Ontario, Olcott, NY AGENCY: Coast Guard, DHS. ACTION... the Olcott fireworks on July 3, 2012. The safety zone is necessary to protect participants, spectators, and vessels from the hazards associated with a firework display. [[Page 38493

  15. Estimation of capture zones and drawdown at the Northwest and West Well Fields, Miami-Dade County, Florida, using an unconstrained Monte Carlo analysis: recent (2004) and proposed conditions

    USGS Publications Warehouse

    Brakefield, Linzy K.; Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin

    2013-01-01

    Travel-time capture zones and drawdown for two production well fields, used for drinking-water supply in Miami-Dade County, southeastern Florida, were delineated by the U.S Geological Survey using an unconstrained Monte Carlo analysis. The well fields, designed to supply a combined total of approximately 250 million gallons of water per day, pump from the highly transmissive Biscayne aquifer in the urban corridor between the Everglades and Biscayne Bay. A transient groundwater flow model was developed and calibrated to field data to ensure an acceptable match between simulated and observed values for aquifer heads and net exchange of water between the aquifer and canals. Steady-state conditions were imposed on the transient model and a post-processing backward particle-tracking approach was implemented. Multiple stochastic realizations of horizontal hydraulic conductivity, conductance of canals, and effective porosity were simulated for steady-state conditions representative of dry, average and wet hydrologic conditions to calculate travel-time capture zones of potential source areas of the well fields. Quarry lakes, formed as a product of rock-mining activities, whose effects have previously not been considered in estimation of capture zones, were represented using high hydraulic-conductivity, high-porosity cells, with the bulk hydraulic conductivity of each cell calculated based on estimates of aquifer hydraulic conductivity, lake depths and aquifer thicknesses. A post-processing adjustment, based on calculated residence times using lake outflows and known lake volumes, was utilized to adjust particle endpoints to account for an estimate of residence-time-based mixing of lakes. Drawdown contours of 0.1 and 0.25 foot were delineated for the dry, average, and wet hydrologic conditions as well. In addition, 95-percent confidence intervals (CIs) were calculated for the capture zones and drawdown contours to delineate a zone of uncertainty about the median estimates. Results of the Monte Carlo simulations indicate particle travel distances at the Northwest Well Field (NWWF) and West Well Field (WWF) are greatest to the west, towards the Everglades. The man-made quarry lakes substantially affect particle travel distances. In general near the NWWF, the capture zones in areas with lakes were smaller in areal extent than capture zones in areas without lakes. It is possible that contamination could reach the well fields quickly, within 10 days in some cases, if it were introduced into lakes nearest to supply wells, with one of the lakes being only approximately 650 feet from the nearest supply well. In addition to estimating drawdown and travel-time capture zones of 10, 30, 100, and 210 days for the NWWF and the WWF under more recent conditions, two proposed scenarios were evaluated with Monte Carlo simulations: the potential hydrologic effects of proposed Everglades groundwater seepage mitigation and quarry-lake expansion. The seepage mitigation scenario included the addition of two proposed anthropogenic features to the model: (1) an impermeable horizontal flow barrier east of the L-31N canal along the western model boundary between the Everglades and the urban areas of Miami-Dade County, and (2) a recharge canal along the Dade-Broward Levee near the NWWF. Capture zones and drawdown for the WWF were substantially affected by the addition of the barrier, which eliminates flow from the western boundary into the active model domain, shifting the predominant capture zone source area from the west more to the north and south. The 95-percent CI for the 210-day capture zone moved slightly in the NWWF as a result of the recharge canal. The lake-expansion scenario incorporated a proposed increase in the number and surface area of lakes by an additional 25 square miles. This scenario represents a 150-percent increase from the 2004 lake surface area near both well fields, but with the majority of increase proposed near the NWWF. The lake-expansion scenario substantially decreased the extent of the 210-day capture zone of the NWWF, which is limited to the lakes nearest the well field under proposed conditions.

  16. 75 FR 33995 - Safety Zone; Michigan Orthopaedic Society 50th Anniversary Fireworks, Lake Huron, Mackinac Island...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ...-AA00 Safety Zone; Michigan Orthopaedic Society 50th Anniversary Fireworks, Lake Huron, Mackinac Island... from a portion of Lake Huron during the Michigan Orthopaedic Society 50th Anniversary Fireworks display... launching of fireworks in conjunction with the Michigan Orthopaedic Society 50th Anniversary Fireworks...

  17. 77 FR 40266 - Safety Zone; Conneaut 4th of July Festival, Lake Erie, Conneaut, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... 1625-AA00 Safety Zone; Conneaut 4th of July Festival, Lake Erie, Conneaut, OH AGENCY: Coast Guard, DHS... the Conneaut 4th of July Festival Fireworks display. This temporary safety zone is necessary to... vessels during the Conneaut 4th of July Festival Fireworks. This zone will be effective and enforced from...

  18. 77 FR 30451 - Safety Zone; Olcott Fireworks, Lake Ontario, Olcott, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ...-AA00 Safety Zone; Olcott Fireworks, Lake Ontario, Olcott, NY AGENCY: Coast Guard, DHS. ACTION: Notice... Ontario during the Olcott fireworks display. The safety zone established by this proposed rule is necessary to protect spectators, participants, and vessels from the hazards associated with firework display...

  19. Phylogenetic diversity of archaea and bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France).

    PubMed

    Lehours, Anne-Catherine; Evans, Paul; Bardot, Corinne; Joblin, Keith; Gérard, Fonty

    2007-03-01

    The compositions of archaeal and bacterial populations at different depths (60 m [mixolimnion-chemocline interface], 70 m [chemocline-subchemocline interface], 90 m, and 92 m [the water-sediment interface]) in the anoxic zone of the water column in Lake Pavin, a freshwater permanently stratified mountain lake in France, were determined. Phylogenetic trees were constructed from sequences to assess archaeal and bacterial diversity at the four sites.

  20. 36 CFR 13.1602 - Subsistence resident zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Lake Clark National Park and Preserve... resident zone for Lake Clark National Park: Iliamna, Lime Village, Newhalen, Nondalton, Pedro Bay, and Port...

  1. 36 CFR 13.1602 - Subsistence resident zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Lake Clark National Park and Preserve... resident zone for Lake Clark National Park: Iliamna, Lime Village, Newhalen, Nondalton, Pedro Bay, and Port...

  2. Local response of a glacier to annual filling and drainage of an ice-marginal lake

    USGS Publications Warehouse

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Fountain, A.G.; Anderson, S.P.; Anderson, R. Scott; Malm, A.

    2006-01-01

    Ice-marginal Hidden Creek Lake, Alaska, USA, outbursts annually over the course of 2-3 days. As the lake fills, survey targets on the surface of the 'ice dam' (the glacier adjacent to the lake) move obliquely to the ice margin and rise substantially. As the lake drains, ice motion speeds up, becomes nearly perpendicular to the face of the ice dam, and the ice surface drops. Vertical movement of the ice dam probably reflects growth and decay of a wedge of water beneath the ice dam, in line with established ideas about jo??kulhlaup mechanics. However, the distribution of vertical ice movement, with a narrow (50-100 m wide) zone where the uplift rate decreases by 90%, cannot be explained by invoking flexure of the ice dam in a fashion analogous to tidal flexure of a floating glacier tongue or ice shelf. Rather, the zone of large uplift-rate gradient is a fault zone: ice-dam deformation is dominated by movement along high-angle faults that cut the ice dam through its entire thickness, with the sense of fault slip reversing as the lake drains. Survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. The horizontal strain rate also undergoes a reversal across this zone, being compressional as the lake fills, but extensional as the lake drains. Frictional resistance to fault-block motion probably accounts for the fact that lake level falls measurably before the onset of accelerated horizontal motion and vertical downdrop. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.

  3. Spatial variability of harmful algal blooms in Milford Lake, Kansas, July and August 2015

    USGS Publications Warehouse

    Foster, Guy M.; Graham, Jennifer L.; Stiles, Tom C.; Boyer, Marvin G.; King, Lindsey R.; Loftin, Keith A.

    2017-01-09

    Cyanobacterial harmful algal blooms (CyanoHABs) tend to be spatially variable vertically in the water column and horizontally across the lake surface because of in-lake and weather-driven processes and can vary by orders of magnitude in concentration across relatively short distances (meters or less). Extreme spatial variability in cyanobacteria and associated compounds poses unique challenges to collecting representative samples for scientific study and public-health protection. The objective of this study was to assess the spatial variability of cyanobacteria and microcystin in Milford Lake, Kansas, using data collected on July 27 and August 31, 2015. Spatially dense near-surface data were collected by the U.S. Geological Survey, nearshore data were collected by the Kansas Department of Health and Environment, and open-water data were collected by U.S. Army Corps of Engineers. CyanoHABs are known to be spatially variable, but that variability is rarely quantified. A better understanding of the spatial variability of cyanobacteria and microcystin will inform sampling and management strategies for Milford Lake and for other lakes with CyanoHAB issues throughout the Nation.The CyanoHABs in Milford Lake during July and August 2015 displayed the extreme spatial variability characteristic of cyanobacterial blooms. The phytoplankton community was almost exclusively cyanobacteria (greater than 90 percent) during July and August. Cyanobacteria (measured directly by cell counts and indirectly by regression-estimated chlorophyll) and microcystin (measured directly by enzyme-linked immunosorbent assay [ELISA] and indirectly by regression estimates) concentrations varied by orders of magnitude throughout the lake. During July and August 2015, cyanobacteria and microcystin concentrations decreased in the downlake (towards the outlet) direction.Nearshore and open-water surface grabs were collected and analyzed for microcystin as part of this study. Samples were collected in the uplake (Zone C), midlake (Zone B), and downlake (Zone A) parts of the lake. Overall, no consistent pattern was indicated as to which sample location (nearshore or open water) had the highest microcystin concentrations. In July, the maximum microcystin concentration observed in each zone was detected at a nearshore site, and in August, maximum microcystin concentrations in each zone were detected at an open-water site.The Kansas Department of Health and Environment uses two guidance levels (a watch and a warning level) to issue recreational public-health advisories for CyanoHABs in Kansas lakes. The levels are based on concentrations of microcystin and numbers of cyanobacteria. In July and August, discrete water-quality samples were predominantly indicative of warning status in Zone C, watch status in Zone B, and no advisories in Zone A. Regression-estimated microcystin concentrations, which provided more thorough coverage of Milford Lake (n=683–720) than discrete samples (n=21–24), generally indicated the same overall pattern. Regardless of the individual agencies sampling approach, the overall public-health advisory status of each zone in Milford Lake was similar according to the Kansas Department of Health and Environment guidance levels.

  4. Coastal/Great Lakes Forecasts by Zone

    Science.gov Websites

    Hazards Rip Currents Hypothermia Hurricanes Thunderstorms Lightning Coastal Flooding Tsunamis 406 EPIRB's Coastal/Great Lakes Forecasts by Zone >>Click on the area of interest below<< Coastal and

  5. Variability in methane emissions from West Siberia's shallow boreal lakes on a regional scale and its environmental controls

    NASA Astrophysics Data System (ADS)

    Sabrekov, Aleksandr F.; Runkle, Benjamin R. K.; Glagolev, Mikhail V.; Terentieva, Irina E.; Stepanenko, Victor M.; Kotsyurbenko, Oleg R.; Maksyutov, Shamil S.; Pokrovsky, Oleg S.

    2017-08-01

    Small lakes represent an important source of atmospheric CH4 from northern wetlands. However, spatiotemporal variations in flux magnitudes and the lack of knowledge about their main environmental controls contribute large uncertainty into the global CH4 budget. In this study, we measured methane fluxes from small lakes using chambers and bubble traps. Field investigations were carried out in July-August 2014 within the West Siberian middle and southern taiga zones. The average and median of measured methane chamber fluxes were 0.32 and 0.30 mgCH4 m-2 h-1 for middle taiga lakes and 8.6 and 4.1 mgCH4 m-2 h-1 for southern taiga lakes, respectively. Pronounced flux variability was found during measurements on individual lakes, between individual lakes and between zones. To analyze these differences and the influences of environmental controls, we developed a new dynamic process-based model. It shows good performance with emission rates from the southern taiga lakes and poor performance for individual lakes in the middle taiga region. The model shows that, in addition to well-known controls such as temperature, pH and lake depth, there are significant variations in the maximal methane production potential between these climatic zones. In addition, the model shows that variations in gas-filled pore space in lake sediments are capable of controlling the total methane emissions from individual lakes. The CH4 emissions exhibited distinct zonal differences not only in absolute values but also in their probability density functions: the middle taiga lake fluxes were best described by a lognormal distribution while the southern taiga lakes followed a power-law distribution. The latter suggests applicability of self-organized criticality theory for methane emissions from the southern taiga zone, which could help to explain the strong variability within individual lakes.

  6. Fault-dominated deformation in an ice dam during annual filling and drainage of a marginal lake

    USGS Publications Warehouse

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Anderson, S.P.; Anderson, R. Scott; Fountain, A.G.; Malm, A.

    2005-01-01

    Ice-dammed Hidden Creek Lake, Alaska, USA, outbursts annually in about 2-3 days. As the lake fills, a wedge of water penetrates beneath the glacier, and the surface of this 'ice dam' rises; the surface then falls as the lake drains. Detailed optical surveying of the glacier near the lake allows characterization of ice-dam deformation. Surface uplift rate is close to the rate of lake-level rise within about 400 m of the lake, then decreases by 90% over about 100 m. Such a steep gradient in uplift rate cannot be explained in terms of ice-dam flexure. Moreover, survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. Evidently, the zone of steep uplift gradient is a fault zone, with the faults penetrating the entire thickness of the ice dam. Fault motion is in a reverse sense as the lake fills, but in a normal sense as the lake drains. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.

  7. 76 FR 63199 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... of Engineers' scheduled maintenance shutdown of Barrier IIB. During the enforcement period, entry...

  8. 76 FR 78161 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... the U.S. Army Corps of Engineers' maintenance operations of dispersal barrier IIB. During these...

  9. 77 FR 25595 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... Corps of Engineers' post-maintenance testing of Barrier IIA and IIB. During the enforcement period...

  10. 33 CFR 334.520 - Lake George, Fla.; naval bombing area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Lake George, Fla.; naval bombing....; naval bombing area. (a) The danger zone. An area in the eastern part of Lake George described as follows.... (2) Prior to each bombing operation the danger zone will be patrolled by naval aircraft which will...

  11. 33 CFR 334.520 - Lake George, Fla.; naval bombing area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Lake George, Fla.; naval bombing....; naval bombing area. (a) The danger zone. An area in the eastern part of Lake George described as follows.... (2) Prior to each bombing operation the danger zone will be patrolled by naval aircraft which will...

  12. 75 FR 38754 - Safety Zone; IJSBA World Finals; Lower Colorado River, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ...-AA00 Safety Zone; IJSBA World Finals; Lower Colorado River, Lake Havasu, AZ AGENCY: Coast Guard, DHS... navigable waters of Lake Havasu on the lower Colorado River in support of the IJSBA World Finals. This... International Jet Sports Boating Association is sponsoring the IJSBA World Finals. The event will consist of 300...

  13. Is Littoral Habitat Affected by Residential Development and Land Use in Watersheds of Wisconsin Lakes?

    Treesearch

    Martin J. Jennings; Edward E. Emmons; Gene R. Hatzenbeler; Clayton Edwards; Michael A. Bozek

    2003-01-01

    We measured differences in nearshore littoral zone habitat among lakes with different amounts of residential development and different patterns of watershed land use. Sampling stations were located at randomly selected sites within the nearshore littoral zone of limnologically similar lakes. An index of development density (based on counts of residential structures)...

  14. Groundwater protection: what can we learn from Germany?

    PubMed

    Zhu, Yan; Balke, Klaus-Dieter

    2008-03-01

    For drinking water security the German waterworks proceed on a comprehensive concept, i.e., the protection of all the regions from the recharge area to the client. It includes the protection of the recharge area by a precautionary management, a safe water treatment, a strict maintenance of the water distribution network, continuous control and an intensive training of staff. Groundwater protection zones together with effective regulations and control play a very important role. Three protection zones with different restrictions in land-use are distinguished. Water in reservoirs and lakes is also protected by Surface Water Protection Zones. Within the surrounding area the land-use is controlled, too. Special treatment is necessary if acidification happens caused by acid rain, or eutrophication caused by the inflow of sewage. Very important is the collaboration between waterworks and the farmers cultivating land in the recharge area in order to execute water-protecting ecological farming with the aim to reduce the application of fertilizers and plant protection agents. Probable financial losses have to be compensated by the waterworks.

  15. Phylogenetic Diversity of Archaea and Bacteria in the Anoxic Zone of a Meromictic Lake (Lake Pavin, France)▿ †

    PubMed Central

    Lehours, Anne-Catherine; Evans, Paul; Bardot, Corinne; Joblin, Keith; Gérard, Fonty

    2007-01-01

    The compositions of archaeal and bacterial populations at different depths (60 m [mixolimnion-chemocline interface], 70 m [chemocline-subchemocline interface], 90 m, and 92 m [the water-sediment interface]) in the anoxic zone of the water column in Lake Pavin, a freshwater permanently stratified mountain lake in France, were determined. Phylogenetic trees were constructed from sequences to assess archaeal and bacterial diversity at the four sites. PMID:17261512

  16. 76 FR 30908 - Foreign-Trade Zone 203-Moses Lake, Washington, Export-Only Manufacturing Authority, SGL...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [A(32b)-1-2011] Foreign-Trade Zone 203--Moses Lake, Washington, Export-Only Manufacturing Authority, SGL Automotive Carbon Fibers, LLC, (Carbon Fiber... Automotive Carbon Fibers, LLC (SGL) to manufacture carbon fiber under FTZ procedures solely for export within...

  17. 77 FR 24880 - Safety Zone; Jet Express Triathlon, Sandusky Bay, Lake Erie, Lakeside, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ...-AA00 Safety Zone; Jet Express Triathlon, Sandusky Bay, Lake Erie, Lakeside, OH AGENCY: Coast Guard, DHS... Erie during the Jet Express Triathlon. This proposed safety zone is necessary to protect participants... Erie. The participants will begin by jumping off the ferry boat JET EXPRESS II at the designated...

  18. 76 FR 61261 - Safety Zone; IJSBA World Finals; Lower Colorado River, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ...-AA00 Safety Zone; IJSBA World Finals; Lower Colorado River, Lake Havasu, AZ AGENCY: Coast Guard, DHS... Boating Association (IJSBA) World Finals. This temporary safety zone is necessary to provide for the... The International Jet Sports Boating Association is sponsoring the IJSBA World Finals. The event will...

  19. 78 FR 20852 - Safety Zones; Marine Week Air Ground Demonstration, Lake Washington; Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ...-AA00 Safety Zones; Marine Week Air Ground Demonstration, Lake Washington; Seattle, WA AGENCY: Coast... safety zones around vessels and persons involved in the Marine Week Seattle Special Marine Air Ground...: Docket Management Facility (M-30), U.S. Department of Transportation, West Building Ground Floor, Room...

  20. [Exchange Fluxes and Coupling Relationship of Dissolved Inorganic Carbon and Dissolved Organic Carbon Across the Water-Sediment Interface in Lakes].

    PubMed

    Wang, Wei-ying; Lü, Chang-wei; He, Jiang; Zuo, Le; Yan, Dao-hao

    2015-10-01

    In this work, the exchange fluxes and coupling relationship of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) were investigated across the water-sediment interface in Lake Wuliangsuhai and Daihai by employing columnar simulation method. The results showed that the sediments in non-Phragmitescommunis area from Lake Wuliangsuhai functioned as the sources of DIC and DOC for overlying water, whereas the sediments from Lake Daihai as the sinks during the period of summer (90 days). In the experimental period, the average exchange rates of DIC and DOC were 71.07 mmol x (m2 x d)(-1) and 185.09 mmol x (m2 x d)(-1) in non-Phragmitescommunis area from Lake Wuliangsuhai, respectively; while in Lake Daihai, they were 155.75 mmol x (m2 x d)(-1) and -1478.08 mmol x (m2 x d)(-1) in shoal water zone, and -486.53 mmol x (m2 x d)(-1) and -1274.02 mmol x (m2 x d)(-1) in deep water zone, respectively. The coupling effects between DIC and DOC were governed by hydrobios, microbial uptake, abiotic and microbiological degradation in Lake Wuliangsuhai and in shoal water zone of Lake Daihai; while they were closely related to the coprecipitation process of CaCO3 and the fraction distribution of inorganic carbon in sediments in deep water zone of Lake Daihai. In summary, the sink or source functions of sediments could be considered as the results of synthetic action of lake types, offshore distance, geohydrochemistry and the fraction distribution of inorganic carbon.

  1. A comparison of shoreline seines with fyke nets for sampling littoral fish communities in floodplain lakes

    USGS Publications Warehouse

    Clark, S.J.; Jackson, J.R.; Lochmann, S.E.

    2007-01-01

    We compared shoreline seines with fyke nets in terms of their ability to sample fish species in the littoral zone of 22 floodplain lakes of the White River, Arkansas. Lakes ranged in size from less than 0.5 to 51.0 ha. Most contained large amounts of coarse woody debris within the littoral zone, thus making seining in shallow areas difficult. We sampled large lakes (>2 ha) using three fyke nets; small lakes (<2 ha) were sampled using two fyke nets. Fyke nets were set for 24 h. Large lakes were sampled with an average of 11 seine hauls/ lake and small lakes were sampled with an average of 3 seine hauls/lake, but exact shoreline seining effort varied among lakes depending on the amount of open shoreline. Fyke nets collected more fish and produced greater species richness and diversity measures than did seining. Species evenness was similar for the two gear types. Two species were unique to seine samples, whereas 13 species and 3 families were unique to fyke-net samples. Although fyke nets collected more fish and more species than did shoreline seines, neither gear collected all the species present in the littoral zone of floodplain lakes. These results confirm the need for a multiple-gear approach to fully characterize the littoral fish assemblages in floodplain lakes. ?? Copyright by the American Fisheries Society 2007.

  2. 78 FR 48802 - Safety Zones; Recurring Events in Captain of the Port Duluth Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... fireworks, and other historically recurring marine events, including the Lake Superior Dragon Boat Festival... with a Notice of Enforcement and marine information broadcast. (2) Lake Superior Dragon Boat Festival...

  3. 33 CFR 165.T09-0452 - Safety Zone; Festivals & Fireworks Celebration, East Moran Bay, Lake Huron, St. Ignace, MI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone; Festivals & Fireworks Celebration, East Moran Bay, Lake Huron, St. Ignace, MI. 165.T09-0452 Section 165.T09-0452... Celebration, East Moran Bay, Lake Huron, St. Ignace, MI. (a) Location. The following area is a temporary...

  4. 75 FR 34379 - Safety Zone; Mackinac Island 4th of July Fireworks, Lake Huron, Mackinac Island, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ...-AA00 Safety Zone; Mackinac Island 4th of July Fireworks, Lake Huron, Mackinac Island, MI AGENCY: Coast... of Lake Huron during the Mackinac Island 4th of July Fireworks display on July 4, 2010. This... and vessels during the setup, and launching of fireworks in conjunction with the Mackinac Island 4th...

  5. 33 CFR 165.911 - Security Zones; Captain of the Port Buffalo Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zones; Captain of the Port Buffalo Zone. 165.911 Section 165.911 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Security Zones; Captain of the Port Buffalo Zone. (a) Location. The following are security zones: (1) Nine...

  6. 33 CFR 165.911 - Security Zones; Captain of the Port Buffalo Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zones; Captain of the Port Buffalo Zone. 165.911 Section 165.911 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Security Zones; Captain of the Port Buffalo Zone. (a) Location. The following are security zones: (1) Nine...

  7. 33 CFR 165.911 - Security Zones; Captain of the Port Buffalo Zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zones; Captain of the Port Buffalo Zone. 165.911 Section 165.911 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Security Zones; Captain of the Port Buffalo Zone. (a) Location. The following are security zones: (1) Nine...

  8. 33 CFR 165.911 - Security Zones; Captain of the Port Buffalo Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zones; Captain of the Port Buffalo Zone. 165.911 Section 165.911 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Security Zones; Captain of the Port Buffalo Zone. (a) Location. The following are security zones: (1) Nine...

  9. 75 FR 35649 - Safety Zone; Fourth of July Fireworks, Lake Tahoe, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... Zone; Fourth of July Fireworks, Lake Tahoe, CA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the Fourth of July Fireworks safety zone from 9... Fourth of July Fireworks Display in 33 CFR 165.1191 on July 3, 2010. The fireworks launch site is...

  10. 77 FR 47284 - Safety Zone; Dredge Arthur J, Lake Huron, Lakeport, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ...-AA00 Safety Zone; Dredge Arthur J, Lake Huron, Lakeport, MI AGENCY: Coast Guard, DHS. ACTION: Temporary... preparation for and salvage operations of the Arthur J. dredge vessel. This temporary safety zone is necessary... sinking of the dredge vessel Arthur J. precluded the Coast Guard from having sufficient time to publish an...

  11. Late-glacial and early Holocene changes in vegetation and lake-level at Hauterive/Rouges-Terres, Lake Neuchâtel (Switzerland)

    NASA Astrophysics Data System (ADS)

    Magny, Michel; Thew, Nigel; Hadorn, Philippe

    2003-01-01

    Palynological and sedimentological analyses of a sedimentary sequence sampled at Hauterive/Rouges-Terres, Lake Neuchâtel (Switzerland) provide documentation of changes in vegetation and lake-level during the Bølling, Younger Dryas and Preboreal pollen zones, and have allowed a comparison with sequences covering the same period from other sites located in the western part of the Swiss Plateau. The Juniperus-Hippophaë zone (regional pollen assemblage zone (RPAZ) CHb-2, first part of the Bølling, ca. 14 650-14 450 cal. yr BP) was characterised by a generally low lake-level. A weak rise occurred during this zone. The Juniperus-Hippophaë to Betula zone transition coincided with a lake-level lowering, interrupted by a short-lived but marked phase of higher lake-level recorded at the neighbouring site of Hauterive-Champréveyres, but not present at Hauterive/Rouges-Terres owing to an erosion surface. Shortly after the beginning of the Betula zone (RPAZ CHb-3, second part of the Bølling, ca 14 450-14 000 cal. yr BP), a marked rise in lake-level occurred. It was composed of two successive periods of higher level, coinciding with high values of Betula, separated by a short episode of relatively lower lake-level associated with raised values in Artemisia and other non-arboreal pollen. The last part of RPAZ CHb-3 saw a fall in lake-level. The lower lake-levels during RPAZ CHb-2 to early RPAZ CHb-3 can be correlated with the abrupt warming at the beginning of the Greenland Interstadial (GI) 1e thermal maximum. The successive episodes of higher lake-level punctuating the GI 1e might be linked to the so-called Intra-Bølling Cold Oscillations identified from several palaeoclimatic records in the North Atlantic area, and also documented in oxygen-isotope data sets from Swiss Plateau lakes. The Hauterive/Rouges-Terres lake-level record provides evidence for marked climatic drying through the second part of the Younger Dryas event (GS1), during the GS1-Preboreal (RPAZ CHb-4b-4c) transition (except for a rise at ca. 11 450-11 400 cal. yr BP), and at the RPAZ CHb-4c-5 (Preboreal-Boreal) transition, following the Preboreal Oscillation (after 11 150 cal. yr BP). The Preboreal Oscillation coincided with higher lake-levels, its end being followed by a rapid expansion of Corylus, Quercus, Ulmus and Tilia. The Hauterive/Rouges-Terres lake-level record suggests that radiocarbon plateau at 12 600, 10 000 and 9500 14C yr BP corresponded to periods of generally lower lake-level. This suggests that an increase in solar activity may have contributed to both climatic dryness and a decrease in atmospheric radiocarbon content.

  12. Ice patterns and hydrothermal plumes, Lake Baikal, Russia - Insights from Space Shuttle hand-held photography

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Helfert, Michael R.; Helms, David R.

    1992-01-01

    Earth photography from the Space Shuttle is used to examine the ice cover on Lake Baikal and correlate the patterns of weakened and melting ice with known hydrothermal areas in the Siberian lake. Particular zones of melted and broken ice may be surface expressions of elevated heat flow in Lake Baikal. The possibility is explored that hydrothermal vents can introduce local convective upwelling and disrupt a stable water column to the extent that the melt zones which are observed in the lake's ice cover are produced. A heat flow map and photographs of the lake are overlaid to compare specific areas of thinned or broken ice with the hot spots. The regions of known hydrothermal activity and high heat flow correlate extremely well with circular regions of thinned ice, and zones of broken and recrystallized ice. Local and regional climate data and other sources of warm water, such as river inlets, are considered.

  13. 33 CFR 165.30 - Security zones.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security zones. 165.30 Section... AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Security Zones § 165.30 Security zones. (a) A security zone is an area of land, water, or land and water which is so designated by...

  14. The Socio-hydrology of Bangalore's Lake System and implications for Urban Water Security

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Roy, S.

    2017-12-01

    Bengaluru city has experienced unprecedented growth in recent decades. If the city is to sustain growth and claim its position as a "global" high-tech city, it must be able to secure sufficient water supply and also create a healthy livable environment. With the city's many lakes vanishing due to rapid urbanisation, depletion of groundwater as a result of overuse in the peri-urban areas, and lack of proper underground drainage system and sewage treatment plants, Bangalore is now grappling with issues of imminent water crisis, inequitable access to water supply, and public health hazards. In this context, the restoration of Bangalore's lakes has been promoted as a panacea for its flooding, water stress, and wastewater problems. It has been argued that lakes can store storm water and recycled wastewater and avoid the need for potentially destructive, expensive schemes that may destroy biodiversity rich aquatic ecosystems and forests. Bangalore's lakes are linked by the drainage channels to form a cascade; overflow from each lake flows to the next lake downstream. Yet, most efforts have tended to view the lakes in isolation. This study of the hydrology of Bangalore's lake system in its entirety simulates the lake system as a whole. The study explores approaches to management and theor impact on urban water security.

  15. Depth-related response of macroinvertebrates to the reversal of eutrophication in a Mediterranean lake: Implications for ecological assessment.

    PubMed

    Bazzanti, Marcello; Mastrantuono, Luciana; Pilotto, Francesca

    2017-02-01

    A better management of nutrient inflows into lakes has led to an improvement in their conditions (i.e. reversal of eutrophication) and the effects of this on macroinvertebrate communities that inhabit different lake-depth zones is largely unknown. This paper reports a comparison of macroinvertebrate communities living in the eulittoral, infralittoral and sublittoral/profundal zones of Lake Nemi (Central Italy) before and after its natural recovery from eutrophication following the deviation of domestic wastewater. The infralittoral zone responded more rapidly than the other two depth-zones to the improved ecological conditions, as shown by larger differences in community composition between the two periods. In the eulittoral sand, the combined effects of hydromorphological pressures and reversal of eutrophication hindered the biotic response. In the eulittoral and infralittoral zones, typical taxa of mesotrophic waters appeared or increased their abundances after the eutrophication reversal. Benthic invertebrate response was slower in the sublittoral/profundal zone due to deoxygenation that continued to prevail in the deepest area of the lake during summer. However, both tolerant and more sensitive taxa were collected there for the first time. After the reversal of eutrophication, the percentage of molluscan+large crustaceans increased in the infralittoral zone, whereas the oligochaete/chironomid ratio decreased in both sublittoral/profundal and infralittoral zones. Functional feeding metrics (percentages of filter-feeders, collector-gatherers, miners and scrapers/grazers) differently tracked the reversal of eutrophication in the three depth-zones probably according to the effects of the reduction of nutrients on food-web structure influencing macroinvertebrates. Biological Monitoring Working Party (BMWP) and the Average Score Per Taxon (ASPT) seemed to respond to eutrophication reversal only in the sublittoral/profundal zone, where deoxygenation plays a major role as a structuring agent of the community. Our results suggest that the effects of reversal of eutrophication can be better assessed by examining the response of the communities belonging to each zone individually. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Chemical, Physical, and Biological Factors Shape Littoral Invertebrate Community Structure in Coal-Mining End-Pit Lakes

    NASA Astrophysics Data System (ADS)

    Luek, Andreas; Rasmussen, Joseph B.

    2017-04-01

    Aquatic invertebrates form the base of the consumer food web in lakes. In coal-mining end-pit lakes, invertebrates are exposed to an environment with potentially challenging physical and chemical features. We hypothesized that the physical and chemical features of end-pit lakes reduce critical littoral habitat and thus reduce invertebrate diversity, thereby limiting the potential for these lakes to be naturalized. We used a multivariate approach using principle component analysis and redundancy analysis to study relationships between invertebrate community structure, habitat features, and water quality in five end-pit lakes and five natural lakes in the Rocky Mountain foothills of west-central Alberta, Canada. Results show a significantly different invertebrate community structure was present in end-pit lakes as compared with reference lakes in the same region, which could be accounted for by water hardness, conductivity, slope of the littoral zone, and phosphorus concentrations. Habitat diversity in end-pit lakes was also limited, cover provided by macrophytes was scarce, and basin slopes were significantly steeper in pit lakes. Although water chemistry is currently the strongest influencing factor on the invertebrate community, physical challenges of habitat homogeneity and steep slopes in the littoral zones were identified as major drivers of invertebrate community structure. The addition of floating wetlands to the littoral zone of existing pit lakes can add habitat complexity without the need for large-scale alterations to basing morphology, while impermeable capping of waste-rock and the inclusion of littoral habitat in the planning process of new pit lakes can improve the success of integrating new pit lakes into the landscape.

  17. Chemical, Physical, and Biological Factors Shape Littoral Invertebrate Community Structure in Coal-Mining End-Pit Lakes.

    PubMed

    Luek, Andreas; Rasmussen, Joseph B

    2017-04-01

    Aquatic invertebrates form the base of the consumer food web in lakes. In coal-mining end-pit lakes, invertebrates are exposed to an environment with potentially challenging physical and chemical features. We hypothesized that the physical and chemical features of end-pit lakes reduce critical littoral habitat and thus reduce invertebrate diversity, thereby limiting the potential for these lakes to be naturalized. We used a multivariate approach using principle component analysis and redundancy analysis to study relationships between invertebrate community structure, habitat features, and water quality in five end-pit lakes and five natural lakes in the Rocky Mountain foothills of west-central Alberta, Canada. Results show a significantly different invertebrate community structure was present in end-pit lakes as compared with reference lakes in the same region, which could be accounted for by water hardness, conductivity, slope of the littoral zone, and phosphorus concentrations. Habitat diversity in end-pit lakes was also limited, cover provided by macrophytes was scarce, and basin slopes were significantly steeper in pit lakes. Although water chemistry is currently the strongest influencing factor on the invertebrate community, physical challenges of habitat homogeneity and steep slopes in the littoral zones were identified as major drivers of invertebrate community structure. The addition of floating wetlands to the littoral zone of existing pit lakes can add habitat complexity without the need for large-scale alterations to basing morphology, while impermeable capping of waste-rock and the inclusion of littoral habitat in the planning process of new pit lakes can improve the success of integrating new pit lakes into the landscape.

  18. National Weather Service Marine Text Forecasts

    Science.gov Websites

    Offshore NAVTEX Bay and Coastal Surf Zone Recreational Marine Weather Statements Special Marine Warnings Marine Weather Messages Alaska Bay and Coastal Great Lakes Open Lake Great Lakes Nearshore Great Lakes

  19. Anthropopression markers in lake bottom sediments

    NASA Astrophysics Data System (ADS)

    Nadolna, Anna; Nowicka, Barbara

    2014-05-01

    Lakes are vulnerable to various types of anthropogenic disturbances. Responses of lake ecosystems to environmental stressors are varied and depend not only on the type of a factor but also on the lake natural resistance to degradation. Within the EULAKES project an evaluation of anthropogenic stress extent in a flow-through, postglacial, ribbon lake (Lake Charzykowskie) was carried out. It was assumed, that this impact manifests unevenly, depending on a type and degree of the pressure on the shore zones, water quality of tributaries, lake basin shape and dynamics of a water movement. It was stated, that anthropogenic markers are substances accumulated in bottom sediments as a result of allochthonous substances inflow from the catchment and atmosphere. Along the selected transects 105 samples from the top layer of sediments (about 20 cm) was collected representing the contemporary accumulation (about 15 years). The content of selected chemical elements and compounds was examined, including nutrients (TN and TP), heavy metals (arsenic, cadmium, lead, chromium, nickel, copper, zinc, mercury, iron, and manganese) and pesticides (DDT, DDD, DDE, DMDT , γ-HCH). The research was conducted in the deepest points of each lake basin and along the research transects - while choosing the spots, the increased intensity of anthropogenic impact (ports, roads with heavy traffic, wastewater discharge zones, built-up areas) was taken into consideration. The river outlets to the lake, where there are ecotonal zones between limnic and fluvial environment, were also taken into account. Analysis of the markers distribution was carried out against the diversity of chemical characteristics of limnic sediments. Ribbon shape of the lake basin and the dominant wind direction provide an opportunity of easy water mixing to a considerable depth. Intensive waving processes cause removal of the matter from the littoral zone towards lake hollows (separated by the underwater tresholds), where the top layer of sediments consists of organic sediment ("sapropel" type). The littoral zone is dominated by sandy material from the shores denudation. In river mouths sandy deltas are formed. The most contaminated sediments are deposited in the central pool, which is a natural trap for the substances flowing with the river that is draining wastewaters from urban areas. At its mouth the sediment samples were significantly contaminated with chromium, zinc, cadmium, copper, nickel, lead and mercury. A high content of total phosphorus was also detected. A different role is played by a large river flowing through the lake. While flushing the sediments it reduces their pollution. The lowest content of markers was detected in headwater areas and in littoral zones exposed to waving.

  20. 78 FR 48311 - Special Local Regulations; Regattas and Marine Parades in the Captain of the Port Lake Michigan Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Zone AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: The Coast Guard is amending special local regulations for annual regattas and marine parades in the Captain of the Port Lake Michigan Zone. This rule is intended to provide for the safety of life and property on navigable waters immediately prior to, during...

  1. 78 FR 37963 - Safety Zone; Chicago to Mackinac Race; Lake Michigan; Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... Zone; Chicago to Mackinac Race; Lake Michigan; Chicago, IL AGENCY: Coast Guard, DHS. ACTION: Notice of..., Illinois for the 105th Race to Mackinac. This zone will be enforced from 2 p.m. until 4:30 p.m. on July 12... of life on the navigable waters during the 105th Race to Mackinac. During the aforementioned periods...

  2. 33 CFR 165.154 - Safety and Security Zones; Captain of the Port Long Island Sound Zone Safety and Security Zones.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; Captain of the Port Long Island Sound Zone Safety and Security Zones. 165.154 Section 165.154 Navigation... Long Island Sound Zone Safety and Security Zones. The following areas are designated safety and... navigable waters of Long Island Sound, from surface to bottom, North and Northeast of a line running from...

  3. Characterization of lake water and ground water movement in the littoral zone of Williams Lake, a closed-basin lake in North central Minnesota

    USGS Publications Warehouse

    Schuster, P.F.; Reddy, M.M.; LaBaugh, J.W.; Parkhurst, R.S.; Rosenberry, D.O.; Winter, T.C.; Antweiler, Ronald C.; Dean, W.E.

    2003-01-01

    Williams Lake, Minnesota is a closed-basin lake that is a flow-through system with respect to ground water. Ground-water input represents half of the annual water input and most of the chemical input to the lake. Chemical budgets indicate that the lake is a sink for calcium, yet surficial sediments contain little calcium carbonate. Sediment pore-water samplers (peepers) were used to characterize solute fluxes at the lake-water-ground-water interface in the littoral zone and resolve the apparent disparity between the chemical budget and sediment data. Pore-water depth profiles of the stable isotopes ??18O and ??2H were non-linear where ground water seeped into the lake, with a sharp transition from lake-water values to ground-water values in the top 10 cm of sediment. These data indicate that advective inflow to the lake is the primary mechanism for solute flux from ground water. Linear interstitial velocities determined from ??2H profiles (316 to 528 cm/yr) were consistent with velocities determined independently from water budget data and sediment porosity (366 cm/yr). Stable isotope profiles were generally linear where water flowed out of the lake into ground water. However, calcium profiles were not linear in the same area and varied in response to input of calcium carbonate from the littoral zone and subsequent dissolution. The comparison of pore-water calcium profiles to pore-water stable isotope profiles indicate calcium is not conservative. Based on the previous understanding that 40-50 % of the calcium in Williams Lake is retained, the pore-water profiles indicate aquatic plants in the littoral zone are recycling the retained portion of calcium. The difference between the pore-water depth profiles of calcium and ??18O and ??2H demonstrate the importance of using stable isotopes to evaluate flow direction and source through the lake-water-ground-water interface and evaluate mechanisms controlling the chemical balance of lakes. Published in 2003 by John Wiley and Sons, Ltd.

  4. 33 CFR 165.1105 - Security Zone: San Diego Bay, California.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone: San Diego Bay... Security Zone: San Diego Bay, California. (a) Location. (1) The following area is a security zone: The...″ N, Longitude 117°13′34.1″ W. (2) Because the area of this security zone is measured from the pier...

  5. 33 CFR 165.1105 - Security Zone: San Diego Bay, California.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone: San Diego Bay... Security Zone: San Diego Bay, California. (a) Location. (1) The following area is a security zone: The...″ N, Longitude 117°13′34.1″ W. (2) Because the area of this security zone is measured from the pier...

  6. 33 CFR 165.1105 - Security Zone: San Diego Bay, California.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone: San Diego Bay... Security Zone: San Diego Bay, California. (a) Location. (1) The following area is a security zone: The...″ N, Longitude 117°13′34.1″ W. (2) Because the area of this security zone is measured from the pier...

  7. 33 CFR 165.1105 - Security Zone: San Diego Bay, California.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone: San Diego Bay... Security Zone: San Diego Bay, California. (a) Location. (1) The following area is a security zone: The...″ N, Longitude 117°13′34.1″ W. (2) Because the area of this security zone is measured from the pier...

  8. 33 CFR 165.1105 - Security Zone: San Diego Bay, California.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone: San Diego Bay... Security Zone: San Diego Bay, California. (a) Location. (1) The following area is a security zone: The...″ N, Longitude 117°13′34.1″ W. (2) Because the area of this security zone is measured from the pier...

  9. 75 FR 27847 - Broadengate Systems, Inc., (n/k/a Otter Lake Resources, Inc.); Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Broadengate Systems, Inc., (n/k/a Otter Lake... Systems, Inc. (n/k/a Otter Lake Resources, Inc.) because it has not filed any periodic reports since the.... Therefore, it is ordered, pursuant to Section 12(k) of the Securities Exchange Act of 1934, that trading in...

  10. 75 FR 57167 - Safety Zone; CLS Fall Championship Hydroplane Race, Lake Sammamish, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... waters of Lake Sammamish, WA for the Composite Laminate Specialties (CLS) Fall Championship Hydroplane... Delegation No. 0170.1 0 2. Add Sec. 165.T13-162 to read as follows: Sec. 165.T13-162 Safety Zone; Composite...

  11. 33 CFR 165.929 - Safety Zones; Annual events requiring safety zones in the Captain of the Port Lake Michigan zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Aerospace Challenge Sport Rocket Launch; Muskegon, MI—(i) Location. All waters of Muskegon Lake, near the...) Celebrate De Pere; De Pere, WI—(i) Location. All waters of the Fox River, near Voyageur Park, within the arc...) International Bayfest; Green Bay, WI—(i) Location. All waters of the Fox River, near the Western Lime Company 1...

  12. 76 FR 41065 - Safety Zones; Annual Events Requiring Safety Zones in the Captain of the Port Lake Michigan Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Sport Rocket Launch; Muskegon, MI. (1) Location. All waters of Muskegon Lake, near the West Michigan... De Pere; De Pere, WI. (1) Location. All waters of the Fox River, near Voyageur Park, within the arc... waters of the Fox River, near the Western Lime Company 1.13 miles above the head of the Fox River, within...

  13. 33 CFR 165.929 - Safety Zones; Annual events requiring safety zones in the Captain of the Port Lake Michigan zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Aerospace Challenge Sport Rocket Launch; Muskegon, MI. (i) Location. All waters of Muskegon Lake, near the... Pere, WI. (i) Location. All waters of the Fox River, near Voyageur Park, within the arc of a circle... Bayfest; Green Bay, WI. (i) Location. All waters of the Fox River, near the Western Lime Company 1.13...

  14. Lower Respiration in the Littoral Zone of a Subtropical Shallow Lake

    PubMed Central

    They, Ng Haig; da Motta Marques, David; Souza, Rafael Siqueira

    2013-01-01

    Macrophytes are important sources of dissolved organic carbon (DOC) to littoral zones of lakes, but this DOC is believed to be mostly refractory to bacteria, leading to the hypothesis that bacterial metabolism is different in littoral and pelagic zones of a large subtropical shallow lake. We tested this hypothesis by three approaches: (I) dissolved inorganic carbon (DIC) accumulation in littoral and pelagic water; (II) O2 consumption estimate for a cloud of points (n = 47) covering the entire lake; (III) measurement of O2 consumption and CO2 accumulation in dark bottles, pCO2 in the water, lake-atmosphere fluxes of CO2 (fCO2) and a large set of limnological variables at 19 sampling points (littoral and pelagic zones) during seven extensive campaigns. For the first two approaches, DIC and O2 consumption were consistently lower in the littoral zone, and O2 consumption increased marginally with the distance to the nearest shore. For the third approach, we found in the littoral zone consistently lower DOC, total phosphorus (TP), and chlorophyll a, and a higher proportion of low-molecular-weight substances. Regression trees confirmed that high respiration (O2 consumption and CO2 production) was associated to lower concentration of low-molecular-weight substances, while pCO2 was associated to DOC and TP, confirming that CO2 supersaturation occurs in an attempt to balance phosphorus deficiency of macrophyte substrates. Littoral zone fCO2 showed a tendency to be a CO2 sink, whereas the pelagic zone showed a tendency to act as CO2 source to the atmosphere. The high proportion of low-molecular-weight, unreactive substances, together with lower DOC and TP may impose lower rates of respiration in littoral zones. This effect of perennial stands of macrophytes may therefore have important, but not yet quantified implications for the global carbon metabolism of these lakes, but other issues still need to be carefully addressed before rejecting the general belief that macrophytes are always beneficial to bacteria. PMID:23293635

  15. Living and dying with glaciers: people's historical vulnerability to avalanches and outburst floods in Peru

    NASA Astrophysics Data System (ADS)

    Carey, Mark

    2005-07-01

    Human populations worldwide are vulnerable to natural disasters. Certain conditions—such as geographical location or people's income level—can affect the degree to which natural disasters impact people's homes and livelihoods. This paper suggests that vulnerability to natural disasters increases when local people, scientists, and policymakers do not communicate and trust each other. Additionally, a breakdown in interaction and confidence among these groups can disrupt the implementation of sound science or well-intentioned policies. This case study analyzes how local people, scientists, and government officials responded to glacier hazards in Peru's Cordillera Blanca mountain range. Cordillera Blanca glacier retreat since the late-19th century has triggered some of the world's most deadly avalanches and glacial lake outburst floods. Although a Peruvian glaciology and lakes security office has "controlled" 35 Cordillera Blanca glacial lakes, 30 glacier disasters have killed nearly 30,000 people in this region since 1941. A lack of local faith in government officials and scientists as well as the State's failure to follow scientists' warnings about potential disasters have endangered or led to the death of thousands of local residents, many of which remain living in hazard zones today.

  16. Implications of Preliminary Gravity and Magnetic Surveys to the Understanding of the Bartlett Springs Fault Zone, Northern California Coast Ranges

    NASA Astrophysics Data System (ADS)

    Langenheim, V. E.; Jachens, R. C.; Morin, R. L.; McCabe, C. M.; Page, W. D.

    2007-12-01

    We use new gravity and magnetic data in the Lake Pillsbury region to help understand the geometry and character of the Bartlett Springs fault zone, one of the three main strands of the San Andreas system north of the San Francisco Bay area. We collected 153 new gravity stations in the Lake Pillsbury region that complement the sparse regional dataset and are used to estimate the thickness of Quaternary deposits in the inferred Gravelly Valley (Lake Pillsbury) pull-apart basin. We also collected 38 line-km of ground magnetic data on roads and 65 line-km by boat on the lake to supplement regional aeromagnetic surveys and to map concealed fault strands beneath the lake. The new gravity data show a significant northwest-striking gravity gradient at the base of which lies the Bartlett Springs fault zone. Superposed on this major east-facing gravity gradient is a 5 mGal low centered on Lake Pillsbury and Gravelly Valley. Inversion of the gravity field for basin thickness assuming a density contrast of 400 kg/m3 indicates the deepest part of the basin is about 400 m and located in the northern part of the valley, although the inversion lacks gravity stations within the lake. The basin is about 3 km wide and 5 km long and basin edges coincide with strands of the Bartlett Springs fault zone. Our gravity data suggest that Potter Valley, which lies between the Maacama and Bartlett Springs faults, is also as much as 400 m deep in the southern part of the valley, although additional data west of the valley would better isolate the gravity low. Geomorphologic characteristics of the valley suggest that this structure has been quiescent during the late Quaternary. Ground magnetic data are very noisy but the data in conjunction with 9.6 km-spaced NURE aeromagnetic lines suggest that regional analog aeromagnetic data flown in 1962 may suffer from location errors. The regional and NURE data show a northwest-striking magnetic high that extends across Lake Pillsbury. The northeast edge of this anomaly, caused by ultramafic rocks, coincides with the Bartlett Springs fault zone for nearly 15 km. Lake magnetic data indicate as many as three right-stepping strands of the Bartlett Springs fault zone within the gravity- defined pull-apart basin. Two pairs of magnetic anomalies appear to be dextrally offset along the fault, arguing for about 8-9 km of cumulative offset on the fault since the passage of the triple junction at about 3.5 Ma. This estimate is similar to proposed offsets of the Eel River (8.6-10.9 km) at Lake Pillsbury. The minimum long-term slip rate is thus 2.3-3.1 mm/yr, considerably slower than geodetic rates of 5-8 mm/yr. Seismicity forms a 5-km-wide diffuse zone along the Bartlett Springs fault zone in the Lake Pillsbury area, with fewer earthquakes about 5 km northwest of the lake and its associated magnetic anomaly. The McCreary Glade seismicity lineament, located between Potter Valley and Lake Pillsbury, has been attributed to a dike intrusion at depth or reactivation of an older structure. These earthquakes coincide with the northeast edge of a 100-km-long belt of aeromagnetic anomalies and thus appear to have reactivated an older basement feature. The coincidence of the Bartlett Springs fault zone and significant gravity gradients also argues that the much younger fault zone has reactivated older basement features. Our analysis shows that a modern, high-resolution aeromagnetic survey is needed to confirm these preliminary interpretations.

  17. 76 FR 61370 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2011-0948] Great Lakes Pilotage Advisory... Meeting. SUMMARY: The Great Lakes Pilotage Advisory Committee (GLPAC) will meet on October 18, 2011, in... Great Lakes pilotage, including review of proposed Great Lakes pilotage regulations and policies. GLPAC...

  18. Systematically variable planktonic carbon metabolism along a land-to-lake gradient in a Great Lakes coastal zone.

    PubMed

    Weinke, Anthony D; Kendall, Scott T; Kroll, Daniel J; Strickler, Eric A; Weinert, Maggie E; Holcomb, Thomas M; Defore, Angela A; Dila, Deborah K; Snider, Michael J; Gereaux, Leon C; Biddanda, Bopaiah A

    2014-11-01

    During the summers of 2002-2013, we measured rates of carbon metabolism in surface waters of six sites across a land-to-lake gradient from the upstream end of drowned river-mouth Muskegon Lake (ML) (freshwater estuary) to 19 km offshore in Lake Michigan (LM) (a Great Lake). Despite considerable inter-year variability, the average rates of gross production (GP), respiration (R) and net production (NP) across ML (604 ± 58, 222 ± 22 and 381 ± 52 µg C L -1 day -1 , respectively) decreased steeply in the furthest offshore LM site (22 ± 3, 55 ± 17 and -33 ± 15 µg C L -1 day -1 , respectively). Along this land-to-lake gradient, GP decreased by 96 ± 1%, whereas R only decreased by 75 ± 9%, variably influencing the carbon balance along this coastal zone. All ML sites were consistently net autotrophic (mean GP:R = 2.7), while the furthest offshore LM site was net heterotrophic (mean GP:R = 0.4). Our study suggests that pelagic waters of this Great Lakes coastal estuary are net carbon sinks that transition into net carbon sources offshore. Reactive and dynamic estuarine coastal zones everywhere may contribute similarly to regional and global carbon cycles.

  19. Improvements in lake water budget computations using Landsat data

    NASA Technical Reports Server (NTRS)

    Gervin, J. C.; Shih, S. F.

    1979-01-01

    A supervised multispectral classification was performed on Landsat data for Lake Okeechobee's extensive littoral zone to provide two types of information. First, the acreage of a given plant species as measured by satellite was combined with a more accurate transpiration rate to give a better estimate of evapotranspiration from the littoral zone. Second, the surface area coupled by plant communities was used to develop a better estimate of the water surface as a function of lake stage. Based on this information, more detailed representations of evapotranspiration and total water surface (and hence total lake volume) were provided to the water balance budget model for lake volume predictions. The model results based on information derived from satellite demonstrated a 94 percent reduction in cumulative lake stage error and a 70 percent reduction in the maximum deviation of the lake stage.

  20. 33 CFR 6.01-5 - Security zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Security zone. 6.01-5 Section 6... AND SECURITY OF VESSELS, HARBORS, AND WATERFRONT FACILITIES Definitions § 6.01-5 Security zone. Security zone as used in this part, means all areas of land, water, or land and water, which are so...

  1. On the methane paradox: Transport from shallow water zones rather than in situ methanogenesis is the major source of CH4 in the open surface water of lakes

    NASA Astrophysics Data System (ADS)

    Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar

    2016-10-01

    Estimates of global methane (CH4) emissions from lakes and the contributions of different pathways are currently under debate. In situ methanogenesis linked to algae growth was recently suggested to be the major source of CH4 fluxes from aquatic systems. However, based on our very large data set on CH4 distributions within lakes, we demonstrate here that methane-enriched water from shallow water zones is the most likely source of the basin-wide mean CH4 concentrations in the surface water of lakes. Consistently, the mean surface CH4 concentrations are significantly correlated with the ratio between the surface area of the shallow water zone and the entire lake, fA,s/t, but not with the total surface area. The categorization of CH4 fluxes according to fA,s/t may therefore improve global estimates of CH4 emissions from lakes. Furthermore, CH4 concentrations increase substantially with water temperature, indicating that seasonally resolved data are required to accurately estimate annual CH4 emissions.

  2. CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauren P. Birgenheier; Michael D. Vanden Berg,

    An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warmingmore » events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.« less

  3. 77 FR 6007 - Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ...] Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation... they could be published in the Federal Register. This notice lists temporary safety zones, security zones, special local regulations, drawbridge operation regulations and regulated navigation areas, all...

  4. 77 FR 11426 - Safety Zones; Annual Events Requiring Safety Zones in the Captain of the Port Lake Michigan Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... Aerospace Challenge Sport Rocket Launch; Muskegon, MI. (i) Location. All waters of Muskegon Lake, near the... 5 p.m. (5) Celebrate De Pere; De Pere, WI. (i) Location. All waters of the Fox River, near Voyageur... waters of the Fox River, near the Western Lime Company 1.13 miles above the head of the Fox River, within...

  5. 33 CFR 165.929 - Safety Zones; Annual events requiring safety zones in the Captain of the Port Lake Michigan zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Challenge Sport Rocket Launch Muskegon, MI. All waters of Muskegon Lake, near the West Michigan Dock and... 5 p.m. (4) Celebrate De Pere De Pere, WI. All waters of the Fox River, near Voyageur Park, within...) International Bayfest Green Bay, WI. All waters of the Fox River, near the Western Lime Company 1.13 miles above...

  6. 33 CFR 165.929 - Safety Zones; Annual events requiring safety zones in the Captain of the Port Lake Michigan zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Aerospace Challenge Sport Rocket Launch; Muskegon, MI—(i) Location. All waters of Muskegon Lake, near the... Pere, WI—(i) Location. All waters of the Fox River, near Voyageur Park, within the arc of a circle with...) Location. All waters of the Fox River, near the Western Lime Company 1.13 miles above the head of the Fox...

  7. 33 CFR 165.T09-0166 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone, Brandon Road Lock... Areas Ninth Coast Guard District § 165.T09-0166 Safety Zone, Brandon Road Lock and Dam to Lake Michigan.... waters of the Des Plaines River located between mile marker 286.0 (Brandon Road Lock and Dam) and mile...

  8. 33 CFR 165.929 - Safety Zones; Annual events requiring safety zones in the Captain of the Port Lake Michigan zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and time. The last Saturday of April; 8 a.m. to 4 p.m. (3) Tulip Time Festival Fireworks; Holland, MI....m. to 11 p.m. (9) Harborfest Music and Family Festival; Racine, WI—(i) Location. All waters of Lake... 11 p.m. each day. (10) Jordan Valley Freedom Festival Fireworks; East Jordan, MI—(i) Location. All...

  9. Southeastern extension of the Lake Basin fault zone in south- central Montana: implications for coal and hydrocarbon exploration ( USA).

    USGS Publications Warehouse

    Robinson, L.N.; Barnum, B.E.

    1986-01-01

    The Lake Basin fault zone consists mainly of en echelon NE-striking normal faults that have been interpreted to be surface expressions of left-lateral movement along a basement wrench fault. Information gathered from recent field mapping of coal beds and from shallow, closely-spaced drill holes resulted in detailed coal bed correlations, which revealed another linear zone of en echelon faulting directly on the extended trend of the Lake Basin fault zone. This faulted area, referred to as the Sarpy Creek area, is located 48 km E of Hardin, Montana. It is about 16 km long, 13 km wide, and contains 21 en echelon normal faults that have an average strike of N 63oE. We therefore extend the Lake Basin fault zone 32 km farther SE than previously mapped to include the Sarpy Creek area. The Ash Creek oil field, Wyoming, 97 km due S of the Sarpy Creek area, produces from faulted anticlinal structues that have been interpreted to be genetically related to the primary wrench-fault system known as the Nye-Bowler fault zone. The structural similarities between the Sarpy Creek area and the Ash Creek area indicate that the Sarpy Creek area is a possible site for hydrocarbon accumulation.-from Authors

  10. 77 FR 9528 - Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0087] Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound AGENCY: Coast Guard, DHS... Waterway Security Zone in Commencement Bay, Tacoma, Washington from 6 a.m. on February 17, 2012, through 11...

  11. 76 FR 3014 - Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... Coast Guard will enforce the Blair Waterway security zone in Commencement Bay, WA for protection of... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2011-0015] Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound, WA AGENCY: Coast Guard, DHS...

  12. 76 FR 41073 - Security Zones; Sector Southeastern New England Captain of the Port Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    .... ACTION: Final rule. SUMMARY: The Coast Guard is establishing security zones around cruise ships in the... creates security zones for all navigable waters around certain cruise ships in the Southeastern New... temporary security zone regulation in Sec. 165.T01-0864. On April 5, 2011, we published a notice of proposed...

  13. 77 FR 55777 - Security Zones; Dignitary Arrival/Departure and United Nations Meetings, New York, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... 1625-AA87 Security Zones; Dignitary Arrival/Departure and United Nations Meetings, New York, NY AGENCY... a permanent security zone on the waters of the East River and Bronx Kill, in the vicinity of... security zone on the East River, New York; and clarify the enforcement times and locations of the security...

  14. 76 FR 40617 - Security Zone; 2011 Seattle Seafair Fleet Week Moving Vessels, Puget Sound, Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ...-AA87 Security Zone; 2011 Seattle Seafair Fleet Week Moving Vessels, Puget Sound, Washington AGENCY... security zones around the HMCS WHITEHORSE (NCSM 705), HMCS NANAIMO (NCSM 702), and the USCGC MELLON (WHEC... August 8, 2011. These security zones are necessary to help ensure the security of the vessels from...

  15. Palaeobiology, palaeoecology and stratigraphic significance of the Late Miocene cockle Lymnocardium soproniense from Lake Pannon

    NASA Astrophysics Data System (ADS)

    Magyar, Imre; Cziczer, István; Sztanó, Orsolya; Dávid, Árpád; Johnson, Michael

    2016-12-01

    Stratigraphic subdivision of the Upper Miocene deposits in the Pannonian Basin has been traditionally based on the endemic mollusc species of Lake Pannon. The cockle species Lymnocardium soproniense Vitális, apparently evolving through a sympatric speciation event in the sublittoral zone of Lake Pannon about 10.2-10.3 Ma, attained wide geographical distribution in the Pannonian basin and thus may serve as a good stratigraphic marker. Lymnocardium soproniense was one of the few large-sized cockles in Lake Pannon, most closely related to its ancestor, L. schedelianum (Fuchs), and to another descendant of the latter, L. variocostatum Vitális. According to the δ18O stable isotope record of its shells, the large size of L. soproniense was coupled with an extended life time of more than 10 years, probably reflecting a stable lake environment with increased resource availability and decreased predation. The species lived in quiet offshore conditions, below the storm wave base, where clay was deposited from suspension and the influence of currents was negligible. The base of the Lymnocardium soproniense Zone in the sublittoral deposits of Lake Pannon is defined by the first occurrence of the species, whereas the top of the zone is marked with the base of the overlying Congeria praerhomboidea Zone, defined by the FAD of C. praerhomboidea.

  16. 33 CFR 165.169 - Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone. 165.169 Section 165.169 Navigation and... Areas First Coast Guard District § 165.169 Safety and Security Zones: New York Marine Inspection Zone...

  17. 33 CFR 165.169 - Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone. 165.169 Section 165.169 Navigation and... Areas First Coast Guard District § 165.169 Safety and Security Zones: New York Marine Inspection Zone...

  18. 33 CFR 165.169 - Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone. 165.169 Section 165.169 Navigation and... Areas First Coast Guard District § 165.169 Safety and Security Zones: New York Marine Inspection Zone...

  19. 33 CFR 165.169 - Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone. 165.169 Section 165.169 Navigation and... Areas First Coast Guard District § 165.169 Safety and Security Zones: New York Marine Inspection Zone...

  20. 33 CFR 165.169 - Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone. 165.169 Section 165.169 Navigation and... Areas First Coast Guard District § 165.169 Safety and Security Zones: New York Marine Inspection Zone...

  1. Responses of landscape pattern of China's two largest freshwater lakes to early dry season after the impoundment of Three-Gorges Dam

    NASA Astrophysics Data System (ADS)

    Wu, Haipeng; Zeng, Guangming; Liang, Jie; Chen, Jin; Xu, Jijun; Dai, Juan; Sang, Lianhai; Li, Xiaodong; Ye, Shujing

    2017-04-01

    The effects of hydrologic cycle change (caused by human activity and global climate change) on ecosystems attract the increasing attention around the world. As a result of impounding of the Three Gorges Dam (TGD), climate change and sand mining, the dry season of Poyang Lake and Dongting Lake (China's two largest freshwater lakes) came early after the TGD impoundment. It was the primary cause of the increasing need for sluice/dam construction to store water in the Lakes and attracted increasing attention. In this paper, we compared the landscape pattern between three hydrologic years with early dry season (EY) and three normal hydrologic years (NY) of each lake by remote sensing technology, to reveal the effect of early dry season on landscape pattern. The results showed that early dry season caused expanding of Phalaris to mudflat zone in Poyang Lake, while caused expanding of Carex to Phalaris zone and expanding of Phalaris to mudflat zone in Dongting Lake. In landscape level, there was no significant difference in landscape grain size, landscape grain shape, habitat connectivity and landscape diversity between EY and NY in the two lakes. While in habitat class level, there were significant changes in area of mudflat and Phalaris and grain size of mudflat in Poyang Lake, and in area of Carex, grain size of Phalaris and grain shape of Carex and Phalaris in Dongting Lake. These changes will impact migrating birds of East Asian and migratory fishes of Yangtze River.

  2. Detecting Land-based Signals in the Near-shore Zone of Lake Erie During Summer 2009

    EPA Science Inventory

    We conducted two styles of nearshore surveys in Lake Erie during August to mid-September 2009. The first used a spatially-balanced probability survey (SBS) design to establish discrete stations within a GIS-defined target populationthe nearshore zone extending approximately 5 km...

  3. 76 FR 70342 - Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ...] Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation... published in the Federal Register. This notice lists temporary safety zones, security zones, special local..., telephone (202) 372-3862. For questions on viewing, or on submitting material to the docket, contact Ms...

  4. 78 FR 7265 - Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0087] Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound, WA AGENCY: Coast Guard, DHS... Security Zone in Commencement Bay, Tacoma, Washington from 6 a.m. on February 1, 2013, through 11:59 p.m...

  5. 78 FR 57485 - Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0087] Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound AGENCY: Coast Guard, DHS... Security Zone in Commencement Bay, Tacoma, Washington from 6 a.m. on September 12, 2013 through 11:59 p.m...

  6. 78 FR 54588 - Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0087] Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound AGENCY: Coast Guard, DHS... Security Zone in Commencement Bay, Tacoma, Washington from 6:00 a.m. on September 2, 2013 through 11:59 p.m...

  7. 78 FR 11981 - Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0087] Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound, WA AGENCY: Coast Guard, DHS... Security Zone in Commencement Bay, Tacoma, Washington from 6 a.m. on February 23, 2013, through 11:59 p.m...

  8. 77 FR 44475 - Security Zones; Seattle's Seafair Fleet Week Moving Vessels, Puget Sound, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ...-AA87 Security Zones; Seattle's Seafair Fleet Week Moving Vessels, Puget Sound, WA AGENCY: Coast Guard... Seafair Fleet Week Moving Vessels Security Zones from 12:00 p.m. on July 31, 2012 through 5:00 p.m. on August 6, 2012. These security zones are necessary to help ensure the security of the vessels from...

  9. Supraglacial Lakes in the Percolation Zone of the Western Greenland Ice Sheet: Formation and Development using Operation IceBridge Snow Radar and ATM (2009-2014)

    NASA Astrophysics Data System (ADS)

    Chen, C.; Howat, I. M.; de la Peña, S.

    2015-12-01

    Surface meltwater lakes on the Greenland Ice Sheet have appeared at higher elevations, extending well into the percolation zone, under recent warming, with the largest expansion occurring in the western Greenland Ice Sheet. The conditions that allow lakes to form atop firn are poorly constrained, but the formation of new lakes imply changes in the permeability of the firn at high elevations, promoting meltwater runoff. We explore the formation and evolution of new surface lakes in this region above 1500 meters, using a combination of satellite imagery and repeat Snow (2-6.5 GHz) radar echograms and LIDAR measurements from NASA's Operation IceBridge of 2009-2014. We identify conditions for surface lake formation at their farthest inland extent and suggest behaviors of persistence and lake drainage are due to differences in regional ice dynamics.

  10. Patterns in the Physical, Chemical, and Biological Composition of Icelandic Lakes and the Dominant Factors Controlling Variability Across Watersheds

    NASA Astrophysics Data System (ADS)

    Greco, A.; Strock, K.; Edwards, B. R.

    2017-12-01

    Fourteen lakes were sampled in the southern and western area of Iceland in June of 2017. The southern systems, within the Eastern Volcanic Zone, have minimal soil development and active volcanoes that produce ash input to lakes. Lakes in the Western Volcanic Zone were more diverse and located in older bedrock with more extensively weathered soil. Physical variables (temperature, oxygen concentration, and water clarity), chemical variables (pH, conductivity, dissolved and total nitrogen and phosphorus concentrations, and dissolved organic carbon concentration), and biological variables (algal biomass) were compared across the lakes sampled in these geographic regions. There was a large range in lake characteristics, including five to eighteen times higher algal biomass in the southern systems that experience active ash input to lakes. The lakes located in the Eastern Volcanic Zone also had higher conductivity and lower pH, especially in systems receiving substantial geothermal input. These results were analyzed in the context of more extensive lake sampling efforts across Iceland (46 lakes) to determine defining characteristics of lakes in each region and to identify variables that drive heterogeneous patterns in physical, chemical, and biological lake features within each region. Coastal systems, characterized by high conductivity, and glacially-fed systems, characterized by high iron concentrations, were unique from lakes in all other regions. Clustering and principal component analyses revealed that lake type (plateau, valley, spring-fed, and direct-runoff) was not the primary factor explaining variability in lake chemistry outside of the coastal and glacial lake types. Instead, lakes differentiated along a gradient of iron concentration and total nitrogen concentration. The physical and chemical properties of subarctic lakes are especially susceptible to both natural and human-induced environmental impacts. However, relatively little is known about the contemporary physical and chemical properties of Icelandic lakes, despite their abundance and importance as freshwater resources. Here we report an analysis of the physical, chemical, and biological characteristics of a set of subarctic lakes and use spatial Information to infer controls on lake heterogeneity within and across regions.

  11. 33 CFR 165.758 - Security Zone; San Juan, Puerto Rico.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Security Zone; San Juan, Puerto Rico. (a) Location. Moving and fixed security zones are established 50... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; San Juan, Puerto Rico. 165.758 Section 165.758 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  12. 33 CFR 165.758 - Security Zone; San Juan, Puerto Rico.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Security Zone; San Juan, Puerto Rico. (a) Location. Moving and fixed security zones are established 50... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; San Juan, Puerto Rico. 165.758 Section 165.758 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  13. 33 CFR 165.758 - Security Zone; San Juan, Puerto Rico.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Security Zone; San Juan, Puerto Rico. (a) Location. Moving and fixed security zones are established 50... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; San Juan, Puerto Rico. 165.758 Section 165.758 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  14. 33 CFR 165.758 - Security Zone; San Juan, Puerto Rico.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Security Zone; San Juan, Puerto Rico. (a) Location. Moving and fixed security zones are established 50... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; San Juan, Puerto Rico. 165.758 Section 165.758 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  15. 33 CFR 165.758 - Security Zone; San Juan, Puerto Rico.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Security Zone; San Juan, Puerto Rico. (a) Location. Moving and fixed security zones are established 50... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; San Juan, Puerto Rico. 165.758 Section 165.758 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  16. 33 CFR 165.1192 - Security Zones; Waters surrounding San Francisco International Airport and Oakland International...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zones; Waters... Security Zones; Waters surrounding San Francisco International Airport and Oakland International Airport, San Francisco Bay, California. (a) Locations. The following areas are security zones: (1) San...

  17. 75 FR 28757 - Security Zone; Potomac River, Washington Channel, Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ...-AA87 Security Zone; Potomac River, Washington Channel, Washington, DC AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary security zone in certain waters of Washington Channel on the Potomac River. The security zone is necessary to provide for the...

  18. 33 CFR 165.1192 - Security Zones; Waters surrounding San Francisco International Airport and Oakland International...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zones; Waters... Security Zones; Waters surrounding San Francisco International Airport and Oakland International Airport, San Francisco Bay, California. (a) Locations. The following areas are security zones: (1) San...

  19. 33 CFR 165.1192 - Security Zones; Waters surrounding San Francisco International Airport and Oakland International...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zones; Waters... Security Zones; Waters surrounding San Francisco International Airport and Oakland International Airport, San Francisco Bay, California. (a) Locations. The following areas are security zones: (1) San...

  20. 77 FR 70964 - Security Zone, Potomac and Anacostia Rivers; Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ... 1625-AA87 Security Zone, Potomac and Anacostia Rivers; Washington, DC AGENCY: Coast Guard, DHS. ACTION... to establish a security zone during activities associated with the Presidential Inauguration in... extends the southern boundary of the proposed security zone. This rule prohibits vessels and people from...

  1. 33 CFR 165.1192 - Security Zones; Waters surrounding San Francisco International Airport and Oakland International...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zones; Waters... Security Zones; Waters surrounding San Francisco International Airport and Oakland International Airport, San Francisco Bay, California. (a) Locations. The following areas are security zones: (1) San...

  2. 33 CFR 165.1192 - Security Zones; Waters surrounding San Francisco International Airport and Oakland International...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zones; Waters... Security Zones; Waters surrounding San Francisco International Airport and Oakland International Airport, San Francisco Bay, California. (a) Locations. The following areas are security zones: (1) San...

  3. 77 FR 19970 - Security Zones; 2012 Republican National Convention, Captain of the Port St. Petersburg Zone...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ...-AA87 Security Zones; 2012 Republican National Convention, Captain of the Port St. Petersburg Zone... Marine Science Technician First Class Nolan L. Ammons, Sector St. Petersburg Prevention Department, Coast... proposed rule would establish seven temporary security zones in the Captain of the Port St. Petersburg Zone...

  4. 76 FR 17782 - Security Zone: Passenger Vessels, Sector Southeastern New England Captain of the Port Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ...-AA87 Security Zone: Passenger Vessels, Sector Southeastern New England Captain of the Port Zone AGENCY... extending the effective period for temporary fixed and moving security zones around certain passenger vessels in the Sector Southeastern New England Captain of the Port Zone through October 1, 2011. Temporary...

  5. 75 FR 33701 - Security Zone; Escorted U.S. Navy Submarines in Sector Honolulu Captain of the Port Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... information about the vessel or persons on board, whether they pose a threat to the submarine. The security...-AA87 Security Zone; Escorted U.S. Navy Submarines in Sector Honolulu Captain of the Port Zone AGENCY... establishing a moving security zone around all U.S. Navy submarines that are operating in the Sector Honolulu...

  6. Panama Canal Zone as seen from STS-62

    NASA Image and Video Library

    1994-03-05

    STS062-85-095 (4-18 March 1994) --- Gatun Lake and the forested Panama Canal Zone can be seen in this north northwest-looking low oblique photograph obtained in March 1994. The shipping chanel of the canal is 82.4 kilometers (51.2 miles) long, though the canal zone is only 65 kilometers (40 miles) long. The width of the canal zones extends generally 8 kilometers (5 miles) on either side of the shipping channel, except near Madden Lake. The canal connects the Atlantic Ocean (coastal city of Colon) with the Pacific Ocean near Panama City in a line that takes a northwest to southeast course because of the configuration of the isthmus. The canal zigzags across the isthmus to take advantage of the geographic features of the area such as the Chagres River. The controlled water supply for the canal is provided by the three artificial lakes: Gatun near the Atlantic terminus, Miraflores near the Pacific terminus and Madden about halfway across the isthmus. Gatun is the largest of the three lakes covering an area of 429 square kilometers (165 square miles). In the midst of this lake is Barro Colorado Island, a world-famous wild game perserve. Madden Lake was built as a large supplemental reservoir to keep water levels up in the canal during the dry season. All three lakes are vital sources of water for maintaining the ship channel over the continental divide (Gaillard Cut) and for regulating the flow of water that enables hugh vessels to be lifted and lowered in massive locks.

  7. Assessment of suitable habitat for Phragmites australis (common reed) in the Great Lakes coastal zone

    USGS Publications Warehouse

    Carlson Mazur, Martha L.; Kowalski, Kurt P.; Galbraith, David

    2014-01-01

    In the Laurentian Great Lakes, the invasive form of Phragmites australis (common reed) poses a threat to highly productive coastal wetlands and shorelines by forming impenetrable stands that outcompete native plants. Large, dominant stands can derail efforts to restore wetland ecosystems degraded by other stressors. To be proactive, landscape-level management of Phragmites requires information on the current spatial distribution of the species and a characterization of areas suitable for future colonization. Using a recent basin-scale map of this invasive plant’s distribution in the U.S. coastal zone of the Great Lakes, environmental data (e.g., soils, nutrients, disturbance, climate, topography), and climate predictions, we performed analyses of current and predicted suitable coastal habitat using boosted regression trees, a type of species distribution modeling. We also investigated differential influences of environmental variables in the upper lakes (Lakes Superior, Michigan, and Huron) and lower lakes (Lakes St. Clair, Erie, and Ontario). Basin-wide results showed that the coastal areas most vulnerable to Phragmites expansion were in close proximity to developed lands and had minimal topographic relief, poorly drained soils, and dense road networks. Elevated nutrients and proximity to agriculture also influenced the distribution of Phragmites. Climate predictions indicated an increase in suitable habitat in coastal Lakes Huron and Michigan in particular. The results of this study, combined with a publicly available online decision support tool, will enable resource managers and restoration practitioners to target and prioritize Phragmites control efforts in the Great Lakes coastal zone.

  8. Emergent Macrophytes Support Zooplankton in a Shallow Tropical Lake: A Basis for Wetland Conservation

    NASA Astrophysics Data System (ADS)

    Gebrehiwot, Mesfin; Kifle, Demeke; Triest, Ludwig

    2017-12-01

    Understanding the biodiversity value of littoral zones of lakes is a priority for aquatic biodiversity conservation. However, less emphasis has been given to the littoral part of tropical African lakes, with many of the previous researches focusing only on the open water side. The aim of the present study was, therefore, to investigate the impact of the littoral zone of a shallow freshwater tropical lake (Ziway, Ethiopia), dominated by two emergent macrophytes, on zooplankton community structure. We hypothesized that the wetland vegetation serves as a preferred microhabitat for zooplankton communities. A lake with substantial coverage of emergent macrophytes was monitored monthly from January to August, 2016. The monitoring included the measurements of physical, chemical, and biological parameters. Sampling sites were selected to represent areas of the macrophyte vegetation ( Typha latifolia and Phragmites australis) and the open water part of the lake. Sites with macrophyte vegetation were found to be the home of more dense and diverse zooplankton community. However, during the period of high vegetation loss, the density of crustacean zooplankton showed significant reduction within the patches of macrophytes. From biodiversity conservation perspective, it was concluded that the preservation of such small areas of macrophytes covering the littoral zone of lakes could be as important as protecting the whole lake. However, the rapid degradation of wetland vegetation by human activities is a real threat to the lake ecosystem. In the not-too-far future, it could displace and evict riparian vegetation and the biota it supports.

  9. 33 CFR 165.778 - Security Zone; Port of Mayaguez, Puerto Rico.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Puerto Rico. 165.778 Section 165.778 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Security Zone; Port of Mayaguez, Puerto Rico. (a) Security zone. A moving and fixed security zone is established around all cruise ships entering, departing, mooring, or anchoring in the Port of Mayaguez, Puerto...

  10. 33 CFR 165.778 - Security Zone; Port of Mayaguez, Puerto Rico.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Puerto Rico. 165.778 Section 165.778 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Security Zone; Port of Mayaguez, Puerto Rico. (a) Security zone. A moving and fixed security zone is established around all cruise ships entering, departing, mooring, or anchoring in the Port of Mayaguez, Puerto...

  11. 33 CFR 165.778 - Security Zone; Port of Mayaguez, Puerto Rico.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Puerto Rico. 165.778 Section 165.778 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Security Zone; Port of Mayaguez, Puerto Rico. (a) Security zone. A moving and fixed security zone is established around all cruise ships entering, departing, mooring, or anchoring in the Port of Mayaguez, Puerto...

  12. 33 CFR 165.778 - Security Zone; Port of Mayaguez, Puerto Rico.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Puerto Rico. 165.778 Section 165.778 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Security Zone; Port of Mayaguez, Puerto Rico. (a) Security zone. A moving and fixed security zone is established around all cruise ships entering, departing, mooring, or anchoring in the Port of Mayaguez, Puerto...

  13. 33 CFR 165.778 - Security Zone; Port of Mayaguez, Puerto Rico.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Puerto Rico. 165.778 Section 165.778 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Security Zone; Port of Mayaguez, Puerto Rico. (a) Security zone. A moving and fixed security zone is established around all cruise ships entering, departing, mooring, or anchoring in the Port of Mayaguez, Puerto...

  14. 33 CFR 165.722 - Security Zone: St. Johns River, Jacksonville, Florida.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone: St. Johns River....722 Security Zone: St. Johns River, Jacksonville, Florida. (a) Location. The water located within the following area is established as a security zone: beginning at the shoreline of the St. Johns River at the...

  15. 33 CFR 165.805 - Security Zones; Calcasieu River and Ship Channel, Louisiana.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zones; Calcasieu River... § 165.805 Security Zones; Calcasieu River and Ship Channel, Louisiana. (a) Location. (1) The following areas are designated as fixed security zones (all coordinates are based upon North American Datum of...

  16. 33 CFR 165.1104 - Security Zone: San Diego Bay, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone: San Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1104 Security Zone: San Diego Bay, CA. (a) Location. The following area is a security zone: on the waters along the northern...

  17. 33 CFR 165.805 - Security Zones; Calcasieu River and Ship Channel, Louisiana.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zones; Calcasieu River... § 165.805 Security Zones; Calcasieu River and Ship Channel, Louisiana. (a) Location. (1) The following areas are designated as fixed security zones (all coordinates are based upon North American Datum of...

  18. 33 CFR 165.1403 - Security Zones; Tinian, Commonwealth of the Northern Mariana Islands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zones; Tinian... Guard District § 165.1403 Security Zones; Tinian, Commonwealth of the Northern Mariana Islands. (a) Location. The following areas are security zones: (1) The waters of the Pacific Ocean off Tinian between 14...

  19. 33 CFR 165.1104 - Security Zone: San Diego Bay, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone: San Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1104 Security Zone: San Diego Bay, CA. (a) Location. The following area is a security zone: on the waters along the northern...

  20. 33 CFR 165.1104 - Security Zone: San Diego Bay, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone: San Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1104 Security Zone: San Diego Bay, CA. (a) Location. The following area is a security zone: on the waters along the northern...

  1. 33 CFR 165.1104 - Security Zone: San Diego Bay, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone: San Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1104 Security Zone: San Diego Bay, CA. (a) Location. The following area is a security zone: on the waters along the northern...

  2. 33 CFR 165.1403 - Security Zones; Tinian, Commonwealth of the Northern Mariana Islands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zones; Tinian... Guard District § 165.1403 Security Zones; Tinian, Commonwealth of the Northern Mariana Islands. (a) Location. The following areas are security zones: (1) The waters of the Pacific Ocean off Tinian between 14...

  3. 33 CFR 165.1104 - Security Zone: San Diego Bay, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone: San Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1104 Security Zone: San Diego Bay, CA. (a) Location. The following area is a security zone: on the waters along the northern...

  4. 33 CFR 165.1403 - Security Zones; Tinian, Commonwealth of the Northern Mariana Islands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zones; Tinian... Guard District § 165.1403 Security Zones; Tinian, Commonwealth of the Northern Mariana Islands. (a) Location. The following areas are security zones: (1) The waters of the Pacific Ocean off Tinian between 14...

  5. 33 CFR 165.1403 - Security Zones; Tinian, Commonwealth of the Northern Mariana Islands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zones; Tinian... Guard District § 165.1403 Security Zones; Tinian, Commonwealth of the Northern Mariana Islands. (a) Location. The following areas are security zones: (1) The waters of the Pacific Ocean off Tinian between 14...

  6. 33 CFR 165.805 - Security Zones; Calcasieu River and Ship Channel, Louisiana.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zones; Calcasieu River... § 165.805 Security Zones; Calcasieu River and Ship Channel, Louisiana. (a) Location. (1) The following areas are designated as fixed security zones (all coordinates are based upon North American Datum of...

  7. 33 CFR 165.1403 - Security Zones; Tinian, Commonwealth of the Northern Mariana Islands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zones; Tinian... Guard District § 165.1403 Security Zones; Tinian, Commonwealth of the Northern Mariana Islands. (a) Location. The following areas are security zones: (1) The waters of the Pacific Ocean off Tinian between 14...

  8. 33 CFR 165.805 - Security Zones; Calcasieu River and Ship Channel, Louisiana.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zones; Calcasieu River... § 165.805 Security Zones; Calcasieu River and Ship Channel, Louisiana. (a) Location. (1) The following areas are designated as fixed security zones (all coordinates are based upon North American Datum of...

  9. 77 FR 45490 - Safety Zone, Barrel Recovery, Lake Superior; Duluth, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... suspected to contain munitions waste materials which were dumped in the 1960's in a portion of Lake Superior... recreational vessels and marine traffic from any unknown hazards as well as provide a safe work zone for... Waterways Management, U.S. Coast Guard Marine Safety Unit Duluth; telephone number (218) 720- 5286...

  10. Lakewide monitoring of suspended solids using satellite data. [Lake Superior water reclamation

    NASA Technical Reports Server (NTRS)

    Sydor, M. (Principal Investigator)

    1981-01-01

    In anticipation of using LANDSAT and Nimbus 7 coastal zone color scanner data to observe the decrease in suspended solids in Lake Superior following cessation of the dumping of taconite tailings, a series of lakewide sampling cruises was conducted to make radiometric measurements at a lake level. A means for identifying particulates and measuring their concentration from LANDSAT data was developed. The initial distribution of chemical parameters in the extreme western arm of the lake, where the concentration gradients are high, is to be based on the LANDSAT data. Subsequent lakewide dispersal and distribution is to be based on the coastal zone color scanner data.

  11. Preliminary Gravity and Magnetic Data of the Lake Pillsbury Region, Northern Coast Ranges, California

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, Robert C.; Morin, Robert L.; McCabe, Craig A.

    2007-01-01

    The Lake Pillsbury region is transected by the Bartlett Springs Fault zone, one of the main strike-slip faults of the San Andreas system north of San Francisco Bay, California. Gravity and magnetic data were collected to help characterize the geometry and offset of the fault zone as well as determine the geometry of the Gravelly Valley pull-apart basin and Potter Valley, an alluvial intermontane basin southwest of Lake Pillsbury. The Bartlett Springs fault zone lies at the base of a significant gravity gradient. Superposed on the gradient is a small gravity low centered over Lake Pillsbury and Gravelly Valley. Another small gravity low coincides with Potter Valley. Inversion of gravity data for basin thickness indicates a maximum thickness of 400 and 440 m for the Gravelly and Potter Valley depressions, respectively. Ground magnetic data indicate that the regional aeromagnetic data likely suffer from positional errors, but that large, long-wavelength anomalies, sourced from serpentinite, may be offset 8 km along the Bartlett Springs Fault zone. Additional gravity data collected either on the lake surface or bottom and in Potter Valley would better determine the shape of the basins. A modern, high-resolution aeromagnetic survey would greatly augment the ability to map and model the fault geometry quantitatively.

  12. The Impact of Eutrophication on Mercury Cycling in Lake 227 at the Experimental Lakes Area in Northwestern Ontario

    NASA Astrophysics Data System (ADS)

    Kirk, J.; Lehnherr, I.; Gleason, A.; St. Louis, V. L.; Muir, D.

    2012-12-01

    Mercury (Hg) is a pollutant of global concern as concentrations of methyl mercury (MeHg), the toxic and bioaccumulative form of Hg, are often present in fish at levels high enough to pose health risks to consumers. Although we are beginning to understand the factors controlling MeHg production in freshwater lakes, the impacts of environmental disturbances, such as eutrophication, on Hg cycling are not known. As part of a larger project examining controls on eutrophication, we are studying Hg cycling and MeHg production in the artificially eutrophied Lake 227 at the Experimental Lakes Area in northwestern Ontario. In addition to 40 years of ancillary data, Lake 227 is ideal for this study as it has an anoxic hypolimnion which may be an important zone of microbial MeHg production. To determine sources and losses of inorganic Hg(II) and MeHg from the lake, we are using a mass balance approach including: detailed lake profiles to determine the water column pools of Hg(II) and MeHg, Hg(II) and MeHg inputs via precipitation, and losses of Hg(II) and MeHg from the lake via gaseous elemental Hg(0) evasion and MeHg photodemethylation, respectively. Rates of water column MeHg production are also being determined using Hg stable isotope tracer experiments. 2010-2011 water column profiles demonstrated that although total Hg (THg) and MeHg concentrations were fairly low in Lake 227 surface waters (2.42 ± 0.64 and 0.11 ± 0.06 ng/L, respectively), MeHg concentrations (1.08 ± 0.39 ng/L) and the % THg that was MeHg (16 ± 5%) were high in deep regions of the water column (6-9 m). The zone of elevated water column MeHg expanded throughout summers 2010-2011, closely following the zone of anoxia, suggesting MeHg is produced in the anoxic hypolimnion. The zone of high particulate-bound THg (62 ± 6%) also migrated with the zone of anoxia over the summer suggesting that particle sinking and sediment resuspension, which are controlled by the timing of algal blooms, are important controls on THg cycling in Lake 227. Using average summer-time water-air fluxes of elemental Hg(0), calculated from surface water Hg(0) concentrations and the site specific gas transfer velocity, we estimate that Hg(0) evasion can account for the loss of ~119 mg of Hg, or ~15% of the THg pool, from Lake 227 from June-October and is therefore an important mechanism of Hg loss. During this period, precipitation was an input of only ~80 mg of THg; however the size of the lake THg pool changed very little (786 to752 mg) suggesting that resuspension and runoff are important to THg cycling in Lake 227. Calculated rates of MeHg production in Lake 227 were 5.5 and 8.2 ng/m2/day in 2010 and 2011, respectively, and are similar to those observed in boreal wetlands, which are known sites of elevated MeHg production. Results to date suggest that eutrophication amplifies features of Hg cycling already present in pristine lakes, such as water column methylation in anoxic waters. Algal blooms, for example, result in larger anoxic zones that last longer and provide more carbon to fuel water column microbial methylation, resulting in higher MeHg production.

  13. Probing the melt zone of Kilauea Iki lava lake, Kilauea volcano, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardee, H.C.; Dunn, J.C.; Hills, R.G.

    1981-12-01

    New drilling techniques were recently used to drill and core the melt zone of Kilauea Iki lava lake to a depth of 93 m. A partial melt zone was found to exist at depths between 58 m and 89 m consisting of 40 volume percent melt. Downhole seismic shots detonated in and below the melt zone resulted in the first in situ measurements of seismic velocity directly through well characterized partial melt zone. Periodic seismic sources were used to effectively penetrate the highly fractured hydrothermal zone of the lava lake crust. Low velocity P-wave layers (< or =2.0 km/s) weremore » found at the surface, at 40 m depth, and at 90 m depth. Thermal convective experiments in the melt zone resulted in the first controlled in situ measurements of the interaction of water with a basaltic melt zone. Transient energy rates of 900 kW (980 kW/m/sup 2/) and steady rates of 85 kW (93 kW/m/sup 2/) were observed. The full water recovery (100%), high downhole steam temperatures (670 C), and high energy transfer rates (93 to 980 kW/m/sup 2/) observed in these thermal experiments are consistent with a closed cavity model where the injected water/steam directly contacted basaltic melt or near melt. In addition to understanding lava lakes, these seismic and thermal experiments have applications for the location of magma bodies in the crust and for the efficient extraction of energy from these bodies.« less

  14. Structural controls on geothermal circulation in Surprise Valley, California: A re-evaluation of the Lake City fault zone

    USGS Publications Warehouse

    Anne E. Egger,; Glen, Jonathan; McPhee, Darcy K.

    2014-01-01

    Faults and fractures play an important role in the circulation of geothermal fluids in the crust, and the nature of that role varies according to structural setting and state of stress. As a result, detailed geologic and geophysical mapping that relates thermal springs to known structural features is essential to modeling geothermal systems. Published maps of Surprise Valley in northeastern California suggest that the “Lake City fault” or “Lake City fault zone” is a significant structural feature, cutting obliquely across the basin and connecting thermal springs across the valley. Newly acquired geophysical data (audio-magnetotelluric, gravity, and magnetic), combined with existing geochemical and geological data, suggest otherwise. We examine potential field profiles and resistivity models that cross the mapped Lake City fault zone. While there are numerous geophysical anomalies that suggest subsurface structures, they mostly do not coincide with the mapped traces of the Lake City fault zone, nor do they show a consistent signature in gravity, magnetics, or resistivities that would suggest a through-going fault that would promote connectivity through lateral fluid flow. Instead of a single, continuous fault, we propose the presence of a deformation zone associated with the growth of the range-front Surprise Valley fault. The implication for geothermal circulation is that this is a zone of enhanced porosity but lacks length-wise connectivity that could conduct fluids across the valley. Thermal fluid circulation is most likely controlled primarily by interactions between N-S–trending normal faults.

  15. Ecological impacts of winter water level drawdowns on lake littoral zones: A review

    USGS Publications Warehouse

    Roy, Allison

    2017-01-01

    Freshwater littoral zones harbor diverse ecological communities and serve numerous ecosystem functions that are controlled, in part, by natural water level fluctuations. However, human alteration of lake hydrologic regimes beyond natural fluctuations threaten littoral zone ecological integrity. One type of hydrologic alteration in lakes is winter water level drawdowns, which are frequently employed for hydropower, flood control, and macrophyte control, among other purposes. Here, we synthesize the abiotic and biotic responses to annual and novel winter water level drawdowns in littoral zones of lakes and reservoirs. The dewatering, freezing, and increased erosion of exposed lakebeds drive changes in the littoral zone. Shoreline-specific physicochemical conditions such as littoral slope and shoreline exposure further induce modifications. Loss of fine sediment decreases nutrient availability over time, but desiccation may promote a temporary nutrient pulse upon re-inundation. Annual winter drawdowns can decrease taxonomic richness of macrophytes and benthic invertebrates and shift assemblage composition to favor taxa with r-selected life history strategies and with functional traits resistant to direct and indirect drawdown effects. Fish assemblages, though less directly affected by winter drawdowns (except where there is critically low dissolved oxygen), experience negative effects via indirect pathways like decreased food resources and spawning habitat. We identify eight general research gaps to guide future research that could improve our understanding about the complex effects of winter drawdowns on littoral zone ecology.

  16. 33 CFR 6.01-5 - Security zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Security zone. 6.01-5 Section 6.01-5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL PROTECTION AND SECURITY OF VESSELS, HARBORS, AND WATERFRONT FACILITIES Definitions § 6.01-5 Security zone...

  17. 33 CFR 6.01-5 - Security zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Security zone. 6.01-5 Section 6.01-5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL PROTECTION AND SECURITY OF VESSELS, HARBORS, AND WATERFRONT FACILITIES Definitions § 6.01-5 Security zone...

  18. 33 CFR 6.01-5 - Security zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Security zone. 6.01-5 Section 6.01-5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL PROTECTION AND SECURITY OF VESSELS, HARBORS, AND WATERFRONT FACILITIES Definitions § 6.01-5 Security zone...

  19. Limnological and geochemical survey of Williams Lake, Hubbard County, Minnesota

    USGS Publications Warehouse

    LaBaugh, J.W.; Groschen, G.E.; Winter, Thomas C.

    1981-01-01

    Calcium and bicarbonate represent more than 90 percent of the dissolved constituents in Williams Lake and the contiguous ground-water system. Major mineralogical constituents of the lake sediments are quartz, dolomite, and calcite. Marl is present only in the littoral zone of the lake. Organic sediments in the lake consist of loose organic floe and gyttja.

  20. Modeling of sediment transport in a saltwater lake with supplemental sandy freshwater.

    PubMed

    Liang, Li; Deng, Yun; Li, Ran; Li, Jia

    2018-06-22

    Considering the highly complex flow structure of saltwater lakes during freshwater supplementation, a three-dimensional numerical model was developed to simulate suspended sediment transport in saltwater lakes. The model was validated using measurements of the salinity and sediment concentration during a pumping test at Yamdrok Lake. The simulation results were in quantitative agreement with the measured data. The observed and simulated results also indicated that the wind stress and vertical salinity gradient have a significant influence on salinity and sediment transport in a saltwater lake. The validated model was then used to predict and analyze the contributions of wind, the supplement flow rate and salinity stratification to the sediment transport process in Yamdrok Lake during continuous river water supplementation. The simulation results showed that after the sandy river water was continuously discharged into the saltwater lake, the lateral diffusion trends of the sediment exhibited three stages: linear growth in the inflow direction, logarithmic growth in the wind direction, and stabilization. Furthermore, wind was the dominant factor in driving the lake flow pattern and sediment transport. Specifically, wind can effectively reduce the area of the sediment diffusion zone by increasing the lateral sediment carrying and dilution capacities. The effect of inflow on the lake current is negligible, but the extent of the sediment turbidity zone mainly depends on the inflow. Reducing the inflow discharge can decrease the area of the sediment turbidity zone to proportions that far exceed the proportions of inflow discharge reductions. In addition, the high-salinity lake water can support the supplemented freshwater via buoyancy forces, which weaken vertical mixing and sediment settlement and increase lake currents and sediment diffusion near the surface.

  1. 33 CFR 165.762 - Security Zone; St. Thomas, U.S. Virgin Islands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; St. Thomas, U.S....762 Security Zone; St. Thomas, U.S. Virgin Islands. (a) Location. Moving and fixed security zones are established 50 yards around all cruise ships entering, departing, moored or anchored in the Port of St. Thomas...

  2. 33 CFR 165.777 - Security Zone; West Basin, Port Canaveral Harbor, Cape Canaveral, Florida.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... clearly states the location of the security zone and the times it will be enforced. This will be the... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; West Basin, Port... Guard District § 165.777 Security Zone; West Basin, Port Canaveral Harbor, Cape Canaveral, Florida. (a...

  3. 75 FR 20778 - Security Zone; Portland Rose Festival Fleet Week, Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ...-AA87 Security Zone; Portland Rose Festival Fleet Week, Willamette River, Portland, OR AGENCY: Coast... during the Portland Rose Festival Fleet Week from June 2, 2010, through June 7, 2010. The security zone... is a need to provide a security zone for the 2010 Portland Rose Festival Fleet Week, and there is...

  4. 33 CFR 165.762 - Security Zone; St. Thomas, U.S. Virgin Islands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....762 Security Zone; St. Thomas, U.S. Virgin Islands. (a) Location. Moving and fixed security zones are established 50 yards around all cruise ships entering, departing, moored or anchored in the Port of St. Thomas, U.S. Virgin Islands. The security zone for a cruise ship entering port is activated when the vessel...

  5. 33 CFR 165.762 - Security Zone; St. Thomas, U.S. Virgin Islands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....762 Security Zone; St. Thomas, U.S. Virgin Islands. (a) Location. Moving and fixed security zones are established 50 yards around all cruise ships entering, departing, moored or anchored in the Port of St. Thomas, U.S. Virgin Islands. The security zone for a cruise ship entering port is activated when the vessel...

  6. 33 CFR 165.762 - Security Zone; St. Thomas, U.S. Virgin Islands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....762 Security Zone; St. Thomas, U.S. Virgin Islands. (a) Location. Moving and fixed security zones are established 50 yards around all cruise ships entering, departing, moored or anchored in the Port of St. Thomas, U.S. Virgin Islands. The security zone for a cruise ship entering port is activated when the vessel...

  7. 33 CFR 165.762 - Security Zone; St. Thomas, U.S. Virgin Islands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....762 Security Zone; St. Thomas, U.S. Virgin Islands. (a) Location. Moving and fixed security zones are established 50 yards around all cruise ships entering, departing, moored or anchored in the Port of St. Thomas, U.S. Virgin Islands. The security zone for a cruise ship entering port is activated when the vessel...

  8. 77 FR 10960 - Security Zone, East River and Bronx Kill; Randalls and Wards Islands, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ...-AA87 Security Zone, East River and Bronx Kill; Randalls and Wards Islands, NY AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary security zone on the... security zone is necessary to ensure the safety of the President of the United States, members of his...

  9. 33 CFR 165.1321 - Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound, WA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Protection of... Areas Thirteenth Coast Guard District § 165.1321 Security Zone; Protection of Military Cargo, Captain of... Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY...

  10. Bathymetry, morphology, and lakebed geologic characteristics of potential Kokanee salmon spawning habitat in Lake Pend Oreille, Bayview and Lakeview quadrangles, Idaho

    USGS Publications Warehouse

    Barton, Gary J.; Dux, Andrew M.

    2013-01-01

    Kokanee salmon (Oncorhynchus nerka) are a keystone species in Lake Pend Oreille in northern Idaho, historically supporting a high-yield recreational fishery and serving as the primary prey for the threatened native bull trout (Salvelinus confluentus) and the Gerrard-strain rainbow trout (Oncorhynchus mykiss). After 1965, the kokanee population rapidly declined and has remained at a low level of abundance. Lake Pend Oreille is one of the deepest lakes in the United States, the largest lake in Idaho, and home to the U.S. Navy Acoustic Research Detachment Base. The U.S. Geological Survey and Idaho Department of Fish and Game are mapping the bathymetry, morphology, and the lakebed geologic units and embeddedness of potential kokanee salmon spawning habitat in Lake Pend Oreille. Relations between lake morphology, lakebed geologic units, and substrate embeddedness are characterized for the shore zone, rise zone, and open water in bays and the main stem of the lake. This detailed knowledge of physical habitat along the shoreline of Lake Pend Oreille is necessary to better evaluate and develop kokanee recovery actions.

  11. 78 FR 54264 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2013-0804] Great Lakes Pilotage Advisory... meeting. SUMMARY: The Great Lakes Pilotage Advisory Committee (GLPAC) will meet on September 19, 2013, in Washington, DC to discuss and suggest improvements to the Great Lakes Pilotage regulations. The meeting will...

  12. 77 FR 24729 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2012-0359] Great Lakes Pilotage Advisory... Meeting. SUMMARY: The Great Lakes Pilotage Advisory Committee (GLPAC) will meet on June 7, 2012, in... and the Coast Guard on matters relating to Great Lakes pilotage, including review of proposed Great...

  13. 76 FR 62085 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2011-0948] Great Lakes Pilotage Advisory... notice announcing a Great Lakes Pilotage Advisory Committee (GLPAC) public meeting on October 18, 2011... regarding the bridge hour study, a key component of the statutory ratemaking authority of the Great Lakes...

  14. Effects of the 1980 eruption of Mount St Helens on the limnological characteristics of selected lakes in western Washington

    USGS Publications Warehouse

    Embrey, S.S.; Dion, N.P.

    1988-01-01

    The 1980 eruption of Mount St. Helens provided the opportunity to study its effect on the physical, chemical, and biological characteristics of lakes near the volcano, and to describe two newly created lakes. Concentrations of dissolved solids and organic carbon, measured in June 1980, had increased from 2 to 30 times those observed in the 1970 's in Spirit, St. Helens, and Venus Lakes. Water in the lakes was altered from preeruption calcium-bicarbonate types to calcium-sulfate, calcium sulfate-chloride, or lake surface, as in St. Helens Lake; transparency in Venus Lake had improved to a depth of 24 ft by 1982. Spirit Lake was anoxic into fall 1980, but had reaerated to 5.2 mg/L of dissolved oxygen by May 1981. Phytoplankton communities in existing lakes in the blast zone in 1980 were primarily green and bluegreen algae; diatoms were sparse until summer 1982. Small numbers of zooplankton in Spirit, St. Helens, and Venus Lakes, compared to numbers in Walupt and Fawn Lakes, may indicate some post-eruption mortality. Rotifers were absent from lakes in the blast zone, but by 1981 were observed in all the lakes. The recovery of the physical, chemical, and biological characteristics of the lakes will depend on stabilization of the surrounding environment and biological processes within each lake. Excluding Spirit Lake, it is estimated that St. Helens Lake would be the slowest to recover and Venus Lake the fastest. (USGS)

  15. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.

    2013-01-01

    The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and extensional stresses on built structures within the fault zone. Such differential movement and resulting distortion of built structures appear to have occurred between fault traces at the gatewell near the southern end of San Andreas Lake during the 1906 San Francisco earthquake (Schussler, 1906). In addition to the three fault traces within the main 1906 surface rupture zone, our data indicate at least one additional fault trace (or zone) about 80 meters northeast of the main 1906 surface rupture zone. Because ground shaking also can damage structures, we used fault-zone guided waves to investigate ground shaking within the fault zones relative to ground shaking outside the fault zones. Peak ground velocity (PGV) measurements from our guided-wave study indicate that ground shaking is greater at each of the surface fault traces, varying with the frequency of the seismic data and the wave type (P versus S). S-wave PGV increases by as much as 5–6 times at the fault traces relative to areas outside the fault zone, and P-wave PGV increases by as much as 3–10 times. Assuming shaking increases linearly with increasing earthquake magnitude, these data suggest strong shaking may pose a significant hazard to built structures that extend across the fault traces. Similarly complex fault structures likely underlie other strike-slip faults (such as the Hayward, Calaveras, and Silver Creek Faults) that intersect structures of the water delivery system, and these fault structures similarly should be investigated.

  16. 33 CFR 165.503 - Security Zone; Captain of the Port Hampton Roads Zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Port Hampton Roads Zone. 165.503 Section 165.503 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED... § 165.503 Security Zone; Captain of the Port Hampton Roads Zone. (a) Definitions. As used in this...

  17. 46 CFR Appendix A to Part 404 - Ratemaking Analyses and Methodology

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... preceding year's average annual rate of return for new issues of high grade corporate securities. (3) Assets... 46 Shipping 8 2011-10-01 2011-10-01 false Ratemaking Analyses and Methodology A Appendix A to Part 404 Shipping COAST GUARD (GREAT LAKES PILOTAGE), DEPARTMENT OF HOMELAND SECURITY GREAT LAKES PILOTAGE...

  18. 46 CFR Appendix A to Part 404 - Ratemaking Analyses and Methodology

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... preceding year's average annual rate of return for new issues of high grade corporate securities. (3) Assets... 46 Shipping 8 2013-10-01 2013-10-01 false Ratemaking Analyses and Methodology A Appendix A to Part 404 Shipping COAST GUARD (GREAT LAKES PILOTAGE), DEPARTMENT OF HOMELAND SECURITY GREAT LAKES PILOTAGE...

  19. 46 CFR Appendix A to Part 404 - Ratemaking Analyses and Methodology

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... preceding year's average annual rate of return for new issues of high grade corporate securities. (3) Assets... 46 Shipping 8 2014-10-01 2014-10-01 false Ratemaking Analyses and Methodology A Appendix A to Part 404 Shipping COAST GUARD (GREAT LAKES PILOTAGE), DEPARTMENT OF HOMELAND SECURITY GREAT LAKES PILOTAGE...

  20. 46 CFR Appendix A to Part 404 - Ratemaking Analyses and Methodology

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... preceding year's average annual rate of return for new issues of high grade corporate securities. (3) Assets... 46 Shipping 8 2012-10-01 2012-10-01 false Ratemaking Analyses and Methodology A Appendix A to Part 404 Shipping COAST GUARD (GREAT LAKES PILOTAGE), DEPARTMENT OF HOMELAND SECURITY GREAT LAKES PILOTAGE...

  1. 46 CFR Appendix A to Part 404 - Ratemaking Analyses and Methodology

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... preceding year's average annual rate of return for new issues of high grade corporate securities. (3) Assets... 46 Shipping 8 2010-10-01 2010-10-01 false Ratemaking Analyses and Methodology A Appendix A to Part 404 Shipping COAST GUARD (GREAT LAKES PILOTAGE), DEPARTMENT OF HOMELAND SECURITY GREAT LAKES PILOTAGE...

  2. 33 CFR 165.768 - Security Zone; MacDill Air Force Base, Tampa Bay, FL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; MacDill Air Force....768 Security Zone; MacDill Air Force Base, Tampa Bay, FL. (a) Location. The following area is a security zone which exists concurrent with an Army Corps of Engineers restricted area in § 334.635 of this...

  3. 33 CFR 165.768 - Security Zone; MacDill Air Force Base, Tampa Bay, FL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; MacDill Air Force....768 Security Zone; MacDill Air Force Base, Tampa Bay, FL. (a) Location. The following area is a security zone which exists concurrent with an Army Corps of Engineers restricted area in § 334.635 of this...

  4. 33 CFR 165.553 - Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Salem and Hope... Limited Access Areas Fifth Coast Guard District § 165.553 Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey. (a) Location. The following area is a security zone...

  5. 33 CFR 165.768 - Security Zone; MacDill Air Force Base, Tampa Bay, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; MacDill Air Force....768 Security Zone; MacDill Air Force Base, Tampa Bay, FL. (a) Location. The following area is a security zone which exists concurrent with an Army Corps of Engineers restricted area in § 334.635 of this...

  6. 33 CFR 165.553 - Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; Salem and Hope... Limited Access Areas Fifth Coast Guard District § 165.553 Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey. (a) Location. The following area is a security zone...

  7. 33 CFR 165.553 - Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Salem and Hope... Limited Access Areas Fifth Coast Guard District § 165.553 Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey. (a) Location. The following area is a security zone...

  8. 33 CFR 165.553 - Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; Salem and Hope... Limited Access Areas Fifth Coast Guard District § 165.553 Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey. (a) Location. The following area is a security zone...

  9. 33 CFR 165.553 - Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; Salem and Hope... Limited Access Areas Fifth Coast Guard District § 165.553 Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey. (a) Location. The following area is a security zone...

  10. 33 CFR 165.768 - Security Zone; MacDill Air Force Base, Tampa Bay, FL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; MacDill Air Force....768 Security Zone; MacDill Air Force Base, Tampa Bay, FL. (a) Location. The following area is a security zone which exists concurrent with an Army Corps of Engineers restricted area in § 334.635 of this...

  11. 33 CFR 165.1102 - Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Naval Base Point... Guard District § 165.1102 Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA. (a) Location. The following area is a security zone: The water adjacent to the Naval Base Point Loma, San Diego...

  12. 75 FR 76328 - Security Zone; Vessels Carrying Hazardous Cargo, Sector Columbia River Captain of the Port Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... petroleum gas, ammonium nitrate and associated mixtures, anhydrous ammonia, and chlorine. The security zones... general regulations in 33 CFR part 165, subpart D, no person or vessel may enter or remain in a security.... Subpart D of 33 CFR part 165 contains additional provisions applicable to a security zone created by this...

  13. 76 FR 65609 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship Canal... enforcement of regulation. SUMMARY: The Coast Guard will enforce a segment of the Safety Zone; Brandon Road....S. Army Corps of Engineers' dispersal barrier maintenance operations. During the enforcement period...

  14. 78 FR 36424 - Special Local Regulations for Summer Events; Captain of the Port Lake Michigan Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing temporary special local regulations for three summer events within the Captain of the Port Lake Michigan Zone. This rule is intended to provide for the safety of life and property on navigable waters immediately prior to...

  15. 75 FR 35294 - Safety Zone; Marquette 4th of July Fireworks, Marquette Harbor, Lake Superior, Marquette, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ...-AA00 Safety Zone; Marquette 4th of July Fireworks, Marquette Harbor, Lake Superior, Marquette, MI... vessels from a portion of Marquette Harbor during the Marquette 4th of July Fireworks display. This... vessels during the setup and launching of fireworks in conjunction with the Marquette 4th of July...

  16. 75 FR 8728 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2010-0125] Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Notice of meeting. SUMMARY: The Great Lakes Pilotage Advisory... makes recommendations to the Secretary on a wide range of issues related to pilotage on the Great Lakes...

  17. 33 CFR 165.30 - Security zones.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security zones. 165.30 Section 165.30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Security Zones § 165.30...

  18. 33 CFR 165.30 - Security zones.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security zones. 165.30 Section 165.30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Security Zones § 165.30...

  19. 33 CFR 165.30 - Security zones.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security zones. 165.30 Section 165.30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Security Zones § 165.30...

  20. 33 CFR 165.30 - Security zones.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security zones. 165.30 Section 165.30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Security Zones § 165.30...

  1. 75 FR 63714 - Security Zone: Passenger Vessels, Sector Southeastern New England Captain of the Port Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ..., in the aggregate, or by the private sector of $100,000,000 (adjusted for inflation) or more in any... Security Zone: Passenger Vessels, Sector Southeastern New England Captain of the Port Zone AGENCY: Coast... moving security zones around passenger vessels in the Sector Southeastern New England Captain of the Port...

  2. Effects of Climate Change on Stratification-Destratification Cycles and Resulting Cyanobacterial Blooms in Shallow Lakes of the North Temperate Zone

    NASA Astrophysics Data System (ADS)

    King, A. T.; Schaffner, L. R.; Gilman, B.; Gronwall, T. R.; Gronwall, D.; Dietz, E. R.; Hairston, N., Jr.

    2016-12-01

    "Harmful Algal Blooms" of cyanobacteria (cyanoHABs) have become more frequent and larger in extent for inland waters across the globe. Honeoye Lake, the shallowest of the New York State Finger Lakes (9 m max depth, 7 km long), has experienced recent problematic blooms. We use this lake as a model system for understanding the effects of climate change on cyanoHABs in shallow lakes. Cyanobacteria thrive in warm waters with high phosphorus concentrations. While high P is often caused by external nutrient loading via surface runoff, it can also result from internal loading when P-rich sediment is exposed to anoxic/reducing conditions in a lake's hypolimnion after prolonged stratification. In deep lakes, hypolimnetic water remains isolated from the epilimnion throughout the summer with the dissolved P separated from illuminated surface water; in very shallow lakes where the entire water column remains oxygenated/oxidizing, P is bound in insoluble inorganic complexes. However, in lakes of intermediate depth, hypolimnetic water high in soluble reactive P may mix into the photic zone if sufficiently strong winds occur, stimulating a cyanoHAB. We suggest that repeated cycles of stratification, hypolimnetic anoxia, and subsequent mixing may result in "phosphorus pumping" with recurrent cyanoHABs throughout summer. Climate change is causing stronger thermal stratification in lakes through increased surface warming but also causing more frequent storms that can break down stratification in a shallow lake. We use Honeoye Lake as a model system for understanding the extent to which P-pumping occurs and the likely effects of climate change on cyanoHABs. Field data collected in summer 2016 were used to calibrate the publically available General Lake Model (GLM) to predict Honeoye's discontinuous polymictic pattern of stratification punctuated by overturn events and spikes in epilimnetic P and cyanobacterial biomass. We use the calibrated model to determine cyanoHAB incidence as a function of lake morphometry, summer temperature, and summer storm frequency and intensity. This allows projection of the effects of different climate change scenarios on the incidence of cyanoHABs for this lake and for lakes along a continuum of length-depth morphometries across the North Temperate Zone.

  3. 76 FR 20843 - Security Zone; Increase of Security Zones Under 33 CFR 165.1183 From 100 to 500 Yards; San...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    .... SUMMARY: The Coast Guard will enforce a permanent increase in security zone size from 100 yards (91 meters) to 500 yards (457 meters) for tankers, cruise ships, and High Value Assets (HVAs) while underway on... Ports, Monterey Bay, and Humboldt Bay, CA, the security zone will decrease from 500 yards (457 meters...

  4. 33 CFR 165.130 - Sandy Hook Bay, New Jersey-security zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-security zone. 165.130 Section 165.130 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Hook Bay, New Jersey—security zone. (a) Naval Ammunition Depot Piers. The navigable waters within the following boundaries are a security zone: A line beginning on the shore at 40°25′55.6″ N, 074°04′31.4″ W...

  5. 33 CFR 165.130 - Sandy Hook Bay, New Jersey-security zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-security zone. 165.130 Section 165.130 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Hook Bay, New Jersey—security zone. (a) Naval Ammunition Depot Piers. The navigable waters within the following boundaries are a security zone: A line beginning on the shore at 40°25′55.6″ N, 074°04′31.4″ W...

  6. 33 CFR 165.130 - Sandy Hook Bay, New Jersey-security zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-security zone. 165.130 Section 165.130 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Hook Bay, New Jersey—security zone. (a) Naval Ammunition Depot Piers. The navigable waters within the following boundaries are a security zone: A line beginning on the shore at 40°25′55.6″ N, 074°04′31.4″ W...

  7. 33 CFR 165.130 - Sandy Hook Bay, New Jersey-security zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-security zone. 165.130 Section 165.130 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Hook Bay, New Jersey—security zone. (a) Naval Ammunition Depot Piers. The navigable waters within the following boundaries are a security zone: A line beginning on the shore at 40°25′55.6″ N, 074°04′31.4″ W...

  8. 33 CFR 165.130 - Sandy Hook Bay, New Jersey-security zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-security zone. 165.130 Section 165.130 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Hook Bay, New Jersey—security zone. (a) Naval Ammunition Depot Piers. The navigable waters within the following boundaries are a security zone: A line beginning on the shore at 40°25′55.6″ N, 074°04′31.4″ W...

  9. Sediment record of environmental change at Lake Lop Nur (Xinjiang, NW China) from 13.0 to 5.6 cal ka BP

    NASA Astrophysics Data System (ADS)

    Wang, Jingzhong; Jia, Hongjuan

    2017-09-01

    Lake Lop Nur is located in the eastern part of the Tarim Basin in Xinjiang, northwestern China. A 220-cm-long sediment core was collected from the center of the ear-shaped depression forming the basin and dated with AMS14C. Grain size, total organic matter (TOC), total nitrogen (TN), and TOC/TN (C/N) analyses were used to reconstruct climatic conditions from 13.0 to 5.6 cal ka BP. The results showed five main climatic stages. Zone I (13.0-11.3 cal ka BP) was a wet-dry environment, whereas Zone II (11.3-8.9 cal ka BP) consisted of a primarily wet environment. Zone III (8.9-7.7 cal ka BP) was subdivided into Zone IIIa (8.9-8.2 cal ka BP) that indicated lake constriction and dry climate, and Zone IIIb (8.2-7.7 cal ka BP) in which the proxies indicated wet conditions. In Zone IV (7.7-6.6 cal ka BP), the climate presented a bit wet conditions. In Zone V (6.6-5.6 cal ka BP), abundant glauberite is present in the sediment and silt dominates the lithology; these results indicate the lake shrank and the overall climate was dry. Abrupt environmental events were also identified, including six dry events at 11.0, 10.5, 9.3, 8.6, 8.2, and 7.6 cal ka BP and one flood event from 7.8 to 7.7 cal ka BP in the Early-Middle Holocene.

  10. Development of a regional littoral benthic macroinvertebrate multi-metric index (MMI) for lakes from the National Lakes Assessment

    EPA Science Inventory

    During the 2007 National Lakes Assessment (NLA) benthic macroinvertebrate samples were collected from the lake littoral zone. The purpose of the sampling was to assess the feasibility of a multi-metric index (MMI) to assess the condition of the littoral benthic macroinvertebrate...

  11. Excitation of high-frequency surface waves with long duration in the Valley of Mexico

    NASA Astrophysics Data System (ADS)

    Iida, Masahiro

    1999-04-01

    During the 1985 Michoacan earthquake (Ms = 8.1), large-amplitude seismograms with extremely long duration were recorded in the lake bed zone of Mexico City. We interpret high-frequency seismic wave fields in the three geotechnical zones (the hill, the transition, and the lake bed zones) in the Valley of Mexico on the basis of a systematic analysis for borehole strong motion recordings. We make identification of wave types for real seismograms. First, amplitude ratios between surface and underground seismograms indicate that predominant periods of the surface seismograms are largely controlled by the wave field incident into surficial layers in the Valley of Mexico. We interpret recorded surface waves as fundamental-mode Love waves excited in the Mexican Volcanic Belt by calculating theoretical amplification for different-scale structures. Second, according to a cross-correlation analysis, the hill and transition seismograms are mostly surface waves. In the lake bed zone, while early portions are noisy body waves, late portions are mostly surface waves. Third, using two kinds of surface arrays with different station intervals, we investigate high-frequency surface-wave propagation in the lake bed zone. The wave propagation is very complicated, depending upon the time section and the frequency band. Finally, on the basis of a statistical time series model with an information criterion, we separate S- and surface-wave portions from lake bed seismograms. Surface waves are dominant and are recognized even in the early time section. Thus high-frequency surface waves with long duration in the Valley of Mexico are excited by the Mexican Volcanic Belt.

  12. Spatial distribution of pelagic fish larvae in the northern main basin of Lake Huron

    USGS Publications Warehouse

    Roseman, Edward F.; O'Brien, Timothy P.

    2013-01-01

    Larval fish occurrence in inshore and offshore zones in the northern main basin of Lake Huron was assessed during 2007 as part of a larger ecological examination of Lake Huron foodwebs and habitats. Day and night collections using neuston and conical nets at inshore (1.5–15 m depths) and offshore (37 and 91 m depths) locations at De Tour and Hammond Bay to assess the abundance, phenology, and spatial distribution of pelagic ichthyoplankton during spring and early summer were made. In general, densities of larval fishes were higher at De Tour than Hammond Bay during daytime neuston net collections, with the exception of Longnose Sucker, which were only collected at Hammond Bay. Lake Whitefish, Burbot, and Rainbow Smelt dominated inshore catches in early spring with Cisco, Deepwater Sculpin, Emerald Shiner, Bloater, Slimy Sculpin, Ninespine Stickleback, and Yellow Perch larvae also collected.Nighttime nearshore and offshore sampling revealed that Rainbow Smelt and Burbot larvae were present in relatively high abundances compared to inshore densities. Concentrations of larvae of deepwater demersal fishes such as Lake Whitefish and Deepwater Sculpin suggest that inshore zones in northern Lake Huron are important nursery habitats emphasizing a critical production and recruitment linkage between inshore and deepwater zones.

  13. 75 FR 49848 - Safety Zone; Milwaukee Harbor, Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... in the Captain of the Port, Sector Lake Michigan Zone during two periods from 9:15 p.m. on September... of the Captain of the Port, Sector Lake Michigan. DATES: The regulations in 33 CFR 165.935 will be... World Festival fireworks display on September 10, 2010 from 9:15 p.m. through 10 p.m. and on September...

  14. 33 CFR 334.840 - Waters of Lake Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Waters of Lake Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor, Chicago, Ill.; danger zone adjacent to airport on... Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor, Chicago, Ill.; danger zone...

  15. 33 CFR 334.840 - Waters of Lake Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Waters of Lake Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor, Chicago, Ill.; danger zone adjacent to airport on... Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor, Chicago, Ill.; danger zone...

  16. 75 FR 38721 - Safety Zone; Munising 4th of July Fireworks, South Bay, Lake Superior, Munising, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ...-AA00 Safety Zone; Munising 4th of July Fireworks, South Bay, Lake Superior, Munising, MI AGENCY: Coast... portion of South Bay during the Munising 4th of July Fireworks display, July 4, 2010. This temporary... from hazards associated with the Munising 4th of July Fireworks display. Based on the explosive hazards...

  17. Physical habitat structure of the lake shoreline and littoral zone -- How important is it?

    EPA Science Inventory

    The recent National Lakes Assessment (NLA) included the first national assessment of littoral and lakeshore physical habitat. It quantified water depth, surface characteristics, bank morphology, lake level fluctuations, substrate, fish concealment features, aquatic macrophytes, l...

  18. 33 CFR 165.102 - Security Zone: Walkers Point, Kennebunkport ME.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone: Walkers Point, Kennebunkport ME. 165.102 Section 165.102 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Zone: Walkers Point, Kennebunkport ME. (a) Location. The following area is a security zone: From point...

  19. 33 CFR 165.102 - Security Zone: Walkers Point, Kennebunkport ME.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone: Walkers Point, Kennebunkport ME. 165.102 Section 165.102 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Zone: Walkers Point, Kennebunkport ME. (a) Location. The following area is a security zone: From point...

  20. 33 CFR 165.102 - Security Zone: Walkers Point, Kennebunkport ME.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone: Walkers Point, Kennebunkport ME. 165.102 Section 165.102 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Zone: Walkers Point, Kennebunkport ME. (a) Location. The following area is a security zone: From point...

  1. 33 CFR 165.102 - Security Zone: Walkers Point, Kennebunkport ME.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone: Walkers Point, Kennebunkport ME. 165.102 Section 165.102 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Zone: Walkers Point, Kennebunkport ME. (a) Location. The following area is a security zone: From point...

  2. 75 FR 8491 - Security Zones; Brazos River, Freeport, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2009-0501] RIN 1625-AA87 Security Zones; Brazos River, Freeport, TX AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: The Coast Guard has established four permanent security zones in the Brazos River in Freeport, Texas...

  3. 33 CFR 165.1407 - Security Zones; Oahu, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zones; Oahu, HI. 165.1407 Section 165.1407 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Navigation Areas and Limited Access Areas Fourteenth Coast Guard District § 165.1407 Security Zones; Oahu, HI...

  4. Offshore Fish Community: Ecological Interactions | Science ...

    EPA Pesticide Factsheets

    The offshore (>80 m) fish community of Lake Superior is made up of predominately native species. The most prominent species are deepwater sculpin, kiyi, cisco, siscowet lake trout, burbot, and the exotic sea lamprey. Bloater and shortjaw cisco are also found in the offshore zone. Bloater is abundant in the offshore zone but appears restricted to depths shallower than 150 m (Selgeby and Hoff 1996; Stockwell et al. 2010), although it occuppied greater depths several decades ago (Dryer 1966; Peck 1977). Shortjaw is relatively rare in the offshore zone (Hoff and Todd 2004; Gorman and Hoff 2009; Gorman and Todd 2007). Lake whitefish is also known to frequent bathymetric depths >100 m (Yule et al. 2008b). In this chapter, we develop a conceptual model of the offshore food web based on data collected during 2001-2005 and on inferences from species interactions known for the nearshore fish community. We then develop a framework for examination of energy and nutrient movements within the pelagic and benthic habitats of the offshore zone and across the offshore and nearshore zones. To document research results.

  5. Near real-time monitoring and mapping of specific conductivity levels across Lake Texoma, USA

    USGS Publications Warehouse

    Atkinson, S.F.; Mabe, J.A.

    2006-01-01

    A submersible sonde equipped with a specific conductivity probe, linked with a global positioning satellite receiver was developed, deployed on a small boat, and used to map spatial and temporal variations in specific conductivity in a large reservoir. 7,695 sample points were recorded during 8 sampling trips. Specific conductivity ranged from 442 uS/cm to 3,378 uS/cm over the nine-month study. The data showed five statistically different zones in the reservoir: 2 different riverine zones, 2 different riverine transition zones, and a lacustrine zone (the main lake zone). These data were imported to a geographic information system where they were spatially interpolated to generate 8 maps showing specific conductivity levels across the entire surface of the lake. The highly dynamic nature of water quality, due to the widely differing nature of the rivers that flow into the reservoir and the effect of large inflows of fresh water during winter storms is easily captured and visualized using this approach. ?? Springer Science+Business Media, Inc. 2006.

  6. 46 CFR 96.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ocean, coastwise, or Great Lakes service. 96.07-5 Section 96.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service...

  7. 46 CFR 195.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ocean, coastwise, or Great Lakes service. 195.07-5 Section 195.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service shall...

  8. 46 CFR 195.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ocean, coastwise, or Great Lakes service. 195.07-5 Section 195.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service shall...

  9. 46 CFR 96.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ocean, coastwise, or Great Lakes service. 96.07-5 Section 96.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service...

  10. 46 CFR 195.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ocean, coastwise, or Great Lakes service. 195.07-5 Section 195.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service shall...

  11. 46 CFR 195.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ocean, coastwise, or Great Lakes service. 195.07-5 Section 195.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service shall...

  12. 46 CFR 195.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ocean, coastwise, or Great Lakes service. 195.07-5 Section 195.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service shall...

  13. 46 CFR 96.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ocean, coastwise, or Great Lakes service. 96.07-5 Section 96.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service...

  14. 46 CFR 96.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ocean, coastwise, or Great Lakes service. 96.07-5 Section 96.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service...

  15. 46 CFR 96.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ocean, coastwise, or Great Lakes service. 96.07-5 Section 96.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service...

  16. Red Lake Forestry Greenhouse Program

    Treesearch

    Gloria Whitefeather-Spears

    2002-01-01

    In 1916, The Red Lake Indian Forest Act was created. The Red Lake Band of Chippewa in Minnesota stood alone and refused to consent to allotment. Consequently, The Red Lake Band is the only tribe in Minnesota for which a congressional act was passed to secure a permanent economic foundation for the band and its future.

  17. 46 CFR 195.07-10 - Lakes, bays, and sounds, or river service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Lakes, bays, and sounds, or river service. 195.07-10 Section 195.07-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... Lakes, bays, and sounds, or river service. (a) Vessels in lakes, bays, and sounds, or river service...

  18. 46 CFR 195.07-10 - Lakes, bays, and sounds, or river service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Lakes, bays, and sounds, or river service. 195.07-10 Section 195.07-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... Lakes, bays, and sounds, or river service. (a) Vessels in lakes, bays, and sounds, or river service...

  19. 46 CFR 195.07-10 - Lakes, bays, and sounds, or river service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Lakes, bays, and sounds, or river service. 195.07-10 Section 195.07-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... Lakes, bays, and sounds, or river service. (a) Vessels in lakes, bays, and sounds, or river service...

  20. 46 CFR 195.07-10 - Lakes, bays, and sounds, or river service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Lakes, bays, and sounds, or river service. 195.07-10 Section 195.07-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... Lakes, bays, and sounds, or river service. (a) Vessels in lakes, bays, and sounds, or river service...

  1. 46 CFR 195.07-10 - Lakes, bays, and sounds, or river service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Lakes, bays, and sounds, or river service. 195.07-10 Section 195.07-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... Lakes, bays, and sounds, or river service. (a) Vessels in lakes, bays, and sounds, or river service...

  2. Drawdown Effects on Lake and Reservoir Physical Habitat - a National Picture

    EPA Science Inventory

    Structural complexity at the land-water interface of lakes promotes interchange of water, nutrients and energy; and provides diverse habitat for aquatic and terrestrial organisms. Shoreline zones are hot-spots for both biological diversity and human activity. Lake level fluctuat...

  3. Giving perspective to cliff exposures with ground penetrating radar: Devonian lacustrine shore zone architecture

    NASA Astrophysics Data System (ADS)

    Andrews, Steven; Moreau, Julien; Archer, Stuart

    2015-04-01

    The orbitally-controlled cyclic lacustrine successions of the Middle Devonian in Northern Scotland contains repeated developments of shore zone sandstones. However, due to the cliff-forming nature of the succession and the attitude of the sections through these sandstones, interpretation of this facies has been problematic. To better understand the shore zone systems, we carried out very high resolution sedimentary logging and constructed photo-panels which were combined with high resolution GPR profiling (250 MHz). To ensure close ties between the sedimentary logs and the GPR data, the cliffs were accessed using rope access techniques while GPR grids were shot directly above. The profiles were shot mainly in the strike direction of what was thought to be the shore elongation every 5-10 m and every 20-30 m in the dip direction. Shore zone systems of 3 different sequences have been imaged for a total of 1155 m of GPR profile collected. This configuration has allowed 3D visualisation of the architecture of the shore zone systems and, in combination with detailed sedimentology, provided insights into the generation of the dynamic shore zone environments. The coastal cliffs of northern Scotland expose sedimentary cycles on average 16-m-thick which record deep lake, perennial lake and playa environments. The shore zone deposits reach 2 to 3.5 m in thickness. Loading and discrete channel forms are recognised in both the GPR data and sedimentary logs through the lower portion of the lake shore zone successions. Up-section the sandstone beds appear to become amalgamated forming subtle low angle accretionary bar complexes which although visible in outcrop, after careful investigation, can be fully visualised and examined in the GPR data. The 3D visualisation allowed mapping the architecture and distribution of the bars . The orientation of these features, recognised from the survey, is consistent with extensive palaeocurrent measurements from oscillation ripples. Further loaded sandstone beds and sand-filled shallow channel features overlie the bar forms. The channels are well imaged in the radargrams where their wider context can be gained. Through the combination of high resolution GPR data and detailed sedimentological analysis determination of the processes through which the previously enigmatic lake shore zone sandstones has been possible. The shore zone sandstones overlie playa facies which contain abundant desiccation horizons, reflecting the most arid phase in the climatically-controlled lacustrine cycle. As climatic conditions ameliorated the rejuvenation of fluvial systems resulted in the transport of sand out into the basin. Initial deposition was limited to intermittent events where sediment was laid down on a water saturated substrate. Some of these may have occurred subaqueously as small scale turbidity flows. High resolution fluctuations in lake level resulted in periodic short-lived reworking events along the lake margin which produced amalgamated sands, forming low relief bars. Shore zone reworking is likely to have occurred over a wide area as the lake margin migrated back and forth, and gradually transgressed. Continued transgression forced fluvial systems back towards the basin margin.

  4. 33 CFR 165.1412 - Security Zone; escorted U.S. Navy submarines in Sector Honolulu Captain of the Port Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; escorted U.S. Navy submarines in Sector Honolulu Captain of the Port Zone. 165.1412 Section 165.1412 Navigation and Navigable... Fourteenth Coast Guard District § 165.1412 Security Zone; escorted U.S. Navy submarines in Sector Honolulu...

  5. Habitat use by fishes of Lake Superior. II. Consequences of diel habitat use for habitat linkages and habitat coupling in nearshore and offshore waters

    USGS Publications Warehouse

    Gorman, Owen T.; Yule, Daniel L.; Stockwell, Jason D.

    2012-01-01

    Diel migration patterns of fishes in nearshore (15–80 m depth) and offshore (>80 m) waters of Lake Superior were examined to assess the potential for diel migration to link benthic and pelagic, and nearshore and offshore habitats. In our companion article, we described three types of diel migration: diel vertical migration (DVM), diel bank migration (DBM), and no diel migration. DVM was expressed by fishes migrating from benthopelagic to pelagic positions and DBM was expressed by fishes migrating horizontally from deep to shallow waters at night. Fishes not exhibiting diel migration typically showed increased activity by moving from benthic to benthopelagic positions within demersal habitat. The distribution and biomass of fishes in Lake Superior was characterized by examining 704 bottom trawl samples collected between 2001 and 2008 from four depth zones: ≤40, 41–80, 81–160, and >160 m. Diel migration behaviors of fishes described in our companion article were applied to estimates of areal biomass (kg ha−1) for each species by depth zone. The relative strength of diel migrations were assessed by applying lake area to areal biomass estimates for each species by depth zone to yield estimates of lake-wide biomass (metric tonnes). Overall, species expressing DVM accounted for 83%, DBM 6%, and non-migration 11% of the total lake-wide community biomass. In nearshore waters, species expressing DVM represented 74% of the biomass, DBM 25%, and non-migration 1%. In offshore waters, species expressing DVM represented 85%, DBM 1%, and non-migration 14% of the biomass. Of species expressing DVM, 83% of total biomass occurred in offshore waters. Similarly, 97% of biomass of non-migrators occurred in offshore waters while 83% of biomass of species expressing DBM occurred in nearshore waters. A high correlation (R2 = 0.996) between lake area and community biomass by depth zone resulted in 81% of the lake-wide biomass occurring in offshore waters. Accentuating this nearshore-offshore trend was one of increasing estimated total areal biomass of the fish community with depth zone, which ranged from 13.71 kg ha−1 at depths ≤40 m to 18.81 kg ha−1 at depths >160 m, emphasizing the importance of the offshore fish community to the lake ecosystem. The prevalence of diel migration expressed by Lake Superior fishes increases the potential of fish to link benthic and pelagic and shallow and deepwater habitats. These linkages enhance the potential for habitat coupling, a condition where habitats become interconnected and interdependent through transfers of energy and nutrients. Habitat coupling facilitates energy and nutrient flow through a lake ecosystem, thereby increasing productivity, especially in large lakes where benthic and pelagic, and nearshore and offshore habitats are often well separated. We propose that the application of biomass estimates to patterns of diel migration in fishes can serve as a useful metric for assessing the potential for habitat linkages and habitat coupling in lake ecosystems, and provide an important indicator of ecosystem health and function. The decline of native Lake Trout and ciscoes and recent declines in exotic Alewife and Rainbow Smelt populations in other Great Lakes have likely reduced the capacity for benthic-pelagic coupling in these systems compared to Lake Superior. We recommend comparing the levels and temporal changes in diel migration in other Great Lakes as a means to assess changes in the relative health and function of these ecosystems.

  6. Impact of Groundwater-Lake Interaction on Levels of E. coli in Near-Shore Swimming Waters at Beaches of the Great Lakes

    NASA Astrophysics Data System (ADS)

    Crowe, A. S.

    2009-12-01

    Beaches throughout the Great Lakes frequently are under health advisories for swimming due to elevated levels of E. coli. Many studies have shown that there are several potential sources of this E. coli (e.g., livestock, sewage treatment facilities, gulls and geese), and several mechanisms for delivering E. coli to the shoreline (e.g., rivers, creeks, storm water drains, currents, waves). But, groundwater is a mechanism for E. coli transport to the shoreline that is typically overlooked. Field studies undertaken at beaches throughout the Great lakes have measured levels of E. coli in the groundwater and sand at the groundwater-lake interface that are commonly over a 1000 times above Recreational Water Quality Guidelines, and that these high levels of E. coli are restricted to a zone below the beach adjacent to and within a few metres of the lake. Groundwater flow below beaches is always towards the shoreline with almost all groundwater discharge occurring at the groundwater-lake interface (i.e., not several or a few metres off-shore). Thus, groundwater discharge of the E. coli from zone represents a substantial and long-term reservoir for E. coli loading to the near shore recreational waters, and presents a potential health risk to swimmers. The high levels of E. coli in the sand and groundwater adjacent to the lake is also due to groundwater-lake interaction. During storms, wave runup and subsequent infiltration of lake water containing E. coli at the swash zone is the primary mechanism for delivering E. coli to the groundwater and sand adjacent to the lake. Field and modeling experiments show that storm events as short as a few hours can introduce substantial levels of E. coli to the groundwater because of the high inward groundwater velocities. However, its migration into the beach away from the shoreline is restricted to a few metres beyond the maximum extent of wave runup because groundwater flow below the beach continues to flow towards the shoreline creating a hydraulic barrier to inland migration of E. coli. Because groundwater discharge velocities following a storm event are much lower than the recharging groundwater velocities during infiltration, E. coli will enter the groundwater and sand much faster than in will discharge. Hence groundwater discharge of E. coli from this zone into the lake represents a long-term and continuous source of E. coli that will challenge regulators and beach managers who are trying to reduce levels of E. coli at swimming beaches throughout the Great Lakes.

  7. 75 FR 39445 - Special Local Regulation; Harrison Township Grand Prix, Lake St. Clair, Harrison Township, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-09

    ...-AA08 Special Local Regulation; Harrison Township Grand Prix, Lake St. Clair, Harrison Township, MI... temporary special local regulation in the Captain of the Port Detroit Zone on Lake St. Clair, Harrison Township, Michigan. This special local regulation is intended to restrict vessels from portions of Lake St...

  8. 75 FR 21194 - Special Local Regulation; Harrison Township Grand Prix, Lake St. Clair; Harrison Township, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ...-AA08 Special Local Regulation; Harrison Township Grand Prix, Lake St. Clair; Harrison Township, MI... establishing a temporary special local regulation in the Captain of the Port Detroit Zone on Lake St. Clair... Lake St. Clair during the Harrison Township Grand Prix. This special local regulation is necessary to...

  9. 77 FR 40521 - Security Zones, Seattle's Seafair Fleet Week Moving Vessels, Puget Sound, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... 1625-AA87 Security Zones, Seattle's Seafair Fleet Week Moving Vessels, Puget Sound, WA AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: The U.S. Coast Guard is establishing security zones around designated participating vessels that are not protected by the Naval Vessel Protection Zone in Seattle's...

  10. 77 FR 19095 - Security Zone; USCGC STRATTON Commissioning Ceremony, Alameda, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ...-AA87 Security Zone; USCGC STRATTON Commissioning Ceremony, Alameda, CA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary security zone in the navigable waters of the San Francisco Bay, Alameda, CA within the San Francisco Captain of the Port (COTP) Zone...

  11. Guide to the littoral zone vascular flora of Carolina bay lakes (U.S.A.)

    PubMed Central

    Howell, Nathan; Braham, Richard R

    2016-01-01

    Abstract Background Carolina bays are elliptic, directionally aligned basins of disputed origin that occur on the Atlantic Coastal Plain from the Delmarva Peninsula to southern Georgia. In southeastern North Carolina, several large, natural, lacustrine systems (i.e., Carolina bay lakes) exist within the geomorphological features known as Carolina bays. Within the current distribution of Carolina bays, Bladen and Columbus counties (North Carolina) contain the only known examples of Carolina bay lakes. The Carolina bay lakes can be split into two major divisions, the “Bladen Lakes Group” which is characterized as being relatively unproductive (dystrophic – oligotrophic), and Lake Waccamaw, which stands alone in Columbus County and is known for its high productivity and species richness. Although there have been several studies conducted on these unique lentic systems, none have documented the flora comprehensively. New information Over the 2013−2014 growing seasons, the littoral zone flora of Carolina bay lakes was surveyed and vouchered. Literature reviews and herbarium crawls complemented this fieldwork to produce an inventory of the vascular plant species. This survey detected 205 taxa (species/subspecies and varieties) in 136 genera and 80 vascular plant families. Thirty-one species (15.2%) are of conservation concern. Lake Waccamaw exhibited the highest species richness with 145 catalogued taxa and 26 species of conservation concern. Across all sites, the Cyperaceae (25 spp.), Poaceae (21 spp.), Asteraceae (13 spp.), Ericaceae (8 spp.), Juncaceae (8 spp.), and Lentibulariaceae (6 spp.) were the six most species-rich vascular plant families encountered. A guide to the littoral zone flora of Carolina bay lakes is presented herein, including dichotomous keys, species accounts (including abundance, habitat, phenology, and exsiccatae), as well as images of living species and vouchered specimens. PMID:27350764

  12. State-of-the-Art for Assessing Earthquake Hazards in the United States. Report 21. Seismic Source Zones of the Eastern United States and Seismic Zoning of the Atlantic Seaboard and Appalachian Regions.

    DTIC Science & Technology

    1986-08-01

    1812 earthquakes, and this produced Reelfoot Lake (Fuller, 1912). 10. .6. r. .,-- UPLIFT Uplift is known to be occurring in two regions in the...axes, as does the 11 mile (18 km) long Reelfoot Lake , formed during the 1811 and 1812 earthquakes (Fuller, 1912). The trend of the probable fault...the Reelfoot Lake basin to the northeast has subsided (Fig. 37). Monoclinal structure and shallow faults have been located along the scarp between the

  13. Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisses, A.; Kell, A.; Kent, G.

    A. K. Eisses, A. M. Kell, G. Kent, N. W. Driscoll, R. E. Karlin, R. L. Baskin, J. N. Louie, S. Pullammanappallil, 2010, Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada: Abstract T33C-2278 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec.

  14. Spatial dynamics of biogeochemical processes in the St. Louis River freshwater estuary

    EPA Science Inventory

    In the Great Lakes, river-lake transition zones within freshwater estuaries are hydrologically and biogeochemically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. The goal of our study was to characterize the biogeochemical properties of th...

  15. Paleomagnetism and environmental magnetism of GLAD800 sediment cores from Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Heil, C.W.; King, J.W.; Rosenbaum, J.G.; Reynolds, R.L.; Colman, Steven M.

    2009-01-01

    A ???220,000-year record recovered in a 120-m-long sediment core from Bear Lake, Utah and Idaho, provides an opportunity to reconstruct climate change in the Great Basin and compare it with global climate records. Paleomagnetic data exhibit a geomagnetic feature that possibly occurred during the Laschamp excursion (ca. 40 ka). Although the feature does not exhibit excursional behavior (???40?? departure from the expected value), it might provide an additional age constraint for the sequence. Temporal changes in salinity, which are likely related to changes in freshwater input (mainly through the Bear River) or evaporation, are indicated by variations in mineral magnetic properties. These changes are represented by intervals with preserved detrital Fe-oxide minerals and with varying degrees of diagenetic alteration, including sulfidization. On the basis of these changes, the Bear Lake sequence is divided into seven mineral magnetic zones. The differing magnetic mineralogies among these zones reflect changes in deposition, preservation, and formation of magnetic phases related to factors such as lake level, river input, and water chemistry. The occurrence of greigite and pyrite in the lake sediments corresponds to periods of higher salinity. Pyrite is most abundant in intervals of highest salinity, suggesting that the extent of sulfidization is limited by the availability of SO42-. During MIS 2 (zone II), Bear Lake transgressed to capture the Bear River, resulting in deposition of glacially derived hematite-rich detritus from the Uinta Mountains. Millennial-scale variations in the hematite content of Bear Lake sediments during the last glacial maximum (zone II) resemble Dansgaard-Oeschger (D-O) oscillations and Heinrich events (within dating uncertainties), suggesting that the influence of millennial-scale climate oscillations can extend beyond the North Atlantic and influence climate of the Great Basin. The magnetic mineralogy of zones IV-VII (MIS 5, 6, and 7) indicates varying degrees of post-depositional alteration between cold and warm substages, with greigite forming in fresher conditions and pyrite in the more saline conditions. Copyright ?? 2009 The Geological Society of America.

  16. Final Project Report: Imaging Fault Zones Using a Novel Elastic Reverse-Time Migration Imaging Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Chen, Ting; Tan, Sirui

    Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismicmore » data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.« less

  17. The interdependence of lake ice and climate in central North America

    NASA Technical Reports Server (NTRS)

    Jelacic, A. J. (Principal Investigator)

    1972-01-01

    There are no author-identified significant results in this report. This investigation is to identify any correlations between the freeze/ thaw cycles of lakes and regional weather variations. ERTS-1 imagery of central Canada and north central United States is examined on a seasonal basis. The ice conditions of certain major study lakes are noted and recorded on magnetic tape, from which the movement of a freeze/thaw transition zone may be deduced. Weather maps and tables are used to establish any obvious correlations. The process of selecting major study lakes is discussed, and a complete lake directory is presented. Various routines of the software support library are described, accompanied by output samples. Procedures used for ERTS imagery processing are presented along with the data analysis plan. Application of these procedures to selected ERTS imagery has demonstrated their utility. Preliminary results show that the freeze/thaw transition zone can be monitored from ERTS.

  18. 76 FR 1521 - Security Zone: Fleet Industrial Supply Center Pier, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2010-0423] RIN 1625-AA87 Security Zone: Fleet Industrial Supply Center Pier, San Diego, CA AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: The Coast Guard is removing a security zone on the navigable waters of San Diego...

  19. 76 FR 27897 - Security and Safety Zone Regulations, Large Passenger Vessel Protection, Captain of the Port...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2011-0342] Security and Safety Zone Regulations, Large Passenger Vessel Protection, Captain of the Port Columbia River... will enforce the security and safety zone in 33 CFR 165.1318 for large passenger vessels operating in...

  20. 46 CFR 96.07-10 - Lakes, bays, and sounds, or river service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Lakes, bays, and sounds, or river service. 96.07-10 Section 96.07-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS... Lakes, bays, and sounds, or river service. (a) Vessels in lakes, bays, and sounds, or river service...

  1. 46 CFR 96.07-10 - Lakes, bays, and sounds, or river service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Lakes, bays, and sounds, or river service. 96.07-10 Section 96.07-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS... Lakes, bays, and sounds, or river service. (a) Vessels in lakes, bays, and sounds, or river service...

  2. 46 CFR 96.07-10 - Lakes, bays, and sounds, or river service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Lakes, bays, and sounds, or river service. 96.07-10 Section 96.07-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS... Lakes, bays, and sounds, or river service. (a) Vessels in lakes, bays, and sounds, or river service...

  3. 46 CFR 96.07-10 - Lakes, bays, and sounds, or river service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Lakes, bays, and sounds, or river service. 96.07-10 Section 96.07-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS... Lakes, bays, and sounds, or river service. (a) Vessels in lakes, bays, and sounds, or river service...

  4. 46 CFR 96.07-10 - Lakes, bays, and sounds, or river service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Lakes, bays, and sounds, or river service. 96.07-10 Section 96.07-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS... Lakes, bays, and sounds, or river service. (a) Vessels in lakes, bays, and sounds, or river service...

  5. SIMULATED CLIMATE CHANGE EFFECTS ON DISSOLVED OXYGEN CHARACTERISTICS IN ICE-COVERED LAKES. (R824801)

    EPA Science Inventory

    A deterministic, one-dimensional model is presented which simulates daily dissolved oxygen (DO) profiles and associated water temperatures, ice covers and snow covers for dimictic and polymictic lakes of the temperate zone. The lake parameters required as model input are surface ...

  6. REASSESSMENT OF CYANOTOXIN MIXTURES IN THE 2007 USEPA NATIONAL LAKES ASSESSMENT

    EPA Science Inventory

    Microcystins have been the most frequently reported class of cyanotoxins historically. In the 2007 US EPA National Lake Assessment (2007 NLA), the USGS found that microcystins were detected in integrated photic zone samples of approximately 30% of sampled lakes (n= 1028). Based o...

  7. Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone

    USGS Publications Warehouse

    Kelsey, H.M.; Nelson, A.R.; Hemphill-Haley, E.; Witter, R.C.

    2005-01-01

    Bradley Lake, on the southern Oregon coastal plain, records local tsunamis and seismic shaking on the Cascadia subduction zone over the last 7000 yr. Thirteen marine incursions delivered landward-thinning sheets of sand to the lake from nearshore, beach, and dune environments to the west. Following each incursion, a slug of marine water near the bottom of the freshwater lake instigated a few-year-to-several-decade period of a brackish (??? 4??? salinity) lake. Four additional disturbances without marine incursions destabilized sideslopes and bottom sediment, producing a suspension deposit that blanketed the lake bottom. Considering the magnitude and duration of the disturbances necessary to produce Bradley Lake's marine incursions, a local tsunami generated by a great earthquake on the Cascadia subduction zone is the only accountable mechanism. Extreme ocean levels must have been at least 5-8 m above sea level, and the cumulative duration of each marine incursion must have been at least 10 min. Disturbances without marine incursions require seismic shaking as well. Over the 4600 yr period when Bradley Lake was an optimum tsunami recorder, tsunamis from Cascadia plate-boundary earthquakes came in clusters. Between 4600 and 2800 cal yr B.P., tsunamis occurred at the average frequency of ??? 3-4 every 1000 yr. Then, starting ???2800 cal yr B.P., there was a 930-1260 yr interval with no tsunamis. That gap was followed by a ???1000 yr period with 4 tsunamis. In the last millennium, a 670-750 yr gap preceded the A.D. 1700 earthquake and tsunami. The A.D. 1700 earthquake may be the first of a new cluster of plate-boundary earthquakes and accompanying tsunamis. Local tsunamis entered Bradley Lake an average of every 390 yr, whereas the portion of the Cascadia plate boundary that underlies Bradley Lake ruptured in a great earthquake less frequently, about once every 500 yr. Therefore, the entire length of the subduction zone does not rupture in every earthquake, and Bradley Lake has recorded earthquakes caused by rupture along the entire length of the Cascadia plate boundary as well as earthquakes caused by rupture of shorter segments of the boundary. The tsunami record from Bradley Lake indicates that at times, most recently ???1700 yr B.P., overlapping or adjoining segments of the Cascadia plate boundary ruptured within decades of each other. ?? 2005 Geological Society of America.

  8. Risk assessment for sustainable food security in China according to integrated food security--taking Dongting Lake area for example.

    PubMed

    Qi, Xiaoxing; Liu, Liming; Liu, Yabin; Yao, Lan

    2013-06-01

    Integrated food security covers three aspects: food quantity security, food quality security, and sustainable food security. Because sustainable food security requires that food security must be compatible with sustainable development, the risk assessment of sustainable food security is becoming one of the most important issues. This paper mainly focuses on the characteristics of sustainable food security problems in the major grain-producing areas in China. We establish an index system based on land resources and eco-environmental conditions and apply a dynamic assessment method based on status assessments and trend analysis models to overcome the shortcomings of the static evaluation method. Using fuzzy mathematics, the risks are categorized into four grades: negligible risk, low risk, medium risk, and high risk. A case study was conducted in one of China's major grain-producing areas: Dongting Lake area. The results predict that the status of the sustainable food security in the Dongting Lake area is unsatisfactory for the foreseeable future. The number of districts at the medium-risk range will increase from six to ten by 2015 due to increasing population pressure, a decrease in the cultivated area, and a decrease in the effective irrigation area. Therefore, appropriate policies and measures should be put forward to improve it. The results could also provide direct support for an early warning system-which could be used to monitor food security trends or nutritional status so to inform policy makers of impending food shortages-to prevent sustainable food security risk based on some classical systematic methods. This is the first research of sustainable food security in terms of risk assessment, from the perspective of resources and the environment, at the regional scale.

  9. 33 CFR 117.797 - Lake Champlain.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lake Champlain. 117.797 Section 117.797 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.797 Lake Champlain. (a) The drawspan...

  10. 33 CFR 117.1051 - Lake Washington Ship Canal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lake Washington Ship Canal. 117.1051 Section 117.1051 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Washington § 117.1051 Lake Washington Ship...

  11. 33 CFR 117.1051 - Lake Washington Ship Canal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lake Washington Ship Canal. 117.1051 Section 117.1051 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Washington § 117.1051 Lake Washington Ship...

  12. 33 CFR 117.1051 - Lake Washington Ship Canal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lake Washington Ship Canal. 117.1051 Section 117.1051 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Washington § 117.1051 Lake Washington Ship...

  13. 33 CFR 117.1051 - Lake Washington Ship Canal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lake Washington Ship Canal. 117.1051 Section 117.1051 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Washington § 117.1051 Lake Washington Ship...

  14. 33 CFR 117.1051 - Lake Washington Ship Canal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lake Washington Ship Canal. 117.1051 Section 117.1051 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Washington § 117.1051 Lake Washington Ship...

  15. 33 CFR 100.35T09-0327 - Special Regulated Areas for summer events; Captain of the Port Lake Michigan Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Special Regulated Areas for summer events; Captain of the Port Lake Michigan Zone. 100.35T09-0327 Section 100.35T09-0327 Navigation... OF LIFE ON NAVIGABLE WATERS § 100.35T09-0327 Special Regulated Areas for summer events; Captain of...

  16. [Evaluation of comprehensive capacity of resources and environments in Poyang Lake Eco-economic Zone].

    PubMed

    Song, Yan-Chun; Yu, Dan

    2014-10-01

    With the development of the society and economy, the contradictions among population, resources and environment are increasingly worse. As a result, the capacity of resources and environment becomes one of the focal issues for many countries and regions. Through investigating and analyzing the present situation and the existing problems of resources and environment in Poyang Lake Eco-economic Zone, seven factors were chosen as the evaluation criterion layer, namely, land resources, water resources, biological resources, mineral resources, ecological-geological environment, water environment and atmospheric environment. Based on the single factor evaluation results and with the county as the evaluation unit, the comprehensive capacity of resources and environment was evaluated by using the state space method in Poyang Lake Eco-economic Zone. The results showed that it boasted abundant biological resources, quality atmosphere and water environment, and relatively stable geological environment, while restricted by land resource, water resource and mineral resource. Currently, although the comprehensive capacity of the resources and environments in Poyang Lake Eco-economic Zone was not overloaded as a whole, it has been the case in some counties/districts. State space model, with clear indication and high accuracy, could serve as another approach to evaluating comprehensive capacity of regional resources and environment.

  17. Invertebrate communities associated with Bangia atropurpurea and Cladophora glomerata in western Lake Erie

    USGS Publications Warehouse

    Chilton, E.W.; Lowe, R.L.; Schurr, K.M.

    1986-01-01

    The appearance of the marine alga Bangia atropurpurea (Rhodophyta) in Lake Erie has been followed by its rapid dispersal throughout the eulittoral zone of the lake. Bangia was extensively sampled to determine its suitability as a habitat for littoral organisms. Present data indicate that the only organisms capable of maintaining populations on Bangia filaments are larval Chironomidae. Cladophora supports a larger and more diverse community. It is concluded that the mucilaginous cell wall of Bangia provides a less stable substrate for attached or clinging organisms than does the cellulose cell wall of Cladophora. The presence of Bangia in the littoral zone of Lake Erie results in a reduction of the quantity and diversity of algal epiphytes and may negatively impact the littoral food web.

  18. 76 FR 27253 - Safety Zone; Catawba Island Club Fireworks, Catawba Island Club, Port Clinton, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ...-AA00 Safety Zone; Catawba Island Club Fireworks, Catawba Island Club, Port Clinton, OH AGENCY: Coast... zone in the Captain of the Port Detroit Zone on Lake Erie, Port Clinton, Ohio. This zone is intended to... temporary safety zone is necessary to protect spectators and vessels from the hazards associated with...

  19. 77 FR 43517 - Safety Zone; Flying Magazine Air Show, Lake Winnebago, Oshkosh, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... the hazards associated with an air show and associated pyrotechnics, which are discussed further below... associated pyrotechnics will be held over Lake Winnebago in Oshkosh WI. The Captain of the Port, Sector Lake Michigan, has determined that an aircraft executing acrobatic maneuvers with associated pyrotechnics...

  20. Signs of lateral transport of CO2 and CH4 in freshwater systems in boreal zone

    NASA Astrophysics Data System (ADS)

    Ojala, A.; Pumpanen, J. S.

    2013-12-01

    The numerous waterbodies and their riparian zones in the boreal zone are important to lateral carbon transport of terrestrial origin. These freshwater systems are also significant for carbon cycling on the landscape level. However, the lateral signals of carbon gases can be difficult to detect and thus, we used here different approaches to verify the phenomenon. We installed continuous measurement systems with CO2 probes in the riparian zone soil matrix around a small pristine headwater lake, in the lake, and in the outflowing stream and followed up the seasonal variation in CO2 concentration and in rain event-driven changes. We also used the probes in a second-order stream discharging a catchment of managed forest. The conventional weekly sampling protocol on water column CO2 and CH4 concentrations as well as gas fluxes was applied in three lakes surrounded by managed forests and some crop land but having different size and water quality. In two of the lakes most drastic changes in gas fluxes occurred not in spring but during or just after the summer rains when the clear water lake changed from a small carbon sink to carbon source and in the humic lake almost half of the CO2 and CH4 fluxes occurred during or just after the rainy period. Gas concentrations in the water columns revealed that the high surface water concentrations resulting in peak fluxes were not due to transport from hypolimnia rich in gases, but were due to soil processes and export from the flooded catchments. In the third lake, seasonal peak fluxes took place just after ice out, but again this was not a result of carbon gases accumulated under the ice, but gases originated from the surrounding catchment. In this lake, ca. 30 % of the annual CO2 flux occurred in May and 13 % of CH4 was emitted during one single week in May. In general, CH4 appeared as a good tracer for lateral transport. In the soil-lake-stream continuum, seasonal variation in CO2 was greatest and concentrations highest deep in the soil and in the lake itself, but also in the stream, especially further down from the lake. In the stream, the influence of the riparian zone superseded that of the lake at less than 150 m distance, which resulted in wider variation and higher concentrations of CO2. After a spell of heavy rain, the CO2 concentration in the soil increased and supposedly, a considerable amount of CO2 of terrestrial origin entered the lake annually. However, since the rain event was combined with exceptionally high winds mixing the water column, the riparian CO2 load was diluted and could not be properly tracked down. The second-order stream draining a small lake had an unresponsive catchment with high base flow contribution and the low flow was important for the total annual CO2 export. In general, CO2 export was controlled by runoff. There was no concentration-discharge relationship which was different from four other catchments in Canada, UK and Sweden. The only exception was snowmelt event in spring when CO2 concentrations were high. This high concentration could be tracked down in the downstream lake. The studies thus revealed the importance of hydrological events such as high spring discharge after snowmelt and extreme rain events in summer for lateral carbon gas transport.

  1. 76 FR 61667 - Proposed Foreign-Trade Zone-West Tennessee Area Under Alternative Site Framework; Application Filed

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-05

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 59-2011] Proposed Foreign-Trade Zone... submitted to the Foreign-Trade Zones Board (the Board) by the Northwest Tennessee Regional Port Authority to establish a general-purpose foreign-trade zone at sites in Dyer, Gibson, Haywood, Lake, Lauderdale, Madison...

  2. 33 CFR 110.81 - Muskegon Lake, Mich.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 110.81 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.81 Muskegon Lake, Mich. (a) Muskegon Lake West. The...: Administration of the Special Anchorage Area is exercised by the City of Muskegon pursuant to local ordinances...

  3. 33 CFR 110.81 - Muskegon Lake, Mich.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 110.81 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.81 Muskegon Lake, Mich. (a) Muskegon Lake West. The...: Administration of the Special Anchorage Area is exercised by the City of Muskegon pursuant to local ordinances...

  4. 33 CFR 110.81 - Muskegon Lake, Mich.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 110.81 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.81 Muskegon Lake, Mich. (a) Muskegon Lake West. The...: Administration of the Special Anchorage Area is exercised by the City of Muskegon pursuant to local ordinances...

  5. 33 CFR 110.81 - Muskegon Lake, Mich.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 110.81 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.81 Muskegon Lake, Mich. (a) Muskegon Lake West. The...: Administration of the Special Anchorage Area is exercised by the City of Muskegon pursuant to local ordinances...

  6. 33 CFR 110.81 - Muskegon Lake, Mich.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 110.81 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.81 Muskegon Lake, Mich. (a) Muskegon Lake West. The...: Administration of the Special Anchorage Area is exercised by the City of Muskegon pursuant to local ordinances...

  7. Riverside East Solar Energy Zone (SEZ) - California

    Science.gov Websites

    Los Mogotes East Nevada Amargosa Valley Dry Lake Dry Lake Valley North Gold Point Millers New Mexico Pavement Cultural Gravel Bench I 10 Wiley Well Road South Wiley Well Rest Stop Ford Dry Lake Get Adobe there are also dry lake beds, sandy areas, and dry washes with ironwood and other trees. Some areas are

  8. Occurrence, spatiotemporal distribution, and ecological risks of steroids in a large shallow Chinese lake, Lake Taihu.

    PubMed

    Zhou, Li-Jun; Zhang, Bei-Bei; Zhao, Yong-Gang; Wu, Qinglong L

    2016-07-01

    Steroids have been frequently detected in surface waters, and might pose adverse effects on aquatic organisms. However, little information is available regarding the occurrence and spatiotemporal distribution of steroids in lake environments. In addition to pollution sources, the occurrence and spatiotemporal distribution of steroids in lake environments might be related to lake types (shallow or deep), lake hydrodynamics, and sorption-desorption processes in the water-sediment systems. In this study, the occurrence, spatiotemporal distribution, and ecological risks of 36 steroids in a large shallow lake were evaluated by investigating surface water and sediment samples at 32 sites in Lake Taihu over two seasons. Twelve and 15 analytes were detected in aqueous and sedimentary phases, respectively, with total concentrations ranging from 0.86 to 116ng/L (water) and from 0.82 to 16.2ng/g (sediment, dry weight). Temporal variations of steroid concentrations in the water and sediments were statistically significant, with higher concentrations in winter. High concentrations of steroids were found in the seriously polluted bays rather than in the pelagic zone of the lake. Strong lake currents might mix pelagic waters, resulting in similar concentrations of steroids in the pelagic zone. Mass balance analysis showed that sediments in shallow lakes are in general an important sink for steroids. Steroids in the surface water and sediments of Lake Taihu might pose potential risks to aquatic organisms. Overall, our study indicated that the concentrations and spatiotemporal distribution of steroids in the large shallow lake are influenced simultaneously by pollution sources and lake hydrodynamics. Steroids in the large shallow Lake Taihu showed clear temporal and spatial variations and lake sediments may be a potential sink of steroids. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. 33 CFR 165.1409 - Security Zones; Hawaii, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zones; Hawaii, HI. 165... Navigation Areas and Limited Access Areas Fourteenth Coast Guard District § 165.1409 Security Zones; Hawaii..., Hawaii. All waters extending 100 yards in all directions from each large passenger vessel in Hilo Harbor...

  10. 33 CFR 165.154 - Safety and Security Zones: Long Island Sound Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Island Sound Marine Inspection Zone and Captain of the Port Zone. 165.154 Section 165.154 Navigation and... Areas First Coast Guard District § 165.154 Safety and Security Zones: Long Island Sound Marine... this zone is prohibited unless authorized by the Captain of the Port Long, Island Sound. (3) All...

  11. Chemical Control of Invasive Phragmites in a Great Lakes Marsh: A Field Demonstration

    DTIC Science & Technology

    2013-04-01

    8 Lathyrus palustris Marsh pea 4 8 Leersia oryzoides Rice cut-grass 20 32 Lemna minor Common duckweed 0 28 Lemna trisulca Star duckweed 0 4...the glyphosate + imazapyr combination, which reduced phragmites cover in the emergent zone. Common duckweed ( Lemna minor L.) frequency of occurrence...meadow habitats of the Lake Erie-St. Clair Lakeplain Marsh (Albert 2001). Common species of the emergent zone include duckweeds ( Lemna spp.), coontail

  12. New insight into defining the lakes of the southern Baltic coastal zone.

    PubMed

    Cieśliński, Roman; Olszewska, Alicja

    2018-01-29

    There exist many classification systems of hydrographic entities such as lakes found along the coastlines of seas and oceans. Each system has its advantages and can be used with some success in the area of protection and management. This paper aims to evaluate whether the studied lakes are only coastal lakes or rather bodies of water of a completely different hydrological and hydrochemical nature. The attempt to create a new classification system of Polish coastal lakes is related to the incompleteness of lake information in existing classifications. Thus far, the most frequently used are classifications based solely on lake basin morphogenesis or hydrochemical properties. The classifications in this paper are based not only on the magnitude of lake water salinity or hydrochemical analysis but also on isolation from the Baltic Sea and other sources of water. The key element of the new classification system for coastal bodies of water is a departure from the existing system used to classify lakes in Poland and the introduction of ion-"tracking" methods designed to identify anion and cation distributions in each body of water of interest. As a result of the work, a new classification of lakes of the southern Baltic Sea coastal zone was created. Featured objects such as permanently brackish lakes, brackish lakes that may turn into freshwater lakes from time to time, freshwater lakes that may turn into brackish lakes from time to time, freshwater lakes that experience low levels of salinity due to specific incidents, and permanently freshwater lakes. The authors have adopted 200 mg Cl -  dm -3 as a maximum value of lake water salinity. There are many conditions that determine the membership of a lake to a particular group, but the most important is the isolation lakes from the Baltic Sea. Changing a condition may change the classification of a lake.

  13. 33 CFR 110.81a - Lake Betsie, Frankfort, MI.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lake Betsie, Frankfort, MI. 110.81a Section 110.81a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.81a Lake Betsie, Frankfort, MI. The area...

  14. 33 CFR 110.81a - Lake Betsie, Frankfort, MI.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lake Betsie, Frankfort, MI. 110.81a Section 110.81a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.81a Lake Betsie, Frankfort, MI. The area...

  15. 33 CFR 110.81a - Lake Betsie, Frankfort, MI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lake Betsie, Frankfort, MI. 110.81a Section 110.81a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.81a Lake Betsie, Frankfort, MI. The area...

  16. 33 CFR 110.81a - Lake Betsie, Frankfort, MI.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lake Betsie, Frankfort, MI. 110.81a Section 110.81a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.81a Lake Betsie, Frankfort, MI. The area...

  17. 33 CFR 110.81a - Lake Betsie, Frankfort, MI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lake Betsie, Frankfort, MI. 110.81a Section 110.81a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.81a Lake Betsie, Frankfort, MI. The area...

  18. 46 CFR 188.10-31 - Great Lakes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Great Lakes. 188.10-31 Section 188.10-31 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-31 Great Lakes. Under this designation shall be included...

  19. 46 CFR 188.10-31 - Great Lakes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Great Lakes. 188.10-31 Section 188.10-31 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-31 Great Lakes. Under this designation shall be included...

  20. 46 CFR 188.10-31 - Great Lakes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Great Lakes. 188.10-31 Section 188.10-31 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-31 Great Lakes. Under this designation shall be included...

  1. 46 CFR 188.10-31 - Great Lakes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Great Lakes. 188.10-31 Section 188.10-31 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-31 Great Lakes. Under this designation shall be included...

  2. 46 CFR 188.10-31 - Great Lakes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Great Lakes. 188.10-31 Section 188.10-31 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-31 Great Lakes. Under this designation shall be included...

  3. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    USGS Publications Warehouse

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake levels have decreased from as high as 1830 m to 1806 m above sea level since the early Pleistocene due to episodic downcutting by the Bear River. The oldest exposed lacustrine sediments in Bear Lake Valley are probably of Pliocene age. Several high-lake phases during the early and middle Pleistocene were separated by episodes of fluvial incision. Threshold incision was not constant, however, because lake highstands of as much as 8 m above bedrock threshold level resulted from aggradation and possibly landsliding at least twice during the late-middle and late Pleistocene. Abandoned stream channels within the low-lying, fault-bounded region between Bear Lake and the modern Bear River show that Bear River progressively shifted northward during the Holocene. Several factors including faulting, location of the fluvial fan, and channel migration across the fluvial fan probably interacted to produce these changes in channel position. Late Quaternary slip rates on the east Bear Lake fault zone are estimated by using the water-level history of Bear Lake, assuming little or no displacement on dated deposits on the west side of the valley. Uplifted lacustrine deposits representing Pliocene to middle Pleistocene highstands of Bear Lake on the footwall block of the east Bear Lake fault zone provide dramatic evidence of long-term slip. Slip rates during the late Pleistocene increased from north to south along the east Bear Lake fault zone, consistent with the tectonic geomorphology. In addition, slip rates on the southern section of the fault zone have apparently decreased over the past 50 k.y. Copyright ?? 2009 The Geological Society of America.

  4. Design for Security Workshop

    DTIC Science & Technology

    2014-09-30

    fingerprint sensor etc.  Secure application execution  Trust established outwards  With normal world apps  With internet/cloud apps...Xilinx Zynq Security Components and Capabilities © Copyright 2014 Xilinx . Security Features Inherited from FPGAs Zynq Secure Boot TrustZone...2014 Xilinx . Security Features Inherited from FPGAs Zynq Secure Boot TrustZone Integration 4 Agenda © Copyright 2014 Xilinx . Device DNA and User

  5. Evolution of Late Miocene to Contemporary Displacement Transfer Between the Northern Furnace Creek and Southern Fish Lake Valley Fault Zones and the Central Walker Lane, Western Great Basin, Nevada

    NASA Astrophysics Data System (ADS)

    Oldow, J. S.; Geissman, J. W.

    2013-12-01

    Late Miocene to contemporary displacement transfer from the north Furnace Creek (FCF) and southern Fish Lake Valley (FLVF) faults to structures in the central Walker Lane was and continues to be accommodated by a belt of WNW-striking left-oblique fault zones in the northern part of the southern Walker Lane. The WNW fault zones are 2-9 km wide belts of anastomosing fault strands that intersect the NNW-striking FCF and southern FLVF in northern Death Valley and southern Fish Lake Valley, respectively. The WNW fault zones extend east for over 60 km where they merge with a 5-10 km wide belt of N10W striking faults that marks the eastern boundary of the southern Walker Lane. Left-oblique displacement on WNW faults progressively decreases to the east, as motion is successively transferred northeast on NNE-striking faults. NNE faults localize and internally deform extensional basins that each record cumulative net vertical displacements of between 3.0 and 5.2 km. The transcurrent faults and associated basins decrease in age from south to north. In the south, the WNW Sylvania Mountain fault system initiated left-oblique motion after 7 Ma but does not have evidence of contemporary displacement. Farther north, the left-oblique motion on the Palmetto Mountain fault system initiated after 6.0 to 4.0 Ma and has well-developed scarps in Quaternary deposits. Cumulative left-lateral displacement for the Sylvania Mountain fault system is 10-15 km, and is 8-12 km for the Palmetto fault system. The NNE-striking faults that emanate from the left-oblique faults merge with NNW transcurrent faults farther north in the eastern part of the Mina deflection, which links the Owens Valley fault of eastern California to the central Walker Lane. Left-oblique displacement on the Sylvania Mountain and Palmetto Mountain fault zones deformed the Furnace Creek and Fish Lake Valley faults. Left-oblique motion on Sylvania Mountain fault deflected the FCF into the 15 km wide Cucomungo Canyon restraining bend, segmented the >3.0 km deep basin underlying southern Fish Lake Valley, and formed a 2 km wide restraining bend in the FLVF. Part of the left-oblique motion on the Palmetto Mountain fault zone crosses Fish Lake Valley and offsets the FLVF in a 3 km wide restraining bend with the remainder being taken-up by NNW structures along the eastern side of southern Fish Lake Valley.

  6. Factors controlling bacteria and protists in selected Mazurian eutrophic lakes (North-Eastern Poland) during spring

    PubMed Central

    2013-01-01

    Background The bottom-up (food resources) and top-down (grazing pressure) controls, with other environmental parameters (water temperature, pH) are the main factors regulating the abundance and structure of microbial communities in aquatic ecosystems. It is still not definitively decided which of the two control mechanisms is more important. The significance of bottom-up versus top-down controls may alter with lake productivity and season. In oligo- and/or mesotrophic environments, the bottom-up control is mostly important in regulating bacterial abundances, while in eutrophic systems, the top-down control may be more significant. Results The abundance of bacteria, heterotrophic (HNF) and autotrophic (ANF) nanoflagellates and ciliates, as well as bacterial production (BP) and metabolically active cells of bacteria (CTC, NuCC, EST) were studied in eutrophic lakes (Mazurian Lake District, Poland) during spring. The studied lakes were characterized by high nanoflagellate (mean 17.36 ± 8.57 × 103 cells ml-1) and ciliate abundances (mean 59.9 ± 22.4 ind. ml-1) that were higher in the euphotic zone than in the bottom waters, with relatively low bacterial densities (4.76 ± 2.08 × 106 cells ml-1) that were lower in the euphotic zone compared to the profundal zone. Oligotrichida (Rimostrombidium spp.), Prostomatida (Urotricha spp.) and Scuticociliatida (Histiobalantium bodamicum) dominated in the euphotic zone, whereas oligotrichs Tintinnidium sp. and prostomatids Urotricha spp. were most numerous in the bottom waters. Among the staining methods used to examine bacterial cellular metabolic activity, the lowest percentage of active cells was recorded with the CTC (1.5–15.4%) and EST (2.7–14.2%) assay in contrast to the NuCC (28.8–97.3%) method. Conclusions In the euphotic zone, the bottom-up factors (TP and DOC concentrations) played a more important role than top-down control (grazing by protists) in regulating bacterial numbers and activity. None of the single analyzed factors controlled bacterial abundance in the bottom waters. The results of this study suggest that both control mechanisms, bottom-up and top-down, simultaneously regulated bacterial community and their activity in the profundal zone of the studied lakes during spring. In both lake water layers, food availability (algae, nanoflagellates) was probably the major factor determining ciliate abundance and their composition. In the bottom waters, both groups of protists appeared to be also influenced by oxygen, temperature, and total phosphorus. PMID:23566491

  7. Textural, mineralogical and stable isotope studies of hydrothermal alteration in the main sulfide zone of the Great Dyke, Zimbabwe and the precious metals zone of the Sonju Lake Intrusion, Minnesota, USA

    USGS Publications Warehouse

    Li, C.; Ripley, E.M.; Oberthur, T.; Miller, J.D.; Joslin, G.D.

    2008-01-01

    Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type. ?? Springer-Verlag 2007.

  8. Habitat Selection of Nesting Smallmouth Bass Micropterus dolomieu in Two North Temperate Lakes

    Treesearch

    Michael A. Bozek; Clayton J. Edwards; Martin J. Jennings; Steven P. Newman

    2002-01-01

    Anthropogenic disturbances in nearshore littoral zones of lakes may affect spawning habitat and recruitment of smallmouth bass Micropterus dolomieu, yet habitat models that quantify habitat selection by smallmouth bass in lakes are not well developed nor are their limitations understood. In this study we quantified smallmouth bass spawning habitat in...

  9. Attenuation of landscape signals through the coastal zone: A basin-wide analysis for the US Great Lakes shoreline, circa 2002-2010

    EPA Science Inventory

    We compare statistical models developed to describe a) the relationship between watershed properties and Great Lakes coastal wetlands with b) the relationship developed between watershed properties and the Great Lakes nearshore. Using landscape metrics from the GLEI project (Dan...

  10. Across Hydrological Interfaces from Coastal Watersheds to the Open Lake: Finding Landscape Signals in the Great Lakes Coastal Zone

    EPA Science Inventory

    Over the past decade, our group has been working to bring coastal ecosystems into integrated basin-lakewide monitoring and assessment strategies for the Great Lakes. We have conducted a wide range of research on coastal tributaries, coastal wetlands, semi-enclosed embayments an...

  11. 76 FR 1599 - Foreign-Trade Zone 203-Moses Lake, Washington; Application for Manufacturing Authority, SGL...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... Lake, Washington; Application for Manufacturing Authority, SGL Automotive Carbon Fibers, LLC, (Carbon... manufacturing authority on behalf of SGL Automotive Carbon Fibers, LLC (SGL Automotive), located in Moses Lake... new facility will be used for the manufacture of carbon fiber, all of which will be exported for the...

  12. 75 FR 34636 - Safety Zone; Jameson Beach 4th of July Fireworks Display

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ...-AA00 Safety Zone; Jameson Beach 4th of July Fireworks Display AGENCY: Coast Guard, DHS. ACTION... waters of Lake Tahoe, for the Jameson Beach 4th of July Fireworks Display. This safety zone is... Safety Zone; Jameson Beach 4th of July Fireworks Display. (a) Location. This temporary safety zone is...

  13. Morphology and biology of Cyclops scutifer Sars, 1863 in high mountain lakes of East Siberia (including Lake Amut)

    NASA Astrophysics Data System (ADS)

    Sheveleva, Natalya G.; Itigilova, Mydygma Ts.; Chananbaator, Ayushcuren

    2017-03-01

    Data on zooplankton from 13 high-mountain lakes of East Siberia have shown that the Holarctic copepod Cyclops scutifer Sars, 1863 dominates among crustaceans. In July, its abundance comprised 64%-98% of the total plankton fauna in the pelagial of these lakes, approximately 30% in the littoral zone and 10% in small northern thermokarst lakes. Biometric measurements and morphological descriptions based on scanning microscope images are supplemented by the data on its geographic distribution and phenology.

  14. The first US National Coastal Condition Assessment survey in the Great Lakes: Development of the GIS frame and exploration of spatial variation in nearshore water quality results

    EPA Science Inventory

    A comprehensive approach to assess conditions in the Great Lakes nearshore zone has been lacking for decades. We had the opportunity to conduct a pilot survey in Lake Erie (45 sites) in summer 2009 and to develop a full survey across the 5 lakes (~400 sites) as part of the US N...

  15. Coastal response to the Port Sheldon jetties at Pigeon Lake, Michigan. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, M.; Underwood, S.G.

    1991-07-01

    The Consumers Powers Corp. constructed two jetties at Port Shelton, Michigan to maintain an open waterway into Pigeon Lake. These jetties are located at the entrance of Pigeon Lake in Port Shelton township, on the eastern shore of Lake Michigan. Originally, water was drawn from Lake Michigan via Pigeon Lake Inlet to cool a fossil fuel power plant. The inlet into Pigeon Lake was deepened and widened throughout the early history of the power plant. Adjacent shorelines have been modified directly by Consumers Power Corp. and indirectly by the natural littoral response to the jetties. This study sought to determinemore » the impact, if any, of these jetties at the entrance to Pigeon Lake on adjacent shorelines and nearshore zones. Analysis of historical shoreline position and bathymetry data in the vicinity of Port Sheldon indicates approximately 810,600 cu yd of material has been trapped by the jetties since construction in 1964. At present, it appears that the fillet areas adjacent to the jetties have volumetrically stabilized and that natural and bypassing may be occurring around the lakeward tips of the jetties. Results of this study identified a zone of slightly higher erosion 3,000 to 9,000 ft south of the jetties that may be related to jetty construction.« less

  16. The geometry of pull-apart basins in the southern part of Sumatran strike-slip fault zone

    NASA Astrophysics Data System (ADS)

    Aribowo, Sonny

    2018-02-01

    Models of pull-apart basin geometry have been described by many previous studies in a variety tectonic setting. 2D geometry of Ranau Lake represents a pull-apart basin in the Sumatran Fault Zone. However, there are unclear geomorphic traces of two sub-parallel overlapping strike-slip faults in the boundary of the lake. Nonetheless, clear geomorphic traces that parallel to Kumering Segment of the Sumatran Fault are considered as inactive faults in the southern side of the lake. I demonstrate the angular characteristics of the Ranau Lake and Suoh complex pull-apart basins and compare with pull-apart basin examples from published studies. I use digital elevation model (DEM) image to sketch the shape of the depression of Ranau Lake and Suoh Valley and measure 2D geometry of pull-apart basins. This study shows that Ranau Lake is not a pull-apart basin, and the pull-apart basin is actually located in the eastern side of the lake. Since there is a clear connection between pull-apart basin and volcanic activity in Sumatra, I also predict that the unclear trace of the pull-apart basin near Ranau Lake may be covered by Ranau Caldera and Seminung volcanic products.

  17. 33 CFR 165.928 - Security Zone; Mackinac Bridge, Straits of Mackinac, Michigan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Mackinac Bridge... § 165.928 Security Zone; Mackinac Bridge, Straits of Mackinac, Michigan. (a) Definitions. The following... described above includes all waters on either side of the Mackinac Bridge within one-quarter mile of the...

  18. 33 CFR 165.1110 - Security Zone: Coronado Bay Bridge, San Diego, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Bridge, San Diego, CA. 165.1110 Section 165.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1110 Security Zone: Coronado Bay Bridge, San Diego, CA. (a) Location. All navigable waters of San... pilings of the Coronado Bay Bridge. These security zones will not restrict the main navigational channel...

  19. 33 CFR 165.1312 - Security Zone; Portland Rose Festival on Willamette River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Portland Rose Festival on Willamette River. 165.1312 Section 165.1312 Navigation and Navigable Waters COAST GUARD... § 165.1312 Security Zone; Portland Rose Festival on Willamette River. (a) Location. The following area...

  20. 33 CFR 165.509 - Security Zone; Severn River and College Creek, Annapolis, MD.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... College Creek, Annapolis, MD. 165.509 Section 165.509 Navigation and Navigable Waters COAST GUARD... § 165.509 Security Zone; Severn River and College Creek, Annapolis, MD. (a) Definitions. For purposes of... the Naval Academy waterfront. This security zone includes the waters of College Creek eastward of the...

  1. 33 CFR 165.1199 - Security Zones; Military Ocean Terminal Concord (MOTCO), Concord, California.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zones; Military Ocean... Coast Guard District § 165.1199 Security Zones; Military Ocean Terminal Concord (MOTCO), Concord..., extending from the surface to the sea floor, within 500 yards of the three Military Ocean Terminal Concord...

  2. 33 CFR 165.1199 - Security Zones; Military Ocean Terminal Concord (MOTCO), Concord, California.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zones; Military Ocean... Coast Guard District § 165.1199 Security Zones; Military Ocean Terminal Concord (MOTCO), Concord..., extending from the surface to the sea floor, within 500 yards of the three Military Ocean Terminal Concord...

  3. 33 CFR 165.1199 - Security Zones; Military Ocean Terminal Concord (MOTCO), Concord, California.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zones; Military Ocean... Coast Guard District § 165.1199 Security Zones; Military Ocean Terminal Concord (MOTCO), Concord..., extending from the surface to the sea floor, within 500 yards of the three Military Ocean Terminal Concord...

  4. 33 CFR 165.1199 - Security Zones; Military Ocean Terminal Concord (MOTCO), Concord, California.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zones; Military Ocean... Coast Guard District § 165.1199 Security Zones; Military Ocean Terminal Concord (MOTCO), Concord..., extending from the surface to the sea floor, within 500 yards of the three Military Ocean Terminal Concord...

  5. 33 CFR 165.1199 - Security Zones; Military Ocean Terminal Concord (MOTCO), Concord, California.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zones; Military Ocean... Coast Guard District § 165.1199 Security Zones; Military Ocean Terminal Concord (MOTCO), Concord..., extending from the surface to the sea floor, within 500 yards of the three Military Ocean Terminal Concord...

  6. 33 CFR 165.113 - Security Zone: Dignitary arrival/departure Logan International Airport, Boston, MA

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone: Dignitary arrival/departure Logan International Airport, Boston, MA 165.113 Section 165.113 Navigation and Navigable Waters..., MA (a) Location. The permanent security zone consists of four sectors that may be activated in part...

  7. 33 CFR 165.113 - Security Zone: Dignitary arrival/departure Logan International Airport, Boston, MA

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone: Dignitary arrival/departure Logan International Airport, Boston, MA 165.113 Section 165.113 Navigation and Navigable Waters..., MA (a) Location. The permanent security zone consists of four sectors that may be activated in part...

  8. 33 CFR 165.113 - Security Zone: Dignitary arrival/departure Logan International Airport, Boston, MA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone: Dignitary arrival/departure Logan International Airport, Boston, MA. 165.113 Section 165.113 Navigation and Navigable Waters..., MA. (a) Location. The permanent security zone consists of four sectors that may be activated in part...

  9. 33 CFR 165.113 - Security Zone: Dignitary arrival/departure Logan International Airport, Boston, MA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone: Dignitary arrival/departure Logan International Airport, Boston, MA. 165.113 Section 165.113 Navigation and Navigable Waters..., MA. (a) Location. The permanent security zone consists of four sectors that may be activated in part...

  10. 33 CFR 165.113 - Security Zone: Dignitary arrival/departure Logan International Airport, Boston, MA

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone: Dignitary arrival/departure Logan International Airport, Boston, MA 165.113 Section 165.113 Navigation and Navigable Waters..., MA (a) Location. The permanent security zone consists of four sectors that may be activated in part...

  11. 78 FR 53109 - Security Zones; Naval Base Point Loma; Naval Mine Anti-Submarine Warfare Command; San Diego Bay...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ...-AA87 Security Zones; Naval Base Point Loma; Naval Mine Anti-Submarine Warfare Command; San Diego Bay... Anti-Submarine Warfare Command to protect the relocated marine mammal program. These security zone... Warfare Command, the Commander of Naval Region Southwest, or a designated representative of those...

  12. 33 CFR 165.1190 - Security Zone; San Francisco Bay, Oakland Estuary, Alameda, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Oakland Estuary, Alameda, CA. 165.1190 Section 165.1190 Navigation and Navigable Waters COAST GUARD... § 165.1190 Security Zone; San Francisco Bay, Oakland Estuary, Alameda, CA. (a) Location. The following area is a security zone: All navigable waters of the Oakland Estuary, California, from the surface to...

  13. 33 CFR 165.1190 - Security Zone; San Francisco Bay, Oakland Estuary, Alameda, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Oakland Estuary, Alameda, CA. 165.1190 Section 165.1190 Navigation and Navigable Waters COAST GUARD... § 165.1190 Security Zone; San Francisco Bay, Oakland Estuary, Alameda, CA. (a) Location. The following area is a security zone: All navigable waters of the Oakland Estuary, California, from the surface to...

  14. 33 CFR 165.1190 - Security Zone; San Francisco Bay, Oakland Estuary, Alameda, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Oakland Estuary, Alameda, CA. 165.1190 Section 165.1190 Navigation and Navigable Waters COAST GUARD... § 165.1190 Security Zone; San Francisco Bay, Oakland Estuary, Alameda, CA. (a) Location. The following area is a security zone: All navigable waters of the Oakland Estuary, California, from the surface to...

  15. 33 CFR 165.1190 - Security Zone; San Francisco Bay, Oakland Estuary, Alameda, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Oakland Estuary, Alameda, CA. 165.1190 Section 165.1190 Navigation and Navigable Waters COAST GUARD... § 165.1190 Security Zone; San Francisco Bay, Oakland Estuary, Alameda, CA. (a) Location. The following area is a security zone: All navigable waters of the Oakland Estuary, California, from the surface to...

  16. 33 CFR 165.1190 - Security Zone; San Francisco Bay, Oakland Estuary, Alameda, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Oakland Estuary, Alameda, CA. 165.1190 Section 165.1190 Navigation and Navigable Waters COAST GUARD... § 165.1190 Security Zone; San Francisco Bay, Oakland Estuary, Alameda, CA. (a) Location. The following area is a security zone: All navigable waters of the Oakland Estuary, California, from the surface to...

  17. 33 CFR 165.825 - Security Zones; Captain of the Port St. Louis, Missouri.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Port St. Louis, Missouri. 165.825 Section 165.825 Navigation and Navigable Waters COAST GUARD... § 165.825 Security Zones; Captain of the Port St. Louis, Missouri. (a) Location. The following areas are..., St. Louis or designated representative. (2) The Ft. Calhoun and Cooper security zones include a...

  18. 33 CFR 165.1408 - Security Zones; Maui, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zones; Maui, HI. 165... Navigation Areas and Limited Access Areas Fourteenth Coast Guard District § 165.1408 Security Zones; Maui, HI... Harbor, Maui, HI or within 3 nautical miles seaward of the Kahului Harbor COLREGS DEMARCATION (See 33 CFR...

  19. 33 CFR 165.1312 - Security Zone; Portland Rose Festival on Willamette River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Portland Rose Festival on Willamette River. 165.1312 Section 165.1312 Navigation and Navigable Waters COAST GUARD... § 165.1312 Security Zone; Portland Rose Festival on Willamette River. (a) Location. The following area...

  20. 33 CFR 165.813 - Security Zones; Ports of Houston and Galveston, TX.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Security Zones; Ports of Houston and Galveston, TX. (a) Location. Within the Ports of Houston and Galveston, Texas, moving security zones are established encompassing all waters within 500 yards of a cruise ship... entire transit of the cruise ship and continues while the cruise ship is moored or anchored. (b...

  1. 33 CFR 165.813 - Security Zones; Ports of Houston and Galveston, TX.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Security Zones; Ports of Houston and Galveston, TX. (a) Location. Within the Ports of Houston and Galveston, Texas, moving security zones are established encompassing all waters within 500 yards of a cruise ship... entire transit of the cruise ship and continues while the cruise ship is moored or anchored. (b...

  2. 33 CFR 165.813 - Security Zones; Ports of Houston and Galveston, TX.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Security Zones; Ports of Houston and Galveston, TX. (a) Location. Within the Ports of Houston and Galveston, Texas, moving security zones are established encompassing all waters within 500 yards of a cruise ship... entire transit of the cruise ship and continues while the cruise ship is moored or anchored. (b...

  3. 33 CFR 165.813 - Security Zones; Ports of Houston and Galveston, TX.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Security Zones; Ports of Houston and Galveston, TX. (a) Location. Within the Ports of Houston and Galveston, Texas, moving security zones are established encompassing all waters within 500 yards of a cruise ship... entire transit of the cruise ship and continues while the cruise ship is moored or anchored. (b...

  4. 33 CFR 165.813 - Security Zones; Ports of Houston and Galveston, TX.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Security Zones; Ports of Houston and Galveston, TX. (a) Location. Within the Ports of Houston and Galveston, Texas, moving security zones are established encompassing all waters within 500 yards of a cruise ship... entire transit of the cruise ship and continues while the cruise ship is moored or anchored. (b...

  5. 33 CFR 165.1101 - Security Zone: San Diego Bay, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to transit the area of the security zone may contact the Captain of the Port at telephone number 619... (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1101 Security Zone: San Diego...

  6. 76 FR 5732 - Security Zones; Cruise Ships, Port of San Diego, CA; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ...-AA87 Security Zones; Cruise Ships, Port of San Diego, CA; Correction AGENCY: Coast Guard, DHS. ACTION... rule published in the Federal Register of January 27, 2011 (76 FR 4833), regarding security zones for... [email protected] . If you have questions on viewing or submitting material to the docket, call...

  7. 33 CFR 165.1313 - Security zone regulations, tank ship protection, Puget Sound and adjacent waters, Washington

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Areas Thirteenth Coast Guard District § 165.1313 Security zone regulations, tank ship protection, Puget... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security zone regulations, tank ship protection, Puget Sound and adjacent waters, Washington 165.1313 Section 165.1313 Navigation and...

  8. 33 CFR 165.1120 - Security Zone; Naval Amphibious Base, San Diego, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Naval Amphibious Base, San Diego, CA. 165.1120 Section 165.1120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1120 Security Zone; Naval Amphibious Base, San Diego, CA. (a) Location. The following area is a...

  9. 33 CFR 165.1120 - Security Zone; Naval Amphibious Base, San Diego, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Naval Amphibious Base, San Diego, CA. 165.1120 Section 165.1120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1120 Security Zone; Naval Amphibious Base, San Diego, CA. (a) Location. The following area is a...

  10. 33 CFR 165.1120 - Security Zone; Naval Amphibious Base, San Diego, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Base, San Diego, CA. 165.1120 Section 165.1120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1120 Security Zone; Naval Amphibious Base, San Diego, CA. (a) Location. The following area is a security zone: the waters of San Diego Bay, enclosed by lines connecting the following points: Beginning at...

  11. 33 CFR 165.1121 - Security Zone: Fleet Supply Center Industrial Pier, San Diego, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Center Industrial Pier, San Diego, CA. 165.1121 Section 165.1121 Navigation and Navigable Waters COAST... Guard District § 165.1121 Security Zone: Fleet Supply Center Industrial Pier, San Diego, CA. (a) Location. The following area is a security zone: the waters of San Diego Bay extending approximately 100...

  12. 33 CFR 165.1120 - Security Zone; Naval Amphibious Base, San Diego, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Base, San Diego, CA. 165.1120 Section 165.1120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1120 Security Zone; Naval Amphibious Base, San Diego, CA. (a) Location. The following area is a security zone: the waters of San Diego Bay, enclosed by lines connecting the following points: Beginning at...

  13. 33 CFR 165.1120 - Security Zone; Naval Amphibious Base, San Diego, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Base, San Diego, CA. 165.1120 Section 165.1120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1120 Security Zone; Naval Amphibious Base, San Diego, CA. (a) Location. The following area is a security zone: the waters of San Diego Bay, enclosed by lines connecting the following points: Beginning at...

  14. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...

  15. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...

  16. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...

  17. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...

  18. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...

  19. 33 CFR 165.1110 - Security Zone: Coronado Bay Bridge, San Diego, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Bridge, San Diego, CA. 165.1110 Section 165.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1110 Security Zone: Coronado Bay Bridge, San Diego, CA. (a) Location. All navigable waters of San... pilings of the Coronado Bay Bridge. These security zones will not restrict the main navigational channel...

  20. 33 CFR 165.928 - Security Zone; Mackinac Bridge, Straits of Mackinac, Michigan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Mackinac Bridge... § 165.928 Security Zone; Mackinac Bridge, Straits of Mackinac, Michigan. (a) Definitions. The following... described above includes all waters on either side of the Mackinac Bridge within one-quarter mile of the...

  1. Spatio-temporal niche partitioning of closely related picocyanobacteria clades and phycocyanin pigment types in Lake Constance (Germany).

    PubMed

    Becker, Sven; Sánchez-Baracaldo, Patricia; Singh, Arvind K; Hayes, Paul K

    2012-05-01

    We found that the clade-specific abundance dynamics of Synechococcus type picocyanobacteria in the pelagic and littoral zone macro-habitats of Lake Constance (Germany) challenge the hypothesis of a regular annual succession of picocyanobacteria genotypes in temperate zone lakes. Methods used in this study were quantitative Taq nuclease assays (TNA), denaturing gradient gel electrophoresis (DGGE), a 19-month time series analysis (with two isothermal and two stratified periods) and genotyping of a new littoral phycocyanin (PC)-rich Synechococcus strain collection. The recorded differences between the two macro-habitats and between seasons or years, and the observed effect of water column mixis in winter on the inversion of clade-specific dominance ratios in Lake Constance might explain the known inter-annual differences in abundance and dynamics of the autotrophic picoplankton (APP) in lakes. The APP in Lake Constance shows a high genetic diversity with a low overall abundance, similar to the APP in the Baltic Sea, but different from Lake Biwa in Japan or lakes in the UK. Our results indicate that APP bloom events in both macro-habitats of Lake Constance are driven by phycoerythrin-rich Synechococcus genotypes of the Subalpine Cluster I. DGGE revealed the presence of a diverse periphyton (biofilm) community of the PC-rich Synechococcus pigment type in the littoral zone in early spring, when no such community was detectable in the pelagic habitat. A more sensitive and quantitative approach with TNA, however, revealed an intermittent presence of one PC-rich genotype in the plankton. We discuss the seasonal development of the pelagic and littoral PC-rich community, and while we cannot rule out a strain isolation bias, we found that isolated PC-rich strains from the pelagic habitat have different genotypes when compared to new littoral strains. We also observed littoral substrates colonized by specific PC-rich Synechococcus genotypes. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. Phase 2 development of Great Lakes algorithms for Nimbus-7 coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1984-01-01

    A series of experiments have been conducted in the Great Lakes designed to evaluate the application of the NIMBUS-7 Coastal Zone Color Scanner (CZCS). Atmospheric and water optical models were used to relate surface and subsurface measurements to satellite measured radiances. Absorption and scattering measurements were reduced to obtain a preliminary optical model for the Great Lakes. Algorithms were developed for geometric correction, correction for Rayleigh and aerosol path radiance, and prediction of chlorophyll-a pigment and suspended mineral concentrations. The atmospheric algorithm developed compared favorably with existing algorithms and was the only algorithm found to adequately predict the radiance variations in the 670 nm band. The atmospheric correction algorithm developed was designed to extract needed algorithm parameters from the CZCS radiance values. The Gordon/NOAA ocean algorithms could not be demonstrated to work for Great Lakes waters. Predicted values of chlorophyll-a concentration compared favorably with expected and measured data for several areas of the Great Lakes.

  3. A reworked Lake Zone margin: Chronological and geochemical constraints from the Ordovician arc-related basement of the Hovd Zone (western Mongolia)

    NASA Astrophysics Data System (ADS)

    Soejono, Igor; Buriánek, David; Janoušek, Vojtěch; Svojtka, Martin; Čáp, Pavel; Erban, Vojtěch; Ganpurev, Nyamtsetseg

    2017-12-01

    The primary relationships and character of the boundaries between principal lithotectonic domains in the Mongolian tract of the Central Asian Orogenic Belt (CAOB) are still poorly constrained. This brings much uncertainty in understanding of the orogeny configuration and the complete accretionary history. The plutonic Khuurai Tsenkher Gol Complex and the mainly metasedimentary Bij Group represent associated medium- to high-grade basement complexes exposed in the Hovd Zone close to its boundary with the Lake Zone in western Mongolia. The Khuurai Tsenkher Gol Complex is composed of variously deformed acid to basic magmatic rocks intimately associated with the metamorphosed sedimentary and volcanic rocks of the Bij Group. Results of our field work, new U-Pb zircon ages and whole-rock geochemical data suggest an existence of two separate magmatic events within the evolution of the Khuurai Tsenkher Gol Complex. Early to Mid-Ordovician (476 ± 5 Ma and 467 ± 4 Ma protoliths) normal- to high-K calc-alkaline orthogneisses, metadiorites and metagabbros predominate over Mid-Silurian (430 ± 3 Ma) tholeiitic-mildly alkaline quartz monzodiorites. Whereas the geochemical signature of the former suite unequivocally demonstrates its magmatic-arc origin, that of the latter quartz monzodiorite suggests an intra-plate setting. As shown by Sr-Nd isotopic data, the older arc-related magmas were derived from depleted mantle and/or were generated by partial melting of juvenile metabasic crust. Detrital zircon age populations of the metasedimentary rocks together with geochemical signatures of the associated amphibolites imply that the Bij Group was a volcano-sedimentary sequence, formed probably in the associated fore-arc wedge basin. Moreover, our data argue for an identical provenance of the Altai and Hovd domains, overall westward sediment transport during the Early Palaeozoic and the east-dipping subduction polarity. The obvious similarities of the Khuurai Tsenkher Gol Complex (Hovd Zone) with the neighbouring Togtokhinshil Complex (Lake Zone) suggest that both magmatic complexes originally belonged to the same magmatic arc, related to the Palaeo-Asian subduction system. The geodynamic cause of the later, within-plate magmatic pulse is unclear, but was probably still related to the effects of retreating subduction (slab window/ocean ridge subduction or back-arc lithosphere thinning). The Khuurai Tsenkher Gol Complex was subsequently separated from the western margin of the Lake Zone and imbricated into the Hovd Zone mélange. It is proposed that the Lake/Hovd zones boundary in the study area represents a younger deformation zone rather than a true terrane boundary/suture. This could be a general feature of the suture zones within this part of the CAOB.

  4. Basin-floor Lake Bonneville stratigraphic section as revealed in paleoseismic trenches at the Baileys Lake site, West Valley fault zone, Utah

    USGS Publications Warehouse

    Hylland, Michael D.; DuRoss, Christopher B.; McDonald, Greg N.; Olig, Susan S.; Oviatt, Charles G.; Mahan, Shannon; Crone, Anthony J.; Personius, Stephen

    2012-01-01

     Recent paleoseismic trenching on the Granger fault of the West Valley fault zone in Salt Lake County, Utah, exposed a nearly complete section of late Pleistocene Lake Bonneville deposits, and highlights challenges related to accurate interpretation of basin-floor stratigraphy in the absence of numerical age constraints. We used radiocarbon and luminescence dating as well as ostracode biostratigraphy to provide chronostratigraphic control on the Lake Bonneville section exposed at the Baileys Lake trench site. The fault trenches exposed folded and faulted pre- to post- Bonneville sediments, including about 0.7 m of pre-Bonneville wetland/fluvial-marsh deposits, a nearly complete Bonneville section 2.5–4.0 m thick, and 0.4–1.0 m of post-Bonneville deposits consisting primarily of loess with minor scarp-derived colluvium. The relatively thin Bonneville section compares favorably with basin-floor Bonneville sections documented in boreholes and seismic reflection profiles beneath Great Salt Lake. Distinctive features of the Bonneville section at the Baileys Lake site include a sequence of turbidites in the upper part of the Bonneville transgressive deposits, evidence for an earthquake during Provo-shoreline time that disturbed lake-bottom sediments and destroyed any stratigraphic signature of the Bonneville Flood, tufa deposition associated with Gilbert-phase shoreline transgression, and stratigraphic evidence for two Gilbert transgressions across the site.

  5. Movement patterns and spatial segregation of two populations of lake trout Salvelinus namaycush in Lake Huron

    USGS Publications Warehouse

    Binder, Thomas; Marsden, J. Ellen; Riley, Stephen; Johnson, James E.; Johnson, Nicholas; He, Ji; Ebener, Mark P.; Holbrook, Christopher; Bergstedt, Roger A.; Bronte, Charles R.; Hayden, Todd A.; Krueger, Charles C.

    2017-01-01

    Movement ecology is an important component of life history and population dynamics, and consequently its understanding can inform successful fishery management decision-making. While lake trout populations in Lake Huron have shown signs of recovery from near extinction in recent years, knowledge of their movement behavior remains incomplete. We used acoustic telemetry to describe and compare movement patterns of two Lake Huron lake trout populations: Drummond Island and Thunder Bay. Both populations showed high spawning site fidelity, with no evidence of co-mingling during non-spawning season. Detections between spawning periods were mainly limited to receivers within 100 km of spawning locations, and suggested that the two populations likely remained segregated throughout the year. Drummond Island fish, which spawn inside the Drummond Island Refuge, primarily dispersed east into Canadian waters of Lake Huron, with 79–92% of fish being detected annually on receivers outside the refuge. In contrast, Thunder Bay fish tended to disperse south towards Saginaw Bay. Large proportions (i.e., > 80%) of both populations were available to fisheries outside the management zone containing their spawning location. Thunder Bay fish moved relatively quickly to overwinter habitat after spawning, and tended to repeat the same post-spawning movement behavior each year. The consistent, predictable movement of both populations across management zones highlights the importance of understanding population dynamics to effective management of Lake Huron lake trout.

  6. Geothermal activity and hydrothermal mineral deposits at southern Lake Bogoria, Kenya Rift Valley: Impact of lake level changes

    NASA Astrophysics Data System (ADS)

    Renaut, Robin W.; Owen, R. Bernhart; Ego, John K.

    2017-05-01

    Lake Bogoria, a saline alkaline closed-lake in a drainage basin of Neogene volcanic rocks in the central Kenya Rift, is fed partly by ∼200 hot alkaline springs located in three groups along its margins. Hot springs along the midwest shoreline (Loburu, Chemurkeu) and their travertine deposits have been studied, but little is known about the geothermal activity at southern Lake Bogoria. Observations, field measurements and analyses (geochemical and mineralogical) of the spring waters and deposits, spanning three decades, show that the southern spring waters are more saline, the hydrothermal alteration there is more intense, and that most hot spring deposits are siliceous. Geothermal activity at southern Lake Bogoria (Ng'wasis, Koibobei, Losaramat) includes littoral boiling springs and geysers, with fumaroles at slightly higher elevations. Modern spring deposits are ephemeral sodium carbonates, opal-A crusts and silica gels. Local fossil spring deposits include diatomaceous silica-cemented conglomerates that formed subaqueously when the lake was then dilute and higher than today, and outlying calcite tufa deposits. In contrast, mineral deposits around neighbouring fumarole vents and sites of hydrothermal alteration include clays (kaolinite), sulfate minerals (jarosite, alunite), and Fe-oxyhydroxides linked to rising acidic fluids. When lake level falls, the zone of acidity moves downwards and may overprint older alkaline spring deposits. In contrast, rising lake level leads to lake water dilution and vents in the lower parts of the acidic zone may become dilute alkaline springs. The new evidence at Lake Bogoria shows the potential for using the mineralogy of geothermal sediments to indicate former changes in lake level.

  7. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake

    USGS Publications Warehouse

    Urbach, Ena; Vergin, Kevin L.; Morse, Ariel

    2001-01-01

    The bacterioplankton assemblage in Crater Lake, Oregon (U.S.A.), is different from communities found in other oxygenated lakes, as demonstrated by four small subunit ribosomal ribonucleic acid (SSU rRNA) gene clone libraries and oligonucleotide probe hybridization to RNA from lake water. Populations in the euphotic zone of this deep (589 m), oligotrophic caldera lake are dominated by two phylogenetic clusters of currently uncultivated bacteria: CL120-10, a newly identified cluster in the verrucomicrobiales, and ACK4 actinomycetes, known as a minor constituent of bacterioplankton in other lakes. Deep-water populations at 300 and 500 m are dominated by a different pair of uncultivated taxa: CL500-11, a novel cluster in the green nonsulfur bacteria, and group I marine crenarchaeota. b-Proteobacteria, dominant in most other freshwater environments, are relatively rare in Crater Lake (<=16% of nonchloroplast bacterial rRNA at all depths). Other taxa identified in Crater Lake libraries include a newly identified candidate bacterial division, ABY1, and a newly identified subcluster, CL0-1, within candidate division OP10. Probe analyses confirmed vertical stratification of several microbial groups, similar to patterns observed in open-ocean systems. Additional similarities between Crater Lake and ocean microbial populations include aphotic zone dominance of group I marine crenarchaeota and green nonsulfur bacteria. Comparison of Crater Lake to other lakes studied by rRNA methods suggests that selective factors structuring Crater Lake bacterioplankton populations may include low concentrations of available trace metals and dissolved organic matter, chemistry of infiltrating hydrothermal waters, and irradiation by high levels of ultraviolet light.

  8. Validation of a side-scan sonar method for quantifying walleye spawning habitat availability in the littoral zone of northern Wisconsin Lakes

    USGS Publications Warehouse

    Richter, Jacob T.; Sloss, Brian L.; Isermann, Daniel A.

    2016-01-01

    Previous research has generally ignored the potential effects of spawning habitat availability and quality on recruitment of Walleye Sander vitreus, largely because information on spawning habitat is lacking for many lakes. Furthermore, traditional transect-based methods used to describe habitat are time and labor intensive. Our objectives were to determine if side-scan sonar could be used to accurately classify Walleye spawning habitat in the nearshore littoral zone and provide lakewide estimates of spawning habitat availability similar to estimates obtained from a transect–quadrat-based method. Based on assessments completed on 16 northern Wisconsin lakes, interpretation of side-scan sonar images resulted in correct identification of substrate size-class for 93% (177 of 191) of selected locations and all incorrect classifications were within ± 1 class of the correct substrate size-class. Gravel, cobble, and rubble substrates were incorrectly identified from side-scan images in only two instances (1% misclassification), suggesting that side-scan sonar can be used to accurately identify preferred Walleye spawning substrates. Additionally, we detected no significant differences in estimates of lakewide littoral zone substrate compositions estimated using side-scan sonar and a traditional transect–quadrat-based method. Our results indicate that side-scan sonar offers a practical, accurate, and efficient technique for assessing substrate composition and quantifying potential Walleye spawning habitat in the nearshore littoral zone of north temperate lakes.

  9. Seasonal distribution of vitamin B12 in Lake Kinneret.

    PubMed Central

    Cavari, B; Grossowicz, N

    1977-01-01

    Vitamin B12 is formed in Lake Kinneret in the hypolimnion and in the sediment. The highest value of B12 recorded in the lake water was about 100 ng/liter in November and December of 1975 at a 40-m depth. The vitamin was liberated from the hypolimnion during the turnover period. This supply of the vitamin to the photic zone was accompanied by increasing biomass of Dinoflagellates, Bacillariophyta, and Chlorophyta. The decrease in the vitamin concentration, followed by an increase, is correlated with a decline and subsequent rise in the algal biomass, respectively. Cyanophyta biomass, on the other hand, increased when the vitamin concentration in the photic zone was at its lowest level. PMID:907339

  10. 33 CFR 110.79b - Millers Bay, Lake Winnebago, Oshkosh, WI

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Millers Bay, Lake Winnebago, Oshkosh, WI 110.79b Section 110.79b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79b Millers Bay, Lake Winnebago...

  11. 33 CFR 110.79b - Millers Bay, Lake Winnebago, Oshkosh, WI.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Millers Bay, Lake Winnebago, Oshkosh, WI. 110.79b Section 110.79b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79b Millers Bay, Lake Winnebago...

  12. 33 CFR 110.80a - Lake Macatawa, Mich.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lake Macatawa, Mich. 110.80a Section 110.80a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80a Lake Macatawa, Mich. An area located on the south...

  13. 33 CFR 110.80a - Lake Macatawa, Mich.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lake Macatawa, Mich. 110.80a Section 110.80a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80a Lake Macatawa, Mich. An area located on the south...

  14. 33 CFR 110.79b - Millers Bay, Lake Winnebago, Oshkosh, WI

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Millers Bay, Lake Winnebago, Oshkosh, WI 110.79b Section 110.79b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79b Millers Bay, Lake Winnebago...

  15. 33 CFR 110.79b - Millers Bay, Lake Winnebago, Oshkosh, WI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Millers Bay, Lake Winnebago, Oshkosh, WI. 110.79b Section 110.79b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79b Millers Bay, Lake Winnebago...

  16. 33 CFR 110.80a - Lake Macatawa, Mich.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lake Macatawa, Mich. 110.80a Section 110.80a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80a Lake Macatawa, Mich. An area located on the south...

  17. 33 CFR 110.80a - Lake Macatawa, Mich.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lake Macatawa, Mich. 110.80a Section 110.80a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80a Lake Macatawa, Mich. An area located on the south...

  18. 33 CFR 110.79b - Millers Bay, Lake Winnebago, Oshkosh, WI

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Millers Bay, Lake Winnebago, Oshkosh, WI 110.79b Section 110.79b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79b Millers Bay, Lake Winnebago...

  19. 33 CFR 110.80a - Lake Macatawa, Mich.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lake Macatawa, Mich. 110.80a Section 110.80a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80a Lake Macatawa, Mich. An area located on the south...

  20. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes. ...

  1. 46 CFR 188.10-39 - Lakes, bays, and sounds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Lakes, bays, and sounds. 188.10-39 Section 188.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-39 Lakes, bays, and sounds. Under this...

  2. 46 CFR 188.10-39 - Lakes, bays, and sounds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Lakes, bays, and sounds. 188.10-39 Section 188.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-39 Lakes, bays, and sounds. Under this...

  3. 46 CFR 188.10-39 - Lakes, bays, and sounds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Lakes, bays, and sounds. 188.10-39 Section 188.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-39 Lakes, bays, and sounds. Under this...

  4. 46 CFR 117.207 - Survival craft-vessels operating on lakes, bays, and sounds routes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... sounds routes. 117.207 Section 117.207 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Survival craft—vessels operating on lakes, bays, and sounds routes. (a) Each vessel with overnight accommodations certificated to operate on a lakes, bays, and sounds route must be provided with inflatable...

  5. 46 CFR 117.207 - Survival craft-vessels operating on lakes, bays, and sounds routes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... sounds routes. 117.207 Section 117.207 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Survival craft—vessels operating on lakes, bays, and sounds routes. (a) Each vessel with overnight accommodations certificated to operate on a lakes, bays, and sounds route must be provided with inflatable...

  6. 46 CFR 117.207 - Survival craft-vessels operating on lakes, bays, and sounds routes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sounds routes. 117.207 Section 117.207 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Survival craft—vessels operating on lakes, bays, and sounds routes. (a) Each vessel with overnight accommodations certificated to operate on a lakes, bays, and sounds route must be provided with inflatable...

  7. 46 CFR 42.05-40 - Great Lakes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Great Lakes. 42.05-40 Section 42.05-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA... North America. (b) As used in this part, the term solely navigating the Great Lakes includes any special...

  8. 46 CFR 42.05-40 - Great Lakes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Great Lakes. 42.05-40 Section 42.05-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA... North America. (b) As used in this part, the term solely navigating the Great Lakes includes any special...

  9. 46 CFR 42.05-40 - Great Lakes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Great Lakes. 42.05-40 Section 42.05-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA... North America. (b) As used in this part, the term solely navigating the Great Lakes includes any special...

  10. 46 CFR 117.207 - Survival craft-vessels operating on lakes, bays, and sounds routes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... sounds routes. 117.207 Section 117.207 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Survival craft—vessels operating on lakes, bays, and sounds routes. (a) Each vessel with overnight accommodations certificated to operate on a lakes, bays, and sounds route must be provided with inflatable...

  11. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes. ...

  12. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes. ...

  13. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes. ...

  14. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes. ...

  15. The Cora Lake Shear Zone: Strain Localization in an Ultramylonitic, Deep Crustal Shear Zone, Athabasca Granulite Terrain, Western Churchill Province, Canada

    NASA Astrophysics Data System (ADS)

    Regan, S.; Williams, M. L.; Mahan, K. H.; Orlandini, O. F.; Jercinovic, M. J.; Leslie, S. R.; Holland, M.

    2012-12-01

    Ultramylonitic shear zones typically involve intense strain localization, and when developed over large regions can introduce considerable heterogeneity into the crust. The Cora Lake shear zone (CLsz) displays several 10's to 100's of meters-wide zones of ultramylonite distributed throughout its full 3-5 km mylonitized width. Detailed mapping, petrography, thermobarometry, and in-situ monazite geochronology suggest that it formed during the waning phases of granulite grade metamorphism and deformation, within one of North America's largest exposures of polydeformed lower continental crust. Anastomosing zones of ultramylonite contain recrystallized grain-sizes approaching the micron scale and might appear to suggest lower temperature mylonitization. However, feldspar and even clinopyroxene are dynamically recrystallized, and quantitative thermobarometry of syn-deformational assemblages indicate high P and T conditions ranging from 0.9 -10.6 GPa and 775-850 °C. Even at these high T's, dynamic recovery and recrystallization were extremely limited. Rocks with low modal quartz have extremely small equilibrium volumes. This is likely the result of inefficient diffusion, which is further supported by the unannealed nature of the crystals. Local carbonate veins suggests that H2O poor, CO2 rich conditions may have aided in the preservation of fine grain sizes, and may have inhibited dynamic recovery and recrystallization. The Cora Lake shear zone is interpreted to have been relatively strong and to have hardened during progressive deformation. Garnet is commonly fractured perpendicular to host rock fabric, and statically replaced by both biotite and muscovite. Pseudotachylite, with the same sense of shear, occurs in several ultramylonitized mafic granulites. Thus, cataclasis and frictional melt are interpreted to have been produced in the lower continental crust, not during later reactivation. We suggest that strengthening of rheologically stiffer lithologies led to extreme localization, and potentially earthquakes in quartz-absent hardened lithologies. Cora Lake shearing represents the culmination of a deformation trend of increasing strength, strain partitioning, and localization within a polydeformed, strengthened lower continental crust.

  16. 76 FR 12 - Security Zone; On the Waters in Kailua Bay, Oahu, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2010-1111] RIN 1625-AA87 Security Zone; On the Waters in Kailua Bay, Oahu, HI AGENCY: Coast Guard, DHS. ACTION: Temporary..., Oahu, HI. (a) Location. The following area, within the Honolulu Captain of the Port Zone (See 33 CFR 3...

  17. 76 FR 80251 - Security Zone; On the Waters in Kailua Bay, Oahu, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2011-1142] RIN 1625-AA87 Security Zone; On the Waters in Kailua Bay, Oahu, HI AGENCY: Coast Guard, DHS. ACTION: Temporary..., HI. (a) Location. The following area, within the Honolulu Captain of the Port Zone (See 33 CFR 3.70...

  18. 78 FR 79312 - Security Zone; On the Waters in Kailua Bay, Oahu, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket Number USCG-2013-0934] RIN 1625-AA87 Security Zone; On the Waters in Kailua Bay, Oahu, HI AGENCY: Coast Guard, DHS. ACTION..., Oahu, HI. (a) Location. The following area, within the COTP Honolulu Zone (see 33 CFR 3.70-10), from...

  19. 33 CFR 165.511 - Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its tributaries. 165.511 Section 165.511... Limited Access Areas Fifth Coast Guard District § 165.511 Security Zone; Atlantic Ocean, Chesapeake...

  20. 33 CFR 165.552 - Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey. 165.552 Section 165.552 Navigation and Navigable... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean...

Top