Sample records for sediment basins

  1. Estimation of sediments in urban drainage areas and relation analysis between sediments and inundation risk using GIS.

    PubMed

    Moojong, Park; Hwandon, Jun; Minchul, Shin

    2008-01-01

    Sediments entering the sewer in urban areas reduce the conveyance in sewer pipes, which increases inundation risk. To estimate sediment yields, individual landuse areas in each sub-basin should be obtained. However, because of the complex nature of an urban area, this is almost impossible to obtain manually. Thus, a methodology to obtain individual landuse areas for each sub-basin has been suggested for estimating sediment yields. Using GIS, an urban area is divided into sub-basins with respect to the sewer layout, with the area of individual landuse estimated for each sub-basin. The sediment yield per unit area for each sub-basin is then calculated. The suggested method was applied to the GunJa basin in Seoul. For a relation analysis between sediments and inundation risk, sub-basins were ordered by the sediment yields per unit area and compared with historical inundation areas. From this analysis, sub-basins with higher order were found to match the historical inundation areas. Copyright IWA Publishing 2008.

  2. Characterization of the efficiency of sedimentation basins downstream of harvested peat bogs

    NASA Astrophysics Data System (ADS)

    Samson-Do, Myriam; St-Hilaire, André

    2015-04-01

    Peat harvesting is a very lucrative industry in the provinces of Quebec and New-Brunswick (Canada). Peat enters in many potting mix used for horticulture. However, harvesting this resource has some impacts on the environment. First, industries need to drain the peat bog to dry the superficial layer. Then, it is harvested with industrial vacuums and the underlying layer is allowed to dry. The drained water is laden with suspended sediments (mostly organic peat fibers) that may affect biota of the stream where it is discharged. To counter the problem, this water does not go directly on the stream but first flows through a sedimentation basin, built to reduce suspended sediment loads. This work focuses on characterizing and eventually modeling the efficiency of those sedimentation basins. Seven basins were studied in Rivière-du-Loup, St-Valère and Escoumins (Quebec, Canada). They each have a different ratio basin area/drained area (4.7 10-4 to 20.3 10-4). To continuously monitor the sediment loads (calculated from sediment concentrations and discharge) entering and leaving basins, a nephelometer and a level logger were installed in the water column upstream and downstream of sedimentation basins. Their trapping efficiency was measured during the ice-free period (May to October) and for each significant rain event, since it is known that the rain and subsequent runoff induce most of the peat transport in and out of the basin. Results show that the event efficiency decreases as the basin is filled up with trapped sediments. For one basin, the efficiency was 85August. Trapping efficiency can be used as a tool to estimate basin dimensions. This has been done for municipal sedimentation ponds that trap minerals and will be adapted to the current context, where the dominant sediment is organic.

  3. Paleogeography of the upper Paleozoic basins of southern South America: An overview

    NASA Astrophysics Data System (ADS)

    Limarino, Carlos O.; Spalletti, Luis A.

    2006-12-01

    The paleogeographic evolution of Late Paleozoic basins located in southern South America is addressed. Three major types of basins are recognized: infracratonic or intraplate, arc-related, and retroarc. Intraplate basins (i.e., Paraná, Chaco-Paraná, Sauce Grande-Colorado, and La Golondrina) are floored by continental or quasi-continental crust, with low or moderate subsidence rates and limited magmatic and tectonic activity. Arc-related basins (northern and central Chile, Navidad-Arizaro, Río Blanco, and Calingasta-Uspallata basins and depocenters along Chilean Patagonia) show a very complex tectonic history, widespread magmatic activity, high subsidence rates, and in some cases metamorphism of Late Paleozoic sediments. An intermediate situation corresponds to the retroarc basins (eastern Madre de Dios, Tarija, Paganzo, and Tepuel-Genoa), which lack extensive magmatism and metamorphism but in which coeval tectonism and sedimentation rates were likely more important than those in the intraplate region. According to the stratigraphic distribution of Late Paleozoic sediments, regional-scale discontinuities, and sedimentation pattern changes, five major paleogeographic stages are proposed. The lowermost is restricted to the proto-Pacific and retroarc basins, corresponds to the Mississippian (stage 1), and is characterized by shallow marine and transitional siliciclastic sediments. During stage 2 (Early Pennsylvanian), glacial-postglacial sequences dominated the infracratonic (or intraplate) and retroarc basins, and terrigenous shallow marine sediments prevailed in arc-related basins. Stage 3 (Late Pennsylvanian-Early Cisuralian) shows the maximum extension of glacial-postglacial sediments in the Paraná and Sauce Grande-Colorado basins (intraplate region), whereas fluvial deposits interfingering with thin intervals of shallow marine sediments prevailed in the retroarc basins. To the west, arc-related basins were dominated by coastal to deep marine conditions (including turbiditic successions). In the Late Cisuralian (stage 4), important differences in sedimentation patterns are registered for the western arc-related basins and eastern intraplate basins. The former were locally dominated by volcaniclastic sediments or marine deposits, and the intraplate basins are characterized by shallow marine conditions punctuated by several episodes of deltaic progradation. Finally, in the Late Permian (stage 5), volcanism and volcaniclastic sedimentation dominated in basins located along the western South American margin. The intraplate basins in turn were characterized by T-R cycles composed of shallow marine, deltaic, and fluvial siliciclastic deposits.

  4. Prediction method of sediment discharge from forested basin

    Treesearch

    Kazutoki Abe; Ushio Kurokawa; Robert R. Ziemer

    2000-01-01

    An estimation model for sediment discharge from a forested basin using Universal Soil Loss Equation and delivery ratio was developed. Study basins are North fork and South fork in Caspar Creek, north California, where Forest Service, USDA has been using water and sediment discharge from both basins since 1962. The whole basin is covered with the forest, mainly...

  5. Toxicity of water and sediment from stormwater retarding basins to Hydra hexactinella.

    PubMed

    Rosenkrantz, Rikke T; Pollino, Carmel A; Nugegoda, Dayanthi; Baun, Anders

    2008-12-01

    Hydra hexactinella was used to assess the toxicity of stormwater and sediment samples from three retarding basins in Melbourne, Australia, using an acute test, a sublethal test, and a pulse test. Stormwater from the Avoca St retarding basins resulted in a LC50 of 613 ml/L, NOEC and LOEC values of 50 ml/L and 100 ml/L, while the 7h pulse exposure caused a significant increase in the mean population growth rate compared to the control. Water samples from the two other retarding basins were found non-toxic to H. hexactinella. This is the first study to employ sediment tests with Hydra spp. on stormwater sediments and a lower population growth rate was observed for organisms exposed to sediment from the Avoca St retarding basins. The behavioral study showed that H. hexactinella tended to avoid the sediment-water interface when exposed to sediment from all retarding basins, compared to the reference sediment. Further work is needed to determine the long-term effects of stormwater polluted sediments and acute effects due to organism exposure to short-term high concentrations during rain events.

  6. Controls and variability of solute and sedimentary fluxes in Arctic and sub-Arctic Environments

    NASA Astrophysics Data System (ADS)

    Dixon, John

    2015-04-01

    Six major factors consistently emerge as controls on the spatial and temporal variability in sediment and solute fluxes in cold climates. They are climatic, geologic, physiographic or relief, biologic, hydrologic, and regolith factors. The impact of these factors on sediment and solute mass transfer in Arctic and sub-Arctic environments is examined. Comparison of non-glacierized Arctic vs. subarctic drainage basins reveals the effects of these controls. All drainage basins exhibit considerable variability in rates of sediment and solute fluxes. For the non-glacierized drainage basins there is a consistent increase in sediment mass transfer by slope processes and fluvial processes as relief increases. Similarly, a consistent increase in sediment mass transfer by slope and fluvial processes is observed as total precipitation increases. Similar patterns are also observed with respect to solute transport and relief and precipitation. Lithologic factors are most strongly observed in the contrast between volcanic vs. plutonic igneous bedrock substrates. Basins underlain by volcanic rocks display greater mass transfers than those underlain by plutonic rocks. Biologic influences are most strongly expressed by variations in extent of vegetation cover and the degree of human interference, with human impacted basins generating greater fluxes. For glacierized basins the fundamental difference to non-glacierized basins is an overall increase in mean annual mass transfers of sediment and a generally smaller magnitude solute transfer. The principal role of geology is observed with respect to lithology. Catchments underlain by limestone demonstrate substantially greater solute mass transfers than sediment transfer. The influence of relief is seen in the contrast in mass transfers between upland and lowland drainage basins with upland basins generating greater sediment and solute transfers than lowland basins. For glacierized basins the effects of biology and regolith appear to be largely overridden by the hydrologic impacts of glacierization.

  7. Feedbacks of sedimentation on crustal heat flow - New insights from the Vøring Basin, Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Theissen, S.; Ruepke, L. H.

    2009-04-01

    Information on the nature and origin of rift basins is preserved in the presently observed stratigraphy. Basin modeling aims at recovering this information with the goal of quantifying a basin's structural and thermal evolution. Decompaction and backstripping analysis is a classic and still popular approach to basin reconstruction [Steckler and Watts, 1978]. The total and tectonic subsidences, as well as sedimentation rates are calculated by the consecutive decompaction and removal of individual layers. The thermal history has to be computed separately using forward thermal models. An alternative is coupled forward modeling, where the structural and thermal history is computed simultaneously. A key difference between these reconstruction methods is that feedbacks of sedimentation on crustal heat flow are often neglected in backstripping methods. In this work we use the coupled basin modeling approach presented by Rüpke et al. [2008] to quantify some of the feedbacks between sedimentation and heat flow and to explore the differences between both reconstruction approaches in a case study from the Vøring Basin, Norwegian Sea. In a series of synthetic model runs we have reviewed the effects of sedimentation on basement heat flow. These example calculations clearly confirm the well-known blanketing effect of sedimentation and show that it is largest for high sedimentation rates. Recovery of sedimentation rates from the stratigraphy is, however, not straightforward. Decompaction-based methods may systematically underestimate sedimentation rates as sediment thickness is assumed to not change/thin during stretching. We present a new method for computing sedimentation rates based on forward modeling and demonstrate the differences between both methods in terms of rates and thermal feedbacks in a reconstruction of the Vøring basin (Euromargin transect 2). We find that sedimentation rates are systematically higher in forward models and heat flow is clearly depressed during times of high sedimentation. In addition, computed subsidence curves can differ significantly between backtripping and forward modeling methods. This shows that integrated basin modeling is important for improved reconstructions of sedimentary basins and passive margins. Rupke, L. H., et al. (2008), Automated thermotectonostratigraphic basin reconstruction: Viking Graben case study, AAPG Bulletin, 92(3), 309-326. Steckler, M. S., and A. B. Watts (1978), SUBSIDENCE OF ATLANTIC-TYPE CONTINENTAL-MARGIN OFF NEW-YORK, Earth and Planetary Science Letters, 41(1), 1-13.

  8. Nature and tectonic implications of uneven sedimentary filling of the South China Sea oceanic basin

    NASA Astrophysics Data System (ADS)

    Yin, Shaoru; Li, Jiabiao; Ding, Weiwei; Fang, Yinxia

    2017-04-01

    The IODP Expedition 349 in 2014, for the first time, illustrated significant differences of sediment rate and lithology in the central South China Sea (SCS) oceanic basin. Based on seismic reflection profiles tied to IODP349 drilling data, we investigated characteristics of sedimentary filling of the whole SCS oceanic basin, and examined their implications for tectonics. Results show that sediments fill the SCS oceanic basin mainly in three depositional patterns. Firstly, during the Oligocene to middle Miocene, sediments amassed almost solely and then connected like a band parallel to the continent in a low average sediment rate (<10 m/Myr) in the northern oceanic basin. These sediments were deposited mainly in the form of submarine fans and mass transport deposits. Sediments were predominately supplied by the Red and Pearl Rivers and the Dongsha Islands. The sedimentary characteristics likely reflect the latest early Miocene end of seafloor spreading of the SCS and the first-phase rapid uplift of the Tibetan Plateau. Secondly, during the late Miocene, deposition mainly occurred in the Northwest Sub-basin and extended southeastward with a middle average sediment rate ( 30 m/Myr). Sediments were mostly transported by the Red River and Xisha Trough and deposited in the form of submarine fans. The abnormal increase of sediment rate in the Northwest Sub-basin reflects late Miocene slip reversal of the Red River Fault. Finally, since the Pliocene, sediments gradually propagated northeastward in the Southwestern Sub-basin, and accumulated rapidly in the southeastern and northeastern basin, especially in the northern Manila Trench during the Quaternary, in an average sediment rate about 60-80 m/Myr. These sediments were transported mainly by submarine canyons and settled in the form of submarine fans and canyon-overbank deposition. Sediments came from four major sources, including Taiwan, Dongsha Islands, Mekong River, and northern Palawan. The Pliocene to Quaternary explosion of uneven sedimentary filling in the SCS oceanic basin points to the combined action of local and regional tectonics, including the two-phase rapid uplift of the Tibetan Plateau, the Pliocene to Quaternary increased northwestward movement of the Philippine Sea plate and Dongsha event. This study exhibits hitherto most completed observation of sedimentary filling of the SCS oceanic basin and provides new geophysical evidences for the local and regional important tectonics.

  9. Computational fluid dynamics modelling of flow and particulate contaminants sedimentation in an urban stormwater detention and settling basin.

    PubMed

    Yan, Hexiang; Lipeme Kouyi, Gislain; Gonzalez-Merchan, Carolina; Becouze-Lareure, Céline; Sebastian, Christel; Barraud, Sylvie; Bertrand-Krajewski, Jean-Luc

    2014-04-01

    Sedimentation is a common but complex phenomenon in the urban drainage system. The settling mechanisms involved in detention basins are still not well understood. The lack of knowledge on sediment transport and settling processes in actual detention basins is still an obstacle to the optimization of the design and the management of the stormwater detention basins. In order to well understand the sedimentation processes, in this paper, a new boundary condition as an attempt to represent the sedimentation processes based on particle tracking approach is presented. The proposed boundary condition is based on the assumption that the flow turbulent kinetic energy near the bottom plays an important role on the sedimentation processes. The simulated results show that the proposed boundary condition appears as a potential capability to identify the preferential sediment zones and to predict the trapping efficiency of the basin during storm events.

  10. Sediment Flux from Source to Sink in the Brazos-Trinity Depositional System

    NASA Astrophysics Data System (ADS)

    Pirmez, C.; Prather, B. E.; Droxler, A.; Ohayer, W.

    2007-12-01

    During the Late Pleistocene a series of intra-slope basins offshore Texas in the Western Gulf of Mexico, received a high influx of clastic sediments derived primarily from the Brazos, Trinity, and Mississippi rivers. Sediment failures initiated at shelf edge deltas resulted in mass flows that negotiate a complex slope and basin topography caused by salt tectonics. Sediment locally fill ponded basins eventually spilling into subsequent basins downstream. Interaction between these flows and slope topography leads to a complex partitioning of sediment over time and space that can only be unraveled with high-resolution data. The availability of system-wide coverage with conventional 3d seismic surveys, a dense grid of high-resolution 2d seismic lines and cored wells from two of the four linked intraslope basins, makes this locale an ideal area to investigate the transfer of sediment across the continental margin, from river sources to the ultimate sink within an enclosed intraslope basin. Data from IODP Expedition 308 and industry wells, combined with data from previous studies on the shelf constrain an integrated seismic stratigraphic framework for the depositional system. Numerous radiocarbon age dates coupled with multiple stratigraphic tools (seismic-, bio-, and tephra correlations and oxygen isotope measurements) provide an unprecedented high-resolution chronology that allow for detailed estimation of sedimentation rates in this turbidite system and calculation of sediment volumes in each of the basins over time intervals of a few millennia during the late Pleistocene. We find that rates of sedimentation exceed 10 m/kyr during some periods of ultra-fast turbidite accumulation. Rates of channel incision and tectonic subsidence can also be calculated and are comparable to the rapid accumulation rates measured in the basin fill. Our observations indicate that while sealevel changes exert a first order control on delivery of sediment to the basins, the sedimentary record suggests that delta dynamics, basin tectonics and the interaction between gravity flows and basin topography are equally important in determining the distribution of sediments in time and space along this depositional system.

  11. 230Th in the Eastern Equatorial Pacific Panama Basin

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Marcantonio, F.; Lyle, M.

    2008-12-01

    In the Panama Basin, higher glacial sediment mass accumulation rates (MARs), determined using oxygen isotope stratigraphy, have been suggested to be due to high surface water primary productivity [1]. More recently, however, the 230Th normalization method suggests that higher glacial sediment fluxes are due to sediment focusing by deep-ocean currents (e.g., [2]). Moreover, the 230Th inventory suggests that lateral advection of marine sediment in the Panama Basin is 2-4 times greater than the vertical flux, provided that the sediment is unfractionated by lateral transport. Differentiating between these two models of MARs is crucial to our understanding of the response of sedimentation to changes in climate, and how sediments record paleoceanographic information. Assuming that the 230Th model is correct, downslope transport of sediment from the top of the Carnegie ridge (an aseismic ridge that forms the southern boundary of the Panama Basin) may be the source of extra 230Th [2]. Previous geophysical studies also suggest that sediment focusing is a common phenomenon in the Panama Basin [3]. Here, we test the sediment redistribution hypothesis by measuring 230Th in cores located near the tops of the Carnegie ridge and other ridges that bound the Panama Basin (e.g., Cocos). If ridge tops are the source of sediment to the basin, then we expect the 230Th systematics to indicate focusing factors that are less than 1 there. An analysis of the mass balance of 230Th within the Panama Basin will be presented. [1] Lyle et al. 2002, Paleoceanography 17(2), 1013. [2] Kienast et al. 2007, Paleoceanography 22, 2213[3] Lonsdale and Malfait, 1974, Geol. Soc. Am. Bull., 85, 1697-1712

  12. Sediment compaction in deepwater basin of the South China Sea: estimation from ODP 184 and IODP 349 drilling well data.

    NASA Astrophysics Data System (ADS)

    Tuoyu, W.; Xie, Y.

    2017-12-01

    Abnormal compaction in deepwater basins not only cause serious soft sediment deformation, but also significantly affect the safety of the drilling campaign. Therefore, study the compaction condition in the sediments would be an important task in the deepwater basin and associate with the environment variation. We analyze the drilling data from the ODP Leg 184 Site 1144, 1146, 1148 and the IODP Leg 349 Site U1431, U1432, U1433, U1435 to study the sediment compaction and controls in the northern South China Sea. We have found the sedimentation rate, sediment content, distribution area and buried depth control the sediment compaction in deepwater basin of the South China Sea. Among all the factors, the sediment content is the most important factor. The fitted normal compacted coefficients and the mudline porosity for interval 50 m shows disciplinary variation versus depth. The pore pressure predicted from different fitted results shows different overpressure situation. The normal compaction trend from Site 1144 reflects the porosity variation trend in stable deposition basins in the northern South China Sea. The predicted pore pressure shows overpressure at Site 1144, which is attributed to compaction disequilibrium. Nevertheless, the mixed lithology column may influence the predicted overpressure at Site 1148, which is responsible for the confusing result. Above all. we find that sediment compaction should be act as a proxy for pore pressure in the deepwater basin of the South China Sea. The study will help us to nature of sedimentation in the deepwater basin set up and can be used as analog for older sediments deposited in the similar kind of depositional environment in deepwater basin of the South China Sea.

  13. Spatial scale effect on sediment dynamics in basin-wide floods within a typical agro-watershed: A case study in the hilly loess region of the Chinese Loess Plateau.

    PubMed

    Zhang, Le-Tao; Li, Zhan-Bin; Wang, Shan-Shan

    2016-12-01

    Scale issues, which have been extensively studied in the domain of soil erosion, are considerably significant in geomorphologic processes and hydrologic modelling. However, relatively scarce efforts have been made to quantify the spatial scale effect on event-based sediment dynamics in basin-wide floods. To address this issue, sediment-runoff yield data of 44 basin-wide flood events were collected from gauging stations at the Chabagou river basin, a typical agro-basin (unmanaged) in the hilly loess region of the Chinese Loess Plateau. Thus, the spatial scale effect on event-based sediment dynamics was investigated in the basin system across three different spatial scales from sublateral to basin outlet. Results showed that the event-based suspended sediment concentration, as well as the intra- and inter-scale flow-sediment relationships remained spatially constant. Hence, almost all the sediment-laden flows can reach at the detachment-limited maximum concentration across scales, specifically for hyperconcentrated flows. Consequently, limited influence was exerted by upstream sediment-laden flow on downstream sediment output, particularly for major sediment-producing events. However, flood peak discharge instead of total flood runoff amount can better interpret the dynamics of sediment yield across scales. As a composite parameter, the proposed stream energy factor combines flood runoff depth and flood peak discharge, thereby showing more advantages to describe the event-based inter-scale flow-sediment relationship than other flow-related variables. Overall, this study demonstrates the process-specific characteristics of soil erosion by water flows in the basin system. Therefore, event-based sediment control should be oriented by the process to cut off the connectivity of hyperconcentrated flows and redistribute the erosive energy of flowing water in terms of temporality and spatiality. Furthermore, evaluation of soil conservation benefits should be based on the process of runoff regulation to comprehensively assess the efficiency of anti-erosion strategies in sediment control at the basin scale. Copyright © 2016. Published by Elsevier B.V.

  14. Observational and numerical particle tracking to examine sediment dynamics in a Mississippi River delta diversion

    NASA Astrophysics Data System (ADS)

    Allison, Mead A.; Yuill, Brendan T.; Meselhe, Ehab A.; Marsh, Jonathan K.; Kolker, Alexander S.; Ameen, Alexander D.

    2017-07-01

    River diversions may serve as useful restoration tools along coastal deltas experiencing land loss due to high rates of relative sea-level rise and the disruption of natural sediment supply. Diversions mitigate land loss by serving as new sediment sources for land building areas in basins proximal to river channels. However, because of the paucity of active diversions, little is known about how diversion receiving-basins evacuate or retain the sediment required to build new land. This study uses observational and numerical particle tracking to investigate the behavior of riverine sand and silt as it enters and passes through the West Bay diversion receiving-basin located on the lowermost Mississippi River delta, USA. Fluorescent sediment tracer was deployed and tracked within the bed sediment over a five-month period to identify locations of sediment deposition in the receiving-basin and nearby river channel. A computational fluid dynamics model with a Lagrangian sediment transport module was employed to predict selective pathways for riverine flow and sand and silt particles through the receiving-basin. Observations of the fluorescent tracer provides snapshots of the integrated sediment response to the full range of drivers in the natural system; the numerical model results offer a continuous map of sediment advection vectors through the receiving basin in response to river-generated currents. Together, these methods provide insight into local and basin-wide values of sediment retention as influenced by grain size, transport time, and basin morphology. Results show that after two weeks of low Mississippi River discharge, basin silt retention was approximately 60% but was reduced to 4% at the conclusion of the study. Riverine sand retention was approximately near 100% at two weeks and 40% over the study period. Modeled sediment storage was predicted to be greatest at the margins of the primary basin transport pathway; this matched the observed dynamics of the silt tracer but did not match the behavior of the sand tracer. The degree to which the observational measurements deviate from the model predictions may indicate the relative influence of physical processes other than the mean riverine generated currents, such as tides, wind generated currents, and waves.

  15. Sediment Transport in Streams in the Umpqua River Basin, Oregon

    USGS Publications Warehouse

    Onions, C. A.

    1969-01-01

    This report presents tables of suspended-sediment data collected from 1956 to 1967 at 10 sites in the Umpqua River basin. Computations based on these data indicate that average annual suspended-sediment yields at these sites range from 137 to 822 tons per square mile. Because available data for the Umpqua River basin are generally inadequate for accurate determinations of sediment yield and for the definition of characteristics of fluvial sediments, recommendations are made for the collection and analysis of additional sediment data.

  16. Contemporary suspended sediment dynamics within two partly glacierized mountain drainage basins in western Norway (Erdalen and Bødalen, inner Nordfjord)

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Laute, Katja; Storms, Joep E. A.

    2017-06-01

    This paper focuses on environmental controls, spatiotemporal variability and rates of contemporary fluvial suspended sediment transport in the neighboring, partly glacierized and steep Erdalen (79.5 km2) and Bødalen (60.1 km2) drainage basins in the fjord landscape of the inner Nordfjord in western Norway. Field work, including extended samplings and measurements, was conducted since 2004 in Erdalen and since 2008 in Bødalen. The distinct intra- and inter-annual temporal variability of suspended sediment transport found is mostly controlled by meteorological events, with most suspended sediment transport occurring during pluvial events in autumn (September-November), followed by mostly thermally determined glacier melt in summer (July-August), and by mostly thermally determined snowmelt in spring (April-June). Extreme rainfall events (> 70 mm d- 1) in autumn can trigger significant debris-flow activity that can cause significant transfers of suspended sediments from ice-free surface areas with sedimentary covers into main stream channels and is particularly important for fluvial suspended sediment transport. In years with occurring relevant debris-flow activity the total annual drainage-basin wide suspended sediment yields are strongly determined by these single extreme events. The proportion of glacier coverage, followed by steepness of slopes, and degree of vegetation cover in ice-free surface areas with sedimentary covers are the main controls for the detected spatial variability of suspended sediment yields. The contemporary sediment supply from glacierized surface areas and the Jostedalsbreen ice cap through different defined outlet glaciers shows a high spatial variability. The fact that the mean annual suspended sediment yield of Bødalen is with 31.3 t km- 2 yr- 1 almost twice as high as the mean annual suspended sediment yield of Erdalen (16.4 t km- 2 yr- 1) is to a large extent explained by the higher proportion of glacier coverage in Bødalen (38% of the drainage basin surface area) as compared to Erdalen (18% of the drainage basin surface area) and by a significantly higher sediment yield from the glacierized area of the Bødalen drainage basin compared to the glacierized surface area in Erdalen. When looking at the total annual mass of suspended sediments being fluvially exported from both entire drainage basin systems, the total amount of suspended sediments coming from the ice-free drainage basin surface areas altogether dominates over the total amount of suspended sediments coming from the glacierized surface area of both drainage basins. Drainage-basin wide annual suspended sediment yields are rather low when compared with yields of other partly glacierized drainage basin systems in Norway and in other cold climate environments worldwide, which is mainly due to the high resistance of the predominant gneisses towards glacial erosion and weathering, the altogether only small amounts of sediments being available within the entire drainage basin systems, the stable and nearly closed vegetation cover in the ice-free surface areas with sedimentary covers, and the efficiency of proglacial lakes in trapping sediments supplied by defined outlet glaciers. Both contemporary and long-term suspended sediment yields are altogether supply-limited. Contemporary suspended sediment transport accounts for nearly two-thirds of the total fluvial transport and, accordingly, plays an important role within the sedimentary budgets of the entire Erdalen and Bødalen drainage basins.

  17. Sediment Loads and Yield, and Selected Water-Quality Parameters in Clear Creek, Carson City and Douglas County, Nevada, Water Years 2004-07

    USGS Publications Warehouse

    Seiler, Ralph L.; Wood, James L.

    2009-01-01

    Some reaches of Clear Creek above U.S. Highway 395 have experienced severe erosion as a result of fires, extreme precipitation events, and past and current human activities in the basin. Previous evaluations of erosion in the basin have concluded that most of the sediment produced and transported in the basin was associated with U.S. Highway 50, a four-lane highway that roughly parallels Clear Creek through much of the basin. During this study (water years 2004-07), construction of roads and a large residential area and golf course in the area began and are likely to affect water quality and sediment transport in the basin. Sediment data were collected between October 2003 and September 2007 (water years 2004-07) from three sites along Clear Creek. Annual suspended-sediment load was estimated to range from 1,456 tons in water year 2006 to only 100 tons in water year 2004, which corresponds to suspended-sediment yields of 93.9 tons per square mile per year in 2006 to 6.4 tons per square mile per year in 2004. In water year 2006, the suspended-sediment load on December 31, 2005, alone exceeded the combined annual load for water years 2004, 2005, and 2007. Bedload sediment was estimated to comprise 73 percent of total sediment load in the creek. Mean annual suspended-sediment yield in Clear Creek basin was much greater than yields in the Logan House, Edgewood, and Glenbrook Creek basins in the adjacent Lake Tahoe basin. Comparison of data collected during this study with data collected by university researchers in the 1970s is inconclusive as to whether fundamental changes in basin sediment characteristics have occurred during the 30-year period because different methods and sampling locations were used in the earlier studies.

  18. Event sedimentation in low-latitude deep-water carbonate basins, Anegada passage, northeast Caribbean

    USGS Publications Warehouse

    Chaytor, Jason D.; ten Brink, Uri S.

    2015-01-01

    The Virgin Islands and Whiting basins in the Northeast Caribbean are deep, structurally controlled depocentres partially bound by shallow-water carbonate platforms. Closed basins such as these are thought to document earthquake and hurricane events through the accumulation of event layers such as debris flow and turbidity current deposits and the internal deformation of deposited material. Event layers in the Virgin Islands and Whiting basins are predominantly thin and discontinuous, containing varying amounts of reef- and slope-derived material. Three turbidites/sandy intervals in the upper 2 m of sediment in the eastern Virgin Islands Basin were deposited between ca. 2000 and 13 600 years ago, but do not extend across the basin. In the central and western Virgin Islands Basin, a structureless clay-rich interval is interpreted to be a unifite. Within the Whiting Basin, several discontinuous turbidites and other sand-rich intervals are primarily deposited in base of slope fans. The youngest of these turbidites is ca. 2600 years old. Sediment accumulation in these basins is low (−1) for basin adjacent to carbonate platform, possibly due to limited sediment input during highstand sea-level conditions, sediment trapping and/or cohesive basin walls. We find no evidence of recent sediment transport (turbidites or debris flows) or sediment deformation that can be attributed to the ca. M7.2 1867 Virgin Islands earthquake whose epicentre was located on the north wall of the Virgin Islands Basin or to recent hurricanes that have impacted the region. The lack of significant appreciable pebble or greater size carbonate material in any of the available cores suggests that submarine landslide and basin-wide blocky debris flows have not been a significant mechanism of basin margin modification in the last several thousand years. Thus, basins such as those described here may be poor recorders of past natural hazards, but may provide a long-term record of past oceanographic conditions in ocean passages.

  19. Three depositional states and sedimentary processes of the western Taiwan foreland basin system

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Jung; Wu, Pei-Jen; Yu, Ho-Shing

    2010-05-01

    The western Taiwan foreland basin formed during the Early Pliocene as the flexural response to the loading of Taiwan orogen on the Eurasian plate. What makes Taiwan interesting is the oblique collision, which allows the foreland basin to be seen at different stages in its evolution at the present day. Due to oblique arc-continent collision from north to south, the western Taiwan foreland basin has evolved into three distinct subbasins: an over-filled basin proximal to the Taiwan orogen, mainly distributed in the Western Foothills and Coastal Plain provinces, a filled basin occupying the shallow Taiwan Strait continental shelf west of the Taiwan orogen and an under-filled basin distal to the Taiwan orogen in the deep marine Kaoping Slope offshore southwest Taiwan, respectively. The over-filled depositional phase is dominated by fluvial environments across the structurally controlled piggy-back basins. The filled depositional state in the Taiwan Strait is characterized by shallow marine environments and is filled by Pliocene-Quaternary sediments up to 4,000 m thick derived from the Taiwan orogen with an asymmetrical and wedge-shaped cross section. The under-filled depositional state is characteristic of deep marine environments in the wedge-top basins accompanied by active structures of thrust faults and mud diapers. Sediments derived from the Taiwan orogen have progressively filled the western Taiwan foreland basin across and along the orogen. Sediment dispersal model suggests that orogenic sediments derived from oblique dischronous collisional highlands are transported in two different ways. Transport of fluvial and shallow marine sediments is perpendicular to hill-slope and across-strike in the fluvial and shallow marine environments proximal to the orogen. Fine-grained sediments mainly longitudinally transported into the deep marine environments distal to the orogen. The present sedimentary processes in the over-filled basin on land are dominated by fluvial processes of small mountainous rivers. Tidal currents are prevalent in the filled basin in Taiwan Strait, transporting shelf sands and forming sand ridges. The deep marine under-filled basin are dominated by down-slope mass wasting processes, eroding slope strata and transporting sediments to the basin floor. In addition, many submarine canyons on the continental slope offshore southwest Taiwan serve as major sediment pathways, delivering shallow marine sediments to the basin floor.

  20. Forearc Basin Stratigraphy and Interactions With Accretionary Wedge Growth According to the Critical Taper Concept

    NASA Astrophysics Data System (ADS)

    Noda, Atsushi

    2018-03-01

    Forearc basins are important constituents of sediment traps along subduction zones; the basin stratigraphy records various events that the basin experienced. Although the linkage between basin formation and accretionary wedge growth suggests that mass balance exerts a key control on their evolution, the interaction processes between basin and basement remain poorly understood. This study performed 2-D numerical simulations in which basin stratigraphy was controlled by changes in sediment fluxes with accretionary wedge growth according to the critical taper concept. The resultant stratigraphy depended on the degree of filling (i.e., whether the basin was underfilled or overfilled) and the volume balance between the sediment flux supplied to the basin from the hinterland and the accommodation space in the basin. The trenchward progradation of deposition with onlapping contacts on the trenchside basin floor occurred during the underfilled phase, which formed a wedge-shaped sedimentary unit. In contrast, the landward migration of the depocenter, with the tilting of strata, was characteristic for the overfilled phase. Condensed sections marked stratigraphic boundaries, indicating when sediment supply or accommodation space was limited. The accommodation-limited intervals could have formed during the end of wedge uplift or when the taper angle decreased and possibly associated with the development of submarine canyons as conduits for bypassing sediments from the hinterland. Variations in sediment fluxes and their balance exerted a strong influence on the stratigraphic patterns in forearc basins. Assessing basin stratigraphy could be a key to evaluating how subduction zones evolve through their interactions with changing surface processes.

  1. Middle Pleistocene infill of Hinkley Valley by Mojave River sediment and associated lake sediment: Depositional architecture and deformation by strike-slip faults

    USGS Publications Warehouse

    Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.

    2018-01-01

    Hinkley Valley in the Mojave Desert, near Barstow about 140 km northeast of Los Angeles and midway between Victorville Valley and the Lake Manix basin, contains a thick sedimentary sequence delivered by the Mojave River. Our study of sediment cores drilled in the valley indicates that Hinkley Valley was probably a closed playa basin with stream inflow from four directions prior to Mojave River inflow. The Mojave River deposited thick and laterally extensive clastic wedges originating from the southern valley that rapidly filled much of Hinkley Valley. Sedimentary facies representing braided stream, wetland, delta, and lacustrine depositional environments all are found in the basin fill; in some places, the sequence is greater than 74 m (245 ft) thick. The sediment is dated in part by the presence of the ~631 ka Lava Creek B ash bed low in the section, and thus represents sediment deposition after Victorville basin was overtopped by sediment and before the Manix basin began to be filled. Evidently, upstream Victorville basin filled with sediment by about 650 ka, causing the ancestral Mojave River to spill to the Harper and Hinkley basins, and later to Manix basin.Initial river sediment overran wetland deposits in many places in southern Hinkley Valley, indicating a rapidly encroaching river system. These sediments were succeeded by a widespread lake (“blue” clay) that includes the Lava Creek B ash bed. Above the lake sediment lies a thick section of interlayered stream sediment, delta and nearshore lake sediment, mudflat and/or playa sediment, and minor lake sediment. This stratigraphic architecture is found throughout the valley, and positions of lake sediment layers indicate a successive northward progression in the closed basin. A thin overlapping sequence at the north end of the valley contains evidence for a younger late Pleistocene lake episode. This late lake episode, and bracketing braided stream deposits of the Mojave River, indicate that the river avulsed through the valley, rather than continuing toward Lake Manix, during the late Pleistocene. Two dextral strike-slip fault zones, the Lockhart and the Mt. General, fold and displace the distinctive stratigraphic units, as well as surficial late Pleistocene and Holocene deposits. The sedimentary architecture and the two fault zones provide a framework for evaluating groundwater flow in Hinkley Valley.

  2. Morphodynamics and Sediment connectivity in the Kosi River basin in the Himalaya and their implications for river management

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Mishra, K.; Swrankar, S.; Jain, V.; Nepal, S.; Uddin, K.

    2017-12-01

    Sediment flux of large tropical rivers is strongly influenced by the degree of linkage between the sediments sources and sink (i.e. sediment connectivity). Sediment connectivity, especially at the catchment scale, depends largely on the morphological characteristics of the catchment such as relief, terrain roughness, slope, elevation, stream network density and catchment shape and the combined effects of land use, particularly vegetation. Understanding the spatial distribution of sediment connectivity and its temporal evolution can be useful for the characterization of sediment source areas. Specifically, these areas represent sites of instability and their connectivity influences the probability of sediment transfer at a local scale that will propagate downstream through a feedback system. This paper evaluates the morphodynamics and sediment connectivity of the Kosi basin in Nepal and India at various spatial and temporal scales. Our results provide the first order assessment of the spatial sediment connectivity in terms of the channel connectivity (IC outlet) and source to channel connectivity (IC channel) of the upstream and midstream Kosi basin. This assessment helped in the characterization of sediment dynamics in the complex morphological settings and in a mixed environment. Further, Revised Universal Soil Loss Equation (RUSLE) was used to quantify soil erosion and sediment transport capacity equation is used to quantify sediment flux at each cell basis. Sediment Delivery Ratio (SDR) was calculated for each sub-basin to identify the sediment production and transport capacity limited sub-basin. We have then integrated all results to assess the sediment flux in the Kosi basin in relation to sediment connectivity and the factors controlling the pathways of sediment delivery. Results of this work have significant implications for sediment management of the Kosi river in terms of identification of hotspots of sediment accumulation that will in turn be manifested in morphodynamics of the river in the alluvial reaches.

  3. Status and trends in suspended-sediment discharges, soil erosion, and conservation tillage in the Maumee River basin--Ohio, Michigan, and Indiana

    USGS Publications Warehouse

    Myers, Donna N.; Metzker, Kevin D.; Davis, Steven

    2000-01-01

    The relation of suspended-sediment discharges to conservation-tillage practices and soil loss were analyzed for the Maumee River Basin in Ohio, Michigan, and Indiana as part of the U.S. Geological Survey?s National Water-Quality Assessment Program. Cropland in the basin is the largest contributor to soil erosion and suspended-sediment discharge to the Maumee River and the river is the largest source of suspended sediments to Lake Erie. Retrospective and recently-collected data from 1970-98 were used to demonstrate that increases in conservation tillage and decreases in soil loss can be related to decreases in suspended-sediment discharge from streams. Average annual water and suspended-sediment budgets computed for the Maumee River Basin and its principal tributaries indicate that soil drainage and runoff potential, stream slope, and agricultural land use are the major human and natural factors related to suspended-sediment discharge. The Tiffin and St. Joseph Rivers drain areas of moderately to somewhat poorly drained soils with moderate runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the St. Joseph and Tiffin Rivers represent 29.0 percent of the basin area, 30.7 percent of the average-annual streamflow, and 9.31 percent of the average annual suspended-sediment discharge. The Auglaize and St. Marys Rivers drain areas of poorly to very poorly drained soils with high runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the Auglaize and St. Marys Rivers represent 48.7 percent of the total basin area, 53.5 percent of the average annual streamflow, and 46.5 percent of the average annual suspended-sediment discharge. Areas of poorly drained soils with high runoff potential appear to be the major source areas of suspended sediment discharge in the Maumee River Basin. Although conservation tillage differed in the degree of use throughout the basin, on aver-age, it was used on 55.4 percent of all crop fields in the Maumee River Basin from 1993-98. Conservation tillage was used at relatively higher rates in areas draining to the lower main stem from Defiance to Waterville, Ohio and at relatively lower rates in the St. Marys and Auglaize River Basins, and in areas draining to the main stem between New Haven, Ind. and Defiance, Ohio. The areas that were identified as the most important sediment-source areas in the basin were characterized by some of the lowest rates of conservation tillage. The increased use of conservation tillage was found to correspond to decreases in suspended-sediment discharge over time at two locations in the Maumee River Basin. A 49.8 percent decrease in suspended-sediment discharge was detected when data from 1970-74 were compared to data from 1996-98 for the Auglaize River near Ft. Jennings, Ohio. A decrease in suspended-sediment discharge of 11.2 percent was detected from 1970?98 for the Maumee River at Waterville, Ohio. No trends in streamflow at either site were detected over the period 1970-98. The lower rate of decline in suspended-sediment discharge for the Maumee River at Waterville, Ohio compared to the Auglaize River near Ft. Jennings, may be due to resuspension and export of stored sediments from drainage ditches, stream channels, and flood plains in the large drainage basin upstream from Waterville. Similar findings by other investigators about the capacity of drainage networks to store sediment are supported by this investigation. These findings go undetected when soil loss estimates are used alone to evaluate the effectiveness of conservation tillage. Water-quality data in combination with soil-loss estimates were needed to draw these conclusions. These findings provide information to farmers and soil conservation agents about the ability of conservation tillage to reduce soil erosion and suspended-sediment discharge from the Maumee River Basin.

  4. Sediment yield and runoff frequency of small drainage basins in the Mojave Desert, U.S.A

    USGS Publications Warehouse

    Griffiths, P.G.; Hereford, R.; Webb, R.H.

    2006-01-01

    Sediment yield from small arid basins, particularly in the Mojave Desert, is largely unknown owing to the ephemeral nature of these fluvial systems and long recurrence interval of flow events. We examined 27 reservoirs in the northern and eastern Mojave Desert that trapped sediment from small (< 1 km2) drainage basins on alluvial fans over the past 100 yr, calculated annual sediment yield, and estimated the average recurrence interval (RI) of sediment-depositing flow events. These reservoirs formed where railbeds crossed and blocked channels, causing sediment to be trapped and stored upslope. Deposits are temporally constrained by the date of railway construction (1906-1910), the presence of 137Cs in the reservoir profile (post-1952 sediment), and either 1993, when some basins breached during regional flooding, or 2000-2001, when stratigraphic analyses were performed. Reservoir deposits are well stratified at most sites and have distinct fining-upward couplets indicative of discrete episodes of sediment-bearing runoff. Average RI of runoff events for these basins ranges from 2.6 to 7.3 yr and reflects the incidence of either intense or prolonged rainfall; more than half the runoff events occurred before 1963. A period of above-normal precipitation, from 1905 to 1941, may have increased runoff frequency in these basins. Mean sediment yield (9 to 48 tons km-2 yr-1) is an order of magnitude smaller than sediment yields calculated elsewhere and may be limited by reduced storm intensity, the presence of desert pavement, and shallow gradient of fan surfaces. Sediment yield decreases as drainage area increases, a trend typical of much larger drainage basins where sediment-transport processes constrain sediment yield. Coarse substrate and low-angle slopes of these alluvial fan surfaces likely limit sediment transport capacity through transmission losses and channel storage. ?? 2005 Elsevier B.V. All rights reserved.

  5. Effectiveness of sediment-control techniques used during highway construction in central Pennsylvania

    USGS Publications Warehouse

    Reed, Lloyd A.

    1978-01-01

    A different method for controlling erosion and sediment transport during highway construction was used in each of four adjacent drainage basins in central Pennsylvania. The basins ranged in size from 240 to 490 acres (97 to 198 hectares), and the area disturbed by highway construction in each basin ranged from 20 to 48 acres (8 to 19 hectares). Sediment discharge was measured from each basin for 3 years before construction began and for 2 years during construction. In one of the basins affected by the construction, three offstream ponds were constructed to intercept runoff from the construction area before it reached the stream. In another basin, a large onstream pond was constructed to trap runoff from the construction area after it reached the stream. In a third area, seeding, mulching, and rock dams were used to limit erosion. In the fourth area, no sediment controls were used. The effectiveness of the various sediment-control measures were determined by comparing the sediment loads transported from the basins with sediment controls to those without controls. For most storms the offstream ponds trapped about 60 percent of the sediment that reached them. The large onstream pond had a trap efficiency of about 80 percent, however, it remained turbid and kept the stream flow turbid for long periods following storm periods. Samples of runoff water from the construction area were collected above and below rock dams to determine the reduction in sediment as the flow passed through the device. Rock dams in streams had a trap efficiency of about 5 percent. Seeding and mulching may reduce sediment discharge by 20 percent during construction, and straw bales placed to trap runoff water may reduce sediment loads downstream by 5 percent.

  6. Sedimentation and subsidence patterns in the central and north basins of Lake Baikal from seismic stratigraphy

    USGS Publications Warehouse

    Moore, T.C.; Klitgord, Kim D.; Golmshtok, A.J.; Weber, E.

    1997-01-01

    Comparison of sedimentation patterns, basement subsidence, and faulting histories in the north and central basins of Lake Baikal aids in developing an interbasinal seismic stratigraphy that reveals the early synrift evolution of the central portion of the Baikal rift, a major continental rift system. Although there is evidence that the central and northern rift basins evolved at approximately the same time, their sedimentation histories are markedly different. Primary sediment sources for the initial rift phase were from the east flank of the rift; two major deltas developed adjacent to the central basin: the Selenga delta at the south end and the Barguzin delta at the north end. The Barguzin River system, located at the accommodation zone between the central and north basins, also fed into the southern part of the north basin and facilitated the stratigraphic linkage of the two basins. A shift in the regional tectonic environment in the mid Pliocene(?) created a second rift phase distinguished by more rapid subsidence and sediment accumulation in the north basin and by increased subsidence and extensive faulting in the central basin. The Barguzin delta ceased formation and parts of the old delta system were isolated within the north basin and on Academic Ridge. These isolated deltaic deposits provide a model for the development of hydrocarbon plays within ancient rift systems. In this second tectonic phase, the dominant sediment fill in the deeper and more rapidly subsiding north basin shifted from the flexural (eastern) margin to axial transport from the Upper Angara River at the north end of the basin.

  7. Feast to famine: Sediment supply control on Laramide basin fill

    NASA Astrophysics Data System (ADS)

    Carroll, Alan R.; Chetel, Lauren M.; Elliot Smith, M.

    2006-03-01

    Erosion of Laramide-style uplifts in the western United States exerted an important first-order influence on Paleogene sedimentation by controlling sediment supply rates to adjacent closed basins. During the latest Cretaceous through Paleocene, these uplifts exposed thick intervals of mud-rich Upper Cretaceous foreland basin fill, which was quickly eroded and redeposited. Cretaceous sedimentary lithologies dominate Paleocene conglomerate clast compositions, and the volume of eroded foreland basin strata is approximately twice the volume of preserved Paleocene basin fill. As a result of this sediment oversupply, clastic alluvial and paludal facies dominate Paleocene strata, and are associated with relatively shallow and ephemeral freshwater lake facies. In contrast, large, long-lived, carbonate-producing lakes occupied several of the basins during the Eocene. Basement-derived clasts (granite, quartzite, and other metamorphic rocks) simultaneously became abundant in lower Eocene conglomerate. We propose that Eocene lakes developed primarily due to exposure of erosion-resistant lithologies within cores of Laramide uplifts. The resultant decrease in erosion rate starved adjacent basins of sediment, allowing the widespread and prolonged deposition of organic-rich lacustrine mudstone. These observations suggest that geomorphic evolution of the surrounding landscape should be considered as a potentially important influence on sedimentation in many other interior basins, in addition to more conventionally interpreted tectonic and climatic controls.

  8. Deltaic sedimentation and stratigraphic sequences in post-orogenic basins, Western Greece

    NASA Astrophysics Data System (ADS)

    Piper, David J. W.; Kontopoulos, N.; Panagos, A. G.

    1988-03-01

    Post-orogenic basin sediments in the gulfs of Corinth, Patras and Amvrakia, on the western coast of Greece, occur in four tectonic settings: (1) true graben; (2) simple and complex half graben; (3) shallow half graben associated with the high-angel surface traces of thrust faults; and (4) marginal depressions adjacent to graben in which sediment loading has occurred. Late Quaternary facies distribution has been mapped in all three basins. Sea level changes, interacting with the apparently fortuitous elevation of horsts at basin margins, result in a complex alternation of well-mixed marine, stratified marine, brackish and lacustrine facies. Organic carbon contents of muds are high in all but the well-mixed marine facies. Basin margin slope is the most important determinant of facies distribution. The steep slopes of the Gulf of Corinth half graben result in fan-deltas which deliver coarse sediments in turbidity currents to the deep basin floor. Where gradients are reduced by marginal downwarping (Gulf of Patras) or on the gentle slopes of thrust-related half graben (Gulf of Amvrakia) coarse sediments are trapped on the subaerial delta or the coastal zone, and the fine sediment reaching the basin floor appears derived mainly from muddy plumes during winter floods.

  9. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes increase in the Mississippi and Columbia Basins, whereas fluxes markedly decrease in the Colorado Basin. No consistent pattern in trace element fluxes was detected in the Rio Grande Basin.

  10. An application of excess lead-210 analysis for the study of fine sediment connectivity in a Mediterranean mountain basin with badlands, the Vallcebre research catchments

    NASA Astrophysics Data System (ADS)

    Moreno de las Heras, Mariano; Gallart, Francesc; Latron, Jérôme; Martínez-Carreras, Núria; Ferrer, Laura; Estrany, Joan

    2017-04-01

    Analysis of sediment dynamics in Mediterranean environments is fundamental to basin management, particularly for mountain catchments with badlands, which affect water bodies and freshwater ecosystems. Connectivity has emerged in Environmental and Earth Sciences as an evolution of the sediment delivery concept, providing a useful framework for understanding how sediments are transferred between geomorphic zones of the catchment. This study explores the feasibility of excess lead-210 (210Pbex) to analyse sediment connectivity in a 4-km2 Mediterranean mountain basin with badlands (the Vallcebre research catchments, Eastern Pyrenees) by applying simple 210Pbex mass-balance models for hypothesis generation and experimental testing in the field. Badland surfaces in the basin are weathered by freezing during the winter and are further eroded in summer by the effect of high-intensity storms. The eroded sediments may remain deposited within the catchment streams from months to years. Application of 210Pbex balance models in our basin proposes: (i) a saw-tooth seasonal pattern of badland surface 210Pbex activities (increasing from October to May, and depleted in summer) and (ii) a downstream increase in sediment activity due to fallout lead-210 accumulation in streambed sediment deposits. Both deposited and suspended sediments collected at the Vallcebre catchments showed, in general, low sediment 210Pbex concentrations, illustrating their fresh-rock origin at the badland sites, but also hampering the understanding of sediment 210Pbex patterns due to high measurement uncertainty (particularly for sediments with d50>20µm) and to strong dependence on sediment sampling methodology. Suspended sediment 210Pbex activity reproduced the simulated seasonal activity patterns for the badland surfaces. Contrary to the in-stream transit increases of sediment 210Pbex activity that were predicted by our model simulations, fallout lead-210 concentrations in the suspended sediments decreased towards the basin outlet, suggesting that fine sediment flushing by flooding prevented 210Pbex accumulation in the coarser streambed sediment deposits. These results indicate a high fine-sediment connectivity between the badlands, streams and basin outlet of the Vallcebre catchments, as well as the sequestration and fast transmission of fallout lead-210 by the finest and most dynamic fraction of sediments.

  11. Construction of sediment budgets for drainage basins

    Treesearch

    William E. Dietrich; Thomas Dunne; Neil F. Humphrey; Leslie M. Reid

    1982-01-01

    Abstract - A sediment budget for a drainage basin is a quantitative statement of the rates of production, transport, and discharge of detritus. To construct a sediment budget for a drainage basin, one must integrate the temporal and spatial variations of transport and storage processes. This requires: recognition and quantification of transport processes, recognition...

  12. Relation of waterfowl poisoning to sediment lead concentrations in the Coeur d'Alene River Basin

    USGS Publications Warehouse

    Beyer, W.N.; Audet, D.J.; Heinz, G.H.; Hoffman, D.J.; Day, D.

    2000-01-01

    For many years, waterfowl have been poisoned by lead after ingesting contaminated sediment in the Coeur d'Alene River Basin, in Idaho. Results of studies on waterfowl experimentally fed this sediment were combined with results from field studies conducted in the Basin to relate sediment lead concentration to injury to waterfowl. The first step in the model estimated exposure as the relation of sediment lead concentration to blood lead concentration in mute swans (Cygnus olor), ingesting 22% sediment in a rice diet. That rate corresponded to the 90th percentile of sediment ingestion estimated from analyses of feces of tundra swans (Olor columbianus) in the Basin. Then, with additional laboratory studies on Canada geese (Branta canadensis) and mallards (Anas platyrhynchos) fed the sediment, we developed the general relation of blood lead to injury in waterfowl. Injury was quantified by blood lead concentrations, ALAD (-aminolevulinic acid dehydratase) activity, protoporphyrin concentrations, hemoglobin concentrations, hepatic lead concentrations, and the prevalence of renal nuclear inclusion bodies. Putting the exposure and injury relations together provided a powerful tool for assessing hazards to wildlife in the Basin. The no effect concentration of sediment lead was estimated as 24 mg/kg and the lowest effect level as 530 mg/kg. By combining our exposure equation with data on blood lead concentrations measured in moribund tundra swans in the Basin, we estimated that some mortality would occur at a sediment lead concentration as low as 1800 mg/kg.

  13. Evaluating sediment capture rates for different sediment basin designs.

    DOT National Transportation Integrated Search

    2007-08-01

    The effectiveness of sediment control devices was studied on a large NC DOT project to determine the : effects of different designs and conditions. Flow and sediment content of water exiting six different traps : and basins were measured and the amou...

  14. Sediment conditions in the San Antonio River Basin downstream from San Antonio, Texas, 2000-13

    USGS Publications Warehouse

    Ockerman, Darwin J.; Banta, J. Ryan; Crow, Cassi L.; Opsahl, Stephen P.

    2015-01-01

    Sediment plays an important role in the ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey, in cooperation with the San Antonio River Authority, completed a two-part study in the San Antonio River Basin downstream from San Antonio, Texas, to (1) collect and analyze sediment data to characterize sediment conditions and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads during 2000–12.

  15. The lowering of Glacial Lake Hitchcock in the Upper Connecticut Valley (New Hampshire and Vermont) as registered by varved sediments

    NASA Astrophysics Data System (ADS)

    Bigl, M.; Kelly, M. A.

    2012-12-01

    Subsequent to the last glacial maximum, the Laurentide Ice Sheet retreated northward through New England and New York and large glacial lakes formed in the Hudson, Connecticut and Merrimack Valleys. Varved sediments in these former lake basins preserve an incredible record of the timing and rates of ice sheet recession as well as regional climatic conditions. Here, we test the hypothesis that these varves also preserve a history of the lowering and drainage of the lakes. We present evidence of sudden increases in varve thicknesses within the former Glacial Lake Hitchcock (GLH) basin in the Connecticut River Valley of New Hampshire and Vermont and test the hypothesis that these result from lake-level lowering events. GLH existed in the Connecticut Valley due to a sediment dam at its southern end near Rocky Hill, CT. At its maximum, it may have extended from Rocky Hill to near Lyndon, VT. A breach of the Rocky Hill dam at ~13.5 ka caused the drainage of the southern basin of GLH, located south of the Holyoke Range in Massachusetts, but the northern basin of GLH (in the Upper Valley region of New Hampshire and Vermont) retained water until ~11.5 ka (Stone, 1999). However, no studies have focused on lake level fluctuation, exact timing of GLH drainage, and whether the lake drained in one episode or as a longer sequence of drainage events. We use sediment cores from modern lake basins to examine the lowering and final drainage of GLH in the Upper Valley region. As GLH lowered, these modern basins emerged (with higher elevation basins emerging first) and deposition in each basin transitioned from glacial varves to non-varved and organic-rich sediments. We hypothesize that during a lowering event a basin submerged by GLH would have received an increase in sediment flux from deposits exposed at the lakeshore and, thus, a sudden thickening of varves would occur. We test this hypothesis by comparing the age of the transition from glacial varves to non-varved and organic-rich sediments in higher elevation basins with the age of the sudden thickening of varves in lower elevation basins. An alternative hypothesis is that a sudden thickening of varves results from a colder or wetter climatic conditions that caused an increased sediment flux to GLH. In winter 2012, we obtained sediment cores using a modified Livingstone corer from six modern lake basins in the Upper Valley region. All of these basins are located beneath the level of GLH and contain glacial varved sediments below ~6-9 m of Holocene organic-rich sediments. On an isostatically depressed landscape reconstructed for this study, the modern basins occur over a range of ~80 m of elevation, from near the highest level of GLH to near the modern elevation of the Connecticut River. We are using high-resolution line-scan images obtained at the Limnological Research Center (LRC) at the University of Minnesota to measure varve thicknesses in the sediment cores and correlate these with the North American Varve Chronology (NAVC). This method of correlation has been used successfully with varved sediments in the Hudson, Connecticut, and Merrimack Valleys to develop the NAVC. Where possible, we will use radiocarbon dating of terrestrial macrofossils within varved sediment and organic-rich sediment to test the varve correlations.

  16. Hydrologic and sediment data collected from selected basins at the Fort Leonard Wood Military Reservation, Missouri--2010-11

    USGS Publications Warehouse

    Richards, Joseph M.; Rydlund, Jr., Paul H.; Barr, Miya N.

    2012-01-01

    Commercial and residential development within a basin often increases the amount of impervious area, which changes the natural hydrologic response to storm events by increasing runoff. Land development and disturbance combined with increased runoff from impervious areas potentially can increase sediment transport. At the Fort Leonard Wood Military Reservation in Missouri, there has been an increase in population and construction activities in the recent past, which has initiated an assessment of the hydrology in selected basins. From April 2010 to December 2011, the U.S. Geological Survey, in cooperation with the U.S. Army Maneuver Support Center at the Fort Leonard Wood Military Reservation, collected hydrologic and suspended-sediment concentration data in six basins at Fort Leonard Wood. Storm-sediment concentration, load, and yield varied from basin to basin and from storm to storm. In general, storm-sediment yield, in pounds per square mile per minute, was greatest from Ballard Hollow tributary (06928410) and Dry Creek (06930250), and monthly storm-sediment yield, in tons per square mile, estimates were largest in Ballard Hollow tributary (06928410), East Gate Hollow tributary (06930058), and Dry Creek (06930250). Sediment samples, collected at nine sites, primarily were collected using automatic samplers and augmented with equal-width-increment cross-sectional samples and manually collected samples when necessary. Storm-sediment load and yield were computed from discharge and suspended-sediment concentration data. Monthly storm-sediment yields also were estimated from the total storm discharge and the mean suspended-sediment concentration at each given site.

  17. 20th-century glacial-marine sedimentation in Vitus Lake, Bering Glacier, Alaska, U.S.A.

    USGS Publications Warehouse

    Molnia, B.F.; Post, A.; Carlson, P.R.

    1996-01-01

    Vitus Lake, the ice-marginal basin at the southeastern edge of Bering Glacier, Alaska, U.S.A., is a site of modern, rapid, glacial-marine sedimentation. Rather than being a fresh-water lake, Vitus Lake is a tidally influenced, marine to brackish embayment connected to the Pacific Ocean by an inlet, the Seal River. Vitus Lake consists of five deep bedrock basins, separated by interbasinal highs. Glacial erosion has cut these basins as much as 250 m below sea level. High-resolution seismic reflection surveys conducted in 1991 and 1993 of four of Vitus Lake's basins reveal a complex, variable three-component acoustic stratigraphy. Although not fully sampled, the stratigraphy is inferred to be primarily glacial-marine units of (1) basal contorted and deformed glacial-marine and glacial sediments deposited by basal ice-contact processes and submarine mass-wasting; (2) acoustically well-stratified glacial-marine sediment, which unconformably overlies the basal unit and which grades upward into (3) acoustically transparent or nearly transparent glacial-marine sediment. Maximum thicknesses of conformable glacial-marine sediment exceed 100 m. All of the acoustically transparent and stratified deposits in Vitus Lake are modern in age, having accumulated between 1967 and 1993. The basins where these three-part sequences of "present-day" glacial-marine sediment are accumulating are themselves cut into older sequences of stratified glacial and glacial-marine deposits. These older units outcrop on the islands in Vitus Lake. In 1967, as the result of a major surge, glacier ice completely filled all five basins. Subsequent terminus retreat, which continued through August 1993, exposed these basins, providing new locations for glacial-marine sediment accumulation. A correlation of sediment thicknesses measured from seismic profiles at specific locations within the basins, with the year that each location became ice-free, shows that the sediment accumulation at some locations exceeds 10 m year-1.

  18. Surficial deposits in the Bear Lake Basin

    USGS Publications Warehouse

    Reheis, Marith C.; Laabs, Benjamin J.C.; Forester, Richard M.; McGeehin, John P.; Kaufman, Darrell S.; Bright, Jordon

    2005-01-01

    Mapping and dating of surficial deposits in the Bear Lake drainage basin were undertaken to provide a geologic context for interpretation of cores taken from deposits beneath Bear Lake, which sometimes receives water and sediment from the glaciated Bear River and sometimes only from the small drainage basin of Bear Lake itself. Analyses of core sediments by others are directed at (1) constructing a high-resolution climate record for the Bear Lake area during the late Pleistocene and Holocene, and (2) investigating the sources and weathering history of sediments in the drainage basin. Surficial deposits in the upper Bear River and Bear Lake drainage basins are different in their overall compositions, although they do overlap. In the upper Bear River drainage, Quaternary deposits derived from glaciation of the Uinta Range contain abundant detritus weathered from Precambrian quartzite, whereas unglaciated tributaries downstream mainly contribute finer sediment weathered from much younger, more friable sedimentary rocks. In contrast, carbonate rocks capped by a carapace of Tertiary sediments dominate the Bear Lake drainage basin.

  19. Workshop on sediment budgets and routing in forested drainage basins: proceedings.

    Treesearch

    Frederick J. Swanson; Richard J. Janda; Thomas Dunne; Douglas N. Swanston

    1982-01-01

    Sediment budgets quantify the transport and storage of soil and sediment in drainage basins or smaller landscape units. Studies of sediment routing deal with the overall movement of soil and sediment through a series of landscape units. The 14 papers and 5 summaries from discussion groups in this volume report results of sediment budget and routing studies conducted...

  20. Microbial Breakdown of Organic Carbon in the Diverse Sediments of Guaymas Basin

    NASA Astrophysics Data System (ADS)

    Hoarfrost, A.; Snider, R.; Arnosti, C.

    2015-12-01

    Guaymas Basin is characterized by sediments under conditions ranging from hemipelagic to hydrothermal. This wide range in geochemical contexts results in diverse microbial communities that may have varying abilities to access organic matter. We can address these functional differences by comparing enzyme activities initializing the breakdown of organic matter across these sediment types; however, previous direct measurements of the extracellular hydrolysis of complex organic carbon in sediments are sparse. We measured this first step of heterotrophic processing of organic matter in sediments at 5-10cm and 55-60cm depth from a wide range of environmental settings in Guaymas Basin. Sediment sources included sulfidic seeps on the Sonora Margin, hemipelagic ridge flank sediments, and hydrothermically altered Sonora Margin sediments bordering a methane seep site. Hydrolysis of organic substrates varied by depth and by sediment source, but despite high energy potential and organic carbon load in sulfidic sediments, activity was not highest where hydrothermal influence was highest. These results suggest that heterotrophic breakdown of organic carbon in Guaymas Basin sediments may be sensitive to factors including varying composition of organic carbon available in different sediment types, or differences in microbial community capacities to access specific organic substrates.

  1. Latest Cretaceous-Paleogene basin development and resultant sedimentation patterns in the thrust belt and broken foreland of central Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, T.F.; Franczyk, K.J.; Pitman, J.K.

    1990-05-01

    Latest Cretaceous tectonism in central and east-central Utah formed several intermontane basins both atop thrust sheets and between the thrust front and basement-involved uplifts in the former foreland basin. The upper Campanian Castlegate Sandstone and its inferred western equivalents were the last strata deposited prior to segmentation of the foreland basin. Thereafter, eastward transport of the thrust allochthon uplifted the most proximal part of the Castlegate depositional wedge. West of the thrust front, small intermontane basins formed on the allochthon. Sediment was transported into these basins from both eastern and western sources. In each basin, facies grade from basin-margin conglomeraticmore » alluvial fan deposits to basin-interior flood-plain and lacustrine deposits within a few kilometers. These intermontane basins existed from latest Campanian through the late Paleocene, and may have been transported a short distance eastward as they formed. East of the thrust front in the latest Campanian and contemporaneous with basin formation on the allochthon, a northward-northeastward-flowing big river system transported sediment into the foreland basin from feldspar-rich source areas southwest of the study area. Subsequently, major movement of the San Rafael uplift in the very late Campanian or early Maastrichtian gave rise to an intermontane basin between the thrust front and the San Rafael uplift. Northwestward-flowing, pebble-bearing braided rivers deposited the oldest sediments in this basin prior to an influx from the south and southwest of sediment that formed a thick Maastrichtian clastic sequence. In contrast to deposition in basins on the allochthon, deposition east of the thrust front in the Paleocene was intermittent and restricted to rapidly shifting centers of basin subsidence.« less

  2. Temporal dynamics of suspended sediment transport in a glacierized Andean basin

    NASA Astrophysics Data System (ADS)

    Mao, Luca; Carrillo, Ricardo

    2017-06-01

    Suspended sediment transport can affect water quality and aquatic ecosystems, and its quantification is of the highest importance for river and watershed management. Suspended sediment concentration (SSC) and discharge were measured at two locations in the Estero Morales, a Chilean Andean stream draining a small basin (27 km2) hosting glacierized areas of about 1.8 km2. Approximately half of the suspended sediment yield (470 t year- 1 km- 2) was transported during the snowmelt period and half during glacier melting. The hysteresis patterns between discharge and SSC were calculated for each daily hydrograph and were analysed to shed light on the location and activity of different sediment sources at the basin scale. During snowmelt, an unlimited supply of fine sediments is provided in the lower and middle part of the basin and hysteresis patterns tend to be clockwise as the peaks in SSC precede the peak of discharge in daily hydrographs. Instead, during glacier melting the source of fine sediments is the proglacial area, producing counterclockwise hysteresis. It is suggested that the analysis of hysteretic patterns over time provides a simple concept for interpreting variability of location and activity of sediment sources at the basin scale.

  3. Geomorphic considerations for erosion prediction

    USGS Publications Warehouse

    Osterkamp, W.R.; Toy, T.J.

    1997-01-01

    Current soil-erosion prediction technology addresses processes of rainsplash, overland-flow sediment transport, and rill erosion in small watersheds. The effects of factors determining sediment yield from larger-scale drainage basins, in which sediment movement is controlled by the combined small-scale processes and a complex set of channel and other basin-scale sediment-delivery processes, such as soil creep, bioturbation, and accelerated erosion due to denudation of vegetation, have been poorly evaluated. General suggestions are provided for the development of erosion-prediction technology at the geomorphic or drainage-basin scale based on the separation of sediment-yield data for channel and geomorphic processes from those of field-scale soil loss. An emerging technology must consider: (1) the effects on sediment yield of climate, geology and soils, topography, biotic interactions with other soil processes, and land-use practices; (2) all processes of sediment delivery to a channel system; and (3) the general tendency in most drainage basins for progressively greater sediment storage in the downstream direction.

  4. Pollen and spores date origin of rift basins from Texas to nova scotia as early late triassic.

    PubMed

    Traverse, A

    1987-06-12

    Palynological studies of the nonmarine Newark Supergroup of eastern North America and of rift basins in the northern Gulf of Mexico facilitate correlation with well-dated marine sections of Europe. New information emphasizes the chronological link between the Newark basins and a Gulf of Mexico basin and their common history in the rifting of North America from Pangea. Shales from the subsurface South Georgia Basin are shown to be of late Karnian age (early Late Triassic). The known time of earliest sedimentation in the Culpeper Basin is extended from Norian (late Late Triassic) to mid-Karnian, and the date of earliest sedimentation in the Richmond and Deep River basins is moved to at least earliest Karnian, perhaps Ladinian. The subsurface Eagle Mills Formation in Texas and Arkansas has been dated palynologically as mid- to late Karnian. The oldest parts of the Newark Supergroup, and the Eagle Mills Formation, mostly began deposition in precursor rift basins that formed in Ladinian to early Karnian time. In the southern Newark basins, sedimentation apparently ceased in late Karnian but continued in the northern basins well into the Jurassic, until genesis of the Atlantic ended basin sedimentation.

  5. Combining sediment fingerprinting and a conceptual model for erosion and sediment transfer to explore sediment sources in an Alpine catchment

    NASA Astrophysics Data System (ADS)

    Costa, A.; Stutenbecker, L.; Anghileri, D.; Bakker, M.; Lane, S. N.; Molnar, P.; Schlunegger, F.

    2017-12-01

    In Alpine basins, sediment production and transfer is increasingly affected by climate change and human activities, specifically hydropower exploitation. Changes in sediment sources and pathways significantly influence basin management, biodiversity and landscape evolution. We explore the dynamics of sediment sources in a partially glaciated and highly regulated Alpine basin, the Borgne basin, by combining geochemical fingerprinting with the modelling of erosion and sediment transfer. The Borgne basin in southwest Switzerland is composed of three main litho-tectonic units, which we characterised following a tributary-sampling approach from lithologically characteristic sub-basins. We analysed bulk geochemistry using lithium borate fusion coupled with ICP-ES, and we used it to discriminate the three lithologic sources using statistical methods. Finally, we applied a mixing model to estimate the relative contributions of the three sources to the sediment sampled at the outlet. We combine results of the sediment fingerprinting with simulations of a spatially distributed conceptual model for erosion and transport of fine sediment. The model expresses sediment erosion by differentiating the contributions of erosional processes driven by erosive rainfall, snowmelt, and icemelt. Soil erodibility is accounted for as function of land-use and sediment fluxes are linearly convoluted to the outlet by sediment transfer rates for hillslope and river cells, which are a function of sediment connectivity. Sediment connectivity is estimated on the basis of topographic-hydraulic connectivity, flow duration associated with hydropower flow abstraction and permanent storage in hydropower reservoirs. Sediment fingerprinting at the outlet of the Borgne shows a consistent dominance (68-89%) of material derived from the uppermost, highly glaciated reaches, while contributions of the lower part (10-25%) and middle part (1-16%), where rainfall erosion is predominant, are minor. This result is confirmed by the model simulation which shows that, despite the large flow abstraction (about 90%), the upstream reaches contribute the most of the sediments. This study shows how combining geochemical techniques and sediment erosion models provides insight in the dynamics of sediment sources.

  6. Dilution correction equation revisited: The impact of stream slope, relief ratio and area size of basin on geochemical anomalies

    NASA Astrophysics Data System (ADS)

    Shahrestani, Shahed; Mokhtari, Ahmad Reza

    2017-04-01

    Stream sediment sampling is a well-known technique used to discover the geochemical anomalies in regional exploration activities. In an upstream catchment basin of stream sediment sample, the geochemical signals originating from probable mineralization could be diluted due to mixing with the weathering material coming from the non-anomalous sources. Hawkes's equation (1976) was an attempt to overcome the problem in which the area size of catchment basin was used to remove dilution from geochemical anomalies. However, the metal content of a stream sediment sample could be linked to several geomorphological, sedimentological, climatic and geological factors. The area size is not itself a comprehensive representative of dilution taking place in a catchment basin. The aim of the present study was to consider a number of geomorphological factors affecting the sediment supply, transportation processes, storage and in general, the geochemistry of stream sediments and their incorporation in the dilution correction procedure. This was organized through employing the concept of sediment yield and sediment delivery ratio and linking such characteristics to the dilution phenomenon in a catchment basin. Main stream slope (MSS), relief ratio (RR) and area size (Aa) of catchment basin were selected as the important proxies (PSDRa) for sediment delivery ratio and then entered to the Hawkes's equation. Then, Hawkes's and new equations were applied on the stream sediment dataset collected from Takhte-Soleyman district, west of Iran for Au, As and Sb values. A number of large and small gold, antimony and arsenic mineral occurrences were used to evaluate the results. Anomaly maps based on the new equations displayed improvement in anomaly delineation taking the spatial distribution of mineral deposits into account and could present new catchment basins containing known mineralization as the anomaly class, especially in the case of Au and As. Four catchment basins having Au and As mineralization were added to anomaly class and also one catchment basin with known As occurrence was highlighted as anomalous using new approach. The results demonstrated the usefulness of considering geomorphological parameters in dealing with dilution phenomenon in a catchment basin.

  7. Origin and production process of eolian dust emitted from the Tarim Basin and their evolution through the Plio-Pleostocene based on ESR signal intensity and crystallinity of quartz

    NASA Astrophysics Data System (ADS)

    Tada, R.; Isozaki, Y.; Zheng, H.; Sun, Y.; Toyoda, S.; Hasegawa, H.; Yoshida, T.

    2010-12-01

    Tarim Basin (or Taklimakan Desert) is regarded as one of the major source area of eolian dust in the northern hemisphere. Although a previous study hypothesized that the detrital materials in the Tarim Basin were produced by glacial activity in the surrounding mountains, delivered by rivers, and homogenized by wind within the basin, not enough evidence has been presented to support this hypothesis. Here, we conducted provenance study of eolian dust in the Tarim Basin by examining fine silt fraction (< 20 μm) of the sediments collected from all over the Tarim Basin. We focused on quartz and measured its electron spin resonance [ESR] signal intensity and Crystallinity Index [CI] in the fine (<16μm) and coarse (> 64μm) fractions of various types of sediments including river sediments derived from the Kunlun and Tian Shan Mountains, dry lake sediments in the eastern part of the basin, and mountain loess on the northern slope of the Kunlun Mountains, to examine the process to produce eolian dust within the Tarim Basin. The result revealed that the coarse fractions of river sediments were derived from bedrocks exposed in the drainage area of each river, and that quartz in coarse fraction of the river sediment has ESR signal intensity and CI values unique to each river. ESR signal intensity and CI of quartz in fine fractions of river sediments discharged from the Tian Shan Mountains, which are located windward of the basin, and those discharged from mountainous rivers show values similar to the values for coarse fractions, suggesting that their sources are the same as those for the coarse fractions. On the other hand, ESR signal intensity and CI of quartz in fine fractions of river sediments discharged from the Kunlun Mountains show values different from those for the coarse fractions, and converged to the values close to the average values for the fine fractions of river sediments in the basin and also for the mountain loess, the latter represents the eolian dust emitted from the Tarim Basin. The converged values are considered as resulted from homogenization by the repeated recycling process within the basin. Analysis of the Quaternary mountain loess and Plio-Pleistocene loess-like siltstone intercalated in the alluvial sediments delivered from the Kunlun Mountains revealed that eolian dust source and production process essentially the same as the present has been established at ca. 3.5 Ma.

  8. Assessing sedimentation rates at Usumacinta and Grijalva river basin (Southern Mexico) using OSL and suspended sediment load analysis: A study from the Maya Classic Period

    NASA Astrophysics Data System (ADS)

    Munoz-Salinas, E.; Castillo, M.; Sanderson, D.; Kinnaird, T.; Cruz-Zaragoza, E.

    2013-12-01

    Studying sedimentation rates on floodplains is key to understanding environmental changes occurred through time in river basins. The Usumacinta and Grijalva rivers flow most of their travel through the southern part of Mexico, forming a large river basin, crossing the states of Chiapas and Tabasco. The Usumacinta-Grijalva River Basin is within the 10 major rivers of North America, having a basin area of ~112 550 km2. We use the OSL technique for dating two sediment profiles and for obtaining luminescence signals in several sediment profiles located in the streambanks of the main trunk of the Usumacinta and Grijalva rivers. We also use mean annual values of suspended sediment load spanning ~50 years to calculate the sedimentation rates. Our OSL dating results start from the 4th Century, when the Maya Civilization was at its peak during the Classic Period. Sedimentation rates show a notable increase at the end of the 19th Century. The increase of the sedimentation rates seems to be related to changes in land uses in the Sierra Madre de Chiapas and Altos de Chiapas, based on deforestation and land clearing for developing new agrarian and pastoral activities. We conclude that the major environmental change in the basin of the Usumacinta and Grijalva Rivers since the Maya Classic Period was generated since the last Century as a result of an intense anthropogenic disturbance of mountain rain forest in Chiapas.

  9. Reconnaissance of sedimentation in the Rio Pilcomayo Basin, May 1975, Argentina, Bolivia, and Paraguay

    USGS Publications Warehouse

    Ritter, John R.

    1977-01-01

    The Río Pilcomayo "Alto" (Bolivia) and "Superior" (Bolivia, Argentina, and Paraguay) transport large quantities of sediment for the size of the basin. The Río Pilcomayo "Inferior" (Argentina and Paraguay) seems to carry little sediment. The large loads of the "Alto" and "Superior" must be considered before dams or irrigation projects are started. The shifting channel and flooding of the Río Pilcomayo "Superior" also are problems to be considered before development. The Río Pilcomayo "Alto" basin has relatively little deposition whereas the "Superior" basin has considerable deposition. A part of the "Superior" channel is filled with sediment to the top of its banks. The upstream limit of filling is moving farther upstream each year causing the place of overbank flooding to move upstream also.More data must be collected and more observations made before a complete analysis of the sediment movement in the basin can be made.

  10. Pacing of deep marine sedimentation in the middle Eocene synorogenic Ainsa Basin, Spanish Pyrenees: deconvolving a 6myr record of tectonic and climate controls

    NASA Astrophysics Data System (ADS)

    Mac Niocaill, C.; Cantalejo, B.; Pickering, K. T.; Grant, M.; Johansen, K.

    2016-12-01

    The Middle Eocene thrust-top Ainsa Basin of Northern Spain preserves world-class exposures of deep-marine submarine fan and related deposits. Detailed paleomagnetic, micropaleontologic, and time-series analysis enable us to deconvolve, for the first time in any ancient deep-marine basin worldwide, both the pacing on deposition of the fine-grained interfan sediments and the main sandbodies (submarine fans) through the history of the deep-marine basin. Our magnetostratigraphy and faunal constraints provide a chronological framework for sedimentation in the basin. We use time-series analysis of a range of geochemical and sedimentologic data to identify likely climatic signals in the sedimentary archive. This has enabled us to test the likely importance of climate versus tectonics in controlling deposition. We show that the fine-grained interfan sedimentation preserves a dominant Milankovitch-like cyclicity, whereas the sandbodies (fans) reflect a complex interplay of controls such as tectonics and climate in the sediment source area, including shallow-marine staging areas for sediment redeposition into deeper water. These results not only provide critical information about the timing of substantial coarse clastic delivery into the Ainsa Basin but also give constraints on sediment flux over a 6 Myr window.

  11. Identification of Critical Erosion Prone Areas and Computation of Sediment Yield Using Remote Sensing and GIS: A Case Study on Sarada River Basin

    NASA Astrophysics Data System (ADS)

    Sundara Kumar, P.; Venkata Praveen, T.; Anjanaya Prasad, M.; Santha Rao, P.

    2018-06-01

    The two most important resources blessed by nature to the mankind are land and water. Undoubtedly, these gifts have to be conserved and maintained with unflinching efforts from every one of us for an effective environmental and ecological balance. The efforts and energy of water resources engineers and conservationists are going in this direction to conserve these precious resources of nature. The present study is an attempt to develop suitable methodology to facilitate decision makers to conserve the resources and also reflects the cause mentioned above has been presented here. The main focus of this study is to identify the critical prone areas for soil erosion and computation of sediment yield in a small basin using Universal Soil Loss Equation and Modified Universal Soil Loss Equation (MUSLE) respectively. The developed model has been applied on Sarada river basin which has a drainage area of 1252.99 km2. This river is located in Andhra Pradesh State (AP), India. The basin has been divided into micro basins for effective estimation and also for precise identification of the areas that are prone to soil erosion. Remote Sensing and Geographic Information Systems tools were used to generate and spatially organize the data that is required for soil erosion modeling. It was found that the micro basins with very severe soil erosion are consisting of hilly areas with high topographic factor and 38.01% of the study area has the rate erosion more than 20 t/ha/year and hence requires an immediate attention from the soil conservation point of view. In this study region, though there is one discharge measuring gauge station available at Anakapalli but there is no sediment yield gauging means available to compute the sediment yield. Therefore, to arrive at the suspended-sediment concentration was a challenge task. In the present study the sediment measurement has been carried out with an instrument (DH-48), sediment sampling equipment as per IS: 4890-1968, has been used. Suspended-sediment samples were collected and sediment yield was arrived at the site by using this instrument. The sediment yield was also computed using MUSLE. Data for this model study has been generated from the samples collected from 28 storm events spread over a time span of 1 year, at the outlet of the basin at Anakapalli for computation of sediment yield. The sediment yield as estimated by MUSLE model has been successfully compared with the sediment yield measured at the outlet of the basin by sediment yield measuring unit and found fairly good correlation between them. Hence the developed methodology will be useful to estimate the sediment yield in the hydrologically similar basins that are not gauged for sediment yield.

  12. Hydrology and sedimentation of Corey Creek and Elk Run basins, north-central Pennsylvania

    USGS Publications Warehouse

    Reed, Lloyd A.

    1971-01-01

    Analysis of data collected from two small agricultural basins in northcehtral Pennsylvania during the period May 1954 to September 1967 indicates that conservation measures reduced the quantity of suspended sediment leaving the Corey Creek basin as a result of frequent storms during the growing season. Extensive soil conservation treatments were applied in the 12.2-squaremile Corey Creek basin, but only minor treatments were applied in the adjacent 10.2-square-mile Elk Run basin. These treatments included the construction of ponds and diversion terraces and altering land use by such measures as establishing permanent hay land and changing marginal pasture land to wood lands. Elk Run basin, which is topographically and hydrologically similar to the Corey Creek basin, was used as an external control to assist in detecting and evaluating the hydrologic changes in Corey Creek. Trend analyses of data from both basins indicate a 47-percent decrease in sediment discharge from Corey Creek during the frequent storms that occur in the May to October growing season. Six percent of the sediment discharged from Corey Creek during the period of this investigation (1954-67) was discharged during these frequent growing-season storms. The remaining 94 percent of the sediment was discharged during the November to April dormant season and during two major events during the growing season, one October 1955 and one May 1961. No decrease in sediment discharge was observed for these events or for this period. The adjacent basin of similar size, topography, and hydrologic characteristics, Elk Run, was not scheduled for extensive conservation treatment; it was selected as a control for this study "because of the assumption that any changes in precipitation and runoff patterns would affect both basins in a similar manner. Rainfall, runoff, sediment, and stream-channel data are used in this report to estimate the probable hydrologic behavior of the Corey Creek basin provided the intensive conservation program had not been undertaken.~

  13. Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession

    NASA Astrophysics Data System (ADS)

    Lane, Stuart N.; Bakker, Maarten; Gabbud, Chrystelle; Micheletti, Natan; Saugy, Jean-Noël

    2017-01-01

    In the face of rapid climate warming, rapid glacier recession should lead to a marked increase in the spatial extent of the paraglacial zone in glaciated drainage basins. The extent of the paraglacial zone has been well established to be transient but there are very few studies of this transient response and what it means for sediment export. There is good reason to expect that glacier recession could increase basin-scale sediment connectivity as: sediment becomes less dependent on glacier surface transport; proglacial streams are more able to migrate laterally than subglacial streams and so access sediment for transport; and glacier debuttressing may aid the development of gullies that can dissect moraines and so aid hillslope to proglacial zone connectivity. By using records of the flushing of hydroelectric power installations we were able to develop a record of coarse sediment (sand and gravel) export from a basin with a rapidly retreating valley glacier, the Haut Glacier d'Arolla, from 1977 to 2014. Modelling suggested that these data could only be partially controlled by transport capacity implying an important role for sediment supply and potentially for the influence of changing sediment connectivity. Indeed, there was evidence of the effects of glacial debuttressing upon gullying processes and hence a possible increase in the ease of connection of upstream basins to the proglacial area. More recently, we were able to show possible temperature control on sediment export, which may only have become apparent because of the progressive development of better sediment connectivity. However, whilst rapid glacier recession should result in theory in a progressive increase in connectivity of sediment sources to the basin outlet, the supply to capacity ratio does not increase continually with glacier recession until maximum capacity is reached. We identified two possible examples of why. First, gullying was also accompanied by the sediment accumulation at the base of moraines that was too coarse to be transported by the proglacial stream, maintaining disconnection of the upper basins. Second, the sediment capacity ratio appeared to be elevated during periods of more rapid retreat and we attribute this to the importance of a continued supply of unworked glacial till before fluvial reworking and sorting of freshly exposed sediment increased the resistance of sediment to entrainment and hence export rates. Thus, the transient geomorphic response of glaciated basins to glacier recession may involve negative feedbacks that can reduce the extent to which increases in connectivity elsewhere in the basin lead to increased sediment export.

  14. Physical and thermal properties of mud-dominant sediment from the Joetsu Basin in the eastern margin of the Japan Sea

    NASA Astrophysics Data System (ADS)

    Goto, Shusaku; Yamano, Makoto; Morita, Sumito; Kanamatsu, Toshiya; Hachikubo, Akihiro; Kataoka, Satsuki; Tanahashi, Manabu; Matsumoto, Ryo

    2017-12-01

    Physical properties (bulk density and porosity) and thermal properties (thermal conductivity, heat capacity, specific heat, and thermal diffusivity) of sediment are crucial parameters for basin modeling. We measured these physical and thermal properties for mud-dominant sediment recovered from the Joetsu Basin, in the eastern margin of the Japan Sea. To determine thermal conductivity, heat capacity, and thermal diffusivity, the dual-needle probe method was applied. Grain density and grain thermal properties for the mud-dominant sediment were estimated from the measured physical and thermal properties by applying existing models of physical and thermal properties of sediment. We suggest that the grain density, grain thermal conductivity, and grain thermal diffusivity depend on the sediment mineral composition. Conversely, the grain heat capacity and grain specific heat showed hardly any dependency on the mineral composition. We propose empirical formulae for the relationships between: thermal diffusivity and thermal conductivity, and heat capacity and thermal conductivity for the sediment in the Joetsu Basin. These relationships are different from those for mud-dominant sediment in the eastern flank of the Juan de Fuca Ridge presented in previous work, suggesting a difference in mineral composition, probably mainly in the amount of quartz, between the sediments in that area and the Joetsu Basin. Similar studies in several areas of sediments with various mineral compositions would enhance knowledge of the influence of mineral composition.

  15. Enhanced sediment delivery in a changing climate in semi-arid mountain basins: Implications for water resource management and aquatic habitat in the northern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Goode, Jaime R.; Luce, Charles H.; Buffington, John M.

    2012-02-01

    The delivery and transport of sediment through mountain rivers affects aquatic habitat and water resource infrastructure. While climate change is widely expected to produce significant changes in hydrology and stream temperature, the effects of climate change on sediment yield have received less attention. In the northern Rocky Mountains, we expect climate change to increase sediment yield primarily through changes in temperature and hydrology that promote vegetation disturbances (i.e., wildfire, insect/pathogen outbreak, drought-related die off). Here, we synthesize existing data from central Idaho to explore (1) how sediment yields are likely to respond to climate change in semi-arid basins influenced by wildfire, (2) the potential consequences for aquatic habitat and water resource infrastructure, and (3) prospects for mitigating sediment yields in forest basins. Recent climate-driven increases in the severity and extent of wildfire suggest that basin-scale sediment yields within the next few years to decades could be greater than the long-term average rate of 146 T km - 2 year - 1 observed for central Idaho. These elevated sediment yields will likely impact downstream reservoirs, which were designed under conditions of historically lower sediment yield. Episodic erosional events (massive debris flows) that dominate post-fire sediment yields are impractical to mitigate, leaving road restoration as the most viable management opportunity for offsetting climate-related increases in sediment yield. However, short-term sediment yields from experimental basins with roads are three orders of magnitude smaller than those from individual fire-related events (on the order of 10 1 T km - 2 year - 1 compared to 10 4 T km - 2 year - 1 , respectively, for similar contributing areas), suggesting that road restoration would provide a relatively minor reduction in sediment loads at the basin-scale. Nevertheless, the ecologically damaging effects of fine sediment (material < 6 mm) chronically produced from roads will require continued management efforts.

  16. PAHs and PCBs deposited in surficial sediments along a rural to urban transect in a mid-Atlantic coastal river basin (USA).

    PubMed

    Foster, Gregory D; Cui, Vickie

    2008-10-01

    PAHs and PCBs were measured in river sediments along a 226 km longitudinal transect that spanned rural to urban land use settings through Valley and Ridge, Piedmont Plateau and Coastal Plain physiographic provinces in the Potomac River basin (mid-Atlantic USA). A gradient in PAH concentrations was found in river bed sediments along the upstream transect in the Potomac and Shenandoah Rivers that correlated with population densities in the nearby sub-basins. Sediment PAH concentrations halved per each approximately 40 km of transect distance upstream (i.e., the half-concentration distance) from the urban center (Washington, DC) of the Potomac River basin in direct proportion to population density. The PAH molecular composition was consistent across all geologic provinces, revealing a dominant pyrogenic source. Fluoranthene to perylene ratios served as useful markers for urban inputs, with a ratio > 2.4 observed in sediments near urban structures such as roadways, bridges and sewer outfalls. PCBs in sediments were not well correlated with population densities along the river basin transect, but the highest concentrations were found in the urban Coastal Plain region near Washington, DC and in the Shenandoah River near a known industrial Superfund site. PAHs were moderately correlated with sediment total organic carbon (TOC) in the Shenandoah River and Coastal Plain Potomac River regions, but TOC was poorly correlated with PCB concentrations throughout the entire basin. Although both PAHs and PCBs are widely recognized as urban-derived contaminants, their concentration profiles and geochemistry in river sediments were uniquely different throughout the upper Potomac River basin.

  17. The Geologic History of Lake of the Woods, Minnesota, Reconstructed Using Seismic-Reflection Imaging and Sediment Core Analysis

    NASA Astrophysics Data System (ADS)

    Hougardy, Devin D.

    The history of glacial Lake Agassiz is complex and has intrigued researchers for over a century. Over the course of its ˜5,000 year existence, the size, shape, and location of Lake Agassiz changed dramatically depending on the location of the southern margin of the Laurentide Ice Sheet (LIS), the location and elevation of outflow channels, and differential isostatic rebound. Some of the best-preserved sequences of Lake Agassiz sediments are found in remnant lake basins where erosional processes are less pronounced than in adjacent higher-elevation regions. Lake of the Woods (LOTW), Minnesota, is among the largest of the Lake Agassiz remnant lakes and is an ideal location for Lake Agassiz sediment accumulation. High-resolution seismic-reflection (CHIRP) data collected from the southern basin of LOTW reveal up to 28 m of stratified lacustrine sediment deposited on top of glacial diamicton and bedrock. Five seismic units (SU A-E) were identified and described based on their reflection character, reflection configuration, and external geometries. Three prominent erosional unconformities (UNCF 1-3) underlie the upper three seismic units and indicate that deposition at LOTW was interrupted by a series of relatively large fluctuations in lake level. The lowermost unconformity (UNCF-1) truncates uniformly draped reflections within SU-B at the margins of the basin, where as much as four meters of sediment were eroded. The drop in lake level is interpreted to be contemporaneous with the onset of the low-stand Moorhead phase of Lake Agassiz identified from subaerial deposits in the Red River Valley, Rainy River basin, and Lake Winnipeg. A rise in lake level, indicated by onlapping reflections within SU-C onto UNCF-1, shifted the wave base outwards and as much as 11 m of sediment were deposited (SU-C) in the middle of the basin before a second drop, and subsequent rise, in lake level resulted in the formation of UNCF-2. Reflections in the lower part of SU-D onlap onto UNCF-2 only near the margins of the basin, suggesting that water occupied much of the middle of the southern basin after lake level drawdown. The reflection character and configuration of SU-C and SU-D are genetically different indicating that the depositional environment had changed following the formation of UNCF-2. Piston-type sediment cores collected from the southern basin of LOTW at depths that correspond to the middle of SU-D contain high amounts of organic material and charcoal fragments and sediment that are probably not related to Lake Agassiz. Instead, they were likely deposited during a transitional phase between when Lake Agassiz left the LOTW basin (UNCF-2) and inundation of LOTW from the northern basin due to differential isostatic rebound (UNCF-3). All sediment cores collected from the southern basin of LOTW record the uppermost unconformity, analogous in depth to UNCF-3 in the seismic images, which separates modern sediments from mid to late-Holocene sediments. The lithology of sediments below this unconformity varies across the basin from gray clay to laminated silt and clay. Radiocarbon ages from two peat layers immediately below the unconformity indicate that subaerial conditions had existed prior to the formation of UNCF-1, at about 7.75 ka cal BP. The timing correlates well with other lakes in the upper Midwest that record a prolonged dry climate during the mid-Holocene. UNCF-3 is planar and erosional across the entire survey area but erosion is greatest in the northern part of the basin as the result of a southward transgressing wave base driven by differential isostatic rebound. Deposition in the southern basin probably resumed around 3.3 ka cal BP, though no radiocarbon dates were collected directly above UNCF-3. The lithology of sediment above UNCF-3 is highly uniform across the basin and represents modern sedimentation. Late-Holocene sedimentation rates were calculated at about 0.9 mm year-1 and are roughly double the sedimentation rates in the NW Angle basin, suggesting that erosion of the southern shoreline contributes significantly to deposition in the southern basin.

  18. Sediment fluxes from California Coastal Rivers: the influences of climate, geology, and topography

    USGS Publications Warehouse

    Andrews, E.D.; Antweiler, Ronald C.

    2012-01-01

    The influences of geologic and climatic factors on erosion and sedimentation processes in rivers draining the western flank of the California Coast Range are assessed. Annual suspended, bedload, and total sediment fluxes were determined for 16 river basins that have hydrologic records covering all or most of the period from 1950 to 2006 and have been relatively unaffected by flow storage, regulation, and depletion, which alter the downstream movement of water and sediment. The occurrence of relatively large annual sediment fluxes are strongly influenced by the El Nino–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). The frequency of relatively large annual sediment fluxes decreases from north to south during La Nina phases and increases from north to south during El Nino phases. The influence of ENSO is modulated over a period of decades by the PDO, such that relatively large annual sediment fluxes are more frequent during a La Nina phase in conjunction with a cool PDO and during an El Nino phase in conjunction with a warm PDO. Values of mean annual sediment flux, , were regressed against basin and climatic characteristics. Basin area, bedrock erodibility, basin relief, and precipitation explain 87% of the variation in from the 16 river basins. Bedrock erodibility is the most significant characteristic influencing . Basin relief is a superior predictor of compared with basin slope. is nearly proportional to basin area and increases with increasing precipitation. For a given percentage change, basin relief has a 2.3-fold greater effect on than a similar change in precipitation. The estimated natural from all California coastal rivers for the period 1950–2006 would have been approximately 85 million tons without flow storage, regulation, and depletion; the actual has been approximately 50 million tons, because of the effects of flow storage, regulation, and depletion.

  19. Cenozoic North American Drainage Basin Evolution, Sediment Yield, and Accumulation in the Gulf of Mexico Basin

    NASA Astrophysics Data System (ADS)

    Galloway, W.; Ganey-Curry, P. E.

    2010-12-01

    The Cenozoic fill of the Gulf of Mexico basin contains a continuous record of sediment supply from the North American continental interior for the past 65 million years. Regional mapping of unit thickness and paleogeography for 18 depositional episodes defines patterns of shifting entry points of continental fluvial systems and quantifies the total volume of sediment supplied during each episode. Eight fluvio-deltaic depocenters, named for geographic similarities to entry points and drainage basins of modern rivers, are present. From southwest to northeast, they are the Rio Bravo, Rio Grande, Guadalupe, Colorado, Houston-Brazos, Red, Mississippi, and Tennessee axes. Sediment volume was calculated from hand-contoured unit thickness maps compiled from basin-wide well and seismic control. Using a GIS algorithm to sum volumes within polygons bounding interpreted North American river contribution, the total extant volume was then calculated. General compaction factors were used to convert modern volume to quantitative approximations of total grain volume. Grain volume rate of supply for each depositional episode was then calculated. Values vary by more than an order of magnitude. Supply rate has commonly varied by two-fold or more between successive depositional episodes. Sediment supply is a significant, independent variable in development of stratigraphic sequences within the Gulf basin. Paleogeographic maps of the continental interior for eleven Cenozoic time intervals display the evolving and complex interplay of intracontinental tectonism, climate change, and drainage basin evolution. Five tectono-climatic eras are differentiated: Paleocene late Laramide era; early to middle Eocene terminal Laramide era; middle Cenozoic (Late Eocene—Early Miocene) dry, volcanogenic era; middle Neogene (Middle—Late Miocene) arid, extensional era; and late Neogene (Plio—Pleistocene) monsoonal, epeirogenic uplift era. Sediment supply to the GOM reflects the interplay of (1) areal extent of river drainage basins, (2) source area relief, (3) climate of the source areas and tributary systems, (4) source lithology, and (5) sediment storage within the upper drainage basin. Climate has played an important and complex role in modulating supply. In wet tropical to temperate climate regimes, abundant runoff efficiently removed entrained sediment. Arid climate limited runoff; resultant transport-limited tributaries and trunk streams deposited aggradational alluvial aprons, storing sediment in the drainage basin even in the absence of a structural depression. Eolian deposition commonly accompanied such alluvial aggradation. In contrast, seasonality and consequent runoff variability favored erosion and efficient sediment evacuation from the upper parts of drainage basins. Tectonism has played a prominent but equally complex role. Elevation of uplands by compression, crustal heating, or extrusive volcanism created primary loci of erosion and high sediment yield. At the same time, accompanying subsidence sometimes created long-lived sediment repositories that intercepted and sequestered sediment adjacent to sources. Regional patterns of uplift and subsidence relocated drainage divides and redirected trunk stream paths to the Gulf margin.

  20. Submarine canyon and fan systems of the California Continental Borderland

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.; Romans, B.W.; Covault, J.A.; Dartnell, P.; Sliter, R.W.

    2009-01-01

    Late Quaternary turbidite and related gravity-flow deposits have accumulated in basins of the California Borderland under a variety of conditions of sediment supply and sea-level stand. The northern basins (Santa Barbara, Santa Monica, and San Pedro) are closed and thus trap virtually all sediment supplied through submarine canyons and smaller gulley systems along the basin margins. The southern basins (Gulf of Santa Catalina and San Diego Trough) are open, and, under some conditions, turbidity currents flow from one basin to another. Seismic-reflection profiles at a variety of resolutions are used to determine the distribution of late Quaternary turbidites. Patterns of turbidite-dominated deposition during lowstand conditions of oxygen isotope stages 2 and 6 are similar within each of the basins. Chronology is provided by radiocarbon dating of sediment from two Ocean Drilling Program sites, the Mohole test-drill site, and large numbers of piston cores. High-resolution, seismic-stratigraphic frameworks developed for Santa Monica Basin and the open southern basins show rapid lateral shifts in sediment accumulation on scales that range from individual lobe elements to entire fan complexes. More than half of the submarine fans in the Borderland remain active at any given position of relative sea level. Where the continental shelf is narrow, canyons are able to cut headward during sea-level transgression and maintain sediment supply to the basins from rivers and longshore currents during highstands. Rivers with high bedload discharge transfer sediment to submarine fans during both highstand and lowstand conditions. ?? 2009 The Geological Society of America.

  1. Bacterial biogeography influenced by shelf-basin exchange in the Arctic surface sediment at the Chukchi Borderland.

    PubMed

    Han, Dukki; Nam, Seung-Il; Ha, Ho Kyung; Kim, Hyoungjun; Sadowsky, Michael J; Lee, Yoo Kyung; Hur, Hor-Gil

    2016-02-01

    It has been known that continental shelves around the Arctic Ocean play a major role in the ventilation of the deep basins as a consequence of shelf-basin exchange. In the present study, we found that bacterial assemblage of the surface sediment was different from that of seawater while seawater harboured local bacterial assemblages in response to the Arctic hydrography. This finding suggests that the Arctic seafloor sediments may have distinctive bacterial biogeography. Moreover, the distribution of bacterial assemblages and physicochemical properties in surface sediments changed gradually from the Arctic continental shelf to deep-sea basin. Based on the results, bacterial biogeography in the Arctic seafloor sediments may be influenced by winnowing and re-deposition of surface sediments through the sediment gravity flow. The present study offers a deeper understanding of shelf convection and its role for the construction of bacterial assemblages in the Arctic Ocean. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Geometry, structure, and concealed lithology of the San Rafael Basin, southeastern Arizona

    USGS Publications Warehouse

    Bultman, Mark W.

    1999-01-01

    The contiguous United States has been well explored for exposed conventional mineral deposits. Therefore, it is likely that many economically viable and strategically significant conventional undiscovered mineral deposits will be found in bedrock concealed beneath basin sediments. Mineral resource assessments must incorporate an understanding of the geometry, structure, and concealed lithology of basins in order to be accurate. This report presents an analysis of the basin geometry and structure of the San Rafael basin in southeastern Arizona. In addition, a new methodology for inferring concealed lithology is presented and applied in the San Rafael basin. Gravity data is used to model the geometry of the basin using recent models of sediment density vs. depth developed in the region. This modeling indicates that the basin has a maximum depth of approximately 1.05 km plus or minus 0.10 km. In the southern portion, the basin can be modeled as an asymmetric graben faulted on the western margin. The northern portion of the basin is structurally more complex and may have high angle faults on the western, northern, and eastern margin. Near-ground closely spaced Earth’s total intensity magnetic field data is used to locate concealed faults within the basin. This data is also used to infer lithology concealed by shallow basin sediments. Airborne Earth’s total intensity magnetic field data is used to help infer concealed lithology in deep portions of the basin. The product of integrating all data and interpretations is a map which presents the geometry of the basin, faults and contacts concealed by basin sediments, and an estimate of the bedrock lithology concealed by basin sediment. Based on basin geometry and concealed lithology, the San Rafael basin has a high potential for concealed mineral deposits on its western and northern margin. In particular, a newly discovered magnetic anomaly in the northern portion of the basin can be modeled as a granitic intrusion with highly altered margins and may represent a potential mineral resource target. Based on the permeability and porosity of upper basin fill found in nearby basins, the San Rafael basin may contain an aquifer up to 300 meters thick over a substantial area of the basin.

  3. Estimating the GIS-based soil loss and sediment delivery ratio to the sea for four major basins in South Korea.

    PubMed

    Lee, S E; Kang, S H

    2013-01-01

    This paper describes a sediment delivery ratio (SDR) using the Geographic Information System (GIS)-based Revised Universal Soil Loss Equation (RUSLE), to calculate the soil loss and sediment rating curve (SRC) basis of measured data in the six basins of Four Rivers, South Korea. The data set for calculating SDR was prepared during 3 years from 2008 to 2010. Mean soil loss in the six basins of Four Rivers was 515-869 t km(-2) yr(-1) and mean specific sediment yield (SSY) was 20-208 t km(-2) yr(-1) with basin size. The SDR ranged from 0.03 to 0.33 in the six rivers. Most sediment flows in the monsoon period from June to September (mean Max.: >97%; mean Min.: >84%), but SDR is lower than those of similar continental river basins. This is due to environmental factors, for example rainfall characteristics and associated run-off, soil characteristics and cultivated patterns with increasing basin size. This research provides the first application of SDR based on the observed field data in South Korea.

  4. Sr-Nd isotopes constrain on the deposit history of the basins in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Li, Y.; Jiang, S.

    2015-12-01

    The Brazos-Trinity Basin IV and Ursa Basin are situated on the northern slope of the Gulf of Mexico. The Ursa basin lies in the center of late Pleistocene Mississippi River deposition, received the sediment deposition during Marine Isotope Stage (MIS) 2- 4. The Brazos-Trinity Basin IV belongs to a part of the Brazos-Trinity fan, it recorded the turbidite deposition and hemiplegic deposition during MIS1- 5. The Sr and Nd isotopic composition of the detrital composition of the sediment in both basins indicates the change of the sediment provenance during the basin-filled process. In the Ursa basin, The difference of 87Sr/86Sr ratio and ɛNd of the detrital component between MIS1,2 (87Sr/86Sr ~ 0.7219 - 0.7321, ɛNd ~ -12 - -13.4) and MIS3,4(87Sr/86Sr ~ 0.7310 - 0.7354, ɛNd ~ -16 - -17.9) is suggested to be related with the provenance change of the detrital particles since LGM. The addition of detrital particle from Appalachians with less radiogenic 87Sr/86Sr and positive ɛNd altered the character of the sediment of the Mississippi River during the last glaciation and deglaciation. In the Brazos-Trinity Basin IV, the narrow range of 87Sr/86Sr and ɛNd indicate that the sediment source of Brazos-Trinity Basin IV had not changed obviously during MIS5e to MIS2, mostly from coastal rivers such as Brazos River, Trinity River and Sabine River. The pre-fan with 87Sr/86Sr ~0.735 and ɛNd ~ -14.5 to -16.9, which is very similar to the deep sediment in the Ursa Basin with 87Sr/86Sr ~0.733 to 0.735 and ɛNd ~ -16 to -18. It is suggested that sediments of the pre-fan of the Brazos-Trinity Basin IV were supplied from the ancestral Mississippi River Delta during the low sea level (MIS 6). During the MIS5, the discharge of Mississippi River is thought switched to its present course, ~300 km to the east.

  5. Early Mesozoic rift basin architecture and sediment routing system in the Moroccan High Atlas

    NASA Astrophysics Data System (ADS)

    Perez, N.; Teixell, A.; Gomez, D.

    2016-12-01

    Late Permian to Triassic extensional systems associated with Pangea breakup governed the structural framework and rift basin architecture that was inherited by Cenozoic High Atlas Mountains in Morocco. U-Pb detrital zircon geochronologic and mapping results from Permo-Triassic deposits now incorporated into the High Atlas Mountains provide new constraints on the geometry and interconnectivity among synextensional depocenters. U-Pb detrital zircon data provide provenance constraints of Permo-Triassic deposits, highlighting temporal changes in sediment sources and revealing the spatial pattern of sediment routing along the rift. We also characterize the U-Pb detrital zircon geochronologic signature of distinctive interfingering fluvial, tidal, and aeolian facies that are preferentially preserved near the controlling normal faults. These results highlight complex local sediment mixing patterns potentially linked to the interplay between fault motion, eustatic, and erosion/transport processes. We compare our U-Pb geochronologic results with existing studies of Gondwanan and Laurentian cratonic blocks to investigate continent scale sediment routing pathways, and with analogous early Mesozoic extensional systems situated in South America (Mitu basin, Peru) and North America (Newark Basin) to assess sediment mixing patterns in rift basins.

  6. Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: risk assessment and environmental implications.

    PubMed

    Patel, Priyanka; Raju, N Janardhana; Reddy, B C Sundara Raja; Suresh, U; Sankar, D B; Reddy, T V K

    2018-04-01

    The concentration of heavy metals was analyzed each of 20 river water, suspended sediments and bed sediments along the stretch of Swarnamukhi River Basin. River water is not contaminated with heavy metals except Fe and Mn. Contamination factor in sediments shows considerable to very high degree contamination with Cr, Cu, Pb and Zn. The sources of these metals could be residential wastes, sewer outfall, fertilizers, pesticides (M-45 + carbondine) and traffic activities apart from natural weathering of granitic rocks present in the basin area. Principal component analyses indicate the interaction between metals in different media. The comparison of metals (Cu, Pb and Zn) in bed sediments of Swarnamukhi River with the Indian and world averages indicates that the values obtained in the basin are above the Indian averages and far below to the world averages. Average shale values and sediment quality guidelines point toward the enrichment and contamination of Cu, Cr, Pb and Zn to several fold leading to eco-toxicological risks in basin.

  7. Sediment discharges during storm flow from proximal urban and rural karst springs, central Kentucky, USA

    USGS Publications Warehouse

    Reed, T.M.; Todd, McFarland J.; Fryar, A.E.; Fogle, A.W.; Taraba, J.L.

    2010-01-01

    Since the mid-1990s, various studies have addressed the timing of sediment transport to karst springs during storm flow or the composition and provenance of sediment discharged from springs. However, relatively few studies have focused on the flow thresholds at which sediment is mobilized or total sediment yields across various time scales. We examined each of these topics for a mainly urban spring (Blue Hole) and a rural spring (SP-2) in the Inner Bluegrass region of central Kentucky (USA). Suspended sediment consisted mostly of quartz silt and sand, with lesser amounts of calcite and organic matter. Total suspended sediment (TSS) values measured during storm flow were greater at SP-2 than at Blue Hole. By aggregating data from four storms during 2 years, we found that median suspended-sediment size jumped as Q exceeded ???0.5 m3/s for both springs. At Blue Hole, TSS tended to vary with Q and capacity approached 1 g/L, but no systematic relationship between TSS and Q was evident at SP-2. Sediment fluxes from the Blue Hole basin were ???2 orders of magnitude greater for storms in March (2002 and 2004) than September (2002 and 2003). In contrast, sediment fluxes from the SP-2 basin were of similar magnitude in September 2003 and March 2004. The overall range of area-normalized fluxes for both springs, 9.16 ?? 10-3-4.45 ?? 102 kg/(ha h), overlaps values reported for farm plots and a stream in the Inner Bluegrass region and for other spring basins in the eastern USA and western Europe. Sediment compositions, sizes, and responses to storms in the basins may differ because of land use (e.g., the extent of impervious cover in the Blue Hole basin), basin size (larger for Blue Hole), conduit architecture, which appears to be more complex in the Blue Hole basin, and the impoundment of SP-2, which may have promoted decadal-scale storage of sediment upgradient. ?? 2009 Elsevier B.V. All rights reserved.

  8. Temporal and basin-specific population trends of quagga mussels on soft sediment of a multi-basin reservoir

    USGS Publications Warehouse

    Caldwell, Timothy J; Rosen, Michael R.; Chandra, Sudeep; Acharya, Kumud; Caires, Andrea M; Davis, Clinton J.; Thaw, Melissa; Webster, Daniel M.

    2015-01-01

    Invasive quagga (Dreissena bugnesis) and zebra (Dreissena ploymorpha) mussels have rapidly spread throughout North America. Understanding the relationships between environmental variables and quagga mussels during the early stages of invasion will help management strategies and allow researchers to predict patterns of future invasions. Quagga mussels were detected in Lake Mead, NV/AZ in 2007, we monitored early invasion dynamics in 3 basins (Boulder Basin, Las Vegas Bay, Overton Arm) bi-annually from 2008-2011. Mean quagga density increased over time during the first year of monitoring and stabilized for the subsequent two years at the whole-lake scale (8 to 132 individuals·m-2, geometric mean), in Boulder Basin (73 to 875 individuals·m-2), and in Overton Arm(2 to 126 individuals·m-2). In Las Vegas Bay, quagga mussel density was low (9 to 44 individuals·m-2), which was correlated with high sediment metal concentrations and warmer (> 30°C) water temperatures associated with that basin. Carbon content in the sediment increased with depth in Lake Mead and during some sampling periods quagga density was also positively correlated with depth, but more research is required to determine the significance of this interaction. Laboratory growth experiments suggested that food quantity may limit quagga growth in Boulder Basin, indicating an opportunity for population expansion in this basin if primary productivity were to increase, but was not the case in Overton Arm. Overall quagga mussel density in Lake Mead is highly variable and patchy, suggesting that temperature, sediment size, and sediment metal concentrations, and sediment carbon content all contribute to mussel distribution patterns. Quagga mussel density in the soft sediment of Lake Mead expanded during initial colonization, and began to stabilize approximately 3 years after the initial invasion.

  9. From rifting to orogeny; using sediments to unlock the secrets of the Greater Caucasus

    NASA Astrophysics Data System (ADS)

    Vincent, Stephen; Guo, Li; Lavrishchev, Vladimir; Maynard, James; Harland, Melise

    2017-04-01

    The western Greater Caucasus formed by the tectonic inversion of the western strand of the Greater Caucasus Basin, a Mesozoic rift that opened at the southern margin of Laurasia. Facies analysis has identified fault-bounded regions of basinal, turbiditic and hemipelagic sediments. These are flanked by areas of marginal, shallow marine sediments to the north and south. Subsidence analysis derived from lithology, thickness and palaeowater depth data indicates that the main phase of rifting occurred during the Aalenian to Bajocian synchronous with that in the eastern Alborz and, possibly, the South Caspian Basin. Secondary episodes of subsidence during the late Tithonian to Berriasian and Hauterivian to early Aptian are tentatively linked to initial rifting within the western, and possibly eastern, Black Sea, and during the late Campanian to Danian to the opening of the eastern Black Sea. Initial uplift, subaerial exposure and sediment derivation from the western Greater Caucasus occurred at the Eocene-Oligocene transition. Oligocene and younger sediments on the southern margin of the former basin were derived from the inverting basin and uplifted parts of its northern margin, indicating that the western Greater Caucasus Basin had closed by this time. The previous rift flanks were converted to flexural basins that accumulated thick, typically hemipelagic and turbiditic sediments in the early, underfilled, stage of their development. A predominance of pollen representing a montane forest environment (dominated by Pinacean pollen) within these sediments suggests that the uplifting Caucasian hinterland had a paleoaltitude of around 2 km from Early Oligocene time. The closure of the western Greater Caucasus Basin and significant uplift of the range at c. 34 Ma is earlier than stated in many studies and needs to be incorporated into geodynamic models for the Arabia-Eurasia region.

  10. Nature and classification of waterlain glaciogenic sediments, exemplified by Pleistocene, Late Paleozoic and Late Precambrian deposits

    NASA Astrophysics Data System (ADS)

    Gravenor, C. P.; von Brunn, V.; Dreimanis, A.

    1984-03-01

    This study of waterlain glaciogenic sediments is designed to present both a review and new information on glaciogenic subaquatic deposits of differing age in a number of localities in North and South America and South Africa. The Late Paleozoic glaciogenic deposits of the ParanáBasin in Brazil and the Karoo Basin of South Africa are singled out for special attention as they show a reasonably complete lateral sequence of terrestrial to off-shore glaciogenic sedimentation. Although the environment of subaquatic glaciogenic sedimentation varies from one area to the next, certain common elements are found which can be used to develop a generalized model for both glaciomarine and glaciolacustrine sedimentation. For descriptive purposes, the model is divided into two broad categories: a shelf facies and a basinal facies. The shelf facies is marked by massive diamicton(ite) which may be 200 m or more in thickness and which is frequently overlain by a complex of clastic sediments consisting primarily of gravity and fluid flows. The basinal facies is marked by products of subaquatic slumps and more distal turbidites and glaciomarine sediments. New terminology is introduced. The massive diamicton(ite), which is diagnostic of the shelf facies, probably represents deposition from the base of active ice in a subaquatic environment and is termed undermelt diamicton(ite). The gravity and fluid flows which are usually found overlying undermelt diamicton(ite) and in the basinal facies are subdivided into six categories: glaciogenic subaquatic outwash, glaciogenic suspension flow, glaciogenic chaotic debris flow, glaciogenic subaquatic debris flow, glaciogenic slurry flow and glaciogenic turbidity flow. The relative abundance of undermelt diamicton(ite) and the various types of gravity and fluid flows can be used to define inner shelf, outer shelf, inner basin and outer basin facies of glaciomarine sedimentation.

  11. Subdivision of Holocene Baltic sea sediments by their physical properties [Gliederung holozaner ostseesedimente nach physikalischen Eigenschaften

    USGS Publications Warehouse

    Harff, Jan; Bohling, Geoffrey C.; Endler, R.; Davis, J.C.; Olea, R.A.

    1999-01-01

    The Holocene sediment sequence of a core taken within the centre of the Eastern Gotland Basin was subdivided into 12 lithostratigraphic units based on MSCL-data (sound velocity, wet bulk density, magnetic susceptibility) using a multivariate classification method. The lower 6 units embrace the sediments until the Litorina transgression, and the upper 6 units subdivide the brackish-marine Litorina- and post-Litorina sediments. The upper lithostratigraphic units reflect a change of anoxic (laminated) and oxic (non-laminated) sediments. By application of a numerical stratigraphic correlation method the zonation was extended laterally onto contiguous sediment cores within the central basin. Consequently the change of anoxic and oxic sediments can be used for a general lithostratigraphic subdivision of sediments of the Gotland Basin. A quantitative criterion based on the sediment-physical lithofacies is added to existing subdivisions of the Holocene in the Baltic Sea.

  12. Characteristics of Holocene sediments in the Gunsan Basin, central Yellow Sea

    NASA Astrophysics Data System (ADS)

    Woo, H. J.; Huh, S.; Jeong, K. S.; Lee, J. H.; Ham, A.; Kang, J.

    2016-12-01

    The Gunsan Basin, in the eastern part of the South Yellow Sea Basin, is filled by terrestrial sedimentary rocks, maximally up to 8 km deep on the basement of metamorphic rocks that constitutes the Yangtze Platform. The uppermost sedimentary layer (generally less than 1 km) appears to have formed experiencing the repeated marine environments since the middle Miocene. This study is to investigate the characteristics of Holocene sediments in the Gunsan Basin, based on interpretation of core sediments and high-resolution shallow (Sparker and Chirp) seismic profiles. The surface sediments in the basin consist of sand (56.6% on the average), silt (18.4%), and clay (25.0%) with a mean grain size of 1.5 to 7.8 Ø. Sand is prevalent (63.8 to 98.3%) in and around the Yellow Sea Trough lying in the eastern part of the basin. The sandy sediments are regarded as relict sediments deposited in the last glacial maximum (LGM). The sedimentary environments are classified, based on the acoustic and morphological characters of high-resolution shallow (Sparker and Chirp) seismic profiles, into mud zone, deformed zone, and sand ridges with sand waves zone from the west to the east in the Gunsan Basin. The deformed zone in the central Yellow Sea is a mixing area of sediments derived from China and Korea, where there are a number of paleochannels and erosional surfaces in the direction of northwest-southeast. The deformed zone represents non-deposition or erosion in the central Yellow Sea during the Holocene. Tidal sand ridges and sand waves are well developed along the coast of Korea. Modern sand ridges are generally moving in the northeast-southwest direction, which coincide with dominant tidal current direction. Fifteen piston cores were collected in the basin to investigate the general geological characters of the marine sedimentary sequence. In comparison with three cores in the southern basin, the sand contents tend to increase in the direction of east. 14C dates from three cores near border of Exclusive Economic Zone (EEZ) of Korea reveal that Holocene sediments have accumulated at the rate 6-18 cm/ka. The mud sediments sequentially change sandy mud to mud after the sea-level rise. In the Gunsan Basin, paleochannels played an important role in sedimentary processes during low sea-level periods of Quaternary.

  13. Neogene deformation of thrust-top Rzeszów Basin (Outer Carpathians, Poland)

    NASA Astrophysics Data System (ADS)

    Uroda, Joanna

    2015-04-01

    The Rzeszów Basin is a 220 km2 basin located in the frontal part of Polish Outer Carpathians fold-and-thrust belt. Its sedimentary succession consist of ca. 600 m- thick Miocene evaporates, litoral and marine sediments. This basin developed between Babica-Kąkolówka anticline and frontal thrust of Carpathian Orogen. Rzeszów thrust-top basin is a part of Carpathian foreland basin system- wedge-top depozone. The sediments of wedge -top depozone were syntectonic deformed, what is valuable tool to understand kinematic history of the orogen. Analysis of field and 3D seismic reflection data showed the internal structure of the basin. Seismic data reveal the presence of fault-bend-folds in the basement of Rzeszów basin. The architecture of the basin - the presence of fault-releated folds - suggest that the sediments were deformed in last compressing phase of Carpathian Orogen deformation. Evolution of Rzeszów Basin is compared with Bonini et.al. (1999) model of thrust-top basin whose development is controlled by the kinematics of two competing thrust anticlines. Analysis of seismic and well data in Rzeszów basin suggest that growth sediments are thicker in south part of the basin. During the thrusting the passive rotation of the internal thrust had taken place, what influence the basin fill architecture and depocentre migration opposite to thrust propagation. Acknowledgments This study was supported by grant No 2012/07/N/ST10/03221 of the Polish National Centre of Science "Tectonic activity of the Skole Nappe based on analysis of changes in the vertical profile and depocentre migration of Neogene sediments in Rzeszów-Strzyżów area (Outer Carpathians)". Seismic data by courtesy of the Polish Gas and Oil Company. References Bonini M., Moratti G., Sani F., 1999, Evolution and depocentre migration in thrust-top basins: inferences from the Messinian Velona Basin (Northern Apennines, Italy), Tectonophysics 304, 95-108.

  14. Selenium in Reservoir Sediment from the Republican River Basin

    USGS Publications Warehouse

    Juracek, Kyle E.; Ziegler, Andrew C.

    1998-01-01

    Reservoir sediment quality is an important environmental concern because sediment may act as both a sink and a source of water-quality constituents to the overlying water column and biota. Once in the food chain, sediment-derived constituents may pose an even greater concern due to bioaccumulation. An analysis of reservoir bottom sediment can provide historical information on sediment deposition as well as magnitudes and trends in constituents that may be related to changes in human activity in the basin. The assessment described in this fact sheet was initiated in 1997 by the U.S. Geological Survey (USGS), in cooperation with the Bureau of Reclamation (BOR), U.S. Department of the Interior, to determine if irrigation activities have affected selenium concentrations in reservoir sediment of the Republican River Basin of Colorado, Kansas, and Nebraska.

  15. Sediment storage quantification and postglacial evolution of an inner-alpine sedimentary basin (Gradenmoos, Schober Mountains, Austria)

    NASA Astrophysics Data System (ADS)

    Götz, J.; Buckel, J.; Otto, J. C.; Schrott, L.

    2012-04-01

    Knickpoints in longitudinal valley profiles of alpine headwater catchments can be frequently assigned to the lithological and tectonical setting, to damming effects through large (rockfall) deposits, or to the impact of Pleistocene glaciations causing overdeepened basins. As a consequence various sedimentary sinks developed, which frequently interrupt sediment flux in alpine drainage basins. Today these locations may represent landscape archives documenting a sedimentary history of great value for the understanding of alpine landscape evolution. The glacially overdeepened Gradenmoos basin at 1920 m a.s.l. (an alpine lake mire with adjacent floodplain deposits and surrounding slope storage landforms; approx. 4.1 km2) is the most pronounced sink in the studied Gradenbach catchment (32.5 km2). The basin is completely filled up with sediments delivered by mainly fluvial processes, debris flows, and rock falls, it is assumed to be deglaciated since Egesen times and it is expected to archive a continuous stratigraphy of postglacial sedimentation. As the analysis of denudation-accumulation-systems is generally based on back-calculation of stored sediment volumes to a specific sediment delivering area, most reliable results will be consequently obtained (1) if sediment output of the system can be neglected for the investigated period of time, (2) if - due to spatial scale - sediment storage can be assessed quantitatively with a high level of accuracy, and (3) if the sediment contributing area can be clearly delimited. All three aspects are considered to be fulfilled to a high degree within the Gradenmoos basin. Sediment storage is quantified using geophysical methods, core drillings and GIS modelling whereas postglacial reconstruction is based on radiocarbon dating and palynological analyses. Subject to variable subsurface conditions, different geophysical methods were applied to detect bedrock depth. Electrical resistivity surveying (2D/3D) was used most extensively as it delivered detailed and realistic subsurface models with low residual errors in the fine grained and water saturated central and distal part of the basin. With a lower data density, ground penetrating radar and refraction seismic supplied bedrock depths underneath adjacent debris and talus slope deposits. Additionally extracted sediment cores (up to 22 m depth) yielded a detailed stratigraphic record of the basin comprising a basal till layer underneath lake sediments (sandy-silty, partly varved), a sandy matrix with several oxidised layers in the upper sections, and layers of peat towards the surface. As bedrock was reached several times, core drilling further enabled to calibrate resistivity models. On the base of geophysical derived bedrock points, the shape of the assumed bedrock basin was modelled using a thin-plate-spline interpolation. Sediment volumes were calculated by subtracting the bedrock model from a surface DEM derived from terrestrial laser scanning. Since sediment delivering areas can be clearly assigned to single storage landform volumes, denudation rates could be calculated in detail and related to sedimentation rates obtained by radiocarbon dating results. An integrated analysis of surface, subsurface and temporal information finally yielded a model of postglacial basin evolution which will be discussed in a paraglacial context. This presentation is supported by the EUROCORES programme TOPO-EUROPE of the European Science Foundation.

  16. Fluvial Connectivity and Sediment Dispersal within Continental Extensional Basins; Assessment of Controlling Factors using Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Geurts, A., Jr.; Cowie, P. A.; Gawthorpe, R.; Huismans, R. S.; Pedersen, V. K.

    2017-12-01

    Progressive integration of drainage networks has been documented in many regional-scale studies of extensional continental systems. While endorheic drainage and lake sedimentation are common features observed in basin stratigraphy, they often disappear from the record due to the development of a through-going river network. Because changes in the fluvial connectivity of extensional basins have profound impact on erosion and sediment dispersal, and thus the feedback between surface processes and tectonics, it is of great importance to understand what controls them. Headward erosion (also called headward capture or river piracy) is often suggested to be the main mechanism causing basins to become interconnected over time with one another and with the regional/coastal drainage network. We show that overspill mechanisms (basin over-filling or lake over-spilling) play a key role in the actively extending central Italian Apennines, even though this area is theoretically favorable for headward erosion (short distances to the coast in combination with rapid surface uplift). In other tectonic settings (e.g. contractional basins and high plateaux) the role of headward erosion in transverse drainage development and integrating endorheic basins has also been increasingly questioned. These two mechanisms predict very different spatio-temporal patterns of sediment dispersal and thus timing of sediment loading (or erosional unloading) along active normal faults, which in turn may influence the locus of subsequent extensional deformation. By means of surface process modelling we develop a process-based understanding of the controls on fluvial connectivity between extensional basins in the central Italian Apennines. We focus on which conditions (tectonic and erosional) favour headward erosion versus overspill and compare our model results with published field evidence for drainage integration and the timing of basin sedimentation/incision.

  17. Integrated study of high resolution geophysical and geological information of Osaka Bay, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Inoue, Naoto; Kitada, Naoko; Itoh, Yasuto; Takemura, Keiji; Nakagawa, Koichi

    The stratigraphic framework of Quaternary sediments in the Osaka Basin, Southwest Japan was revealed by high resolution geophysical and geological surveys acquired after the 1995 Kobe Earthquake. Osaka Bay is located in the central part of the Osaka Basin and is underlaid with Pre-Neogene basement rocks covered by an unconsolidated sequence of Plio-Pleistocene marine, fluvial and lacustrine sediments. Fifteen laterally continuous marine clays (from Ma-1 to Ma13, in ascending order) have been identified throughout the Osaka Basin that have been correlated with the marine eustatic record. Deep borehole and high resolution seismic data were acquired in Kobe (northern part of the basin) and Kansai International Airport (southern part of the basin). Sequence stratigraphy defined by seismic reflectors was used to reveal the stratigraphic differences between the two areas. By identifying reflectors as marine clay layers throughout the basin, we were able to divide the study area into three parts (northern, middle and southern parts) and to estimate the sedimentation rate in each location. The sedimentation rate increases from the northern and southern margins of the basin towards central Osaka Bay in the middle of the basin. In the southern parts, the sharp decline of sedimentation rate between Ma2 and Ma4 and thinning or complete lack of the reflectors corresponding to Ma5 and Ma6 layers result from tilting in this region.

  18. Clay mineralogy of surface sediments as a tool for deciphering river contributions to the Cariaco Basin (Venezuela)

    NASA Astrophysics Data System (ADS)

    Bout-Roumazeilles, V.; Riboulleau, A.; du Châtelet, E. Armynot; Lorenzoni, L.; Tribovillard, N.; Murray, R. W.; Müller-Karger, F.; Astor, Y. M.

    2013-02-01

    The mineralogical composition of 95 surface sediment samples from the Cariaco Basin continental shelf and Orinoco delta was investigated in order to constrain the clay-mineral main provenance and distribution within the Cariaco Basin. The spatial variability of the data set was studied using a geo-statistical approach that allows drawing representative clay-mineral distribution maps. These maps are used to identify present-day dominant sources for each clay-mineral species in agreement with the geological characteristics of the main river watersheds emptying into the basin. This approach allows (1) identifying the most distinctive clay-mineral species/ratios that determine particle provenance, (2) evaluating the respective contribution of local rivers, and (3) confirming the minimal present-day influence of the Orinoco plume on the Cariaco Basin sedimentation. The Tuy, Unare, and Neveri Rivers are the main sources of clay particles to the Cariaco Basin sedimentation. At present, the Tuy River is the main contributor of illite to the western part of the southern Cariaco Basin continental shelf. The Unare River plume, carrying smectite and kaolinite, has a wide westward propagation, whereas the Neveri River contribution is less extended, providing kaolinite and illite toward the eastern Cariaco Basin. The Manzanares, Araya, Tortuga, and Margarita areas are secondary sources of local influence. These insights shed light on the origin of present-day terrigenous sediments of the Cariaco Basin and help to propose alternative explanations for the temporal variability of clay mineralogy observed in previously published studies.

  19. Fate and Transport of Cohesive Sediment and HCB in the Middle Elbe River Basin

    NASA Astrophysics Data System (ADS)

    Moshenberg, Kari; Heise, Susanne; Calmano, Wolfgang

    2014-05-01

    Chemical contamination of waterways and floodplains is a pervasive environmental problem that threatens aquatic ecosystems worldwide. Due to extensive historical contamination and redistribution of contaminated sediments throughout the basin, the Elbe River transports significant loads of contaminants downstream, particularly during flood events. This study focuses on Hexachlorobenzene (HCB), a persistent organic pollutant that has been identified as a contaminant of concern in the Elbe Basin. To better understand the fate and transport of cohesive sediments and sediment-sorbed HCB, a hydrodynamic, suspended sediment, and contaminated transport model for the 271-km reach of the Elbe River basin between Dresden and Magdeburg was developed. Additionally, trends in suspended sediment and contaminant transport were investigated in the context of the recent high frequency of floods in the Elbe Basin. This study presents strong evidence that extreme high water events, such as the August, 2002 floods, have a permanent effect on the sediment transport regime in the Elbe River. Additionally, results indicate that a significant component annual HCB loads are transported downstream during floods. Additionally, modeled results for suspended sediment and HCB accumulation on floodplains are presented and discussed. Uncertainty and issues related to model development are also addressed. A worst case analysis of HCB uptake by dairy cows and beef cattle indicate that significant, biologically relevant quantities of sediment-sorbed HCB accumulate on the Elbe floodplains following flood events. Given both the recent high frequency of floods in the Elbe Basin, and the potential increase in flood frequency due to climate change, an evaluation of source control measures and/or additional monitoring of floodplain soils and grasses is recommended.

  20. Sediment discharge from highway construction near Port Carbon, Pennsylvania

    USGS Publications Warehouse

    Helm, Robert E.

    1978-01-01

    About 16,000 tons of suspended-sediment was discharged from the basin during the construction. The highway construction produced about 8,000 tons or 50 percent of the total sediment discharge. Steep slopes, the availability of fine coal wastes, coal-washing operations, and other land uses in the basin were responsible for most of the remaining sediment discharge. Seventy percent of the total suspended-sediment discharge occurred during eight storms.

  1. Sediment-hosted micro-disseminated gold mineralization constrained by basin paleo-topographic highs in the Youjiang basin, South China

    NASA Astrophysics Data System (ADS)

    Liu, Jianming; Ye, Jie; Ying, Hanlong; Liu, Jiajun; Zheng, Minghua; Gu, Xuexiang

    2002-06-01

    The Youjiang basin is a Devonian-Triassic rift basin on the southern margin of the Yangtze Craton in South China. Strong syndepositional faulting defined the basin-and-range style paleo-topography that further developed into isolated carbonate platforms surrounded by siliciclastic filled depressions. Finally, thick Triassic siliciclastic deposits covered the platforms completely. In the Youjiang basin, numerous sediment-hosted, micro-disseminated gold (SMG) deposits occur mainly in Permian-Triassic chert and siliciclastic rocks. SMG ores are often auriferous sedimentary rocks with relatively low sulfide contents and moderate to weak alteration. Similar to Carlin-type gold ores in North America, SMG ores in the Youjiang basin are characterized by low-temperature mineral assemblages of pyrite, arsenopyrite, realgar, stibnite, cinnabar, marcasite, chalcedony and carbonate. Most of the SMG deposits are remarkably distributed around the carbonate platforms. Accordingly, there are platform-proximal and platform-distal SMG deposits. Platform-proximal SMG deposits often occur in the facies transition zone between the underlying platform carbonate rocks and the overlying siliciclastic rocks with an unconformity (often a paleo-karst surface) in between. In the ores and hostrocks there are abundant synsedimentary-syndiagenetic fabrics such as lamination, convolute bedding, slump texture, soft-sediment deformation etc. indicating submarine hydrothermal deposition and syndepositional faulting. Numerous fluid-escape and liquefaction fabrics imply strong fluid migration during sediment basin evolution. Such large-scale geological and fabric evidence implies that SMG ores were formed during basin evolution, probably in connection with basinal fluids. It is well known that basinal fluids (especially sediment-sourced fluids) will migrate generally (1) upwards, (2) towards basin margins or basin topographic highs, (3) and from thicker towards thinner deposits during basin evolution. The isolated carbonate platform (as a basin paleo-high) and related syndepositional fault system, together with the unconformity-related facies succession, may have controlled the migration pathway of ore-forming basinal fluids and subsequently determined the location of SMG deposits in the Youjiang basin. Unlike Carlin-type gold deposits, SMG mineralization in the Youjiang basin may represent an integral aspect of the dynamic evolution of extensional basins along divergent continental margins.

  2. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River.

    PubMed

    Ouyang, Wei; Hao, Fanghua; Skidmore, Andrew K; Toxopeus, A G

    2010-12-15

    Soil erosion is a significant concern when considering regional environmental protection, especially in the Yellow River Basin in China. This study evaluated the temporal-spatial interaction of land cover status with soil erosion characteristics in the Longliu Catchment of China, using the Soil and Water Assessment Tool (SWAT) model. SWAT is a physical hydrological model which uses the RUSLE equation as a sediment algorithm. Considering the spatial and temporal scale of the relationship between soil erosion and sediment yield, simulations were undertaken at monthly and annual temporal scales and basin and sub-basin spatial scales. The corresponding temporal and spatial Normalized Difference Vegetation Index (NDVI) information was summarized from MODIS data, which can integrate regional land cover and climatic features. The SWAT simulation revealed that the annual soil erosion and sediment yield showed similar spatial distribution patterns, but the monthly variation fluctuated significantly. The monthly basin soil erosion varied from almost no erosion load to 3.92 t/ha and the maximum monthly sediment yield was 47,540 tones. The inter-annual simulation focused on the spatial difference and relationship with the corresponding vegetation NDVI value for every sub-basin. It is concluded that, for this continental monsoon climate basin, the higher NDVI vegetation zones prevented sediment transport, but at the same time they also contributed considerable soil erosion. The monthly basin soil erosion and sediment yield both correlated with NDVI, and the determination coefficients of their exponential correlation model were 0.446 and 0.426, respectively. The relationships between soil erosion and sediment yield with vegetation NDVI indicated that the vegetation status has a significant impact on sediment formation and transport. The findings can be used to develop soil erosion conservation programs for the study area. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Global Ocean Sedimentation Patterns: Plate Tectonic History Versus Climate Change

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Reynolds, E.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.

    2014-12-01

    Global sediment data (Whittaker et al., 2013) and carbonate content data (Archer, 1996) allows examination of ocean sedimentation evolution with respect to age of the underlying ocean crust (Müller et al., 2008). From these data, we construct time series of ocean sediment thickness and carbonate deposition rate for the Atlantic, Pacific, and Indian ocean basins for the past 120 Ma. These time series are unique to each basin and reflect an integrated response to plate tectonics and climate change. The goal is to parameterize ocean sedimentation tied to crustal age for paleoclimate studies. For each basin, total sediment thickness and carbonate deposition rate from 0.1 x 0.1 degree cells are binned according to basement crustal age; area-corrected moments (mean, variance, etc.) are calculated for each bin. Segmented linear fits identify trends in present-day carbonate deposition rates and changes in ocean sedimentation from 0 to 120 Ma. In the North and South Atlantic and Indian oceans, mean sediment thickness versus crustal age is well represented by three linear segments, with the slope of each segment increasing with increasing crustal age. However, the transition age between linear segments varies among the three basins. In contrast, mean sediment thickness in the North and South Pacific oceans are numerically smaller and well represented by two linear segments with slopes that decrease with increasing crustal age. These opposing trends are more consistent with the plate tectonic history of each basin being the controlling factor in sedimentation rates, rather than climate change. Unlike total sediment thickness, carbonate deposition rates decrease smoothly with crustal age in all basins, with the primary controls being ocean chemistry and water column depth.References: Archer, D., 1996, Global Biogeochem. Cycles 10, 159-174.Müller, R.D., et al., 2008, Science, 319, 1357-1362.Whittaker, J., et al., 2013, Geochem., Geophys., Geosyst. DOI: 10.1002/ggge.20181

  4. The deeper structure of the southern Dead Sea basin derived from neural network analysis of velocity and attenuation tomography

    NASA Astrophysics Data System (ADS)

    Braeuer, Benjamin; Haberland, Christian; Bauer, Klaus; Weber, Michael

    2014-05-01

    The Dead Sea basin is a pull-apart basin at the Dead Sea transform fault, the boundary between the African and the Arabian plates. Though the DSB has been studied for a long time, the available knowledge - based mainly on surface geology, drilling and seismic reflection surveys - gives only a partial picture of its shallow structure. Therefore, within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. Within 18 month of recording 650 events were detected. In addition to an already published tomography study revealing the distribution of P velocities and the Vp/Vs ratios a 2D P-wave attenuation tomography (parameter Qp) was performed. The neural network technique of Self-organizing maps (SOM) is used for the joint interpretation of these three parameters (Vp, Vp/Vs, Qp). The resulting clusters in the petrophysical parameter space are assigned to the main lithological units below the southern part of the Dead Sea basin: (1) The basin sediments characterized by strong attenuation, high vp/vs ratios and low P velocities. (2) The pre-basin sediments characterized by medium to strong attenuation, low Vp/Vs ratios and medium P velocities. (3) The basement characterized by low to moderate attenuation, medium vp/vs ratios and high P velocities. Thus, the asymmetric southern Dead Sea basin is filled with basin sediments down to depth of 7 to 12 km. Below the basin sediments, the pre-basin sediments are extending to a depth between 13 and 18 km.

  5. Suspended-Sediment Budget for the North Santiam River Basin, Oregon, Water Years 2005-08

    USGS Publications Warehouse

    Bragg, Heather M.; Uhrich, Mark A.

    2010-01-01

    Significant Findings An analysis of sediment transport in the North Santiam River basin during water years 2005-08 indicated that: Two-thirds of sediment input to Detroit Lake originated in the upper North Santiam River subbasin. Two-thirds of the sediment transported past Geren Island originated in the Little North Santiam River subbasin. The highest annual suspended-sediment load at any of the monitoring stations was the result of a debris flow on November 6, 2006, on Mount Jefferson. About 86 percent of the total sediment input to Detroit Lake was trapped in the lake, whereas 14 percent was transported farther downstream. More than 80 percent of the sediment transport in the basin was in November, December, and January. The variance in the annual suspended-sediment loads was better explained by the magnitude of the annual peak streamflow than by the annual mean streamflow.

  6. Sediment compaction and pore pressure prediction in deepwater basin of the South China Sea: Estimation from ODP and IODP drilling well data

    NASA Astrophysics Data System (ADS)

    Xie, Yangbing; Wu, Tuoyu; Sun, Jin; Zhang, Hanyu; Wang, Jiliang; Gao, Jinwei; Chen, Chuanxu

    2018-02-01

    Overpressure in deepwater basins not only causes serious soft sediment deformation, but also significantly affects the safety of drilling operations. Therefore, prediction of overpressure in sediments has become an important task in deepwater oil exploration and development. In this study, we analyze the drilling data from ODP Leg 184 Sites 1144, 1146, and 1148, and IODP Leg 349 Sites U1431, U1432, U1433, and U1435 to study the sediment compaction and controls in the northern South China Sea. Sedimentation rate, sediment content, distribution area, and buried depth are the factors that influence sediment compaction in the deepwater basin of the South China Sea. Among these factors, the sediment content is the most important. The fitted normal compacted coefficients and mudline porosity for an interval of 50 m shows disciplinary variation versus depth. The pore pressure predicted from different fitted results shows varying overpressure situations. The normal compaction trend from Site 1144 reflects the porosity variation trend in stable deposition basins in the northern South China Sea. The predicted pore pressure shows overpressure at Site 1144, which is attributed to compaction disequilibrium. Nevertheless, the mixed lithology column may influence the predicted over-pressure at Site 1148, which is responsible for the confusing result. Above all, we find that sediment compaction should serve as a proxy for pore pressure in the deepwater basin of the South China Sea.

  7. Redox processes as revealed by voltammetry in the surface sediments of the Gotland Basin, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Yücel, Mustafa; Dale, Andy; Sommer, Stefan; Pfannkuche, Olaf

    2014-05-01

    Sulfur cycling in marine sediments undergoes dramatic changes with changing redox conditions of the overlying waters. The upper sediments of the anoxic Gotland Basin, central Baltic Sea represent a dynamic redox environment with extensive mats of sulfide oxidizing bacteria covering the seafloor beneath the chemocline. In order to investigate sulfur redox cycling at the sediment-water interface, sediment cores were sampled over a transect covering 65 - 174 m water depth in August-September 2013. High resolution (0.25 mm minimum) vertical microprofiles of electroactive redox species including dissolved sulfide and iron were obtained with solid state Au-Hg voltammetric microelectrodes. This approach enabled a fine-scale comparison of porewater profiles across the basin. The steepest sulfide gradients (i.e. the highest sulfide consumption) occurred within the upper 10 mm in sediments covered by surficial mats (2.10 to 3.08 mmol m-2 day-1). In sediments under permanently anoxic waters (>140m), voltammetric signals for Fe(II) and aqueous FeS were detected below a subsurface maximum in dissolved sulfide, indicating a Fe flux originating from older, deeper sedimentary layers. Our results point to a unique sulfur cycling in the Gotland basin seafloor where sulfide accumulation is moderated by sulfide oxidation at the sediment surface and by FeS precipitation in deeper sediment layers. These processes may play an important role in minimizing benthic sulfide fluxes to bottom waters around the major basins of the Baltic Sea.

  8. A 10Be-based sediment budget of the Upper Rhône basin, Central Swiss Alps

    NASA Astrophysics Data System (ADS)

    Stutenbecker, Laura; Delunel, Romain; Schlunegger, Fritz; Akçar, Naki; Christl, Marcus

    2017-04-01

    The Upper Rhône catchment located in southwestern Switzerland is one of the largest Alpine intramontane basins and, due to high topographic gradients and intense glacial conditioning, an important sediment factory in the Alps. Sediment is being produced in around 50 tributary basins, transported along the 150 km long course of the Rhône River, and deposited in the river delta and associated subaquatic canyons within Lake Geneva, its primary sedimentary sink. In order to quantify the modern sediment fluxes in this Alpine basin we infer catchment-wide denudation rates from concentrations of the cosmogenic nuclide 10Be in quartz extracted from modern fluvial sediment of the major tributary basins. Additionally, 10Be-based denudation rates are calculated for 14 locations along the main Rhône River to track downstream changes. Results from the tributary basins show a large scatter of 10Be concentrations and their respective inferred denudation rates, ranging from 9.72 x 104 atoms/g and 0.17 mm/a to 0.13 x 104 atoms/g and 2.64 mm/a. The Rhône basin does show a rather large spatial variability of parameters that are known to possibly influence denudation rates, for example recent rock uplift rates, lithology, precipitation and temperature, as well as geomorphological parameters such as relief, mean elevation and slope values. However, there is no significant correlation between those parameters and the calculated denudation rates. Instead, the denudation rates are found to be positively correlated with the recent glacial cover in the catchments. This suggests that in glaciated basins glaciogenic material with very low 10Be concentrations is the dominating source of sediment, and inferred denudation rates must be interpreted with great care, as they may overestimate the actual rates. Downstream the main Rhône River the 10Be-concentrations are rather stable and do not record significant inputs of the glaciogenic material supplied by the glaciated basins. Possible explanations we would like to discuss here include differences in sediment connectivity and temporary sediment storage.

  9. Geochemistry of mercury and other constituents in subsurface sediment—Analyses from 2011 and 2012 coring campaigns, Cache Creek Settling Basin, Yolo County, California

    USGS Publications Warehouse

    Arias, Michelle R.; Alpers, Charles N.; Marvin-DiPasquale, Mark C.; Fuller, Christopher C.; Agee, Jennifer L.; Sneed, Michelle; Morita, Andrew Y.; Salas, Antonia

    2017-10-31

    Cache Creek Settling Basin was constructed in 1937 to trap sediment from Cache Creek before delivery to the Yolo Bypass, a flood conveyance for the Sacramento River system that is tributary to the Sacramento–San Joaquin Delta. Sediment management options being considered by stakeholders in the Cache Creek Settling Basin include sediment excavation; however, that could expose sediments containing elevated mercury concentrations from historical mercury mining in the watershed. In cooperation with the California Department of Water Resources, the U.S. Geological Survey undertook sediment coring campaigns in 2011–12 (1) to describe lateral and vertical distributions of mercury concentrations in deposits of sediment in the Cache Creek Settling Basin and (2) to improve constraint of estimates of the rate of sediment deposition in the basin.Sediment cores were collected in the Cache Creek Settling Basin, Yolo County, California, during October 2011 at 10 locations and during August 2012 at 5 other locations. Total core depths ranged from approximately 4.6 to 13.7 meters (15 to 45 feet), with penetration to about 9.1 meters (30 feet) at most locations. Unsplit cores were logged for two geophysical parameters (gamma bulk density and magnetic susceptibility); then, selected cores were split lengthwise. One half of each core was then photographed and archived, and the other half was subsampled. Initial subsamples from the cores (20-centimeter composite samples from five predetermined depths in each profile) were analyzed for total mercury, methylmercury, total reduced sulfur, iron speciation, organic content (as the percentage of weight loss on ignition), and grain-size distribution. Detailed follow-up subsampling (3-centimeter intervals) was done at six locations along an east-west transect in the southern part of the Cache Creek Settling Basin and at one location in the northern part of the basin for analyses of total mercury; organic content; and cesium-137, which was used for dating. This report documents site characteristics; field and laboratory methods; and results of the analyses of each core section and subsample of these sediment cores, including associated quality-assurance and quality-control data.

  10. Lithostratigraphie, sédimentologie et évolution de deux bassins molassiques intramontagneux de la chaine Pan-Africaine: la Série pourprée de l'Ahnet, Nord-Ouest du Hoggar, Algérie

    NASA Astrophysics Data System (ADS)

    Ait-Kaci Ahmed, Ali; Moussine-Pouchkine, Alexis

    The study of two of the intermontane molassic basins of the 'Série pourprée de l'Ahnet' shows that they developed independently both in time and space. The characteristics of their thick sedimentary infillings are quite different. The Ouallen basin is filled by essentially fine-grained sediments which were deposited in continental then marine or lacustrine environments; these sediments thicen from east to west. The In Semmen basin is characterised by coarser sediments which were deposited from south to north, in alluvial fan, fluvial, deltaic and slope environments. This basin is also characterised by an episode of carbonate sedimentation leading to the formation of a remarkable thin layer of carbonate, covering the entire sedimentary area, and perhaps related to a volcanic rhyolitic event. The history of the two basins is also marked by obvious tectonic events simultaneous with the sedimentation and related to the recurrent faulting of major Pan-African faults. These led to the formation of very coarse fanglomerates located near the fault scarps, and are probably responsible for the shape and the evolution of the basins.

  11. Reconnaissance assessment of erosion and sedimentation in the Canada de los Alamos basin, Los Angeles and Ventura Counties, California

    USGS Publications Warehouse

    Knott, J.M.

    1980-01-01

    An assessment of present erosion and sedimentation conditions in the Ca?ada de los Alamos basin was made to aid in estimating the impact of off-road-vehicle use on the sediment yield of the basin. Impacts of off-road vehicles were evaluated by reconnaissance techniques and by comparing the study area with other offroad-vehicle sites in California. Major-storm sediment yields for the basin were estimated using empirical equations developed for the Transverse Ranges and measurements of gully erosion in a representative off-road-vehicle basin. Normal major-storm yields of 73,200 cubic yards would have to be increased to about 98,000 cubic yards to account for the existing level of accelerated erosion caused by off-road vehicles. Long-term sediment yield of the Ca?ada de los Alamos basin upstream from its confluence with Gorman Creek, under present conditions of off-road-vehicle use, is approximately 420 cubic yards per square mile per year--a rate that is considerably lower than a previous estimate of 1,270 cubic yards per square mile per year for the total catchment area above Pyramid Lake.

  12. Geoligical outline of the Lower Cretaceous Bahia Supergroup, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, J.I.

    1966-01-01

    The report area encompasses about 41,200 sq km covered by over 6,000 m of Lower Cretaceous sediments deposited in fresh to brackish water environment. These sediments, the Bahia Supergroup, represent most of the sedimentary section of the Almada, Reconcavo, Tucano and Jatoba basins. The Reconcavo basin is a half-graben filled with Lower Cretaceous rocks which tilt regionally to the SE. The sediments deposited in this basin were distorted by 2 major periods of deformation. As the result of the application of these systems of tensional forces, the sediments were broken into a complicated system of normal faults. Most of themore » oil production in Brazil, about 91,000 bpd, comes from the Reconcavo basin. During a great part of the Early Cretaceous the Reconcavo and Almada basins probably were connected with the Alagoas-Sergipe basin by the continental shelf. The continental drift theory may explain the presence of these fresh water sediments in the coast line and in the continental shelf of the Bahia and Alagoas-Sergipe states. This offshore area is very prospective and may contribute, in the future, with substantial quantities of hydrocarbons. (14 refs.)« less

  13. Coupling climate conditions, sediment sources and sediment transport in an alpine basin

    NASA Astrophysics Data System (ADS)

    Rainato, Riccardo; Picco, Lorenzo; Cavalli, Marco; Mao, Luca; Neverman, Andrew J.; Tarolli, Paolo

    2017-04-01

    In a fluvial system, mountain basins control sediment export to the lowland rivers. Hence, the analysis of the erosion processes and sediment delivery patterns that act in mountain basins is important. Several studies have investigated the alterations triggered by recent climatic change on the hydrological regime, whilst only a few works have explored the consequences on the sediment dynamics. Here we combined and analyzed the quasi-unique dataset of climatic conditions, landscape response, and sediment export produced, since 1986 in the Rio Cordon basin (5 km2, Eastern Italian Alps) to examine the sediment delivery processes occurring in the last three decades. The temperature, precipitation, and fluvial sediment fluxes in the basin were analyzed using continuous measurement executed by a permanent monitoring station, while the landscape evolution was investigated by three sediment source inventories established in 1994, 2006, and 2016. Thus, the analysis focused on the trends exhibited during the periods 1986-1993, 1994-2006, and 2007-2015. In terms of climatic conditions, three distinct climate forcing stages can be observed in the periods analyzed: a relatively stable phase (1986-1993), a period characterized by temperature and rainfall fluctuations (1994-2006), and a more recent warmer and wetter phase (2007-2015). In the 1986-1993 period, the fluvial sediment fluxes reflected the stable trend exhibited by the climatic conditions. In the subsequent 1994-2006 period, the average temperature and precipitation were in line with that previously observed, although with higher interannual variability. Notwithstanding the climate forcing and the occurrence of high magnitude/low frequency floods that strongly influenced the source areas, between 1994 and 2006 the Rio Cordon basin showed relatively limited erosion activity. Hence, the climatic conditions and the landscape response can only partially explain the strong increase of sediment export recorded in the 1994-2006 period. In this sense, the sediment availability resulting from armour layer and bedform removal appears crucial to describing the sediment fluxes during this period, stressing the key role of the in-channel sediment supply. In the recent period 2007-2015 a marked climate warming accompanied by increased precipitation was observed. This climate forcing did not affect the landscape evolution, with sediment source extent remaining substantially in line between 2006 and 2016. The absence of a significant landscape response and the restoration of the channel armour layer can describe the limited sediment fluxes observed during the last decade. In particular, the increased temperature and precipitation were not accompanied by an increase in flood occurrence and magnitude, stressing the evident absence of hillslope-channel network coupling. This research was funded by the University of Padova Research Projects 'Sediment transfer processes in an Alpine basin: sediment cascades from hillslopes to the channel network-BIRD167919'.

  14. Compaction and sedimentary basin analysis on Mars

    NASA Astrophysics Data System (ADS)

    Gabasova, Leila R.; Kite, Edwin S.

    2018-03-01

    Many of the sedimentary basins of Mars show patterns of faults and off-horizontal layers that, if correctly understood, could serve as a key to basin history. Sediment compaction is a possible cause of these patterns. We quantified the possible role of differential sediment compaction for two Martian sedimentary basins: the sediment fill of Gunjur crater (which shows concentric graben), and the sediment fill of Gale crater (which shows outward-dipping layers). We assume that basement topography for these craters is similar to the present-day topography of complex craters that lack sediment infill. For Gunjur, we find that differential compaction produces maximum strains consistent with the locations of observed graben. For Gale, we were able to approximately reproduce the observed layer orientations measured from orbiter image-based digital terrain models, but only with a >3 km-thick donut-shaped past overburden. It is not immediately obvious what geologic processes could produce this shape.

  15. Mössbauer spectroscopic study of the test well (DND) located in Jaisalmer Basin of Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Ganwani, Girish; Meena, Samay Singh; Ram, Sahi; Bhatia, Beena; Tripathi, R. P.

    2018-05-01

    The Jaisalmer basin represents mainly the westerly dipping flank of Indus shelf. The palynological and geochemical studies have predicted good quality of hydrocarbons in this basin. The cretaceous and Jurassic sediments are believed to contain source rock in this basin. In present preliminary study, Mössbauer spectroscopic investigation has been done on sedimentary samples collected from different depths of upper cretaceous sedimentary sequence of well DND-1 drilled in Jaisalmer basin. The iron is found mainly in carbonate and clay. The relatively small presence of Fe2+ in comparison to Fe3+ in clay is an indication of poor reducing environment in sediments, which can be attributed to poor maturity of source rocks in upper cretaceous sediments of this basin.

  16. Sediment load trends in the Magdalena River basin (1980-2010): Anthropogenic and climate-induced causes

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan D.; Escobar, Heber A.

    2018-02-01

    The Colombian Andes and its main river basin, the Magdalena, have witnessed dramatic changes in land cover and further forest loss during the last three decades. For the Magdalena River, human activities appear to have played a more prominent role compared to rainfall (climate change) to mobilize sediment. However, environmental authorities in Colombia argue that climate change is the main trigger of erosion and floods experienced during the last decade. Here we present the first regional exercise addressing the following: (1) what are the observed trends of sediment load in the northern Andes during the last three decades? and (2) are sediment load trends in agreement with tendencies in land use change and climate (e.g., precipitation)? We perform Mann-Kendall tests on sediment load series for 21 main tributary systems during the 1980-2010 period. These gauging stations represent 77% of the whole Magdalena basin area. The last decade has been a period of increased pulses in sediment transport as seen by the statistical significant trends in load. Overall, six subcatchments, representing 55% of the analyzed Magdalena basin area, have witnessed increasing trends in sediment load. Also, some major tributaries have experienced changes in their interannual mean sediment flux during the mid- 1990s and 2005. Further analysis of land cover change (e.g., deforestation) indicates that the basin has undergone considerable change. Forest cover decreased by 40% over the period of study, while the area under agriculture and pasture cover (agricultural lands 1 and 2) increased by 65%. The highest peak of forest loss on record in the Magdalena basin, 5106 km2 or 24% of the combined deforestation in Colombia, occurred during the 2005-2010 period. In contrast, Mann-Kendall tests on rainfall series for 61 stations reveal that precipitation shows no regional signs of increasing trends. Also, increasing trends in sediment load match quite well with the marked increase in forest clearance during the 1990-2000 and 2005-2010 periods. Such signs of increasing sediment fluxes should not be attributed to climate change and rainfall variability alone. As a whole, the Magdalena, one of the top 10 rivers in terms of sediment delivery to the ocean (184 Mt y- 1), and its tributaries have experienced increasing trends in sediment load during the 1980-2010 period; increases in close agreement with trends in land use change and deforestation. During the last decade, the Magdalena River drainage basin has witnessed an increase in erosion rates of 34%, from 550 t km- 2 y- 1 before 2000 to 710 t km- 2 y- 1 for the 2000-2010 period, and the average sediment load for the whole basin increased to 44 Mt y- 1 for the same period. Similar to the global picture of human contribution to sediment generation, the rate of anthropogenic soil erosion in the Magdalena basin probably exceeds the rate of climate-driven erosion by several orders of magnitude.

  17. Sediment sources in the Lake Tahoe Basin, California-Nevada; preliminary results of a four-year study, August 1983-September 1987

    USGS Publications Warehouse

    Hill, B.R.; Hill, J.R.; Nolan, K.M.

    1988-01-01

    Data were collected during a 4-yr study of sediment sources in four drainage basins tributary to Lake Tahoe, California-Nevada. The study areas include the Blackwood, General, Edgewood, and Logan House Creek basins. Data include changes in bank and bed positions at channel cross sections; results of stream-channel mapping; analyses of bank and bed material samples; tabulations of bed material point counts; measured rates of hillslope erosion; dimensions of gullies; suspended-sediment data collected during synoptic snowmelt sampling; and physiographic data for the four study basins. (USGS)

  18. Sediment-source data for four basins tributary to Lake Tahoe, California and Nevada; August 1983-June 1988

    USGS Publications Warehouse

    Hill, B.R.; Hill, J.R.; Nolan, K.M.

    1990-01-01

    Data were collected during a 5-year study of sediment sources in four drainage basins tributary to Lake Tahoe, California-Nevada. The study areas include the Blackwood Creek, General Creek, Edgewood Creek, and Logan House Creek basins. Data include changes in bank and bed positions at channel cross sections; results of stream-channel inventories; analyses of bank and bed material samples; tabulations of bed-material pebble counts; measured rates of hillslope erosion; dimensions of gullies; suspended-sediment data collected during synoptic snowmelt sampling; and physiographic data for the four study basins. (USGS)

  19. Sediment Production From Small Undisturbed Forested Basins In The Upper Coastal Plain

    Treesearch

    Daniel A. Marion; Greg Malstaff; Howard G. Halverson

    1996-01-01

    Forest lands in the Upper Coastal Plain (UCP) of the American South are widely recognized as producing water with relatrvely low amounts of sediment. Previous research has established that sediment concentrations from forest basins lacking well-defined channel networks averages 5.3 to 6.2 kg of sediment per hectare per centimeter of runoff (kg/ha-cm) in this...

  20. PTM Modeling of Dredged Suspended Sediment at Proposed Polaris Point and Ship Repair Facility CVN Berthing Sites - Apra Harbor, Guam

    DTIC Science & Technology

    2017-09-01

    ADCP locations used for model calibration. ......................................................................... 12 Figure 4-3. Sample water...Example of fine sediment sample [Set d, Sample B30]. (B) Example of coarse sediment sample [Set d, sample B05...Turning Basin average sediment size distribution curve. ................................................... 21 Figure 5-5. Turning Basin average size

  1. Measuring sediment yields of storms using PSALT

    Treesearch

    Robert B. Thomas

    1988-01-01

    Abstract - Storm yields of water and sediment are being measured as part of a study of the effects of roading, logging, and burning in a second-growth redwood forest in northern California. Two primary basins, each about 500 ha, and 13 sub-basins in one of them are measured for sediment flux and the presence and magnitude of sediment-based ""cumulative...

  2. Sediment characteristics in the San Antonio River Basin downstream from San Antonio, Texas, and at a site on the Guadalupe River downstream from the San Antonio River Basin, 1966-2013

    USGS Publications Warehouse

    Crow, Cassi L.; Banta, J. Ryan; Opsahl, Stephen P.

    2014-01-01

    San Antonio and surrounding municipalities in Bexar County, Texas, are in a rapidly urbanizing region in the San Antonio River Basin. The U.S. Geological Survey, in cooperation with the San Antonio River Authority and the Texas Water Development Board, compiled historical sediment data collected between 1996 and 2004 and collected suspended-sediment and bedload samples over a range of hydrologic conditions in the San Antonio River Basin downstream from San Antonio, Tex., and at a site on the Guadalupe River downstream from the San Antonio River Basin during 2011–13. In the suspended-sediment samples collected during 2011–13, an average of about 94 percent of the particles was less than 0.0625 millimeter (silt and clay sized particles); the 50 samples for which a complete sediment-size analysis was performed indicated that an average of about 69 percent of the particles was less than 0.002 millimeter. In the bedload samples collected during 2011–13, an average of 51 percent of sediment particles was sand-sized particles in the 0.25–0.5 millimeter-size range. In general, the loads calculated from the samples indicated that bedload typically composed less than 1 percent of the total sediment load. A least-squares log-linear regression was developed between suspended-sediment concentration and instantaneous streamflow and was used to estimate daily mean suspended-sediment loads based on daily mean streamflow. The daily mean suspended-sediment loads computed for each of the sites indicated that during 2011–12, the majority of the suspended-sediment loads originated upstream from the streamflow-gaging station on the San Antonio River near Elmendorf, Tex. A linear regression relation was developed between turbidity and suspended-sediment concentration data collected at the San Antonio River near Elmendorf site because the high-resolution data can facilitate understanding of the complex suspended-sediment dynamics over time and throughout the river basin.

  3. Investigation on the effectiveness of pretreatment in stormwater management technologies.

    PubMed

    Maniquiz-Redillas, Marla C; Geronimo, Franz Kevin F; Kim, Lee-Hyung

    2014-09-01

    The effectiveness of presettling basins as component of stormwater best management practice (BMP) technologies was investigated. Storm event monitoring and sediment collection were conducted from May 2009 to November 2012 on the presettling basins of the three BMP technologies designed to capture and treat stormwater runoff from highly impervious roads and parking lots. Data on captured runoff and sediment, total suspended solids (TSS) loadings, rainfall and runoff rate, sediment accumulation rate, as well as particle distribution and pollutant concentrations of sediment were gathered and analyzed along with the physical design characteristics of the presettling basins such as surface area and storage volume. Regression models were generated to determine significant relationships between design parameters. Results revealed that the storage volume ratio (ratio of storage volume of presettling basin to BMP) was an important parameter in designing the presettling basin of the BMP. For practicality, optimizing the design of the presettling basin means that the storage volume ratio should be determined based on the desired captured amount of runoff and sediment from runoff to limit the frequency of maintenance caused by the accumulation of sediment. It was recommended that pretreatment of runoff should be employed when the site in which the BMP is to be sited has high TSS loading and runoff rate, and is subjected to high intensity rainfall. Copyright © 2014. Published by Elsevier B.V.

  4. Priority-pollutant trace elements in streambed sediments of the Cook Inlet basin, Alaska, 1998-2000

    USGS Publications Warehouse

    Frenzel, Steven A.

    2002-01-01

    Trace element concentrations in 48 streambed sediment samples collected at 47 sites in the Cook Inlet Basin, Alaska, were compared to concentrations from studies in the conterminous United States using identical methods and to Probable Effect Concentrations. Concentrations of arsenic, chromium, mercury, and nickel in the 0.063-mm size fraction of streambed sediments from the Cook Inlet Basin were elevated relative to reference sites in the conterminous United States. Concentrations of cadmium, lead, and zinc were highest at the most urbanized site in Anchorage and at two sites downstream from an ore body in Lake Clark National Park and Preserve. At least 35 percent of the 48 samples collected in the Cook Inlet Basin exceeded the Probable Effect Concentration for arsenic, chromium, or nickel. More than 50 percent of the samples were considered to have low potential toxicity for cadmium, lead, mercury, nickel, selenium, and zinc. A Probable Effect Concentration quotient that reflects the combined toxicity of arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc was exceeded in 44 percent of the samples from the Cook Inlet Basin. The potential toxicity was high in the Denali and Lake Clark National Parks and Preserves where organic carbon concentrations in streambed sediments were low. However, potential toxicity results should be considered in context with the very small amounts of fine-grained sediment present in the streambed sediments of the Cook Inlet Basin.

  5. Lost opportunities and future avenues to reconcile hydropower and sediment transport in the Mekong Basin through optimal sequencing of dam portfolios.

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.

    2017-12-01

    Dams are essential to meet growing water and energy demands. While dams cumulatively impact downstream rivers on network-scales, dam development is mostly based on ad-hoc economic and environmental assessments of single dams. Here, we provide evidence that replacing this ad-hoc approach with early strategic planning of entire dam portfolios can greatly reduce conflicts between economic and environmental objectives of dams. In the Mekong Basin (800,000km2), 123 major dam sites (status-quo: 56 built and under construction) could generate 280,000 GWh/yr of hydropower. Cumulatively, dams risk interrupting the basin's sediment dynamics with severe impacts on livelihoods and eco-systems. To evaluate cumulative impacts and benefits of the ad-hoc planned status-quo portfolio, we combine the CASCADE sediment connectivity model with data on hydropower production and sediment trapping at each dam site. We couple CASCADE to a multi-objective genetic algorithm (BORG) identifying a) portfolios resulting in an optimal trade-off between cumulative sediment trapping and hydropower production and b) an optimal development sequence for each portfolio. We perform this analysis first for the pristine basin (i.e., without pre-existing dams) and then starting from the status-quo portfolio, deriving policy recommendations for which dams should be prioritized in the near future. The status-quo portfolio creates a sub-optimal trade-off between hydropower and sediment trapping, exploiting 50 % of the basin's hydro-electric potential and trapping 60 % of the sediment load. Alternative optimal portfolios could have produced equivalent hydropower for 30 % sediment trapping. Imminent development of mega-dams in the lower basin will increase hydropower production by 20 % but increase sediment trapping to >90 %. In contrast, following an optimal development sequence can still increase hydropower by 30 % with limited additional sediment trapping by prioritizing dams in upper parts of the basin. Our findings argue for reconsidering some imminent dam developments in the Mekong. With nearly 3000 dams awaiting development world-wide, results from the Mekong are of global importance, demonstrating that strategic planning and sequencing of dams is instrumental for sustainable development of dams and hydropower.

  6. Sedimentation in the chaparral: how do you handle unusual events?

    Treesearch

    Raymond M. Rice

    1982-01-01

    Abstract - Processes of erosion and sedimentation in steep chaparral drainage basins of southern California are described. The word ""hyperschedastic"" is coined to describe the sedimentation regime which is highly variable because of the interaction of marginally stable drainage basins, great variability in storm inputs, and the random occurrence...

  7. The influence of a semi-arid sub-catchment on suspended sediments in the Mara River, Kenya

    PubMed Central

    2018-01-01

    The Mara River Basin in East Africa is a trans-boundary basin of international significance experiencing excessive levels of sediment loads. Sediment levels in this river are extremely high (turbidities as high as 6,000 NTU) and appear to be increasing over time. Large wildlife populations, unregulated livestock grazing, and agricultural land conversion are all potential factors increasing sediment loads in the semi-arid portion of the basin. The basin is well-known for its annual wildebeest (Connochaetes taurinus) migration of approximately 1.3 million individuals, but it also has a growing population of hippopotami (Hippopotamus amphibius), which reside within the river and may contribute to the flux of suspended sediments. We used in situ pressure transducers and turbidity sensors to quantify the sediment flux at two sites for the Mara River and investigate the origin of riverine suspended sediment. We found that the combined Middle Mara—Talek catchment, a relatively flat but semi-arid region with large populations of wildlife and domestic cattle, is responsible for 2/3 of the sediment flux. The sediment yield from the combined Middle Mara–Talek catchment is approximately the same as the headwaters, despite receiving less rainfall. There was high monthly variability in suspended sediment fluxes. Although hippopotamus pools are not a major source of suspended sediments under baseflow, they do contribute to short-term variability in suspended sediments. This research identified sources of suspended sediments in the Mara River and important regions of the catchment to target for conservation, and suggests hippopotami may influence riverine sediment dynamics. PMID:29420624

  8. The isotopic composition of authigenic chromium in anoxic marine sediments: A case study from the Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Reinhard, Christopher T.; Planavsky, Noah J.; Wang, Xiangli; Fischer, Woodward W.; Johnson, Thomas M.; Lyons, Timothy W.

    2014-12-01

    Chromium (Cr) isotopes are an emerging proxy for tracking redox processes at the Earth's surface. However, there has been limited exploration of the Cr isotope record of modern and recent marine sediments. The basic inorganic chemistry of Cr suggests that anoxic marine basins should factor prominently in the global Cr cycle and that sediments deposited within anoxic basins may offer a valuable Cr isotope archive throughout Earth's history. Here, we present δ53Cr data from sediments of the Cariaco Basin, Venezuela-a 'type' environment for large, perennially anoxic basins with a relatively strong hydrological connection to the global oceans. We document a marked positive shift in bulk δ53Cr values following the termination of the Last Glacial Maximum, followed by relative stasis. Based on a suite of independent redox proxies, this transition marks a switch from oxic to persistently anoxic and sulfidic (euxinic) depositional conditions within the basin. We find good agreement between two independent approaches toward estimating the δ53Cr composition of authigenic Cr in euxinic Cariaco Basin sediments and that these estimates are very similar to the δ53Cr composition of modern open Atlantic Ocean seawater. These data, together with considerations of reaction kinetics and mass balance within the Cariaco Basin, are consistent with the hypothesis that anoxic marine settings can serve as a chemical archive of first-order trends in seawater δ53Cr composition. Additionally, the Cariaco Basin data suggest that there has been secular stability in the average δ53Cr value of Atlantic seawater over the last ∼15 kyr.

  9. Effect of human activities on overall trend of sedimentation in the lower Yellow River, China.

    PubMed

    Jiongxin, Xu

    2004-05-01

    The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil-water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30-40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The results of this study demonstrate that, if the overuse of river water cannot be controlled, the reduction of channel sedimentation in the lower Yellow River cannot be realized through the practice of erosion and sediment control measures.

  10. Fate of copper complexes in hydrothermally altered deep-sea sediments from the Central Indian Ocean Basin.

    PubMed

    Chakraborty, Parthasarathi; Sander, Sylvia G; Jayachandran, Saranya; Nath, B Nagender; Nagaraju, G; Chennuri, Kartheek; Vudamala, Krushna; Lathika, N; Mascarenhas-Pereira, Maria Brenda L

    2014-11-01

    The current study aims to understand the speciation and fate of Cu complexes in hydrothermally altered sediments from the Central Indian Ocean Basin and assess the probable impacts of deep-sea mining on speciation of Cu complexes and assess the Cu flux from this sediment to the water column in this area. This study suggests that most of the Cu was strongly associated with different binding sites in Fe-oxide phases of the hydrothermally altered sediments with stabilities higher than that of Cu-EDTA complexes. The speciation of Cu indicates that hydrothermally influenced deep-sea sediments from Central Indian Ocean Basin may not significantly contribute to the global Cu flux. However, increasing lability of Cu-sediment complexes with increasing depth of sediment may increase bioavailability and Cu flux to the global ocean during deep-sea mining. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Extending WEPP technology to predict fine sediment and phosphorus delivery from forested hillslopes

    Treesearch

    William Elliot; Erin Brooks; Drea Em Traeumer; Mariana Dobre

    2015-01-01

    In many watersheds, including the Great Lakes and Lake Tahoe Basins, two basins where the land cover is dominated by forests, the pollutants of concern are fine sediments and phosphorus. Forest runoff is generally low in nitrogen, and coarse sediment does not adversely impact the quality of lake waters. Predictive tools are needed to estimate not simply sediment, but...

  12. Sedimentological Signatures of Transient Depositional Events in the Cariaco Basin, Venezuela

    NASA Astrophysics Data System (ADS)

    Elmore, A. C.; Thunell, R. C.; Black, D. E.; Murray, R. W.; Martinez, N. C.

    2004-12-01

    The varved sediments that have accumulated in the Cariaco Basin throughout the Holocene provide a detailed archive of the region's climatic history, and act as a historical record for the occurrence of phenomena such as earthquakes and coastal flooding. In this study we compare the sedimentological characteristics of lithogenic material collected from the water column during transient depositional events to those of normal hemipelagic sedimentation in the basin. Specifically, we have examined the clay mineralogy and grain size distribution of detrital material delivered to the basin by the July 9, 1997 earthquake near Cumana, Venezuela and the coastal flooding of Venezuela in late 1999. The sample material used in our study was collected as part of an ongoing sediment trap time series in the Cariaco Basin. The sedimentological signatures associated with these two events are distinctive from the typical lithogenic input to the basin. Preliminary data for biweekly samples collected from 1997-1999 shows a tri-modal particle size distribution, with peaks at 3, 22, and 80 im. However, material collected from the deep basin immediately following the 1997 earthquake is characterized by a particle diameter distribution at 6 and 22 im with a smaller than normal peak at 80 im; this variance suggests an alternate source of material was delivered to the basin via a turbidity flow induced by the earthquake. Supporting this theory, the clay mineralogy of the same sediment trap samples shows a higher than average ratio of kaolinite to quartz for sediments delivered to the basin following both the earthquake and flooding. We hope to extend the use of these sedimentological methods to identify past transient depositional events in Cariaco Basin cores.

  13. Tectonic isolation from regional sediment sourcing of the Paradox Basin

    NASA Astrophysics Data System (ADS)

    Smith, T. M.; Saylor, J.; Sundell, K. E.; Lapen, T. J.

    2017-12-01

    The Appalachian and Ouachita-Marathon mountain ranges were created by a series of tectonic collisions that occurred through the middle and late Paleozoic along North America's eastern and southern margins, respectively. Previous work employing detrital zircon U-Pb geochronology has demonstrated that fluvial and eolian systems transported Appalachian-derived sediment across the continent to North America's Paleozoic western margin. However, contemporaneous intraplate deformation of the Ancestral Rocky Mountains (ARM) compartmentalized much of the North American western interior and mid-continent. We employ lithofacies characterization, stratigraphic thickness, paleocurrent data, sandstone petrography, and detrital zircon U-Pb geochronology to evaluate source-sink relationships of the Paradox Basin, which is one of the most prominent ARM basins. Evaluation of provenance is conducted through quantitative comparison of detrital zircon U-Pb distributions from basin samples and potential sources via detrital zircon mixture modeling, and is augmented with sandstone petrography. Mixing model results provide a measure of individual source contributions to basin stratigraphy, and are combined with outcrop and subsurface data (e.g., stratigraphic thickness and facies distributions) to create tectonic isolation maps. These maps elucidate drainage networks and the degree to which local versus regional sources influence sediment character within a single basin, or multiple depocenters. Results show that despite the cross-continental ubiquity of Appalachian-derived sediment, fluvial and deltaic systems throughout much of the Paradox Basin do not record their influence. Instead, sediment sourcing from the Uncompahgre Uplift, which has been interpreted to drive tectonic subsidence and formation of the Paradox Basin, completely dominated its sedimentary record. Further, the strong degree of tectonic isolation experienced by the Paradox Basin appears to be an emerging, yet common feature among other intraplate, tectonically active basins.

  14. Hydrology of Cornfield Wash area and effects of land treatment practices, Sandoval County, New Mexico, 1951-60

    USGS Publications Warehouse

    Burkham, D.E.

    1967-01-01

    The collection of runoff and sediment data was the primary objective of the 10-year (1951-60) study in the Cornfield Wash basin, which has an area of 21.3 square miles. However, reconnaissance investigations also were made of (1) precipitation; (2) the effects of reservoirs on runoff, erosion, and sediment yield; (3) the effects of range pitting on runoff, sediment, and vegetation yields; and (4) the effects of wire sediment barriers on sediment accumulations. Precipitation averaged 6.07 inches for the warm season (May 1 through October 31). From 1951 to 1955 much of the precipitation came in short torrential downpours. Since 1955, precipitation usually has been of lower intensity, resulting in a low runoff-precipitation ratio. The total composite inflow to the 19 reservoirs in the Cornfield Wash basin--12 constructed in 1950 and 7 constructed from 1953 to 1956--was 5,720 acre-feet. The reservoirs permanently retained 1,370 acre-feet of water, 43 percent of which was apparently lost by evaporation. The average seasonal runoff (1951-59) from the ephemeral streams of the Cornfield Wash basin and nearby watersheds can be expressed, with a high coefficient of correlation, by the equation: runoff = 29.4 (area) 0.82 acre-feet. This relation suggests that there is a good correlation between the size of the drainage basin and the basin characteristics that most influence travel time of runoff. Comparisons of readily measurable basin characteristics that influence travel time indicate: 1. Land slope is proportional to (area) .0.035; 2. Length of longest watercourse is proportional to (area) 0.52; 3. Distance along the longest watercourse from gaging station to a point opposite the center of drainage basin is proportional to (area)0.52; and 4. Equivalent channel slope is proportional to (area)- 0.027. Except for land slope, the coefficients of correlation for each of the basin characteristics-area relations were relatively high. The correlation between seasonal runoff (1951-60) from the small watersheds of the Cornfield Wash basin and the size of the drainage basin was improved after correcting for the influence of land slope. The original total storage capacity of the 19 reservoirs was reduced from 845 to 455 acre-feet as a result of the impoundment of 390 acre-feet of sediment. Backwater from the reservoirs influenced the deposition of an additional 20 acre-feet of sediment. The average annual accretion of sediment (1951-60) in the reservoirs of the Cornfield Wash basin can be expressed by the equation: sediment - 0.0119 (seasonal runoff) 1.3 (incised channel density) 0.71. By removing seasonal runoff as a variable, the average annual sediment accretion is proportional to (area) 1.19 (incised channel density) 1.3. Conservation and rehabilitation of damaged land were successful in some instances and only partly successful in others. The reservoirs are effective in inducing sediment accretion upstream; also, they stop the advance of abrupt headcuts below the reservoirs, but only as long as the spillage is not great and the spillway stays intact. In addition, the reservoirs are effective in reducing flood peaks. A longer period of study is necessary to define adequately the effectiveness of the wire sediment barriers. The data collected on range-pitting effects were not complete enough to. define the magnitude of the changes, if any, in runoff, sediment, and vegetation yields.

  15. The Upstream and Downstream impact of Milankovitch cycles in continental nonmarine sedimentary records

    NASA Astrophysics Data System (ADS)

    Valero, Luis; Garcés, Miguel; Huerta, Pedro; Cabrera, Lluís

    2016-04-01

    Discerning the effects of climate in the stratigraphic record is crucial for the comprehension of past climate changes. The signature of climate in sedimentary sequences is often assessed by the identification of Milankovitch cycles, as they can be recognized due to their (quasi) periodic behaviour. The integration of diverse stratigraphic disciplines is required in order to understand the different processes involved in the expression of the orbital cycles in the sedimentary records. New advances in Stratigraphy disclose the different variables that affect the sedimentation along the sediment routing systems. These variables can be summarized as the relationship between accommodation and sediment supply (AS/SS), because they account for the shifts of the total mass balance of a basin. Based in these indicators we propose a synthetic model for the understanding of the expression of climate in continental basins. Sedimentation in internally drained lake basins is particularly sensitive to net precipitation/evaporation variations. Rapid base level oscillations modify the AS/SS ratio sufficiently as to mask possible sediment flux variations associated to the changing discharge. On the other hand, basins lacking a central lacustrine system do not experience climatically-driven accommodation changes, and thus are more sensitive to archive sediment pulses. Small basins lacking carbonate facies are the ideal candidates to archive the impact of orbital forcing in the landscapes, as their small-scale sediment transfer systems are unable to buffer the upstream signal. Sedimentation models that include the relationship between accommodation and sediment supply, the effects of density and type of vegetation, and its coupled response with climate are needed to enhance their reliability.

  16. Quantifying the seasonal variations in fluvial and eolian sources of terrigenous material to Cariaco Basin, Venezuela

    NASA Astrophysics Data System (ADS)

    Elmore, Aurora C.; Thunell, Robert C.; Styles, Richard; Black, David; Murray, Richard W.; Martinez, Nahysa; Astor, Yrene

    2009-02-01

    The varved sediments that accumulate in the Cariaco Basin provide a detailed archive of the region's climatic history, including a record of the quantity of fluvial and wind-transported material. In this study, we examine the sedimentological characteristics (clay mineralogy and grain size) of both surface sediments and sinking lithogenic material collected from sediment trap samples over a three-year period from 1997 to 2000. Data from biweekly sediment trap samples show a tri-modal particle size distribution, with prominent peaks at 2, 22 and 80 μm, indicating sediment contributions from both eolian and fluvial sources. The clay mineralogy of the water column samples collected from 1997 to 1999 also shows distinctive characteristics of eolian and fluvial material. An examination of surface sediment samples from the Cariaco Basin indicates that the Unare River is the main source of riverine sediments to the eastern sub-basin. By combining these sedimentological proxies, we estimate that ˜10% of the terrigenous material delivered to the Cariaco Basin is eolian, while ˜90% is fluvial. This represents an annual dust accumulation rate of ˜0.59 mg/cm 2/yr. Since aerosols are closely linked to climate variability, the ability to quantify paleo-dust fluxes using sedimentological characteristics will be a useful tool for future paleoclimate studies looking at sub-Saharan aridity and latitudinal migration of the Intertropical Convergence Zone.

  17. Ecologic and Morphologic Analysis of a Proposed Network of Sediment Diversions

    NASA Astrophysics Data System (ADS)

    Meselhe, E. A.; Sadid, K. M.; Jung, H.; Messina, F.; Esposito, C.; Liang, M.

    2017-12-01

    Deltaic processes are governed by factors including the characteristics of inflowing sediment (e.g., temporal variability of the load and size class distribution), receiving basins (e.g., water depth, tidal range, circulation pattern, and wind field), and substrate (e.g., sediment type and soil strength). These factors influence the deltaic growth as well as the size and pattern of channel bifurcations. This topic is of importance to deltas experiencing land loss due to subsidence and sea level rise. The Mississippi River Delta is an example where a number of sediment diversions are being considered in conjunction with other restoration actions to minimize loss of wetlands. Historically, the Mississippi River played a significant role in providing sediment, nutrients, and fresh water to support Louisiana's coastal wetland system. As such, a systems perspective for regional-scale implementation of diversions is important. Field observations coupled with numerical modeling at various temporal and spatial scales, has provided insights toward a system-scale approach to design, evaluate and operate sediment diversions. These research activities investigate the uncertainties associated with morphodynamic processes both on the river and receiving basin sides and identify parameters influencing the magnitude and rate of building new land and sustaining existing wetland areas. Specifically, this presentation discusses the impact of extracting sediment and water from fluvial rivers, the ability to convey (and retain) sediment to the receiving basins. In addition to delivering sediment to receiving basins, some proposed sediment diversions could discharge high volumes of nutrient-rich fresh water into existing wetlands and bays. A goal of the analysis presented here is to improve our understanding of morphodynamic responses of the receiving basins and the ecosystem effects of discharges of freshwater and nutrients at this scale.

  18. Basin evolution during Cretaceous-Oligocene changes in sediment routing in the Eastern Precordillera, Argentina

    NASA Astrophysics Data System (ADS)

    Reat, Ellen J.; Fosdick, Julie C.

    2018-07-01

    The response of sedimentary basins to earliest onset of Andean contraction and lithospheric flexure in the southern Central Andes is debated and not well-resolved. The Upper Cretaceous to Oligocene strata of the Cuesta de Huaco anticline in the Argentine Precordillera record sedimentation, regional deformation, and climate patterns prior to the highly studied Oligocene-Miocene foreland basin phase. These deposits have recently been recognized as Cretaceous and Paleogene in age, prompting a re-evaluation of this depocenter as part of the early Andean system, prior to deposition of the aeolian foredeep sediments of the Oligocene Vallecito Formation. This work presents new data from the Argentine Precordillera fold-and-thrust belt at 30°S that sheds light on new reinterpretations of the timing of sedimentation for an important interval in Andean retroarc foreland basin history. We report the first Paleocene detrital radiometric ages from the Cuesta de Huaco 'red strata' of the pre-Oligocene Bermejo Basin. Detailed sedimentology and provenance data from the Cenomanian-Turonian Ciénaga del Río Huaco and Danian-Priabonian Puesto La Flecha formations reveal a Cenomanian-Turonian braided stream system that transitioned into a shallow freshwater lacustrine depocenter in Paleocene-Eocene time. During Late Cretaceous time, sediment in the braided river system was derived primarily from northeastern cratonic sources; during the Paleocene-Eocene, uplift and unroofing of the Andean arc and Frontal Cordillera resulted in an influx of western-derived sediment. We therefore suggest a revised timing of sedimentation for the transition to Andean retroarc foreland basin deposition.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cregg, A.K.

    Kenya basins have evolved primarily through extension related to episodic continental rifting. In eastern Kenya, thick accumulations of sediments formed within grabens during the prerift phase (Precambrian to Carboniferous) of the Gondwana breakup. Synrift sedimentation (Late Carboniferous to Middle Jurassic) occurred within a north-south rift system, which included the Mandera basin, South Anza basin, and Lamu embayment. During the Early Jurassic, a marine transgression invaded the margins of the eastern Kenya rift basins, resulting in the deposition of platform carbonates and shales. A Callovian-aged salt basin formed in the offshore regions of the Lamu embayment. Intermittent tectonic activity and eustaticmore » sea-level changes controlled sedimentation, which produced marine shales, carbonates or evaporites, and fluvio-deltaic to lacustrine sandstones. From the Early Cretaceous to recent, continental sediments were deposited within the North Anza and Turkana basins. These fluvial-lacustrine sediments are similar to the Lower Cretaceous sequences that have produced oil in the Mesozoic Sudanese Abu Gabra rift. Although exploration activities began in the early 1950s, significant occurrences of potential reservoir, source, and seal lithologies as well as trapping configurations remain in many areas. Favorable structures and sequences of reservoir sandstones and carbonates overlain by potentially sealing lacustrine or marine shales, evaporites, or volcanics have been noted. Potential source beds are believed to be present within shales of the lacustrine or marine depositional environments.« less

  20. Predicting future land cover change and its impact on streamflow and sediment load in a trans-boundary river basin

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Hao; Ning, Shaowei; Hiroshi, Ishidaira

    2018-06-01

    Sediment load can provide very important perspective on erosion of river basin. The changes of human-induced vegetation cover, such as deforestation or afforestation, affect sediment yield process of a catchment. We have already evaluated that climate change and land cover change changed the historical streamflow and sediment yield, and land cover change is the main factor in Red river basin. But future streamflow and sediment yield changes under potential future land cover change scenario still have not been evaluated. For this purpose, future scenario of land cover change is developed based on historical land cover changes and land change model (LCM). In addition, future leaf area index (LAI) is simulated by ecological model (Biome-BGC) based on future land cover scenario. Then future scenarios of land cover change and LAI are used to drive hydrological model and new sediment rating curve. The results of this research provide information that decision-makers need in order to promote water resources planning efforts. Besides that, this study also contributes a basic framework for assessing climate change impacts on streamflow and sediment yield that can be applied in the other basins around the world.

  1. Modeling sedimentation-filtration basins for urban watersheds using Soil and Water Assessment Tool

    USDA-ARS?s Scientific Manuscript database

    Sedimentation-filtration (SedFil) basins are one of the storm-water best management practices (BMPs) that are intended to mitigate water quality problems in urban creeks and rivers. A new physically based model of variably saturated flows was developed for simulating flow and sediment in SedFils wi...

  2. Soft sediment deformation structures in the Maastrichtian Ajali Formation Western Flank of Anambra Basin, Southern Nigeria

    NASA Astrophysics Data System (ADS)

    Olabode, Solomon Ojo

    2014-01-01

    Soft sediment deformation structures were recognized in the Maastrichtian shallow marine wave to tide influenced regressive sediments of Ajali Formation in the western flank of Anambra basin, southern Nigerian. The soft sediment deformation structures were in association with cross bedded sands, clay and silt and show different morphological types. Two main types recognised are plastic deformations represented by different types of recumbent folds and injection structure represented by clastic dykes. Other structures in association with the plastic deformation structures include distorted convolute lamination, subsidence lobes, pillars, cusps and sand balls. These structures are interpreted to have been formed by liquefaction and fluidization mechanisms. The driving forces inferred include gravitational instabilities and hydraulic processes. Facies analysis, detailed morphologic study of the soft sediment deformation structures and previous tectonic history of the basin indicate that the main trigger agent for deformation is earthquake shock. The soft sediment deformation structures recognised in the western part of Anambra basin provide a continuous record of the tectonic processes that acted on the regressive Ajali Formation during the Maastrichtian.

  3. Sediment Management at the Watershed Level

    DTIC Science & Technology

    2012-08-01

    al. 2005). Trimble examined ten river basins (1,000 to 7,500 mi2 ) and found that the sediment yield averaged about six percent. He attributed the...importance of storage and remobilization in controlling sediment yield from the 139 mi2 Coon Creek watershed in Wisconsin. Trimble prepared sediment...Federal government in 1984, DHP activities targeted sixteen watersheds comprising 2,625 mi2 within the Yazoo River Basin in the Lower Mississippi

  4. Windblown sediment transport and loss in a desert-oasis ecotone in the Tarim Basin.

    PubMed

    Pi, Huawei; Sharratt, Brenton; Lei, Jiaqiang

    2017-08-10

    The Tarim Basin is regarded as one of the most highly erodible areas in China. Desert comprises 64% of the land use in the Basin, but the desert-oasis ecotone plays a prominent role in maintaining oasis ecological security and stability. Yet, little is known concerning the magnitude of windblown sediment transport in a desert-oasis ecotone. Therefore, aeolian sediment transport and loss was assessed from a desert-oasis experimental site located near Alaer City in the northwestern Tarim Basin. Sediment transport and factors governing transport were measured during three high wind events in 2012 and four events in 2013. Sediment transport was measured to a height of 10 m using passive aeolian airborne sediment samplers. The mass flux profile over the eroding surface was well represented by the power-law (R 2  > 0.77). Sediment loss from the site ranged from 118 g m -2 for the 20-24Apr 2012 wind event to 2925 g m -2 for the 31Mar-11Apr 2012 event. Suspension accounted for 67.4 to 84.8% of sediment loss across all high wind events. Our results indicate the severity of wind erosion in a desert-oasis ecotone and thus encourage adoption of management practices that will enhance oasis ecological security.

  5. Carbon release by off-axis magmatism in a young sedimented spreading centre

    NASA Astrophysics Data System (ADS)

    Lizarralde, Daniel; Soule, S. Adam; Seewald, Jeff S.; Proskurowski, Giora

    2011-01-01

    Continental rifting creates narrow ocean basins, where coastal ocean upwelling results in high biological productivity and organic-rich sedimentation. In addition, topographic gradients promote silicate weathering, which consumes atmospheric CO2 (ref. 1). The carbon flux associated with these processes has led to the suggestion that rifting may cool the atmosphere, leading in some cases to glaciation and even a snowball Earth scenario. Guaymas basin, within the Gulf of California, is a young spreading system where new igneous crust is formed beneath a layer of organic-rich sediment that is 1-2kmthick. Here we present seismic data from Guaymas basin that image recent, basin-wide magmatic intrusions into sediments; sonar backscatter and seafloor photographs that indicate numerous, broadly distributed chemosynthetic seafloor biological communities, and geochemical analyses of water samples suggesting that the methane that supports these communities is derived from magma-driven thermogenic alteration of sediments. Our results suggest that active shallow magmatism releases carbon from sediments up to 50km away from the plate boundary. This is a much larger area than the less than 5km found at unsedimented mid-ocean ridges, and than previously recognized. We conclude that thick sediments may promote broad magmatism, reducing the efficiency of natural carbon sequestration within young sedimented rifts.

  6. A National Pilot Study of Mercury Contamination of Aquatic Ecosystems Along Multiple Gradients: Bioaccumulation in Fish

    USGS Publications Warehouse

    Brumbaugh, William G.; Krabbenhoft, David P.; Helsel, Dennis R.; Wiener, James G.; Echols, Kathy R.

    2001-01-01

    Water, sediment, and fish were sampled in the summer and fall of 1998 at 106 sites from 20 U.S. watershed basins to examine relations of mercury (Hg) and methylmercury (MeHg) in aquatic ecosystems. Bioaccumulation of Hg in fish from these basins was evaluated in relation to species, Hg and MeHg in surficial sediment and water, and watershed characteristics. Bioaccumulation was strongly (positively) correlated with MeHg in water (r = 0.63, p < 0.001) but only moderately with the MeHg in sediment (r = 0.33, p < 0.001) or total Hg in water (r = 0.28, p < 0.01). Of the other significantly measured parameters, pH, DOC, sulfate, sediment LOI, and the percent wetlands of each basin were also significantly correlated with Hg bioaccumulation in fish. The best model for predicting Hg bioaccumulation included Me Hg in water, PH of the water, % wetlands in the basin, and the AVS content of the sediment. These four variables accounted for 45% of the variability of the fish fillet Hg concentration normalized (divided) by total length; however, the majority was described by MeHg in water. A MeHg water concentration 0.12 ng/L was on average, associated with a fish fillet Hg concentration of 0.3 mg/kg wet weight for an age-3 fish when all species were considered. For age-3 largemouth bass, a MeHg water concentration of 0.058 ng/L was associated with the 0.3 mg/kg fillet concentration. Based on rankings for Hg in sediment, water, and fish, sampling sites from the following five study basins had the greatest Hg contamination: Nevada Basin and Range, South Florida Basin, Sacramento River Basin (California), Santee River Basin and Caostal Drainages (South Carolina), and the Long Island and New Jersey Coastal DRainags. A sampling and analysis strategy based on this pilot study is planned for all USGS/NAWQA study units over the next decade.

  7. Sea-level and tectonic control of middle to late Pleistocene turbidite systems in Santa Monica Basin, offshore California

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.; Sliter, R.

    2006-01-01

    Small turbidite systems offshore from southern California provide an opportunity to track sediment from river source through the turbidity-current initiation process to ultimate deposition, and to evaluate the impact of changing sea level and tectonics. The Santa Monica Basin is almost a closed system for terrigenous sediment input, and is supplied principally from the Santa Clara River. The Hueneme fan is supplied directly by the river, whereas the smaller Mugu and Dume fans are nourished by southward longshore drift. This study of the Late Quaternary turbidite fill of the Santa Monica Basin uses a dense grid of high-resolution seismic-reflection profiles tied to new radiocarbon ages for Ocean Drilling Program (ODP) Site 1015 back to 32 ka. Over the last glacial cycle, sedimentation rates in the distal part of Santa Monica Basin averaged 2-3 mm yr-1, with increases at times of extreme relative sea-level lowstand. Coarser-grained mid-fan lobes prograded into the basin from the Hueneme, Mugu and Dume fans at times of rapid sea-level fall. These pulses of coarse-grained sediment resulted from river channel incision and delta cannibalization. During the extreme lowstand of the last glacial maximum, sediment delivery was concentrated on the Hueneme Fan, with mean depositional rates of up to 13 mm yr-1 on the mid- and upper fan. During the marine isotope stage (MIS) 2 transgression, enhanced rates of sedimentation of > 4 mm yr-1 occurred on the Mugu and Dume fans, as a result of distributary switching and southward littoral drift providing nourishment to these fan systems. Longer-term sediment delivery to Santa Monica Basin was controlled by tectonics. Prior to MIS 10, the Anacapa ridge blocked the southward discharge of the Santa Clara River into the Santa Monica Basin. The pattern and distribution of turbidite sedimentation was strongly controlled by sea level through the rate of supply of coarse sediment and the style of initiation of turbidity currents. These two factors appear to have been more important than the absolute position of sea level. ?? 2006 The Authors. Journal compilation 2006 International Association of Sedimentologists.

  8. Sediment supply as a driver of river evolution in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ahmed, Joshua; Constantine, José Antonio; Dunne, Thomas; Legleiter, Carl; Lazarus, Eli D.

    2015-04-01

    The Amazon represents the only large river basin in the world where there is a sufficient range of sediment supplies and a lack of engineering controls to assess how sediment supply drives the evolution of meandering rivers. Despite recent analytical advances (Asahi et al., 2013; Pittaluga and Seminara, 2011), modern theory does not yet identify or explain the effects of externally imposed sediment supplies, a fundamental river characteristic, on meandering river evolution. These sediment supplies would be radically reduced by the construction of large dams proposed for the Amazon Basin (Finer and Jenkins, 2012). Here, we demonstrate that the sediment loads imposed by their respective drainage basins determine planform changes in lowland rivers across the Amazon. Our analysis, based on Landsat image sequences, indicates that rivers with high sediment loads draining the Andes and associated foreland basin experience annual migration rates that are on average four times faster than rivers with lower sediment loads draining the Central Amazon Trough and shields. Incidents of meander cutoff also occur more frequently along the rivers of the Andes and foreland basin, where the number of oxbows in the floodplains is more than twice that observed in the floodplains of the Central Amazon Trough and shields. Our results, which cannot be explained by differences in channel slope or hydrology, highlight the importance of sediment supply in modulating the ability of meandering alluvial rivers to reshape the floodplain environment through river migration. Asahi, K., Shimizu, Y., Nelson, J., Parker, G., 2013. Numerical simulation of river meandering with self-evolving banks. Journal of Geophysical Research: Earth Surface, 118(4), 2013JF002752. Finer, M., Jenkins, C.N., 2012. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLOS One, 7(4), e35126. Pittaluga, M.B., Seminara, G., 2011. Nonlinearity and unsteadiness in river meandering: a review of progress in theory and modelling. Earth Surface Processes and Landforms, 36(1), 20-38.

  9. A spatially explicit suspended-sediment load model for western Oregon

    USGS Publications Warehouse

    Wise, Daniel R.; O'Connor, Jim

    2016-06-27

    Knowledge of the regionally important patterns and factors in suspended-sediment sources and transport could support broad-scale, water-quality management objectives and priorities. Because of biases and limitations of this model, however, these results are most applicable for general comparisons and for broad areas such as large watersheds. For example, despite having similar area, precipitation, and land-use, the Umpqua River Basin generates 68 percent more suspended sediment than the Rogue River Basin, chiefly because of the large area of Coast Range sedimentary province in the Umpqua River Basin. By contrast, the Rogue River Basin contains a much larger area of Klamath terrane rocks, which produce significantly less suspended load, although recent fire disturbance (in 2002) has apparently elevated suspended sediment yields in the tributary Illinois River watershed. Fine-scaled analysis, however, will require more intensive, locally focused measurements.

  10. Magnetic properties of sediments from Ocean Drilling Program sites 1109, 1115, and 1118 (Leg 180), Woodlark Basin (Papua New Guinea)

    NASA Astrophysics Data System (ADS)

    Ishikawa, N.; Frost, G. M.

    2002-09-01

    Latest Miocene-Pleistocene synrift sediments at Ocean Drilling Program sites 1109, 1115, and 1118 (Leg 180), located on the hanging wall margin north of the Moresby fault in the Woodlark Basin, showed variations in magnetic parameters carried by magnetite and maghemite related to sedimentation process in the basin. At sites 1109 and 1115, an increase in the sedimentation rate at 3.8 Ma was accompanied by the deposition of sediments with low ferrimagnetic mineral concentrations. An increase in the ferrimagnetic mineral concentrations occurred between 3.4 Ma and 3.2 Ma at the three sites. The onset age of the change became younger with distance from the subsidence center of the basin near the Moresby fault: 3.4 Ma at Site 1118, 3.3 Ma at Site 1109, and 3.2 Ma at Site 1115, which implies a northward onlapping of sediments with high ferrimagnetic mineral concentration. Sediments with finer-grained ferrimagnetic minerals were deposited between 2.3 and 2.0 Ma at sites 1118 and 1109 and later, 2.8 Ma at Site 1115 during a period of a low sedimentation rate. The upper parts of sites 1109 and 1115 had a diamagnetic contribution, which is attributed to relatively high concentrations of diamagnetic pelagic materials at a low sedimentation rate associated with the low frequency of turbidites.

  11. Contrasting sedimentary processes along a convergent margin: the Lesser Antilles arc system

    NASA Astrophysics Data System (ADS)

    Picard, Michel; Schneider, Jean-Luc; Boudon, Georges

    2006-12-01

    Sedimentation processes occurring in an active convergent setting are well illustrated in the Lesser Antilles island arc. The margin is related to westward subduction of the North and/or the South America plates beneath the Caribbean plate. From east to west, the arc can be subdivided into several tectono-sedimentary depositional domains: the accretionary prism, the fore-arc basin, the arc platform and inter-arc basin, and the Grenada back-arc basin. The Grenada back-arc basin, the fore-arc basin (Tobago Trough) and the accretionary prism on the east side of the volcanic arc constitute traps for particles derived from the arc platform and the South American continent. The arc is volcanically active, and provides large volumes of volcaniclastic sediments which accumulate mainly in the Grenada basin by volcaniclastic gravity flows (volcanic debris avalanches, debris flows, turbiditic flows) and minor amounts by fallout. By contrast, the eastern side of the margin is fed by ash fallout and minor volcaniclastic turbidites. In this area, the dominant component of the sediments is pelagic in origin, or derived from South America (siliciclastic turbidites). Insular shelves are the locations of carbonate sedimentation, such as large platforms which develop in the Limestone Caribbees in the northern part of the margin. Reworking of carbonate material by turbidity currents also delivers lesser amounts to eastern basins of the margin. This contrasting sedimentation on both sides of the arc platform along the margin is controlled by several interacting factors including basin morphology, volcanic productivity, wind and deep-sea current patterns, and sea-level changes. Basin morphology appears to be the most dominant factor. The western slopes of the arc platform are steeper than the eastern ones, thus favouring gravity flow processes.

  12. Neogene sequence stratigraphy, Nam Con Son Basin, offshore Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillen, K.J.; Do Van Luu; Lee, E.K.

    1996-12-31

    An integrated well log, biostratigraphic, and seismic stratigraphic study of Miocene to Recent deltaic sediments deposited in the Nam Con Son Basin offshore from southern Vietnam shows the influence of eustacy and tectonics on sequence development. Sediments consist of Oligocene non-marine rift-basin fill (Cau Formation), early to middle Miocene tide-dominated delta plain to delta front sediments (TB 1.5 to TB 2.5, Due and Thong Formations), and late Miocene to Recent marine shelf sediments (TB. 2.6 to TB 3.1 0, Mang Cau, Nam Con Son, and Bien Dong Formations). Eustacy controlled the timing of key surfaces and sand distribution in themore » tectonically-quiet early Miocene. Tectonic effects on middle to late Miocene sequence development consist of thick transgressive systems tracts due to basin-wide subsidence and transgression, sand distribution in the basin center, and carbonate sedimentation on isolated fault blocks within the basin. Third-order sequence boundaries (SB) are identified by spore peaks, sand stacking patterns, and channel incision. In the basin center, widespread shale beds with coal occur above sequence boundaries followed by transgressive sandstone units. These TST sandstones merge toward the basin margin where they lie on older HST sandstones. Maximum flooding surfaces (MFS) have abundant marine microfossils and mangrove pollen, a change in sand stacking pattern, and often a strong seismic reflection with downlap. Fourth-order genetic-type sequences are also interpreted. The MFS is the easiest marker to identify and correlate on well logs. Fourth-order SB occur within these genetic units but are harder to identify and correlate.« less

  13. Neogene sequence stratigraphy, Nam Con Son Basin, offshore Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillen, K.J.; Do Van Luu; Lee, E.K.

    1996-01-01

    An integrated well log, biostratigraphic, and seismic stratigraphic study of Miocene to Recent deltaic sediments deposited in the Nam Con Son Basin offshore from southern Vietnam shows the influence of eustacy and tectonics on sequence development. Sediments consist of Oligocene non-marine rift-basin fill (Cau Formation), early to middle Miocene tide-dominated delta plain to delta front sediments (TB 1.5 to TB 2.5, Due and Thong Formations), and late Miocene to Recent marine shelf sediments (TB. 2.6 to TB 3.1 0, Mang Cau, Nam Con Son, and Bien Dong Formations). Eustacy controlled the timing of key surfaces and sand distribution in themore » tectonically-quiet early Miocene. Tectonic effects on middle to late Miocene sequence development consist of thick transgressive systems tracts due to basin-wide subsidence and transgression, sand distribution in the basin center, and carbonate sedimentation on isolated fault blocks within the basin. Third-order sequence boundaries (SB) are identified by spore peaks, sand stacking patterns, and channel incision. In the basin center, widespread shale beds with coal occur above sequence boundaries followed by transgressive sandstone units. These TST sandstones merge toward the basin margin where they lie on older HST sandstones. Maximum flooding surfaces (MFS) have abundant marine microfossils and mangrove pollen, a change in sand stacking pattern, and often a strong seismic reflection with downlap. Fourth-order genetic-type sequences are also interpreted. The MFS is the easiest marker to identify and correlate on well logs. Fourth-order SB occur within these genetic units but are harder to identify and correlate.« less

  14. Tectonic implications of facies patterns, Lower Permian Dry Mountain trough, east-central Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, D.M.; Snyder, W.S.; Spinosa, C.

    1991-02-01

    Paleozoic tectonism is indicated by a study of a west-east facies analysis transect across the northern portion of the Lower Permian Dry Mountain trough (DMT). In an attempt to characterize the Early Permian basin-filling sequences, three broadly recognizable facies packages have been identified across the DMT: the western margin facies and the central basin facies of the DMT and an eastern shelf facies. In the western margin facies of the basin, pulses of tectonic activity are recorded at McCloud Spring in the Sulphur Springs Range. Here, shallow open-marine carbonate overlies eroded Vinini Formation and, in turn, is unconformably overlain bymore » basinal marine carbonate. An unconformity also marks the contact with the overriding prograding coarse clastic facies. These abrupt transitions suggest the sediments were deposited in a tectonically active area where they preservation of Waltherian sequences is unlikely to occur. Similarly abrupt transitions are evident in the western part of the central basin facies. At Portuguese Springs n the Diamond Range, a thin basal marine conglomerate delineates Lower Permian sedimentation over the Pennsylvanian Ely Formation. Coarsening-upward basinal carbonate strata of pelagic, hemipelagic, and turbidite components overlie the basal conglomerate. this progression of sediments is unconformably overlain by a subaerial sequence of coarse clastic deposits. Within the eastern part of the central basin facies in the Maverick Spring Range, the Lower Permian sediments are open-marine siltstone, wackestone, packstone, and grainstone. The sediments are assigned to a gradually sloping ramp, indicating the effects of tectonism on this margin of the basin were subdued.« less

  15. What are the contemporary sources of sediment in the Mississippi River?

    NASA Astrophysics Data System (ADS)

    Hassan, M. A.; Roberge, L.; Church, M.; More, M.; Donner, S. D.; Leach, J.; Ali, K. F.

    2017-09-01

    Within the last two centuries, the Mississippi River basin has been transformed by changes in land use practices, dam construction, and training of the rivers for navigation. Here we analyze the contemporary patterns of fluvial sediment yield in the Mississippi River basin using all available data in order to assess the influence of regional land condition on the variation of sediment yield within the basin. We develop regional-scale relations between specific sediment yield (yield per unit area) and drainage area to reveal contemporary regional sediment yield patterns and source areas of riverine sediments. Extensive upland erosion before the development of soil conservation practices exported large amounts of sediment to the valleys and floodplains. We show that sediment today is sourced primarily along the river valleys from arable land, and from stream bank and channel erosion, with sediment yields from areas dominated by arable land 2 orders of magnitude greater than that of grassland dominated areas. Comparison with the "T factor," a commonly quoted measure of agricultural soil resilience suggests that the latter may not reflect contemporary soil loss from the landscape.

  16. Recent paleoseismicity record in Prince William Sound, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Kuehl, Steven A.; Miller, Eric J.; Marshall, Nicole R.; Dellapenna, Timothy M.

    2017-12-01

    Sedimentological and geochemical investigation of sediment cores collected in the deep (>400 m) central basin of Prince William Sound, along with geochemical fingerprinting of sediment source areas, are used to identify earthquake-generated sediment gravity flows. Prince William Sound receives sediment from two distinct sources: from offshore (primarily Copper River) through Hinchinbrook Inlet, and from sources within the Sound (primarily Columbia Glacier). These sources are found to have diagnostic elemental ratios indicative of provenance; Copper River Basin sediments were significantly higher in Sr/Pb and Cu/Pb, whereas Prince William Sound sediments were significantly higher in K/Ca and Rb/Sr. Within the past century, sediment gravity flows deposited within the deep central channel of Prince William Sound have robust geochemical (provenance) signatures that can be correlated with known moderate to large earthquakes in the region. Given the thick Holocene sequence in the Sound ( 200 m) and correspondingly high sedimentation rates (>1 cm year-1), this relationship suggests that sediments within the central basin of Prince William Sound may contain an extraordinary high-resolution record of paleoseismicity in the region.

  17. Water quality assessment of the San Joaquin--Tulare basins, California; analysis of available data on nutrients and suspended sediment in surface water, 1972-1990

    USGS Publications Warehouse

    Kratzer, Charles R.; Shelton, Jennifer L.

    1998-01-01

    Nutrients and suspended sediment in surface water of the San Joaquin-Tulare basins in California were assessed using 1972-1990 data from the U.S. Geological Survey's National Water Information System and the U.S. Environmental Protection Agency's STOrage and RETrieval database. Loads of nutrients and suspended sediment were calculated at several sites and the contributions from point and nonpoint sources were estimated. Trends in nutrient and suspended-sediment concentrations were evaluated at several sites, especially at the basin outlet on the San Joaquin River. Comparisons of nutrient and suspended sediment concentrations were made among three environmental settings: the San Joaquin Valley--west side, the San Joaquin Valley--east side, and the Sierra Nevada.

  18. Pollution, toxicity, and ecological risk of heavy metals in surface river sediments of a large basin undergoing rapid economic development.

    PubMed

    Tang, Wenzhong; Zhang, Chao; Zhao, Yu; Shan, Baoqing; Song, Zhixin

    2017-05-01

    A comprehensive and detailed investigation of heavy metal pollution, toxicity, and ecological risk assessment was conducted for the surface river sediments of the Haihe Basin in China based on 220 sampling sites selected in 2013. The average concentrations of Cr, Cu, Ni, Pb, and Zn in the sediments were 129 mg/kg, 63.4 mg/kg, 36.6 mg/kg, 50.0 mg/kg, and 202 mg/kg, respectively. As indicated by the geoaccumulation and pollution load indices, most surface river sediments of the Haihe Basin were contaminated with the investigated metals, especially in the junction region of the Zi Ya He and Hei Long Gang watersheds. The 5 heavy metals in the sediments all had anthropogenic sources, and the enrichment degrees followed the order Cu > Pb > Zn > Cr > Ni, with mean enrichment factors of 3.27, 2.77, 2.58, 1.81, and 1.44, respectively. According to the mean index of comprehensive potential ecological risk (38.9), the studied sediments of the Haihe Basin showed low potential ecological risk, but the sediments were potentially biologically toxic based on the mean probable effect concentration quotient (0.547), which may be the result of speciation of the 5 metals in the sediments. The results indicate that heavy metal pollution should be considered during the development of ecological restoration strategies in the Haihe Basin. Environ Toxicol Chem 2017;36:1149-1155. © 2016 SETAC. © 2016 SETAC.

  19. Geochemical evidence for the provenance of aeolian deposits in the Qaidam Basin, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Du, Shisong; Wu, Yongqiu; Tan, Lihua

    2018-06-01

    The main purpose of this study is to analyse the material source of different grain-size components of dune sand in the Qaidam Basin. We determined the trace and rare earth element (REE) compositions and Sr-Nd isotopic compositions of the coarse (75-500 μm) and fine (<75 μm) fractions of surface sediment samples. The comparison of the immobile trace element and REE compositions, Sr-Nd isotopic compositions and multidimensional scaling (MDS) results of the dune sands with those of different types of sediments in potential source areas revealed the following information. (1) The fine- and coarse-grained fractions of dune sands in the Qaidam Basin exhibit distinctly different elemental concentrations, elemental patterns and characteristic parameters of REE. Moreover, Sr-Nd isotopic differences also exist between different grain-size fractions of aeolian sand, which means that different grain-size fractions of these dune sands have different source areas. (2) The geochemical characteristics of the coarse particles of dune sand exhibit obvious regional heterogeneity and generally record a local origin derived from local fluvial sediments and alluvial/proluvial sediments. The coarse- and fine-grained dune sand in the southern Qaidam Basin mainly came from Kunlun Mountains, whereas the coarse- and fine-grained dune sand in the northeastern Qaidam Basin mainly came from Qilian Mountains. (3) The fine-grained fractions of sediments throughout the entire Qaidam Basin may have been affected by the input of foreign materials from the Tarim Basin.

  20. Runoff and sediment yield from proxy records: Upper Animas Creek Basin, New Mexico

    Treesearch

    W. R. Osterkamp

    1999-01-01

    Analyses of water- and sediment-yield records from the Walnut Gulch Experimental Watershed, the San Simon Wash Basin, and the Jornada Experimental Range, combined with observations of regional variations in climate, geology and soils, vegetation, topography, fire frequency, and land-use history, allow estimates of present conditions of water and sediment discharges in...

  1. Declining sediment loads from Redwood Creek and the Klamath River, north coastal California

    Treesearch

    Randy D. Klein; Jeffrey K. Anderson

    2012-01-01

    River basin sediment loads are affected by several factors, with flood magnitude and watershed erosional stability playing dominant and dynamic roles. Long-term average sediment loads for northern California river basins have been computed by several researchers by several methods. However, characterizing the dynamic nature of climate and watershed stability requires...

  2. Sediment yields of streams in the Umpqua River Basin, Oregon

    USGS Publications Warehouse

    Curtiss, D.A.

    1975-01-01

    This report summarizes sediment data collected at 11 sites in the Umpqua River basin from 1956 to 1973 and updates a report by C. A. Onions (1969) of estimated sediment yields in the basin from 1956-67.  Onions' report points out that the suspended-sediment data, collected during the 1956-67 period, were insufficient to compute reliable sediment yields.  Therefore, the U.S, Geological Survey, in cooperation with Douglas County, collected additional data from 1969 to 1973 to improve the water discharge-sediment discharge relationships at these sites.  These data are published in "Water resources data for Oregon, Part 2, Water quality records," 1970 through 1973 water years.  In addition to the 10 original sites, data were collected during this period from the Umpqua River near Elkton station, and a summary of the data for that station is included in table 1.

  3. Late Pleistocene to Holocene sedimentation and hydrocarbon seeps on the continental shelf of a steep, tectonically active margin, southern California, USA

    USGS Publications Warehouse

    Draut, Amy E.; Hart, Patrick E.; Lorenson, T.D.; Ryan, Holly F.; Wong, Florence L.; Sliter, Ray W.; Conrad, James E.

    2009-01-01

    Small, steep, uplifting coastal watersheds are prolific sediment producers that contribute significantly to the global marine sediment budget. This study illustrates how sedimentation evolves in one such system where the continental shelf is largely sediment-starved, with most terrestrial sediment bypassing the shelf in favor of deposition in deeper basins. The Santa Barbara-Ventura coast of southern California, USA, is considered a classic area for the study of active tectonics and of Tertiary and Quaternary climatic evolution, interpretations of which depend upon an understanding of sedimentation patterns. High-resolution seismic-reflection data over >570 km2 of this shelf show that sediment production is concentrated in a few drainage basins, with the Ventura and Santa Clara River deltas containing most of the upper Pleistocene to Holocene sediment on the shelf. Away from those deltas, the major factor controlling shelf sedimentation is the interaction of wave energy with coastline geometry. Depocenters containing sediment 5-20 m thick exist opposite broad coastal embayments, whereas relict material (bedrock below a regional unconformity) is exposed at the sea floor in areas of the shelf opposite coastal headlands. Locally, natural hydrocarbon seeps interact with sediment deposition either to produce elevated tar-and-sediment mounds or as gas plumes that hinder sediment settling. As much as 80% of fluvial sediment delivered by the Ventura and Santa Clara Rivers is transported off the shelf (some into the Santa Barbara Basin and some into the Santa Monica Basin via Hueneme Canyon), leaving a shelf with relatively little recent sediment accumulation. Understanding factors that control large-scale sediment dispersal along a rapidly uplifting coast that produces substantial quantities of sediment has implications for interpreting the ancient stratigraphic record of active and transform continental margins, and for inferring the distribution of hydrocarbon resources in relict shelf deposits.

  4. Slope basins, headless canyons, and submarine palaeoseismology of the Cascadia accretionary complex

    USGS Publications Warehouse

    McAdoo, B.G.; Orange, D.L.; Screaton, Elizabeth; Lee, H.; Kayen, R.

    1997-01-01

    A combination of geomorphological, seismic reflection and geotechnical data constrains this study of sediment erosion and deposition at the toe of the Cascadia accretionary prism. We conducted a series of ALVIN dives in a region south of Astoria Canyon to examine the interrelationship of fluid flow and slope failure in a series of headless submarine canyons. Elevated head gradients at the inflection point of canyons have been inferred to assist in localized failures that feed sediment into a closed slope basin. Measured head gradients are an order of magnitude too low to cause seepage-induced slope failure alone; we therefore propose transient slope failure mechanisms. Intercanyon slopes are uniformly unscarred and smooth, although consolidation tests indicate that up to several metres of material may have been removed. A sheet-like failure would remove sediment uniformly, preserving the observed smooth intercanyon slope. Earthquake-induced liquefaction is a likely trigger for this type of sheet failure as the slope is too steep and short for sediment flow to organize itself into channels. Bathymetric and seismic reflection data suggest sediment in a trench slope basin between the second and third ridges from the prism's deformation is derived locally. A comparison of the amounts of material removed from the slopes and that in the basin shows that the amount of material removed from the slopes may slightly exceed the amount of material in the basin, implying that a small amount of sediment has escaped the basin, perhaps when the second ridge was too low to form a sufficient dam, or through a gap in the second ridge to the south. Regardless, almost 80% of the material shed off the slopes around the basin is deposited locally, whereas the remaining 20% is redeposited on the incoming section and will be re-accreted.

  5. Effects of urbanization and long-term rainfall on the occurrence of organic compounds and trace elements in reservoir sediment cores, streambed sediment, and fish tissue from the Santa Ana River basin, California, 1998

    USGS Publications Warehouse

    Burton, Carmen A.

    2002-01-01

    Organcochlorine compounds, semivolatile-organic compounds (SVOC), and trace elements were analyzed in reservoir sediment cores, streambed sediment, and fish tissue in the Santa Ana River Basin as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Three reservoirs were sampled in areas that have different degrees of urbanization. Streambed sediment and fish tissue collected at 12 sites were divided into two groups, urban and nonurban. More organochlorine compounds were detected in reservoir sediment cores, streambed sediment and fish tissue, and at higher concentrations at urban sites than at nonurban sites. At all sites, except West Street Basin, concentrations of organochlorine compounds were lower than the probable-effect concentration (PEC). At the highly urbanized West Street Basin, chlordane and p,p'-DDE exceeded the PEC throughout the historical record. The less stringent threshold-effect concentration (TEC) was exceeded for six compounds at eight sites. Most of the organochlorine compounds detected in streambed sediment and fish tissue were at urban sites on the Santa Ana River as opposed to its tributaries, suggesting accumulation and persistence in the river. More SVOCs were detected in reservoir sediment cores and streambed sediment, and at higher concentrations, at urban sites than at nonurban sites. At all the sites, except West Street Basin, concentrations of SVOCs were lower than the PEC. At West Street Basin, chrysene, pyrene, and total polycyclic-aromatic hydrocarbons exceeded the PEC throughout the historical record. The TEC was exceeded for 10 compounds at 3 sites. Most of the SVOCs were detected in streambed sediment at urban sites on tributaries to the Santa Ana River rather than the mainstem itself. The less frequent occurrence and lower concentrations in the Santa Ana River suggest that SVOCs are less persistent than organochlorine compounds, possibly as a result of volatization, gradation, or dilution. Most trace-element detections in reservoir sediment cores and streambed sediment were at urban sites, and the concentrations were generally higher than at nonurban sites. Lead and zinc exceeded their PECs at West Street Basin throughout the historical record; copper exceeded its PEC at Canyon Lake, an area of urban growth. The TEC was exceeded for 10 compounds at 11 sites. Frequency of detection and concentration did not differ between tributary and Santa Ana River sites, which may be attributed to the fact that trace elements occur naturally. Four trace elements (arsenic, copper, mercury, and selenium) had higher concentrations in fish tissue at nonurban sites than at urban sites. Concentrations decreased over time for organochlorine compounds at all three reservoirs, probably a result of the discontinued use of many of the compounds. Decreasing trends in SVOCs and trace elements were observed at West Street Basin, but increasing trends were observed at Canyon Lake. Concentrations of organochlorine compounds, SVOCs, and trace elements were higher during periods of above average rainfall at both West Street Basin and Canyon Lake.

  6. Acoustic architecture of glaciolacustrine sediments deformed during zonal stagnation of the Laurentide Ice Sheet; Mazinaw Lake, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Eyles, Nicholas; Doughty, Mike; Boyce, Joseph I.; Mullins, Henry T.; Halfman, John D.; Koseoglu, Berkant

    2003-03-01

    In North America, the last (Laurentide) Ice Sheet retreated from much of the Canadian Shield by 'zonal stagnation'. Masses of dead ice, severed from the main ice sheet by emerging bedrock highs, downwasted in situ within valleys and lake basins and were commonly buried by sediment. Consequently, the flat sediment floors of many valleys and lakes are now pitted by steep-sided, enclosed depressions (kettle basins) that record the melt of stagnant ice blocks and collapse of sediment. At Mazinaw Lake in eastern Ontario, Canada, high-resolution seismic reflection, magnetic and bathymetric surveys, integrated with onland outcrop and hammer seismic investigations, were conducted to identify the types of structural disturbance associated with the formation of kettle basins in glaciolacustrine sediments. Basins formed as a result of ice blocks being trapped within a regionally extensive proglacial lake (Glacial Lake Iroquois ˜12,500 to 11,400 years BP) that flooded eastern Ontario during deglaciation. Kettles occur within a thick (>30 m) succession of parallel, high-frequency acoustic facies consisting of rhythmically laminated (varved?) Iroquois silty-clays. Iroquois strata underlying and surrounding kettle basins show large-scale normal faults, fractures, rotational failures and incoherent chaotically bedded sediment formed by slumping and collapse. Mazinaw Lake lies along part of the Ottawa Graben and while neotectonic earthquake activity cannot be entirely dismissed, deformation is most likely to have occurred as a result of the rapid melt of buried ice blocks. Seismic data do not fully penetrate the entire basin sediment fill but the structure and topography of bedrock can be inferred from magnetometer data. The location and shape of buried ice masses was closely controlled by the graben-like form of the underlying bedrock surface.

  7. Determination of Soil Erosion Risk in the Mustafakemalpasa River Basin, Turkey, Using the Revised Universal Soil Loss Equation, Geographic Information System, and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ozsoy, Gokhan; Aksoy, Ertugrul; Dirim, M. Sabri; Tumsavas, Zeynal

    2012-10-01

    Sediment transport from steep slopes and agricultural lands into the Uluabat Lake (a RAMSAR site) by the Mustafakemalpasa (MKP) River is a serious problem within the river basin. Predictive erosion models are useful tools for evaluating soil erosion and establishing soil erosion management plans. The Revised Universal Soil Loss Equation (RUSLE) function is a commonly used erosion model for this purpose in Turkey and the rest of the world. This research integrates the RUSLE within a geographic information system environment to investigate the spatial distribution of annual soil loss potential in the MKP River Basin. The rainfall erosivity factor was developed from local annual precipitation data using a modified Fournier index: The topographic factor was developed from a digital elevation model; the K factor was determined from a combination of the soil map and the geological map; and the land cover factor was generated from Landsat-7 Enhanced Thematic Mapper (ETM) images. According to the model, the total soil loss potential of the MKP River Basin from erosion by water was 11,296,063 Mg year-1 with an average soil loss of 11.2 Mg year-1. The RUSLE produces only local erosion values and cannot be used to estimate the sediment yield for a watershed. To estimate the sediment yield, sediment-delivery ratio equations were used and compared with the sediment-monitoring reports of the Dolluk stream gauging station on the MKP River, which collected data for >41 years (1964-2005). This station observes the overall efficiency of the sediment yield coming from the Orhaneli and Emet Rivers. The measured sediment in the Emet and Orhaneli sub-basins is 1,082,010 Mg year-1 and was estimated to be 1,640,947 Mg year-1 for the same two sub-basins. The measured sediment yield of the gauge station is 127.6 Mg km-2 year-1 but was estimated to be 170.2 Mg km-2 year-1. The close match between the sediment amounts estimated using the RUSLE-geographic information system (GIS) combination and the measured values from the Dolluk sediment gauge station shows that the potential soil erosion risk of the MKP River Basin can be estimated correctly and reliably using the RUSLE function generated in a GIS environment.

  8. Estimation of Sediment Sources Using Selected Chemical Tracers in the Perry Lake and Lake Wabaunsee Basins, Northeast Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.; Ziegler, Andrew C.

    2007-01-01

    In Kansas and nationally, stream and lake sediment is a primary concern as related to several important issues including water quality and reservoir water-storage capacity. The ability to achieve meaningful decreases in sediment loads to reservoirs requires a determination of the relative importance of sediment sources within the contributing basins. To investigate sources of sediment within the Perry Lake and Lake Wabaunsee Basins of northeast Kansas, representative samples of channel-bank sources, surface-soil sources (cropland and grassland), and reservoir bottom sediment were collected, analyzed, and compared. Subbasins sampled within the Perry Lake Basin included Atchison County Lake, Banner Creek Reservoir, Gregg Creek, Mission Lake, and Walnut Creek. The samples were sieved to isolate the less than 63-micron fraction (that is, the silt and clay) and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclide cesium-137 (137Cs). To determine which of the 30 constituents provided the best ability to discriminate between channel-bank and surface-soil sources in the two basins, four selection criteria were used. To be selected, it was required that the candidate constituent (1) was detectable, (2) had concentrations or activities that varied substantially and consistently between the sources, (3) had concentration or activity ranges that did not overlap between the sources, and (4) had concentration or activity differences between the sources that were statistically significant. On the basis of the four selection criteria, total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), and 137Cs were selected. Of the four selected constituents, 137Cs likely is the most reliable indicator of sediment source because it is known to be conservative in the environment. Trace elements were not selected because concentrations in the channel-bank and surface-soil sources generally were similar or did not vary in a consistent manner. To further account for differences in particle-size composition between the sources and the reservoir bottom sediment prior to the sediment-source estimations, constituent ratio and clay-normalization techniques were used. Computed ratios included the ratio of TOC to TN, TOC to TP, and TN to TP. Constituent concentrations (TN, TP, TOC) and activities (137Cs) were normalized by dividing by the percentage of clay. Thus, the sediment-source estimations involved the use of seven sediment-source indicators (that is, three constituent ratios and the clay-normalized concentration or activity for four constituents). Sediment-source estimation for each reservoir was based on a comparison between the reservoir bottom sediment and the end member channel-bank and surface-soil sources. Within the Perry Lake Basin, the seven-indicator consensus indicated that both channel-bank and surface-soil sources were important contributors of the sediment deposited in Atchison County Lake and Banner Creek Reservoir, whereas channel-bank sources were the dominant source of sediment for Mission Lake. On the sole basis of 137Cs activity, surface-soil sources contributed the most sediment to Atchison County Lake, and channel-bank sources contributed the most sediment to Banner Creek Reservoir and Mission Lake. For Perry Lake, both the seven-indicator consensus and 137Cs indicated that channel-bank sources were dominant and that channel-bank sources increased in importance with distance downstream in the Perry Lake Basin. For Lake Wabaunsee, the seven-indicator consensus and 137Cs indicated that both channel-bank and surface-soil sources were important. Given that the relative contribution of sediment from channel-bank and surface-soil sources can vary within and between basins and over time, basin-specific strategies for sediment management and monitoring are appropriate.

  9. Water and Sediment Quality in the Yukon River Basin, Alaska, During Water Year 2001

    USGS Publications Warehouse

    Schuster, Paul F.

    2003-01-01

    Overview -- This report contains water-quality and sediment-quality data from samples collected in the Yukon River Basin during water year 2001 (October 2000 through September 2001). A broad range of chemical and biological analyses from three sets of samples are presented. First, samples were collected throughout the year at five stations in the basin (three on the mainstem Yukon River, one each on the Tanana and Porcupine Rivers). Second, fecal indicators were measured on samples from drinking-water supplies collected near four villages. Third, sediment cores from five lakes throughout the Yukon Basin were sampled to reconstruct historic trends in the atmospheric deposition of trace elements and hydrophobic organic compounds.

  10. Mercury concentrations in Pacific lamprey ( Entosphenus tridentatus ) and sediments in the Columbia River basin: Mercury in Columbia River Pacific lamprey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linley, Timothy; Krogstad, Eirik; Mueller, Robert

    2016-06-21

    We investigated mercury accumulation in Pacific lamprey and sediments in the Columbia River basin. Mercury concentrations in larval lamprey differed significantly among sample locations (P < 0.001) and were correlated with concentrations in sediments (r 2 = 0.83), whereas adult concentrations were highly variable (range 0.1–9.5 µg/g) and unrelated to holding time after collection. The results suggest that Pacific lamprey in the Columbia River basin may be exposed to mercury levels that have adverse ecological effects.

  11. Using cosmogenic nuclides to contrast rates of erosion and sediment yield in a semi-arid, arroyo-dominated landscape, Rio Puerco Basin, New Mexico

    USGS Publications Warehouse

    Bierman, P.R.; Reuter, J.M.; Pavich, M.; Gellis, A.C.; Caffee, M.W.; Larsen, J.

    2005-01-01

    Analysis of in-situ-produced 10Be and 26Al in 52 fluvial sediment samples shows that millennial-scale rates of erosion vary widely (7 to 366 m Ma-1) through the lithologically and topographically complex Rio Puerco Basin of northern New Mexico. Using isotopic analysis of both headwater and downstream samples, we determined that the semi-arid, Rio Puerco Basin is eroding, on average, about 100 m Ma-1. This rapid rate of erosion is consistent with estimates made using other techniques and is likely to result from a combination of easily eroded lithologies, sparse vegetation, and monsoon-dominated rainfall. Data from 331 stream water samples collected by the US Geological Survey between 1960 and 1995 are consistent with basin-wide, average chemical denudation rates of only about 1??4 m Ma-1; thus, the erosion rates we calculate may be considered rates of sediment generation because physical weathering accounts for almost 99 per cent of mass loss. The isotopic data reveal that sediment is generally well mixed downstream with the area-weighted average sediment generation rate for 16 headwater samples (234 ton km-2 a-1 for basin area 170 to 1169 km2) matching well that estimated from a single sample collected far downstream (238 ton km-2 a-1, basin area = 14 225 km2). A series of 15 samples, collected from an arroyo wall and representing deposition through the late Holocene, indicates that 10Be concentration in sediment delivered by the fluvial system has not changed appreciably over the last 1200 years despite at least two cycles of arroyo cutting and filling. Other samples (n = 21) were collected along the drainage network. Rio Puerco erosion rates scale directly with a variety of metrics describing vegetation, precipitation, and rock erodibility. Using the headwater basins for calibration, the erosion rates for both the downstream samples and also the data set as a whole, are best modelled by considering a combination of relief and vegetation metrics, both of which co-vary with precipitation and erodibility as inferred from lithology. On average, contemporary sediment yields, determined by monitoring suspended-sediment discharge, exceed cosmogenically determined millennial-scale erosion rates by nearly a factor of two. This discrepancy, between short-term rates of sediment yield and long-term rates of erosion, suggests that more sediment is currently being exported from the basin than is being produced. Because the failure of incised channel walls and the head cutting of arroyo complexes appear to be the main sources of channel sediment today, this incongruence between rates of sediment supply and sediment yield is likely to be transitory, reflecting the current states of the arroyo cycle and perhaps the influence of current or past land-use patterns. Copyright ?? 2005 John Wiley & Sons, Ltd.

  12. Individual and cumulative effects of agriculture, forestry and metal mining activities on the metal and phosphorus content of fluvial fine-grained sediment; Quesnel River Basin, British Columbia, Canada.

    PubMed

    Smith, Tyler B; Owens, Philip N

    2014-10-15

    The impact of agriculture, forestry and metal mining on the quality of fine-grained sediment (<63 μm) was investigated in the Quesnel River Basin (QRB) (~11,500 km(2)) in British Columbia, Canada. Samples of fine-grained sediment were collected monthly during the snow-free season in 2008 using time-integrated samplers at replicate sites representative of agriculture, forestry and mining activities in the basin (i.e. "impacted" sites). Samples were also collected from replicate reference sites and also from the main stem of the Quesnel River at the downstream confluence with the Fraser River. Generally, metal(loid) and phosphorus (P) concentrations for "impacted" sites were greater than for reference sites. Furthermore, concentrations of copper (forestry and mining sites), manganese (agriculture and forestry sites) and selenium (agriculture, forestry and mining sites) exceeded upper sediment quality guideline (SQG) thresholds. These results suggest that agriculture, forestry and metal mining activities are having an influence on the concentrations of sediment-associated metal(loid)s and P in the Quesnel basin. Metal(loid) and P concentrations of sediment collected from the downstream site were not significantly greater than values for the reference sites, and were typically lower than the values for the impacted sites. This suggests that the cumulative effects of agriculture, forestry and mining activities in the QRB are presently not having a measureable effect at the river basin-scale. The lack of a cumulative effect at the basin-scale is thought to reflect: (i) the relatively recent occurrence of land use disturbances in this basin; (ii) the dominance of sediment contributions from natural forest and agriculture; and (iii) the potential for storage of contaminants on floodplains and other storage elements between the locations of disturbance activities and the downstream sampling site, which may be attenuating the disturbance signal. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Complex response of a midcontinent north America drainage system to late Wisconsinan sedimentation

    USGS Publications Warehouse

    Bettis, E. Arthur; Autin, W.J.

    1997-01-01

    The geomorphic evolution of Mud Creek basin in eastern Iowa, U.S.A. serves to illustrate how geomorphic influences such as sediment supply, valley gradient, climate, and vegetation are recorded in the alluvial stratigraphic record. Sediment supply to the fluvial system increased significantly during the late Wisconsinan through a combination of periglacial erosion and loess accumulation. Subsequent evolution of the Holocene alluvial stratigraphic record reflects long-term routing of the late Wisconsinan sediment through the drainage basin in a series of cut-and-fill cycles whose timing was influenced by hydrologic response to change in climate and vegetation. When viewed in a regional context, the alluvial stratigraphic record appears to reflect a long-term complex response of the fluvial system to increased sediment supply during the late Wisconsinan. Hydrologic and sediment-supply changes accompanying the spread of Euroamerican agriculture to the basin in the 180Os dramatically upset trends in sedimentation and channel behavior established during the Holocene. Copyright ?? 1997, SEPM (Society for Sedimentary Geology).

  14. Variability of Sediment Removal in a Semiarid Watershed

    NASA Astrophysics Data System (ADS)

    Graf, William L.

    1983-06-01

    Field and documentary data from Walnut Gulch Watershed, an instrumented semiarid drainage basin of approximately 150 km2 (57 mi2) in southeastern Arizona, show that 83% of the alluvium removed from the basin during a 15-year erosion episode beginning about 1930 was excavated from the highest-order stream. The amount of alluvium removed in the erosion episode would have been equal to a covering of about 4 cm (1.6 in) over the entire basin. The rate of sediment removal during the erosion episode was 18 times greater than the rate of present channel sediment transport. Production of sediment from slopes and channel throughput at present rates are approximately equal, and refilling will not occur under present conditions. The channel forms left by the massive evacuation of sediment impose controls on the spatial distribution of tractive force and total stream power that make renewed storage of sediment likely in only a few restricted locations. Modern instrumented records of a decade or more provide an inadequate perspective on long-term sediment movement.

  15. Nutrient and sediment concentrations and loads in the Steele Bayou Basin, northwestern Mississippi, 2010–14

    USGS Publications Warehouse

    Hicks, Matthew B.; Murphy, Jennifer C.; Stocks, Shane J.

    2017-06-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers-Vicksburg District, monitored streamflow, water quality, and sediment at two stations on the Steele Bayou in northwestern Mississippi from October 2010 through September 2014 to characterize nutrient and sediment concentrations and loads in areas where substantial implementation of conservation efforts have been implemented. The motivation for this effort was to quantify improvements, or lack thereof, in water quality in the Steele Bayou watershed as a result of implementing large- and small-scale best-management practices aimed at reducing nutrient and sediment concentrations and loads. The results of this study document the hydrologic, water-quality, and sedimentation status of these basins following over two decades of ongoing implementation of conservation practices.Results from this study indicate the two Steele Bayou stations have comparable loads and yields of total nitrogen, phosphorus, and suspended sediment when compared to other agricultural basins in the southeastern and central United States. However, nitrate plus nitrite yields from basins in the Mississippi River alluvial plain, including the Steele Bayou Basin, are generally lower than other agricultural basins in the southeastern and central United States.Seasonal variation in nutrient and sediment loads was observed at both stations and for most constituents. About 50 percent of the total annual nutrient and sediment load was observed during the spring (February through May) and between 25 and 50 percent was observed during late fall and winter (October through January). These seasonal patterns probably reflect a combination of seasonal patterns in precipitation, runoff, streamflow, and in the timing of fertilizer application.Median concentrations of total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, and suspended sediment were slightly higher at the upstream station, Steele Bayou near Glen Allan, than at the downstream station, Steele Bayou at Grace Road at Hopedale, MS, although the differences typically were not statistically significant. Mean annual loads of nitrate plus nitrite and suspended sediment were also larger at the upstream station, although the annual loads at both stations were generally within the 95-percent confidence intervals of each other.

  16. Erosion, storage, and transport of sediment in two subbasins of the Rio Puerco, New Mexico

    USGS Publications Warehouse

    Gellis, A.C.; Pavich, M.J.; Ellwein, A.L.; Aby, S.; Clark, I.; Wieczorek, M.E.; Viger, R.

    2012-01-01

    Arroyos in the American Southwest proceed through cut-and-fill cycles that operate at centennial to millennial time scales. The geomorphic community has put much effort into understanding the causes of arroyo cutting in the late Quaternary and in the modern record (late 1800s), while little effort has gone into understanding how arroyos fill and the sources of this fill. Here, we successfully develop a geographic information system (GIS)-modeled sediment budget that is based on detailed field measurements of hillslope and channel erosion and deposition. Field measurements were made in two arroyo basins draining different lithologies and undergoing different land disturbance (Volcano Hill Wash, 9.30 km2; Arroyo Chavez, 2.11 km2) over a 3 yr period. Both basins have incised channels that formed in response to the late nineteenth-century incision of the Rio Puerco. Large volumes of sediment were generated during arroyo incision, equal to more than 100 yr of the current annual total sediment load (bed load + suspended load) in each basin. Downstream reaches in both arroyos are presently aggrading, and the main source of the sediment is from channel erosion in upstream reaches and first- and second-order tributaries. The sediment budget shows that channel erosion is the largest source of sediment in the current stage of the arroyo cycle: 98% and 80% of the sediment exported out of Volcano Hill Wash and Arroyo Chavez, respectively. The geomorphic surface most affected by arroyo incision and one of the most important sediment sources is the valley alluvium, where channel erosion, gullying, soil piping, and grazing all occur. Erosion rates calculated for the entire Volcano Hill Wash (-0.26 mm/yr) and Arroyo Chavez (-0.53 mm/yr) basins are higher than the modeled upland erosion rates in each basin, reflecting the large contributions from channel erosion. Erosion rates in each basin are affected by a combination of land disturbance (grazing) and lithology--erodible sandstones and shales in Arroyo Chavez compared with basalt for Volcano Hill Wash. Despite these differences, hillslope sediment yields are similar to long-term denudation rates. As the arroyo fills over time from mouth to headwaters, hillslope sediment becomes a more significant sediment source.

  17. Last millennium sedimentation in the Gulf of Cariaco (NE Venezuela): Evidence for morphological changes of gulf entrance and possible relations with large earthquakes

    NASA Astrophysics Data System (ADS)

    Aguilar, Iliana; Beck, Christian; Audemard, Franck; Develle, Anne-Lise; Boussafir, Mohammed; Campos, Corina; Crouzet, Christian

    2016-01-01

    The Cariaco Basin and the Gulf of Cariaco in Venezuela are two major basins along the seismogenic El Pilar right lateral fault, among which the Cariaco Basin is a pull-apart. Both basins are sites of anoxia and organic-rich deposits. To examine whether the sediments in the Gulf of Cariaco have recorded traces of historical or prehistorical earthquakes, we extracted and analyzed twelve 1 m-long gravity cores, sampling the last millennium sedimentation. We focused on analyzing the sediment sources with different techniques (particle size analysis, XRF, loss on ignition tests, magnetic properties, Rock-Eval pyrolysis, 14C dating). The results confirm that major upwelling occurs at the western gulf entrance and makes deep water flowing from the Cariaco Basin into the Gulf of Cariaco. These flows carry an organic-rich suspended load. Furthermore, we found evidence of a particular, widespread fine-grained siliciclastic deposit (named SiCL3) within the gulf, whose age suggests that it likely formed during the large 1853 AD earthquake that stroke the Cumaná city. We suggest that the earthquake-induced large submarine landslides that modified the topography of the gulf's entrance, which in turn promoted upwelling and open marine water flows from the Cariaco Basin. The layer SiCL3 would be the sediment load remobilized during this chain of events.

  18. Sedimentary architecture of a Plio-Pleistocene proto-back-arc basin: Wanganui Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Proust, Jean-Noël; Lamarche, Geoffroy; Nodder, Scott; Kamp, Peter J. J.

    2005-11-01

    The sedimentary architecture of active margin basins, including back-arc basins, is known only from a few end-members that barely illustrate the natural diversity of such basins. Documenting more of these basins types is the key to refining our understanding of the tectonic evolution of continental margins. This paper documents the sedimentary architecture of an incipient back-arc basin 200 km behind the active Hikurangi subduction margin, North Island, New Zealand. The Wanganui Basin (WB) is a rapidly subsiding, Plio-Pleistocene sedimentary basin located at the southern termination of the extensional back-arc basin of the active Central Volcanic Region (TVZ). The WB is asymmetric with a steep, thrust-faulted, outer (arc-ward) margin and a gentle inner (craton-ward) margin. It contains a 4-km-thick succession of Plio-Pleistocene sediments, mostly lying offshore, composed of shelf platform sediments. It lacks the late molasse-like deposits derived from erosion of a subaerial volcanic arc and basement observed in classical back-arc basins. Detailed seismic stratigraphic interpretations from an extensive offshore seismic reflection data grid show that the sediment fill comprises two basin-scale mega-sequences: (1) a Pliocene (3.8 to 1.35 Ma), sub-parallel, regressive "pre-growth" sequence that overtops the uplifted craton-ward margin above the reverse Taranaki Fault, and (2) a Pleistocene (1.35 Ma to present), divergent, transgressive, "syn-growth" sequence that onlaps: (i) the craton-ward high to the west, and (ii) uplifted basement blocks associated with the high-angle reverse faults of the arc-ward margin to the east. Along strike, the sediments offlap first progressively southward (mega-sequence 1) and then southeastward (mega-sequence 2), with sediment transport funnelled between the craton- and arc-ward highs, towards the Hikurangi Trough through the Cook Strait. The change in offlap direction corresponds to the onset of arc-ward thrust faulting and the rise of the Axial Ranges at ca 1.75 Ma, resulting in 5100-5700 m of differential subsidence across the fault system. Sedimentation has propagated south- to southeast-ward over the last 4 Myrs at the tip of successive back-arc graben, volcanic arcs and the associated thermally uplifted parts of the North Island, following the southward migration of the Hikurangi subduction margin. Subsidence occurred by mantle flow-driven flexure, the result of active down-drag of the lithosphere by locking of the Hikurangi subduction interface and sediment loading. The WB is considered to be a proto-back-arc basin that represents the intermediate stage of evolution of an epicratonic shelf platform, impacted by active margin processes.

  19. Two-dimensional simulation of clastic and carbonate sedimentation, consolidation, subsidence, fluid flow, heat flow and solute transport during the formation of sedimentary basins

    NASA Astrophysics Data System (ADS)

    Bitzer, Klaus

    1999-05-01

    Geological processes that create sedimentary basins or act during their formation can be simulated using the public domain computer code `BASIN'. For a given set of geological initial and boundary conditions the sedimentary basin evolution is calculated in a forward modeling approach. The basin is represented in a two-dimensional vertical cross section with individual layers. The stratigraphic, tectonic, hydrodynamic and thermal evolution is calculated beginning at an initial state, and subsequent changes of basin geometry are calculated from sedimentation rates, compaction and pore fluid mobilization, isostatic compensation, fault movement and subsidence. The sedimentologic, hydraulic and thermal parameters are stored at discrete time steps allowing the temporal evolution of the basin to be analyzed. A maximum flexibility in terms of geological conditions is achieved by using individual program modules representing geological processes which can be switched on and off depending on the data available for a specific simulation experiment. The code incorporates a module for clastic and carbonate sedimentation, taking into account the impact of clastic sediment supply on carbonate production. A maximum of four different sediment types, which may be mixed during sedimentation, can be defined. Compaction and fluid flow are coupled through the consolidation equation and the nonlinear form of the equation of state for porosity, allowing nonequilibrium compaction and overpressuring to be calculated. Instead of empirical porosity-effective stress equations, a physically consistent consolidation model is applied which incorporates a porosity dependent sediment compressibility. Transient solute transport and heat flow are calculated as well, applying calculated fluid flow rates from the hydraulic model. As a measure for hydrocarbon generation, the Time-Temperature Index (TTI) is calculated. Three postprocessing programs are available to provide graphic output in PostScript format: BASINVIEW is used to display the distribution of parameters in the simulated cross-section of the basin for defined time steps. It is used in conjunction with the Ghostview software, which is freeware and available on most computer systems. AIBASIN provides PostScript output for Adobe Illustrator®, taking advantage of the layer-concept which facilitates further graphic manipulation. BASELINE is used to display parameter distribution at a defined well or to visualize the temporal evolution of individual elements located in the simulated sedimentary basin. The modular structure of the BASIN code allows additional processes to be included. A module to simulate reactive transport and diagenetic reactions is planned for future versions. The program has been applied to existing sedimentary basins, and it has also shown a high potential for classroom instruction, giving the possibility to create hypothetical basins and to interpret basin evolution in terms of sequence stratigraphy or petroleum potential.

  20. Spatial variation in spawning habitat of cutthroat trout in a sediment-rich basin

    Treesearch

    James P. Magee; Thomas E. McMahon; Russell F. Thurow

    1996-01-01

    We examined distribution and habitat characteristics of spawning sites of cutthroat trout Oncorhynchus clarki at various spatial scales to assess effects of sedimentation within a large basin in Montana. Redd density varied widely across the basin; nearly all (99%) of the 362 redds observed occurred in two high-elevation headwater tributaries. Redd density at the reach...

  1. Chemical quality, benthic organisms, and sedimentation in streams draining coal-mined lands in Raccoon Creek basin, Ohio, July 1984 through September 1986

    USGS Publications Warehouse

    Wilson, K.S.

    1988-01-01

    The Ohio Department of Natural Resources, Division of Reclamation, plans widespread reclamation of abandoned coal mines in the Raccoon Creek basin in southeastern Ohio. Throughout Raccoon Creek basin, chemical, biological, and suspended-sediment data were collected from July 1984 through September 1986. Chemical and biological data collected at 17 sites indicate that the East Branch, Brushy Creek, Hewett Fork, and Little Raccoon Creek subbasins, including Flint Run, are affected by drainage from abandoned coal mines. In these basins, median pH values ranged from 2.6 to 5.1, median acidity values ranged from 20 to 1,040 mg/L (milligrams per liter) as CaCo3, and median alkalinity values ranged from 0 to 4 mg/L as CaCo3. Biological data indicate that these basins do not support diverse populations because of degraded water systems. Suspended-sediment yields of 70.7 tons per square mile per year at the headwaters of Raccoon Creek and 54.5 tons per square mile per year near the month of Raccoon Creek indicate that cumulative sedimentation from erosion of abandoned-mine lands is not excessive in the basin.

  2. Tectonics vs. Climate efficiency in triggering detrital input in sedimentary basins: the Po Plain-Venetian-Adriatic Foreland Basin (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Amadori, Chiara; Di Giulio, Andrea; Toscani, Giovanni; Lombardi, Stefano; Milanesi, Riccardo; Panara, Yuri; Fantoni, Roberto

    2017-04-01

    The relative efficiency of tectonics respect to climate in triggering erosion of mountain belts is a classical but still open debate in geosciences. The fact that data both from tectonically active and inactive mountain regions in different latitudes, record a worldwide increase of sediment input to sedimentary basins during the last million years concomitantly with the cooling of global climate and its evolution toward the modern high amplitude oscillating conditions pushed some authors to conclude that Pliocene-Pleistocene climate has been more efficient than tectonics in triggering mountain erosion. Po Plain-Venetian-Adriatic Foreland System, made by the relatively independent Po Plain-Northern Adriatic Basin and Venetian-Friulian Basin, provides an ideal case of study to test this hypothesis and possibly quantify the difference between the efficiency of the two. In fact it is a relatively closed basin (i.e. without significant sediment escape) with a fairly continuous sedimentation (i.e. with a quite continuous sedimentary record) completely surrounded by collisional belts (Alps, Northern Apennines and Dinarides) that experienced only very weak tectonic activity since Calabrian time, i.e. when climate cooling and cyclicity increased the most. We present a quantitative reconstruction of the sediment flow delivered from the surrounding mountain belts to the different part of the basin during Pliocene-Pleistocene time. This flow was obtained through the 3D reconstruction of the Venetian-Friulian and Po Plain Northern Adriatic Basins architecture, performed by means of the seismic-based interpretation and time-to-depth conversion of six chronologically constrained surfaces (seismic and well log data from courtesy of ENI); moreover, a 3D decompaction of the sediment volume bounded by each couple of surfaces has been included in the workflow, in order to avoid compaction-related bias. The obtained results show in both Basins a rapid four-folds increase of the sediment input occurred since mid-Pleistocene time respect to Pliocene-Gelasian times. Even if the absolute amount of sediment arriving in the two basins is quite different, reflecting the different extension of their source regions, this increase occurred concomitantly with both the strong decrease of tectonic activity in the surrounding belts and the onset of major glaciations in the Alpine range. Therefore we argue that a cool, highly oscillating climate, causing glacial-interglacial cycles is approximately 4 times more efficient than tectonics in promoting the erosion of mountain belts and the related detrital input in the surrounding sedimentary basins.

  3. Coupling a basin erosion and river sediment transport model into a large scale hydrological model: an application in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Buarque, D. C.; Collischonn, W.; Paiva, R. C. D.

    2012-04-01

    This study presents the first application and preliminary results of the large scale hydrodynamic/hydrological model MGB-IPH with a new module to predict the spatial distribution of the basin erosion and river sediment transport in a daily time step. The MGB-IPH is a large-scale, distributed and process based hydrological model that uses a catchment based discretization and the Hydrological Response Units (HRU) approach. It uses physical based equations to simulate the hydrological processes, such as the Penman Monteith model for evapotranspiration, and uses the Muskingum Cunge approach and a full 1D hydrodynamic model for river routing; including backwater effects and seasonal flooding. The sediment module of the MGB-IPH model is divided into two components: 1) prediction of erosion over the basin and sediment yield to river network; 2) sediment transport along the river channels. Both MGB-IPH and the sediment module use GIS tools to display relevant maps and to extract parameters from SRTM DEM (a 15" resolution was adopted). Using the catchment discretization the sediment module applies the Modified Universal Soil Loss Equation to predict soil loss from each HRU considering three sediment classes defined according to the soil texture: sand, silt and clay. The effects of topography on soil erosion are estimated by a two-dimensional slope length (LS) factor which using the contributing area approach and a local slope steepness (S), both estimated for each DEM pixel using GIS algorithms. The amount of sediment releasing to the catchment river reach in each day is calculated using a linear reservoir. Once the sediment reaches the river they are transported into the river channel using an advection equation for silt and clay and a sediment continuity equation for sand. A sediment balance based on the Yang sediment transport capacity, allowing to compute the amount of erosion and deposition along the rivers, is performed for sand particles as bed load, whilst no erosion or deposition is allowed for silt and clay. The model was first applied on the Madeira River basin, one of the major tributaries of the Amazon River (~1.4*106 km2) accounting for 35% of the suspended sediment amount annually transported for the Amazon river to the ocean. Model results agree with observed data, mainly for monthly and annual time scales. The spatial distribution of soil erosion within the basin showed a large amount of sediment being delivered from the Andean regions of Bolivia and Peru. Spatial distribution of mean annual sediment along the river showed that Madre de Dios, Mamoré and Beni rivers transport the major amount of sediment. Simulated daily suspended solid discharge agree with observed data. The model is able to provide temporaly and spatialy distributed estimates of soil loss source over the basin, locations with tendency for erosion or deposition along the rivers, and to reproduce long term sediment yield at several locations. Despite model results are encouraging, further effort is needed to validate the model considering the scarcity of data at large scale.

  4. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective.

    PubMed

    Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris

    2016-02-01

    In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge exchange and knowledge transfer within the basin to reach the goal of integrated basin management. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Life Under the Ice: Spatial and Temporal Patterns in Rates of Water Column and Sediment Respiration in 5 Alaskan Arctic Lakes

    NASA Astrophysics Data System (ADS)

    Sadro, S.; MacIntyre, S.

    2014-12-01

    Alaskan arctic lakes lay covered by up to three meters of ice and snow for approximately two-thirds of the year, yet comparatively little is known about their ecosystem metabolism during this period. We combined the use of free-water measurements of dissolved oxygen (DO) and the laboratory incubation of sediment cores to characterize spatial and temporal patterns in the ecosystem respiration (ER) of five arctic lakes spanning a gradient in size from 1 to 150 ha. Seasonal rates of ER throughout the water column ranged from < 0.001 to 0.034 mg L-1 h-1; sediment ER ranged from mg 6.1 m-2 h-1 to 50.7 mg m-2 h-1. Although there were significant differences in sediment ER among lakes, average water column ER did not differ significantly. Seasonal patterns of DO draw down were most often linear. However, within the water column above the deepest basin of each lake, rates were higher during autumn - winter than winter - spring, with the lowest rates typically found in the upper 70% of the water column and the highest rates near the bottom. ER measured near the bottom along the slope of lake basins was lower than that at the center of lake basins and closer in magnitude to water column ER. Spatial patters in free-water rates were reflected by sediment ER, which was 21 - 66 % higher in cores collected from the deepest point of lake basins than in sediments collected at shallower locations found at the margin of basins. These observations suggest that two mechanisms operating in tandem account for the higher apparent rates of DO drawdown found within lake basins during the winter. Higher local rates of sediment ER and, similar to observations in other lakes, the transport of DO depleted waters from lake margins to deep basins. Together they contribute to the formation of hypoxia in the deeper basins of lakes and the concentration of other respiratory products, with important implications for energy flow within lakes and carbon budgets across the arctic.

  6. Estimation of sediment sources using selected chemical tracers in the Perry lake basin, Kansas, USA

    USGS Publications Warehouse

    Juracek, K.E.; Ziegler, A.C.

    2009-01-01

    The ability to achieve meaningful decreases in sediment loads to reservoirs requires a determination of the relative importance of sediment sources within the contributing basins. In an investigation of sources of fine-grained sediment (clay and silt) within the Perry Lake Basin in northeast Kansas, representative samples of channel-bank sources, surface-soil sources (cropland and grassland), and reservoir bottom sediment were collected, chemically analyzed, and compared. The samples were sieved to isolate the <63 ?? m fraction and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclide cesium-137 (137Cs). On the basis of substantial and consistent compositional differences among the source types, total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), and 137Cs were selected for use in the estimation of sediment sources. To further account for differences in particle-size composition between the sources and the reservoir bottom sediment, constituent ratio and clay-normalization techniques were used. Computed ratios included TOC to TN, TOC to TP, and TN to TP. Constituent concentrations (TN, TP, TOC) and activities (137Cs) were normalized by dividing by the percentage of clay. Thus, the sediment-source estimations involved the use of seven sediment-source indicators. Within the Perry Lake Basin, the consensus of the seven indicators was that both channel-bank and surface-soil sources were important in the Atchison County Lake and Banner Creek Reservoir subbasins, whereas channel-bank sources were dominant in the Mission Lake subbasin. On the sole basis of 137Cs activity, surface-soil sources contributed the most fine-grained sediment to Atchison County Lake, and channel-bank sources contributed the most fine-grained sediment to Banner Creek Reservoir and Mission Lake. Both the seven-indicator consensus and 137Cs indicated that channel-bank sources were dominant for Perry Lake and that channel-bank sources increased in importance with distance downstream in the basin. ?? 2009 International Research and Training Centre on Erosion and Sedimentation and the World Association for Sedimentation and Erosion Research.

  7. Reinterpretation of Halokinetic Features in the Ancestral Rocky Mountains Paradox Salt Basin, Utah and Colorado

    NASA Astrophysics Data System (ADS)

    Thompson, J. A.; Giles, K. A.; Rowan, M. G.; Hearon, T. E., IV

    2016-12-01

    The Paradox Basin in southeastern Utah and southwestern Colorado is a foreland basin formed in response to flexural loading by the Pennsylvanian-aged Uncompaghre uplift during the Ancestral Rocky Mountain orogen. Thick sequences of evaporites (Paradox Formation) were deposited within the foreland basin, which interfinger with clastic sediments in the foredeep and carbonates around the basin margin. Differential loading of the Pennsylvanian-Jurassic sediments onto the evaporites drove synsedimentary halokinesis, creating a series of salt walls and adjacent minibasins within the larger foreland basin. The growing salt walls within the basin influenced patterns of sediment deposition from the Pennsylvanian through the Cretaceous. By integrating previously published mapping with recent field observations, mapping, and subsurface interpretations of well logs and 2D seismic lines, we present interpretations of the timing, geometry, and nature of halokinesis within the Paradox Basin, which record the complex salt tectonic history in the basin. Furthermore, we present recent work on the relationships between the local passive salt history and the formation of syndepositional counter-regional extensional fault systems within the foreland. These results will be integrated into a new regional salt-tectonic and stratigraphic framework of the Paradox Basin, and have broader implications for interpreting sedimentary records in other basins with a mobile substrate.

  8. How Connecting Sediment Transport Between Environments Solves First-Order Questions Regarding Construction of the Land- and Seascape Recorded by the Permian Brushy Canyon Fm., West Texas, USA

    NASA Astrophysics Data System (ADS)

    Mohrig, D. C.; Ustipak, K.

    2016-12-01

    Exposures in the Guadalupe and Delaware mountains together with well logs and core from the Delaware Basin capture a system-wide picture of the stratigraphy defining the terrestrial, shallow marine, basin slope and basin floor environments associated with the Permian Brushy Canyon Formation. Patterns of erosion and styles of deposition characterizing any one of these environments cannot be fully understood without explicit consideration of sediment transport in the adjacent environments. Properties of an inherited basin margin and slope are particularly important to unraveling the transport histories in the linked terrestrial - to - deep marine environments defining the Brushy Canyon Fm. A one-dimensional turbidity current model will be used to show that the inherited submarine slope of about six degrees is steep enough that all sand-transporting currents are erosional down its length. This slope segment detaches the terrestrial and shallow marine environments from the deeper marine environments and decreases the potential for sediment accumulation in the former. All sediment transported to the brink of the basin slope is efficiently moved to deeper water, promoting a tendency for very little sediment to be preserved in the terrestrial environment; a property of the Brushy Canyon system that has spurred on considerable debate and speculation amongst geoscientists studying the formation. The steep inherited slope and its ability to generate erosional sandy turbidity currents also provides an explanation for the high relative fraction of thin-bedded, mud-rich deposits that are present in the most proximal deep marine setting. Again, a one-dimensional turbidity current model is used to show that only very dilute, muddy currents are expected to accumulate in significant quantity at this position in the long profile of the system. Coarser sediment load is confined to and efficiently transported through erosionally based channels onto the basin floor. Finally, the observed spatial trends in sediment erosion over the proximal 20 - 30 km of the basin floor and net sedimentation out to distances approaching 160 km from the shelf edge will be explored and further quantified using the one-dimensional numerical model for turbidity currents.

  9. Geology and geologic history of the Moscow-Pullman basin, Idaho and Washington, from late Grande Ronde to late Saddle Mountains time

    USGS Publications Warehouse

    Bush, John H; Garwood, Dean L; Dunlap, Pamela

    2016-01-01

    The Moscow-Pullman basin, located on the eastern margin of the Columbia River flood basalt province, consists of a subsurface mosaic of interlayered Miocene sediments and lava flows of the Imnaha, Grande Ronde, Wanapum, and Saddle Mountains Basalts of the Columbia River Basalt Group. This sequence is ~1800 ft (550 m) thick in the east around Moscow, Idaho, and exceeds 2300 ft (700 m) in the west at Pullman, Washington. Most flows entered from the west into a topographic low, partially surrounded by steep mountainous terrain. These flows caused a rapid rise in base level and deposition of immature sediments. This field guide focuses on the upper Grande Ronde Basalt, Wanapum Basalt, and sediments of the Latah Formation.Late Grande Ronde flows terminated midway into the basin to begin the formation of a topographic high that now separates a thick sediment wedge of the Vantage Member to the east of the high from a thin layer to the west. Disrupted by lava flows, streams were pushed from a west-flowing direction to a north-northwest orientation and drained the basin through a gap between steptoes toward Palouse, Washington. Emplacement of the Roza flow of the Wanapum Basalt against the western side of the topographic high was instrumental in this process, plugging west-flowing drainages and increasing deposition of Vantage sediments east of the high. The overlying basalt of Lolo covered both the Roza flow and Vantage sediments, blocking all drainages, and was in turn covered by sediments interlayered with local Saddle Mountains Basalt flows. Reestablishment of west-flowing drainages has been slow.The uppermost Grande Ronde, the Vantage, and the Wanapum contain what is known as the upper aquifer. The water supply is controlled, in part, by thickness, composition, and distribution of the Vantage sediments. A buried channel of the Vantage likely connects the upper aquifer to Palouse, Washington, outside the basin. This field guide locates outcrops; relates them to stratigraphic well data; outlines paleogeographic basin evolution from late Grande Ronde to the present time; and notes structures, basin margin differences, and features that influence upper aquifer water supply.

  10. Water-quality assessment of the Albermarle-Pamlico drainage basin, North Carolina and Virginia; a summary of selected trace element, nutrient, and pesticide data for bed sediments, 1969-90

    USGS Publications Warehouse

    Skrobialowski, S.C.

    1996-01-01

    Spatial distributions of metals and trace elements, nutrients, and pesticides and polychiorinated biphenyls (PCB's) in bed sediment were characterized using data collected from 1969 through 1990 and stored in the U.S. Geological Survey's National Water Data Storage and Retrieval (WATSTORE) system and the U.S. Environmental Protection Agency's Storage and Retrieval (STORET) system databases. Bed-sediment data from WATSTORE and STORET were combined to form a single database of 1,049 records representing 301 sites. Data were examined for concentrations of 16 metals and trace elements, 4 nutrients, 10 pesticides, and PCB's. Maximum bed-sediment concentrations were evaluated relative to sediment-quality guidelines developed by the National Oceanic and Atmospheric Administration, the Ontario Ministry of Environment and Energy, and the Virginia Department of Environmental Quality. Sites were not selected randomly; therefore, results should not be interpreted as representing average conditions. Many sites were located in or around lakes and reservoirs, urban areas, and areas where special investigations were conducted. Lakes and reservoirs function as effective sediment traps, and elevated concentrations of some constituents occurred at these sites. High concentrations of many metals and trace elements also occurred near urban areas where streams receive runoff or inputs from industrial, residential, and municipal activities. Elevated nutrient concentrations occurred near lakes, reservoirs, and the mouths of major rivers. The highest concentrations of arsenic, beryllium, chromium, iron. mercury, nickel, and selenium occurred in the Roanoke River Basin and may be a result of geologic formations or accumulations of bed sediment in lakes and reservoirs. The highest concentrations of cadmium, lead, and thallium were detected in the Chowan River Basin; copper and zinc were reported highest in the Neuse River Basin. Total phosphorus and total ammonia plus organic nitrogen concentrations exceeded the sediment evaluation guidelines in each major river basin, possibly resulting from wastewater inputs and agricultural applications. Exceedances of pesticide guidelines were detected in the upper Neuse River Basin near Falls Lake and in the lower Tar River Basin.

  11. Analysis of the typical small watershed of warping dams in the sand properties

    NASA Astrophysics Data System (ADS)

    Li, Li; Yang, Ji Shan; Sun, Wei Ying; Shen, Sha Sha

    2018-06-01

    Coarse sediment with a particle size greater than 0.05mm is the main deposit of riverbed in the lower Yellow River, the Loess Plateau is one of the concentrated source of coarse sediment, warping dam is one of the important engineering measures for gully control. Jiuyuangou basin is a typical small basin in the first sub region of hilly-gullied loess region, twenty warping dams in Jiuyuangou basin was selected as research object, samples of sediment along the main line of dam from upper, middle to lower reaches of dam fields and samples of undisturbed soil in slope of dam control basin were taken to carry out particle gradation analysis, in the hope of clearing reducing capacity on coarse sediment of different types of warping dam through the experimental data. The results show that the undisturbed soil in slope of dam control basin has characteristics of standard loess, the particle size are mainly distributed in 0.025 0.05mm, and the 0.05mm particle size of Jiuyuangou basinof loess is an obvious boundary; Particle size of sediment in 15 warping dam of Jiuyuangou basin are mainly distributed in 0.031 0.05mm with the dam tail is greater than dam front in general. The separation effect of horizontal pipe drainage is better than shaft drainage for which particle size greater than 0.05mm, notch dam is for particle size between 0.025 0.1 mm, and fill dam is for particle size between 0.016 0.1 mm, they all have a certain function in the sediment sorting.

  12. Recycling an uplifted early foreland basin fill: An example from the Jaca basin (Southern Pyrenees, Spain)

    NASA Astrophysics Data System (ADS)

    Roigé, M.; Gómez-Gras, D.; Remacha, E.; Boya, S.; Viaplana-Muzas, M.; Teixell, A.

    2017-10-01

    In the northern Jaca basin (Southern Pyrenees), the replacement of deep-marine by terrestrial environments during the Eocene records a main drainage reorganization in the active Pyrenean pro-wedge, which leads to recycling of earlier foreland basin sediments. The onset of late Eocene-Oligocene terrestrial sedimentation is represented by four main alluvial fans: Santa Orosia, Canciás, Peña Oroel and San Juan de la Peña, which appear diachronously from east to west. These alluvial fans are the youngest preserved sediments deposited in the basin. We provide new data on sediment composition and sources for the late Eocene-Oligocene alluvial fans and precursor deltas of the Jaca basin. Sandstone petrography allows identification of the interplay of axially-fed sediments from the east with transversely-fed sediments from the north. Compositional data for the alluvial fans reflects a dominating proportion of recycled rock fragments derived from the erosion of a lower to middle Eocene flysch depocentre (the Hecho Group), located immediately to the north. In addition, pebble composition allows identification of a source in the North Pyrenean Zone that provided lithologies from the Cretaceous carbonate flysch, Jurassic dolostones and Triassic dolerites. Thus we infer this zone as part of the source area, located in the headwaters, which would have been unroofed from turbidite deposits during the late Eocene-Oligocene. These conclusions provide new insights on the response of drainage networks to uplift and topographic growth of the Pyrenees, where the water divide migrated southwards to its present day location.

  13. Spatio-temporal patterns of soil erosion and suspended sediment dynamics in the Mekong River Basin.

    PubMed

    Suif, Zuliziana; Fleifle, Amr; Yoshimura, Chihiro; Saavedra, Oliver

    2016-10-15

    Understanding of the distribution patterns of sediment erosion, concentration and transport in river basins is critically important as sediment plays a major role in river basin hydrophysical and ecological processes. In this study, we proposed an integrated framework for the assessment of sediment dynamics, including soil erosion (SE), suspended sediment load (SSL) and suspended sediment concentration (SSC), and applied this framework to the Mekong River Basin. The Revised Universal Soil Loss Equation (RUSLE) model was adopted with a geographic information system to assess SE and was coupled with a sediment accumulation and a routing scheme to simulate SSL. This framework also analyzed Landsat imagery captured between 1987 and 2000 together with ground observations to interpolate spatio-temporal patterns of SSC. The simulated SSL results from 1987 to 2000 showed the relative root mean square error of 41% and coefficient of determination (R(2)) of 0.89. The polynomial relationship of the near infrared exoatmospheric reflectance and the band 4 wavelength (760-900nm) to the observed SSC at 9 sites demonstrated the good agreement (overall relative RMSE=5.2%, R(2)=0.87). The result found that the severe SE occurs in the upper (China and Lao PDR) and lower (western part of Vietnam) regions. The SSC in the rainy season (June-November) showed increasing and decreasing trends longitudinally in the upper (China and Lao PDR) and lower regions (Cambodia), respectively, while the longitudinal profile of SSL showed a fluctuating trend along the river in the early rainy season. Overall, the results described the unique spatio-temporal patterns of SE, SSL and SSC in the Mekong River Basin. Thus, the proposed integrated framework is useful for elucidating complex process of sediment generation and transport in the land and river systems of large river basins. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Fluvial bar dynamics in large meandering rivers with different sediment supply in the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Monegaglia, Federico; Zolezzi, Guido; Tubino, Marco; Henshaw, Alex

    2017-04-01

    Sediments in the large meandering rivers of the Amazon basin are known to be supplied by sources providing highly different magnitudes of sediment input and storage, ranging from the sediment-rich Andean region to the sediment-poor Central Trough. Recent observations have highlighted how such differences in sediment supply have an important, net effect on the rates of planform activity of meandering rivers in the basin, in terms of meander migration and frequency of cutoffs. In this work we quantify and discuss the effect of sediment supply on the organization of macroscale sediment bedforms on several large meandering rivers in the Amazon basin, and we link our findings with those regarding the rates of planform activity. Our analysis is conducted through the newly developed software PyRIS, which enables us to perform extensive multitemporal analysis of river morphodynamics from multispectral remotely sensed Landsat imagery in a fully automated fashion. We show that large rivers with low sediment supply tend to develop alternate bars that consistently migrate through long reaches, characterized at the same time by limited planform development. On the contrary, high sediment supply is associated with the development of point bars that are well-attached to the evolving meander bends and that follow temporal oscillations around the bend apexes, which in turn show rapid evlution towards complex meander shapes. Finally, rivers with intermediate rates of sediment supply develop rather steady point bars associated with slowly migrating, regular meanders. We finally discuss the results of the image analysis in the light of the properties of river planform metrics (like channel curvature and width) for the examined classes of river reaches with different sediment supply rates.

  15. Characterizing and simulating sediment loads and transport in the lower part of the San Antonio River Basin

    USGS Publications Warehouse

    Banta, J. Ryan; Ockerman, Darwin J.; Crow, Cassi; Opsahl, Stephen P.

    2015-01-01

    This extended abstract is based on the U.S. Geological Survey Scientific Investigations Reports by Crow et al. (2013) and Banta and Ockerman (2014). Suspended sediment in rivers and streams can play an important role in ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. The quantity and type of suspended sediment can affect the biological communities (Wood and Armitage, 1997), the concentration and movement of natural constituents and anthropogenic contaminants (Moran and others, 2012), and the amount of sediment deposition in coastal environments (Milliman and Meade, 1983). To better understand suspended-sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority and Texas Water Development Board, conducted a two-phase study to (1) collect and analyze sediment data to characterize sediment conditions in the San Antonio River downstream of San Antonio, Texas, and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads for four watersheds in the San Antonio River Basin, downstream from San Antonio, Texas.

  16. Minor soil erosion contribution to denudation in Central Nepal Himalaya.

    NASA Astrophysics Data System (ADS)

    Morin, Guillaume; France-Lanord, Christian; Gallo, Florian; Lupker, Maarten; Lavé, Jérôme; Gajurel, Ananta

    2013-04-01

    In order to decipher river sediments provenance in terms of erosion processes, we characterized geochemical compositions of hillslope material coming from soils, glaciers and landslide, and compared them to rivers sediments. We focused our study on two South flank Himalayan catchments: (1) Khudi khola, as an example of small High Himalayan catchment (150 km2), undergoing severe precipitation, and rapid erosion ≈ 3.5 mm/yr [A] and (2) the Narayani-Gandak Transhimalayan basin (52000 km2) that drains the whole central Nepal. To assess the question, systematic samplings were conducted on hillslope material from different erosion processes in the basins. River sediment include daily sampling during the 2010 monsoon at two stations, and banks samples in different parts of the basins. Source rocks, soil and landslide samples, are compared to river sediment mobile to immobile element ratios, completed by hydration degree H2O+ analysis[2]. Data show that soils are clearly depleted in mobile elements Na, K, Ca, and highly hydrated compared to source rocks and other erosion products. In the Khudi basin, the contrast between soil and river sediment signatures allow to estimate that soil erosion represents less than 5% of the total sediment exported by the river. Most of the river sediment therefore derives from landslides inputs and to a lesser extent by barren high elevation sub-basins. This is further consistent with direct observation that, during monsoon, significant tributaries of the Khudi river do not export sediments. Considering that active landslide zones represent less than 0.5% of the total watershed area, it implies that erosion distribution is highly heterogeneous. Landslide erosion rate could reach more than 50 cm/yr in the landslide area. Sediments of the Narayani river are not significantly different from those of the Khudi in spite of more diverse geomorphology and larger area of the basin. Only H2O+ and Total Organic Carbon concentrations normalised to Al/Si ratios show distinctly higher values. This suggests that contribution of soil erosion is higher than in the Khudi basin. Nevertheless, soil erosion remains a minor source of sediments implying that more physical processes such as landslide and glaciers dominate the erosional flux. In spite of high deforestation and agricultural land-use [B], soil erosion does not represent an important source of sediments in Nepal Himalaya. [A] Gabet et al. (2008) Earth and Planetary Science Letters 267, 482-494. [B] Gardner et al. (2003) Applied Geography 23, 23-45.

  17. Taking a step back: Himalayan erosion as seen from Bangladesh

    NASA Astrophysics Data System (ADS)

    Lupker, M.; France-Lanord, C.; Lavé, J.; Blard, P.; Galy, V.

    2012-12-01

    The Himalayan range represents the archetype of mountain building and is considered in many studies as the locus of intense interactions between climate, denudation and tectonics. A better understanding of these interactions requires that the flux of material removed from the system through erosion is known. The products of Himalayan erosion are exported to the Bengal fan and the Indian Ocean by two major rivers: the Ganga and Brahmaputra. These rivers provide the opportunity to quantify the Himalayan denudation rates as they integrate surface and tectonic processes across the entire basin. Basin wide erosion or denudation rates have classically been derived from the gauging of sediments fluxes. By coping with the inherent spatial and temporal variability of sediment concentration in rivers, sediment budgets yield average denudation rate over the observational period ranging from years to decades. Cosmogenic nuclides such as 10-Be allow the estimation of basin-wide denudation rates averaged over typical time scales of hundreds to thousand of years, from a single measurement in river sediments. We compare these methods for the case of the Ganga basin that drains the central part of the Himalayan range. By using a distal point of view, i.e. by sampling and evaluating the sediment flux at the outlet of the Ganga in Bangladesh we are able to propose an average denudation rate of the entire, central part of the Himalayan range. This sampling location offers the benefit of integrating the entire basin and its distance from the sediment source makes it also less prone to perturbations in the headwaters. However, the effects of 500 to 1000 km floodplain transfer on the sedimentary signal needs to be correctly evaluated. The gauged sediment flux can mainly be impacted by the sequestration of sediments in the floodplain. For the Ganga basin, sequestration is limited to ca. 10 % of the eroded sediment flux as deduced from geochemical mass balance approaches [1]. On their side, cosmogenic derived denudation rates in Bangladesh may also be biased by the exposure to cosmic-rays during sediment transfer in the floodplain. The comparison of the 10-Be concentration of sediments in the main Himalayan Rivers, upstream of the floodplain with sediments in Bangladesh and the use of modeling approaches suggests that this effect is nearly negligible [2]. The 10-Be concentration in sediments sampled in Bangladesh can therefore be used to infer the denudation rate of the entire range drained by the basin. Gauged sediment fluxes and 10-Be in sediments constrain the Himalayan denudation rate to ca. 0.8 and 1.0 mm/yr, respectively. Both independent methods yield similar denudations rates. However the uncertainties on both methods remain high, which does not allow us to speculate on the origin of the small difference between both rates. [1] Lupker et al., 2011 - JGR Earth Surf. 116 [2] Lupker et al., 2012 - EPSL 333-334 - p146:156

  18. Dating the upper Cenozoic sediments in Fisher Valley, southeastern Utah ( USA).

    USGS Publications Warehouse

    Colman, Steven M.; Choquette, Anne F.; Rosholt, J.M.; Miller, G.H.; Huntley, D.J.

    1986-01-01

    More than 140 m of upper Cenozoic basin-fill sediments were deposited and then deformed in Fisher Valley between about 2.5 and 0.25 m.y. ago, in response to uplift of the adjacent Onion Creek salt diapir. In addition to these basin-fill sediments, minor amounts of eolian and fluvial sand were depositd in Holocene time. The sediments, whose relative ages are known from the stratigraphy, are predominantly sandy, second-cycle red beds derived from nearby Mesozoic rocks; most were deposited in a vertical sequence, filling a sedimentary basin now exposed by fluvial dissection. We have applied a variety of established and experimental dating methods to the sediments in Fisher Valley to establish their age and to provide time control for the recent history of the Onion Creek salt diapir.-from Authors

  19. Coarse-grained sediment delivery and distribution in the Holocene Santa Monica Basin, California: Implications for evaluating source-to-sink flux at millennial time scales

    USGS Publications Warehouse

    Romans, B.W.; Normark, W.R.; McGann, M.M.; Covault, J.A.; Graham, S.A.

    2009-01-01

    Utilizing accumulations of coarse-grained terrigenous sediment from deep-marine basins to evaluate the relative contributions of and history of controls on sediment flux through a source-to-sink system has been difficult as a result of limited knowledge of event timing. In this study, six new radiocarbon (14C) dates are integrated with five previously published dates that have been recalibrated from a 12.5-m-thick turbidite section from Ocean Drilling Program (ODP) Site 1015 in Santa Monica Basin, offshore California. This borehole is tied to high-resolution seismic-reflection profiles that cover an 1100 km2 area of the middle and lower Hueneme submarine fan and most of the basin plain. The resulting stratigraphic framework provides the highest temporal resolution for a thick-bedded Holocene turbidite succession to date, permitting an evaluation of source-to-sink controls at millennial (1000 yr) scales. The depositional history from 7 ka to present indicates that the recurrence interval for large turbidity-current events is relatively constant (300-360 yr), but the volume of sediment deposited on the fan and in the basin plain has increased by a factor of 2 over this period. Moreover, the amount of sand per event on the basin plain during the same interval has increased by a factor of 7. Maps of sediment distribution derived from correlation of seismic-reflection profiles indicate that this trend cannot be attributed exclusively to autogenic processes (e.g., progradation of depocenters). The observed variability in sediment accumulation rates is thus largely controlled by allogenic factors, including: (1) increased discharge of Santa Clara River as a result of increased magnitude and frequency of El Ni??o-Southern Oscillation (ENSO) events from ca. 2 ka to present, (2) an apparent change in routing of coarse-grained sediment within the staging area at ca. 3 ka (i.e., from direct river input to indirect, littoral cell input into Hueneme submarine canyon), and (3) decreasing rates of sea-level rise (i.e., rate of rise slowed considerably by ca. 3 ka). The Holocene history of the Santa Clara River-Santa Monica Basin source-to-sink system demonstrates the ways in which varying sediment flux and changes in dispersal pathways affect the basinal stratigraphic record. ?? 2009 Geological Society of America.

  20. Effects of hydrology, watershed size, and agricultural practices on sediment yields in two river basins in Iowa and Mississippi

    USGS Publications Warehouse

    Merten, Gustavo Henrique; Welch, Heather L.; Tomer, M.D.

    2016-01-01

    The specific sediment yield (SSY) from watersheds is the result of the balance between natural, scale-dependent erosion and deposition processes, but can be greatly altered by human activities. In general, the SSY decreases along the course of a river as sediments are trapped in alluvial plains and other sinks. However, this relation between SSY and basin area can actually be an increasing one when there is a predominance of channel erosion relative to hillslope erosion. The US Geological Survey (USGS) conducted a study of suspended sediment in the Iowa River basin (IRB), Iowa, and the Yazoo River basin (YRB), Mississippi, from 2006 through 2008. Within each river basin, the SSY from four largely agricultural watersheds of various sizes (2.3 to 35,000 km2 [0.9 to 13,513 mi2]) was investigated. In the smallest watersheds, YRB sites had greater SSY compared to IRB sites due to higher rain erosivity, more erodible soils, more overland flow, and fluvial geomorphological differences. Watersheds in the YRB showed a steady decrease in SSY with increasing drainage basin area, whereas in the IRB, the maximum SSY occurred at the 30 to 500 km2 (11.6 to 193 mi2) scale. Subsurface tile drainage and limits to channel downcutting restrict the upstream migration of sediment sources in the IRB. Nevertheless, by comparing the SSY-basin size scaling relationships with estimated rates of field erosion under conservation and conventional tillage treatments reported in previous literature, we show evidence that the SSY-basin size relationship in both the IRB and YRB remain impacted by historical erosion rates that occurred prior to conservation efforts.

  1. Mechanisms for creating accommodation space during early Tertiary sedimentation in Tibet.

    NASA Astrophysics Data System (ADS)

    Studnicki-Gizbert, C.; Burchfiel, B. C.

    2003-12-01

    The Tibetan plateau is for the most part underlain by rocks of pre-Cenozoic age, a fact that has hindered the identification of Cenozoic shortening structures that can be unequivocally related to the effects of India-Asia collision. Notably, however, the Qiangtang block contains a number of small, short wavelength basins filled with terrestrial sediments of early Tertiary age. Where these basins have been well studied, sedimentation is recognized as having occurred coevally with compressional deformation. The classic treatment of compressional basins appeals to accommodation space created by the flexure of an elastic plate in response to loads created by adjacent thrust fault bound ranges. It is unlikely that the Tertiary basins of the Qiangtang block formed in this manner. The wavelength of a classically modelled flexural basin is a basically a function of the thickness of the elastic plate and the density difference between sedimentary fill and ductile material underlying the plate. Assuming a model of elastic flexure, the very small wavelengths (5 - 30km) characteristic of Qiangtang basins would then imply extremely thin (~ 1-5 km) effective elastic plate thicknesses. These very low values are difficult to reconcile with any reasonable characterization of crustal rheology. Instead, these relatively small basins likely record the creation of accommodation space created by differential uplift across the strike of folds and faults. Stratal geometries and sedimentation rates reflect the kinematics and geometries of local compressional structures and the mechanical basis for the creation of accommodation space remains uncertain. Finally, the origin of these basins makes it unlikely that early Tertiary sedimentation represents a significant fraction of the upper crust of Tibetan plateau.

  2. Interpreting the suspended sediment dynamics in a mesoscale river basin of Central Mexico using a nested watershed approach

    NASA Astrophysics Data System (ADS)

    Duvert, C.; Némery, J.; Gratiot, N.; Prat, C.; Collet, L.; Esteves, M.

    2009-12-01

    The Cointzio river basin is located within the Mexican Transvolcanic Belt, in the Michoacán state. Land-use changes undergone over last decades lead to significant erosion processes, though affecting limited areas of the basin. Apart from generating a minor depletion of arable land by incising small headwater areas, this important sediment delivery contributed to siltation in the reservoir of Cointzio, situated right downstream of the basin. During 2009 rainy season, a detailed monitoring of water and sediment fluxes was undertaken in three headwater catchments located within the Cointzio basin (Huertitas, Potrerillos and La Cortina, respectively 2.5, 9.3 and 12.0 km2), as well as at the outlet of the main river basin (station of Santiago Undameo, 627 km2). Preliminary tests realized in 2008 underlined the necessity of carrying out a high-frequency monitoring strategy to assess the sediment dynamics in the basins of this region. In each site, water discharge time-series were obtained from continuous water-level measurements (5-min time-step), and stage-discharge rating curves. At the river basin outlet, Suspended Sediment Concentration (SSC) was estimated every 10 minutes through turbidity measurements calibrated with data from automatic sampling. In the three sub-catchments, SSC time-series were calculated using stage-triggered automatic water samplers. The three upland areas monitored in our study present distinct landforms, morphology and soil types. La Cortina is underlain by andisols, rich in organic matter and with an excellent microstructure under wet conditions. Huertitas and Potrerillos both present a severely gullied landscape, bare and highly susceptible to water erosion in degraded areas. As a result, suspended sediment yields in 2009 were expectedly much higher in these two sub-catchments (≈320 t.km-2 in Huertitas and ≈270 t.km-2 in Potrerillos) than in La Cortina (≈40 t.km-2). The total suspended sediment export was approximately of 30 t.km-2 at the outlet, with a dominance of cohesive sediments (mainly silt and clay). Sediment delivery dynamics was found to be seasonally dependent and principally driven by the river network transport capacity. With the exception of events associated with a very high discharge peak, sub-catchments delivered very little sediment to the basin’s outlet during first events of the rainy season (corresponding to May-June period). Later on (from July until the end of the season), even low headwater sediment peaks were coupled with significant sediment fluxes at the outlet. An analysis of SSC-Q hysteresis patterns was also conducted for major flood events at each site. Anti-clockwise SSC-Q hysteresis loops were recorded most frequently at the three upland sub-catchments, while at the outlet a double-peaked SSC signal was repeatedly detected, outlining the variety in sediment contributions. The findings of this nested watershed approach suggest that during the first part of the rainy season, fine sediment loads exported from active hillslopes deposit as fluid mud layers in the lowland river channels. Once the in-channel storage capacity is loaded, the river transport potential guarantees a direct transit between headwater areas and delivery zones.

  3. Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trehu, Anne; Kannberg, Peter

    2011-06-30

    The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismicmore » observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m2). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that ~50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a "toe-thrust" ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those ~70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the KG basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m2. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basin is at the low end of global observations from forearc basins, possibly because of unusually high regional sedimentation rates and a high rate of tectonic deformation. In addition to providing an opportunity to follow up on preliminary results from NGHP-01, which was partially funded by DOE to increase understanding of submarine gas hydrates, a primary objective of this project was to provide training for a graduate student who had participated in the data acquisition as a technician. Our approach was to start with very simple analytic models to develop intuition about the relative importance of different parameters both as a learning exercise and to evaluate whether a more complex modeling effort could be constrained by the existing data.« less

  4. Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anne Trehu; Peter Kannberg

    2011-06-30

    The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismicmore » observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m{sup 2}). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that {approx}50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a 'toe-thrust' ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those {approx}70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the K-G basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m{sup 2}. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basin is at the low end of global observations from forearc basins, possibly because of unusually high regional sedimentation rates and a high rate of tectonic deformation. In addition to providing an opportunity to follow up on preliminary results from NGHP-01, which was partially funded by DOE to increase understanding of submarine gas hydrates, a primary objective of this project was to provide training for a graduate student who had participated in the data acquisition as a technician. Our approach was to start with very simple analytic models to develop intuition about the relative importance of different parameters both as a learning exercise and to evaluate whether a more complex modeling effort could be constrained by the existing data.« less

  5. Effects of urbanization, construction activity, management practices, and impoundments on suspended-sediment transport in Johnson County, northeast Kansas, February 2006 through November 2008

    USGS Publications Warehouse

    Lee, Casey J.; Ziegler, Andrew C.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Johnson County, Kansas, Stormwater Management Program, investigated the effects of urbanization, construction activity, management practices, and impoundments on suspended-sediment transport in Johnson County from February 2006 through November 2008. Streamgages and continuous turbidity sensors were operated at 15 sites within the urbanizing 57-square-mile Mill Creek Basin, and 4 sites downstream from the other largest basins (49 to 66 square miles) in Johnson County. The largest sediment yields in Johnson County were observed downstream from basins with increased construction activity. Sediment yields attributed to the largest (68 acre) active construction site in the study area were 9,300 tons per square mile in 2007 and 12,200 tons per square mile in 2008; 5 to 55 times larger than yields observed at other sampling sites. However, given erodible soils and steep slopes at this site, sediment yields were relatively small compared to the range in historic values from construction sites without erosion and sediment controls in the United States (2,300 to 140,000 tons per square mile). Downstream from this construction site, a sediment forebay and wetland were constructed in series upstream from Shawnee Mission Lake, a 120-acre reservoir within Shawnee Mission Park. Although the original intent of the sediment forebay and constructed wetland were unrelated to upstream construction, they were nonetheless evaluated in 2008 to characterize sediment removal before stream entry into the lake. The sediment forebay was estimated to reduce 33 percent of sediment transported to the lake, whereas the wetland did not appear to decrease downstream sediment transport. Comparisons of time-series data and relations between turbidity and sediment concentration indicate that larger silt-sized particles were deposited within the sediment forebay, whereas smaller silt and clay-sized sediments were transported through the wetland and into the lake. Data collected at sites up and downstream from the constructed wetland indicated that hydraulic retention alone did not substantially reduce sediment loading to Shawnee Mission Lake. Mean-daily turbidity values at sampling sites downstream from basins with increased construction activity were compared to U.S. Environmental Protection Agency turbidity criteria designed to reduce discharge of pollutants from construction sites. The U.S. Environmental Protection Agency numeric turbidity criteria specifies that effluent from construction sites greater than 20 acres not exceed a mean-daily turbidity value of 280 nephelometric turbidity units beginning in 2011; this criteria will apply to sites greater than 10 acres beginning in 2014. Although numeric criteria would not have been applicable to data from sampling sites in Johnson County because they were not directly downstream from construction sites and because individual states still have to determine additional details as to how this criteria will be enforced, comparisons were made to characterize the potential of construction site effluent in Johnson County to exceed U.S. Environmental Protection Agency Criteria, even under extensive erosion and sediment controls. Numeric criteria were exceeded at sampling sites downstream from basins with increased construction activity for multiple days during the study period, potentially indicating the need for additional erosion and sediment controls and (or) treatment to bring discharges from construction sites into compliance with future numeric turbidity criteria. Among sampling sites in the Mill Creek Basin, sediment yields from the urbanizing Clear Creek Basin were approximately 2 to 3 times those from older, more stable urban or rural basins. Sediments eroded from construction sites adjacent to or surrounding streams appear to be more readily transported downstream, whereas sediments eroded from construction sites in headwater areas are more likely to

  6. Late Neogene sedimentary facies and sequences in the Pannonian Basin, Hungary

    USGS Publications Warehouse

    Juhasz, E.; Phillips, L.; Muller, P.; Ricketts, B.; Toth-Makk, A.; Lantos, M.; Kovacs, L.O.

    1999-01-01

    This paper is part of the special publication No.156, The Mediterranean basins: Tertiary extension within the Alpine Orogen. (eds B.Durand, L. Jolivet, F.Horvath and M.Seranne). Detailed sedimentological, facies and numerical cycle analysis, combined with magnetostratigraphy, have been made in a number of boreholes in the Pannonian Basin, in order to study the causes of relative water-level changes and the history of the basin subsidence. Subsidence and infilling of the Pannonian Basin, which was an isolated lake at that time occurred mainly during the Late Miocene and Pliocene. The subsidence history was remarkably different in the individual sub-basins: early thermal subsidence was interrupted in the southern part of the basin, while high sedimentation rate and continuous subsidence was detected in the northeastern sub-basin. Three regional unconformities were detected in the Late Neogene Pannonian Basin fill, which represent 0.5 and 7.5 Ma time spans corresponding to single and composite unconformities. Consequently two main sequences build up the Late Neogene Pannonian Basin fill: a Late Miocene and a Pliocene one. Within the Late Miocene sequence there are smaller sedimentary cycles most probably corresponding to climatically driven relative lake-level changes in the Milankovitch frequency band. Considering the periods, the estimated values for precession and eccentricity in this study (19 and 370 ka) are close to the usually cited ones. In the case of obliquity the calculated period (71 ka) slightly deviates from the generally accepted number. Based on the relative amplitudes of oscillations, precession (sixth order) and obliquity (fifth order) cycles had the most significant impact on the sedimentation. Eccentricity caused cycles (fourth order) are poorly detectable in the sediments. The longer term (third order) cycles had very slight influence on the sedimentation pattern. Progradation, recorded in the Late Miocene sequence, correlates poorly in time within the basin. The dominant controls of this process probably were changes of basin subsidence rate and the very high sedimentation rate. The slow, upward trend of silt and sand bed thickness as well as that of the grain size also reflects the local progradation.

  7. Geochemical compositions of Neoproterozoic to Lower Palaeozoic (?) shales and siltstones in the Volta Basin (Ghana): Constraints on provenance and tectonic setting

    NASA Astrophysics Data System (ADS)

    Amedjoe, Chiri G.; Gawu, S. K. Y.; Ali, B.; Aseidu, D. K.; Nude, P. M.

    2018-06-01

    Many researchers have investigated the provenance and tectonic setting of the Voltaian sediments using the geochemistry of sandstones in the basin. The shales and siltstones in the basin have not been used much in the provenance studies. In this paper, the geochemistry of shales and siltstones in the Kwahu Group and Oti Group of the Voltaian Supergroup from Agogo and environs in the southeastern section of the basin has constrained the provenance and tectonic setting. Trace element ratios La/Sc, Th/Sc and Cr/Th and REEs sensitive to average source compositions revealed sediments in the shales and siltstones may mainly be from felsic rocks, though contributions from old recycled sediments and some andesitic rock sediments were identified. The felsic rocks may be granites and/or granodiorites. Some intermediate rocks of andesitic composition are also identified, while the recycled sediments were probably derived from the basement metasedimentary rocks. The enrichment of light REE (LaN/YbN c. 7.47), negative Eu anomalies (Eu/Eu* c. 0.59), and flat heavy REE chondrite-normalized patterns, denote an upper-continental-crustal granitic source materials for the sediments. Trace-element ternary discriminant diagrams reveal passive margin settings for sediments, though some continental island arc settings sediments were also depicted. Mixing calculations based on REE concentrations and modeled chondrite-normalized REE patterns suggest that the Birimian basement complex may be the source of detritus in the Voltaian Basin. REEs are more associated with shales than siltstones. On this basis chondrite-normalized REE patterns show that shale lithostratigraphic units may be distinguished from siltstone lithostratigraphic units. The significant variability in shales elemental ratios can therefore be used to distinguish between shales of the Oti Group from that of the Kwahu Group.

  8. Simulating Spatial Variability of Fluvial Sediment Fluxes Within the Magdalena Drainage Basin, Colombia.

    NASA Astrophysics Data System (ADS)

    Kettner, A. J.; Syvitski, J. P.; Restrepo, J. D.

    2008-12-01

    This study explores the application of an empirical sediment flux model BQART, to simulate long-term sediment fluxes of major tributaries of a river system based on a limited number of input parameters. We validate model results against data of the 1612 km long Magdalena River, Colombia, South America, which is well monitored. The Magdalena River, draining a hinterland area of 257,438 km2, of which the majority lies in the Andes before reaching the Atlantic coast, is known for its high sediment yield, 560 t kg- 2 yr-1; higher than nearby South American rivers like the Amazon or the Orinoco River. Sediment fluxes of 32 tributary basins of the Magdalena River were simulated based on the following controlling factors: geomorphic influences (tributary-basin area and relief) derived from high-resolution Shuttle Radar Topography Mission data, tributary basin-integrated lithology based on GIS analysis of lithology data, 30year temperature data, and observed monthly mean discharge data records (varying in record length of 15 to 60 years). Preliminary results indicate that the simulated sediment flux of all 32 tributaries matches the observational record, given the observational error and the annual variability. These simulations did not take human influences into account yet, which often increases sediment fluxes by accelerating erosion, especially in steep mountainous area similar to the Magdalena. Simulations indicate that, with relatively few input parameters, mostly derived from remotely-sensed data or existing compiled GIS datasets, it is possible to predict: which tributaries in an arbitrary river drainage produce relatively high contributions to sediment yields, and where in the drainage basin you might expect conveyance loss.

  9. The Jianchuan Basin, Yunnan: Implications on the Evolution of SE Tibet During the Eocene

    NASA Astrophysics Data System (ADS)

    Gourbet, L.; Mahéo, G.; Leloup, P. H.; Jean-Louis, P.; Sorrel, P.; Eymard, I.; Antoine, P. O.; Sterb, M.; Wang, G.; Cao, K.; Chevalier, M. L.; Lu, H.

    2015-12-01

    The Jianchuan basin, Yunnan Province, China, is the widest continental Cenozoic sedimentary basin in the southeastern Tibetan plateau. It is located ~10 km east of the Red River fault zone. Climatic simulations and palaeoenvironment studies suggest that SE Asia has experienced a variable intensity monsoon system for 40 Ma. Because sediments can record deformation, climate and environment changes, the Jianchuan basin provides the opportunity to assess the relative role of climate and tectonics on the Tibetan plateau formation. Sediments consist of floodplain siltites, massive fluvial sandstone, few carbonate levels, coal and volcanosedimentary deposits. U/Pb dating of zircons from dykes, volcanodetrital deposits and lava flows respectively cutting and interbedded within the sediments was performed by in-situ LA-ICPMS. All ages range from 38 to 35 Ma. Such absolute dating is confirmed by palaeontological evidence. Dental remains of Zaisanamynodonwere found in coal deposits. This giant Rhino lived in Asia during the Ergilian (late Eocene). Our data allow us to propose a revised stratigraphy for the Jianchuan basin: contrary to what was suggested by previous studies, i.e. a continuous sedimentation from the Paleocene to the Miocene, nearly no sedimentation occurred after 34 Ma. Combined with a sedimentological analysis, the data indicate that during the late Eocene, the Jianchuan area was covered by a large (>15 km) braided river system that coexisted with local transient lakes, in a moderate-slope and semi-arid environment. This major sedimentation event was followed by a period of more humid conditions that may be related to an intensification of the monsoon. The end of the sedimentation seems to be contemporaneous with the Ailao Shan-Red River fault activation. The new stratigraphy has also implications for regional studies that need robust age constraints, for example for reconstructing palaeoelevation or provenance of sediments.

  10. Water-Quality, Bed-Sediment, and Biological Data (October 2005 through September 2006) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2007-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Milltown Reservoir as part of a long-term monitoring program in the upper Clark Fork basin; additional water-quality samples were collected in the Clark Fork basin from sites near Milltown Reservoir downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water-quality samples were collected periodically at 22 sites from October 2005 through September 2006. Bed-sediment and biological samples were collected once at 12 sites during August 2006. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2005 through September 2006. Water-quality data include concentrations of selected major ions, trace ele-ments, and suspended sediment. Nutrients also were analyzed in the supplemental water-quality samples. Daily values of suspended-sed-iment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-ele-ment concentrations in the fine-grained fraction. Bio-logical data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  11. Sediment transport by irrigation return flows in four small drains within the DID-18 drainage of the Sulphur Creek basin, Yakima County, Washington, April 1979 to October 1981

    USGS Publications Warehouse

    Boucher, P.R.

    1984-01-01

    Suspended sediment, water discharges, and water temperatures were monitored in four small drains in the DID-18 basin of the Sulphur Creek basin, a tributary to the Yakima River, Washington. Water outflow, inflow, and miscellaneous sites were also monitored. The information was used to evaluate the effectiveness of management practices in reducing sediment loads in irrigated areas. This study was one of seven Model Implementation Plan projects selected by the U.S. Soil Conservation Service and the U.S. Environmental Protection Agency to demonstrate the effectiveness of institutional and administrative implementation of management plans. Sediment discharges from the four basins could not be correlated with changes in management practices, because Imhoff Cone readings collected for the study showed no statistical differences between the three irrigation seasons. However, one drain acted as a sink for sediment where more lands were sprinkler irrigated; this drain had a smaller proportion of row crops than did the other three drains. (USGS)

  12. Controls on Cenozoic exhumation of the Tethyan Himalaya from fission-track thermochronology and detrital zircon U-Pb geochronology in the Gyirong basin area, southern Tibet

    NASA Astrophysics Data System (ADS)

    Shen, Tianyi; Wang, Guocan; Leloup, Philippe Hervé; van der Beek, Peter; Bernet, Matthias; Cao, Kai; Wang, An; Liu, Chao; Zhang, Kexin

    2016-07-01

    The Gyirong basin, southern Tibet, contains the record of Miocene-Pliocene exhumation, drainage development, and sedimentation along the northern flank of the Himalaya. The tectonic controls on basin formation and their potential link to the South Tibetan Detachment System (STDS) are not well understood. We use detrital zircon (ZFT) and apatite (AFT) fission-track analysis, together with detrital zircon U-Pb dating to decipher the provenance of Gyirong basin sediments and the exhumation history of the source areas. Results are presented for nine detrital samples of Gyirong basin sediments (AFT, ZFT, and U-Pb), two modern river-sediment samples (ZFT and AFT), and six bedrock samples (ZFT) from transect across the Gyirong fault bounding the basin to the east. The combination of detrital zircon U-Pb and fission-track data demonstrates that the Gyirong basin sediments were sourced locally from the Tethyan Sedimentary Sequence. This provenance pattern indicates that deposition was controlled by the Gyirong fault, active since 10 Ma, whose vertical throw was probably < 5000 m, rather than being controlled by normal faults associated with the STDS. The detrital thermochronology data contain two prominent age groups at 37-41 and 15-18 Ma, suggesting rapid exhumation at these times. A 15-18 Ma phase of rapid exhumation has been recorded widely in both southern Tibet and the Himalaya. A possible interpretation for such a major regional exhumation event might be detachment of the subducting Indian plate slab during the middle Miocene, inducing dynamic uplift of the Indian plate overriding its own slab.

  13. Sediment provenance in contractional orogens: The detrital zircon record from modern rivers in the Andean fold-thrust belt and foreland basin of western Argentina

    NASA Astrophysics Data System (ADS)

    Capaldi, Tomas N.; Horton, Brian K.; McKenzie, N. Ryan; Stockli, Daniel F.; Odlum, Margaret L.

    2017-12-01

    This study analyzes detrital zircon U-Pb age populations from Andean rivers to assess whether active synorogenic sedimentation accurately records proportional contributions from varied bedrock source units across different drainage areas. Samples of modern river sand were collected from west-central Argentina (28-33°S), where the Andes are characterized by active uplift and deposition in diverse contractional provinces, including (1) hinterland, (2) wedge-top, (3) proximal foreland, and (4) distal broken foreland basin settings. Potential controls on sediment provenance were evaluated by comparing river U-Pb age distributions with predicted age spectra generated by a sediment mixing model weighted by relative catchment exposure (outcrop) areas for different source units. Several statistical measures (similarity, likeness, and cross-correlation) are employed to compare how well the area-weighted model predicts modern river age populations. (1) Hinterland basin provenance is influenced by local relief generated along thrust-bounded ranges and high zircon fertility of exposed crystalline basement. (2) Wedge-top (piggyback) basin provenance is controlled by variable lithologic durability among thrust-belt bedrock sources and recycled basin sediments. (3) Proximal foreland (foredeep) basin provenance of rivers and fluvial megafans accurately reflect regional bedrock distributions, with limited effects of zircon fertility and lithologic durability in large (>20,000 km2) second-order drainage systems. (4) In distal broken segments of the foreland basin, regional provenance signatures from thrust-belt and hinterland areas are diluted by local contributions from foreland basement-cored uplifts.

  14. Advances in Holocene mountain geomorphology inspired by sediment budget methodology

    NASA Astrophysics Data System (ADS)

    Slaymaker, Olav; Souch, Catherine; Menounos, Brian; Filippelli, Gabriel

    2003-09-01

    The sediment budget, which links sediment sources to sediment sinks with hydroclimatic and weathering processes mediating the response, is applied to the analysis of sediments in three alpine lakes in British Columbia. We provide two ways of using the sediment budget as an integrating device in the interpretation of mountain geomorphology. These approaches differ in their resolution and ability to budget the major components of the fine-sediment cascade in glaciated environments. Taken together, they provide an integrated index of landscape change over the Holocene. The first example compares the hydroclimatic controls of lake sedimentation for the last 600 years (A.D. 1370-1998) preserved in varved sediments from two of the lake basins. This hydroclimatological approach incorporates contemporary monitoring, air photo analysis, and detailed stratigraphy of sedimentation events within a single varve to infer the timing, sources, and preferred pathways of fine-grained sediments reaching the lake basins. The results indicate that glaciers, hillslope, and channel instability within the major subbasins are the principal sediment sources to the lake basins. Transitory sediment storage of glacially derived sediments within the channels is believed to modulate the episodic and more frequent delivery of sediments from adjacent hillslope and fluvial storage sites and direct routing of glacial rock flour during years of prolonged glacial melt. The second example, relying on the phosphorus geochemistry of sediments in an alpine lake basin, considers the evolution of phosphorus forms (from mineral to occluded and organic fractions) as a function of the soil development, inherent slope instability, and repeated cycles of glaciation and neoglaciation over the Holocene. This geochemical approach demonstrates that both neoglaciation and full glaciation have essentially zeroed the system in such a way that a high proportion of mineral phosphorus remains in the present lake sediments and the bioavailability of phosphorus (a key to ecosystem development) is low. Both examples illustrate the importance of variable sediment sources; the seasonality, frequency, and magnitude of sediment transfers; and the profound influence of ice cover over contemporary, neoglacial and Pleistocene time scales. They also signal the value of including both clastic and dissolved components in the sediment budget.

  15. Surface sediment remobilization triggered by earthquakes in the Nankai forearc region

    NASA Astrophysics Data System (ADS)

    Okutsu, N.; Ashi, J.; Yamaguchi, A.; Irino, T.; Ikehara, K.; Kanamatsu, T.; Suganuma, Y.; Murayama, M.

    2017-12-01

    Submarine landslides triggered by earthquakes generate turbidity currents (e.g. Piper et al., 1988; 1999). Recently several studies report that the remobilization of the surface sediment triggered by earthquakes can also generate turbidity currents. However, studies that proposed such process are still limited (e.g. Ikehara et al., 2016; Mchugh et al., 2016; Moernaut et al., 2017). The purpose of this study is to examine those sedimentary processes in the Nankai forearc region, SW Japan using sedimentary records. We collected 46 cm-long multiple core (MC01) and a 6.7 m-long piston core (PC03) from the small basin during the R/V Shinsei Maru KS-14-8 cruise. The small confined basin, which is our study site, block the paths of direct sediment supply from river-submarine canyon system. The sampling site is located at the ENE-WSW elongated basin between the accretionary prism and the forearc basin off Kumano without direct sediment supply from river-submarine canyon system. The basin exhibits a confined basin that captures almost of sediments supplied from outside. Core samples are mainly composed of silty clay or very fine sand. Cs-137 measurement conducted on a MC01 core shows constantly high value at the upper 17 cm section and no detection below it. Moreover, the sedimentary structure is similar to fine-grained turbidite described by Stow and Shanmgam (1980), we interpret the upper 17 cm of MC01 as muddy turbidite. Grain size distribution and magnetic susceptibility also agree to this interpretation. Rapid sediment deposition after 1950 is assumed and the most likely event is the 2004 off Kii peninsula earthquakes (Mw=6.6-7.4). By calculation from extent of provenance area, which are estimated by paleocurrent analysis and bathymetric map, and thickness of turbidite layer we conclude that surface 1 cm of slope sediments may be remobilized by the 2004 earthquakes. Muddy turbidites are also identified in a PC03 core. The radiocarbon age gap of 170 years obtained around 2 mbsf of PC03 core also indicates similar sedimentary process. However, we also obtained large age gap in a thick turbidite layer, indicating remobilization of deeper sediments by landslide. Our results revealed that the studied basin recorded various scales and styles of sediment remobilizations by earthquake shakings.

  16. Sediment quality in the north coastal basin of Massachusetts, 2003

    USGS Publications Warehouse

    Breault, Robert F.; Ashman, Mary S.; Heath, Douglas

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, completed a reconnaissance-level study of bottom-sediment quality in selected lakes, rivers, and estuaries in the North Coastal Basin of Massachusetts. Bottom-sediment grab samples were collected from 20 sites in the North River, Lake Quannapowitt, Saugus River, Mill River, Shute Brook, Sea Plane Basin, Pines River, and Bear Creek. The samples were tested for various types of potentially harmful contaminants? including 33 elements, 17 polyaromatic hydrocarbons (PAHs), 22 organochlorine pesticides, and 7 polychlorinated biphenyl (PCB) mixtures (Aroclors)?to benthic organisms (bottom-dwelling) and humans. The results were compared among sampling sites, to background concentrations, and to concen-trations measured in other urban rivers, and sediment-quality guidelines were used to predict toxicity at the sampling sites to benthic organisms and humans. Because there are no standards for human toxicity for aquatic sediment, standards for contaminated upland soil were used. Contaminant concentrations measured in sediment collected from the North Coastal Basin generally were equal to or greater than concentrations in sediment from uncontaminated rivers throughout New England. Contaminants in North Coastal Basin sediment with elevated concentrations (above back-ground levels) included arsenic, chromium, copper, lead, nickel, and zinc, some of the PAHs, dichlorodiphenyltrichloro-ethane (DDT) and its metabolites, and dieldrin. No PCBs were measured above the detection limits. Measured concentrations of arsenic, chromium, and lead were also generally greater than those measured in other urban rivers throughout the conter-minous United States. With one exception (arsenic), local con-centrations measured in sediment samples collected from the North Coastal Basin were lower than concentrations measured in sediment collected from two of three urban rivers draining to Boston Harbor. The probable toxicity to benthic organisms ranged from about 33 to 91 percent across the study area. Of the elements analyzed, antimony, arsenic, beryllium, and lead exceeded the soil standards for risk to human health. Of the PAHs analyzed, four also exceeded soil standards. Organochlorine pesticide concentrations, however, were not high enough relative to the soil standards to pose a risk to human health. Some trace element and some organic compound concentrations in bottom sediment may be toxic to aquatic organisms and may pose a risk to human health.

  17. Suspended-sediment data in the Salt River basin, Missouri

    USGS Publications Warehouse

    Berkas, Wayne R.

    1983-01-01

    Suspended-sediment data collected at six stations in the Salt River basin during 1980-82 are presented. The estimated average annual suspended-sediment load is 1,390,000 tons per year from a geomorphic examination, and 1,330,000 tons per year from periodic sampling at Salt River near Monroe City, Mo. The suspended-sediment load from the major tributaries of the Salt River during 1981 was 1,610,000 tons, which is larger than the estimated values due to above-normal rainfall and runoff. (USGS)

  18. Assessing performance characteristics of sediment basins constructed in Franklin County.

    DOT National Transportation Integrated Search

    2012-08-01

    The objective of the research project was to monitor the performance of newly designed : sediment basins that were constructed on the ALDOT 502 project in Franklin County. The : project included four tasks: (1) assess performance characteristics of s...

  19. Suspended-Sediment Loads and Yields in the North Santiam River Basin, Oregon, Water Years 1999-2004

    USGS Publications Warehouse

    Bragg, Heather M.; Sobieszczyk, Steven; Uhrich, Mark A.; Piatt, David R.

    2007-01-01

    The North Santiam River provides drinking water to the residents and businesses of the city of Salem, Oregon, and many surrounding communities. Since 1998, water-quality data, including turbidity, were collected continuously at monitoring stations throughout the basin as part of the North Santiam River Basin Turbidity and Suspended Sediment Study. In addition, sediment samples have been collected over a range of turbidity and streamflow values. Regression models were developed between the instream turbidity and suspended-sediment concentration from the samples collected from each monitoring station. The models were then used to estimate the daily and annual suspended-sediment loads and yields. For water years 1999-2004, suspended-sediment loads and yields were estimated for each station. Annual suspended-sediment loads and yields were highest during water years 1999 and 2000. A drought during water year 2001 resulted in the lowest suspended-sediment loads and yields for all monitoring stations. High-turbidity events that were unrelated or disproportional to increased streamflow occurred at several of the monitoring stations during the period of study. These events highlight the advantage of estimating suspended-sediment loads and yields from instream turbidity rather than from streamflow alone.

  20. Identifying water-quality trends in the Trinity River, Texas, USA, 1969-1992, using sediment cores from Lake Livingston

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.

    1996-01-01

    Chemical analyses were done on cores of bottom sediment from three locations in Lake Livingston, a reservoir on the Trinity River in east Texas to identify trends in water quality in the Trinity River using the chemical record preserved in bottom sediments trapped by the reservoir. Sediment cores spanned the period from 1969, when the reservoir was impounded, to 1992, when the cores were collected. Chemical concentrations in reservoir sediment samples were compared to concentrations for 14 streambed sediment samples from the Trinity River Basin and to reported concentrations for soils in the eastern United States and shale. These comparisons indicate that sediments deposited in Lake Livingston are representative of the environmental setting of Lake Livingston within the Trinity River Basin. Vertical changes in concentrations within sediment cores indicate temporal trends of decreasing concentrations of lead, sodium, barium, and total DDT (DDT plus its metabolites DDD and DDE) in the Trinity River. Possible increasing temporal trends are indicated for chlordane and dieldrin. Each sediment-derived trend is related to trends in water quality in the Trinity River or known changes in environmental factors in its drainage basin or both.

  1. The Shale Gas potential of Lower Carboniferous Sediments in Germany

    NASA Astrophysics Data System (ADS)

    Kerschke, D.; Mihailovic, A.; Schulz, H., -M.; Horsfield, B.

    2012-04-01

    Organic-rich Carboniferous sediments are proven source rocks for conventional gas systems in NW Europe and are likely gas shale candidates. Within the framework of GeoEnergie, an initiative to strengthen scientific excellence, funded by the German Ministry of Education and Research (BMBF), the influence of palaeogeography and basin dynamics on sedimentology and diagenesis is being investigated. Our aim is to unravel the evolution of shale gas-relevant properties which control gas prospectivity and production parameters like porosity, brittleness, etc. for the Lower Carboniferous in Germany. Northern Germany is underlain by thick, mudstone-bearing Carboniferous successions with a wide range of thermal maturities. Some of these mudstone horizons are rich in organic carbon which is either of marine and/or terrigenous origin. During the Carboniferous deposition of fine-grained, TOC-rich basinal sediments changed into shallow marine to paralic siliciclastic sediments (carbonates during the Lower Carboniferous) in the north, and grade into coarse-grained sediments close to the uprising Variscan mountains in the south. As a result different architectural elements including TOC-rich fine-grained sediments like basinal shales, fine-grained parts of turbidites, and shallow marine mudstones occur in both the Lower and the Upper Carboniferous section. A high shale gas potential occurs in basinal shales of Namurian age with marine organic material and TOC contents of up to 8 % (Rhenish Alum Shales). Such sediments with thermal maturities between 1.3 to 3.0 % vitrinite reflectance and sufficient quartz contents occur in wide areas of present-day Central European Basins System (CEBS), and are at favourable depth for shale gas exploration predominantly along the southern CEBS margin.

  2. Variations in trace element geochemistry in the Seine River Basin based on floodplain deposits and bed sediments

    USGS Publications Warehouse

    Horowitz, A.J.; Meybeck, Michel; Idlafkih, Z.; Biger, E.

    1999-01-01

    Between 1990 and 1995 a series of bed sediment, suspended sediment and fresh floodplain samples were collected within the Seine River Basin, in France, to evaluate variations in trace element geochemistry. Average background trace element levels for the basin were determined from the collection and subsequent analyses of bed sediment samples from small rural watersheds and from a prehistoric (5000 BP) site in Paris. Concentrations are relatively low, and similar to those observed for fine-grained bed sediments from unaffected areas in the United States and Canada. However, the concentrations are somewhat higher than the reference levels presently adopted by French water authorities for areas north of the Seine Basin, which have similar bedrock lithologies. Downstream trace element variations were monitored in 1994 and 1995 using fresh surficial floodplain samples that were collected either as dried deposits a few days after peak discharge, or immediately after peak discharge (under ??? 30 cm of water). Chemical comparisons between fresh floodplain deposits, and actual suspended sediments collected during flood events, indicate that, with some caveats, the former can be used as surrogates for the latter. The floodplain sediment chemical data indicate that within the Seine Basin, from the relatively unaffected headwaters through heavily affected urban streams, trace element concentrations vary by as much as three orders of magnitude. These trace element changes appear to be the result of both increases in population as well as concomitant increases in industrial activity. This article is a US government work and is in the public domain in the United States.

  3. Metal concentrations in aquatic environments of Puebla River basin, Mexico: natural and industrial influences.

    PubMed

    Morales-García, S S; Rodríguez-Espinosa, P F; Shruti, V C; Jonathan, M P; Martínez-Tavera, E

    2017-01-01

    The rapid urban expansion and presence of volcanoes in the premises of Puebla River basin in central Mexico exert significant influences over its aquatic environments. Twenty surface sediment samples from Puebla River basin consisting of R. Alseseca, R. Atoyac, and Valsequillo dam were collected during September 2009 and analyzed for major (Al, Fe, Mg, Ba, Ca, and K) and trace elements (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, V, and Zn) in order to identify the metal concentrations and their enrichment. R. Atoyac sediments presented higher concentrations of Ba (1193.8 μg g -1 ) and Pb (27.1 μg g -1 ) in comparison with the local reference sample values. All the metal concentrations except Sr for R. Alseseca sediments were within the range of local reference sample values indicating no significant external influence, whereas Valsequillo dam sediments had elevated concentrations of all the metals suggesting both natural and external influences in the study region. The magnitude of metal contamination was assessed using several indices such as geoaccumulation index (I geo ), enrichment factor (EF), degree of contamination (C d ), and pollution load index (PLI). The results suggest that As, Pb, and Zn were predominantly enriched in the Puebla River basin sediments. Comparing with sediment quality guidelines and ecotoxicological values, it is revealed that Cd, Cr, Cu, and Ni have possible harmful effects on the biological community. The present study provides an outlook of metal enrichment in Puebla River basin sediments, highlighting the necessity to conserve this river ecosystem for the near future.

  4. Recent Deforestation Causes Rapid Increase in River Sediment Load in the Northern Andes

    NASA Astrophysics Data System (ADS)

    Restrepo, J. D.; Kettner, A.; Syvitski, J. P.

    2016-12-01

    Human induced soil erosion reduces soil productivity; compromises freshwater ecosystem services, and drives geomorphic and ecological change in rivers and their floodplains. The Andes of Colombia have witnessed severe changes in land-cover and forest loss during the last three decades with the period 2000 and 2010 being the highest on record. We address the following: (1) what are the cumulative impacts of tropical forest loss on soil erosion? and (2) what effects has deforestation had on sediment production, availability, and the transport capacity of Andean rivers? Models and observations are combined to estimate the amount of sediment liberated from the landscape by deforestation within a major Andean basin, the Magdalena. We use a scaling model BQART that combines natural and human forces, like basin area, relief, temperature, runoff, lithology, and sediment trapping and soil erosion induced by humans. Model adjustments in terms of land cover change were used to establish the anthropogenic-deforestation factor for each of the sub-basins. Deforestation patterns across 1980-2010 were obtained from satellite imagery. Models were employed to simulate scenarios with and without human impacts. We estimate that, 9% of the sediment load in the Magdalena River basin is due to deforestation; 482 Mt of sediments was produced due to forest clearance over the last three decades. Erosion rates within the Magdalena drainage basin have increased 33% between 1972 and 2010; increasing the river's sediment load by 44 Mt/y. Much of the river catchment (79%) is under severe erosional conditions due in part to the clearance of more than 70% natural forest between 1980 and 2010.

  5. Chemical quality of bottom sediments in selected streams, Jefferson County, Kentucky, April-July 1992

    USGS Publications Warehouse

    Moore, B.L.; Evaldi, R.D.

    1995-01-01

    Bottom sediments from 25 stream sites in Jefferson County, Ky., were analyzed for percent volatile solids and concentrations of nutrients, major metals, trace elements, miscellaneous inorganic compounds, and selected organic compounds. Statistical high outliers of the constituent concentrations analyzed for in the bottom sediments were defined as a measure of possible elevated concentrations. Statistical high outliers were determined for at least 1 constituent at each of 12 sampling sites in Jefferson County. Of the 10 stream basins sampled in Jefferson County, the Middle Fork Beargrass Basin, Cedar Creek Basin, and Harrods Creek Basin were the only three basins where a statistical high outlier was not found for any of the measured constituents. In the Pennsylvania Run Basin, total volatile solids, nitrate plus nitrite, and endrin constituents were statistical high outliers. Pond Creek was the only basin where five constituents were statistical high outliers-barium, beryllium, cadmium, chromium, and silver. Nitrate plus nitrite and copper constituents were the only statistical high outliers found in the Mill Creek Basin. In the Floyds Fork Basin, nitrate plus nitrite, phosphorus, mercury, and silver constituents were the only statistical high outliers. Ammonia was the only statistical high outlier found in the South Fork Beargrass Basin. In the Goose Creek Basin, mercury and silver constituents were the only statistical high outliers. Cyanide was the only statistical high outlier in the Muddy Fork Basin.

  6. A fingerprinting mixing model approach to generate uniformly representative solutions for distributed contributions of sediment sources in a Pyrenean drainage basin

    NASA Astrophysics Data System (ADS)

    Palazón, Leticia; Gaspar, Leticia; Latorre, Borja; Blake, Will; Navas, Ana

    2014-05-01

    Spanish Pyrenean reservoirs are under pressure from high sediment yields in contributing catchments. Sediment fingerprinting approaches offer potential to quantify the contribution of different sediment sources, evaluate catchment erosion dynamics and develop management plans to tackle the reservoir siltation problems. The drainage basin of the Barasona reservoir (1509 km2), located in the Central Spanish Pyrenees, is an alpine-prealpine agroforest basin supplying sediments to the reservoir at an annual rate of around 350 t km-2 with implications for reservoir longevity. The climate is mountain type, wet and cold, with both Atlantic and Mediterranean influences. Steep slopes and the presence of deep and narrow gorges favour rapid runoff and large floods. The ability of geochemical fingerprint properties to discriminate between the sediment sources was investigated by conducting the nonparametric Kruskal-Wallis H-test and a stepwise discriminant function analysis (minimization of Wilk's lambda). This standard procedure selects potential fingerprinting properties as optimum composite fingerprint to characterize and discriminate between sediment sources to the reservoir. Then the contribution of each potential sediment source was assessed by applying a Monte Carlo mixing model to obtain source proportions for the Barasona reservoir sediment samples. The Monte Carlo mixing model was written in C programming language and designed to deliver a user-defined number possible solutions. A Combinatorial Principals method was used to identify the most probable solution with associated uncertainty based on source variability. The unique solution for each sample was characterized by the mean value and the standard deviation of the generated solutions and the lower goodness of fit value applied. This method is argued to guarantee a similar set of representative solutions in all unmixing cases based on likelihood of occurrence. Soil samples for the different potential sediment sources of the drainage basin were compared with samples from the reservoir using a range of different fingerprinting properties (i.e. mass activities of environmental radionuclides, elemental composition and magnetic susceptibility) analyzed in the < 63 μm sediment fraction. In this case, the 100 best results from 106 generated iterations were selected obtaining a goodness of fit higher than 0.76. The preliminary results using this new data processing methodology for samples collected in the reservoir allowed us to identify cultivated fields and badlands as main potential sources of sediments to the reservoir. These findings support the appropriate use of the fingerprinting methodology in a Spanish Pyrenees basin, which will enable us to better understand the basin sediment production of the Barasona reservoir.

  7. Geologic implications of gas hydrates in the offshore of India: Krishna-Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala-Konkan Basin

    USGS Publications Warehouse

    Kumar, Pushpendra; Collett, Timothy S.; Boswell, Ray; Cochran, James R.; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna; Yadav, U.S.

    2014-01-01

    NGHP-01 yielded evidence of gas hydrate from downhole log and core data obtained from all the sites in the Krishna–Godavari Basin, the Mahanadi Basin, and in the Andaman Sea. The site drilled in the Kerala–Konkan Basin during NGHP-01 did not yield any evidence of gas hydrate. Most of the downhole log-inferred gas hydrate and core-recovered gas hydrate were characterized as either fracture-filling in clay-dominated sediments or as pore-filling or grain-displacement particles disseminated in both fine- and coarse-grained sediments. Geochemical analyses of gases obtained from sediment cores recovered during NGHP-01 indicated that the gas in most all of the hydrates in the offshore of India is derived from microbial sources; only one site in the Andaman Sea exhibited limited evidence of a thermogenic gas source. The gas hydrate petroleum system concept has been used to effectively characterize the geologic controls on the occurrence of gas hydrates in the offshore of India.

  8. Influence of land use and open-water wetlands on water quality in the Lake Wallenpaupack basin, northeastern Pennsylvania

    USGS Publications Warehouse

    Sams, James I.; Day, Rick L.; Stiteler, John M.

    1999-01-01

    The recreational value of Lake Wallenpaupack, along with its proximity to the New York and New Jersey metropolitan areas, has resulted in residential development in parts of the watershed. Some of these developments encroach on existing ponds, lakes, and wetlands and result in the conversion of forest land to residential areas. Sediment and nutrients in runoff from these residential areas, and inputs from agricultural areas, sewage treatment plants, and atmospheric deposition, have had a significant effect on water quality in Lake Wallenpaupack.Water-quality data collected in the Lake Wallenpaupack watershed from 1991 through 1994 indicate the influence of land use on water resources. Water samples collected from a forested undeveloped basin contained lower concentrations of suspended sediment, nitrogen, and total phosphorus than samples collected from the basins of Ariel Creek and Purdy Creek that drain areas having mixed land use with residential developments. Sediment yields were three to four times higher in the developed basins of Purdy and Ariel Creeks compared to the forested undeveloped basin. Annual yields for total nitrogen for Ariel Creek and Purdy Creek were between three to five times greater than yields from the forested basin. For the 1993 water year, the annual yield for dissolved nitrate plus nitrite (as nitrogen) from Ariel Creek Basin was 1,410 pounds per square mile, or about 60 times greater than the 24 pounds per square mile from the undeveloped basin. The total-phosphorus yield from the Ariel Creek Basin was 216 pounds per square mile for the 1994 water year. This was about three times greater than the 74 pounds per square mile from the forested basin. The total-phosphorus yield for the Purdy Creek Basin was 188 pounds per square mile for the 1994 water year, or 2.5 times greater than the yield from the undeveloped forested basin. Only slight differences were observed in dissolved orthophosphate phosphorus loadings between the basins. All three basins displayed seasonal differences in water quality. Most of the annual yield occurred during early spring as a result of snowmelt runoff.Data collected from the Stevens Creek sites showed that an open-water wetland was very effective in removing sediment and total phosphorus but was not as effective in removing dissolved orthophosphate phosphorus and nitrogen. The wetland removed more than 96 percent of the sediment.

  9. Evidence for Strong Controls from Preexisting Structures on Border Fault Development and Basin Evolution in the Malawi Rift from 3D Lacustrine Refraction Data

    NASA Astrophysics Data System (ADS)

    Accardo, N. J.; Shillington, D. J.; Gaherty, J. B.; Scholz, C. A.; Ebinger, C.; Nyblade, A.; McCartney, T.; Chindandali, P. R. N.; Kamihanda, G.; Ferdinand-Wambura, R.

    2017-12-01

    A long-standing debate surrounds controls on the development and ultimately abandonment of basin bounding border faults. The Malawi Rift in the the Western Branch of the East African Rift System presents an ideal location to investigate normal fault development. The rift is composed of a series of half graben basins bound by large border faults, which cross several terranes and pre-existing features. To delineate rift basin structure, we undertook 3D first arrival tomography across the North and Central basins of the Malawi Rift based on seismic refraction data acquired in Lake Malawi. The resulting 3D velocity model allows for the first-ever mapping of 3D basin structure in the Western Branch of the EAR. We estimate fault displacement profiles along the two border faults and find that each accommodated 7.2 km of throw. Previous modeling studies suggest that given the significant lengths (>140 km) and throws of these faults, they may be nearing their maximum dimensions or may have already been abandoned. While both faults accommodate similar throws, their lengths differ by 40 km, likely due to the influence of both preexisting basement fabric and large-scale preexisting structures crossing the rift. Over 4 km of sediment exists where the border faults overlap in the accommodation zone indicating that these faults likely established their lengths early. Portions of both basins contain packages of sediment with anomalously fast velocities (> 4 km/s), which we interpret to represent sediment packages from prior rifting episodes. In the Central Basin, this preexisting sediment traces along the inferred offshore continuation of the Karoo-aged Ruhuhu Basin that intersects Lake Malawi at the junction between the North and Central basins. This feature may have influenced the length of the border fault bounding the Central Basin. In the North Basin, the preexisting sediment is thicker ( 4 km) and likely represents the offshore continuation of a series of preexisting rift basins that extend from the Malawi Rift north to the Rukwa Rift. The presence of this offshore basin confirms that the corridor between the Rukwa and Malawi Rifts has experienced prolonged periods of extension, likely thinning the lithosphere there, and thus providing a mechanism for focusing of long-lived magmatism at the Rungwe Volcanic Center.

  10. Glacial-marine sediments record ice-shelf retreat during the late Holocene in Beascochea Bay on the western margin of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Hardin, L. A.; Wellner, J. S.

    2010-12-01

    Beascochea Bay has an overall rapid rate of sedimentation due to retreating fast-flowing ice, and thus contains high-resolution records of Antarctica’s glacial and climate history. Beascochea Bay is a 16 km long by 8 km wide bay located on the western margin of the Antarctica Peninsula, centered between Anvers Island and Renaud Island, but open to the Bellingshausen Sea. Currently, three tidewater glaciers draining the Bruce Plateau of Graham Land enter into the fjords of Beascochea Bay, releasing terrigenous sediments which have left a record of the fluctuations of the Antarctic Peninsula Ice Cap since the grounded ice decoupled from the seafloor after the last glacial maximum. These three glaciers have played a significant role in providing sediment to the main basin, allowing a detailed sediment facies analysis to be conducted from eight sediment cores which were collected during the austral summer of 2007. Pebbly silty clay sediment cores, along with 3.5 kHz seismic data and multibeam swath bathymetry data, are integrated to reconstruct a glacial retreat timeline for the middle to late Holocene, which can be compared to the recent retreat rates over the last century. Paleoenvironment of deposition is determined by mapping lateral facies changes from the side fjords (proximal) to the outer basin (distal), as each region records the transition from glacial-marine sediments to open-marine sediments. As the ice retreated from the outer basin to the inner basin, and most recently leaving the side fjords, each facies deposited can be age-constrained by radiocarbon, 210Pb, and 137Cs dating methods. A distinct 137Cs signal is readily seen in two kasten cores from a side fjord and the inner basin of Beascochea Bay. This dating method revealed an average sedimentation rate of 2.7 mm per year for approximately the last century, which is comparable to 210Pb rates obtained in other studies. Lithology variations in each sediment core record indications of ice-shelf influence in Beascochea Bay throughout the Holocene deglaciation. The distinctively laminated sub-ice shelf facies can be clearly seen in the x-rays of these cores, and can be easily distinguished from the poorly sorted glacial-marine facies and the greenish finer-grained facies deposited in open-marine conditions. A 14 m long sediment core taken from the outer basin of Beascochea Bay recovered the greatest length of sediment and dates back to the middle Holocene. X-rays of this core show a possible mid-Holocene retreat of the ice shelf followed by intermittent advance and retreat that precedes the most recent retreat. The inner basin of Beascochea Bay has been without an ice shelf for the last 200 years, based on the sedimentation rates of the last century projected downcore.

  11. Three decades of monitoring in the Rio Cordon instrumented basin: Sediment budget and temporal trend of sediment yield

    NASA Astrophysics Data System (ADS)

    Rainato, R.; Mao, L.; García-Rama, A.; Picco, L.; Cesca, M.; Vianello, A.; Preciso, E.; Scussel, G. R.; Lenzi, M. A.

    2017-08-01

    This paper investigates nearly 30 years of monitoring of sediment fluxes in an instrumented Alpine basin (Rio Cordon, Italy). The collected bedload and suspended sediment transport data allows sediment dynamics to be analyzed at different time scales, ranging from short- (single event) to long-term (three decades). The Rio Cordon monitoring station has been operating since 1986, continuously recording water discharge, bedload and suspended load. At the flood event scale, a good relationship was found between peak discharges (Qpeak) and sediment load (bedload and suspended load). The inter-annual sediment yields were analyzed, also assessing the contribution of the single floods to the total sediment budget. The annual suspended load ranges from 10 to 2524 t yr- 1, while the bedload varies from 0 to 1543 t yr- 1. The higher annual yields were recorded in the years when large floods occurred, highlighting that the sediment budget in the Rio Cordon is strongly controlled by the occurrence of high magnitude events. Investigation of the seasonal suspended load contribution demonstrated that from 1986 to 1993 most fine sediments were transported during the snowmelt/summer seasons, while autumn and snowmelt were the dominant seasons contributing to sediment yield in the periods 1994-2002 and 2003-2014, respectively. The mean annual sediment yield from 1986 to 2014 is equal to 103 t km- 2 yr- 1, and overall, bedload accounts for 21% of the total sediment yield. The ratio between the sediment transport and the effective runoff of the events allowed the temporal trends of transport efficiency to be inferred, highlighting the existence of periods characterized by different sediment availability. In particular, despite no significant changes in the hydrological variables (i.e. rainfall), nearly a decade (1994-2002) with high transport efficiency appears to have occurred after an exceptional event (recurrence interval > 100 years). This event affected the sediment availability at the basin and channel bed scales, and provided a legacy influencing the sediment dynamics in the basin over the long-term by increasing the transport efficiency for approximately a decade. This work benefits from the long-lasting monitoring program undertaken in the Rio Cordon and is the product of long-term data series. The quasi-unique dataset has provided detailed evidence of sediment dynamics over about three decades in a small Alpine basin, also enabling the effects triggered by an exceptional event to be analyzed.

  12. High-resolution sedimentological and subsidence analysis of the Late Neogene, Pannonian Basin, Hungary

    USGS Publications Warehouse

    Juhasz, E.; Muller, P.; Toth-Makk, A.; Hamor, T.; Farkas-Bulla, J.; Suto-Szentai, M.; Phillips, R.L.; Ricketts, B.

    1996-01-01

    Detailed sedimentological and paleontological analyses were carried out on more than 13,000 m of core from ten boreholes in the Late Neogene sediments of the Pannonian Basin, Hungary. These data provide the basis for determining the character of high-order depositional cycles and their stacking patterns. In the Late Neogene sediments of the Pannonian Basin there are two third-order sequences: the Late Miocene and the Pliocene ones. The Miocene sequence shows a regressive, upward-coarsening trend. There are four distinguishable sedimentary units in this sequence: the basal transgressive, the lower aggradational, the progradational and the upper aggradational units. The Pliocene sequence is also of aggradational character. The progradation does not coincide in time in the wells within the basin. The character of the relative water-level curves is similar throughout the basin but shows only very faint similarity to the sea-level curve. Therefore, it is unlikely that eustasy played any significant role in the pattern of basin filling. Rather, the dominant controls were the rapidly changing basin subsidence and high sedimentation rates, together with possible climatic factors.

  13. Age and provenance of Triassic to Cenozoic sediments of West and Central Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Breitfeld, H. Tim; Galin, Thomson; Hall, Robert

    2015-04-01

    Sarawak is located on the northern edge of Sundaland in NW Borneo. West and Central Sarawak include parts of the Kuching and Sibu Zones. These contain remnants of several sedimentary basins with ages from Triassic to Cenozoic. New light mineral, heavy mineral and U-Pb detrital zircon ages show differences in provenance reflecting the tectonic evolution of the region. The oldest clastic sediments are Triassic (Sadong Formation and its deep marine equivalent Kuching Formation). They were sourced by a Triassic (Carnian to Norian) volcanic arc and reworked Paleoproterozoic detritus derived from Cathaysialand. The Upper Jurassic to Cretaceous Pedawan Formation is interpreted as forearc basin fill with distinctive zircon populations indicating subduction beneath present-day West Sarawak which initiated in the Late Jurassic. Subsequent subduction until the early Late Cretaceous formed the Schwaner Mountains magmatic arc. After collision of SW Borneo and other microcontinental fragments with Sundaland in the early Late Cretaceous, deep marine sedimentation (Pedawan Formation) ceased, and there was uplift forming the regional Pedawan-Kayan unconformity. Two episodes of extension followed and were responsible for basin development on land in West Sarawak from the latest Cretaceous onwards, probably in a pull-apart setting. The first episode is associated with sediments of the Kayan Group, deposited in the Latest Cretaceous (Maastrichtian) to Eocene, and the second episode with Upper Eocene sediments of the Ketungau Basin. Zircon ages indicate volcanic activity throughout the Early Cenozoic in NW Borneo, and inherited zircon ages indicate reworking of Triassic and Cretaceous rocks. A large deep marine basin, the Rajang Basin, was north of the Lupar Line Fault in Central Sarawak (Sibu Zone) from the Late Cretaceous to the Late Eocene. Zircons from sediments of the Rajang Basin indicate they have similar ages and provenance to contemporaneous terrestrial sediments of the Kayan Group and Ketungau Basin to the south, suggesting a narrow steep continental Sundaland margin at the position of the Lupar Line, and a large-scale sedimentary connection between the terrestrial and deep marine basins in the Late Cretaceous to Late Eocene. A recent reconstruction for the proto-South China Sea proposed an isolated so-called Semitau terrane colliding with SW Borneo and Sundaland in the Late Eocene. Our data show that the area of the Kuching and Sibu Zones were connected with SW Borneo and Sundaland from the Cretaceous onwards. The Cretaceous and Cenozoic sedimentary basins were sourced by alternations of Schwaner Mountains and Malay Tin Belt rocks. Our new age and provenance data cannot be explained by an isolated Semitau terrane and a Late Eocene collision.

  14. Are landscapes buffered to high-frequency climate change? A comparison of sediment fluxes and depositional volumes in the Corinth rift, central Greece, over the past 130 kyrs

    NASA Astrophysics Data System (ADS)

    Watkins, Stephen E.; Whittaker, Alexander C.; Bell, Rebecca E.; McNeill, Lisa C.; Gawthope, Robert L.

    2017-04-01

    Sediment supply is a fundamental control on the stratigraphic record. However, a key question is the extent to which tectonics and climate affect sediment fluxes in time and space. To address this question, estimates of sediment fluxes must be compared with measured sediment volumes within a closed basin, for which the tectonic and climatic boundary conditions are constrained. The Corinth rift, Greece is one of the most actively extending basins on Earth, with modern day extension rates of up to 15 mm/yr. The Gulf of Corinth is a closed system and has periodically become a lake during marine lowstands over the late Pleistocene. We estimated suspended sediment fluxes through time for rivers draining into the Gulf of Corinth using an empirically-derived BQART method. WorldClim climate data, palaeoclimate models and palaeoclimate proxies were used to estimate discharges and temperatures over the last 130 ky. We used high-resolution 2D seismic surveys to interpret three seismic units over this period and we used this data to derive independent time series of basin sedimentary volumes to compare with our sediment input flux estimates. Our results predict total Holocene sediment fluxes into the Corinth Gulf of 20 km3, within a factor of 2 of the measured sediment volume in the central depocentres over this timescale. Sediment fluxes vary spatially around the Gulf, but imply catchment-averaged erosion rates of 0.2 to 0.4 mm/yr. Moreover, BQART predicted sediment fluxes and sedimentation rate measurements both indicate a 25% reduction during the last glacial period compared to the Holocene. At the last glacial maximum mean annual temperatures were lower by 5 degrees, although precipitation was similar, or lower, than present. Consequently, our results demonstrate that sediment export to the basin is sensitive to glacial-interglacial cycles. However, precipitation constraints alone are insufficient to understand sediment flux sensitivity to climate change.

  15. Sediment-yield history of a small basin in southern Utah, 1937 1976: Implications for land management and geomorphology

    NASA Astrophysics Data System (ADS)

    Hereford, Richard

    1987-10-01

    Alluvium deposited in a reservoir from 1937 to 1976 records the sediment-yield history of a small (2.8 km2), high-relief basin in semiarid southern Utah. Stratification in the alluvium shows that sediment was deposited in the reservoir only 21 times in 38 yr, a runoff recurrence interval of 1.8 yr. Thus, on average, the particular combination of rainfall intensity, duration, and antecedent moisture conditions producing runoff did not recur often. On the basis of the volume of beds in the reservoir fill, sediment yield of individual runoff events averaged 2500 m3/km2 (5.3 a-ft/mi2) with slightly less than one order of magnitude variation. This low variation is not expected of small basins and probably resulted from limited hillslope sediment supply, suggesting that transport processes were more rapid than weathering processes. Sediment yield, therefore, was evidently controlled by the availability of freshly weathered material.

  16. Monitoring suspended sediment and associated trace element and nutrient fluxes in large river basins in the USA

    USGS Publications Warehouse

    Horowitz, A.J.

    2004-01-01

    In 1996, the US Geological Survey converted its occurrence and distribution-based National Stream Quality Accounting Network (NASQAN) to a national, flux-based water-quality monitoring programme. The main objective of the revised programme is to characterize large USA river basins by measuring the fluxes of selected constituents at critical nodes in various basins. Each NASQAN site was instrumented to determine daily discharge, but water and suspended sediment samples are collected no more than 12-15 times per year. Due to the limited sampling programme, annual suspended sediment fluxes were determined from site-specific sediment rating (transport) curves. As no significant relationship could be found between either discharge or suspended sediment concentration (SSC) and suspended sediment chemistry, trace element and nutrient fluxes are estimated using site-specific mean or median chemical levels determined from a number of samples collected over a period of years, and under a variety of flow conditions.

  17. Probable existence of a Gondwana transcontinental rift system in western India: Implications in hydrocarbon exploration in Kutch and Saurashtra offshore: A GIS-based approach

    NASA Astrophysics Data System (ADS)

    Mazumder, S.; Tep, Blecy; Pangtey, K. K. S.; Das, K. K.; Mitra, D. S.

    2017-08-01

    The Gondwanaland assembly rifted dominantly during Late Carboniferous-Early Permian forming several intracratonic rift basins. These rifts were subsequently filled with a thick sequence of continental clastic sediments with minor marine intercalations in early phase. In western part of India, these sediments are recorded in enclaves of Bikaner-Nagaur and Jaisalmer basins in Rajasthan. Facies correlatives of these sediments are observed in a number of basins that were earlier thought to be associated with the western part of India. The present work is a GIS based approach to reconnect those basins to their position during rifting and reconstruct the tectono-sedimentary environment at that time range. The study indicates a rift system spanning from Arabian plate in the north and extending to southern part of Africa that passes through Indus basin, western part of India and Madagascar, and existed from Late Carboniferous to Early Jurassic. Extensions related to the opening of Neo-Tethys led to the formation of a number of cross trends in the rift systems that acted as barriers to marine transgressions from the north as well as disrupted the earlier continuous longitudinal drainage systems. The axis of this rift system is envisaged to pass through present day offshore Kutch and Saurashtra and implies a thick deposit of Late Carboniferous to Early Jurassic sediments in these areas. Based on analogy with other basins associated with this rift system, these sediments may be targeted for hydrocarbon exploration.

  18. Late Quaternary sediment-accumulation rates within the inner basins of the California Continental Borderland in support of geologic hazard evaluation

    USGS Publications Warehouse

    Normark, W.R.; McGann, M.; Sliter, R.W.

    2009-01-01

    An evaluation of the geologic hazards of the inner California Borderland requires determination of the timing for faulting and mass-movement episodes during the Holocene. Our effort focused on basin slopes and turbidite systems on the basin floors for the area between Santa Barbara and San Diego, California. Dating condensed sections on slopes adjacent to fault zones provides better control on fault history where high-resolution, seismic-reflection data can be used to correlate sediment between the core site and the fault zones. This study reports and interprets 147 radiocarbon dates from 43 U.S. Geological Survey piston cores as well as 11 dates from Ocean Drilling Program Site 1015 on the floor of Santa Monica Basin. One hundred nineteen dates from 39 of the piston cores have not previously been published. Core locations were selected for hazard evaluation, but despite the nonuniform distribution of sample locations, the dates obtained for the late Quaternary deposits are useful for documenting changes in sediment-accumulation rates during the past 30 ka. Cores from basins receiving substantial sediment from rivers, i.e., Santa Monica Basin and the Gulf of Santa Catalina, show a decrease in sediment supply during the middle Holocene, but during the late Holocene after sea level had reached the current highstand condition, rates then increased partly in response to an increase in El Ni??o-Southern Oscillation events during the past 3.5 ka. ?? 2009 The Geological Society of America.

  19. Sr and Nd isotopes of suspended sediments from rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Hatting, Karina; Santos, Roberto V.; Sondag, Francis

    2014-05-01

    The Rb-Sr and Sm-Nd isotopic systems are important tools to constrain the provenance of sediment load in river systems. This study presents the isotopic composition of Sr and Nd isotopes and major and minor elements in suspended sediments from the Marañón-Solimões, Amazonas and Beni-Madeira rivers. The data were used to constrain the source region of the sediments and to better understand the main seasonal and spatial transport processes within the basin based on the variations of the chemical and isotopic signals. They also allow establishing a relationship between sediment concentrations and flow rate values. The study presents data collected during a hydrological year between 2009 and 2010. The Marañón-Solimões River presents low Sr isotopic values (0.7090-0.7186), broad EpslonNd(0) range (-15.17 to -8.09) and Nd model (TDM) ages varying from 0.99 to 1.81 Ga. Sources of sediments to the Marañón-Solimões River include recent volcanic rocks in northern Peru and Ecuador, as well as rocks with long crustal residence time and carbonates from the Marañón Basin, Peru. The Beni-Madeira River has more radiogenic Sr isotope values (0.7255-0.7403), more negative EpslonNd(0) values (-20.46 to -10.47), and older Nd isotope model ages (from 1.40 to 2.35 Ga) when compared to the Marañón-Solimões River. These isotope data were related to the erosion of Paleozoic and Cenozoic foreland basins that are filled with Precambrian sediments derived from the Amazonian Craton. These basins are located in Bolivian Subandina Zone. The Amazon River presents intermediate isotopic values when compared to those found in the Marañón-Solimões and Beni-Madeira rivers. Its Sr isotope ratios range between 0.7193 and 0.7290, and its EpslonNd(0) values varies between -11.09 and -9.51. The Nd isotope model ages of the suspended sediments vary between 1.28 and 1.77 Ga. Concentrations of soluble and insoluble elements indicate a more intense weathering activity in sediments of the Beni-Madeira River. This river has a larger difference in the Sr isotopic composition between the diluted and solid phases, which has been assigned to the high level of weathering of its sediment source area. In the Beni-Madeira River sub-basin dominates weathering of silicate rocks, while in the Marañón-Solimões River sub-basin there also weathering of carbonate and evaporitic rocks.

  20. Determination of soil erosion risk in the Mustafakemalpasa River Basin, Turkey, using the revised universal soil loss equation, geographic information system, and remote sensing.

    PubMed

    Ozsoy, Gokhan; Aksoy, Ertugrul; Dirim, M Sabri; Tumsavas, Zeynal

    2012-10-01

    Sediment transport from steep slopes and agricultural lands into the Uluabat Lake (a RAMSAR site) by the Mustafakemalpasa (MKP) River is a serious problem within the river basin. Predictive erosion models are useful tools for evaluating soil erosion and establishing soil erosion management plans. The Revised Universal Soil Loss Equation (RUSLE) function is a commonly used erosion model for this purpose in Turkey and the rest of the world. This research integrates the RUSLE within a geographic information system environment to investigate the spatial distribution of annual soil loss potential in the MKP River Basin. The rainfall erosivity factor was developed from local annual precipitation data using a modified Fournier index: The topographic factor was developed from a digital elevation model; the K factor was determined from a combination of the soil map and the geological map; and the land cover factor was generated from Landsat-7 Enhanced Thematic Mapper (ETM) images. According to the model, the total soil loss potential of the MKP River Basin from erosion by water was 11,296,063 Mg year(-1) with an average soil loss of 11.2 Mg year(-1). The RUSLE produces only local erosion values and cannot be used to estimate the sediment yield for a watershed. To estimate the sediment yield, sediment-delivery ratio equations were used and compared with the sediment-monitoring reports of the Dolluk stream gauging station on the MKP River, which collected data for >41 years (1964-2005). This station observes the overall efficiency of the sediment yield coming from the Orhaneli and Emet Rivers. The measured sediment in the Emet and Orhaneli sub-basins is 1,082,010 Mg year(-1) and was estimated to be 1,640,947 Mg year(-1) for the same two sub-basins. The measured sediment yield of the gauge station is 127.6 Mg km(-2) year(-1) but was estimated to be 170.2 Mg km(-2) year(-1). The close match between the sediment amounts estimated using the RUSLE-geographic information system (GIS) combination and the measured values from the Dolluk sediment gauge station shows that the potential soil erosion risk of the MKP River Basin can be estimated correctly and reliably using the RUSLE function generated in a GIS environment.

  1. Identifying glacial influences on sedimentation in tectonically-active, mass flow dominated arc basins with reference to the Neoproterozoic Gaskiers glaciation (c. 580 Ma) of the Avalonian-Cadomian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Carto, Shannon L.; Eyles, Nick

    2012-06-01

    Neoproterozoic 'Avalonian-Cadomian' volcanic arc basins once lay peripheral to Gondwana and are now found around the North Atlantic Ocean in New England, Atlantic Canada and northwestern Europe as 'peri-Gondwanan terranes.' Their thick (up to 9 km) marine fills are dominated by turbidites, debrites (diamictites and variably graded conglomerates), slumps and olistostromes recording the dominance of mass flow processes in arc basins oversupplied with volcaniclastic sediment. Several diamictite horizons in these basins were identified as glacial tillites more than one hundred years ago on the basis of poor textural sorting, and the lack of any understanding of mass flow processes. An association with thin-bedded turbidite facies, then interpreted as glaciolacustrine varvites, was seen as evidence for widespread glacial conditions which is still the basis today of a near global 'Gaskiers glaciation' at c. 580 Ma, despite classic sedimentological work which shows that the 'tillites' and 'varvites' of these basins are deep marine sediment gravity flow deposits. Only in two basins (Gaskiers Formation, Avalon Peninsula in Newfoundland, and the Konnarock Formation of Virginia) is a distal and regionally-restricted glacial influence on marine sedimentation identified from ice-rafted, striated dropstones in turbidites but terrestrial 'ice-contact' facies are absent. As revealed in this study, terrestrial glacial facies may not have survived frequent volcanic activity such as seen today on glaciated active plate margin volcanoes such as Mount Rainier in Washington USA, and Cotopaxi Volcano in Ecuador where primary glacial sediment is frequently reworked by lahars, pyroclastic flows, debris avalanches and outburst floods. The weight of evidence presented in this study indicates that ice covers during the Gaskiers glaciation were not widespread across the Avalonian-Cadomian back arc basins; the deep marine Grenada Basin (Caribbean Sea) filled with turbidites, debrites (lahars) and debris avalanches from the adjacent Lesser Antilles Arc is identified here as a modern analogue for these ancient basins.

  2. Manganese Oxidizing Bacteria in Guaymas Basin Hydrothermal Fluids, Sediments, and Plumes

    NASA Astrophysics Data System (ADS)

    Dick, G. J.; Tebo, B. M.

    2002-12-01

    The active seafloor hydrothermal system at Guaymas Basin in the Gulf of California is unique in that spreading centers are covered with thick sediments, and hydrothermal fluids are injected into a semi-enclosed basin. This hydrothermal activity is the source of a large input of dissolved manganese [Mn(II)] into Guaymas Basin, and the presence of a large standing stock of particulate manganese in this basin has been taken as evidence for a short residence time of dissolved Mn(II) with respect to oxidation, suggestive of bacterial catalysis. During a recent Atlantis/Alvin expedition (R/V Atlantis Cruise #7, Leg 11, Jim Cowen Chief Scientist), large amounts of particulate manganese oxides were again observed in Guaymas Basin hydrothermal plumes. The goal of the work presented here was to identify bacteria involved in the oxidation of Mn(II) in Guaymas Basin, and to determine what molecular mechanisms drive this process. Culture-based methods were employed to isolate Mn(II)-oxidizing bacteria from Guaymas Basin hydrothermal fluids, sediments, and plumes, and numerous Mn(II)-oxidizing bacteria were identified based on the formation of orange, brown, or black manganese oxides on bacterial colonies on agar plates. The Mn(II)-oxidizing bacteria were able to grow at temperatures from 12 to 50°C, and a selection of the isolates were chosen for phylogenetic (16S rRNA genes) and microscopic characterization. Endospore-forming Bacillus species accounted for many of the Mn(II)-oxidizing isolates obtained from both hydrothermal sediments and plumes, while members of the alpha- and gamma-proteobacteria were also found. Mn(II)-oxidizing enzymes from previously characterized Bacillus spores are known to be active at temperatures greater than 50°C. The presence of Mn(II)-oxidizing spores - some of which are capable of growing at elevated temperatures - in hydrothermal fluids and sediments at Guaymas Basin suggests that Mn(II) oxidation may be occurring immediately or very soon after hydrothermal fluids emerge from the seafloor.

  3. Changing sediment budget of the Mekong: Cumulative threats and management strategies for a large river basin.

    PubMed

    Kondolf, G Mathias; Schmitt, Rafael J P; Carling, Paul; Darby, Steve; Arias, Mauricio; Bizzi, Simone; Castelletti, Andrea; Cochrane, Thomas A; Gibson, Stanford; Kummu, Matti; Oeurng, Chantha; Rubin, Zan; Wild, Thomas

    2018-06-01

    Two decades after the construction of the first major dam, the Mekong basin and its six riparian countries have seen rapid economic growth and development of the river system. Hydropower dams, aggregate mines, flood-control dykes, and groundwater-irrigated agriculture have all provided short-term economic benefits throughout the basin. However, it is becoming evident that anthropic changes are significantly affecting the natural functioning of the river and its floodplains. We now ask if these changes are risking major adverse impacts for the 70 million people living in the Mekong Basin. Many livelihoods in the basin depend on ecosystem services that will be strongly impacted by alterations of the sediment transport processes that drive river and delta morpho-dynamics, which underpin a sustainable future for the Mekong basin and Delta. Drawing upon ongoing and recently published research, we provide an overview of key drivers of change (hydropower development, sand mining, dyking and water infrastructures, climate change, and accelerated subsidence from pumping) for the Mekong's sediment budget, and their likely individual and cumulative impacts on the river system. Our results quantify the degree to which the Mekong delta, which receives the impacts from the entire connected river basin, is increasingly vulnerable in the face of declining sediment loads, rising seas and subsiding land. Without concerted action, it is likely that nearly half of the Delta's land surface will be below sea level by 2100, with the remaining areas impacted by salinization and frequent flooding. The threat to the Delta can be understood only in the context of processes in the entire river basin. The Mekong River case can serve to raise awareness of how the connected functions of river systems in general depend on undisturbed sediment transport, thereby informing planning for other large river basins currently embarking on rapid economic development. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fluid flow and sediment transport in evolving sedimentary basins

    NASA Astrophysics Data System (ADS)

    Swenson, John Bradley

    This thesis consists of three studies that focus on groundwater flow and sediment transport in evolving sedimentary basins. The first study considers the subsurface hydrodynamic response to basin-scale transgression and regression and its implications for stratiform ore genesis. I demonstrate that the transgressive sequence focuses marginward-directed, compaction-driven discharge within a basal aquifer during progradation and deposition of the overlying regressive sequence, isolates the basal aquifer from overlying flow systems, and serves as a chemical sink for metal-bearing brines. In the second study, I develop a new theory for the shoreline response to subsidence, sediment supply, and sea level. In this theory, sediment transport in a fluvio-deltaic basin is formally equivalent to heat transfer in a two-phase (liquid and isothermal solid) system: the fluvial system is analogous to a conduction-dominated liquid phase, the shoreline is the melting front, and the water depth at the delta toe is equivalent to the latent heat of fusion. A natural consequence of this theory is that sediment-starved basins do not possess an equilibrium state. In contrast to existing theories, I do not observe either strong phase shifting or attenuation of the shoreline response to low-frequency eustatic forcing; rather, shoreline tracks sea level over a spectrum of forcing frequencies, and its response to low-frequency forcing is amplified relative to the high-frequency response. For the third study, I use a set of dimensionless numbers from the previous study as a mathematical framework for providing a unified treatment of existing stratigraphic theories. In the limit of low-amplitude eustatic forcing, my study suggests that strong phase shifting between shoreline and sea level is a consequence of specifying the sedimentation rate at the shoreline; basins free of this constraint do not develop strong phase shifts.

  5. Gas and porewater composition of shallow sediments in the Tuaheni Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Rose, P. S.; Coffin, R. B.; Yoza, B.; Boyd, T. J.; Crutchley, G. J.; Mountjoy, J. J.; Pecher, I. A.

    2015-12-01

    Seismic profiles collected during previous investigations on the Hikurangi Margin, off the North Island, New Zealand showed bottom simulating reflectors (BSRs), which are generally indicative of the presence of free gas. Further, double BSRs clearly identified in the Tuaheni Basin were hypothesized to result from differences in gas composition and fluid migration. During a cruise on the RV Tangaroa in June 2015 (TAN 1508) additional seismic data were collected and used to identify piston coring targets. Coring locations were selected to sample around BSR pinch-outs and possible fluid migration pathways to determine gas composition and flux. Shallow sediments collected in June 2015 in the Tuaheni Basin had relatively low sediment headspace CH4 concentrations (6000ppm. Higher molecular weight alkanes were not detected in the sediment headspace gas at any location. Sediment porewater sulfate, chloride and sulfide concentrations will be presented with CH4concentration profiles and geophysical data.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prahl, F.G.; Sparrow, M.A.; Eversmeyer, B.

    Elemental and stable carbon isotopic compositions and biomarker concentrations were determined in sediments from the Columbia River basin and the Washington margin in order to evaluate geochemical approaches for quantifying terrestrial organic matter in marine sediments. The biomarkers include: an homologous series of long-chain n-alkanes derived from the surface waxes of higher plants; phenolic and hydroxyalkanoic compounds produced by CuO oxidation of two major vascular plant biopolymers, lignin and cutin. All marine sediments, including samples collected from the most remote sites in Cascadia Basin, showed organic geochemical evidence for the presence of terrestrial organic carbon. Using endmember values for themore » various biomarkers determined empirically by two independent means, the authors estimate that the terrestrial contribution to the Washington margin is [approximately] 60% for shelf sediments, [approximately] 30% for slope sediments, and decreases further to [le] 15% in basin sediments. Results from the same geochemical measurements made with depth in gravity core 6705-7 from Cascadia Seachannel suggest that this approach to assess terrestrial organic carbon contributions to contemporary deposits on the Washington margin can be applied to the study of sediments depositing in this region since the last glacial period.« less

  7. Sedimentation and chemical quality of surface waters in the Wind River basin, Wyoming

    USGS Publications Warehouse

    Colby, B.R.; Hembree, C.H.; Rainwater, F.H.

    1956-01-01

    This report gives results of an investigation by the U. S. Geological Survey of chemical quality of surface waters and sedimentation in the Wind River Basin, Wyo. The sedimentation study was begun in 1946 to determine the quantity of sediment that is transported by the streams in the basin; the probable sources of the sediment; the effect of large irrigation projects on sediment yield, particularly along Fivemile Creek; and the probable specific weight of the sediment when initially deposited in a reservoir. The study of the chemical quality of the water was begun in 1945 to obtain information on the sources, nature, and amounts of dissolved material that is transported by streams and on the suitability of the waters for different uses. Phases of geology and hydrology pertinent to the sedimentation and chemical quality were studied. Results of the investigation through September 30, 1952, and some special studies that were made during the 1953 and 1954 water years are reported. The rocks in the Wind River Basin are granite, schist, and gneiss of Precambrian age and a thick series of sedimentary strata that range in age from Cambrian to Recent. Rocks of Precambrian and Paleozoic age are confined to the mountains, rocks of Mesozoic age crop out along the flank of the Wind River and Owl Creek Mountains and in denuded anticlines in the floor of the basin, and rocks of Tertiary age cover the greater part of the floor of the basin. Deposits of debris from glaciers are in the mountains, and remnants of gravel-capped terraces of Pleistocene age are on the floor of the basin. The lateral extent and depth of alluvial deposits of Recent age along all the streams are highly variable. The climate of the floor of the basin is arid. The foothills probably receive a greater amount of intense rainfall than the areas at lower altitudes. Most precipitation in the Wind River Mountains falls as snow. The foothill sections, in general, are transitional zones between the cold, humid climate of the high mountains and the warmer, drier climate of the basin floor. Average annual runoff in the basin is about 3.6 inches on the basis of adjusted streamflow records for the Bighorn River near Thermopolis. Runoff from the mountains is high and is mostly from melting of snow and from spring and early summer rains. It does not vary greatly from year to year because annual water losses are small in comparison to annual precipitation. In the areas on the floor of the basin, where runoff is low, the runoff is mostly the result of storms in late spring and early summer. The annual water losses nearly equal the annual precipitation; therefore, runoff is extremely variable, in terms of percentage changes, from year to year and from point to point during any 1 year.

  8. The legacy of lead (Pb) in fluvial bed sediments of an urban drainage basin, Oahu, Hawaii.

    PubMed

    Hotton, Veronica K; Sutherland, Ross A

    2016-03-01

    The study of fluvial bed sediments is essential for deciphering the impact of anthropogenic activities on water quality and drainage basin integrity. In this study, a systematic sampling design was employed to characterize the spatial variation of lead (Pb) concentrations in bed sediment of urban streams in the Palolo drainage basin, southeastern Oahu, Hawaii. Potentially bioavailable Pb was assessed with a dilute 0.5 N HCl extraction of the <63 μm grain-size fraction from the upper bed sediment layer of 169 samples from Palolo, Pukele, and Waiomao streams. Contamination of bed sediments was associated with the direct transport of legacy Pb from the leaded gasoline era to stream channels via a dense network of storm drains linked to road surfaces throughout the basin. The Palolo Stream had the highest median Pb concentration (134 mg/kg), and the greatest road and storm drain densities, the greatest population, and the most vehicle numbers. Lower median Pb concentrations were associated with the less impacted Pukele Stream (24 mg/kg), and Waiomao Stream (7 mg/kg). The median Pb enrichment ratio values followed the sequence of Palolo (68) > Pukele (19) > Waiomao (8). Comparisons to sediment quality guidelines and potential toxicity estimates using a logistic regression model (LRM) indicated a significant potential risk of Palolo Stream bed sediments to bottom-dwelling organisms.

  9. Beyond Colorado's Front Range - A new look at Laramide basin subsidence, sedimentation, and deformation in north-central Colorado

    USGS Publications Warehouse

    Cole, James C.; Trexler, James H.; Cashman, Patricia H.; Miller, Ian M.; Shroba, Ralph R.; Cosca, Michael A.; Workman, Jeremiah B.

    2010-01-01

    This field trip highlights recent research into the Laramide uplift, erosion, and sedimentation on the western side of the northern Colorado Front Range. The Laramide history of the North Park?Middle Park basin (designated the Colorado Headwaters Basin in this paper) is distinctly different from that of the Denver basin on the eastern flank of the range. The Denver basin stratigraphy records the transition from Late Cretaceous marine shale to recessional shoreline sandstones to continental, fluvial, marsh, and coal mires environments, followed by orogenic sediments that span the K-T boundary. Upper Cretaceous and Paleogene strata in the Denver basin consist of two mega-fan complexes that are separated by a 9 million-year interval of erosion/non-deposition between about 63 and 54 Ma. In contrast, the marine shale unit on the western flank of the Front Range was deeply eroded over most of the area of the Colorado Headwaters Basin (approximately one km removed) prior to any orogenic sediment accumulation. New 40Ar-39Ar ages indicate the oldest sediments on the western flank of the Front Range were as young as about 61 Ma. They comprise the Windy Gap Volcanic Member of the Middle Park Formation, which consists of coarse, immature volcanic conglomerates derived from nearby alkalic-mafic volcanic edifices that were forming at about 65?61 Ma. Clasts of Proterozoic granite, pegmatite, and gneiss (eroded from the uplifted core of the Front Range) seem to arrive in the Colorado Headwaters Basin at different times in different places, but they become dominant in arkosic sandstones and conglomerates about one km above the base of the Colorado Headwaters Basin section. Paleocurrent trends suggest the southern end of the Colorado Headwaters Basin was structurally closed because all fluvial deposits show a northward component of transport. Lacustrine depositional environments are indicated by various sedimentological features in several sections within the >3 km of sediment preserved in the Colorado Headwaters Basin, suggesting this basin may have remained closed throughout the Paleocene and early Eocene. The field trip also addresses middle Eocene(?) folding of the late Laramide basin-fill strata, related to steep reverse faults that offset the Proterozoic crystalline basement. Late Oligocene magmatic activity is indicated by dikes, plugs, and eruptive volcanic rocks in the Rabbit Ears Range and the Never Summer Mountains that span and flank the Colorado Headwaters Basin. These intrusions and eruptions were accompanied by extensional faulting along predominantly northwesterly trends. Erosion accompanied the late Oligocene igneous activity and faulting, leading to deposition of boulder conglomerates and sandstones of the North Park Formation and high-level conglomerates across the landscape that preserve evidence of a paleo-drainage network that drained the volcanic landscape.

  10. Water-quality, bed-sediment, and biological data (October 2009 through September 2010) and statistical summaries of data for streams in the Clark Fork basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2012-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork basin. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2009 through September 2010. Bed-sediment and biota samples were collected once at 13 sites during August 2010. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2009 through September 2010. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  11. Water-quality, bed-sediment, and biological data (October 2011 through September 2012) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2014-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2011 through September 2012. Bed-sediment and biota samples were collected once at 13 sites during August 2012. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2011 through September 2012. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record since 1985.

  12. Distributions, Early Diagenesis, and Spatial Characteristics of Amino Acids in Sediments of Multi-Polluted Rivers: A Case Study in the Haihe River Basin, China.

    PubMed

    Zhao, Yu; Shan, Baoqing; Tang, Wenzhong; Zhang, Hong; Rong, Nan; Ding, Yuekui

    2016-02-19

    The Haihe River Basin, which is one of the most water-scarce and polluted river basins in China, has abnormally high nitrogen levels. In this study, total hydrolyzable amino acids (THAAs) were measured in surface sediment and sediment core samples in the Haihe River Basin to determine if amino acids were potential sources of ammonium, organic nitrogen, and organic carbon. The rivers were found to be in a state of hypoxia and contain abnormally high levels of ammonium and organic nitrogen. Additionally, NH₃-N was the predominant form of inorganic nitrogen in the surface sediments, while organic nitrogen accounted for 92.53% of sedimentary nitrogen. THAAs-C accounted for 14.92% of the total organic carbon, while THAAs-N accounted for more than 49.59% of organic nitrogen and 45.68% of total nitrogen. The major fraction of THAAs were protein amino acids. Three sediment cores of the most heavily polluted rivers also showed high levels of THAAs. Evaluation of the degradation index (DI) of sedimentary organic matter in sediments evaluated based on the THAAs revealed that most positive DI values were found in the downstream portion of the Ziya River Watershed. Additionally, the DI of surface sediment was correlated with THAAs (r² = 0.763, p < 0.001), as was the DI of sediment cores (r² = 0.773, p < 0.001). Overall, amino acids in sediments were found to be an important potential source of ammonium, organic nitrogen, and organic carbon.

  13. Distributions, Early Diagenesis, and Spatial Characteristics of Amino Acids in Sediments of Multi-Polluted Rivers: A Case Study in the Haihe River Basin, China

    PubMed Central

    Zhao, Yu; Shan, Baoqing; Tang, Wenzhong; Zhang, Hong; Rong, Nan; Ding, Yuekui

    2016-01-01

    The Haihe River Basin, which is one of the most water-scarce and polluted river basins in China, has abnormally high nitrogen levels. In this study, total hydrolyzable amino acids (THAAs) were measured in surface sediment and sediment core samples in the Haihe River Basin to determine if amino acids were potential sources of ammonium, organic nitrogen, and organic carbon. The rivers were found to be in a state of hypoxia and contain abnormally high levels of ammonium and organic nitrogen. Additionally, NH3-N was the predominant form of inorganic nitrogen in the surface sediments, while organic nitrogen accounted for 92.53% of sedimentary nitrogen. THAAs-C accounted for 14.92% of the total organic carbon, while THAAs-N accounted for more than 49.59% of organic nitrogen and 45.68% of total nitrogen. The major fraction of THAAs were protein amino acids. Three sediment cores of the most heavily polluted rivers also showed high levels of THAAs. Evaluation of the degradation index (DI) of sedimentary organic matter in sediments evaluated based on the THAAs revealed that most positive DI values were found in the downstream portion of the Ziya River Watershed. Additionally, the DI of surface sediment was correlated with THAAs (r2 = 0.763, p < 0.001), as was the DI of sediment cores (r2 = 0.773, p < 0.001). Overall, amino acids in sediments were found to be an important potential source of ammonium, organic nitrogen, and organic carbon. PMID:26907310

  14. Water-Quality, Bed-Sediment, and Biological Data (October 2006 through September 2007) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2008-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Milltown Reservoir as part of a long-term monitoring program in the upper Clark Fork basin; additional water-quality samples were collected in the Clark Fork basin from sites near Milltown Reservoir downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water-quality samples were collected periodically at 22 sites from October 2006 through September 2007. Bed-sediment and biological samples were collected once at 12 sites during August 2007. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2006 through September 2007. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for samples collected at sites where seasonal daily values of turbidity were being determined. Nutrients also were analyzed in the supplemental water-quality samples. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for five sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  15. Water-Quality, Bed-Sediment, and Biological Data (October 2007 through September 2008) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2009-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula as part of a long-term monitoring program in the upper Clark Fork basin; additional water samples were collected in the Clark Fork basin from sites near Missoula downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 23 sites from October 2007 through September 2008. Bed-sediment and biota samples were collected once at 13 sites during August 2008. This report presents the analytical results and quality assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2007 through September 2008. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at sites where seasonal daily values of turbidity were being determined and at Clark Fork above Missoula. Nutrients also were analyzed at all the supplemental water-quality sites, except for Clark Fork Bypass, near Bonner. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  16. Water-quality, bed-sediment, and biological data (October 2008 through September 2009) and statistical summaries of long-term data for streams in the Clark Fork basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2010-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a long-term monitoring program in the upper Clark Fork basin; additional water samples were collected in the Clark Fork basin from sites near Missoula downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 24 sites from October 2008 through September 2009. Bed-sediment and biota samples were collected once at 13 sites during August 2009. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2008 through September 2009. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined as well as at Clark Fork above Missoula. Nutrients also were analyzed at all the supplemental water-quality sites, except for Clark Fork Bypass, near Bonner. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  17. Development of a time-stepping sediment budget model for assessing land use impacts in large river basins.

    PubMed

    Wilkinson, S N; Dougall, C; Kinsey-Henderson, A E; Searle, R D; Ellis, R J; Bartley, R

    2014-01-15

    The use of river basin modelling to guide mitigation of non-point source pollution of wetlands, estuaries and coastal waters has become widespread. To assess and simulate the impacts of alternate land use or climate scenarios on river washload requires modelling techniques that represent sediment sources and transport at the time scales of system response. Building on the mean-annual SedNet model, we propose a new D-SedNet model which constructs daily budgets of fine sediment sources, transport and deposition for each link in a river network. Erosion rates (hillslope, gully and streambank erosion) and fine sediment sinks (floodplains and reservoirs) are disaggregated from mean annual rates based on daily rainfall and runoff. The model is evaluated in the Burdekin basin in tropical Australia, where policy targets have been set for reducing sediment and nutrient loads to the Great Barrier Reef (GBR) lagoon from grazing and cropping land. D-SedNet predicted annual loads with similar performance to that of a sediment rating curve calibrated to monitored suspended sediment concentrations. Relative to a 22-year reference load time series at the basin outlet derived from a dynamic general additive model based on monitoring data, D-SedNet had a median absolute error of 68% compared with 112% for the rating curve. RMS error was slightly higher for D-SedNet than for the rating curve due to large relative errors on small loads in several drought years. This accuracy is similar to existing agricultural system models used in arable or humid environments. Predicted river loads were sensitive to ground vegetation cover. We conclude that the river network sediment budget model provides some capacity for predicting load time-series independent of monitoring data in ungauged basins, and for evaluating the impact of land management on river sediment load time-series, which is challenging across large regions in data-poor environments. © 2013. Published by Elsevier B.V. All rights reserved.

  18. Seismic Characterization of the Jakarta Basin

    NASA Astrophysics Data System (ADS)

    Cipta, A.; Saygin, E.; Cummins, P. R.; Masturyono, M.; Rudyanto, A.; Irsyam, M.

    2015-12-01

    Jakarta, Indonesia, is home to more than 10 million people. Many of these people live in seismically non-resilient structures in an area that historical records suggest is prone to earthquake shaking. The city lies in a sedimentary basin composed of Quaternary alluvium that experiences rapid subsidence (26 cm/year) due to groundwater extraction. Forecasts of how much subsidence may occur in the future are dependent on the thickness of the basin. However, basin geometry and sediment thickness are poorly known. In term of seismic hazard, thick loose sediment can lead to high amplification of seismic waves, of the kind that led to widespread damage in Mexico city during the Michoacan Earthquake of 1985. In order to characterize basin structure, a temporary seismograph deployment was undertaken in Jakarta in Oct 2013- Jan 2014. A total of 96 seismic instrument were deployed throughout Jakarta were deployed throughout Jakarta at 3-5 km spacing. Ambient noise tomography was applied to obtain models of the subsurface velocity structure. Important key, low velocity anomalies at short period (<8s) correspond to the main sedimentary sub-basins thought to be present based on geological interpretations of shallow stratigraphy in the Jakarta Basin. The result shows that at a depth of 300 m, shear-wave velocity in the northern part (600 m/s) of the basin is lower than that in the southern part. The most prominent low velocity structure appears in the northwest of the basin, down to a depth of 800 m, with velocity as low as 1200 m/s. This very low velocity indicates the thickness of sediment and the variability of basin geometry. Waveform computation using SPECFEM2D shows that amplification due to basin geometry occurs at the basin edge and the thick sediment leads to amplification at the basin center. Computation also shows the longer shaking duration occurrs at the basin edge and center of the basin. The nest step will be validating the basin model using earthquake events recorded by the Jakarta array. The Bohol 2013 earthquake is one good candidate event for model validation. This will require using a source model for the Bohol earthquake and a plane wave input to SPECFEM3D.

  19. Assessing performance characteristics of sediment basins constructed in Franklin County : [summary report].

    DOT National Transportation Integrated Search

    2012-08-01

    The objective of the study was to monitor and : document the performance of newly designed : sediment basins that were constructed for the 502 : project in Franklin County. The following tasks were : proposed by the research team to achieve the : obj...

  20. State-of-the-practice : evaluation of sediment basin design, construction, maintenance, and inspection procedures.

    DOT National Transportation Integrated Search

    2012-08-01

    The following document is the summary of results from a survey that was conducted to evaluate the state-of-the-practice for sediment basin design, construction, maintenance, and inspection procedures by State Highway Agencies (SHAs) across the nation...

  1. State-of-the-practice : evaluation of sediment basin design, construction, maintenance, and inspection procedures.

    DOT National Transportation Integrated Search

    2012-08-01

    The following document is the summary of results from a survey that was conducted to evaluate : the state-of-the-practice for sediment basin design, construction, maintenance, and inspection : procedures by State Highway Agencies (SHAs) across the na...

  2. Trace Elements in Bed Sediments and Biota from Streams in the Santee River Basin and Coastal Drainages, North and South Carolina, 1995-97

    Treesearch

    Thomas A. Abrahamsen

    1999-01-01

    Bed-sediment and tissue samples were collected and analyzed for the presence of trace elements from 25 sites in the Santee River Basin and coastal drainages study area during 1995-97 as part of the U.S. Geological Survey's National Water-Quality Assessment Program, Sediment trace-element priority-pollutant concentrations were compared among streams draining water-...

  3. The Classification and Geomorphic Implications of Thaw Lakes on the Arctic Coastal Plain, Alaska

    DTIC Science & Technology

    1975-12-01

    Plain is underlain by ice-rich marine sediments , the product of several marine transgressions and regressions. Numerous thaw lake basins of...variable morphology and distribution have developed on the perennially frozen sediments (permafrost) of this low-lying plain. Most notable are the large...mechanism of thaw lake formation was recognized whereby sediment laden ice rafts initiated thawing of the permafrost and formation of lake basins

  4. Thermal alteration of organic matter in recent marine sediments. 2: Isoprenoids. [Tanner Basin off Southern California

    NASA Technical Reports Server (NTRS)

    Ikan, R.; Baedecker, M. J.; Kaplan, I. R.

    1974-01-01

    A series of isoprenoid compounds were isolated from a heat treated marine sediment (from Tanner Basin) which were not present in the original sediment. Among the compounds identified were: phytol, dihydrophytol, c-18-isoprenoid ketone, phytanic and pristanic acids, c-19 and c-20-monoolefines, and the alkanes pristane and phytane. The significance and possible routes leading to these compounds is discussed.

  5. Diphytanyl glycerol ether distributions in sediments of the Orca Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pease, T.K.; VanVleet, E.S.; Barre, J.S.

    1992-09-01

    Archaebacterially produced diphytanyl glycerol ether (DPGE) was examined in core sediments from the Orca Basin, an anoxic hypersaline basin in the northwestern Gulf of Mexico, to observe its spatial variability and potential origin. A differential extraction protocol was employed to quantify the isopranyl glycerol ethers associated with unbound, intermediate-bound, and kerogen-bound lipid fractions. Archaebacterial lipids were evident at all depths for the unbound and intermediate-bound fractions. Concentrations of DPGE ranged from 0.51 to 2.91 [mu]g/g dry sediment at the surface and showed secondary maxima deeper in basin sediments. Intermediate-bound DPGE concentrations exhibited an inverse relationship to unbound DPGE concentrations. Kerogen-boundmore » DPGE concentrations were normally below detection limits. Earlier studies describing the general homogeneity of lipid components within the overlying brine and at the brine/seawater interface suggest that the large-scale sedimentary DPGE variations observed in this study result from spatial and temporal variations in in-situ production by methanogenic or extremely halophilic archaebacteria.« less

  6. Final report for 105-N Basin sediment disposition task, phase 2 -- samples BOMPC8 and BOMPC9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esch, R.A.

    1998-02-05

    This document is the final report deliverable for Phase 2 analytical work for the 105-N Basin Sediment Disposition Task. On December 23, 1997, ten samples were received at the 222-S Laboratory as follows: two (2) bottles of potable water, six (6) samples for process control testing and two (2) samples for characterization. Analyses were performed in accordance with the Letter of Instruction for Phase 2 Analytical Work for the 105-N Basin Sediment Disposition Task (Logan and Kessner, 1997) (Attachment 7) and 105-N Basin Sediment Disposition Phase-Two Sampling and Analysis Plan (SAP) (Smith, 1997). The analytical results are included in Tablemore » 1. This document provides the values of X/Qs for the onsite and offsite receptors, taking into account the building wake and the atmospheric stability effects. X/Qs values for the potential fire accident were also calculated. In addition, the unit dose were calculated for the mixtures of isotopes.« less

  7. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-10-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic.

  8. Natural Environmental Hazards Reflected in High-Altitude Patagonian Lake Sediments (lake Caviahue, Argentina)

    NASA Astrophysics Data System (ADS)

    Müller, Anne; Scharf, Burkhard; von Tümpling, Wolf; Pirrung, Michael

    2009-03-01

    Two 6-m long sediment cores drilled in the two basins of Lake Caviahue give new evidence of the impact of natural hazards such as ash fallouts linked to nearby volcanic eruptions in the ecologically sensitive environment of the high-altitude region of the Argentinan Patagonian Andes. The two cores show distinct signals of changes in autochthonous productivity and terrigenous input into the lake from ash fallout as well as from river load and shore erosion. Multiproxy records of the sediments indicate whether these changes can be related to volcanic activity. High values of magnetic susceptibility in the cores reflect periods of basaltic ash fallouts during eruptions of the nearby Copahue Volcano. The southern basin is located in the prevalent direction of ash fallouts and has been affected by these volcanic inputs more intensely than the northern basin of the lake. In contrast, sedimentation and authochthonous productivity in the northern basin are strongly affected by fluvial inputs such as suspended river load and acidic stream waters.

  9. Natural Environmental Hazards Reflected in High-Altitude Patagonian Lake Sediments (Lake Caviahue, Argentina)

    NASA Astrophysics Data System (ADS)

    Mueller, A.; Pirrung, M.; Scharf, B.; von Tuempling, W.

    2007-05-01

    Two 6-m long sediment cores drilled in the two basins of Lake Caviahue give new evidence of the impact of natural hazards such as ash fallouts linked to nearby volcanic eruptions in the ecologically sensitive environment of the high-altitude region of the Argentinan Patagonian Andes. The two cores show distinct signals of changes in autochthonous productivity and terrigenous input into the lake from ash fallout, river load and shore erosion. Multiproxy records of the sediments indicate whether these changes can be related to volcanic activity. High values of magnetic susceptibility in the cores reflect periods of basaltic ash fallouts during eruptions of the nearby Copahue volcano. The southern basin is located in the prevalent direction of ash fallouts and has been affected by these volcanic inputs more intensely than the northern basin of the lake. In contrast, sedimentation and authochthonous productivity in the northern basin are strongly affected by fluvial inputs such as suspended river load and acidic stream waters.

  10. Organic geochemistry of sediments of deep Gulf of Mexico basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, J.; Sassen, R.; Nunn, J.

    1989-09-01

    An analysis of 716 core samples from DSDP (Deep Sea Drilling Project) Leg 96 in the Mississippi submarine fan and the Orca and Pigmy basins in the Louisiana continental slope was done using a Rock-Eval pyrolysis unit with TOC (total organic carbon) module. The analysis allows computation of the hydrogen index (HI), TOC, and kerogen type, and assessment of the oil-generative capacity of the sediments in the Louisiana continental slope. No samples are obviously oil prone. TOC content ranges from 0.12 to 2.29%, with an overall average of 0.82%. HI values are generally less than 150 mg HC/g TOC. T{submore » max} (temperature of the maximum of the S{sub 2} peak) values (425{degree}C average) show the sediments are immature throughout the study area. Hydrocarbon-generative potential of the sediments ranges from 492 to 1,107 ppm, with an average of 854 ppm. Because of organic lean, thermally immature, and gas-prone terrestrial organic matter, there is little reason to assume that the sediments from the Mississippi fan can provide oil source rock for the Gulf Coast basin, and that sediments of anoxic basins in the Louisiana continental slope are analogs to the past environments where source rocks for crude oil have been deposited.« less

  11. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake

    NASA Astrophysics Data System (ADS)

    Herndon, Elizabeth M.; Havig, Jeff R.; Singer, David M.; McCormick, Michael L.; Kump, Lee R.

    2018-06-01

    Manganese and iron are redox-sensitive elements that yield clues about biogeochemistry and redox conditions both in modern environments and in the geologic past. Here, we investigated Mn and Fe-bearing minerals preserved in basin sediments underlying Fayetteville Green Lake, a redox-stratified lake that serves as a geochemical analogue for Paleoproterozoic oceans. Synchrotron-source microprobe techniques (μXRF, μXANES, and μXRD) and bulk geochemical analyses were used to examine the microscale distribution and speciation of Mn, Fe, and S as a function of depth in the top 48 cm of anoxic lake sediments. Manganese was primarily associated with calcite grains as a manganese-rich carbonate that precipitated in the chemocline of the water column and settled through the euxinic basin to collect in lake sediments. Iron was preserved in framboidal iron sulfides that precipitated in euxinic bottom waters and underwent transformation to pyrite and marcasite in the sediments. Previous studies attribute the formation of manganese-rich carbonates to the diagenetic alteration of manganese oxides deposited in basins underlying oxygenated water. Our study challenges this paradigm by providing evidence that Mn-bearing carbonates form in the water column and accumulate in sediments below anoxic waters. Consequently, manganoan carbonates preserved in the rock record do not necessarily denote the presence of oxygenated bottom waters in ocean basins.

  12. Lead contamination in sediments in the past 20 years: A challenge for China.

    PubMed

    Han, Lanfang; Gao, Bo; Hao, Hong; Zhou, Huaidong; Lu, Jin; Sun, Ke

    2018-06-04

    Lead (Pb) contamination was recognized in China early in the 1920s. However, the response of Pb contamination in sediments to China's rapid economic and social development remains uncertain to date. We conducted a literature review of over 1000 articles from 1990 to 2016 and the first national-scale survey of Pb contamination in China. A literature review showed that available research in China focused on the economically highly developed river basins, including the Pearl River Basin (PRB), Yellow River Basin (YRB), and Yangtze River Basin (YtRB), whereas those in the less developed southeastern, southwestern, and northwestern river basins received limited attention. The YtRB and YRB had higher Pb contamination levels than other basins, corresponding with the rapid economic development in those regions. However, the less economically developed river basins in the southeastern and northwestern regions of China were also contaminated by Pb. Analysis of 146 studies in the PRB, YRB, and YtRB revealed that Pb contamination in PRB sediments showed a tendency to improve over time, whereas that from the YtRB exhibited a tendency to worsen. For the YRB, there was a slight increase from 1990 to 2006 and a decreasing trend from 2007 to 2014. The overall temporal trend in Pb levels in PRB and YRB sediments corresponded with that of the Pb discharged in wastewater in the surrounding cities, indicating that industrial wastewater discharge was possibly one of the main anthropogenic sources of Pb in those sediments. For the YtRB, the increasing trend in Pb concentrations was related to the considerably high atmospheric Pb emissions in the surrounding cities and its geographical characteristics. These findings suggested that China should develop systematic and consistent approaches for monitoring Pb contents in sediments and adopt a regional economic development policy focusing on pollution prevention. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Terrestrial organic carbon contributions to sediments on the Washington margin

    NASA Astrophysics Data System (ADS)

    Prahl, F. G.; Ertel, J. R.; Goni, M. A.; Sparrow, M. A.; Eversmeyer, B.

    1994-07-01

    Elemental and stable carbon isotopic compositions and biomarker concentrations were determined in sediments from the Columbia River basin and the Washington margin in order to evaluate geochemical approaches for quantifying terrestrial organic matter in marine sediments. The biomarkers include: an homologous series of long-chain n-alkanes derived from the surface waxes of higher plants; phenolic and hydroxyalkanoic compounds produced by CuO oxidation of two major vascular plant biopolymers, lignin and cutin. All marine sediments, including samples collected from the most remote sites in Cascadia Basin, showed organic geochemical evidence for the presence of terrestrial organic carbon. Using endmember values for the various biomarkers determined empirically by two independent means, we estimate that the terrestrial contribution to the Washington margin is ~ 60% for shelf sediments, ~ 30% for slope sediments, and decreases further to ≤15% in basin sediments. Results from the same geochemical measurements made with depth in gravity core 6705-7 from Cascadia Seachannel suggest that our approach to assess terrestrial organic carbon contributions to contemporary deposits on the Washington margin can be applied to the study of sediments depositing in this region since the last glacial period.

  14. Compositional changes of surface sediments and variability of manganese nodules in the Peru Basin

    NASA Astrophysics Data System (ADS)

    Marchig, Vesna; von Stackelberg, Ulrich; Hufnagel, Heinz; Durn, Goran

    Two types of manganese nodules were observed in the Peru Basin: large botryoidal nodules in basins and small ellipsoidal nodules on slope positions. The sediment in areas with large botryoidal nodules contains a thinner and weaker oxidation zone than the sediment under small ellipsoidal nodules, indicating that diagenetic processes in the sediment, which supply manganese nodules with metals for their growth, are stronger in sediments on which large botryoidal nodules grow. Organic matter, which activates remobilization of metals, occurs mostly in the form of refractory lipidic compounds in the inner capsule of radiolaria. This material needs bacterial degradation to act as a reducing agent. Easily oxidizable organic components could not be found in the sediments. Other changes in sediment composition do not have a link to manganese nodule growth. Biogenous components (radiolarians, organogenic barite and apatite) increase towards the equatorial high-productivity zone. Authigenous clay minerals (nontronite as well as montmorillonite with high Fe +3 incorporation on positions of ochtaedral Al) increase with distance from the continent. The assessment of environmental impacts will have to take into account the regional differences in sediment composition and the small-scale variability of manganese nodules.

  15. Investigations of young (< 2.94 Ma) Hadar Formation deposits and their implication for basin development in southern Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    DiMaggio, E.; Arrowsmith, R.; Campisano, C. J.; Johnson, R. A.; Deino, A. L.; Warren, M.; Fisseha, S.; Cohen, A. S.

    2014-12-01

    Sedimentary deposits in Pliocene extensional rift basins in the Afar Depression, Ethiopia chronicle the evolution and paleoenvironmental context of early humans. In the lower Awash Valley, the long-studied Hadar Basin still lacks constraints on basin development during the onset and termination of Hadar Formation (~3.8 - 2.94 Ma) sedimentation. Here we present new mapping and analysis of tephra deposits from a 26 meter-thick section of sediments exposed in the central Ledi-Geraru project area at Gulfaytu, including 20 m of sediments and tephras conformably overlying a 2.94 Ma tephra marker bed (BKT-2U) that previously served as the uppermost dated tephra of the Hadar Formation. Within the overlying 20 meters of primarily lacustrine strata, we identified eight post-BKT-2U tuffs; four were suitable for geochemical characterization, and one yielded an 40Ar/39Ar age of 2.931 ± 0.034 Ma. Based on regional sedimentation rates and the tephra 40Ar/39Ar age, we infer that the newly mapped Hadar Formation at Gulfaytu represents ca. 20 kyr of post-BKT-2 sedimentation. An erosional surface marked by a conglomerate truncates the strata at Gulfaytu, and shows similarities to the well-documented Busidima unconformity surface to the southwest, suggesting that structural changes after 2.93 Ma also affected basin conditions in central Ledi-Geraru. Furthermore, subsurface geophysical investigations support a model whereby deposition rates and the stratigraphic thickness of paleo-Lake Hadar sediments are greatest in the central Ledi-Geraru, ~20 km northeast of the well-exposed lacustrine-dominated sediments of the Hadar Formation. In addition to preserving a record of post-BKT-2 strata, the central Ledi Geraru hosts the thickest subsurface lacustrine sedimentary record within the Hadar Basin hitherto described, making central Ledi-Geraru an ideal location for collecting a continuous core by the Hominin Sites and Paleolakes Drilling Project (HSPDP).

  16. Episodic Sediment Supply from Mountains and Downstream Emplacement within Large Lowland Basins: Seeking a Sink-to-Source Synthesis

    NASA Astrophysics Data System (ADS)

    Aalto, R. E.

    2009-12-01

    Application of a new geochronological method for high-resolution 210-Pb dating over the past 5 years has facilitated the identification of individual floodplain sedimentation events across disparate large river basins: three examples from ongoing research include a pristine 720,000 km2 basin in northern Bolivia, a 36,000 km2 basin in Papua New Guinea, and the 70,000 km2 Sacramento River Basin in California. Published and new research suggests that large, rapid-rise, cold-phase ENSO floods account for the preponderance of sediment accumulation within the two tropical systems, and that extreme floods associated with ENSO similarly correspond to transport and deposition of material within the extensive floodways along the Sacramento River. The vast scale of these temporally discrete deposits within such large river systems (typically 10s to 100s of millions of tonnes) begs the question: where did all this material come from? Huge deposits require similarly massive episodic supply and transport of material from upstream, often specifically within the very short timescale of a single large flood event. What data and techniques are available to track and balance such enormous mass budgets? This presentation explores this general theme with new data from the three iconic systems identified above. New daily discharge data are coupled with 210-Pb concentrations and particle size distribution in sediment to elucidate the considerable inter-annual variation of sediment supply from the Andes, resulting from the interaction of Andean erosion, anthropogenic effects, and the dynamics of extreme climate. Biogeochemical and/or geochemical tracers can be employed for all three study basins to track sediment from source to sink (or alternatively, working from the well-defined sink to the less-constrained source), providing insight into the geomorphic processes that modulate the efflux, transport, intermediate channel/floodplain storage, and downstream delivery of sediment during extreme flooding events. Landslide in the Bolivian Andes: Does episodic erosion correlate with episodic deposition?

  17. Sediment transport by streams in the Palouse River basin, Washington and Idaho, July 1961-June 1965

    USGS Publications Warehouse

    Boucher, P.R.

    1970-01-01

    The Palouse River basin covers about 3,300 square miles in southeastern Washington and northwestern Idaho. The eastern part of the basin is composed of steptoes and foothills which are generally above an altitude of 2,600 feet; the central part is of moderate local relief and is mantled chiefly by thick loess deposits; and the western part is characterized by low relief and scabland topography and is underlain mostly by basalt. Precipitation increases eastward across the study area. It ranges annually from 12 to 18 inches in the western part and from 14 to 23 inches in the central part, and it exceeds 40 inches in the eastern part. Surface runoff from the basin for the 4-year period of study (July 1961-June 1965) averaged 408,000 acre-feet per year, compared with 445,200 acre-feet per year for the 27-year period of record. The eastern part of the basin contributed about 55 percent of the total, whereas the central and western parts contributed 37 percent and 8 percent, respectively. Most sediment transport from the Palouse River basin and the highest sediment concentrations in streams occurred in the winter. Of the several storms during the study period, those of February 3-9, 1963, December 22-27, 1964, and January 27-February 4, 1965, accounted for 81 percent of the total 4-year suspended-sediment load; the storm of February 3-9, 1963, accounted for nearly one-half the total load. The discharge-weighted mean concentration of suspended sediment carried in the Palouse River past Hooper during the study period was 2,970 milligrams per liter. The average annual sediment discharge of the Palouse River at its mouth was about 1,580,000 tons per year, and the estimated average annual sediment yield was 480 tons per square mile. The yield ranged from 5 tons per square mile from the western part of the basin to 2,100 tons per square mile from the central part. The high yield from the central part is attributed to a scarcity of vegetal cover, to the fine-grained loess soils, and to rapid runoff during winter storms. Sediment yield from the eastern part of the basin ranged from 460 to more than 1,000 tons per square mile. During high flow, silt particles make up the largest part of the suspended-sediment load, whereas during low flow, clay particles represent the greatest part. On the average, the suspended sediment transported by the Palouse River past Hooper contained 3 percent sand, 68 percent silt, and 29 percent clay. Unmeasured sediment discharge was estimated to have been 5 percent of the total sediment discharge. Data collected during the 4-year period of study show that sediment loads were higher than those recorded by V. G. Kaiser during the longer period 1939-65. Whereas Kaiser's study showed an average annual soil loss of 9.6 million tons, the average annual loss during the recent study was 14.2 million tons. The factor that has had the greatest effect on the increase of sediment yields is land use. Lands once covered and protected by natural vegetation have been extensively, cultivated, and much of the soil has become susceptible to erosion, particularly in areas mantled by loessal soils.

  18. Comparison of the Various Methodologies Used in Studying Runoff and Sediment Load in the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Xu, M., III; Liu, X.

    2017-12-01

    In the past 60 years, both the runoff and sediment load in the Yellow River Basin showed significant decreasing trends owing to the influences of human activities and climate change. Quantifying the impact of each factor (e.g. precipitation, sediment trapping dams, pasture, terrace, etc.) on the runoff and sediment load is among the key issues to guide the implement of water and soil conservation measures, and to predict the variation trends in the future. Hundreds of methods have been developed for studying the runoff and sediment load in the Yellow River Basin. Generally, these methods can be classified into empirical methods and physical-based models. The empirical methods, including hydrological method, soil and water conservation method, etc., are widely used in the Yellow River management engineering. These methods generally apply the statistical analyses like the regression analysis to build the empirical relationships between the main characteristic variables in a river basin. The elasticity method extensively used in the hydrological research can be classified into empirical method as it is mathematically deduced to be equivalent with the hydrological method. Physical-based models mainly include conceptual models and distributed models. The conceptual models are usually lumped models (e.g. SYMHD model, etc.) and can be regarded as transition of empirical models and distributed models. Seen from the publications that less studies have been conducted applying distributed models than empirical models as the simulation results of runoff and sediment load based on distributed models (e.g. the Digital Yellow Integrated Model, the Geomorphology-Based Hydrological Model, etc.) were usually not so satisfied owing to the intensive human activities in the Yellow River Basin. Therefore, this study primarily summarizes the empirical models applied in the Yellow River Basin and theoretically analyzes the main causes for the significantly different results using different empirical researching methods. Besides, we put forward an assessment frame for the researching methods of the runoff and sediment load variations in the Yellow River Basin from the point of view of inputting data, model structure and result output. And the assessment frame was then applied in the Huangfuchuan River.

  19. Sedimentary record and anthropogenic pollution of a complex, multiple source fed dam reservoirs: An example from the Nové Mlýny reservoir, Czech Republic.

    PubMed

    Sedláček, Jan; Bábek, Ondřej; Nováková, Tereza

    2017-01-01

    While numerous studies of dam reservoirs contamination are reported world-wide, we present a missing link in the study of reservoirs sourced from multiple river catchments. In such reservoirs, different point sources of contaminants and variable composition of their sedimentary matrices add to extremely complex geochemical patterns. We studied a unique, step-wise filled Nové Mlýny dam reservoir, Czech Republic, which consists of three interconnected sub-basins. Their source areas are located in units with contrasting geology and different levels and sources of contamination. The aim of this study is to provide an insight into the provenance of the sediment, including lithogenic elements and anthropogenic pollutants, to investigate the sediment dispersal across the reservoir, and to assess the heavy metal pollution in each basin. The study is based on multi-proxy stratigraphic analysis and geochemistry of sediment cores. There is a considerable gradient in the sediment grain size, brightness, MS and geochemistry, which reflects changing hydrodynamic energy conditions and primary pelagic production of CaCO 3 . The thickness of sediments generally decreases from proximal to distal parts, but underwater currents can accumulate higher amounts of sediments in distal parts near the thalweg line. Average sedimentation rates vary over a wide range from 0.58cm/yr to 2.33cm/yr. In addition, the petrophysical patterns, concentrations of lithogenic elements and their ratios made it possible to identify two main provenance areas, the Dyje River catchment (upper basin) and the Svratka and Jihlava River catchments (middle and lower basin). Enrichment factors (EF) were used for distinguishing the anthropogenic element contribution from the local background levels. We found moderate Zn and Cu pollution (EF ~2 to 5) in the upper basin and Zn, Cu and Pb (EF ~2 to 4.5) in the middle basin with the peak contamination in the late 1980s, indicating that the two basins have different contamination histories. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Miocene climate variations in the Moesian Platform sediments based on sedimentology and biomarkers

    NASA Astrophysics Data System (ADS)

    Butiseaca, Geanina; Vasiliev, Iuliana; Rabagia, Traian; Dinu, Corneliu; Mulch, Andreas

    2017-04-01

    During the Miocene the Moesian Platform (southern Romania and northern Bulgaria) had a complicated flexural behavior due to the mobility of the nearby orogens. The different behavior induced varying sediment charges, sediment distribution and sediment types. The northern part of the study area (on which the Dacian Basin is overlaid) is characterized by siliciclastic units with dominantly deep facieses, while the southern part is characterized by carbonate production in shallower basin waters. Since the Miocene, the Dacian and Black Sea basins have been highly sensitive to fluctuations in the hydrological cycle. To establish the dynamic evolution of the basin and the climate variations during the Miocene, we have sampled both northern and southern margins of the basin. To discriminate between the tectonic imprint and the eustatic influence over the sedimentation rate we have chosen a multidisciplinary approach including sedimentology, tectonics and organic geochemistry based reconstructions. The sedimentary succession is interrupted by few unconformities correspondent with the main phases of orogeny (in the Carpathian Foredeep) while the southern part seems to have been exposed more often expressed in the geological record by a higher number of unconformities and paleo-soils levels. The n-alkanes distribution recovered from the lipids extracted from the sedimentary rocks indicates a mixture of terrestrial and marine input in the northern, Romanian, closer to Carpathians, part of the Dacian Basin. Surprisingly, the southern, Bulgarian side, showed a more predominant terrestrial input (with higher contribution of the long chain n-alkanes) at least for the Sarmatian (arround 10 Ma). The estimated paleotemperatures based on branched GDGT's indicate much warmer conditions than present day, up to a value of 20 C mean annual temperatures. We will further investigate the paleoenvironmental changes during the latest Miocene of the Dacian basin, using the biomarker approach on the organic biomarkers.

  1. Ancestral Rocky Mountian Tectonics: A Sedimentary Record of Ancestral Front Range and Uncompahgre Exhumation

    NASA Astrophysics Data System (ADS)

    Smith, T. M.; Saylor, J. E.; Lapen, T. J.

    2015-12-01

    The Ancestral Rocky Mountains (ARM) encompass multiple crustal provinces with characteristic crystallization ages across the central and western US. Two driving mechanisms have been proposed to explain ARM deformation. (1) Ouachita-Marathon collision SE of the ARM uplifts has been linked to an E-to-W sequence of uplift and is consistent with proposed disruption of a larger Paradox-Central Colorado Trough Basin by exhumation of the Uncompahgre Uplift. Initial exhumation of the Amarillo-Wichita Uplift to the east would provide a unique ~530 Ma signal absent from source areas to the SW, and result in initial exhumation of the Ancestral Front Range. (2) Alternatively, deformation due to flat slab subduction along a hypothesized plate boundary to the SW suggests a SW-to-NE younging of exhumation. This hypothesis suggests a SW-derived Grenville signature, and would trigger uplift of the Uncompahgre first. We analyzed depositional environments, sediment dispersal patterns, and sediment and basement zircon U-Pb and (U-Th)/He ages in 3 locations in the Paradox Basin and Central Colorado Trough (CCT). The Paradox Basin exhibits an up-section transition in fluvial style that suggests a decrease in overbank stability and increased lateral migration. Similarly, the CCT records a long-term progradation of depositional environments from marginal marine to fluvial, indicating that sediment supply in both basins outpaced accommodation. Preliminary provenance results indicate little to no input from the Amarillo-Wichita uplift in either basin despite uniformly westward sediment dispersal systems in both basins. Results also show that the Uncompahgre Uplift was the source for sediment throughout Paradox Basin deposition. These observations are inconsistent with the predictions of scenario 1 above. Rather, they suggest either a synchronous response to tectonic stress across the ARM provinces or an SW-to-NE pattern of deformation.

  2. Impact of structural and autocyclic basin-floor topography on the depositional evolution of the deep-water Valparaiso forearc basin, central Chile

    USGS Publications Warehouse

    Laursen, J.; Normark, W.R.

    2003-01-01

    The Valparaiso Basin constitutes a unique and prominent deep-water forearc basin underlying a 40-km by 60-km mid-slope terrace at 2.5-km water depth on the central Chile margin. Seismic-reflection data, collected as part of the CONDOR investigation, image a 3-3.5-km thick sediment succession that fills a smoothly sagged, margin-parallel, elongated trough at the base of the upper slope. In response to underthrusting of the Juan Ferna??ndez Ridge on the Nazca plate, the basin fill is increasingly deformed in the seaward direction above seaward-vergent outer forearc compressional highs. Syn-depositional growth of a large, margin-parallel monoclinal high in conjunction with sagging of the inner trough of the basin created stratal geometries similar to those observed in forearc basins bordered by large accretionary prisms. Margin-parallel compressional ridges diverted turbidity currents along the basin axis and exerted a direct control on sediment depositional processes. As structural depressions became buried, transverse input from point sources on the adjacent upper slope formed complex fan systems with sediment waves characterising the overbank environment, common on many Pleistocene turbidite systems. Mass failure as a result of local topographic inversion formed a prominent mass-flow deposit, and ultimately resulted in canyon formation and hence a new focused point source feeding the basin. The Valparaiso Basin is presently filled to the spill point of the outer forearc highs, causing headward erosion of incipient canyons into the basin fill and allowing bypass of sediment to the Chile Trench. Age estimates that are constrained by subduction-related syn-depositional deformation of the upper 700-800m of the basin fill suggest that glacio-eustatic sea-level lowstands, in conjunction with accelerated denudation rates, within the past 350 ka may have contributed to the increase in simultaneously active point sources along the upper slope as well as an increased complexity of proximal depositional facies.

  3. Mercury concentrations in Pacific lamprey (Entosphenus tridentatus) and sediments in the Columbia River basin.

    PubMed

    Linley, Timothy; Krogstad, Eirik; Mueller, Robert; Gill, Gary; Lasorsa, Brenda

    2016-10-01

    The accumulation of mercury was investigated in Pacific lamprey and stream sediments in the Columbia River basin. Mercury concentrations in larval lamprey differed significantly among sample locations (p < 0.001) and were correlated with concentrations in sediments (r 2  = 0.83). Adult concentrations were highly variable (range, 0.1-9.5 μg/g) and unrelated to holding time after collection. The results suggest that Pacific lamprey in the Columbia River basin may be exposed to mercury levels that have adverse ecological effects. Environ Toxicol Chem 2016;35:2571-2576. © 2016 SETAC. © 2016 SETAC.

  4. Lithologic and hydraulic controls on network-scale variations in sediment yield: Big Wood and North Fork Big Lost Rivers, Idaho

    NASA Astrophysics Data System (ADS)

    Mueller, E. R.; Pitlick, J.; Smith, M. E.

    2008-12-01

    Channel morphology and sediment textures in streams and rivers are a product of the flux of sediment and water conveyed to channel networks. Differences in sediment supply between watersheds should thus be reflected by differences in channel and bed-material properties. In order to address this directly, field measurements of channel morphology, substrate lithology, and bed sediment textures were made at 35 sites distributed evenly across two adjacent watersheds in south-central Idaho, the Big Wood River (BW) and N. Fork Big Lost River (NBL). Measurements of sediment transport indicate a five-fold difference in sediment yields between these basins, despite their geographic proximity. Three dominant lithologic modes (an intrusive and extrusive volcanic suite and a sedimentary suite) exist in different proportions between these basins. The spatial distribution of lithologies exhibits a first-order control on the variation in sediment supply, bed sediment textures, and size distribution of the bed load at the basin outlet. Here we document the coupled hydraulic and sedimentologic structuring of these stream channel networks to differences in sediment supply. The results show that width and depth are remarkably similar between the two basins across a range in channel gradient and drainage area, with the primary difference being decreased bed armoring in the NBL. As a result, dimensionless shear stress (τ*) increases downstream in the NBL with an average value of 0.073, despite declining slope. The opposite is true in the BW where τ* averages 0.048. Lithologic characterization of the substrate indicates that much of the discrepancy in bed armoring can be attributed to an increasing downstream supply of resistant intrusive granitic rocks to the BW, whereas the NBL is dominated by erodible extrusive volcanic and sedimentary rocks. A simple modeling approach using an excess shear stress-based bed load transport equation and observed channel geometry shows that subtle changes in sediment texture can reproduce the marked difference in sediment yield between basins. This suggests that in gravel-bed streams the flux of sediment through the channel network is governed as much by textural changes as by morphological changes, and that these textural changes are tightly coupled to source area lithology.

  5. Sediment focusing in the Panama Basin, Eastern Equatorial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Singh, Ajay K.; Marcantonio, Franco; Lyle, Mitchell

    2011-09-01

    Age-model derived sediment mass accumulation rates (MARs) are consistently higher than 230Th-normalized MARs in the Equatorial Pacific Ocean during the past 25 ka. The offset, being highest in the Panama Basin, suggests a significant role for deep-sea sediment redistribution (i.e., sediment focusing) in this region. Here, we test the hypothesis that downslope transport of sediments from topographically high regions that surround the Panama Basin is the cause of higher-than-expected xs 230Th inventories over the past 25 ka in the deeper parts of the basin. We find little difference in xs 230Th inventories between the highest and lowest reaches of the basin. Furthermore, there is no correlation between xs 230Th-derived sediment focusing factors and water depth which suggests that the topographic highs do not serve as a source of xs 230Th. A spatial analysis suggests that there may be an enhanced scavenging effect on xs 230Th concentrations in sediment closest to the equator where productivity is the highest, although further data is necessary to corroborate this. At the equator xs 230Th-derived focusing factors are high and range from about 1 to 5 during the Holocene and about 1 to 11 during the last glacial. In contrast, non-equatorial cores show a smaller range in variability from about 0.7 to 2.8 during the Holocene and from 0.7 to 3.6 during the last glacial. Based on 232Th flux measurements, we hypothesize that the location at which eolian detrital fluxes surpass the riverine detrital fluxes is approximately 300 km from the margin. While riverine fluxes from coastal margins were higher during the Holocene, eolian fluxes were higher during the last glacial.

  6. Sedimentary Provenance Constraints on the Middle Jurassic to Late Cretaceous Paleogeography of the Sichuan Basin, SW China

    NASA Astrophysics Data System (ADS)

    Li, Y.; He, D.; Li, D.; Lu, R.

    2017-12-01

    Sedimentary provenance of the Middle Jurassic to Late Cretaceous sediments in the Sichuan Basin is constrained by sandstone petrology and detrital zircon U-Pb geochronology, which provides critical insights into mid-late Mesozoic paleogeographic evolution of the Sichuan Basin. Petrographic analyses of 22 sandstone samples indicate moderate to high mature sediments and are primarily derived from cratonic or recycled sources. U-Pb age data for the Middle Jurassic to Late Cretaceous detrital zircons generally show populations at 130-200, 200-330, 400-490, 680-890, 1730-1960, and 2360-2600 Ma, with up-section variations. The Middle Jurassic sediments contain a relatively high density of 1.85 and 2.5 Ga zircons and a low density of the 800 Ma zircons, which are consistent with derivation mainly from the Songpan-Ganzi terrane and the South Qinling belt, and secondarily from the Western Jiangnan Orogen. The Late Jurassic and Early Cretaceous sedimentation with a scattered age distribution shared common multiple-source to sink systems that were predominantly draining towards the south and southeast, but increasingly drained southward, and were later disrupted by a synchronous northeastward drainage capture. Late Cretaceous sediments have a distinct reduction in <213 Ma zircons, suggesting that sedimentation involved southeastward and southwestward transport of sediments likely derived from the Songpan-Ganzi terrane, the south segment of the Longmenshan fault belt and western Yangtze Craton, and the uplifting areas of the N- and NE-Sichuan Basin. Changes in provenances during the mid-late Mesozoic period are coincident with temporal-spatial variations in depocenter migration and paleogeographic evolution of the Sichuan Basin, which are closely related to the multi-stage intracontinental subduction associated with clockwise rotation of the South China Block.

  7. Late Quaternary glaciation of the Upper Soca River Region (Southern Julian Alps, NW Slovenia)

    USGS Publications Warehouse

    Bavec, Milos; Tulaczyk, Slawek M.; Mahan, Shannon; Stock, Gregory M.

    2004-01-01

    Extent of Late Quaternary glaciers in the Upper Soc??a River Region (Southern Julian Alps, SE Europe) has been analyzed using a combination of geological mapping, glaciological modeling, and sediment dating (radiocarbon, U/Th series and Infrared Stimulated Luminescence-IRSL). Field investigations focused mainly on relatively well preserved Quaternary sequences in the Bovec Basin, an intramontane basin located SW of the Mediterranean/Black Sea divide and surrounded by mountain peaks reaching from approximately 2100 up to 2587 m a.s.l. Within the Basin we recognized two Late Quaternary sedimentary assemblages, which consist of the same facies association of diamictons, laminated lacustrine deposits and sorted fluvial sediments. Radiocarbon dating of the upper part of the lake sediments sequence (between 12790??85 and 5885??60 14C years b.p.) indicates that the younger sedimentary assemblage was deposited during the last glacial maximum and through early Holocene (Marine Isotope Stage 21, MIS 2-1). Sediment ages obtained for the older assemblage with U/Th and IRSL techniques (between 154.74??22.88 and 129.93??7.90 ka b.p. for selected samples) have large errors but both methods yield results consistent with deposition during the penultimate glacial-interglacial transition (MIS 6-5). Based on analyses of field data combined with glaciological modeling, we argue that both sediment complexes formed due to high sediment productivity spurred by paraglacial conditions with glaciers present in the uplands around the Bovec Basin but not extending down to the basin floor. Our study shows that the extent and intensity of direct glacial sedimentation by Late Quaternary glaciers in the region was previously significantly overestimated. ?? 2004 Elsevier B.V. All rights reserved.

  8. Results of the flowmeter-injection test in the Long Valley Exploratory Well (Phase II), Long Valley, California

    USGS Publications Warehouse

    Morin, R.H.; Sorey, M.L.; Jacobson, R.D.

    1993-01-01

    Bayboro Harbor and the Port of St. Petersburg, Florida, form a manmade basin adjacent to Tampa Bay that may supply turbid water to the bay and subsequently affect light penetration in water in the bay. To address concerns about the nature and extent of this potential problem, resuspension of bottom sediments, sedimentation, and tributary storm discharge in the basin were studied. Study results indicated that tidal currents, wind waves, and seiche motions do not resuspend bottom sediments. The maneuvering of a cruise ship in the port resuspended bottom sediments, but these sediments settled within 2 hours. Tidal currents and wave action were not large enough o prevent the resuspended sediments from settling in the basin. Analysis of bathymetric surveys of the port made in 1981, 1986, 1987, and 1989 indicates that the cruise ship has deepened the port along its route and that the displaced sediment has been deposited elsewhere within the port. The storm discharge from two tributaries and the effect of tributary storm runoff on the water quality of the harbor were studied during a storm on November 9, 1989. Booker Creek, which drains an urban watershed, was stratified with a thin layer of turbid freshwater flowing into the harbor over a layer of less turbid saltwater. Salt Creek, which primarily drains Lake Maggiore, was only partially stratified and was less turbid. The turbid water from the creeks increased the turbidity only slightly in the harbor, probably because of mixing with less turbid water and particle settling. Thus, the basin provides mixing and settling, which diminish and eliminate the potentially adverse effect on Tampa Bay from tributary storm runoff and large vessel traffic in the basin.

  9. Late Quaternary stratigraphy of the eastern Gulf of Maine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacchus, T.S.; Belknap, D.F.

    1993-03-01

    Five distinct seismic facies describe the glacial, glacial-marine and postglacial sediments in the eastern Gulf of Maine. Regional cross-sections clearly document differences in the glacial-marine and postglacial stratigraphy between basins south of Truxton Swell, and Jordan basin to its north. Till occurs throughout the region as a thin veneer within basins, but thickens significantly over the ridges and swells separating basins. The ubiquitous presence of till suggests grounded ice occupied this area some time in the recent past. Ice-proximal glacial-marine (PGM) facies sediments of varying thickness mantle the entire area, occurring as a draped unit over pre-existing topography. Transitional glacial-marinemore » (TGM) facies also occur as a draped unit, but they show onlap onto basin margins. Sediments of the TGM facies are restricted to areas south of Truxton Swell. Ice-distal glacial-marine (DGM) facies sediments also mantle the entire area, but they occur primarily as a ponded, infilling unit. The nature and distribution of these glacial-marine facies within the eastern Gulf of Maine documents changes in the environment of deposition during deglaciation. In the authors model PGM facies sediments are considered to represent settling through the water column of coarse material from the base of an ice shelf. TGM facies sediments indicate retreat of this ice margin coupled with calving of large icebergs with significant amounts of coarse debris, DGM facies sediments indicate further retreat of the ice margin and a lessening of the influence of icebergs. Stepwise ice-margin retreat from south to north through a series of grounding lines and associated pinning points is evident by these time transgressive sedimentary facies that can be correlated across the region.« less

  10. Structural stability, microbial biomass and community composition of sediments affected by the hydric dynamics of an urban stormwater infiltration basin. Dynamics of physical and microbial characteristics of stormwater sediment.

    PubMed

    Badin, Anne Laure; Monier, Armelle; Volatier, Laurence; Geremia, Roberto A; Delolme, Cécile; Bedell, Jean-Philippe

    2011-05-01

    The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH₄⁺, 53-717 μg/g DW), pH (6.9-7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release of NH₄⁺, the bloom of the microbial biomass, and the change in structure of the bacterial community. These results open new perspectives for basin management since the risk of OM and pollutant transfer to the aquifer is greatly affected by alternating dry and flood periods.

  11. Modeling of Soil Erosion by IntErO model: The Case Study of the Novsicki Potok Watershed, of the Prokletije high mountains of Montenegro

    NASA Astrophysics Data System (ADS)

    Spalevic, Velibor; Al-Turki, Ali M.; Barovic, Goran; Leandro Naves Silva, Marx; Djurovic, Nevenka; Soares Souza, Walisson; Veloso Gomes Batista, Pedro; Curovic, Milic

    2016-04-01

    The application of soil conservation programs to combat erosion and sedimentation are significantly contributing to the protection of the natural resources. Watershed management practices include the assessment of Physical-Geographical, Climate, Geological, Pedological characteristics, including the analysis of Land Use of the regions concerned. The policy makers are increasingly looking for the different land uses and climatic scenarios that can be used for valuable projections for watershed management. To increase knowledge about those processes, use of hydrological and soil erosion models is needed and that is allowing quantification of soil redistribution and sediment productions. We focused on soil erosion processes in one of Northern Montenegrin mountain watersheds, the Novsicki Potok Watershed of the Polimlje River Basin, using modeling techniques: the IntErO model for calculation of runoff and soil loss. The model outcomes were validated through measurements of lake sediment deposition at the Potpec hydropower plant dam. Our findings indicate a medium potential of soil erosion risk. With 464 m³ yr-1 of annual sediment yield, corresponding to an area-specific sediment yield of 270 m³km-2 yr-1, the Novsicki Potok drainage basin belongs to the Montenegrin basins with the medium sediment discharge; according to the erosion type, it is surface erosion. The value of the Z coefficient was calculated on 0.403, what indicates that the river basin belongs to 3rd destruction category (of five). Our results suggest that the calculated peak discharge from the river basin was 82 m3s-1 for the incidence of 100 years. According to our analysis there is a possibility for large flood waves to appear in the studied river basin. With this research we, to some extent, improved the knowledge on the status of sediment yield and runoff of the river basins of Montenegro, where the map of Soil erosion is still not prepared. The IntErO model we used in this study is relatively novel concept and is highly recommended for soil erosion modelling in other river basins similar to the studied watershed, because of its simple identification of critical areas affected by the soil loss caused by soil erosion.

  12. Towards a mechanistic understanding of the linkages between PETM climate modulation and stratigraphy, as discerned from the Piceance Basin, CO, USA

    NASA Astrophysics Data System (ADS)

    Barefoot, E. A.; Nittrouer, J. A.; Foreman, B.; Moodie, A. J.; Dickens, G. R.

    2017-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was a period of rapid climatic change when global temperatures increased by 5-8˚C in as little as 5 ka. It has been hypothesized that by drastically enhancing the hydrologic cycle, this temperature change significantly perturbed landscape dynamics over the ensuing 200 ka. Much of the evidence documenting hydrological variability derives from studies of the stratigraphic record, which is interpreted to encode a system-clearing event in fluvial systems worldwide during and after the PETM. For example, in the Piceance Basin of Western Colorado, it is hypothesized that intensification of monsoons due to PETM warming caused an increase in sediment flux to the basin. The resulting stratigraphy records a modulation of the sedimentation rate, where the PETM interval is represented by a laterally extensive sheet sand positioned between units dominated by floodplain muds. The temporal interval, the sediment provenance history, as well as the tectonic history of the PETM in the Piceance Basin are all well-constrained, leaving climate as the most significant allogenic forcing in the Piceance Basin during the PETM. However, the precise nature of landscape change that link climate forcing by the PETM to modulation of the sedimentation rate in this basin remains to be demonstrated. Here, we present a simple stratigraphic numerical model coupled with a conceptual source-to-sink framework to test the impact of a suite of changing upstream boundary conditions on the fluvial system. In the model, climate-related variables force changes in flow characteristics such as sediment transport, slope, and velocity, which determine the resultant floodplain stratigraphy. The model is based on mathematical relations that link bankfull geometry and water discharge, impacting the lateral migration rate of the channel, sediment transport rate, and avulsion frequency, thereby producing a cross-section of basin stratigraphy. In this way, we simulate a raft of plausible, and mutually exclusive, climate-change scenarios for the case study of the Piceance Basin during the PETM, which may be compared to the stratigraphic record through field observation. The method described here represents a step towards connecting the impacts of global climate change to fluvial systems and sedimentation dynamics.

  13. Sediment budget variation at watershed scale due to anthropogenic pressures, and its relationship to coastal erosion

    NASA Astrophysics Data System (ADS)

    Aiello, Antonello; Adamo, Maria; Canora, Filomena

    2014-05-01

    The transfer of sediments from hydrographic basins towards the coast is a significant pathway of material transfer on Earth. In sedimentary environment, the main portion of sediment that enters the coastal areas is derived originally from erosion in the coastal watersheds. Extensive anthropogenic pressures carried out within coastal basins have long shown negative impacts on littoral environments. In fluvial systems, sediments trapped behind dams and in-stream gravel mining cause the reduction in sediment supply to the coast. Along the Jonian littoral of the Basilicata Region (southern Italy), natural coastal processes have been severely disrupted since the second half of the 20th century as a result of riverbed sand and gravel mining and dam construction, when economic advantages were measured in terms of the development of infrastructure, water storage, and hydropower production for the agricultural, industrial and socio-economic development of the area. Particularly, the large numbers of dams and impoundments that have been built in the hydrographic basins have led a signi?cant reduction on river sediment loads. As a result, the Jonian littoral is experiencing a catalysed erosion phenomenon. In order to increase understanding of the morpho-dynamics of the Jonian littoral environment and more fully appreciate the amount of coastal erosion, an evaluation of the sediment budget change due to dam construction within the hydrographic basins of the Basilicata Region needs to be explored. Since quantitative data on decadal trends in river sediment supply before and after dam construction are lacking, as well as updated dam silting values, river basin assessment of the spatial patterns and estimated amount of sediment erosion and deposition are important in evaluating changes in the sediment budget. As coastal areas are being affected by an increasing number of population and socio-economic activities, the amount of sediment deficit at the littoral can permit to forecast coastline fluctuations caused by such anthropogenic interventions. These are valuable information for both the management of and development of future plans for coastal environments and for reducing exposure risk to coastal erosion. The purpose of this study was to compare and to evaluate the suitability of the RUSLE (Revised Universal Soil Loss Equation), RUSLE 3D and USPED (Unit Stream Power-based Erosion Deposition) models in assessing the sediment budget variation at watershed scale. In order to assess the rate of net soil erosion, the three models were applied to the Bradano river basin and to the sub-basin subtended by the San Giuliano Dam. To this end, digital terrain model, products derived from satellite remote sensing (multi-temporal Landsat imagery), soil texture maps and ancillary data were integrated and processed in a GIS. To test the models, the computed soil erosion rates were integrated over the San Giuliano sub-basin surface, and compared with the dam silting value provided by an interregional authority responsible for its management. The three models have proven to be effective in quantifying the soil erosion at watershed scale.

  14. Comparison among the microbial communities in the lake, lake wetland, and estuary sediments of a plain river network.

    PubMed

    Huang, Wei; Chen, Xing; Wang, Kun; Chen, Junyi; Zheng, Binghui; Jiang, Xia

    2018-06-10

    Sediment microbial communities from plain river networks exert different effects on pollutant transformation and migration in lake basins. In this study, we examined millions of Illumina reads (16S rRNA gene amplicons) to compare lake, lake wetland, and estuary bacterial communities through a technically consistent approach. Results showed that bacterial communities in the sampled lake sediments had the highest alpha-diversity (Group B), than in sampled lake wetland sediments and estuary sediments. Proteobacteria was the most abundant (more than 30%) phyla in all the sediments. The lake sediments had more Nitrospirae (1.63%-11.75%) and Acidobacteria (3.46%-10.21%) than the lake wetland and estuary sediments, and estuary sediments had a greater abundance of the phylum Firmicutes (mean of 22.30%). Statistical analysis (LEfSe) revealed that lake wetland sediments contained greater abundances of the class Anaerolineaceae, orders Xanthomonadales, Pseudomonadales, and genera Flavobacterium, Acinetobacter. The lake sediments had a distinct community of diverse primary producers, such as phylum Acidobacteria, order Ignavibacteriales, and families Nitrospiraceae, Hydrogenophilaceae. Total phosphorus and organic matter were the main factors influencing the bacterial communities in sediments from several parts of the lake wetland and river estuary (p < .05). The novel insights into basin pollution control in plain river networks may be obtained from microbial distribution in sediments from different basin regions. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  15. Neogene paleoceanographic events recorded in an active-margin setting: Humboldt basin, California

    USGS Publications Warehouse

    McCrory, P.A.

    1990-01-01

    Recognition of North Pacific paleoceanographic events in the marginal Humboldt (Eel River) basin of northern California enables correlation of stratigraphic sections and development of a chronostratigraphy. Paleoclimatically related coiling shifts in Neogloboquadrina pachyderma (Ehrenberg) and benthic foraminiferal datums form the basis of the chronostratigraphy. Benthic foraminiferal datums are defined by the occurrence of selected benthic species and abundance maxima of benthic biofacies. The compiled chronostratigraphy is used to refine reconstructions of the depositional history of Humboldt basin. Paleoceanographic events, recognized by the distribution of benthic foraminiferal biofacies, are used to infer paleoceanographic history along the northeastern Pacific margin. The similarity in coiling curves of N. pachyderma from the marine sequence at DSDP Site 173 and the coastal Centerville Beach section of Humboldt basin and at other independently dated sites along the northeastern Pacific margin demonstrates that matching records of climatic oscillations is a reliable method of correlating marine sequences. Benthic fauna from the Centerville Beach section vary in phase with climatically related coiling shifts in N. pachyderma. In particular these data show an increase in displaced neritic fauna during inferred warm intervals and resurgence of deeper bathyal fauna during inferred cool events. Similar data are observed from the inland Eel River section, demonstrating that benthic foraminiferal trends recognized at Centerville Beach can be identified elsewhere in Humboldt basin. This in-phase benthic response to climatic fluctuations probably results from changes in vertical depth range of many benthic species in response to paleoclimatically related vertical changes in water-mass position. Depositional histories reconstructed for two key sites in southern Humboldt basin indicate low rates of sediment accumulation during early basin filling with hemipelagic sediments. Initiation of turbidite sedimentation in the early Pliocene resulted in a sharp increase in rate of sediment accumulation. This increase in rate of sediment accumulation is partially a response to tectonic uplift in the northern Coast Ranges and may be an effect of realignment of motion between the Pacific and North American plates at about this time. The inland site shoaled more rapidly during turbidite sedimentation as a result of a higher rate of sediment accumulation. The rate of sediment accumulation increased again at this site in the late Pliocene during deposition of shelf and nearshore facies. The Eel River region subsided concurrent with deposition of these shallow-water deposits. ?? 1990.

  16. Basins in ARC-continental collisions

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from collisional orogenesis ends up in the foreland basin that forms as a result of collision, and may be preserved largely undeformed. Compared to continent-continent collisional foreland basins, arc-continent collisional foreland basins are short-lived and may undergo partial inversion after collision as a new, active continental margin forms outboard of the collision zone and the orogen whose load forms the basin collapses in extension.

  17. Biogeochemical and Microbial Survey of Gravity Cores from the Guaymas Basin and Sonora Margin

    NASA Astrophysics Data System (ADS)

    Buckley, A.; Mckay, L. J.; Chanton, J.; Hensen, C.; Turner, T.; Aiello, I. W.; Ravelo, A. C.; Mortera, C.; Teske, A.

    2015-12-01

    During the cruise "Guaymas14" with RV El Puma (Oct. 14-25, 2014), 15 sediment cores were obtained from the Guaymas Basin Ridge flanks and the Sonora Margin, to contrast the shallow subsurface sediments of the seafloor set at this spreading center and its adjacent continental margin. Here we present biogeochemical profiles of porewater dissolved gases and stable ions, along with high-throughout 16S rRNA gene sequencing of selected samples. Cores from the NW and SE ends of the Guaymas Basin ridge flanks were not sulfidic, and showed neither sulfate depletion nor methane accumulation. In contrast, samples of compression-impacted Sonora Margin on the NE edge of Guaymas Basin and from the upper Sonora Margin beneath the oxygen minimum zone showed an abundance of sulfide, DIC with sulfate depletion, and accumulation of biogenic methane (δ13C-CH4 ca. -85 to -88 ‰) at supersaturated concentrations below sulfate-replete sediment. Samples from an attenuated off-axis seep site on the NW flank of Guaymas Basin differed from both Sonora Margin and Guaymas Basin. The off-axis seep sediments contained 1 to 1.5 mM methane, with distinct δ13C -isotopic content (δ13C-CH4 near -60 ‰); intermediate to the biogenic methane of the Sonora Margin and the hydrothermally produced methane at Guaymas Basin. Unaltered sulfate and low sulfide concentrations indicate insufficiently reduced conditions, suggesting the methane was not produced in situ. Porewater DIC concentrations in the old seep site and the control site were similar to each other (3-5 mM), and lower than in the Sonora Margin sites (ca. 20-40 mM), indicating low bioremineralization in the old seep site and control sediments. Diverse seafloor habitats are expected to result in distinct microbiota that range from strictly anaerobic seep specialists and methane-cycling archaea in the Sonora Margin to diversified heterotrophic communities in the off-axis ridge flank sediments of Guaymas Basin; high-throughput sequencing should also address potential hydrothermal microbial signature in the attenuated off-axis seep site.

  18. Tectonics and petroleum prospects in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, A.N.

    1995-07-10

    Bangladesh is a part of the Bengal basin, bordered to the west and northwest by Jurassic-early Cretaceous volcanic trap rocks of the Rajmahal Hills, underlain by Precambrian shield and Gondwana sediments. The Bengal basin is the largest delta basin (approximately 23,000 sq miles) in the world, at the confluence of the Ganges and Brahmaputra rivers. The deep sea fan complex that is being built outward into the Bay of Bengal has in excess of 12 km of sediments. Rate of sediment transportation within the basin, from the Himalayas and the mountains and hills to the north, east, and west, exceedsmore » 1 billion tons/year. The tectonic and sedimentary history of Bangladesh is favorable for hydrocarbon accumulation. The basin is an underexplored region of 207,000 sq km where only 52 exploratory wells have been drilled with a success rate of more than 30%. In addition to the folded belt in the east, where gas and some oil have been found, the Garo-Rajmahal gap to the north and the deep sea fan to the south merit detailed exploration using state of the art technology. The paper describes the tectonics, sedimentation, petroleum prospects, and seismic surveys.« less

  19. Review on physical and chemical characterizations of contaminated sediments from urban stormwater infiltration basins within the framework of the French observatory for urban hydrology (SOERE URBIS).

    PubMed

    El-Mufleh, Amelène; Béchet, Béatrice; Ruban, Véronique; Legret, Michel; Clozel, Blandine; Barraud, Sylvie; Gonzalez-Merchan, Carolina; Bedell, Jean-Philippe; Delolme, Cécile

    2014-04-01

    Urban stormwater infiltration basins are designed to hold runoff from impervious surfaces and allow the settling of sediments and associated pollutants. However concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants on groundwater, soils and ecosystems. In this context, sediment characterization represents a key issue for local authorities in terms of management strategies. During the last two decades, several studies were launched including either physical or chemical characterization of stormwater sediments but without real synthesis of data and methods used. Consequently, there is an important need for reviewing the current experimental techniques devoted to the physico-chemical characterization of sediment. The review is based on the outcomes of two experimental sites for which long term monitoring and data collection have been done: the Cheviré basin (near Nantes) and the Django Reinhardt basin (near Lyon). The authors summarize the studies dealing with bulk properties, pollutant contents, their potential mobility and speciation. This paper aims at promoting the significant progresses that were made through a multidisciplinary approach involving multi-scaled and combined experimental techniques.

  20. Late Eocene to present isotopic (Sr-Nd-Pb) and geochemical evolution of sediments from the Lomonosov Ridge, Arctic Ocean: Implications for continental sources and linkage with the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Stevenson, Ross; Poirier, André; Véron, Alain; Carignan, Jean; Hillaire-Marcel, Claude

    2015-09-01

    New geochemical and isotopic (Sr, Nd, Pb) data are presented for a composite sedimentary record encompassing the past 50 Ma of history of sedimentation on the Lomonosov Ridge in the Arctic Ocean. The sampled sediments encompass the transition of the Arctic basin from an enclosed anoxic basin to an open and ventilated oxidized ocean basin. The transition from anoxic basin to open ventilated ocean is accompanied by at least three geochemical and isotopic shifts and an increase in elements (e.g., K/Al) controlled by detrital minerals highlighting significant changes in sediment types and sources. The isotopic compositions of the sediments prior to ventilation are more variable but indicate a predominance of older crustal contributions consistent with sources from the Canadian Shield. Following ventilation, the isotopic compositions are more stable and indicate an increased contribution from younger material consistent with Eurasian and Pan-African crustal sources. The waxing and waning of these sources in conjunction with the passage of water through Fram Strait underlines the importance of the exchange of water mass between the Arctic and North Atlantic Oceans.

  1. Multiple-source tracking: Investigating sources of pathogens, nutrients, and sediment in the Upper Little River Basin, Kentucky, water years 2013–14

    USGS Publications Warehouse

    Crain, Angela S.; Cherry, Mac A.; Williamson, Tanja N.; Bunch, Aubrey R.

    2017-09-20

    The South Fork Little River (SFLR) and the North Fork Little River (NFLR) are two major headwater tributaries that flow into the Little River just south of Hopkinsville, Kentucky. Both tributaries are included in those water bodies in Kentucky and across the Nation that have been reported with declining water quality. Each tributary has been listed by the Kentucky Energy and Environment Cabinet—Kentucky Division of Water in the 303(d) List of Waters for Kentucky Report to Congress as impaired by nutrients, pathogens, and sediment for contact recreation from point and nonpoint sources since 2002. In 2009, the Kentucky Energy and Environment Cabinet—Kentucky Division of Water developed a pathogen total maximum daily load (TMDL) for the Little River Basin including the SFLR and NFLR Basins. Future nutrient and suspended-sediment TMDLs are planned once nutrient criteria and suspended-sediment protocols have been developed for Kentucky. In this study, different approaches were used to identify potential sources of fecal-indicator bacteria (FIB), nitrate, and suspended sediment; to inform the TMDL process; and to aid in the implementation of effective watershed-management activities. The main focus of source identification was in the SFLR Basin.To begin understanding the potential sources of fecal contamination, samples were collected at 19 sites for densities of FIB (E. coli) in water and fluvial sediment and at 11 sites for Bacteroidales genetic markers (General AllBac, human HF183, ruminant BoBac, canid BacCan, and waterfowl GFD) during the recreational season (May through October) in 2013 and 2014. Results indicated 34 percent of all E. coli water samples (n=227 samples) did not meet the U.S. Environmental Protection Agency 2012 recommended national criteria for primary recreational waters. No criterion currently exists for E. coli in fluvial sediment. By use of the Spearman’s rank correlation test, densities of FIB in fluvial sediments were observed to have a statistically significant positive correlation with drainage area. As drainage area increased, so did the densities of FIB in the fluvial sediments. There was no statistically significant correlation between drainage area and FIB in water. The human-associated marker (HF183) was found above the detection limit in 26 percent of the samples (n=120 samples); a higher proportion of positive samples was in the NFLR Basin. The ruminant-associated marker (BoBac) was above the detection limit in 65 percent of samples; a higher proportion of positive samples was in the headwaters of the SFLR Basin.Nutrient yields differed between the SFLR and NFLR Basins. Comparatively, the SFLR Basin produced the largest estimated mean yields of total nitrogen (16,000 pounds per year per square mile (lb/yr/mi2) and nitrite plus nitrate nitrogen (12,500 lb/yr/mi2), and the NFLR Basin produced the largest estimated mean yields of ammonia plus organic nitrogen (4,700 lb/yr/mi2), total phosphorus (1,100 lb/yr/mi2), and orthophosphorus (590 lb/yr/mi2).Nitrate sources in surface water were assessed in both basins using dual-nitrate isotope (nitrogen and oxygen) ratios. Data from the different land uses in the SFLR Basin showed differences in nitrate concentrations and overlapping, but moderately distinct, isotopic signatures. Predominantly forested sites consistently had low nitrate concentrations (median = 0.233 milligrams per liter) with minimal variability, and agricultural sites had the highest nitrate concentrations (median = 7.55 milligrams per liter) with the greatest variability. The median nitrate concentration for sites with mixed land use was 2.66 milligrams per liter. Dual-isotope data for forested sites plotted within ranges characteristic of soil-derived nitrate with possible but minimal influence from recycled atmospheric nitrate. Ranges of dual-isotope data for sites with agricultural and mixed land uses were characteristic of possible mixtures of chemical fertilizer, soil-derived nitrate, and manure and septic wastes. In the NFLR Basin, a positive linear relation was observed between nitrate concentrations and nitrogen isotope ratios (δ15NNO3) (R2=0.56; p-value <0.001) that potentially suggests the NFLR Basin has a higher proportion of δ15NNO3-enriched sources, such as manure and sewage. However, mixing of other nitrate-derived sources cannot be excluded, because many values of δ15NNO3 and concentrations of nitrate showed minimal variation and plotted within dual-nitrate isotope ranges characteristic of fertilizer and soil-derived nitrate sources.A sediment-fingerprinting approach was used to quantify the relative contribution of four upland sources in the SFLR Basin (agricultural, pasture, riparian/forest, and streambank) to understand how land management affects suspended-sediment concentration. Carbon isotope ratios (δ13C), together with calcium and carbon concentrations, were the best indicators of sediment source; the uncertainty was less than 11 percent. Fine-sediment samples collected at the SFLR Basin outlet indicated streambanks as the largest source of the fine sediment to the stream followed by cropland and riparian/forest-source areas, respectively; pasture was a minor contributing source. Streambanks and cropland were essentially equal contributors of fine sediment at the NFLR Basin outlet.

  2. Regional tectonic framework of the Pranhita Godavari basin, India

    NASA Astrophysics Data System (ADS)

    Biswas, S. K.

    2003-03-01

    The Pranhita-Godavari Gondwana rift (PGR) has a co-genetic relationship with Permo-Triassic reactivation of the Narmada-Son Geofracture (NSG). The Satpura Gondwana basin represents the terminal depocentre against the NSG, which restricted the northwestward propagation of the PGR. The NE-SW tensional stress responsible for the NW-SE trending PGR could not propagate beyond the ramp formed by uplift along the NSG and transformed kinetically into an ENE directed horizontal shear along the NSG, inducing large scale strike-slip movements. The latter dynamics were responsible for ENE extension of the Satpura rift as a pull-apart basin. The PGR extends up to the present east coast of India, where it is apparently terminated by the NE-SW trending Bapatla ridge along the Eastern Ghat Rift (EGR). The subsurface data, however, shows that the PGR extends across the Bapatla ridge and continues beneath the Cretaceous-Tertiary sediments of the Krishna-Godavari basin (KG) in the EGR. Thus, the Permo-Triassic PGR appears to have continued in the Indo-Antarctic plate before the Cretaceous break up. The EGR, during break up of the continents, cuts across the PGR and the KG basin was superimposed on it. The PGR site is located on a paleo-suture between the Dharwar and Bastar proto-cratons. The master faults developed bordering the rift, and the intra-rift higher order faults followed the pre-existing fabric. The transverse transfer zones manifested as basement ridges, divide the rift into segments of tectono-sedimentary domains. The major domains are the Chintalapudi, Godavari, and Chandrapur sub-basins, each of which subsided differentially. The central Godavari sub-basin subsided most and shows maximum structural complexity and sediment accommodation. The rifting started with initial half-graben faulting along the northeastern master fault and expanded by successive half graben faulting. This gave rise to intra-basinal horsts and grabens, which exercised control on the syn-rift sedimentation. The southeastern boundary fault developed as a strike-slip fault in response to plate rotation and the rift expansion was constrained by it.The basin fill sediments were deposited during two rifting events—Early Permian to (?) Early Jurassic Lower Gondwana rifting, and Early Cretaceous Upper Gondwana rifting. The Lower Gondwana sedimentation started with a pre-rift crustal sagging over the rift site and was filled by glaciogenic Talchir sediments. This was followed by syn-rift-fluvial sedimentation in repeating cycles during the early to late rift stages. Early Cretaceous Chikiala and Gangapur sediments were deposited during the Upper Gondwana rifting. The fluvial cycles were tectonically controlled during each rift stage. The absence of igneous intrusions indicates that the PGR is a passive rift in contrast to the rifts developed in the NSG zone.

  3. Influence of attenuated lithosphere and sediment loading on flexure of the deep-water Magallanes retroarc foreland basin, Southern Andes

    NASA Astrophysics Data System (ADS)

    Fosdick, Julie C.; Graham, Stephan A.; Hilley, George E.

    2014-12-01

    Flexural subsidence in foreland basins is controlled by applied loads—such as topography, water/sediment, and subcrustal forces—and the mechanical properties of the lithosphere. We investigate the controls on subsidence observed within the Upper Cretaceous Magallanes retroarc foreland basin of southern South America to evaluate the impact of lateral variations in flexural rigidity due to Late Jurassic extension. Conventional elastic models cannot explain the observed basin deflection and thick accumulation of deep-water Cenomanian-Turonian basin strata. However, models in which the lithosphere has been previously thinned and deflects under topographic and sedimentary loads successfully reproduce regional subsidence patterns. Results satisfy paleobathymetric observations in the Magallanes Basin and suggest that lithospheric thinning is necessary to produce both long-wavelength and deep subsidence during Late Cretaceous basin evolution. Results indicate that elastic thickness decreases westward from 45-25 km in the distal foreland to 37-15 km beneath the foredeep. These findings are consistent with a westward reduction in crustal thickness associated with the Jurassic extensional history of the Patagonian lithosphere. Our results also show that sediment loading exerts an important control on regional deflection patterns and promotes a wider region of subsidence and reduced forebulge uplift. We propose that lateral variations in mechanical properties and large sediment loads restrict depocenter migration and may cause the foredeep to remain fixed for prolonged periods of time. These findings confirm that loading of thinned lithosphere imposes different mechanical controls on the flexural profile and have potential implications for other retroarc foreland basins characterized by earlier extensional histories.

  4. Volcano-sedimentary characteristics in the Abu Treifiya Basin, Cairo-Suez District, Egypt: Example of dynamics and fluidization over sedimentary and volcaniclastic beds by emplacement of syn-volcanic basaltic rocks

    NASA Astrophysics Data System (ADS)

    Khalaf, E. A.; Abdel Motelib, A.; Hammed, M. S.; El Manawi, A. H.

    2015-12-01

    This paper describes the Neogene lava-sediment mingling from the Abu Treifiya Basin, Cairo-Suez district, Egypt. The lava-sediment interactions as peperites have been identified for the first time at the study area and can be used as paleoenvironmental indicators. The identification of peperite reflects contemporaneous time relationship between volcanism and sedimentation and this finding is of primary importance to address the evolutional reconstruction of the Abu Treifiya Basin. Characterization of the facies architecture and textural framework of peperites was carried out through detailed description and interpretation of their outcrops. The peperites and sedimentary rocks are up to 350 m thick and form a distinct stratigraphic framework of diverse lithology that is widespread over several kilometers at the study area. Lateral and vertical facies of the peperites vary from sediment intercalated with the extrusive/intrusive basaltic rocks forming peperitic breccias to lava-sediment contacts at a large to small scales, respectively. Peperites encompass five main facies types ascribed to: (i) carbonate sediments-hosted fluidal and blocky peperites, (ii) lava flow-hosted blocky peperites, (iii) volcaniclastics-hosted fluidal and blocky peperites, (iv) sandstone/siltstone rocks-hosted blocky peperites, and (iv) debris-flows-hosted blocky peperites. Soft sediment deformation structures, vesiculated sediments, sediments filled-vesicles, and fractures in lava flows indicate that lava flows mingled with unconsolidated wet sediments. All the peperites in this study could be described as blocky or fluidal, but mixtures of different clast shapes occur regardless of the host sediment. The presence of fluidal and blocky juvenile clasts elucidates different eruptive styles, reflecting a ductile and brittle fragmentation. The gradual variation from fluidal to blocky peperite texture, producing the vertical grading is affected by influencing factors, e.g., the viscosity, magma temperature, confining pressure, sediment fluidization, and vapor film at the magma-sediment interactions. Peperites in the study area record deposition within a shallow marine and fluvio-lacustrine environment accumulated in a rift-related basin developed during pre- to syn-rift phase, respectively. The facies transitions (peperites) in this area resulted from the explosive and sediment depositional processes, which were mingled separately by volcanism under contrast geological conditions. The development of such contrast in the depositional sequences reflects variation in the accommodation to sediment supply in the same accumulation space inside the depocenters during the rifting of the Abu Treifiya Basin. Hydrothermal mineralizations comprising quartz and carbonate are restricted to peperites and lava flows.

  5. Internal loading of phosphate in Lake Erie Central Basin.

    PubMed

    Paytan, Adina; Roberts, Kathryn; Watson, Sue; Peek, Sara; Chuang, Pei-Chuan; Defforey, Delphine; Kendall, Carol

    2017-02-01

    After significant reductions in external phosphorus (P) loads, and subsequent water quality improvements in the early 1980s, the water quality of Lake Erie has declined considerably over the past decade. The frequency and magnitude of harmful algal blooms (primarily in the western basin) and the extent of hypoxic bottom waters in the central basin have increased. The decline in ecosystem health, despite meeting goals for external P loads, has sparked a renewed effort to understand P cycling in the lake. We use pore-water P concentration profiles and sediment cores incubation experiments to quantify the P flux from Lake Erie central basin sediments. In addition, the oxygen isotopes of phosphate were investigated to assess the isotopic signature of sedimentary phosphate inputs relative to the isotopic signature of phosphate in lake water. Extrapolating the total P sediment flux based on the pore-water profiles to the whole area of the central basin ranged from 300 to 1250metric tons per year and using the flux based on core incubation experiments an annual flux of roughly 2400metric tons of P is calculated. These estimates amount to 8-20% of the total external input of P to Lake Erie. The isotopic signature of phosphate in the extractable fraction of the sediments (~18‰) can explain the non-equilibrium isotope values of dissolved phosphate in the deep water of the central basin of Lake Erie, and this is consistent with sediments as an important internal source of P in the Lake. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The Pliocene-Pleistocene sedimentary tectonic history of NW California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, L.; Moley, K.; Aalto, K.R.

    1993-04-01

    A thick sequence of Late Miocene to Pleistocene sediments thought to represent deposition in a Neogene forearc basin are preserved in the structural basin referred to as the Eel River basin' located offshore of NW California and SE Oregon. The southern portion of this structural basin comes on land in the vicinity of Eureka where the marine and fluvial Wildcat Group is exposed. Basal Wildcat Group sediments are fluvial and littorial. Marine sandstones of the Wildcat Group contain K-spar concentrations of 5.5% and are believed to represent a fresh source. [sup 40]Ar/[sup 39]Ar laser probe analyses of Wildcat Group micasmore » yield dates of 52--57, 66--75, 128.5 and 299--303 Ma. The presence of Idaho detritus throughout the Neogene Wildcat Group indicates that the Klamath Mountains remained low during the Pliocene and early Pleistocene. Younger fluvial sediments in this region contain primarily locally derived detritus indicating local uplift of the Klamath Mountains. To the north, at Crescent City, thin remnants of the near-shore Saint George Formation and the eastern estuarine and fluvial Wimer Formation are lowermost Pliocene in age (5 ma). The presence of the highly erodible Wilmer Formation on uplifted plateaus in an area of extreme rainfall suggest that these sediments represent only the lowermost portion of an originally much thicker sequence. Consequently, the sediments confined to the present day Eel River basin do not represent the lateral extent of the original forearc basin. Sandstones and conglomerates of the Saint George and Wimer Formation indicate a local Klamath provenance derivation.« less

  7. Mississippi Basin Carbon Project science plan

    USGS Publications Warehouse

    Sundquist, E.T.; Stallard, R.F.; Bliss, N.B.; Markewich, H.W.; Harden, J.W.; Pavich, M.J.; Dean, M.D.

    1998-01-01

    Understanding the carbon cycle is one of the most difficult challenges facing scientists who study the global environment. Lack of understanding of global carbon cycling is perhaps best illustrated by our inability to balance the present-day global CO2 budget. The amount of CO2 produced by burning fossil fuels and by deforestation appears to exceed the amount accumulating in the atmosphere and oceans. The carbon needed to balance the CO2 budget (the so-called "missing" carbon) is probably absorbed by land plants and ultimately deposited in soils and sediments. Increasing evidence points toward the importance of these terrestrial processes in northern temperate latitudes. Thus, efforts to balance the global CO2 budget focus particular attention on terrestrial carbon uptake in our own North American "backyard."The USGS Mississippi Basin Carbon Project conducts research on the carbon budget in soils and sediments of the Mississippi River basin. The project focuses on the effects of land-use change on carbon storage and transport, nutrient cycles, and erosion and sedimentation throughout the Mississippi River Basin. Particular emphasis is placed on understanding the interactions among changes in erosion, sedimentation, and soil dynamics. The project includes spatial analysis of a wide variety of geographic data sets, estimation of whole-basin and sub-basin carbon and sediment budgets, development and implementation of terrestrial carbon-cycle models, and site-specific field studies of relevant processes. The USGS views this project as a "flagship" effort to demonstrate its capabilities to address the importance of the land surface to biogeochemical problems such as the global carbon budget.

  8. Fluvial sediment study of Fishtrap and Dewey Lakes drainage basins, Kentucky - Virginia

    USGS Publications Warehouse

    Curtis, William F.; Flint, Russell F.; George, Frederick H.; Santos, John F.

    1978-01-01

    Fourteen drainage basins above Fishtrap and Dewey Lakes in the Levisa Fork and Johns Creek drainage basins of eastern Kentucky and southwestern Virginia were studied to determine sedimentation rates and origin of sediment entering the two lakes. The basins ranged in size from 1.68 to 297 square miles. Sediment yields ranged from 2,890 to 21,000 tons per square mile where surface-mining techniques predominated, and from 732 to 3 ,470 tons per square mile where underground mining methods predominated. Yields, in terms of tons per acre-foot of runoff, ranged from 2.2 to 15 for surface-mined areas, and from 0.5 to 2.7 for underground-mined areas. Water and sediment discharges from direct runoff during storms were compared for selected surface-mined and underground-mined areas. Data points of two extensively surface-mined areas, one from the current project and one from a previous project in Beaver Creek basin, McCreary County, Kentucky, grouped similarly in magnitude and by season. Disturbed areas from mining activities determined from aerial photographs reached 17 percent in one study area where extensive surface mining was being practiced. For most areas where underground mining was practiced, percentage disturbed area was almost negligible. Trap efficiency of Fishtrap Lake was 89 percent, and was 62 percent for Dewey Lake. Average annual deposition rates were 464 and 146 acre-feet for Fishtrap and Dewey Lakes, respectively. The chemical quality of water in the Levisa Fork basin has been altered by man 's activities. (Woodard-USGS)

  9. 76 FR 59121 - Notice of Availability of the Record of Decision for the Final Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... lined open channels; grade control structures; bridges and drainage crossings; building pads; and water quality control facilities (sedimentation control, flood control, debris, and water quality basins). The... facilities (sedimentation control, flood debris, and water quality basins); regular and ongoing maintenance...

  10. The distribution of hillslope-channel interactions in a rangeland watershed

    Treesearch

    Leslie M. Reid

    1998-01-01

    The distribution of erosion and deposition in a basin--and thus of the major controls on basin evolution--is dependent upon the local balance between sediment transport and sediment supply. This balance, in turn, reflects the nature, strength, and distribution of interactions between hillslope and channel processes.

  11. Simulating sediment loading into the major reservoirs in Trinity River Basin

    USDA-ARS?s Scientific Manuscript database

    The Upper Trinity Basin supplies water to about one-fourth of Texas' population. The anticipated rapid growth of North Central Texas will certainly increase regional demands for high quality drinking water. This has increased concerns that sediment and nutrient loads received by drinking water reser...

  12. A framework for spatial and temporal analysis of hillslope-channel coupling in a dryland basin 2401

    USDA-ARS?s Scientific Manuscript database

    The long-term evolution of channel longitudinal profiles within drainage basins is partly determined by the relative balance of hillslope sediment supply to channels and the evacuation of channel sediment. However, the lack of theoretical understanding of the physical processes of hillslope-channel...

  13. Arsenic in rocks and stream sediments of the central Appalachian Basin, Kentucky

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Goldhaber, Martin B.; Ruppert, Leslie F.; Hower, James C.

    2002-01-01

    Arsenic (As) enrichment in coal and stream sediments has been documented in the southern Appalachian basin (see Goldhaber and others, submitted) and is attributed to interaction of rocks and coal with metamorphic fluids generated during the Allegheny Orogeny (late Paleozoic). Similarly derived fluids are expected to affect the coal and in the Kentucky Appalachian Basin to the north as well. In addition, similar processes may have influenced the Devonian oil shale on the western margin of the basin. The major goals of this study are to determine the effect such fluids had on rocks in the Kentucky Appalachian basin (fig. 1), and to understand the geochemical processes that control trace-metal source, residence, and mobility within the basin. This report includes data presented in a poster at the USGS workshop on arsenic (February 21 and 22, 2001), new NURE stream sediment data3 , and field data from a trip in April 2001. Although data for major and minor elements and all detectable trace metals are reported in the Appendices, the narrative of this report primarily focuses on arsenic.

  14. Work plan for the Sangamon River basin, Illinois

    USGS Publications Warehouse

    Stamer, J.K.; Mades, Dean M.

    1983-01-01

    The U.S. Geological Survey, in cooperation with the Division of Water Resources of the Illinois Department of Transportation and other State agencies, recognizes the need for basin-type assessments in Illinois. This report describes a plan of study for a water-resource assessment of the Sangamon River basin in central Illinois. The purpose of the study would be to provide information to basin planners and regulators on the quantity, quality, and use of water to guide management decisions regarding basin development. Water quality and quantity problems in the Sangamon River basin are associated primarily with agricultural and urban activities, which have contributed high concentrations of suspended sediment, nitrogen, phosphorus, and organic matter to the streams. The impact has resulted in eutrophic lakes, diminished capacity of lakes to store water, low concentrations of dissolved oxygen, and turbid stream and lake waters. The four elements of the plan of study include: (1) determining suspended sediment and nutrient transport, (2) determining the distribution of selected inorganic and organic residues in streambed sediments, (3) determining the waste-load assimilative capacity of the Sangamon River, and (4) applying a hydraulic model to high streamflows. (USGS)

  15. Overview of the evolution of clay mineralogy in the Gulf of Mexico: implications for regional climate and drainage history of the Mississippi and Brazos-Trinity Rivers

    NASA Astrophysics Data System (ADS)

    Adatte, T.; John, C. M.; Flemings, P. B.; Behrmann, J.

    2005-12-01

    In this paper we present the overview and preliminary results of the analysis of clay minerals in two mini basins drilled during IODP Expedition 308. The goal of our project is to explore the vertical and temporal trends in clay mineralogy in the Ursa Basin and the Brazos-Trinity basin #4. The Brazos-Trinity basin was the sink for sands and clays carried by the Brazos and Trinity Rivers, while the Ursa basin was the sink for sediments carried by the Mississippi river. Reconstructing clay minerals (phyllosilicates <2μm in size) accumulations at these locations could thus potentially yield information on changes in the transport and the source of the siliclastic material transported in the course of the Pleistocene by these three rivers. Moreover, because the type of clay formed in soils through weathering processes largely depend on temperature and amount of precipitation, the dataset generated could provide clues on past climate changes. Some of the mechanisms that are hypothesized to play a major role in controlling clay accumulation in the basins investigated are reworking of clays on the American continent (controlled at the time-scale investigated here by changes in precipitation) and turbidity current deposition (controlled mainly by sea-level changes and thus glacio-eustasy). Finally, a major focusing point of Expedition 308 was sediment physical properties in an overpressured basin. Because each clay mineral specie has a specific average grain sizes, physical properties and cation exchange capacity, the clay mineral composition of the sediment investigated here (dominated by clay-sized particles) may partly control how these sediments react to changes in pressure and temperature. Thus, clay mineral data could contribute to our understanding of the physical properties of the sediments in overpressured basins, and collaborations with geotechnical scientist are planned.

  16. Structure and sediment budget of Yinggehai-Song Hong basin, South China Sea: Implications for Cenozoic tectonics and river basin reorganization in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Lei, Chao; Ren, Jianye; Sternai, Pietro; Fox, Matthew; Willett, Sean; Xie, Xinong; Clift, Peter D.; Liao, Jihua; Wang, Zhengfeng

    2015-08-01

    The temporal link between offshore stratigraphy and onshore topography is of key importance for understanding the long-term surface evolution of continental margins. Here we present a grid of regional, high-quality reflection seismic and well data to characterize the basin structure. We identify fast subsidence of the basin basement and a lack of brittle faulting of the offshore Red River fault in the Yinggehai-Song Hong basin since 5.5 Ma, despite dextral strike-slip movement on the onshore Red River fault. We calculate the upper-crustal, whole-crustal, and whole-lithospheric stretching factors for the Yinggehai-Song Hong basin, which show that the overall extension observed in the upper crust is substantially less than that observed for the whole crust or whole lithosphere. We suggest that fast basement subsidence after 5.5 Ma may arise from crustal to lithospheric stretching by the regional dynamic lower crustal/mantle flow originated by collision between India-Eurasia and Indian oceanic subduction below the Eurasian margin. In addition, we present a basin wide sediment budget in the Yinggehai-Song Hong basin to reconstruct the sedimentary flux from the Red River drainage constrained by high-resolution age and seismic stratigraphic data. The sediment accumulation rates show a sharp increase at 5.5 Ma, which suggests enhanced onshore erosion rates despite a slowing of tectonic processes. This high sediment supply filled the accommodation space produced by the fast subsidence since 5.5 Ma. Our data further highlight two prominent sharp decreases of the sediment accumulation at 23.3 Ma and 12.5 Ma, which could reflect a loss of drainage area following headwater capture from the Paleo-Red River. However, the low accumulation rate at 12.5 Ma also correlates with drier and therefore less erosive climatic conditions.

  17. Sediment oxygen demand in the Saddle River and Salem River watersheds, New Jersey, July-August 2008

    USGS Publications Warehouse

    Heckathorn, Heather A.; Gibs, Jacob

    2010-01-01

    Many factors, such as river depth and velocity, biochemical oxygen demand, and algal productivity, as well as sediment oxygen demand, can affect the concentration of dissolved oxygen in the water column. Measurements of sediment oxygen demand, in conjunction with those of other water-column water-quality constituents, are useful for quantifying the mechanisms that affect in-stream dissolved-oxygen concentrations. Sediment-oxygen-demand rates are also needed to develop and calibrate a water-quality model being developed for the Saddle River and Salem River Basins in New Jersey to predict dissolved-oxygen concentrations. This report documents the methods used to measure sediment oxygen demand in the Saddle River and Salem River watersheds along with the rates of sediment oxygen demand that were obtained during this investigation. In July and August 2008, sediment oxygen demand was measured in situ in the Saddle River and Salem River watersheds. In the Saddle River Basin, sediment oxygen demand was measured twice at two sites and once at a third location; in the Salem River Basin, sediment oxygen demand was measured three times at two sites and once at a third location. In situ measurements of sediment oxygen demand in the Saddle River and Salem River watersheds ranged from 0.8 to 1.4 g/m2d (grams per square meter per day) and from 0.6 to 7.1 g/m2d at 20 degrees Celsius, respectively. Except at one site in this study, rates of sediment oxygen demand generally were low. The highest rate of sediment oxygen demand measured during this investigation, 7.1 g/m2d, which occurred at Courses Landing in the Salem River Basin, may be attributable to the consumption of oxygen by a large amount of organic matter (54 grams per kilogram as organic carbon) in the streambed sediments or to potential error during data collection. In general, sediment oxygen demand increased with the concentration of organic carbon in the streambed sediments. Repeated measurements made 6 to 7 days apart at the same site locations resulted in similar values.

  18. Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins

    USGS Publications Warehouse

    Cartwright, R.; Clayton, J.A.; Kirk, R.L.

    2011-01-01

    Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0-5.0) for dendritic networks; comparisons with Rb values determined for Titan basins, in conjunction with similarities in network patterns, suggest that portions of Titan's north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sediment transport rates in at least one Titan basin, indicating that 75mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sediment transport estimates suggest that ???6700-10,000 Titan years (???2.0-3.0??105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1m and 1.5m flows); these lowering rates increase to ???27,000-41,000 Titan years (???8.0-12.0??105 Earth years) when flows in the north polar region are restricted to summer months. ?? 2011 Elsevier Inc.

  19. An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Solomon River Basin

    USGS Publications Warehouse

    May, T.W.; Fairchild, J.F.; Petty, J.D.; Walther, M.J.; Lucero, J.; Delvaux, M.; Manring, J.; Armbruster, M.

    2008-01-01

    The Solomon River Basin is located in north-central Kansas in an area underlain by marine geologic shales. Selenium is an indigenous constituent of these shales and is readily leached into the surrounding groundwater. Portions of the Basin are irrigated primarily through the pumping of selenium-contaminated groundwater from wells onto fields in agricultural production. Water, sediment, macroinvertebrates, and fish were collected from various sites in the Basin in 1998 and analyzed for selenium. Selenium concentrations were analyzed spatially and temporally and compared to reported selenium toxic effect thresholds for specific ecosystem components: water, sediments, food-chain organisms, and wholebody fish. A selenium aquatic hazard assessment for the Basin was determined based on protocol established by Lemly. Throughout the Basin, water, macroinvertebrate, and whole fish samples exceeded levels suspected of causing reproductive impairment in fish. Population structures of several fish species implied that successful reproduction was occurring; however, the influence of immigration of fish from low-selenium habitats could not be discounted. Site-specific fish reproduction studies are needed to determine the true impact of selenium on fishery resources in the Basin. ?? Springer Science+Business Media B.V. 2007.

  20. Sediment Quality and Comparison to Historical Water Quality, Little Arkansas River Basin, South-Central Kansas, 2007

    USGS Publications Warehouse

    Juracek, Kyle E.; Rasmussen, Patrick P.

    2008-01-01

    The spatial and temporal variability in streambed-sediment quality and its relation to historical water quality was assessed to provide guidance for the development of total maximum daily loads and the implementation of best-management practices in the Little Arkansas River Basin, south-central Kansas. Streambed-sediment samples were collected at 26 sites in 2007, sieved to isolate the less than 63-micron fraction (that is, the silt and clay), and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclides beryllium-7, cesium-137, lead-210, and radium-226. At eight sites, streambed-sediment samples also were collected and analyzed for bacteria. Particulate nitrogen, phosphorus, and organic carbon concentrations in the streambed sediment varied substantially spatially and temporally, and positive correlations among the three constituents were statistically significant. Along the main-stem Little Arkansas River, streambed-sediment concentrations of particulate nitrogen and phosphorus generally were larger at and downstream from Alta Mills, Kansas. The largest particulate nitrogen concentrations were measured in samples collected in the Emma Creek subbasin and may be related to livestock and poultry production. The largest particulate phosphorus concentrations in the basin were measured in samples collected along the main-stem Little Arkansas River downstream from Alta Mills, Kansas. Particulate nitrogen, phosphorus, and organic carbon content in the water and streambed-sediment samples typically decreased as streamflow increased. This inverse relation may be caused by an increased contribution of sediment from channel-bank sources during high flows and (or) increased particle sizes transported by the high flows. Trace element concentrations in the streambed sediment varied from site to site and typically were less than threshold-effects guidelines for possible adverse biological effects. The largest copper, lead, silver, and zinc concentrations, measured for a sample collected from Sand Creek downstream from Newton, Kansas, likely were related to urban sources of contamination. Radionuclide activities and bacterial densities in the streambed sediment varied throughout the basin. Variability in the former may be indicative of subbasin differences in the contribution of sediment from surface-soil and channel-bank sources. Streambed sediment may be useful for reconnaissance purposes to determine sources of particulate nitrogen, phosphorus, organic carbon, and other sediment-associated constituents in the basin. If flow conditions prior to streambed-sediment sampling and during water-quality sampling are considered, it may be possible to use streambed sediment as an indicator of water quality for nitrogen, phosphorus, and organic carbon. Flow conditions affect sediment-associated constituent concentrations in streambed-sediment and water samples, in part, because the sources of sediment (surface soils, channel banks) can vary with flow as can the size of the particles transported.

  1. Cosmogenic nuclide budgeting of floodplain sediment transfer

    NASA Astrophysics Data System (ADS)

    Wittmann, H.; von Blanckenburg, F.

    2009-08-01

    Cosmogenic nuclides produced in quartz may either decay or accumulate while sediment is moved through a river basin. A change in nuclide concentration resulting from storage in a floodplain is potentially important in large drainage basins in which sediment is prone to repeated burial and remobilization as a river migrates through its floodplain. We have modeled depth- and time-dependent cosmogenic nuclide concentration changes for 10Be, 26Al, and 14C during sediment storage and mixing in various active floodplain settings ranging from confined, shallow rivers with small floodplains to foreland-basin scale floodplains traversed by deep rivers. Floodplain storage time, estimated from channel migration rates, ranges from 0.4 kyr for the Beni River basin (Bolivia) to 7 kyr for the Amazon River basin, while floodplain storage depth, estimated from channel depth, ranges from 1 to 25 m. For all modeled active floodplain settings, the long-lived nuclides 10Be and 26Al show neither significant increase in nuclide concentration from irradiation nor decrease from decay. We predict a hypothetical response time after which changes in 10Be or 26Al concentrations become analytically resolvable. This interval ranges from 0.07 to 2 Myr and exceeds in all cases the typical residence time of sediment in a floodplain. Due to the much shorter half life of 14C, nuclide concentrations modeled for the in situ-produced variety of this nuclide are, however, sensitive to floodplain storage on residence times of < 20 kyr. The cosmogenic nuclide composition of old deposits in currently inactive floodplains that have been isolated for periods of millions of years from the river that once deposited them is predicted to either increase or decrease in 10Be and 26Al concentration, depending on the depositional depth. These conditions can be evaluated using the 26Al/ 10Be ratio that readily discloses the depth and duration of storage. We illustrate these models with examples from the Amazon basin. As predicted, modern bedload collected from an Amazon tributary, the Bolivian Beni River, shows no systematic change in nuclide concentration as sediment is moved through 500 km of floodplain by river meandering. In contrast, in the central Amazon floodplain currently untouched by the modern river system, low 26Al/ 10Be ratios account for minimum burial depths of 5 to 10 m for a duration of > 5 Myr. The important result of this analysis is that in all likely cases of active floodplains, cosmogenic 10Be and 26Al concentrations remain virtually unchanged over the interval sediment usually spends in the basin. Thus, spatially-averaged denudation rates of the sediment-producing area can be inferred throughout the entire basin, provided that nuclide production rates are scaled for the altitudes of the sediment-producing area only, because floodplain storage does not modify nuclide concentrations introduced from the sediment source area.

  2. Global scale modeling of riverine sediment loads: tropical rivers in a global context

    NASA Astrophysics Data System (ADS)

    Cohen, Sagy; Syvitski, James; Kettner, Albert

    2015-04-01

    A global scale riverine sediment flux model (termed WBMsed) is introduced. The model predicts spatially and temporally explicit water, suspended sediment and nutrients flux in relatively high resolutions (6 arc-min and daily). Modeled riverine suspended sediment flux through global catchments is used in conjunction with observational data for 35 tropical basins to highlight key basin scaling relationships. A 50 year, daily model simulation illuminates how precipitation, relief, lithology and drainage basin area affect sediment load, yield and concentration. Tropical river systems, wherein much of a drainage basin experiences tropical climate are strongly influenced by the annual and inter-annual variations of the Inter-tropical Convergence Zone (ITCZ) and its derivative monsoonal winds, have comparatively low inter-annual variation in sediment yield. Rivers draining rainforests and those subjected to tropical monsoons typically demonstrate high runoff, but with notable exceptions. High rainfall intensities from burst weather events are common in the tropics. The release of rain-forming aerosols also appears to uniquely increase regional rainfall, but its geomorphic manifestation is hard to detect. Compared to other more temperate river systems, climate-driven tropical rivers do not appear to transport a disproportionate amount of particulate load to the world's oceans, and their warmer, less viscous waters are less competent. Multiple-year hydrographs reveal that seasonality is a dominant feature of most tropical rivers, but the rivers of Papua New Guinea are somewhat unique being less seasonally modulated. Local sediment yield within the Amazon is highest near the Andes, but decreases towards the ocean as the river's discharge is diluted by water influxes from sediment-deprived rainforest tributaries

  3. Subduction, erosion and the sediment record: Insights from Miocene sediments, Hengchun Peninsula, Taiwan

    NASA Astrophysics Data System (ADS)

    Kirstein, Linda; Carter, Andrew; Chen, Yue-Gau

    2010-05-01

    Detrital sedimentary records include vast archives of material that have been removed from developing tectonically active regions. These archives have been used to investigate challenging questions on continental deformation, exhumation and palaeodrainage using a variety of different techniques including heavy minerals, fission-track dating and palaeocurrent reconstructions. The Hengchun Peninsula of southern Taiwan and offshore Hengchun Ridge form a present day accretionary prism, with accretionary wedge growth occurring both by frontal accretion, with sediments from the continental margin scraped up into the accretionary wedge and by underplating. Miocene sediments in Hengchun include foreland basin deposits, deep marine turbidites and forearc basin deposits. As a result the detrital sediments record details of accretionary prism growth associated with continued Luzon arc-continent collision. Diametrically opposite palaeocurrents are preserved in the Miocene sandstones of the Hengchun Peninsula, southern Taiwan. Controversial explanations include an exotic source terrane to the south and/or 180 ° rotation of a depositional basin. We document the tecto-thermal evolution of the Miocene sediment source(s) using a double dating approach. U-Pb grain ages range from Miocene to Archaean, while zircon fission-tracks record thermal cooling primarily in the Cretaceous with minor peaks in the Miocene, Triassic, Jurassic and Permian. The primary source of the Miocene sediments at the centre of the controversy was similar. Palaeocurrent data are influenced by local basin geometry and submarine topography and suggest that sediment deposition in the Miocene was strongly controlled by incipient subduction, associated structural trends and submarine topography. A similar control on deposition in the modern Taiwan collision zone is apparent in the offshore region today.

  4. Modeling of soil erosion and sediment transport in the East River Basin in southern China

    USGS Publications Warehouse

    Wu, Yping; Chen, Ji

    2012-01-01

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide.

  5. Sediment transport by streams in the Walla Walla basin, Washington and Oregon, July 1962-June 1965

    USGS Publications Warehouse

    Mapes, B.E.

    1969-01-01

    The Walla Walla River basin covers about 1,760 square miles in southeastern Washington and northeastern Oregon. From the 6,000-foot crest of the Blue Mountains on the east to the 340-foot altitude of Lake Wallula (Columbia River) on the west, the basin is drained by the Touchet River and Dry Creek, entirely within Washington, and by Mill Creek, North and South Forks Walla Walla River, and Pine Creek-Dry Creek, which all head in Oregon. The central lowland of the basin is bordered on the north by Eureka Flat, Touchet slope, and Skyrocket Hills, on the east by the Blue Mountains, and on the south by the Horse Heaven Hills. The basin is underlain by basalt of the Columbia River Group, which .is the only consolidated rock to crop out in the region. Various unconsolidated fluviatile, lacustrine, and eolian sediments cover the basalt. In the western part of the basin the basalt is overlain by lacustrine deposits of silt and sand which in places are mantled by varying thicknesses of loessal deposits. In the northern and central parts of the basin the loess is at least 100 feet thick. The mountainous eastern part of the basin is underlain at shallow depth by basalt which has a residual soil mantle weathered from the rock. The slopes of the mountains are characterized by alluvial fans and deeply cut stream valleys ,filled with alluvium of sand, gravel, and cobbles. Average annual precipitation in the basin ranges from less than 10 inches in the desert-like areas of the west to more than 45 inches in the timbered mountains of the east; 65 percent of the precipitation occurs from October through March. The average runoff from the basin is about 4.8 inches per year. Most of the runoff occurs during late winter and early spring. Exceptionally high runoff generally results from rainfall and rapid melting of snow on partially frozen ground. During the study period, July 1964-June 1965, average annual sediment yields in the basin ranged from 420 tons per square mile in the mountainous area to more than 4,000 tons per square mile in the extensively cultivated northern and central parts of the basin, which are drained by the Touchet River and Dry Creek. The Touchet River and Dry Creek transported approximately 80 percent of the total sediment load discharged from the Walla Walla River basin. The highest concentrations were contributed by the loessal deposits in the Dry Creek drainage. Two runoff events resulting from rain and snowmelt on partially frozen ground produced 76 percent of the suspended sediment discharged from the basin during the study period. The maximum concentration measured, 316,000 milligrams per liter, was recorded for Dry Creek at Lowden on December 23. 1964. Daily suspended-sediment concentrations for the Walla Walla River near Touchet exceeded 700 milligrams per liter about 10 percent of the time, and 14,000 milligrams per liter about 1 percent of the time. The discharge-weighted mean concentration for the 3-year period of study was 7,000 milligrams per liter. Silt predominates in the suspended sediment transported by all streams in the basin. On the average, sediment from streams draining the Blue Mountains was composed of 20 percent sand, 60 percent silt, and 20 percent clay ; for streams draining the Blue Mountains slope-Horse Heaven Hills area, the percentages are 9, 65, and 26, respectively ; and for those draining the Skyrocket Hills-Touchet slope, the percentages are 5, 75, and 20, respectively. The bedload in the mountain and upland streams was estimated to be about 5-12 percent as much as the suspended load. For the Walla Walla River and its tributaries in the lower basin area, the bedload was estimated to be only about 2-8 percent as much as the suspended load.

  6. Erosion and deposition mode in a developing foreland basin: Temporal and spatial distribution of provenance in southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, K. M.; Kun-an, H.; Chien, C. W.; Leh-chyun, W.; Chi-Cheng, Y.

    2017-12-01

    The foreland basin in southwestern Taiwan offers an idealistic example for the study of tectonostratigraphy in basin development. The subsidence analysis indicates that the recent basin development went through at least two rapid subsidence events, along with back-and-forth migration of the forebulge. This study aims to explore the interaction between the uplifting forebulge and coevally subsiding foredeep primarily based on petrofacies analysis, the results of which were then interpreted with the well-established tectonostratigraphic and biostratigraphic frameworks to infer the erosion and deposition mode during the basin development. The craton had been the sediment source to the west of the study area in the pre-orogenic period. In the initial stage of foreland basin development, the forebulge slowly elevated and started to obstruct sediment supplies from the craton. Before the period of NN19, the forebulge not only became the barrier of the most cratonic sediment supplies but also shed a major amount of detritus into the adjacent area. In addition, regional topographic relief, which was formed by syn-orogenic normal faulting during the NN11-15, locally changed the composition and transportation modes of the sediments; the exposed basement of the footwall also became the source of the sediments shed into the adjacent depo-centers. After the NN19, whole area was influenced predominantly by the orogenic belt from the east. Large amounts of slate fragments began to appear in the middle NN19 and relative percentage of the metamorphic lithics was increased upward and northward. As the orogen moved westward along with the foreland basin development, the studied area changed from the distal to proximal parts of the foredeep and sediment sources were controlled mainly by river systems derived from the orogen. The metamorphic lithics decreased southward and concentrated in the central part of the study area, suggesting that the slate fragments which were transported parallel with the orientation of submarine canyons since NN13 to the south of the study area. We propose that 1) from NN13 to NN18, the episodic subsidence in the foreland basin implies episodic movement of the orogenic belt, and 2) since the period of NN19, the orogenic belt and foreland basin has been developing in a continuous and steady state.

  7. Predicting Monsoonal-Driven Stream Discharge and Sediment Yield in Himalaya Mountain Basins with Changing Climate and Deforestation

    NASA Astrophysics Data System (ADS)

    Neupane, R. P.; White, J. D.

    2014-12-01

    Short and long term effects of site water availability impacts the spectrum of management outcomes including landslide risk, hydropower generation, and sustainable agriculture in mountain systems heavily influenced by climate and land use changes. Climate change and land use may predominantly affect the hydrologic cycle of mountain basins as soil precipitation interception is affected by land cover. Using the Soil and Water Assessment Tool, we estimated stream discharge and sediment yield associated with climate and land use changes for two Himalaya basins located at eastern and western margins of Nepal that included drainages of the Tamor and Seti Rivers. Future climate change was modeled using average output of temperature and precipitation changes derived from Special Report on Emission Scenarios (B1, A1B & A2) of 16 global circulation models for 2080 as meteorological inputs into SWAT. Land use change was modeled spatially and included 1) deforestation, 2) expansion of agricultural land, and 3) increased human settlement that were produced by considering current land use with projected changes associated with viability of elevation and slope characteristics of the basins capable of supporting different land use types. We found higher annual stream discharge in all GCM-derived scenarios compared to the baseline with maximum increases of 13 and 8% in SRES-A2 and SRES-A1B for the Tamor and Seti basins, respectively. With 7% of original forest land removed, sediment yield for Tamor basin was estimated to be 65% higher, but increased to 124% for the SRES-B1 scenario. For the Seti basin, 4% deforestation yielded 33% more sediment for the SRES-A1B scenario. Our results indicated that combined effects of future, intensified monsoon rainfall with deforestation lead to dramatic potential for increased stream discharge and sediment yield as rainfall on steep slopes with thin exposed soils increases surface runoff and soil erosion in the Himalayas. This effect appears to be geographically important with higher influence in the eastern Tamor basin potentially due to longer and stronger monsoonal period of that area. Future slope stability and sediment deposition in downstream reservoirs are important future potential vulnerabilities for these basins of which land management plays an important mediating role.

  8. Modeling and analysis of Soil Erosion processes by the River Basins model: The Case Study of the Krivacki Potok Watershed, Montenegro

    NASA Astrophysics Data System (ADS)

    Vujacic, Dusko; Barovic, Goran; Mijanovic, Dragica; Spalevic, Velibor; Curovic, Milic; Tanaskovic, Vjekoslav; Djurovic, Nevenka

    2016-04-01

    The objective of this research was to study soil erosion processes in one of Northern Montenegrin watersheds, the Krivacki Potok Watershed of the Polimlje River Basin, using modeling techniques: the River Basins computer-graphic model, based on the analytical Erosion Potential Method (EPM) of Gavrilovic for calculation of runoff and soil loss. Our findings indicate a low potential of soil erosion risk, with 554 m³ yr-1 of annual sediment yield; an area-specific sediment yield of 180 m³km-2 yr-1. The calculation outcomes were validated for the entire 57 River Basins of Polimlje, through measurements of lake sediment deposition at the Potpec hydropower plant dam. According to our analysis, the Krivacki Potok drainage basin is with the relatively low sediment discharge; according to the erosion type, it is mixed erosion. The value of the Z coefficient was calculated on 0.297, what indicates that the river basin belongs to 4th destruction category (of five). The calculated peak discharge from the river basin was 73 m3s-1 for the incidence of 100 years and there is a possibility for large flood waves to appear in the studied river basin. Using the adequate computer-graphic and analytical modeling tools, we improved the knowledge on the soil erosion processes of the river basins of this part of Montenegro. The computer-graphic River Basins model of Spalevic, which is based on the EPM analytical method of Gavrilovic, is highly recommended for soil erosion modelling in other river basins of the Southeastern Europe. This is because of its reliable detection and appropriate classification of the areas affected by the soil loss caused by soil erosion, at the same time taking into consideration interactions between the various environmental elements such as Physical-Geographical Features, Climate, Geological, Pedological characteristics, including the analysis of Land Use, all calculated at the catchment scale.

  9. Water-quality, bed-sediment, and biological data (October 2014 through September 2015) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Turner, Matthew A.

    2017-01-19

    Water, bed sediment, and biota were sampled in selected streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was led by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2014 through September 2015. Bed-sediment and biota samples were collected once at 13 sites during August 2015.This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2014 through September 2015. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. At 12 sites, samples for analysis of dissolved organic carbon and turbidity were collected. In addition, samples for analysis of nitrogen (nitrate plus nitrite) were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for three sites. Seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.

  10. Temporal variations of water and sediment fluxes in the Cointzio river basin, central Mexico

    NASA Astrophysics Data System (ADS)

    Duvert, C.; Gratiot, N.; Navratil, O.; Esteves, M.; Prat, C.; Nord, G.

    2009-04-01

    The STREAMS program (Sediment TRansport and Erosion Across MountainS) was launched in 2006 to study suspended sediment dynamics in mountainous areas. Two watersheds were selected as part of the program: the Bléone river basin in the French Alps, and the Cointzio river basin (636 km2), located in the mountainous region of Michoacán, in central Mexico. The volcanic soils of the Cointzio catchment undergo important erosion processes, especially during flashflood events. Thus, a high-frequency monitoring of sediment transport is highly required. The poster presents the high-frequency database obtained from the 2008 hydrological season at the Santiago Undameo gauged station, located at the basin's outlet. Suspended Sediment Concentration (SSC) was estimated every 10 minutes by calibrating turbidity measurements with bottle sampling acquired on a double-daily basis. Water discharge time-series was approximated with continuous water-level measurements (5 minutes time-step), and a stage-discharge rating curve. Our investigation highlights the influence of sampling frequency on annual water and sediment fluxes estimate. A daily or even a weekly water-level measurement provides an unexpectedly reliable assessment of the seasonal water fluxes, with an under-estimation of about 5 % of the total flux. Concerning sediment fluxes, a high-frequency SSC survey appears to be necessary. Acquiring SSC data even twice a day leads to a significant (over 30 %) under-estimation of the seasonal sediment load. These distinct behaviors can be attributed to the fact that sediment transport almost exclusively occurs during brief night flood events, whereas exfiltration on the watershed always provides a base flow during the daily water-level measurements.

  11. Water-quality, bed-sediment, and biological data (October 2010 through September 2011) and statistical summaries of data for streams in the Clark Fork basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2013-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork basin of western Montana; additional water samples were collected from near Galen to near Missoula at select sites as part of a supplemental sampling program. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2010 through September 2011. Bed-sediment and biota samples were collected once at 14 sites during August 2011. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2010 through September 2011. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  12. Water-quality, bed-sediment, and biological data (October 2015 through September 2016) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Turner, Matthew A.

    2018-03-30

    Water, bed sediment, and biota were sampled in selected streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was led by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2015 through September 2016. Bed-sediment and biota samples were collected once at 13 sites during August 2016.This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2015 through September 2016. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Samples for analysis of turbidity were collected at 13 sites, whereas samples for analysis of dissolved organic carbon were collected at 10 sites. In addition, samples for analysis of nitrogen (nitrate plus nitrite) were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for three sites. Seasonal daily values of turbidity were determined for five sites. Bed-sediment data include trace-element concentrations in the fine-grained (less than 0.063 millimeter) fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.

  13. Geology of the Holocene surficial uranium deposit of the north fork of Flodelle Creek, northeastern Washington ( USA).

    USGS Publications Warehouse

    Johnson, S.Y.; Otton, J.K.; Macke, D.L.

    1987-01-01

    The N fork of Flodelle Creek drainage basin in NE Washington contains the first surficial U deposit to be mined in the US. The U was leached from granitic bedrock and fixed in organic-rich pond sediments. The distribution of these pond sediments and, therefore, the U has been strongly influenced by relict glacial topography, slope proceses, and beaver activity. Ponds in the drainage basin have been sinks for fine-grained, organic-rich sediments. These organic-rich sediments provide a suitable geochemical environment for precipitation and adsorption of uranium leached from granitic bedrock into ground, spring, and surface waters. Processes of pond formation have thus been important in the development of surficial U deposits in the N fork of Flodelle Creek drainage basin and may have similar significance in other areas.-from Authors

  14. Role of river bank erosion in sediment budgets of catchments within the Loire river basin (France)

    NASA Astrophysics Data System (ADS)

    Gay, Aurore; Cerdan, Olivier; Poisvert, Cecile; Landemaine, Valentin

    2014-05-01

    Quantifying volumes of sediments produced on hillslopes or in channels and transported or stored within river systems is necessary to establish sediment budgets. If research efforts on hillslope erosion processes have led to a relatively good understanding and quantification of local sources, in-channel processes remain poorly understood and quasi inexistent in global budgets. However, profound landuse changes and agricultural practices have altered river functioning, caused river bank instability and stream incision. During the past decades in France, river channelization has been perfomed extensively to allow for new agricultural practices to take place. Starting from a recent study on the quantification of sediment fluxes for catchments within the Loire river basin (Gay et al. 2013), our aim is to complete sediment budgets by taking into account various sources and sinks both on hillslope and within channel. The emphasis of this study is on river bank erosion and how bank erosion contributes to global budgets. A model of bank retreat is developed for the entire Loire river basin. In general, our results show that bank retreat is on average quite low with approximately 1 cm.yr-1. However, a strong variability exists within the study area with channels displaying values of bank retreat up to ~10 cm.yr-1. Our results corroborate those found by Landemaine et al. in 2013 on a small agricultural catchment. From this first step, quantification of volumes of sediment eroded from banks and available for transport should be calculated and integrated in sediment budgets to allow for a better understanding of basin functioning. Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Landemaine V., Gay A., Cerdan O., Salvador-Blanes S., Rodriguez S. Recent morphological evolution of a headwater stream in agricultural context after channelization in the Ligoire river (France) (in prep)

  15. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems.

    PubMed

    Emelko, Monica B; Stone, Micheal; Silins, Uldis; Allin, Don; Collins, Adrian L; Williams, Chris H S; Martens, Amanda M; Bladon, Kevin D

    2016-03-01

    Global increases in the occurrence of large, severe wildfires in forested watersheds threaten drinking water supplies and aquatic ecology. Wildfire effects on water quality, particularly nutrient levels and forms, can be significant. The longevity and downstream propagation of these effects as well as the geochemical mechanisms regulating them remain largely undocumented at larger river basin scales. Here, phosphorus (P) speciation and sorption behavior of suspended sediment were examined in two river basins impacted by a severe wildfire in southern Alberta, Canada. Fine-grained suspended sediments (<125 μm) were sampled continuously during ice-free conditions over a two-year period (2009-2010), 6 and 7 years after the wildfire. Suspended sediment samples were collected from upstream reference (unburned) river reaches, multiple tributaries within the burned areas, and from reaches downstream of the burned areas, in the Crowsnest and Castle River basins. Total particulate phosphorus (TPP) and particulate phosphorus forms (nonapatite inorganic P, apatite P, organic P), and the equilibrium phosphorus concentration (EPC0 ) of suspended sediment were assessed. Concentrations of TPP and the EPC0 were significantly higher downstream of wildfire-impacted areas compared to reference (unburned) upstream river reaches. Sediments from the burned tributary inputs contained higher levels of bioavailable particulate P (NAIP) - these effects were also observed downstream at larger river basin scales. The release of bioavailable P from postfire, P-enriched fine sediment is a key mechanism causing these effects in gravel-bed rivers at larger basin scales. Wildfire-associated increases in NAIP and the EPC0 persisted 6 and 7 years after wildfire. Accordingly, this work demonstrated that fine sediment in gravel-bed rivers is a significant, long-term source of in-stream bioavailable P that contributes to a legacy of wildfire impacts on downstream water quality, aquatic ecology, and drinking water treatability. © 2015 John Wiley & Sons Ltd.

  16. Holocene aeolian activity in the Gonghe Basin, north-eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Stauch, Georg; Lai, Zhongping; Lehmkuhl, Frank; Schulte, Philipp

    2016-04-01

    The Gonghe Basin is located on the north-eastern edge of Tibetan Plateau and has a mean altitude of 3000 m asl. With a size of 20.000 km² it is the largest intramontane Basin on the north-eastern Plateau. The well-studied Qinghai Basin is situated north of the Basin, while the drier central Plateau is further south-west. Previous research indicated an early onset of the aeolian accumulation in the Qinghai Basin at around 18 ka while in the areas further to the south-west aeolian archives date back only to the beginning of the Holocene. First new OSL ages from aeolian sand and loess indicate a intermediate timing of the aeolian accumulation in the Gonghe Basin at the transition from the late glacial to the Holocene. Late glacial and early Holocene ages of aeolian sediments were hitherto associated with wetter climate conditions caused by the strengthening of the Asian summer monsoon. Higher moisture availability resulted in an increased vegetation cover, leading to the permanent stabilization of the aeolian sediments. Under glacial climate conditions a constant remobilization of the sediments can be assumed. The new OSL ages from the Gonghe Basin indicate a progressive shift of the monsoonal strength in westward directions during the late glacial until the early Holocene.

  17. The Heidelberg Basin Drilling Project - Sedimentology and Stratigraphy of the Quaternary succession

    NASA Astrophysics Data System (ADS)

    Ellwanger, Dietrich; Gabriel, Gerald; Hahne, Jürgen; Hoselmann, Christian; Menzies, John; Simon, Theo; Weidenfeller, Michael; Wielandt-Schuster, Ulrike

    2010-05-01

    Within the context of the Heidelberg Basin Drilling Project (Gabriel et al. 2008), a detailed sediment succession is presented here based upon deep drillings taken at Heidelberg UniNord and Mannheim Käfertal. Sediment structures, and micromorphological and pollen analyses were conducted and used to reconsider some of the climate transitions within the lower Pleistocene. A new and novel scenario is postulated regarding the preservation of Quaternary sediment packages within the Cenozoic Graben environment of the Heidelberg basin. The palynological evidence comprises the periods of warm climate of the Holsteinian (mainly Abies (fir), some Fagus (beech), Pterocarya & Azolla); the Cromerian (Pinus-Picea-QM (pine-spruce-QM)); the Bavelian (Abies, Tsuga (hemlock fir), QM & phases of increased NAP including Pinus); the Waalian (Abies, Tsuga, QM); and the Tiglian (Fagus & early Pleistocene taxa especially Sciadopytis, downward increasing Tertiary taxa). The sediment package was studied both macroscopically and microscopically. Both techniques provide evidence of fluvial, lacustrine and mass movement sedimentary processes. Some include evidence of periglacial processes (silt droplets within fine grained sands indicative of frozen ground conditions). The periglacial structures are often, not always, accompanied by pollen spectra dominated by pine and NAP. E.g. the Tiglian part of the succession shows periglacial sediment structures at its base and top but not in its middle sections. I.e. it appears not as a series of warm and cold phases but rather as a constant warm period with warm-cold-alternations at its bottom and top. All results illustrate sediment preservation in the Heidelberg basin almost throughout the Quaternary. This may be due to tectonic subsidence, but also to compaction by sediment loading of underlying fine sediments (Oligocene to Quaternary) leading to incomplete but virtually continuous sediment preservation (Tanner et al. 2009). References Gabriel, G., Ellwanger, D., Hoselmann, C. & Weidenfeller, M. (2008): The Heidelberg Basin Drilling Project. - Eiszeitalter u. Gegenwart (Quaternary Science Journal), 57, 3-4, 253-260, Hannover. Tanner, D.C., Martini, N., Buness, H. & Krawczyk, C.M. (2009): The 3D Geometry of the Quaternary and Tertiary strata in the Heidelberg Basin, as defined by reflection seismics. - DGG Tagung, Dresden, 30.9-02.10.09, Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 63, 58.

  18. Controlling factors of spatial and temporal preservation of the geochronological signal in sediments during an orogenic cycle

    NASA Astrophysics Data System (ADS)

    Rat, Juliette; Mouthereau, Frédéric; Bernet, Matthias; Brichau, Stéphanie; Balvay, Mélanie; Garzanti, Eduardo; Ando, Sergio

    2017-04-01

    Detrital content of sediments preserved in basins provide constraints on the nature of source rocks, dynamics of sediment transport, and potentially on tectonics and climate changes. U-Pb dating method on detrital zircon is ideally suited for provenance studies due to the ability of U-Pb age data to resist several orogenic cycles. However, with the aim to track sediment source evolution over a single orogenic cycle and determine characteristic time and parameters controlling the geochronological signal preservation throughout the cycle from rifting, mountain building to post-collision evolution, low-temperature thermochronology combined with sediment petrography are more appropriate than the U-Pb dating approach taken alone. To better understanding processes at play in the long-term geochronological signal preservation we focus on the sediment record associated with the Iberia plate tectonic evolution, which is part of the OROGEN research project, co-financed by BRGM, TOTAL & CNRS. The Iberian plate recorded a period of extension in the Late Jurassic, followed during the Early Cretaceous (Aptian-Albian) by a major thinning event documented by thick syn-rift sediments in intraplate basins and plate-scale heating/cooling of the Iberia crust, as argued by published fission track ages. Paleogeographic reconstructions that are based on stratigraphic and lithofacies analyses in northern Iberia (Iberian Range, Pyrenees and Basque-Cantabrians Range), describe a large domain of continental/fluvial and shallow-marine siliciclastic deposition. The related detrital content was then recycled during the subsequent Pyrenean orogenic phase in the Ebro foreland basin, and eventually transfer to the Mediterranean realm during post-orogenic re-excavation of the Ebro basin. In this study, we complete the published time-temperature paths in the mesozoic syn-rift basins by providing new thermo-chronological analyses of well-dated syn-collision and post-collision stratigraphic sections of the Ebro basin to determine thermal control on preservation through burial and geothermal evolution. We combined this study with sediments petrography analyses to identify relative control of source petrography, hydraulic sorting, alteration and diagenesis processes on the signal preservation during sediment transfer. All these observations will ultimately be incorporated in a geodynamic reconstruction of Iberia, and compared with age predictions from a model coupling surface processes and thermal evolution.

  19. Diversified seabed substrate, sediment remobilisation and fluid migration features offshore NW Greenland - new insights from marine seismic data acquisition in the Northern Nares Strait during the RV Oden cruise 2015

    NASA Astrophysics Data System (ADS)

    Andresen, Katrine Juul; Heirman, Katrien; Kamla, Elina; Nielsen, Tove; Rønø Clausen, Ole; Jakobsson, Martin; Mix, Alan C.; Andersen, Søren T.; Nørmark, Egon; Piotrowski, Jan A.; Knutz, Paul; Larsen, Nicolaj K.; Hogan, Kelly

    2016-04-01

    We present some preliminary observations from acquired seismic data from the Northern Nares Strait, NW Greenland. The studied area covers the Hall Basin in front of the Petermann Glacier and extends southward into the Kennedy Channel. It represents an area intensely affected by glacial related processes as well as deep tectonics. The data were acquired during the RV Oden cruise in late summer 2015, and thus represent valuable input to the understanding of the geological development of this scarcely accessed area of the Arctic. The data were acquired in nearly ice-free conditions and consist of >700 km 2D seismic airgun data, supplemented by high-resolution subbottom profiler data and multibeam data. The different acoustic data acquired simultaneously enable us to correlate deeper geological observations (e.g. faults observed on airgun seismics) with shallow depositional architectures (observed on subbottom profiler) and finally correlate the relatively scattered 2D interpretation with the detailed 3D seafloor morphology obtained by the multibeam. The seismic data reveal several provinces of varying seabed substrate geometry. The provinces include A: confined mini-basins; B: larger sedimentary basins; C: larger structural highs and D: "rough-and-faulted" terrain. The data also reveal a number of seismic anomalies, which indicate fluid flow and sediment remobilisation. The mini-basins are 100-600 m wide, in contrast to the larger basins which typically extend over 6-12 km. The mini-basins are characterized by a flat, smooth and continuous seafloor reflection and have an infill dominated by parallel and sub-horizontal reflections onlapping the edges of the basins. The larger basins, where the internal reflection pattern appears more diverse and less parallel, have much greater relief at the seafloor. Vertical disturbance zones typically emerging above minor structures at the floor of the mini-basins are likely related to vertical fluid migration. The zones occasionally continue to the seafloor but more often terminate within the sediments. Scattered amplitude anomalies in conjunction with sag-like depressions are further potential indications of fluid migration within the mini-basins (palaeo-pockmarks?). Slumps and mounded features within the mini-basins and at the larger structural highs indicate syn-depositional sediment remobilisation. A BSR-like reflection, potentially representing the base of gas hydrates, is occasionally observed in the larger sedimentary basins (ca. 15-20 ms TWT b.s.fl.) and at the culmination of the larger structural highs (ca. 40-50 ms TWT b.s.fl.). Cone-shaped to elongated ridges 15-20 m high and 500 m across appear to be linked with deeper structures and might indicate remobilisation of the shallow subsurface sediments potentially linked to fluid escape. Alternatively, they might be of glacial origin. Our preliminary results indicate that the basins are filled with subglacial and glaciofluvial sediments and that small-scale fluid migration and sediment remobilisation represent important processes in generating the depositional architecture in the Northern Nares Strait region. Further analyses are expected to constrain the interpretation of the observed features in detail, especially regarding the origin of the fluids.

  20. Oligocene tectonics and sedimentation, California

    USGS Publications Warehouse

    Nilsen, T.H.

    1984-01-01

    During the Oligocene epoch, California was marked by extensive nonmarine sedimentation, in contrast to its pre-Oligocene and post-Oligocene depositional history. The Oligocene continental deposits are especially widespread in southern California and fill a number of small and generally partly restricted basins. Fluvial facies in many basins prograded over previously deposited lower Tertiary turbidites. Volcanism, from widespread centers, was associated with the nonmarine sedimentation. However, some basins remained marine and a few contain Oligocene turbidites and pelagic sediments deposited at bathyal depths. The Oligocene redbeds of California do not form a post-orogenic molasse sequence comparable to the Old Red Sandstone or Alpine molasse. They are synorogenic and record local uplift of basins and surrounding source areas. Late Cretaceous to contemporary orogenesis in California has been generally characterized by the formation of small restricted basins of variable depth adjacent to small upland areas in response to strike-slip faulting. Deposition of Oligocene redbeds was associated with climatic change from warm and humid to cold and semiarid, and a global lowering of sea level. Oligocene tectonism occurred during the transition from subduction of the Farallon Plate to initiation of the modern San Andreas transform system. However, the major influence that caused uplift, formation of fault-bounded basins, and extensive redbed deposition, especially in southern California, was the approach of the Pacific-Farallon spreading ridge to the western margin of California. ?? 1984.

  1. The structure of a Mesozoic basin beneath the Lake Tana area, Ethiopia, revealed by magnetotelluric imaging

    NASA Astrophysics Data System (ADS)

    Hautot, Sophie; Whaler, Kathryn; Gebru, Workneh; Desissa, Mohammednur

    2006-03-01

    The northwestern Plateau of Ethiopia is almost entirely covered with extensive Tertiary continental flood basalts that mask the underlying formations. Mesozoic and Tertiary sediments are exposed in a few locations surrounding the Lake Tana area suggesting that the Tana depression is an extensional basin buried by the 1-2 km thick Eocene-Oligocene flood basalt sequences in this region. A magnetotelluric survey has been carried out to investigate the deep structure of the Tana area. The objectives were to estimate the thickness of the volcanics and anticipated underlying sedimentary basin. We have collected 27 magnetotelluric soundings south and east of Lake Tana. Two-dimensional inversion of the data along a 160 km long profile gives a model consistent with a NW-SE trending sedimentary basin beneath the lava flows. The thickness of sediments overlying the Precambrian basement averages 1.5-2 km, which is comparable to the Blue Nile stratigraphic section, south of the area. A 1 km thickening of sediments over a 30-40 km wide section suggests that the form of the basin is a half-graben. It is suggested that electrically resistive features in the model are related to volcanic materials intruded within the rift basin sediments through normal faults. The results illustrate the strong control of the Precambrian fracture zones on the feeding of the Tertiary Trap series.

  2. Accretionary prism-forearc interactions as reflected in the sedimentary fill of southern Thrace Basin (Lemnos Island, NE Greece)

    NASA Astrophysics Data System (ADS)

    Maravelis, A. G.; Pantopoulos, G.; Tserolas, P.; Zelilidis, A.

    2015-06-01

    Architecture of the well-exposed ancient forearc basin successions of northeast Aegean Sea, Greece, provides useful insights into the interplay between arc magmatism, accretionary prism exhumation, and sedimentary deposition in forearc basins. The upper Eocene-lower Oligocene basin fill of the southern Thrace forearc basin reflects the active influence of the uplifted accretionary prism. Deep-marine sediments predominate the basin fill that eventually shoals upwards into shallow-marine sediments. This trend is related to tectonically driven uplift and compression. Field, stratigraphic, sedimentological, petrographic, geochemical, and provenance data on the lower Oligocene shallow-marine deposits revealed the accretionary prism (i.e. Pindic Cordillera or Biga Peninsula) as the major contributor of sediments into the forearc region. Field investigations in these shallow-marine deposits revealed the occurrence of conglomerates with: (1) mafic and ultramafic igneous rock clasts, (2) low-grade metamorphic rock fragments, and (3) sedimentary rocks. The absence of felsic volcanic fragments rules out influence of a felsic source rock. Geochemical analysis indicates that the studied rocks were accumulated in an active tectonic setting with a sediment source of mainly mafic composition, and palaeodispersal analysis revealed a NE-NNE palaeocurrent trend, towards the Rhodopian magmatic arc. Thus, these combined provenance results make the accretionary prism the most suitable candidate for the detritus forming these shallow-marine deposits.

  3. Effectiveness of three best management practices for highway-runoff quality along the Southeast Expressway, Boston, Massachusetts

    USGS Publications Warehouse

    Smith, Kirk P.

    2002-01-01

    Best management practices (BMPs) near highways are designed to reduce the amount of suspended sediment and associated constituents, including debris and litter, discharged from the roadway surface. The effectiveness of a deep-sumped hooded catch basin, three 2-chambered 1,500-gallon oil-grit separators, and mechanized street sweeping in reducing sediment and associated constituents was examined along the Southeast Expressway (Interstate Route 93) in Boston, Massachusetts. Repeated observations of the volume and distribution of bottom material in the oil-grit separators, including data on particle-size distributions, were compared to data from bottom material deposited during the initial 3 years of operation. The performance of catch-basin hoods and the oil-grit separators in reducing floating debris was assessed by examining the quantity of material retained by each structural BMP compared to the quantity of material retained by and discharged from the oil-grit separators, which received flow from the catch basins. The ability of each structural BMP to reduce suspended-sediment loads was assessed by examining (a) the difference in the concentrations of suspended sediment in samples collected simultaneously from the inlet and outlet of each BMP, and (b) the difference between inlet loads and outlet loads during a 14-month monitoring period for the catch basin and one separator, and a 10-month monitoring period for the second separator. The third separator was not monitored continuously; instead, samples were collected from it during three visits separated in time by several months. Suspended-sediment loads for the entire study area were estimated on the basis of the long-term average annual precipitation and the estimated inlet and outlet loads of two of the separators. The effects of mechanized street sweeping were assessed by evaluating the differences between suspended-sediment loads before and after street sweeping, relative to storm precipitation totals, and by comparing the particle-size distributions of sediment samples collected from the sweepers to bottom-material samples collected from the structural BMPs. A mass-balance calculation was used to quantify the accuracy of the estimated sediment-removal efficiency for each structural BMP. The ability of each structural BMP to reduce concentrations of inorganic and organic constituents was assessed by determining the differences in concentrations between the inlets and outlets of the BMPs for four storms. The inlet flows of the separators were sampled during five storms for analysis of fecal-indicator bacteria. The particle-size distribution of bottom material found in the first and second chambers of the separators was similar for all three separators. Consistent collection of floatable debris at the outlet of one separator during 12 storms suggests that floatable debris were not indefinitely retained.Concentrations of suspended sediment in discrete samples of runoff collected from the inlets of the two separators ranged from 8.5 to 7,110 mg/L. Concentrations of suspended sediment in discrete samples of runoff collected from the outlets of the separators ranged from 5 to 2,170 mg/L. The 14-month sediment-removal efficiency was 35 percent for one separator, and 28 percent for the second separator. In the combined-treatment system in this study, where catch basins provided primary suspended-sediment treatment, the separators reduced the mass of the suspended sediment from the pavement by about an additional 18 percent. The concentrations of suspended sediment in discrete samples of runoff collected from the inlet of the catch basin ranged from 32 to 13,600 mg/L. Concentrations of suspended sediment in discrete samples of runoff collected from the outlet of the catch basin ranged from 25.7 to 7,030 mg/L. The sediment-removal efficiency for individual storms during the 14-month monitoring period for the deep-sumped hooded catch basin was 39 percent.The concentrations of 29 in

  4. Analysis of sediment production from two small semiarid basins in Wyoming

    USGS Publications Warehouse

    Rankl, J.G.

    1987-01-01

    Data were collected at two small, semiarid basins in Wyoming to determine the relation between rainfall, runoff, and sediment production. The basins were Dugout Creek tributary and Saint Marys Ditch tributary. Sufficient rainfall and runoff data were collected at Dugout Creek tributary to determine the source of sediment and the dominant sediment production processes. Because runoff from only one storm occurred in Saint Marys Ditch tributary, emphasis of the study was placed on the analysis of data collected at Dugout Creek tributary. At Dugout Creek tributary, detailed measurements were made to establish the source of sediment. To determine the quantity of material removed from headcuts during the study, two headcuts were surveyed. Aerial photographs were used to define movement of all headcuts. The total quantity of sediment removed from all headcuts between September 26, 1982, and September 26, 1983, was estimated to be 1,220 tons, or 15%-25% of the estimated total sediment load passing the streamflow-gaging station. A soil plot was used to sample upland erosion. A rainfall and runoff modeling system was used to evaluate the interaction between the physical processes which control sediment production. The greatest change in computed sediment load was caused by changing the parameter values for equations used to compute the detachment of sediment particles by rainfall and overland flow resulted in very small changes in computed sediment load. The upland areas were the primary source of sediment. A relationship was developed between the peak of storm runoff and the total sediment load for that storm runoff. The sediment concentration used to compute the total sediment load for the storm runoff was determined from sediment samples collected by two automatic pumping samplers. The coefficient of variation of the relationship is 34% with a 0.99 correlation coefficient. (Author 's abstract)

  5. GLORIA side-scan imagery of Aleutian basin, Bering Sea slope and Abyssal plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, P.R.; Cooper, A.K.; Gardner, J.V.

    1987-05-01

    During July-September 1986, about 700,000 km/sup 2/ of continental slope and abyssal plain of the Aleutian basin, Bering Sea, were insonified with GLORIA (Geological Long Range Inclined Asdic) side-scane sonar. A sonar mosaic displays prominent geomorphic features including the massive submarine canyons of the Beringian and the northern Aleutian Ridge slopes and shows well-defined sediment patterns including large deep-sea channels and fan systems on the Aleutian basin abyssal plain. Dominant erosional and sediment transport processes on both the Beringian and the Aleutian Ridge slopes include varieties of mass movement that range from small debris flows and slides to massive slidesmore » and slumps of blocks measuring kilometers in dimension. Sediment-flow patterns that appear to be formed by sheet flow rather than channelized flow extend basinward from the numerous canyons and gullies that incise the slopes of the Beringian margin and of Bowers Ridge and some places along the Aleutian Ridge. These Beringian and Bowers canyon sediment sources, however, appear to have contributed less modern sediment to the Aleutian basin than the large, well-defined channel systems that emanate from Bering, Umnak, and Amchitka submarine canyons and extend for several hundred kilometers across the abyssal plain. This GLORIA imagery emphasizes the important contribution of the Aleutian Ridge to modern sedimentation in the deep Bering Sea.« less

  6. Exploring Geochemical Markers of the Anthropocene in River Sediments: Southern New England

    NASA Astrophysics Data System (ADS)

    Tran, J.

    2015-12-01

    The sedimentary record of New England is complex. From glacial till to colonial land use to the industrial revolution, any sediment preserved is intertwined and muddled by humans. Recent studies support the idea that any anthropogenic markers in the sediment record are site specific. Southern New England is marked by a myriad of practices including farming, charcoal kilns, hatting, mill dams, and iron furnaces. While specific markers of the anthropocene have been identified, little work has been done to correlate and quantify these noted markers across multiple basins. Specifically, a combination of x-ray fluorescence (XRF), x-ray diffraction (XRD), and grain size analysis were done on sediment cores taken within Southern New England across various watersheds. We present a combination of geochemical analysis and detrital zircon geochronology in order identify and account for basin differences. This in turn results in a more comprehensive trans-basin understanding of the anthropocene in this region. We observe strong evidence that supports the idea of geochemical markers anthropocene which include an increase in Mercury and Lead content in the sediments. Additionally, in basins where mill dams are present we observe sediment records consistent with flood events and dam degradation. While still fairly novel and understudied, our results provide insight to the much often question topic of the anthropocene in relation to this particular region and the potential pitfalls of doing large scale anthropogenic dating.

  7. The geochemical record of the last 17,000 years in the Guaymas Basin, Gulf of California

    USGS Publications Warehouse

    Dean, W.E.

    2006-01-01

    Sediments deposited on the western slope of the Guaymas Basin in the central Gulf of California are composed predominantly of detrital clastic material and biogenic silica (biopal), with minor organic material (average of 2.8% organic carbon) and calcium carbonate. The CaCO3 is derived from calcareous plankton and is highly variable ranging from 0% to 16%. In general, the CaCO3 content of the sediments varies inversely with the biopal content, reflecting the relative abundance of calcareous and siliceous plankton in the photic zone. Siliceous plankton dominate when winds are predominantly out of the northwest producing strong upwelling. Calcareous plankton indicates weak southeasterly winds that bring warm, tropical Pacific surface water into the Gulf. Based mainly on relative abundances of biopal and CaCO3, the sediments deposited over the last 17,000 years in the western Guaymas Basin can be divided into five intervals. In general, the sediments in the intervals with high biopal and low CaCO3 are laminated, but this is not always true. Unlike most other continental margins of the world with well-developed oxygen minimum zones where highest concentrations of organic carbon and redox-sensitive trace metals occur in laminated sediments, the laminated sediments on the anoxic slope of the western Guaymas Basin do not always have the highest concentrations of organic carbon and trace metals such as Mo and Cd.

  8. Biomass production in the Lower Mississippi River Basin: Mitigating associated nutrient and sediment discharge to the Gulf of Mexico.

    PubMed

    Ha, Miae; Zhang, Zhonglong; Wu, May

    2018-04-24

    A watershed model was developed using the Soil and Water Assessment Tool (SWAT) that simulates nitrogen, phosphorus, and sediment loadings in the Lower Mississippi River Basin (LMRB). The LMRB SWAT model was calibrated and validated using 21 years of observed flow, sediment, and water-quality data. The baseline model results indicate that agricultural lands within the Lower Mississippi River Basin (LMRB) are the dominant sources of nitrogen and phosphorus discharging into the Gulf of Mexico. The model was further used to evaluate the impact of biomass production, in the presence of riparian buffers in the LMRB, on suspended-sediment and nutrient loading discharge from the Mississippi River into the Gulf of Mexico. The interplay among land use, riparian buffers, crop type, land slope, water quality, and hydrology were anlyzed at various scales. Implementing a riparian buffer in the dominant agricultural region within the LMRB could reduce suspended sediment, nitrogen, and phosphorus loadings at the regional scale by up to 65%, 38%, and 39%, respectively. Implementation of this land management practice can reduce the suspended-sediment content and improve the water quality of the discharge from the LMRB into the Gulf of Mexico and support the potential production of bioenergy and bio-products within the Mississippi River Basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Selected elements and organic chemicals in bed sediment and fish tissue of the Tualatin River basin, Oregon, 1992-96

    USGS Publications Warehouse

    Bonn, Bernadine A.

    1999-01-01

    This report describes the results of a reconnaissance survey of elements and organic compounds found in bed sediment and fish tissue in streams of the Tualatin River Basin. The basin is in northwestern Oregon to the west of the Portland metropolitan area (fig. 1). The Tualatin River flows for about 80 miles, draining an area of about 712 square miles, before it enters the Willamette River. Land use in the basin changes from mostly forested in the headwaters, to mixed forest and agriculture, to predominately urban. The basin supports a growing population of more than 350,000 people, most of whom live in lower parts of the basin. Water quality in the Tualatin River and its tributaries is expected to be affected by the increasing urbanization of the basin.

  10. Effects of land use and retention practices on sediment yields in the Stony Brook basin, New Jersey

    USGS Publications Warehouse

    Mansue, Lawrence J.; Anderson, Peter W.

    1974-01-01

    The average annual rate of suspended-sediment discharge of the Stony Brook at Princeton, N.J. (44.5 square miles) is about 8,800 tons, or 200 tons per square mile. Annual yields within the basin, which is in the Piedmont Lowlands section of the Piedmont physiographic province in west-central New Jersey, range from 25 to 400 tons per square mile. Storm runoff that transports suspended materials in excess of a ton carries 90 percent of the total suspended-sediment discharge from the basin. Observations of particlesize distributions indicate that the suspended material carried during storms is 55 percent silt, 40 percent clay, and 5 percent sand. A trend analysis of sediment records collected at Princeton between 1956 and 1970 indicated an increase in suspended-sediment discharge per unit of water discharge during 1956-61. From early 1962 to late 1967, sediment trends were difficult to interpret owing to complicating factors, such as reservoir construction, urbanization, and extreme drought. After 1967, yields decreased. Variations in sediment yields during the study are attributed to the integrated influence of several factors. A 2.9 percent decrease in croplands and an increase of 5.1 percent in idle and urban land use probably produced a net increase in sediment yields. Construction of seven sediment-retention reservoirs under Public Law 566 resulted in temporary increases in sediment yields. However, based on a trap-efficiency investigation at 1 site, the combined effect of operation of these 7 reservoirs is estimated to result in a 20 percent reduction in sediment discharge from the basin. Other factors that influence the noted decrease include reduction in yields during 5 years of drought, 1962-66, and reduced construction and development during the latter part of the study period resulting from a general economic slowdown.

  11. Sediment accumulation on the Southern California Bight continental margin during the twentieth century

    USGS Publications Warehouse

    Alexander, C.R.; Lee, H.J.

    2009-01-01

    Sediment discharged into the portion of the Southern California Bight extending from Santa Barbara to Dana Point enters a complex system of semi-isolated coastal cells, narrow continental shelves, submarine canyons, and offshore basins. On both the Santa Monica and San Pedro margins, 210Pb accumulation rates decrease in an offshore direction (from ??0.5 g cm-2yr-1 to 0.02 g cm-2yr -1), in concert with a fining in sediment grain size (from 4.5?? to 8.5??), suggesting that offshore transport of wave-resuspended material occurs as relatively dilute nepheloid layers and that hemiplegic sedimentation dominates the supply of sediment to the outer shelf, slope, and basins. Together, these areas are effectively sequestering up to 100% of the annual fluvial input. In contrast to the Santa Monica margin, which does not display evidence of mass wasting as an important process of sediment delivery and redistribution, the San Pedro margin does provide numerous examples of failures and mass wasting, suggesting that intraslope sediment redistribution may play a more important role there. Basin deposits in both areas exhibit evidence of turbidites tentatively associated with both major floods and earthquakes, sourced from either the Redondo Canyon (San Pedro Basin) or Dume Canyon (Santa Monica Basin). On the Palos Verdes shelf, sediment-accumulation rates decrease along and across the shelf away from the White's Point outfall, which has been a major source of contaminants to the shelf deposits. Accumulation rates prior to the construction of the outfall were ??0.2 g cm-2yr-1 and increased 1.5-3.7 times during peak discharges from the outfall in 1971. The distal rate of accumulation has decreased by ??50%, from 0.63 g cm -2yr-1 during the period 1971-1992 to 0.29 g cm -2yr-1 during the period 1992-2003. The proximal rate of accumulation, however, has only decreased ??10%, from 0.83 g cm -2yr-1 during the period 1971-1992 to 0.73 g cm -2yr-1 during the period 1992-2003. Effluent-affected sediment layers on the Palos Verdes shelf can be identified in seabed profiles of naturally occurring 238U, which is sequestered in reducing sediments. The Santa Clara River shelf, just north and west of the Santa Monica and San Pedro margins, is fine-grained and flood-dominated. Core profiles of excess 210Pb from sites covering the extent of documented major flood deposition exhibit evidence of rapidly deposited sediment up to 25 cm thick. These beds are developing in an active depocenter in water depths of 30-50 m at an average rate of 0.72 g cm-2yr-1. Budget calculations for annual and 50-yr timescale sediment storage on this shelf shows that 20%-30% of the sediment discharge is retained on the shelf, leaving 70%-80% to be redistributed to the outer shelf, slope, Santa Barbara Basin, and Santa Monica Basin. ?? 2009 The Geological Society of America.

  12. Timing of deformation and rapid subsidence in the northern Altiplano, Peru: Insights from detrital zircon geochronology of the Ayaviri hinterland basin

    NASA Astrophysics Data System (ADS)

    Horton, B. K.; Perez, N. D.; Saylor, J. E.

    2011-12-01

    Although age constraints on crustal deformation and sediment accumulation prove critical to testing hypotheses of orogenic plateau construction, a common lack of marine facies, volcanic tuffs, and suitable fossils hinders many attempts at chronological reconstructions. A series of elevated retroarc basins along the axis of the Andean orogenic belt provide opportunities to define the timing of deformation and transformation from foreland to hinterland basin configurations. In this study, we present new U-Pb ages of detrital zircons in the Ayaviri intermontane basin of southern Peru (~4 km elevation) in the northern part of the central Andean (Altiplano) plateau. Nearly all sandstone samples show strong unimodal U-Pb age peaks (generally defined by > 5-50 zircons), suggesting these age peaks represent syndepositional volcanism and can be regarded as accurate estimates of true depositional (stratigraphic) age. Integration of these ages with structural and stratigraphic relationships demonstrate the utility of zircon U-Pb geochronology in defining both (1) the timing of basin partitioning and (2) the pace of sediment accumulation. (1) U-Pb ages for several sandstone samples from growth-strata packages associated with two basin-bounding faults reveal structural partitioning of the Ayaviri basin from late Oligocene to Miocene time. In the north, displacement along the southwest-directed Ayaviri thrust fault commenced in late Oligocene time (~28-24 Ma), inducing initial structural partitioning of an upper Eocene-Oligocene, > 5 km thick succession potentially representing an early Andean retroarc foreland basin. In the south, the Ayaviri basin was further disrupted by initial displacement along the northeast-directed Pasani thrust fault in early to middle Miocene time (~18-15 Ma). (2) Additional U-Pb analyses from the Ayaviri basin fill help delimit the long-term rates of sedimentation, suggesting relatively short-lived (< 5 Myr) pulses of accelerated accumulation. Rapid increases in Miocene sediment accumulation rates may reflect rapid subsidence driven by local thrust loading or piecemeal removal of lower crust/lithosphere, hypotheses to be considered by ongoing paleoelevation studies in the region. This approach highlights the potential for detrital zircon U-Pb geochronology to constrain deformation timing and tempo of sedimentation in proximal, coarse-grained basin-fill successions that are typically not amenable to chronostratigraphic techniques.

  13. Understanding Sediment Processes of Los Laureles Canyon in the Binational Tijuana River Watershed

    NASA Astrophysics Data System (ADS)

    Yuan, Yongping; Biggs, Trent; Liden, Douglas

    2015-04-01

    Tijuana River Basin originates in Mexico and drains 4465 km2 into the Tijuana River Estuary National Research Reserve, a protected coastal wetland in California that supports 400 species of birds. Excessive erosion in Tijuana during storms produces sediment loads that bury native vegetation and block the tidal channels. Erosion also threatens human life, causing roads and houses in Mexico to collapse and the Tijuana River Valley in the U.S. to flood. Government agencies in US and Mexico spend millions annually to remove sediment. The EPA-SEMARNAT Border 2020 program identified the reduction of sediment to the Tijuana Estuary as a high priority. Gully formation on unpaved roads, channel erosion, and sheetwash and rill erosion from vacant lots in Tijuana are the primary sources of sediment (Biggs et al, 2009). Because 73% of the watershed is located in Mexico, the problem is likely to worsen as Tijuana continues to urbanize. EPA, with support from USDA, San Diego State University, and CICESE, is developing a model to estimate the sediment loss from a sub-basin of the watershed (Los Laureles Canyon) under existing conditions and under future development. This study will evaluate the reduction/prevention of sediment loss from green infrastructure projects, sediment basins, road paving, and conservation easements.

  14. Suspended sediment and carbonate transport in the Yukon River Basin, Alaska: Fluxes and potential future responses to climate change

    USGS Publications Warehouse

    Dornblaser, Mark M.; Striegl, Robert G.

    2009-01-01

    Loads and yields of suspended sediment and carbonate were measured and modeled at three locations on the Yukon, Tanana, and Porcupine Rivers in Alaska during water years 2001–2005 (1 October 2000 to 30 September 2005). Annual export of suspended sediment and carbonate upstream from the Yukon Delta averaged 68 Mt a−1 and 387 Gg a−1, respectively, with 50% of the suspended sediment load originating in the Tanana River Basin and 88% of the carbonate load originating in the White River Basin. About half the annual suspended sediment export occurred during spring, and half occurred during summer‐autumn, with very little export in winter. On average, a minimum of 11 Mt a−1 of suspended sediment is deposited in floodplains between Eagle, Alaska, and Pilot Station, Alaska, on an annual basis, mostly in the Yukon Flats. There is about a 27% loss in the carbonate load between Eagle and Yukon River near Stevens Village, with an additional loss of about 29% between Stevens Village and Pilot Station, owing to a combination of deposition and dissolution. Comparison of current and historical suspended sediment loads for Tanana River suggests a possible link between suspended sediment yield and the Pacific decadal oscillation.

  15. Suspended sediment and carbonate transport in the Yukon River Basin, Alaska: Fluxes and potential future responses to climate change

    NASA Astrophysics Data System (ADS)

    Dornblaser, Mark M.; Striegl, Robert G.

    2009-06-01

    Loads and yields of suspended sediment and carbonate were measured and modeled at three locations on the Yukon, Tanana, and Porcupine Rivers in Alaska during water years 2001-2005 (1 October 2000 to 30 September 2005). Annual export of suspended sediment and carbonate upstream from the Yukon Delta averaged 68 Mt a-1 and 387 Gg a-1, respectively, with 50% of the suspended sediment load originating in the Tanana River Basin and 88% of the carbonate load originating in the White River Basin. About half the annual suspended sediment export occurred during spring, and half occurred during summer-autumn, with very little export in winter. On average, a minimum of 11 Mt a-1 of suspended sediment is deposited in floodplains between Eagle, Alaska, and Pilot Station, Alaska, on an annual basis, mostly in the Yukon Flats. There is about a 27% loss in the carbonate load between Eagle and Yukon River near Stevens Village, with an additional loss of about 29% between Stevens Village and Pilot Station, owing to a combination of deposition and dissolution. Comparison of current and historical suspended sediment loads for Tanana River suggests a possible link between suspended sediment yield and the Pacific decadal oscillation.

  16. Depositional environment of near-surface sediments, King George Basin, Bransfield Strait, Antarctica

    NASA Astrophysics Data System (ADS)

    Yoon, H. I.; Park, B. K.; Chang, S. K.; Han, M. W.; Oh, J. K.

    1994-03-01

    Four sediment cores were collected to determine the depositional environments of the King George Basin northeast of Bransfield Strait, Antarctica. The cored section revealed three distinct lithofacies: laminated siliceous ooze derived from an increased paleoproductivity near the receding sea-ice edges, massive muds that resulted from hemipelagic sedimentation in open water, and graded sediments that originated from nearby local seamounts by turbidity currents. Clay mineral data of the cores indicate a decreasing importance of volcanic activity through time. Active volcanism and hydrothermal activity appear to be responsible for the enrichment of smectite near the Penguin and Bridgeman Islands.

  17. Thermal alteration of organic matter in recent marine sediments. 1: Pigments. [photosynthetic pigments from Tanner Basin off Southern California

    NASA Technical Reports Server (NTRS)

    Ikan, R.; Aizenshtat, Z.; Baedecker, M. J.; Kaplan, I. R.

    1974-01-01

    Sediment from Tanner Basin, the outer continental shelf off Southern California, was analyzed for photosynthetic pigments and their derivatives, namely carotenes and chlorins. Samples of the sediment were also exposed to raised temperatures (65, 100, 150 C) for various periods of time (1 week, 1 month, 2 months). Analysis of the heat-treated sediment revealed the presence of alpha-ionene and 2,6-dimethylnapthalene, thermal degradation products of Betacarotente. Chlorins were converted to nickel porphyrins of both DPEP and etio series. Possible mechanisms of these transformations are presented.

  18. Water-quality assessment of the Kentucky River Basin, Kentucky; distribution of metals and other trace elements in sediment and water, 1987-90

    USGS Publications Warehouse

    Porter, Stephen D.; White, Kevin D.; Clark, J.R.

    1995-01-01

    The U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program is designed to provide a nationally consistent description of the current status of water quality, to define water-quality trends, and to relate past and present water-quality conditions to natural features, uses of land and water, and other water-quality effects from human activities. The Kentucky River Basin is one of four NAWQA pilot projects that focused primarily on the quality of surface water. Water, sediment, and bedrock samples were collected in the Kentucky River Basin during 1987-90 for the purpose of (1) describing the spatial distribution, transport, and temporal variability of metals and other trace elements in streams of the basin; (2) estimating mean annual loads, yields, and trends of constituent concentrations and identifying potential causes (or sources) of spatial patterns; (3) providing baseline information for concentrations of metals in streambed and suspended sediments; (4) identifying stream reaches in the Kentucky River Basin with chronic water-quality problems; and (5) evaluating the merits of the NAWQA pilot study-approach for the assessment of metals and other trace elements in a river system. The spatial distribution of metals and other trace elements in streambed sediments of the Kentucky River Basin is associated with regional differences of geology, land use and cover, and the results of human activities. Median concentrations of constituents differed significantly among physiographic regions of the basin because of relations to bedrock geochemistry and land disturbance. Concentrations of potentially toxic metals were large in urban and industrial areas of the basin. Elevated concentrations of certain metals were also found in streambed sediments of the Knobs Region because of the presence of Devonian shale bedrock. Elevated concentrations of lead and zinc found in streambed sediments of the Bluegrass Region are likely associated with urban stormwater runoff, point-source discharges, and waste-management practices. Concentrations of cadmium, chromium, copper, mercury, and silver were elevated in streambed sediments downstream from wastewater-treatment plant discharges. Streambed-sediment concentrations of barium, chromium, and lithium were elevated in streams that receive brine discharges from oil production. Elevated concentrations of antimony, arsenic, molybdenum, selenium, strontium, uranium, and vanadium in streambed sediments of the Kentucky River Basin were generally associated with natural sources. Concentrations of metals and other trace elements in water samples from fixed stations (stations where water-quality samples were collected for 3.5 years) in the Kentucky River Basin were generally related to stream discharge and the concentration of suspended sediment, whereas constituent concentrations in the suspended-sediment matrix were indicative of natural and human sources. Estimated mean annual loads and yields for most metals and other trace elements were associated with the transport of suspended sediment. Land disturbance, such as surface mining and agriculture, contribute to increased transport of sediment in streams, thereby increasing concentrations of metals in water samples during periods of intense or prolonged rainfall and increased stream discharge. Concentrations of many metals and trace elements were reduced during low streamflow. Although total-recoverable and dissolved concentrations of certain metals and trace elements were large in streams affected by land disturbance, concentrations of constituents in the suspendedsediment matrix were commonly large in streams in the Knobs and Eastern Coal Field Regions (because of relations with bedrock geochemistry) and in streams that receive wastewater or oil-well-brine discharges. Concentrations and mean annual load estimates for aluminum, chromium, copper, iron, lead, manganese, and mercury were larger than those obtained from data collected by a State agency, probably because of differences in sample-collection methodology, the range of discharge associated with water-quality samples, and laboratory analytical procedures. However, concentrations, loads, and yields of arsenic, barium, and zinc were similar to those determined from the State data. Significant upward trends in the concentrations of aluminum, iron, magnesium, manganese, and zinc were indicated at one or more fixed stations in the Kentucky River Basin during the past 10 to 15 years. Upward trends for concentrations of aluminum, iron, and manganese were found at sites that receive drainage from coal mines in the upper Kentucky River Basin, whereas upward trends for zinc may be associated with urban sources. Water-quality criteria established by the U.S. Environmental Protection Agency (USEPA) or the State of Kentucky for concentrations of aluminum, beryllium, cadmium, chromium, copper, iron, manganese, nickel, silver, and zinc were exceeded at one or more fixed stations in the Kentucky River Basin. On a qualitative basis, dissolved concentrations of certain metals and trace elements were large during low streamflow at sites where (1) concentrations of these constituents in underlying streambed sediments were large, or (2) dissolvedoxygen concentrations were small. Concentrations of barium, lithium, and strontium were large during low streamflow, which indicates the influence of ground-water baseflows on the quality of surface water during low flow. The effects of point-source discharges, landfills, and other wastemanagement practices are somewhat localized in the Kentucky River Basin and are best indicated by the spatial distribution of metals and other trace elements in streambed sediments and in the suspended-sediment fraction of water samples at stream locations near the source. It was not possible to quantify the contribution of point sources to the total transport of metals and other trace elements at fixed stations because data were not available for wastewater effluents. Quantification of baseline concentrations of metals and other trace elements in streambed sediments provides a basis for the detection of water-quality changes that may result from improvements in wastewater treatment or the implementation of best-management practices for controlling contamination from nonpoint sources in the Kentucky River Basin.

  19. Preliminary observations on coastal sediment loss through ice rafting in Lake Michigan

    USGS Publications Warehouse

    Reimnitz, E.; Hayden, E.; McCormick, M.; Barnes, P.W.

    1991-01-01

    Shows that ice rafting of sand is an important mechanism influencing processes of coastal erosion and basin-deposition. Ice rafting may be partly responsible for net sediment progradation at this southeastern, lee shore during the last few thousand years, and adds coarse grains to basin muds. -from Authors

  20. 76 FR 30320 - Public Scoping Meeting and Preparation of Environmental Impact Statement for Luce Bayou...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... involvement associated with the proposed action is the discharge or dredged or fill material into waters of... affect navigable waters. Federal authorizations for the proposed project would constitute a ``major... sedimentation settling basin. c. An approximate 20-acre sedimentation settling and storage basin. d. An...

  1. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India

    NASA Astrophysics Data System (ADS)

    Swarnkar, Somil; Malini, Anshu; Tripathi, Shivam; Sinha, Rajiv

    2018-04-01

    High soil erosion and excessive sediment load are serious problems in several Himalayan river basins. To apply mitigation procedures, precise estimation of soil erosion and sediment yield with associated uncertainties are needed. Here, the revised universal soil loss equation (RUSLE) and the sediment delivery ratio (SDR) equations are used to estimate the spatial pattern of soil erosion (SE) and sediment yield (SY) in the Garra River basin, a small Himalayan tributary of the River Ganga. A methodology is proposed for quantifying and propagating uncertainties in SE, SDR and SY estimates. Expressions for uncertainty propagation are derived by first-order uncertainty analysis, making the method viable even for large river basins. The methodology is applied to investigate the relative importance of different RUSLE factors in estimating the magnitude and uncertainties in SE over two distinct morphoclimatic regimes of the Garra River basin, namely the upper mountainous region and the lower alluvial plains. Our results suggest that average SE in the basin is very high (23 ± 4.7 t ha-1 yr-1) with higher values in the upper mountainous region (92 ± 15.2 t ha-1 yr-1) compared to the lower alluvial plains (19.3 ± 4 t ha-1 yr-1). Furthermore, the topographic steepness (LS) and crop practice (CP) factors exhibit higher uncertainties than other RUSLE factors. The annual average SY is estimated at two locations in the basin - Nanak Sagar Dam (NSD) for the period 1962-2008 and Husepur gauging station (HGS) for 1987-2002. The SY at NSD and HGS are estimated to be 6.9 ± 1.2 × 105 t yr-1 and 6.7 ± 1.4 × 106 t yr-1, respectively, and the estimated 90 % interval contains the observed values of 6.4 × 105 t yr-1 and 7.2 × 106 t yr-1, respectively. The study demonstrated the usefulness of the proposed methodology for quantifying uncertainty in SE and SY estimates at ungauged basins.

  2. High resolution evolution of post-rift terrigenous sediment yields in the Provence Basin (Western Mediterranean): relation with climate and tectonics

    NASA Astrophysics Data System (ADS)

    Leroux, Estelle; Rabineau, Marina; Aslanian, Daniel; Gorini, Christian; Molliex, Stéphane; Bache, François; Robin, Cécile; Droz, Laurence; Moulin, Maryline; Poort, Jeffrey; Rubino, Jean-Loup; Suc, Jean-Pierre

    2017-04-01

    The correlation of stratigraphic markers between the shelf, the slope and the deep basin have enabled us to provide a complete and quantitative view of sediments fluxes for the last 6 Ma on the entire Gulf of Lions margin. Messinian units and Pliocene and Pleistocene chronostratigraphic markers have been correlated from the shelf to the deep basin and the total sediment thickness from the basement (20 Ma) to the present-day seafloor has also been mapped. After Time/Depth conversion and decompaction of each stratigraphic interval, sedimentary volumes were calculated. Sediment flux evolution shows that a dramatic terrigenous peak occurred during the Messinian Salinity Crisis. The Pliocene-Pleistocene average flux appears to have been three times higher than that of the Miocene, which seems in agreement with published measurements from the World's ocean. This study also highlights the Mid-Pleistocene Revolution around 0.9 Ma, which resulted in an almost doubling of sedimentary detrital fluxes in the Provencal Basin. These results are discussed in relation with world-wide climate and alpine tectonics.

  3. Structure of Subsurface Sediments in the Scan Basin (Scotia Sea)

    NASA Astrophysics Data System (ADS)

    Schreider, Al. A.; Schreider, A. A.; Sazhneva, A. E.; Galindo-Zaldivar, J.; Ruano, P.; Maldonado, A.; Martos-Martin, Y.; Lobo, F.

    2018-01-01

    The structure of sediments in the Scotia Sea is used as a basis for reconstructing the geological history of its bottom in the Late Quaternary. The Scan Basin is one of the main elements of the topography of the southern Scotia Sea. Its formation played a considerable role in the fragmentation of the continent, which included the Bruce and Discovery banks. The main parameters of the sediment layer in the Scan Basin have been reconstructed by the present time, but its top part has not been studied. In this work, we analyze the first data obtained on the R/V Gesperidas with the use of a TOPAS PS 18/40 high-resolution seismic profilograph in 2012. Three layers in the subsurface sediments on the bottom of the Scan Basin were specified for the first time. The mean periods of their deposition in the Late Quaternary were determined as 115000 years for the first, 76000 years for the second, and 59 000 years for the third layer from the surface of the bottom. The duration of the total accumulation period of the three layers is about 250000 years.

  4. From gullies to mountain belts: A review of sediment budgets at various scales

    NASA Astrophysics Data System (ADS)

    Hinderer, Matthias

    2012-12-01

    This paper reviews the state of the art in the concept as well as in the application of sediment budgets in sedimentary research. Sediments are a product of mass dispersal at the Earth surface and take part in global cycles. Sediment budgets aim at quantifying this mass transfer based on the principle of mass conservation and are the key to determine ancient fluxes of solid matter at the earth surface. This involves fundamental questions about the interplay of uplift, climate and denudation in mountain belts and transfer of sediments from the continents to the oceans as well as applied issues such as soil and gully erosion, reservoir siltation, and coastal protection. First, after introducing basic concepts, relevant scales and methodologies, the different components of Quaternary routing systems from erosion in headwaters, river systems, glacial and paraglacial systems, lakes, deltas, estuaries, coasts, shelves, epicontinental seas, and deep-sea fans are discussed in terms of their sediment budget. Most suitable are sedimentologically closed or semi-closed depositional environments e.g. alluvial fans, lakes, deltas and deep-sea fans. In a second step, the dynamics of passive, active, and collisional tectonic settings and sediment budgets in related sedimentary basins are explored and new concepts of sediment portioning at large geodynamic scales are introduced. Ancient routing systems are more or less incomplete and may be intensively fragmented or destroyed in active tectonic settings. In terms of sedimentary basin types, rifts, intracontinental and epicontinental settings are preferred objects of sediment budgets, because of their persistence and relatively simple overall sedimentary architecture. However, closing basins, such as foreland, forearc, retroarc, piggy-back and wedge-top basins may provide excellent snapshots of orogenic sediment fluxes. In a third step, the large long-lived routing systems of the Amazon, the Ganges-Brahmaputra, and the Rhine are reviewed. For each system estimates of either sediment volumes (mass) or sediment fluxes of continental and marine subsystems have been compiled in order to receive a complete routing in terms of mass conservation for specific time periods since the Late Glacial Maximum as well as the Cenozoic. Following lessons can be taken from these case studies: (i) depositional centers and fluxes show strong shifts in space and time and call for caution when simply looking at subsystems, (ii) the response times of these large systems are within the Milankovich time interval, thus lower than predicted from diffusion models, (iii) cyclic routing of sediments in continental basins is much more dominated by climate (human) control than by eustacy, and (iv) at long time scales, ultimate sinks win over intermittent storage. It is concluded from this review that the quantitative understanding of global sediment cycling over historic and geologic time and its response to allogenic forcing is still in its infancy and further research is needed towards a holistic view of sediment routing systems at various temporal and spatial scales and their coupling with global biogeochemical cycles. This includes (i) to better determine response times of large routing systems by linking Quaternary with Cenozoic sediment budgets and continental with marine sub-systems, (ii) to combine advanced provenance techniques with sediment budgets in order to reconstruct ancient systems, (iii) to study sediment partitioning at the basin scale, (iv) to reconcile continental, supply-dominated sequence stratigraphy with the eustatic-dominated marine concept, and (iv) to account for non-actualism of ancient systems with respect to their erosion and transport mode, in particular, during glaciations and pronounced arid intervals. Glacial and eolian sediment routing may cross over hydrologic boundaries of drainage basins, thus challenging the principle of mass conservation.

  5. Fluvial sediment and chemical quality of water in the Little Blue River basin, Nebraska and Kansas

    USGS Publications Warehouse

    Mundorff, J.C.; Waddell, K.M.

    1966-01-01

    The Little Blue River drains about 3,37)0 square miles in south-central Nebraska and north-central Kansas. The uppermost bedrock in the basin is limestone and shale of Permian age and sandstone, shale, and limestone of Cretaceous age. Bedrock is exposed in many places in the lower one-third of the basin but elsewhere is buried beneath a thin to thick mantle of younger sediments, mostly of Quaternary age. These younger sediments are largely fluvial and eolian deposits but also include some glacial till. Consisting in large part of sand and gravel, the fluvial deposits are an important source of ground-water supplies throughout much of the upper two-thirds of the basin. Loess, an eolian deposit of clayey silt, is by far the most widespread surficial deposit. The climate is continental. Temperatures ranging from -38 ? F to 118 ? F have been recorded in the basin. Average annual precipitation as low as 10.31 and as high as 49.32 inches has been recorded. During most years in the period 1956-62, when nearly all the water-quality data were obtained, annual precipitation and annual runoff were greater than normal. Flow-duration data indicate, however, that the flow distribution for the period was near normal. The Little Blue River has the same suspended-sediment characteristics as nearly all unregulated streams in the Great Plains--a wide range in concentrations, low concentrations during low-flow periods, and high concentrations during almost all periods of significant overland runoff. The maximum instantaneous concentration normally occurs many hours before maximum water discharge during any given rise in stage; the maximum daily mean concentration during any given year normally occurs at a moderate stream stage, not during a major flood. Suspended-sediment data for Little Blue River near Deweese, Nebr., which receives drainage from the upstream third of the basin, approximately, show that during the 1!}57-61 water years concentrations of 100 ppm (parts per million) or less prevailed about 42 percent of the time and concentrations of 1,000 ppm or less prevailed about 85 percent of the time. Observed concentrations ranged from 2 to 21,000 ppm: daily mean concentrations ranged from 2 to 13,800 ppm. The discharge-weighted suspended-sediment concentration was computed as about 2,800 ppm at Little Blue River near Deweese, about 3,300 ppm near Fairbury (Endicott), and about 3,000 ppm at Waterville. These stations receive drainage from about one-third, two-thirds, and nearly all the basin, respectively. Water-utilization problems resulting from high concentrations are not significant in the basin ; use of water from the Little Blue River is quantitatively negligible. Concentrations and, consequently, discharges of sediment are greater at a given water discharge on a rising stage than at the same discharge on the falling stage of the same runoff event. Also, a wide range in sediment discharge occurs at similar water discharges during different runoff events. Daily sediment discharges at Little Blue River near Deweese ranged from about 1,400 to 16,000 tons at daily mean water discharges of about 500 cfs (cubic feet per second) and from almost 7,500 to 28,000 tons at water discharges of about 1,000 cfs. The estimated long-term sediment discharge at Little Blue River near Deweese is about 400,000 tons per year: near Fairbury, about 1,200,000 tons per year: and at Waterville, about 1.900,000 tons per year. The high sediment discharge from the downstream part of the basin is due to greater precipitation and runoff--not to higher concentrations of suspended sediment--in the downstream parts of the basin. Nearly all the suspended sediment is silt and clay. The streambed material is mainly medium sand to gravel. The median particle size of bed material observed was about 0.73 mm near Deweese and about 0.77 mm near Fairbury. A few computations of total sediment discharge of Little Blue River near Deweese indicate that suspended-sedim

  6. Simulating the Effects of Natural Events and Anthropogenic Activity on Sediment Discharge to the Poverty Shelf, New Zealand during the late Holocene

    NASA Astrophysics Data System (ADS)

    Kettner, A. J.; Syvitski, J. P.; Gomez, B.

    2005-12-01

    The 2203 km2 Waipaoa and 312 km2 Waimata river basins annually deliver ~16 Mt of suspended sediment to Poverty Bay and the adjacent continental shelf. Much of this sediment currently is generated during frequent runoff events by gully erosion, which was initiated in the early part of the twentieth century when the headwaters were deforested and converted to pasture by European farmers. In addition to this disturbance, the c. 200 A.D. Taupo eruption, Polynesian arrival (c. 1300 A.D); short-term fluctuations in climate of a few hundred years duration, such as a Southern hemisphere counterpart to the Medieval Warm Period; and short-lived, high magnitude events, such as magnitude > 7 earthquakes and large floods- with a >102 yr recurrence interval have all influenced basin sediment yield during the past 3000 yr. We modeled the effect of these events on basin sediment yield using HydroTrend, which is a numerical model that creates synthetic river discharge and sediment load time series over long periods as a function of climate trends and basin morphology. HydroTrend accepts input based on daily meteorological station data (e.g., statistics of temperature and precipitation and their interannual variations), and basin morphometry derived from DEM analysis. Altitudinal variations across the basin were characterized using climatological records from four stations, with between 10 and 100 years of record. Climate and environmental change scenarios were imposed onto the meteorological data using the record of storm activity derived from nearby Lake Tutira, and by varying the vegetation cover (which influences the amount of rain reaching the ground surface that is converted to runoff). Both the modeled water and suspended sediment discharge exhibit good agreement with 25 years of observations from a gauging station located ~10 km from the coast. In the long term, our simulations suggest that, under the indigenous forest cover, a 30% increase in precipitation due to increased storminess causes a 5% increase in suspended sediment discharge. By contrast, the disturbance to the vegetation cover by ashfall during the Taupo eruption resulted in an 80% increase in suspended sediment discharge. The disturbance by Polynesian settlement and the earliest European clearances had a minimal impact, but the subsequent clearances in the headwaters caused suspended sediment discharge to increase by 850%. All these trends are replicated in the depositional record preserved on the middle shelf.

  7. Depositional history and neotectonics in Great Salt Lake, Utah, from high-resolution seismic stratigraphy

    USGS Publications Warehouse

    Colman, Steven M.; Kelts, K.R.; Dinter, D.A.

    2002-01-01

    High-resolution seismic-reflection data from Great Salt Lake show that the basinal sediment sequence is cut by numerous faults with N-S and NE-SW orientations. This faulting shows evidence of varied timing and relative offsets, but includes at least three events totaling about 12 m following the Bonneville phase of the lake (since about 13.5 ka). Several faults displace the uppermost sediments and the lake floor. Bioherm structures are present above some faults, which suggests that the faults served as conduits for sublacustrine discharge of fresh water. A shallow, fault-controlled ridge between Carrington Island and Promontory Point, underlain by a well-cemented pavement, separates the main lake into two basins. The pavement appears to be early Holocene in age and younger sediments lap onto it. Onlap-offlap relationships, reflection truncations, and morphology of the lake floor indicate a low lake, well below the present level, during the early Holocene, during which most of the basin was probably a playa. This low stand is represented by irregular reflections in seismic profiles from the deepest part of the basin. Other prominent reflectors in the profiles are correlated with lithologic changes in sediment cores related to the end of the Bonneville stage of the lake, a thick mirabilite layer in the northern basin, and the Mazama tephra. Reflections below those penetrated by sediment cores document earlier lacustrine cycles. ?? 2002 Elsevier Science B.V. All rights reserved.

  8. Significance of anoxic slope basins to occurrence of hydrocarbons along flexure trend, Gulf of Mexico: a reappraisal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinkelman, M.G.; Curry, D.J.

    1987-05-01

    Recently, Tertiary anoxic slope basins have been proposed as the sources for much of the oil occurring along the Flexure Trend in the Gulf of Mexico. The intraslope basins are thought to have been formed in response to salt diapirism and concomitant salt withdrawal resulting from differential sediment loading between the basins and the diapirs, as well as due to associated faulting. Of the modern intraslope basins, the black, organic-rich muds accumulating in the Orca basin have especially attracted and are suggested to be modern analogs to late Tertiary source rocks accumulated and buried across the continental slope. Although themore » organic carbon content of the anoxic sediments in the Orca basin is generally high (2 to 3%), the concentration of preserved oil-generative organic matter in these sediments is low. Rock-Eval P2 yields are usually in the range of 340 to 1620 ppm, and hydrogen indices are generally less than 100. Pyrolysis-GC and 13C-NMR data show that up to 30 + % of the organic carbon is contained in carboxyl and other oxygenated groups, which are lost during diagenesis and early catagenesis of the sediments, and that much of the remainder is aromatized and degraded. The degradation was probably by oxidation during settling through the oxic water column. The geochemical data indicate, therefore, that the bulk of the organic carbon in the Orca basin is not capable of forming oil during catagenesis. Published regional cross sections across the Texas-Louisiana continental margin commonly show a thick (0.5-4 km), continuous salt sequence, sourcing salt diapirs and ridges, to underlie the Oligocene(.)/Miocene to Pleistocene sedimentary section of the outer continental shelf and slope.« less

  9. Global Drainage Patterns to Modern Terrestrial Sedimentary Basins and its Influence on Large River Systems

    NASA Astrophysics Data System (ADS)

    Nyberg, B.; Helland-Hansen, W.

    2017-12-01

    Long-term preservation of alluvial sediments is dependent on the hydrological processes that deposit sediments solely within an area that has available accomodation space and net subsidence know as a sedimentary basin. An understanding of the river processes contributing to terrestrial sedimentary basins is essential to fundamentally constrain and quantify controls on the modern terrestrial sink. Furthermore, the terrestrial source to sink controls place constraints on the entire coastal, shelf and deep marine sediment routing systems. In addition, the geographical importance of modern terrestrial sedimentary basins for agriculture and human settlements has resulted in significant upstream anthropogenic catchment modification for irrigation and energy needs. Yet to our knowledge, a global catchment model depicting the drainage patterns to modern terrestrial sedimentary basins has previously not been established that may be used to address these challenging issues. Here we present a new database of 180,737 global catchments that show the surface drainage patterns to modern terrestrial sedimentary basins. This is achieved by using high resolution river networks derived from digital elevation models in relation to newly acquired maps on global modern sedimentary basins to identify terrestrial sinks. The results show that active tectonic regimes are typically characterized by larger terrestrial sedimentary basins, numerous smaller source catchments and a high source to sink relief ratio. To the contrary passive margins drain catchments to smaller terrestrial sedimentary basins, are composed of fewer source catchments that are relatively larger and a lower source to sink relief ratio. The different geomorphological characteristics of source catchments by tectonic setting influence the spatial and temporal patterns of fluvial architecture within sedimentary basins and the anthropogenic methods of exploiting those rivers. The new digital database resource is aimed to help the geoscientific community to contribute further to our quantitative understanding of source-to-sink systems and its allogenic and autogenic controls, geomorphological characteristics, terrestrial sediment transit times and the anthropogenic impact on those systems.

  10. Sources and pathways of polycyclic aromatic and saturated hydrocarbons in the Arkona Basin (Southern Baltic Sea, Central Europe)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, H.M.

    The Baltic Sea (Central Europe) is surrounded by coastal regions with long histories of industrialization. The heavy metal profiles in the sediments in the center of the Arkona Basin, one of the depressions of the southern Baltic Sea area, clearly reflect the historical anthropogenic influence. The Arkona Basin-is the final sink for materials derived from the Oder river which drains a highly polluted industrial area of Eastern Europe. Surficial muddy sediments from a close-meshed field of sampling-points were analyzed for distribution patterns of aliphatics and quantities and ratios of selected polycyclic aromatic hydrocarbons (PAH). These compounds are thought to reflectmore » anthropogenic pollution related to emissions from traffic, heating, etc. We use these marker substances to test if the basin sediments reflect riverine input, and if additional sources can be identified.« less

  11. Tertiary and Quaternary Research with Remote Sensing Methods

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1985-01-01

    Problems encountered in mapping the Quaternary section of the Wind River Region using remote sensing methods are discussed. Analysis of the stratigraphic section is a fundamental aspect of the geologic study of sedimentary basins. Stratigraphic analysis of post-Cretaceous rocks in the Wind River Basin encounters problems of a distinctly different character from those involved in studying the pre-Cretaceous section. The interior of the basin is predominantly covered by Tertiary and Quaternary sediments. These rocks, except on the basin margin to the north, are mostly flat lying or gently dipping. The Tertiary section consists of sandstones, siltstones, and tuffaceous sediments, some variegated, but in general poorly bedded and of great lithologic similarity. The Quaternary sediments consist of terrace, fan, and debris tongue deposits, unconsolidated alluvium occupying the bottoms of modern watercourses, deposits of eolian origin and tufa. Terrace and fan deposits are compositionally diverse and reflect the lithologic diversity of the source terranes.

  12. Precipitation-runoff, suspended-sediment, and flood-frequency characteristics for urbanized areas of Elmendorf Air Force Base, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.

    1999-01-01

    The developed part of Elmendorf Air Force Base near Anchorage, Alaska, consists of two basins with drainage areas of 4.0 and 0.64 square miles, respectively. Runoff and suspended-sediment data were collected from August 1996 to March 1998 to gain a basic understanding of the surface-water hydrology of these areas and to estimate flood-frequency characteristics. Runoff from the larger basin averaged 6 percent of rainfall, whereas runoff from the smaller basin averaged 13 percent of rainfall. During rainfall periods, the suspended-sediment load transported from the larger watershed ranged from 179 to 21,000 pounds and that from the smaller watershed ranged from 23 to 18,200 pounds. On a yield basis, suspended sediment from the larger watershed was 78 pounds per inch of runoff and from the smaller basin was 100 pounds per inch of runoff. Suspended-sediment loads and yields were generally lower during snowmelt periods than during rainfall periods. At each outfall of the two watersheds, water flows into steep natural channels. Suspended-sediment loads measured approximately 1,000 feet downstream from the outfalls during rainfall periods ranged from 8,450 to 530,000 pounds. On a yield basis, suspended sediment averaged 705 pounds per inch of runoff, more than three times as much as the combined sediment yield from the two watersheds. The increase in suspended sediment is most likely due to natural erosion of the streambanks. Streamflow data, collected in 1996 and 1997, were used to calibrate and verify a U.S. Geological Survey computer model?the Distributed Routing Rainfall Runoff Model-Version II (DR3M-II). The model was then used to simulate annual peak discharges and runoff volumes for 1981 to 1995 using historical rainfall records. Because the model indicated that surcharging (or ponding) would occur, no flood-frequency analysis was done for peak discharges. A flood-frequency analysis of flood volumes indicated that a 10-year flood would result in 0.39 inch of runoff (averaged over the entire drainage basin) from the larger watershed and 1.1 inches of runoff from the smaller watershed.

  13. Global fluvial sediment retention by registered dam systems

    NASA Astrophysics Data System (ADS)

    Vorosmarty, C.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitski, J.

    2003-04-01

    A framework for estimating global-scale impacts from reservoir construction on riverine sediment transport to the ocean is presented. Framework results depict a large, global-scale, and growing impact from anthropogenic impoundment. This study analyzes data on 633 of the world’s largest reservoirs (LRs) (>= 0.5 km^3 maximum storage) and uses statistical inference to assess the impact of the remaining >44,000 smaller reservoirs (SRs). Information on the LRs was linked to a digitized river network at 30' (latitude x longitude) resolution. A residence time change BoxBox_R) for otherwise free-flowing river water is determined locally at each reservoir and used with a sediment retention function to predict the proportion of incident sediment flux trapped within each impoundment. More than 40% of global river discharge is intercepted locally by the LRs analyzed and a significant proportion (≈ 70%) of this discharge maintains a sediment trapping efficiency in excess of 50%. Half of all discharge entering LRs shows a local trapping efficiency of 80% or more. Several large basins such as the Colorado and Nile show nearly complete trapping due to large reservoir construction and flow diversion. From the standpoint of sediment retention rates, the most heavily regulated drainage basins reside in Europe. North America, Africa, Australia/Oceania are also strongly affected by LRs. Globally, greater than 50% of basin-scale sediment flux in regulated basins is potentially trapped in artificial impoundments, with a discharge-weighted sediment trapping due to LRs of 30%, and an additional contribution of 23% from SRs. If we consider both regulated and unregulated basins, the interception of global sediment flux by all registered reservoirs (n ≈ 45,000) is conservatively placed at 4 to 5 Gt yr-1 or 25-30% of the total. There is an additional but unknown impact due to still smaller unregistered impoundments (n ≈ 800,000). From a global change perspective, the long-term impact of such hydraulic engineering works on the world's coastal zone appears to be significant but has yet to be fully elucidated.

  14. Natural and human forcing in recent geomorphic change; case studies in the Rio de la Plata basin.

    PubMed

    Bonachea, Jaime; Bruschi, Viola M; Hurtado, Martín A; Forte, Luis M; da Silva, Mario; Etcheverry, Ricardo; Cavallotto, José L; Dantas, Marcilene F; Pejon, Osni J; Zuquette, Lázaro V; Bezerra, Maria Angélica de O; Remondo, Juan; Rivas, Victoria; Gómez-Arozamena, José; Fernández, Gema; Cendrero, Antonio

    2010-06-01

    An analysis of geomorphic system's response to change in human and natural drivers in some areas within the Río de la Plata basin is presented. The aim is to determine whether an acceleration of geomorphic processes has taken place in recent years and, if so, to what extent it is due to natural (climate) or human (land-use) drivers. Study areas of different size, socio-economic and geomorphic conditions have been selected: the Río de la Plata estuary and three sub-basins within its watershed. Sediment cores were extracted and dated ((210)Pb) to determine sedimentation rates since the end of the 19th century. Rates were compared with time series on rainfall as well as human drivers such as population, GDP, livestock load, crop area, energy consumption or cement consumption, all of them related to human capacity to disturb land surface. Data on river discharge were also gathered. Results obtained indicate that sedimentation rates during the last century have remained essentially constant in a remote Andean basin, whereas they show important increases in the other two, particularly one located by the São Paulo metropolitan area. Rates in the estuary are somewhere in between. It appears that there is an intensification of denudation/sedimentation processes within the basin. Rainfall remained stable or varied very slightly during the period analysed and does not seem to explain increases of sedimentation rates observed. Human drivers, particularly those more directly related to capacity to disturb land surface (GDP, energy or cement consumption) show variations that suggest human forcing is a more likely explanation for the observed change in geomorphic processes. It appears that a marked increase in denudation, of a "technological" nature, is taking place in this basin and leading to an acceleration of sediment supply. This is coherent with similar increases observed in other regions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Channel and hillslope processes in a semiarid area, New Mexico

    USGS Publications Warehouse

    Leopold, Luna Bergere; Emmett, William W.; Myrick, Robert M.

    1966-01-01

    Ephemeral washes having drainage areas from a few acres to 5 square miles are shown by actual measurement to be accumulating sediment on the streambed. This aggradation is not apparent to the eye but is clearly shown in 7 years of annual remeasurement.A similar aggradation was in progress in the same area some 3000 years ago as evidenced by an alluvial terrace later dissected by the present channel system. At that time as well as at present, aggradation occurred even in tributary areas draining a few acres. Colluvial accumulations merge with channel deposits and blanket the valleys and tributary basins even up to a few hundred feet of the drainage divides. The present study concerned the amounts of sediment produced by different erosion processes in various physiographic positions in the drainage basins. Measurements show that by far the largest sediment source is sheet erosion operating on the small percentage of basin area near the basin divides. Mass movement, gully head extension, and channel enlargement are presently small contributors of sediment compared with sheet erosion on unrilled slopes. As in previous studies, not all of the erosion products could be accounted for by accumulations on colluvial slopes and on beds of channels. The discrepancies are attributed primarily to sediment carried completely out of the basins studied and presumably deposited somewhere downstream.Aggradation of alluvial valleys of 5 square miles area and smaller both in the present epicycle, and in prehistorical but post-glacial times in this locality, cannot be attributed to gullying or rill extension in the headwater tributaries but to sheet erosion of the most upstream margins of the basins.Studies of rainfall characteristics of the 7 years of measurement compared with previous years in the 100-year record do not provide a clear-out difference which would account for the presently observed aggradation of channels. Longer period of measurement of erosion and sedimentation will be necessary to identify what precipitation parameters govern whether the channels aggrade or degrade.

  16. Quaternary sedimentation and subsidence history of Lake Baikal, Siberia, based on seismic stratigraphy and coring

    USGS Publications Warehouse

    Colman, Steven M.; Karabanov, E.B.; Nelson, C. H.

    2003-01-01

    The long, continuous, high-latitude, stratigraphic record of Lake Baikal was deposited in three broad sedimentary environments, defined by high-resolution seismic-reflection and coring methods: (1) turbidite depositional systems, by far the most widespread, characterizing most of the margins and floors of the main basins of the lake, (2) large deltas of major drainages, and (3) tectonically or topographically isolated ridges and banks. Holocene sedimentation rates based on radiocarbon ages vary by more than an order of magnitude among these environments, from less than about 0.03 mm/yr on ridges and banks to more than about 0.3 mm/yr on basin floors. Extrapolating these rates, with a correction for compaction, yields tentative estimates of about 25 and 11 Ma for the inception of rifting in the Central and North basins, respectively, and less than 6 Ma for the 200-m sediment depth on Academician Ridge. The Selenga Delta has the distinctive form of a classic prograding Gilbert-type delta, but its history appears to represent a complex combination of tectonism and sedimentation. The central part of the delta is underlain by prograding, shallow-water sequences, now several hundred meters below the lake surface. These deposits and much of the delta slope are mantled by fine-grained, deep-water, hemipelagic deposits whose base is estimated to be about 650,000 years old. Modern coarse-grained sediment bypasses the delta slope through fault-controlled canyons that feed large, subaqueous fans at the ends of the South and Central basins. These relations, along with abundant other evidence of recent faulting and the great depths of the Central and South basins, suggest that these two rift basins have experienced a period of unusually rapid subsidence over the last 650,000 years, during at least part of which sedimentation has failed to keep pace.

  17. Groundwater quality in the Coastal Los Angeles Basin, California

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    The Coastal Los Angeles Basin study unit is approximately 860 square miles and consists of the Santa Monica, Hollywood, West Coast, Central, and Orange County Coastal Plain groundwater basins (California Department of Water Resources, 2003). The basins are bounded in part by faults, including the Newport-Inglewood fault zone, and are filled with Holocene-, Pleistocene-, and Pliocene-age marine and alluvial sediments. The Central Basin and Orange County Coastal Plain are divided into a forebay zone on the northeast and a pressure zone in the center and southwest. The forebays consist of unconsolidated coarser sediment, and the pressure zones are characterized by lenses of coarser sediment divided into confined to semi-confined aquifers by lenses of finer sediments. The primary aquifer system in the study unit is defined as those parts of the aquifer system corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database of public-supply wells. The majority of public-supply wells are drilled to depths of 510 to 1,145 feet, consist of solid casing from the land surface to a depth of about 300 to 510 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer systems.

  18. A reassessment of the suspended sediment load in the Madeira River basin from the Andes of Peru and Bolivia to the Amazon River in Brazil, based on 10 years of data from the HYBAM monitoring programme

    NASA Astrophysics Data System (ADS)

    Vauchel, Philippe; Santini, William; Guyot, Jean Loup; Moquet, Jean Sébastien; Martinez, Jean Michel; Espinoza, Jhan Carlo; Baby, Patrice; Fuertes, Oscar; Noriega, Luis; Puita, Oscar; Sondag, Francis; Fraizy, Pascal; Armijos, Elisa; Cochonneau, Gérard; Timouk, Franck; de Oliveira, Eurides; Filizola, Naziano; Molina, Jorge; Ronchail, Josyane

    2017-10-01

    The Madeira River is the second largest tributary of the Amazon River. It contributes approximately 13% of the Amazon River flow and it may contribute up to 50% of its sediment discharge to the Atlantic Ocean. Until now, the suspended sediment load of the Madeira River was not well known and was estimated in a broad range from 240 to 715 Mt yr-1. Since 2002, the HYBAM international network developed a new monitoring programme specially designed to provide more reliable data than in previous intents. It is based on the continuous monitoring of a set of 11 gauging stations in the Madeira River watershed from the Andes piedmont to the confluence with the Amazon River, and discrete sampling of the suspended sediment concentration every 7 or 10 days. This paper presents the results of the suspended sediment data obtained in the Madeira drainage basin during 2002-2011. The Madeira River suspended sediment load is estimated at 430 Mt yr-1 near its confluence with the Amazon River. The average production of the Madeira River Andean catchment is estimated at 640 Mt yr-1 (±30%), the corresponding sediment yield for the Andes is estimated at 3000 t km-2 yr-1 (±30%), and the average denudation rate is estimated at 1.20 mm yr-1 (±30%). Contrary to previous results that had mentioned high sedimentation rates in the Beni River floodplain, we detected no measurable sedimentation process in this part of the basin. On the Mamoré River basin, we observed heavy sediment deposition of approximately 210 Mt yr-1 that seem to confirm previous studies. But while these studies mentioned heavy sedimentation in the floodplain, we showed that sediment deposition occurred mainly in the Andean piedmont and immediate foreland in rivers (Parapeti, Grande, Pirai, Yapacani, Chimoré, Chaparé, Secure, Maniqui) with discharges that are not sufficiently large to transport their sediment load downstream in the lowlands.

  19. Reconnaissance study of water quality in the mining-affected Aries River Basin, Romania

    USGS Publications Warehouse

    Friedel, Michael J.; Tindall, James A.; Sardan, Daniel; Fey, David L.; Poputa, G.L.

    2008-01-01

    The Aries River basin of western Romania has been subject to mining activities as far back as Roman times. Present mining activities are associated with the extraction and processing of various metals including Au, Cu, Pb, and Zn. To understand the effects of these mining activities on the environment, this study focused on three objectives: (1) establish a baseline set of physical parameters, and water- and sediment-associated concentrations of metals in river-valley floors and floodplains; (2) establish a baseline set of physical and chemical measurements of pore water and sediment in tailings; and (3) provide training in sediment and water sampling to personnel in the National Agency for Mineral Resources and the Rosia Poieni Mine. This report summarizes basin findings of physical parameters and chemistry (sediment and water), and ancillary data collected during the low-flow synoptic sampling of May 2006.

  20. Observations of gas hydrates in marine sediments, offshore northern California

    USGS Publications Warehouse

    Brooks, J.M.; Field, M.E.; Kennicutt, M.C.

    1991-01-01

    Biogenic gas hydrates were recovered in shallow cores (< 6 m deep) from the Eel River basin in offshore northern California between 40??38??? and 40??56???N. The gas hydrates contained primarily methane (??13C = -57.6 to -69.1???) and occurred as dispersed crystals, small (2-20 mm) nodules, and layered bands within the sediment. These hydrates, recovered in sediment at water depths between 510 and 642 m, coincide nearly, but not exactly, with areas showing bottom-simulating reflectors (BSRs) on seismic-reflection records. This study confirms indirect geophysical and geologic observations that gas hydrates are present north of the Mendocino Fracture Zone in sediment of the Eel River basin but probably are absent to the south in the Point Arena basin. This discovery extends the confirmed sites of gas hydrates in the eastern Pacific region beyond the Peruvian and Central American margins to the northern California margin. ?? 1991.

  1. Estuarine sediment transport by gravity-driven movement of the nepheloid layer, Long Island Sound

    USGS Publications Warehouse

    Poppe, L.J.; McMullen, K.Y.; Williams, S.J.; Crocker, J.M.; Doran, E.F.

    2008-01-01

    Interpretation of sidescan-sonar imagery provides evidence that down-slope gravity-driven movement of the nepheloid layer constitutes an important mode of transporting sediment into the basins of north-central Long Island Sound, a major US East Coast estuary. In the Western Basin, this transport mechanism has formed dendritic drainage systems characterized by branching patterns of low backscatter on the seafloor that exceed 7.4 km in length and progressively widen down-slope, reaching widths of over 0.6 km at their southern distal ends. Although much smaller, dendritic patterns of similar morphology are also present in the northwestern part of the Central Basin. Because many contaminants display affinities for adsorption onto fine-grained sediments, and because the Sound is affected by seasonal hypoxia, mechanisms and dispersal pathways by which inorganic and organic sediments are remobilized and transported impact the eventual fate of the contaminants and environmental health of the estuary. 

  2. Determining sources of deep-sea mud by organic matter signatures in the Sunda trench and Aceh basin off Sumatra

    NASA Astrophysics Data System (ADS)

    Omura, Akiko; Ikehara, Ken; Arai, Kohsaku; Udrekh

    2017-12-01

    The content, optically determined properties, and stable isotope composition of organic carbon in fine-grained sediment cores were analyzed to investigate the origins of deep-sea sediments deposited in the Aceh forearc basin and on the Sunda trench floor off Sumatra from the late Pleistocene to the Holocene. In the Aceh basin, the depositional frequency of turbidite mud decreased as sea level rose during the deglaciation. The terrigenous organic carbon content was high at the end of the last glacial period, whereas during the deglaciation most of the organic carbon was of marine origin. In the Sunda trench, the Holocene turbidites consisted of remobilized slope sediments from two different sources: sediments derived from the old Bengal/Nicobar fan included thermally matured organic fragments, whereas those derived from the trench slope contained little terrigenous organic carbon.

  3. Bridging the gap between small and large scale sediment budgets? - A scaling challenge in the Upper Rhone Basin, Switzerland

    NASA Astrophysics Data System (ADS)

    Schoch, Anna; Blöthe, Jan; Hoffmann, Thomas; Schrott, Lothar

    2016-04-01

    A large number of sediment budgets have been compiled on different temporal and spatial scales in alpine regions. Detailed sediment budgets based on the quantification of a number of sediment storages (e.g. talus cones, moraine deposits) exist only for a few small scale drainage basins (up to 10² km²). In contrast, large scale sediment budgets (> 10³ km²) consider only long term sediment sinks such as valley fills and lakes. Until now, these studies often neglect small scale sediment storages in the headwaters. However, the significance of these sediment storages have been reported. A quantitative verification whether headwaters function as sediment source regions is lacking. Despite substantial transport energy in mountain environments due to steep gradients and high relief, sediment flux in large river systems is frequently disconnected from alpine headwaters. This leads to significant storage of coarse-grained sediment along the flow path from rockwall source regions to large sedimentary sinks in major alpine valleys. To improve the knowledge on sediment budgets in large scale alpine catchments and to bridge the gap between small and large scale sediment budgets, we apply a multi-method approach comprising investigations on different spatial scales in the Upper Rhone Basin (URB). The URB is the largest inneralpine basin in the European Alps with a size of > 5400 km². It is a closed system with Lake Geneva acting as an ultimate sediment sink for suspended and clastic sediment. We examine the spatial pattern and volumes of sediment storages as well as the morphometry on the local and catchment-wide scale. We mapped sediment storages and bedrock in five sub-regions of the study area (Goms, Lötschen valley, Val d'Illiez, Vallée de la Liène, Turtmann valley) in the field and from high-resolution remote sensing imagery to investigate the spatial distribution of different sediment storage types (e.g. talus deposits, debris flow cones, alluvial fans). These sub-regions cover all three litho-tectonic units of the URB (Helvetic nappes, Penninic nappes, External massifs) and different catchment sizes to capture the inherent variability. Different parameters characterizing topography, surface characteristics, and vegetation cover are analyzed for each storage type. The data is then used in geostatistical models (PCA, stepwise logistic regression) to predict the spatial distribution of sediment storage for the whole URB. We further conduct morphometric analyses of the URB to gain information on the varying degree of glacial imprint and postglacial landscape evolution and their control on the spatial distribution of sediment storage in a large scale drainage basin. Geophysical methods (ground penetrating radar and electrical resistivity tomography) are applied on different sediment storage types on the local scale to estimate mean thicknesses. Additional data from published studies are used to complement our dataset. We integrate the local data in the statistical model on the spatial distribution of sediment storages for the whole URB. Hence, we can extrapolate the stored sediment volumes to the regional scale in order to bridge the gap between small and large scale studies.

  4. Multimedia fate modeling and risk assessment of a commonly used azole fungicide climbazole at the river basin scale in China.

    PubMed

    Zhang, Qian-Qian; Ying, Guang-Guo; Chen, Zhi-Feng; Liu, You-Sheng; Liu, Wang-Rong; Zhao, Jian-Liang

    2015-07-01

    Climbazole is an antidandruff active ingredient commonly used in personal care products, but little is known about its environmental fate. The aim of this study was to evaluate the fate of climbazole in water, sediment, soil and air compartments of the whole China by using a level III multimedia fugacity model. The usage of climbazole was calculated to be 345 t in the whole China according to the market research data, and after wastewater treatment a total emission of 245 t was discharged into the receiving environment with approximately 93% into the water compartment and 7% into the soil compartment. The developed fugacity model was successfully applied to estimate the contamination levels and mass inventories of climbazole in various environmental compartments of the river basins in China. The predicted environmental concentration ranges of climbazole were: 0.20-367 ng/L in water, and 0.009-25.2 ng/g dry weight in sediment. The highest concentration was mainly found in Haihe River basin and the lowest was in basins of Tibet and Xinjiang regions. The mass inventory of climbazole in the whole China was estimated to be 294 t, with 6.79% in water, 83.7% in sediment, 9.49% in soil, and 0.002% in air. Preliminary risk assessment showed high risks in sediment posed by climbazole in 2 out of 58 basins in China. The medium risks in water and sediment were mostly concentrated in north China. To the best of our knowledge, it is the first report on the emissions and multimedia fate of climbazole in the river basins of the whole China. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Land factors affecting soil erosion during snow melting: a case study from Lebanon

    NASA Astrophysics Data System (ADS)

    Darwich, Talal

    2014-05-01

    Soil erosion is one of the major problems facing the mountainous agricultural lands in Lebanon. In order to assess the land factors acting on soil erosion; a study was conducted in the upper watershed of Ibrahim River in the spring months of April, May and June. Water and bed load sediments from six locations alimented by six sub-basins were sampled. Four sub-basins (1, 2, 3 and 6) were dominated by agricultural lands while lands in sub-basins 4 and 7 were occupied by grassland and bare soils. The highest quantities of suspended sediments were found in waters originating from watersheds dominated by agricultural lands, such as Location 2 (713.72 mg L-1 in April 2012). Low clay content and the combination of land occupation (orchards = 71%) and slope (20.7 degrees) caused this ecosystem disturbance. Locations 1, 2, 3 and 6 were alimented by runoff water due to the melting of the snow. For this, the concentrations of sediments decreased by 4 fold between April and May in sub-basin 1 and by 11-14 fold in sub-basins 2, 3 and 6. Globally, some 1669.4 tons of sediments were delivered in the upper river during April. Bed load sediments were separated into 4 classes according to their size. The size of the particles found in the bed load reflected to a large extent the type of soils surrounding the watershed. The range of sand in the regions surrounding locations 6 and 7 was 64% and 82%, while the average in the bed load was 80.9% and 78.25% respectively. The silt content in locations 2, 3 and 5 was well reflected in the concentrations of silt in the bed load. In bed load samples, the exchangeable potassium ranged from 70-250 mg kg-1 in sub-basins dominated by agricultural lands against 20-50 mg kg-1 in sub-basins dominated by grassland and bare rocks. Further quantitative studies need to be conducted especially during the first rains to fully estimate the water load sediments after a prolonged dry season, characterizing the east Mediterranean. Action must be taken for land conservation by improving the farmer's practices, modifying the frequency of plowing and introducing no tillage beside the maintenance of terraces. Keywords: Mountains, erosion, sediments, East Mediterranean, river, bed load quality.

  6. Bed turbulent kinetic energy boundary conditions for trapping efficiency and spatial distribution of sediments in basins.

    PubMed

    Isenmann, Gilles; Dufresne, Matthieu; Vazquez, José; Mose, Robert

    2017-10-01

    The purpose of this study is to develop and validate a numerical tool for evaluating the performance of a settling basin regarding the trapping of suspended matter. The Euler-Lagrange approach was chosen to model the flow and sediment transport. The numerical model developed relies on the open source library OpenFOAM ® , enhanced with new particle/wall interaction conditions to limit sediment deposition in zones with favourable hydrodynamic conditions (shear stress, turbulent kinetic energy). In particular, a new relation is proposed for calculating the turbulent kinetic energy threshold as a function of the properties of each particle (diameter and density). The numerical model is compared to three experimental datasets taken from the literature and collected for scale models of basins. The comparison of the numerical and experimental results permits concluding on the model's capacity to predict the trapping of particles in a settling basin with an absolute error in the region of 5% when the sediment depositions occur over the entire bed. In the case of sediment depositions localised in preferential zones, their distribution is reproduced well by the model and trapping efficiency is evaluated with an absolute error in the region of 10% (excluding cases of particles with very low density).

  7. Examples of Mass Wasting and Hemipelagic Sedimentation of Brazos-Trinity Basin #4 and Ursa Basin, Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Moerz, T.; Bartetzko, A.; Iturrino, G. J.; Edeskar, T. M.; Flemings, P. B.; Behrmann, J. H.; John, C. M.

    2005-12-01

    Pleistocene sea level changes influenced the sedimentation history on the passive continental margin of the northern Gulf of Mexico coast. During IODP Expedition 308, the Brazos-Trinity #4 and Ursa Basin were drilled to study -overpressure, fluid flow and deformation processes in a passive margin setting. The Brazos-Trinity Basin #4 is located 200 km south of Galveston, Texas (USA) in ~1400 m water depth below an extended shelf section. Ursa Basin is located 150 km south of New Orleans, Louisiana (USA) in ~1000 m water depth south of the Mississippi river mouth. Despite their similar geotectonic setting both basins show fundamental differences in their style of mass wasting and drape sedimentation. Here we use core descriptions, core photographs, Formation MicroScanner (FMS) data and selected physical properties measurements (magnetic susceptibility, GRAPE density) to illustrate and compare styles of mass wasting and drape sedimentation on selected intervals for the first 4 Marine Isotope Stages. Special emphasis is given to the thickness and frequency of single depositional events. One aim is to estimate the mass wasting / hemipelagic accumulation ratio for both basins and compare it to the average sedimentation rates based on the preliminary shipboard age models. This information will be used in the future to study how sedimentation processes control permeability and pore pressure. In this upcoming project, starting in mid 2006, will use well-logging data to compute continuous porosity, permeability, and pore pressure profiles. These computations require input and reference data obtained from petrophysical and geotechnical core analyses and in situ measurements (e.g. matrix density to calculate porosity from the density log, permeability and porosity to derive porosity-permeability relations, effective stress to calculate pore pressure). Permeability and effective stress will be measured using oedometer tests on undisturbed samples. The detailed lithostratigraphic information, particularly turbidite thickness, and the permeability and pore pressure profiles will be used as input data for one-dimensional modeling of the compression history of two Sites using the civil engineering modeling software PLAXIS.

  8. Canada Basin revealed

    USGS Publications Warehouse

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Chian, D; Lebedeva-Ivanova, Nina; Jackson, Ruth

    2012-01-01

    More than 15,000 line-km of new regional seismic reflection and refraction data in the western Arctic Ocean provide insights into the tectonic and sedimentologic history of Canada Basin, permitting development of new geologic understanding in one of Earth's last frontiers. These new data support a rotational opening model for southern Canada Basin. There is a central basement ridge possibly representing an extinct spreading center with oceanic crustal velocities and blocky basement morphology characteristic of spreading centre crust surrounding this ridge. Basement elevation is lower in the south, mostly due to sediment loading subsidence. The sedimentary succession is thickest in the southern Beaufort Sea region, reaching more than 15 km, and generally thins to the north and west. In the north, grabens and half-grabens are indicative of extension. Alpha-Mendeleev Ridge is a large igneous province in northern Amerasia Basin, presumably emplaced synchronously with basin formation. It overprints most of northern Canada Basin structure. The seafloor and sedimentary succession of Canada Basin is remarkably flat-lying in its central region, with little bathymetric change over most of its extent. Reflections that correlate over 100s of kms comprise most of the succession and on-lap bathymetric and basement highs. They are interpreted as representing deposits from unconfined turbidity current flows. Sediment distribution patterns reflect changing source directions during the basin’s history. Initially, probably late Cretaceous to Paleocene synrift sediments sourced from the Alaska and Mackenzie-Beaufort margins. This unit shows a progressive series of onlap unconformities with a younging trend towards Alpha and Northwind ridges, likely a response to contemporaneous subsidence. Sediment source direction appeared to shift to the Canadian Arctic Archipelago margin for the Eocene and Oligocene, likely due to uplift of Arctic islands during the Eurekan Orogeny. The final stage of sedimentation appears to be from the Mackenzie-Beaufort region for the Miocene and Pliocene when drainage patterns shifted in the Yukon and Alaska to the Mackenzie valley. Upturned reflections at onlap positions may indicate syn-depositional subsidence. There is little evidence, at least at a regional seismic data scale, of contemporaneous or post-depositional sediment reworking, suggesting little large-scale geostrophic or thermohaline-driven bottom current activity.

  9. Sediment Transportation Induced by Deep-Seated Landslides in a Debris Flow Basin in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Meei Ling; Chen, Te Wei; Chen, Yong Sheng; Sin Jhuang, Han

    2016-04-01

    Typhoon Morakot brought huge amount of rainfall to the southern Taiwan in 2009 and caused severe landslides and debris flow hazard. After Typhoon Morakot, it was found that the volume of sediment transported by the debris flow and its effects on the affected area were much more significant compared to previous case history, which may due to the huge amount of rainfall causing significant deep-seated landslides in the basin. In this study, the effects and tendency of the sediment transportation in a river basin following deep-seated landslides caused by typhoon Morakot were evaluated. We used LiDAR, DEM, and aerial photo to identify characteristics of deep-seated landslides in a debris flow river basin, KSDF079 in Liuoguey District, Kaohsiung City, Taiwan. Eight deep-seated landslides were identified in the basin. To estimate the potential landslide volume associated with the deep-seated landslides, the stability analysis was conducted to locate the critical sliding surface, and the potential landside volume was estimated based on the estimation equation proposed by the International Geotechnical Societies' UNESCO Working Party on World Landslide Inventory (WP/WLI, 1990). The total potential landslide volume of the eight deep-seated landslides in KSDF079 basin was about 28,906,856 m3. Topographic analysis was performed by using DEM before and LiDAR derived DEM after typhoon Morakot to calculate the landslide volume transported. The result of erosion volume and deposition volume lead to a run out volume of 5,832,433 m3. The results appeared to consist well with the field condition and aerial photo. Comparing the potential landslide volume and run out volume of eight deep-seated landslides, it was found that the remaining potential landslide volume was about 80%. Field investigation and topographic analysis of the KSDF079 debris flow revealed that a significant amount of sediment deposition remained in the river channel ranging from the middle to the downstream section of the channel, and the channel has been widen. Such large proportion of landslide volume remained in the basin on deep-seated landslide scars and debris flow river channel would likely to cause further debris transportation in the future events. The stability analysis used in this study provided a feasible method and satisfactory results for estimating sediment volume transportation associated with the deep-seated landslides in the study area. Combination of the stability analysis results and the topographic analysis provided estimation of sediment transportation caused by the deep-seated landslides, and trend variation of further sediment transport of the basin, which could provide vital information for hazard mitigation. Keyword: deep-seated landslide, sediment transport, DEM, LiDAR, stability analysis

  10. Sources and transport of sediment, nutrients, and oxygen-demanding substances in the Minnesota River basin, 1989-92

    USGS Publications Warehouse

    Payne, G.A.

    1994-01-01

    The Minnesota River, 10 major tributaries, and 21 springs were sampled to determine the sources and transport of sediment, nutrients, and oxygen- demanding substances. The study was part of a four-year assessment of non-point source pollution in the Minnesota River Basin. Runoff from tributary watersheds was identified as the primary source of suspended sediment and nutrients in the Minnesota River mainstem. Suspended-sediment, phosphorus, and nitrate concentrations were elevated in all major tributaries during runoff, but tributaries in the south-central and eastern part of the basin produce the highest annual loading to the mainstem because of higher annual precipitation and runoff in that part of the basin. Particle-size analyses showed that most of the suspended sediment in transport consisted of silt- and clay-size material. Phosphorus enrichment was indicated throughout the mainstem by total phosphorus concentrations that ranged from 0.04 to 0.48 mg/L with a median value of 0.22 mg/L, and an interquartile range of 0.15 to 0.29 mg/L. Nitrate concentrations periodically exceeded drinking water standards in tributaries draining the south-central and eastern part of the basin. Oxygen demand was most elevated during periods of summer low flow. Correlations between levels of biochemical oxygen demand and levels of algal productivity suggest that algal biomass comprises much of the oxygen-demanding material in the mainstem. Transport of sediment, nutrients, and organic carbon within the mainstem was found to be conservative, with nearly all tributary inputs being transported downstream. Uptake and utilization of nitrate and orthophosphorus was indicated during low flow, but at normal and high flow, inputs of these constituents greatly exceeded biological utilization.

  11. Paleoclimatic and Paleoceanographic Holocene Sedimentary Records in the Gulf of California - Eastern Pacific Ocean Interhemispheric Connections

    NASA Astrophysics Data System (ADS)

    Perez-Cruz, L.; Urrutia-Fucugauchi, J.

    2009-05-01

    Initial results of a study on the distribution, thickness and stratigraphy of the sedimentary sequences in the Gulf of California are presented. The Gulf is an elongated narrow young oceanic basin bordered by the Baja California peninsula and mainland Mexico. The Gulf extends over 1200 km across the Tropic of Cancer from the tropical to the temperate zones, surrounded by arid and semi-arid regions, including the Sonora-Mojave Desert. Paleoceanographic conditions are dominated by water exchange at the Gulf mouth and water masses changes along the Gulf. Tectonic basins reach down in excess of 3000 m depths and get shallower to the north. Here we focus on the Holocene sediment sequences in the southern sector, which contains several marginal and central anoxic basins that constitute rich archives of paleoclimatic and paleoenvironmental evolution for the past 3.6 Ma. In the mouth area, main sources of sediments are silicic volcanic and intrusive rocks in the Baja peninsula and mainland, including Los Cabos and Puerto Vallarta batholiths. Fine-grained eolian dusts, pluvial and biogenic sediments are present in the sediment cores in the Gulf basins such as La Paz, Alfonso, Carmen, Pescadero and Guaymas basins. Turbiditic currents and tephra deposits also occur in the cores. Paleoclimatic records show the influences of regional processes, including the ENSO and PDO signals marked by drought and increased precipitation phases. Relative distribution and thickness of sediments at the mouth of the Gulf correlate with bathymetry and location with respect to spreading center, transform faults and margins of the peninsula and mainland Mexico. Rock magnetic core scans and mineralogy at few locations are available, which allow inferences on sediment sources, transport and deposition processes, diagenesis, paleoceanographic and paleoclimatic evolution for the Holocene.

  12. S-wave attenuation of the shallow sediments in the North China basin based on borehole seismograms of local earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Li, Zhiwei

    2018-06-01

    S-wave velocity and attenuation structures of shallow sediments play important roles in accurate prediction of strong ground motion. However, it is more difficult to investigate the attenuation than velocity structures. In this study, we developed a new approach for estimating frequency-dependent S-wave attenuation (Q_S^{ - 1}) structures of shallow sediments based on multiple time window analysis of borehole seismograms from local earthquakes. Multiple time windows for separating direct and surface-reflected S-waves in local earthquake waveforms at borehole stations are selected with a global optimization scheme. With respect to different time windows, the transfer functions between direct and surface-reflected S-waves are achieved with a weighted averaging scheme, based on which frequency dependent Q_S^{ - 1} values are obtained. Synthetic tests suggest that the proposed method can restore robust and reliableQ_S^{ - 1} values, especially when the dataset of local earthquakes is not abundant. We utilize this method for local earthquake waveforms at 14 borehole seismic stations in the North China basin, and obtain Q_S^{ - 1} values in 2 ˜ 10 Hz frequency band, as well as average {V_P}, {V_S} and {V_P}/{{}}{V_S} ratio for shallow sediments deep to a few hundred meters. Results suggest that Q_S^{ - 1} values are to 0.01˜0.06, and generally decrease with frequency. The average attenuation structure of shallow sediments within the depth of a few hundred meters beneath 14 borehole stations in the North China basin can be modeled as Q_S^{ - 1} = 0.056{f^{ - 0.61}}. It is generally consistent with the attenuation structure of sedimentary basins in other areas, such as Mississippi Embayment sediments in the United States and Sendai basin in Japan.

  13. SURVEY OF CROSS-BASIN BOAT TRAFFIC, ATCHAFALAYA BASIN, LOUISIANA

    EPA Science Inventory

    For flood control and for the preservation and enhancement of environmental quality of overflow swamp habitats, introduction of sediment from the Atchafalaya Basin Main Channel into backwater areas of the Atchafalaya Basin Floodway should be minimized. This introduction occurs ma...

  14. Mercury in Fish, Bed Sediment, and Water from Streams Across the United States, 1998-2005

    USGS Publications Warehouse

    Scudder, Barbara C.; Chasar, Lia C.; Wentz, Dennis A.; Bauch, Nancy J.; Brigham, Mark E.; Moran, Patrick W.; Krabbenhoft, David P.

    2009-01-01

    Mercury (Hg) was examined in top-predator fish, bed sediment, and water from streams that spanned regional and national gradients of Hg source strength and other factors thought to influence methylmercury (MeHg) bioaccumulation. Sampled settings include stream basins that were agricultural, urbanized, undeveloped (forested, grassland, shrubland, and wetland land cover), and mined (for gold and Hg). Each site was sampled one time during seasonal low flow. Predator fish were targeted for collection, and composited samples of fish (primarily skin-off fillets) were analyzed for total Hg (THg), as most of the Hg found in fish tissue (95-99 percent) is MeHg. Samples of bed sediment and stream water were analyzed for THg, MeHg, and characteristics thought to affect Hg methylation, such as loss-on-ignition (LOI, a measure of organic matter content) and acid-volatile sulfide in bed sediment, and pH, dissolved organic carbon (DOC), and dissolved sulfate in water. Fish-Hg concentrations at 27 percent of sampled sites exceeded the U.S. Environmental Protection Agency human-health criterion of 0.3 micrograms per gram wet weight. Exceedances were geographically widespread, although the study design targeted specific sites and fish species and sizes, so results do not represent a true nationwide percentage of exceedances. The highest THg concentrations in fish were from blackwater coastal-plain streams draining forests or wetlands in the eastern and southeastern United States, as well as from streams draining gold- or Hg-mined basins in the western United States (1.80 and 1.95 micrograms THg per gram wet weight, respectively). For unmined basins, length-normalized Hg concentrations in largemouth bass were significantly higher in fish from predominantly undeveloped or mixed-land-use basins compared to urban basins. Hg concentrations in largemouth bass from unmined basins were correlated positively with basin percentages of evergreen forest and also woody wetland, especially with increasing proximity of these two land-cover types to the sampling site; this underscores the greater likelihood for Hg bioaccumulation to occur in these types of settings. Increasing concentrations of MeHg in unfiltered stream water, and of bed-sediment MeHg normalized by LOI, and decreasing pH and dissolved sulfate were also important in explaining increasing Hg concentrations in largemouth bass. MeHg concentrations in bed sediment correlated positively with THg, LOI, and acid-volatile sulfide. Concentrations of MeHg in water correlated positively with DOC, ultraviolet absorbance, and THg in water, the percentage of MeHg in bed sediment, and the percentage of wetland in the basin.

  15. Fluvial landscapes evolution in the Gangkou River basin of southern Taiwan: Evidence from the sediment cores

    NASA Astrophysics Data System (ADS)

    Chen, Jia-Hong; Chyi, Shyh-Jeng; Yen, Jiun-Yee; Lin, Li-Hung; Yen, I.-Chin; Yu, Neng-Ti; Ho, Lih-Der; Jen, Chia-Hung

    2017-04-01

    The Gangkou River basin is the largest basin in the eastern Hengchun Peninsula of Taiwan. Its main river length is 31km and the basin area is 102sq. km. The width of the active channel is relatively narrow, but the valley from the middle to downstream is remarkably wide, indicating a feature of underfit stream. We drilled two sediment cores in the downstream area, including a 30m core (core-A) from a higher terrace, which is 14m above mean sea level, and a 20m core (core-B) from a lower terrace, which is 4m above mean sea level. Most of the sediments in the core-A are mud, which represents the flood plain facies, and 14C dates in the core-A range from 11ka to 7ka BP. Furthermore, the sediment layers reveal signals of marine events at the core depths of 5m to 11m by X-ray fluorescence. In the core-B, there is an erosional surface at the core depth of 5m. The age of the fluvial gravel layer above the erosional surface is about 0.4ka BP, and the mud layer top the surface is about 8.5ka BP. The preliminary results show that (1) as the tectonic uplift rate induced by the marine terraces around the basin is 1.0 to 2.5 mm/yr, and the accumulation rate of the mud layer in the basin is 6.7 to 8.7 mm/yr, the sediments infilling (more than 30-meters-thick) in the downstream area of the basin should be the results of the lower tectonic uplifting and the higher post-glacial sea level rise and; (2) the marine sediment layer with 14C dates of 7.5ka to 8.5ka BP is very likely the remain of the maximum flooding surface (MFS) in the early Holocene. These results indicate that the fluvial landscapes evolution of the basin was controlled by the sea-level; (3) the erosional surface in the core-B indicates the Gangkou River continuously erode the infilling sediments from 7ka to 0.4ka BP. Previous studies show that the sea-level around Taiwan gradually declined from its high stand since 6ka, we proposed that the continuous erosion was probably the results of tectonic uplifting and eustatic sea-level fall.

  16. The morphometric and stratigraphic framework for estimates of debris flow incidence in the North Cascades foothills, Washington State, USA

    NASA Astrophysics Data System (ADS)

    Kovanen, Dori J.; Slaymaker, Olav

    2008-07-01

    Active debris flow fans in the North Cascade Foothills of Washington State constitute a natural hazard of importance to land managers, private property owners and personal security. In the absence of measurements of the sediment fluxes involved in debris flow events, a morphological-evolutionary systems approach, emphasizing stratigraphy, dating, fan morphology and debris flow basin morphometry, was used. Using the stratigraphic framework and 47 radiocarbon dates, frequency of occurrence and relative magnitudes of debris flow events have been estimated for three spatial scales of debris flow systems: the within-fan site scale (84 observations); the fan meso-scale (six observations) and the lumped fan, regional or macro-scale (one fan average and adjacent lake sediments). In order to characterize the morphometric framework, plots of basin area v. fan area, basin area v. fan gradient and the Melton ruggedness number v. fan gradient for the 12 debris flow basins were compared with those documented for semi-arid and paraglacial fans. Basin area to fan area ratios were generally consistent with the estimated level of debris flow activity during the Holocene as reported below. Terrain analysis of three of the most active debris flow basins revealed the variety of modes of slope failure and sediment production in the region. Micro-scale debris flow event systems indicated a range of recurrence intervals for large debris flows from 106-3645 years. The spatial variation of these rates across the fans was generally consistent with previously mapped hazard zones. At the fan meso-scale, the range of recurrence intervals for large debris flows was 273-1566 years and at the regional scale, the estimated recurrence interval of large debris flows was 874 years (with undetermined error bands) during the past 7290 years. Dated lake sediments from the adjacent Lake Whatcom gave recurrence intervals for large sediment producing events ranging from 481-557 years over the past 3900 years and clearly discernible sedimentation events in the lacustrine sediments had a recurrence interval of 67-78 years over that same period.

  17. Stream Sediment Sources in Midwest Agricultural Basins with Land Retirement along Channel.

    PubMed

    Williamson, T N; Christensen, V G; Richardson, W B; Frey, J W; Gellis, A C; Kieta, K A; Fitzpatrick, F A

    2014-09-01

    Documenting the effects of agricultural land retirement on stream-sediment sources is critical to identifying management practices that improve water quality and aquatic habitat. Particularly difficult to quantify are the effects from conservation easements that commonly are discontinuous along channelized streams and ditches throughout the agricultural midwestern United States. Our hypotheses were that sediment from cropland, retired land, stream banks, and roads would be discernible using isotopic and elemental concentrations and that source contributions would vary with land retirement distribution along tributaries of West Fork Beaver Creek in Minnesota. Channel-bed and suspended sediment were sampled at nine locations and compared with local source samples by using linear discriminant analysis and a four-source mixing model that evaluated seven tracers: In, P, total C, Be, Tl, Th, and Ti. The proportion of sediment sources differed significantly between suspended and channel-bed sediment. Retired land contributed to channel-bed sediment but was not discernible as a source of suspended sediment, suggesting that retired-land material was not mobilized during high-flow conditions. Stream banks were a large contributor to suspended sediment; however, the percentage of stream-bank sediment in the channel bed was lower in basins with more continuous retired land along the riparian corridor. Cropland sediments had the highest P concentrations; basins with the highest cropland-sediment contributions also had the highest P concentrations. Along stream reaches with retired land, there was a lower proportion of cropland material in suspended sediment relative to sites that had almost no land retirement, indicating less movement of nutrients and sediment from cropland to the channel as a result of land retirement. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Stream sediment sources in midwest agricultural basins with land retirement along channel

    USGS Publications Warehouse

    Williamson, Tanja N.; Christensen, Victoria G.; Richardson, William B.; Frey, Jeffrey W.; Gellis, Allen C.; Kieta, K. A.; Fitzpatrick, Faith A.

    2014-01-01

    Documenting the effects of agricultural land retirement on stream-sediment sources is critical to identifying management practices that improve water quality and aquatic habitat. Particularly difficult to quantify are the effects from conservation easements that commonly are discontinuous along channelized streams and ditches throughout the agricultural midwestern United States. Our hypotheses were that sediment from cropland, retired land, stream banks, and roads would be discernible using isotopic and elemental concentrations and that source contributions would vary with land retirement distribution along tributaries of West Fork Beaver Creek in Minnesota. Channel-bed and suspended sediment were sampled at nine locations and compared with local source samples by using linear discriminant analysis and a four-source mixing model that evaluated seven tracers: In, P, total C, Be, Tl, Th, and Ti. The proportion of sediment sources differed significantly between suspended and channel-bed sediment. Retired land contributed to channel-bed sediment but was not discernible as a source of suspended sediment, suggesting that retired-land material was not mobilized during high-flow conditions. Stream banks were a large contributor to suspended sediment; however, the percentage of stream-bank sediment in the channel bed was lower in basins with more continuous retired land along the riparian corridor. Cropland sediments had the highest P concentrations; basins with the highest cropland-sediment contributions also had the highest P concentrations. Along stream reaches with retired land, there was a lower proportion of cropland material in suspended sediment relative to sites that had almost no land retirement, indicating less movement of nutrients and sediment from cropland to the channel as a result of land retirement.

  19. Modeling of soil erosion and sediment transport in the East River Basin in southern China.

    PubMed

    Wu, Yiping; Chen, Ji

    2012-12-15

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide. Published by Elsevier B.V.

  20. Sediment transport dynamics in response to large-scale human intervention

    NASA Astrophysics Data System (ADS)

    Eelkema, Menno; Wang, Zheng Bing

    2010-05-01

    SEDIMENT TRANSPORT DYNAMICS IN RESPONSE TO LARGE-SCALE HUMAN INTERVENTION M. Eelkema and Z.B. Wang The Eastern Scheldt basin in the southwestern part of the Netherlands is an elongated tidal basin of approximately 50 km in length with an average tidal range of roughly 3 meters at the inlet. Before 1969 A.D., this basin was also connected to two more tidal basins to the north through several narrow, yet deep channels. These connections were closed off with dams in the nineteen sixties in response to the catastrophic flooding in 1953. In the inlet of the Eastern Scheldt a storm-surge barrier was built in order to safeguard against flooding during storms while retaining a part of the tidal influence inside the basin during normal conditions. This barrier was finalized in 1986. The construction of the back-barrier dams in 1965 and 1969 had a significant impact on the tidal hydrodynamics and sediment transport (Van den Berg, 1986). The effects of these interventions were still ongoing when the hydrodynamic regime was altered again by the construction of the storm-surge barrier between 1983 and 1986. This research aims to describe the hydrodynamic and morphodynamic evolution of the Eastern Scheldt between 1953 and 1983, before construction of the storm-surge barrier had started. An analysis is made of the manner in which the back-barrier dams changed the tidal flow through the basin, and how these altered hydrodynamics influenced the sediment transport and morphology. This analysis consists first of all of a description of the observed hydrodynamical and bathymetrical changes. Second, these observations are used as input for a process-based hydrodynamic model (Delft3D), which is applied in order to gain more insight into the changes in sediment transport patterns. The model is used to simulate the situations before and after the closures of the connections between the Eastern Scheldt and the basins north of it In the decades before 1965, the Eastern Scheldt exported large quantities of sediment towards sea through its inlet. This export was estimated to be roughly 2 to 3 million m3 per year, and was observable as deepening channels inside the basin, and a growing ebb-tidal delta. The implementation of the dams caused a significant increase in tidal prism, while at the same time they stopped the residual flow of water from the Eastern Scheldt towards the northern basins. The increase in tidal prism was observable in the response of bathymetry; the rates of channel deepening and ebb-tidal delta growth both increased. Analysis of tidal flow measurements and model output show a persistent trend for sediment transport towards and out of the Eastern Scheldt's inlet. This export is caused by both the strong ebb-directed asymmetry in the tidal flow as well as higher sediment concentrations during ebb. The construction of the back-barrier dams only amplified this export by cutting off the residual import of flow and by causing the basin to be out of equilibrium even more than it apparently already was. References Van den Berg, J.H., 1986. Aspects of Sediment- and Morphodynamics of Subtidal Deposits of the Oosterschelde (the Netherlands). Rijkswaterstaat Communications, no. 43/1986, The Hague.

  1. Messinian Salinity Crisis and basin fluid flow

    NASA Astrophysics Data System (ADS)

    Bertoni, Claudia; Cartwight, Joe

    2014-05-01

    Syn- and post-depositional movement of fluids through sediments is one of the least understood aspects in the evolution of a basin. The conventional hydrostratigraphic view on marine sedimentary basins assumes that compactional and meteoric groundwater fluid circulation drives fluid movement and defines its timing. However, in the past few years, several examples of instantaneous and catastrophic release of fluids have been observed even through low-permeability sediments. A particularly complex case-study involves the presence of giant salt bodies in the depocentres of marine basins. Evaporites dramatically change the hydrostratigraphy and fluid-dynamics of the basin, and influence the P/T regimes, e.g. through changes in the geothermal gradient and in the compaction of underlying sediments. Our paper reviews the impact of the Messinian Salinity Crisis (MSC) and evaporites on fluid flow in the Mediterranean sub-basins. The analysis of geological and geophysical sub-surface data provides examples from this basin, and the comparison with analogues in other well-known evaporitic provinces. During the MSC, massive sea-level changes occurred in a relatively limited time interval, and affected the balance of fluid dynamics, e.g. with sudden release or unusual trapping of fluids. Fluid expulsion events are here analysed and classified in relation to the long and short-term effects of the MSC. Our main aim is to build a framework for the correct identification of the fluid flow-related events, and their genetic mechanisms. On basin margins, where evaporites are thin or absent, the sea-level changes associated with the MSC force a rapid basinward shift of the mixing zone of meteoric/gravity flow and saline/compactional flow, 100s-km away from its pre-MSC position. This phenomenon changes the geometry of converging flows, creates hydraulic traps for fluids, and triggers specific diagenetic reactions in pre-MSC deep marine sediments. In basin-centre settings, unloading and re-loading of water associated to the sea-level changes leads to the sudden release of focused fluids, enhancing pockmark formation, evaporite dissolution, gas-hydrate dissociation and methane venting. After the MSC, and in the long-term basin evolution, the aquitard effect of the thick evaporites also created favourable condition for the development of overpressures in the pre-MSC sediments. However, the traditional view of saline giants as impermeable barriers to fluid flow has been challenged in recent years, by the documented evidence of fluid migration pathways through thick evaporites. Ultimately, these events can lead not only to fluid, but also to sediment remobilisation. The review here presented has applications as a tool for identifying, quantifying and understanding controls and timing of fluid dynamics in marine basins hosting extensive evaporitic series.

  2. Water column 230Th systematics in the eastern equatorial Pacific Ocean and implications for sediment focusing

    NASA Astrophysics Data System (ADS)

    Singh, Ajay K.; Marcantonio, Franco; Lyle, Mitchell

    2013-01-01

    In an effort to investigate the cause of higher-than-expected sediment inventories of 230Th in the Panama Basin, thorium isotopes were measured in eight deep-water casts within the Guatemala, Panama, and Peru Basins along a meridional transect at ˜86°W between 6.5°N and 8.5°S. Dissolved 230Th concentrations increase linearly from the surface to 1000 m at each transect station. Below 1000 m, the deep waters of the Panama Basin show the highest deficit (˜50%) of 230Th assuming a reversible exchange of 230Th between dissolved and sinking particulate matter, and in comparison with the globally averaged water-column 230Th. Peru Basin waters have a larger range of dissolved 230Th concentrations (7.9-16.5 fg/kg) than that within Panama Basin waters (5.7-7.1 fg/kg). There is a progressive decrease in average dissolved deep-water (>1000 m) 230Th concentrations from the southernmost sites in the Peru Basin toward the Panama Basin. We suggest that intense scavenging by upwelling-derived-productivity near the equator (±2°) and resuspension of ubiquitous Mn-rich particulates in Panama Basin sediments are the primary causes of the significant south-to-north lateral gradient in deep-water dissolved 230Th. Although 230Th from Peru Basin waters may be transported and then scavenged and ultimately buried in the Panama Basin, our calculations suggest that the quantity of advected 230Th is relatively small (between 15% and 30% of the total 230Th being produced within water column of the Panama Basin itself). Panama Basin sediment focusing factors greater than 1.3 cannot be explained by lateral export and excess scavenging of water column 230Th. Dissolved 232Th concentrations, in addition to being the lowest reported so far in the literature, fall within a very narrow range (6-26 pg/kg), and are generally invariable with depth. This invariability suggests the dissolution of dust in surface waters as a likely sole source of dissolved 232Th for the entire water column.

  3. Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: Insights from the Jungong basin

    USGS Publications Warehouse

    Craddock, W.H.; Kirby, E.; Dewen, Z.; Jianhui, L.

    2012-01-01

    Quantifying the Cenozoic growth of high topography in the Indo-Asian collision zone remains challenging, due in part to significant shortening that occurred within Eurasia before collision. A growing body of evidence suggests that regions far removed from the suture zone experienced deformation before and during the early phases of Himalayan orogenesis. In the present-day north-eastern Tibetan Plateau, widespread deposits of Cretaceous sediment attest to significant basin formation; however, the tectonic setting of these basins remains enigmatic. We present a study of a regionally extensive network of sedimentary basins that are spatially associated with a system of SE-vergent thrust faults and are now exposed in the high ranges of the north-eastern corner of the Tibetan Plateau. We focus on a particularly well-exposed basin, located ~20km north of the Kunlun fault in the Anyemaqen Shan. The basin is filled by ~900m of alluvial sediments that become finer-grained away from the basin-bounding fault. Additionally, beds in the proximal footwall of the basin-bounding fault exhibit progressive, up-section shallowing and several intraformational unconformities which can be traced into correlative conformities in the distal part of the basin. The observations show sediment accumulated in the basin during fault motion. Regional constraints on the timing of sediment deposition are provided by both fossil assemblages from the Early Cretaceous, and by K-Ar dating of volcanic rocks that floor and cross-cut sedimentary fill. We argue that during the Cretaceous, the interior NE Tibetan Plateau experienced NW-SE contractional deformation similar to that documented throughout the Qinling-Dabie orogen to the east. The Songpan-Ganzi terrane apparently marked the southern limit of this deformation, such that it may have been a relatively rigid block in the Tibetan lithosphere, separating regions experiencing deformation north of the convergent Tethyan margin from regions deforming inboard of the east Asian margin. ?? 2011 The Authors. Basin Research ?? 2011 Blackwell Publishing Ltd, European Association of Geoscientists & Engineers and International Association of Sedimentologists.

  4. Fine-grained suspended sediment source identification for the Kharaa River basin, northern Mongolia

    NASA Astrophysics Data System (ADS)

    Rode, Michael; Theuring, Philipp; Collins, Adrian L.

    2015-04-01

    Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on the water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (<10 microns) sediment in the 15 000 km2 Kharaa River basin in northern Mongolia. Five field sampling campaigns in late summer 2009, and spring and late summer in both 2010 and 2011, were conducted directly after high water flows, to collect an overall total of 900 sediment samples. The work used a statistical approach for sediment source discrimination with geochemical composite fingerprints based on a new Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal-Wallis H-test and Principal Component Analysis. The composite fingerprints were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin) with the pattern generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of riverbank erosion was shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the general applicability and associated uncertainties of an approach for fine-grained sediment source investigation in large scale semi-arid catchments. The combined application of source fingerprinting and catchment modelling approaches can be used to assess whether tracing estimates are credible and in combination such approaches provide a basis for making sediment source apportionment more compelling to catchment stakeholders and managers.

  5. Storm-induced redistribution of deepwater sediments in Lake Ontario

    USGS Publications Warehouse

    Halfman, J.D.; Dittman, D.E.; Owens, R.W.; Etherington, M.D.

    2006-01-01

    High-resolution seismic reflection profiles, side-scan sonar profiles, and surface sediment analyses for grain size (% sand, silt & clay), total organic carbon content, and carbonate content along shore-perpendicular transects offshore of Olcott and Rochester in Lake Ontario were utilized to investigate cm-thick sands or absence of deep-water postglacial sediments in water depths of 130 to 165 m. These deepwater sands were observed as each transect approached and occupied the "sills," identified by earlier researchers, between the three deepest basins of the lake. The results reveal thin (0 to 5-cm) postglacial sediments, lake floor lineations, and sand-rich, organic, and carbonate poor sediments at the deepwater sites (> 130 m) along both transects at depths significantly below wave base, epilimnetic currents, and internal wave activity. These sediments are anomalous compared to shallower sediments observed in this study and deeper sediments reported by earlier research, and are interpreted to indicate winnowing and resuspension of the postglacial muds. We hypothesize that the mid-lake confluence of the two-gyre surface current system set up by strong storm events extends down to the lake floor when the lake is isothermal, and resuspends and winnows lake floor sediment at these locations. Furthermore, we believe that sedimentation is more likely to be influenced by bottom currents at these at these sites than in the deeper basins because these sites are located on bathymetric highs between deeper depositional basins of the lake, and the bathymetric constriction may intensify any bottom current activity at these sites.

  6. The Origin of Salt-Encased Sediment Packages: Observations from the SE Precaspian Basin (Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Fernandez, Naiara; Duffy, Oliver B.; Hudec, Michael R.; Jackson, Martin P. A.; Burg, George; Jackson, Christopher A.-L.; Dooley, Tim P.

    2017-04-01

    Intrasalt sediment packages containing siliciclastic sediments, carbonate sediments, or non-halite evaporites such as gypsum or anhydrite are common within most salt sequences. Intrasalt sediment packages may have been deposited before, during, or after salt deposition and be incorporated into the salt by various processes. Understanding the origin and evolution of intrasalt sediment packages may yield important insights into the tectonic and geodynamic history of the basin, and also into the understanding of salt tectonics. Despite the importance of intrasalt sediment packages, currently there is no systematic description of their possible origins and their distinguishing criteria. This work is divided in three parts. First, we outline the possible origins of intrasalt sediment packages, as well as criteria to determine if they originated as subsalt, suprasalt or intrasalt sequences. Second, we examine how sediment packages that originated on top of salt, such as minibasins, can be encased within salt. We propose four key processes by which salt can be expelled and emplaced above minibasins to encase them: a) salt expulsion from beneath a minibasin experiencing density-driven subsidence; b) salt expulsion from beneath adjacent subsiding minibasins; c) salt expulsion associated with lateral shortening; d) override of minibasins by a salt sheet sourced from elsewhere. Third, we present a case study from the SE Precaspian Basin, Kazakhstan, where, using a borehole-constrained 3D seismic reflection dataset, the proposed criteria are applied to an area with abundant, newly discovered sediment packages within salt.

  7. Tracing suspended sediment sources in the Upper Sangamon River Basin using conservative and non-conservative tracers

    NASA Astrophysics Data System (ADS)

    Yu, M.; Rhoads, B. L.; Stumpf, A.

    2015-12-01

    As the awareness of water pollution, eutrophication and other water related environmental concerns grows, the significance of sediment in the transport of nutrients and contaminants from agricultural areas to streams has received increasing attention. Both the physical and geochemical properties of suspended sediment are strongly controlled by sediment sources. Thus, tracing sources of suspended sediment in watersheds is important for the design of management practices to reduce sediment loads and contributions of sediment-adsorbed nutrients from agricultural areas to streams. However, the contributions of different sediment sources to suspended sediment loads within intensively managed watersheds in the Midwest still remain insufficiently explored. This study aims to assess the provenance of suspended sediment and the relation between channel morphology and production of suspended sediment in the Upper Sangamon River Basin, Illinois, USA. The 3,690-km2 Upper Sangamon River Basin is characterized by low-relief, agricultural lands dominated by row-crop agriculture. Sediment source samples were collected in the Saybrook from five potential sources: farmland, forests, floodplains, river banks, and grasslands. Event-based and accumulated suspended sediment samples were collected by ISCO automatic pump samplers and in situ suspended sediment samplers and from the stream at watershed outlet. A quantitative geochemical fingerprinting technique, combining statistically verified multicomponent signatures and an un-mixing model, was employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and radionuclides from soil samples were used as potential tracers. Our preliminary results indicate that the majority of suspended sediment is derived from floodplains in the downstream portions of the watersheds, while only minor amounts of suspended sediment are derived from upland areas and banks. These results suggest that floodplain erosion during high flow events contributes to the suspended sediment.

  8. Heavy metals and organic carbon in sediments from the Tuy River basin, Venezuela.

    PubMed

    Mogollón, J L; Ramirez, A J; Guillén, R B; Bifano, C

    1990-12-01

    The Tuy River basin, located in north-central Venezuela with an annual average temperature of 27°C and precipitation of 140 cm, was selected to conduct a geochemical study of bottom sediments, with the object of establishing the natural and human influences in the abundance and distribution of Fe, Mn, Cr, Co, Cu, Ni, Pb, Zn and organic carbon. The basin is lithologically divided into two sub-basins, north and south. The north sub-basin drains a iow-grade metasedimentary terrain with a population density of 800 persons km(-2) and approximateiy 600 industrial sites, while the south sub-basin in underlain by metavolcanic and ultramafic rocks, with a population density of less than 10 persons km(-2).Stream bottom sediment samples (150) were collected during the years of 1979-1986 in 16 unpolluted sites and 13 polluted sites. The sediments were air dried at room temperature and sieved through a 120 stainless steel mesh (125 μm). Samples of grain size smaller than 125 μm were analysed, the heavy metals being determined by atomic absorption spectrometry and the organic carbon (Corg) by dry combustion.The higher concentrations of heavy metals and organic carbon found in the pristine areas were in the south sub-basin, especially in those areas with higher annual precipitation and tropical forest. This indicated that the metavolcanic and ultramafic rocks yield higher concentrations of heavy metals than the metasedimentary rocks. It was also noted that the higher concentrations of Cr and Ni are associated with the ultramafic rocks. The results obtained from the sediment samples collected in the polluted sites showed that the elements Pb, Zn and Corg are enriched up to 4 times as a result of ail the human activities taking place in the basin. Organic carbon is an excellent indicator of domestic wastewater, Pb and Zn are good indicators of the automotive traffic and industrial effluents. The concentrations of each heavy metal did not show any significant correlation with grain size fractions; however, the concentration of organic carbon did show a negative correlation with grain size. The lithological, climatic and vegetation influence in the abundance of heavy metals and organic carbon in stream sediments clearly indicates the necessity of establishing background levels for the area under study when carrying out studies in environmental geochemistry.

  9. Seismo-stratigraphic evolution of the northern Austral Basin and its possible relation to the Andean tectonics, onshore Argentina.

    NASA Astrophysics Data System (ADS)

    Sachse, Victoria; Anka, Zahie; Pagan, Facundo; Kohler, Guillermina; Cagnolatti, Marcelo; di Primio, Rolando; Rodriguez, Jorge

    2013-04-01

    The Austral Basin is situated in a formerly and recently high active tectonic zone in southern Argentina. The opening of the South Atlantic to the east, the opening of the Drake Passage in the south, and the subduction related to the rise of the Andes to the west, had major influence on the study area. To identify the impact of the tectonic events on basin geometry, sediment thickness and depocenter migration through time, 2D seismic interpretation was performed for an area of approx. 180.000 km² covering the onshore northern Austral Basin. A total of 10 seismic horizons were mapped and tied to the stratigraphy from well reports, representing 9 syn- and post- rift sequences. The main units are: Basement (U1), Jurassic Tobifera Formation (U2), Early Cretaceous (U3), Late Cretaceous (U4), sub-unit Campanian (U4A), Paleocene (U5), Eocene (U6), Oligocene (U7), Miocene (U8), and Plio-Pleistocene (U9). Main tectonic events are identified representing the break-up phase forming graben systems and the evolution from the ancient backarc Rocas Verdes Basin to the foreland Austral Basin. Inversion and changes in the tectonic regime are concomitant with onlapping and thinning of the base of the Upper Cretaceous to Campanian sediments, while the Top of the Upper Cretaceous represents a Maastrichtian unconformity. Units depth maps show a triangular geometry since the Jurassic, tracing the north-eastern basement high and deepening to the south. Since the Campanian the former geometry of basin fill changed and deepening to the south stopped. Beginning of the foreland phase is assigned to this time as well as changes in the stress regime. Paleogene times are marked by a relatively high sedimentation rate coupled with enduring thermal subsidence, on-going rise of the Andes and changes in the convergence rates of the Nazca relative to the South American plate. Onset of sediment supply from the Andes (Incaic phase) resulted in enhanced sedimentation rates during the Paleocene, coupled with important basin subsidence at Andes foothills. An E-W transpressive deformation occurred during late Oligocene and Miocene, initiated by significant changes of plate motion between Nazca and South American plate, driving the Quechua phase of the Andean uplift. Hence, enhanced sedimentation from the rising Andes was renewed since a late Miocene unconformity.

  10. Systematic Heat Flow Measurements Across the Wagner Basin, Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Neumann, F.; Negrete-Aranda, R.; Harris, R. N.; Contreras, J.; Sclater, J. G.; Gonzalez-Fernandez, A.

    2017-12-01

    A primary control on the geodynamics of rifting is the thermal regime. To better understand the geodynamics of rifting in the northern Gulf of California we systematically measured heat-flow across the Wagner Basin, a tectonically active basin that lies near the southern terminus of the Cerro Prieto fault. Seismic reflection profiles show sediment in excess of 5 s two-way travel time, implying a sediment thickness of > 7 km. The heat flow profile is 40 km long, has a nominal measurement spacing of 1 km, and is collocated with a seismic reflection profile. Heat flow measurements were made with a 6.5-m violin-bow probe. Most measurements are of good quality in that the probe fully penetrated sediments and measurements were stable enough to invert for heat flow and thermal properties. We have estimated corrections for environmental perturbations due to changes in bottom water temperature and sedimentation. The mean and standard deviation of heat flow across the western, central, and eastern parts of the basin are 220±60, 99±14, 1058±519 mW m-2, respectively. Corrections for sedimentation would increase measured heat flow across the central part of basin by 40 to 60%. We interpret the relatively high heat flow and large variability on the western and eastern flanks in terms of upward fluid flow at depth below the seafloor, whereas the lower and more consistent values across the central part of the basin are suggestive of conductive heat transfer. Based on an observed fault depth of 1.75 km we estimated the maximum Darcy velocities through the western and eastern flanks as 3 and 10 cm yr-1, respectively. Heat flow across the central basin is consistent with gabbroic underplating at a depth of 15 km and suggests that continental rupture here has not gone to completion.

  11. Role of Neogene Exhumation and Sedimentation on Critical-Wedge Kinematics in the Zagros Orogenic Belt, Northeastern Iraq, Kurdistan

    NASA Astrophysics Data System (ADS)

    Koshnaw, R. I.; Horton, B. K.; Stockli, D. F.; Barber, D. E.; Tamar-Agha, M. Y.; Kendall, J. J.

    2014-12-01

    The Zagros orogenic belt and foreland basin formed during the Cenozoic Arabia-Eurasia collision, but the precise histories of shortening and sediment accumulation remain ambiguous, especially at the NW extent of the fold-thrust belt in Iraqi Kurdistan. This region is characterized by well-preserved successions of Cenozoic clastic foreland-basin fill and deformed Paleozoic-Mesozoic hinterland bedrock. The study area provides an excellent opportunity to investigate the linkage between orogenic wedge behavior and surface processes of erosion and deposition. The aim of this research is to test whether the Zagros orogenic wedge advanced steadily under critical to supercritical wedge conditions involving in-sequence thrusting with minimal erosion or propagated intermittently under subcritical condition involving out-of-sequence deformation with intense erosion. These endmember modes of mountain building can be assessed by integrating geo/thermochronologic and basin analyses techniques, including apatite (U-Th)/He thermochronology, detrital zircon U-Pb geochronology, stratigraphic synthesis, and seismic interpretations. Preliminary apatite (U-Th)/He data indicate activation of the Main Zagros Fault (MZF) at ~10 Ma with frontal thrusts initiating at ~8 Ma. However, thermochronometric results from the intervening Mountain Front Flexure (MFF), located between the MZF and the frontal thrusts, suggest rapid exhumation at ~6 Ma. These results suggest that the MFF, represented by the thrust-cored Qaradagh anticline, represents a major episode of out-of-sequence deformation. Detrital zircon U-Pb analyses from the Neogene foreland-basin deposits show continuous sediment derivation from sources to the NNE in Iraq and western Iran, suggesting that out-of-sequence thrusting did not significantly alter sedimentary provenance. Rather, intense hinterland erosion and recycling of older foreland-basin fill dominated sediment delivery to the basin. The irregular distribution of thermochronologic ages, hinterland growth, extensive erosion, and recycled sediment in the Neogene foreland basin imply that the Zagros orogenic wedge in the Iraqi Kurdistan region largely developed under subcritical wedge conditions.

  12. Evolution of Holocene tidal systems along the Dutch coast: effects of rivers, coastal boundary conditions, eco-engineering species, inherited relief and human interference

    NASA Astrophysics Data System (ADS)

    Haas, T. D.; Pierik, H. J.; van der Spek, A.; Cohen, K.; van Maanen, B.; Kleinhans, M. G.

    2016-12-01

    Estuaries and tidal basins are partly enclosed coastal bodies of water with a free connection to the open sea at their tidal inlet and with no to marginal riverine input (tidal basins) or substantial riverine input (estuaries). Their tidal inlets can only remain open over Holocene timescales when (1) the formation of accommodation space exceeds infilling or (2) the inlet system is in dynamic equilibrium (sediment input equals output). Physical and numerical modelling suggest that estuaries and tidal basins develop toward a dynamic equilibrium under constant boundary conditions and remain open over long timescales, whereas many natural estuaries and tidal basins have filled up and were closed off or became deltas during the Holocene. This raises the question if and how tidal inlets can remain open over long timescales? And what is the effect of river inflow and sediment supply thereon? Here we compare the Holocene evolution of tidal systems along the Dutch coast to empirically identify the most important factors that control their long-term evolution. Along the coast of the Netherlands estuaries and tidal basins were formed during the middle Holocene driven by rapid relative sea-level rise and during the late Holocene driven by natural and human-induced subsidence in coastal plain peatlands. During the Holocene tidal inlets connected to rivers (estuaries) were able to persist and attain dynamic equilibrium while tidal basins without or with a very marginal riverine inflow were unstable and closed off under abundant sediment supply. There are many examples of long-lived tidal inlets that rapidly closed off after upstream river avulsion leading to a decrease and finally loss of riverine input. Long-term net import of sediment from the sea into Dutch tidal basins is favoured by strong, flood-dominated, tidal asymmetry along the Dutch coast, the shallow sand-rich floor of the North Sea and the abundance of mud in the coastal area supplied by the Rhine and Meuse rivers. While sandy tidal basins may obtain dynamic equilibrium and remain open over long timescales, we hypothesize that an abundance of mud and eco-engineering species often culminates in continuous basin filling with fine sediment and the growth of intertidal and supratidal areas, eventually resulting in closure of the basin.

  13. Transient electromagnetic study of basin fill sediments in the Upper San Pedro Basin, Mexico

    USGS Publications Warehouse

    Bultman, M.W.; Gray, F.

    2011-01-01

    The Upper San Pedro River Basin in Mexico and the United States is an important riparian corridor that is coming under increasing pressure from growing populations and the associated increase in groundwater withdrawal. Several studies have produced three-dimensional maps of the basin fill sediments in the US portion of the basin but little work has been done in the Mexican portion of the basin. Here, the results of a ground-based transient electromagnetic (TEM) survey in the Upper San Pedro Basin, Mexico are presented. These basin fill sediments are characterized by a 10-40 m deep unsaturated surficial zone which is composed primarily of sands and gravels. In the central portion of the basin this unsaturated zone is usually underlain by a shallow clay layer 20-50 m thick. Beneath this may be more clay, as is usually the case near the San Pedro River, or interbedded sand, silt, and clay to a depth of 200-250 m. As you move away from the river, the upper clay layer disappears and the amount of sand in the sediments increases. At 1-2 km away from the river, sands can occupy up to 50% of the upper 200-250 m of the sediment fill. Below this, clays are always present except where bedrock highs are observed. This lower clay layer begins at a depth of about 200 m in the central portion of the basin (250 m or more at distances greater than 1-2 km from the river) and extends to the bottom of most profiles to depths of 400 m. While the depth of the top of this lower clay layer is probably accurate, its thickness observed in the models may be overestimated due to the relatively low magnetic moment of the TEM system used in this study. The inversion routine used for interpretation is based on a one-dimensional geologic model. This is a layer based model that is isotropic in both the x and y directions. Several survey soundings did not meet this requirement which invalidates the inversion process and the resulting interpretation at these locations. The results from these locations were rejected. ?? 2011 Springer-Verlag (outside the USA).

  14. Neogene tectonic evolution and exhumation of the southern Ecuadorian Andes: a combined stratigraphy and fission-track approach

    NASA Astrophysics Data System (ADS)

    Steinmann, Michael; Hungerbühler, Dominik; Seward, Diane; Winkler, Wilfried

    1999-06-01

    Coastal marine and continental sedimentary facies of Middle to Late Miocene age are exposed in the Andes of southern Ecuador (Cuenca, Girón-Santa Isabel, Loja, Malacatos-Vilcabamba and Catamayo-Gonzanamá Basins). The chronostratigraphy of the basin series was established by zircon fission-track dating on a total of 120 tephra layers. Subsequently, the timing of tectonic events was estimated through the well-dated stratigraphic sequences and intervening unconformities. Sedimentation from ≈15 to 9 Ma (termed Pacific Coastal Stage) was dominantly of coastal marine type, extending over an area far greater than the present basin perimeters. It ended when a period of east-west-oriented compression at ≈9.5-8 Ma exhumed the region, and sedimentation was then restricted to smaller basins (termed Intermontane Stage). These Late Miocene continental sediments were for the first time sourced from the west in the rising Western Cordillera. Apatite fission-track analysis was applied to some of the tephras in the Cuenca Basin and also to the older (Eocene, 42-35 Ma) Quingeo Basin series in order to quantify the basin histories with respect to timing and amount of burial and later exhumation. In the Quingeo Basin burial of the oldest sediments reached temperatures of ˜100°C at 18 Ma, when they started to cool down during a period of exhumation. This process preceded the Pacific Coastal Stage development of the other basins. In the Cuenca Basin, the oldest sediments were buried to temperatures of ca. 120°C by 9 Ma, when a period of inversion began and a phase of erosion was dominant. This timing correlates well with that estimated from structural evidence. At ca. 6 Ma the cooling rate slowed down and maybe even reverted to a small increase in temperature until 3 Ma, when the final stages of exhumation took place. Assuming a geothermal gradient of 35°C/km, total uplift for this part for Ecuador is about 6100 m over the last 9 million years. Assuming a steady state continuous movement, this means a mean rock uplift rate of ˜0.7 mm/yr and a surface uplift of 0.3 mm/yr to the Present.

  15. Modern pollen deposition in Long Island Sound

    USGS Publications Warehouse

    Beuning, Kristina R.M.; Fransen, Lindsey; Nakityo, Berna; Mecray, Ellen L.; Buchholtz ten Brink, Marilyn R.

    2000-01-01

    Palynological analyses of 20 surface sediment samples collected from Long Island Sound show a pollen assemblage dominated by Carya, Betula, Pinus, Quercus, Tsuga, and Ambrosia, as is consistent with the regional vegetation. No trends in relative abundance of these pollen types occur either from west to east or associated with modern riverine inputs throughout the basin. Despite the large-scale, long-term removal of fine-grained sediment from winnowed portions of the eastern Sound, the composition of the pollen and spore component of the sedimentary matrix conforms to a basin-wide homogeneous signal. These results strongly support the use of select regional palynological boundaries as chronostratigraphic tools to provide a framework for interpretation of the late glacial and Holocene history of the Long Island Sound basin sediments.

  16. Simulation of streamflow and sediment transport in two surface-coal-mined basins in Fayette County, Pennsylvania

    USGS Publications Warehouse

    Sams, J. I.; Witt, E. C.

    1995-01-01

    The Hydrological Simulation Program - Fortran (HSPF) was used to simulate streamflow and sediment transport in two surface-mined basins of Fayette County, Pa. Hydrologic data from the Stony Fork Basin (0.93 square miles) was used to calibrate HSPF parameters. The calibrated parameters were applied to an HSPF model of the Poplar Run Basin (8.83 square miles) to evaluate the transfer value of model parameters. The results of this investigation provide information to the Pennsylvania Department of Environmental Resources, Bureau of Mining and Reclamation, regarding the value of the simulated hydrologic data for use in cumulative hydrologic-impact assessments of surface-mined basins. The calibration period was October 1, 1985, through September 30, 1988 (water years 1986-88). The simulated data were representative of the observed data from the Stony Fork Basin. Mean simulated streamflow was 1.64 cubic feet per second compared to measured streamflow of 1.58 cubic feet per second for the 3-year period. The difference between the observed and simulated peak stormflow ranged from 4.0 to 59.7 percent for 12 storms. The simulated sediment load for the 1987 water year was 127.14 tons (0.21 ton per acre), which compares to a measured sediment load of 147.09 tons (0.25 ton per acre). The total simulated suspended-sediment load for the 3-year period was 538.2 tons (0.30 ton per acre per year), which compares to a measured sediment load of 467.61 tons (0.26 ton per acre per year). The model was verified by comparing observed and simulated data from October 1, 1988, through September 30, 1989. The results obtained were comparable to those from the calibration period. The simulated mean daily discharge was representative of the range of data observed from the basin and of the frequency with which specific discharges were equalled or exceeded. The calibrated and verified parameters from the Stony Fork model were applied to an HSPF model of the Poplar Run Basin. The two basins are in a similar physical setting. Data from October 1, 1987, through September 30, 1989, were used to evaluate the Poplar Run model. In general, the results from the Poplar Run model were comparable to those obtained from the Stony Fork model. The difference between observed and simulated total streamflow was 1.1 percent for the 2-year period. The mean annual streamflow simulated by the Poplar Run model was 18.3 cubic feet per second. This compares to an observed streamflow of 18.15 cubic feet per second. For the 2-year period, the simulated sediment load was 2,754 tons (0.24 ton per acre per year), which compares to a measured sediment load of 3,051.2 tons (0.27 ton per acre per year) for the Poplar Run Basin. Cumulative frequency-distribution curves of the observed and simulated streamflow compared well. The comparison between observed and simulated data improved as the time span increased. Simulated annual means and totals were more representative of the observed data than hourly data used in comparing storm events. The structure and organization of the HSPF model facilitated the simulation of a wide range of hydrologic processes. The simulation results from this investigation indicate that model parameters may be transferred to ungaged basins to generate representative hydrologic data through modeling techniques.

  17. Contaminated Sediment in the Great Lakes

    EPA Pesticide Factsheets

    Contaminated sediments are a significant problem in the Great Lakes basin. Persistent high concentrations of contaminants in the bottom sediments of rivers and harbors pose risks to aquatic organisms, wildlife, and humans.

  18. Post-disturbance sediment recovery: Implications for watershed resilience

    NASA Astrophysics Data System (ADS)

    Rathburn, Sara L.; Shahverdian, Scott M.; Ryan, Sandra E.

    2018-03-01

    Sediment recovery following disturbances is a measure of the time required to attain pre-disturbance sediment fluxes. Insight into the controls on recovery processes and pathways builds understanding of geomorphic resilience. We assess post-disturbance sediment recovery in three small (1.5-100 km2), largely unaltered watersheds within the northern Colorado Rocky Mountains affected by wildfires, floods, and debris flows. Disturbance regimes span 102 (floods, debris flows) to 103 years (wildfires). For all case studies, event sediment recovery followed a nonlinear pattern: initial high sediment flux during single precipitation events or high annual snowmelt runoff followed by decreasing sediment fluxes over time. Disturbance interactions were evaluated after a high-severity fire within the South Fork Cache la Poudre basin was followed by an extreme flood one year post-fire. This compound disturbance hastened suspended sediment recovery to pre-fire concentrations 3 years after the fire. Wildfires over the last 1900 YBP in the South Fork basin indicate fire recurrence intervals of 600 years. Debris flows within the upper Colorado River basin over the last two centuries have shifted the baseline of sediment recovery caused by anthropogenic activities that increased debris flow frequency. An extreme flood on North St. Vrain Creek with an impounding reservoir resulted in extreme sedimentation that led to a physical state change. We introduce an index of resilience as sediment recovery/disturbance recurrence interval, providing a relative comparison between sites. Sediment recovery and channel form resilience may be inversely related because of high or low physical complexity in streams. We propose management guidelines to enhance geomorphic resilience by promoting natural processes that maintain physical complexity. Finally, sediment connectivity within watersheds is an additional factor to consider when establishing restoration treatment priorities.

  19. Evaluation of the efficiency of some sediment trapping methods after a Mediterranean forest fire.

    PubMed

    Fox, D M

    2011-02-01

    Forest fires are common in Mediterranean environments and may become increasingly more frequent as the climate changes. Destruction of the forest cover and litter layer leads to greater overland flow and increased erosion rates. The greatest risk occurs during the first rainstorms following a major fire, so local authorities must act quickly to put erosion control methods in place in order to avoid excessive post-fire sediment loads in river channels. Deciding on which methods to use requires accurate knowledge of their impact on sediment load and an estimate of their cost efficiency. The objective of this study was to evaluate the efficiency of Log Debris Dams (LDDs) and a sedimentation basin for their effectiveness in trapping sediments. Paired sub-catchments were studied to quantify the amount of sediments trapped in stream channels by a series of LDDs and a sedimentation basin. Cost efficiency was evaluated for each of the measures as a function of the cost per unit volume of sediments trapped. In addition, grain size analyses were performed to characterise the nature of the sediments trapped. A third sediment trapping method, Log Erosion Barriers (LEBs) was evaluated more superficially than the first two and conclusions regarding this method are tentative. LDDs trapped a mean volume of 1.57 m³ per unit (median=1.28 m³); mean LDD height was 105.4 cm (std. dev.=21.9 cm), and mean height of trapped sediments was only 50.0 cm (std. dev.=22.9 cm), showing that the traps were only half filled. Sediment height was limited by the presence of gaps between logs or branches that allowed runoff to flow through. Comparison of the textural characteristics of slope and trapped sediments showed distinct sorting: particles greater than 20mm were not mobilised from the slopes during the study period, sediments in the medium to coarse sand size fractions were trapped preferentially by the LDDs, and sediments in the sedimentation basin were enriched by clay and silt sized (< 0.050 mm) particles as coarser sediments were trapped upstream by the LDDs. Cost efficiency of LDDs was estimated at about 143 € m⁻³ for the LDDs and 217 € m⁻³ for the sedimentation basin at the time of sampling. The LDDs are therefore a cost effective method of trapping sediments, but they can only be used when pine trees or straight-trunked trees are locally available. In this case, they should be combined with LEBs, which had a cost efficiency estimated at about 250 € m⁻³. Installation of the LEBs had not been optimised and they have the advantage of trapping sediments on the slopes where they can continue to play an ecological role, so this method can give better results with more care. Sedimentation basins can be emptied if necessary and are useful in areas where pine trees are not available and where the site can be secured. Copyright © 2009 Elsevier Ltd. All rights reserved.

  20. Estuarine Facies Model Revisited: Conceptual Model of Estuarine Sediment Dynamics During Non-Equilibrium Conditions

    NASA Astrophysics Data System (ADS)

    Elliott, E. A.; Rodriguez, A. B.; McKee, B. A.

    2017-12-01

    Traditional models of estuarine systems show deposition occurs primarily within the central basin. There, accommodation space is high within the deep central valley, which is below regional wave base and where current energy is presumed to reach a relative minimum, promoting direct deposition of cohesive sediment and minimizing erosion. However, these models often reflect long-term (decadal-millennial) timescales, where accumulation rates are in relative equilibrium with the rate of relative sea-level rise, and lack the resolution to capture shorter term changes in sediment deposition and erosion within the central estuary. This work presents a conceptual model for estuarine sedimentation during non-equilibrium conditions, where high-energy inputs to the system reach a relative maximum in the central basin, resulting in temporary deposition and/or remobilization over sub-annual to annual timescales. As an example, we present a case study of Core Sound, NC, a lagoonal estuarine system where the regional base-level has been reached, and sediment deposition, resuspension and bypassing is largely a result of non-equilibrium, high-energy events. Utilizing a 465 cm-long sediment core from a mini-basin located between Core Sound and the continental shelf, a 40-year sub-annual chronology was developed for the system, with sediment accumulation rates (SAR) interpolated to a monthly basis over the 40-year record. This study links erosional processes in the estuary directly with sediment flux to the continental shelf, taking advantage of the highly efficient sediment trapping capability of the mini-basin. The SAR record indicates high variation in the estuarine sediment supply, with peaks in the SAR record at a recurrence interval of 1 year (+/- 0.25). This record has been compared to historical storm influence for the area. Through this multi-decadal record, sediment flushing events occur at a much more frequent interval than previously thought (i.e. annual rather than decadal timescales). This non-equilibrium estuarine model highlights moderate-energy events that impact the coast at least every year, in addition to high energy less frequent decadal to millennial events for modulating sediment and particulate matter erosion and transport through the estuary and delivery to the continental shelf.

  1. Stratigraphic Signatures of Forearc Basin Formation Mechanisms

    NASA Astrophysics Data System (ADS)

    Mannu, U.; Ueda, K.; Gerya, T.; Willett, S.; Strasser, M.

    2014-12-01

    Forearc basins are loci of active sedimentation above the landward portion of accretionary prisms. Although these basins typically remain separated from the frontal prism by a forearc high, their evolution has a significant impact on the structure and deformation of the entire wedge. Formation of forearc basins has been proposed as a consequence of changes in wedge stability due to an increase of slab dip in subduction zones. Another hypothesis attributes this to higher hinterland sedimentation, which causes the rear of the wedge to stabilize and eventually develop a forearc basin. Basin stratigraphic architecture, revealed by high-resolution reflection seismic data and borehole data allows interpretation of structural development of the accretionary prism and associated basins with the goal of determining the underlying driving mechanism(s) of basin formation. In this study we supplement data interpretation with thermo-mechanical numerical models including high-resolution isochronal surface tracking to visualize the developing stratigraphy of basins that develop in subduction zone and wedge dynamic models. We use a dynamic 2D thermo mechanical model incorporating surface processes, strain weakening and sediment subduction. The model is a modification of I2VIS model, which is based on conservative, fully staggered finite differences and a non-diffusive marker- in-cell technique capable of modelling mantle convection. In the model different driving mechanisms for basin formation can be explored. Stratigraphic simulations obtained by isochronal surface tracking are compared to reflection pattern and stratigraphy of seismic and borehole data, respectively. Initial results from a model roughly representing the Nankai Trough Subduction Zone offshore Japan are compared to available seismic and Integrated Ocean Drilling (IODP) data. A calibrated model predicting forearc basin stratigraphy will be used to discern the underlying process of basins formation and wedge dynamics.

  2. Structural and sedimentary evolution of the Malay Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, M.T.; Rudolph, K.W.; Abdullah, S.A.

    1994-07-01

    The Malay Basin is a back-arc basin that formed via Eocene ( ) through Oligocene extension. This early extensional episode is characterized by large east-west and northwest-southeast-trending normal fault systems with associated block rotation. Extensional subbasins are filled with a thick succession of alluvial and fluvial sediments that show increasing lacustrine influence toward the central basin dep. In the early Miocene, the basin entered a passive sag phase in which depositional relief decreased, and there is the first evidence of widespread marine influence. Lower Miocene sediments consist of cyclic offshore marine, tidal-estuarine, and coastal plain fluvial sediments with very widemore » facies tracts. The middle Miocene is dominated by increasing compressional inversion, in which preexisting extensional lows were folded into east-west anticlines. This compression continues well into the Pliocene-Pleistocene, especially in the northwest portion of the basin and is accompanied by an increase in basin-wide subsidence. There is significant thinning over the crest of the growing anticlines and an angular unconformity near the top of the middle Miocene in the southeast portion of the basin. Middle Miocene sedimentary facies are similar to those seen in the lower Miocene, but are influenced by the contemporaneous compressional folding and normal faulting. Based on this study, there is no evidence of through-going wrench-fault deformation in the Malay Basin. Instead, localized strike-slip faulting is a subsidiary phenomenon associated with the extensional and compressional tectonic episodes.« less

  3. Occurrence, Ecological and Human Health Risks, and Seasonal Variations of Phenolic Compounds in Surface Water and Sediment of a Potential Polluted River Basin in China.

    PubMed

    Zhou, Mo; Zhang, Jiquan; Sun, Caiyun

    2017-09-27

    Five phenolic compounds in water and sediment of Yinma River Basin were investigated. The average concentration of phenol was the highest in water samples as well as in sediment samples during the wet season, 101.68 ng/L and 127.76 ng/g, respectively. 2,4,6-Trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) was not detected in some sampling sites. Shitou Koumen Reservoir and the neighboring area were the severest areas of phenolic pollution. The lower reach was more polluted in three water seasons than the middle reach and upper reach. Phenol had ecological risks in sediment during three water seasons. 2-Nitrophenol (2-NP) and 2,4-dichlorophenol (2,4-DCP) had ecological risks in sediment in both the normal and wet season. The concentrations of five phenolic compounds from high to low were in the wet season, normal season, and dry season in water and sediment, respectively. There were middle risks in water of total concentrations for five phenolic compounds in several sampling sites. Total concentrations for five phenolic compounds in sediment had high ecological risks in all sampling sites. However, there was no human health risk in the Yinma River Basin.

  4. Occurrence, Ecological and Human Health Risks, and Seasonal Variations of Phenolic Compounds in Surface Water and Sediment of a Potential Polluted River Basin in China

    PubMed Central

    Zhou, Mo; Sun, Caiyun

    2017-01-01

    Five phenolic compounds in water and sediment of Yinma River Basin were investigated. The average concentration of phenol was the highest in water samples as well as in sediment samples during the wet season, 101.68 ng/L and 127.76 ng/g, respectively. 2,4,6-Trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) was not detected in some sampling sites. Shitou Koumen Reservoir and the neighboring area were the severest areas of phenolic pollution. The lower reach was more polluted in three water seasons than the middle reach and upper reach. Phenol had ecological risks in sediment during three water seasons. 2-Nitrophenol (2-NP) and 2,4-dichlorophenol (2,4-DCP) had ecological risks in sediment in both the normal and wet season. The concentrations of five phenolic compounds from high to low were in the wet season, normal season, and dry season in water and sediment, respectively. There were middle risks in water of total concentrations for five phenolic compounds in several sampling sites. Total concentrations for five phenolic compounds in sediment had high ecological risks in all sampling sites. However, there was no human health risk in the Yinma River Basin. PMID:28953252

  5. Multivariate Statistical Models for Predicting Sediment Yields from Southern California Watersheds

    USGS Publications Warehouse

    Gartner, Joseph E.; Cannon, Susan H.; Helsel, Dennis R.; Bandurraga, Mark

    2009-01-01

    Debris-retention basins in Southern California are frequently used to protect communities and infrastructure from the hazards of flooding and debris flow. Empirical models that predict sediment yields are used to determine the size of the basins. Such models have been developed using analyses of records of the amount of material removed from debris retention basins, associated rainfall amounts, measures of watershed characteristics, and wildfire extent and history. In this study we used multiple linear regression methods to develop two updated empirical models to predict sediment yields for watersheds located in Southern California. The models are based on both new and existing measures of volume of sediment removed from debris retention basins, measures of watershed morphology, and characterization of burn severity distributions for watersheds located in Ventura, Los Angeles, and San Bernardino Counties. The first model presented reflects conditions in watersheds located throughout the Transverse Ranges of Southern California and is based on volumes of sediment measured following single storm events with known rainfall conditions. The second model presented is specific to conditions in Ventura County watersheds and was developed using volumes of sediment measured following multiple storm events. To relate sediment volumes to triggering storm rainfall, a rainfall threshold was developed to identify storms likely to have caused sediment deposition. A measured volume of sediment deposited by numerous storms was parsed among the threshold-exceeding storms based on relative storm rainfall totals. The predictive strength of the two models developed here, and of previously-published models, was evaluated using a test dataset consisting of 65 volumes of sediment yields measured in Southern California. The evaluation indicated that the model developed using information from single storm events in the Transverse Ranges best predicted sediment yields for watersheds in San Bernardino, Los Angeles, and Ventura Counties. This model predicts sediment yield as a function of the peak 1-hour rainfall, the watershed area burned by the most recent fire (at all severities), the time since the most recent fire, watershed area, average gradient, and relief ratio. The model that reflects conditions specific to Ventura County watersheds consistently under-predicted sediment yields and is not recommended for application. Some previously-published models performed reasonably well, while others either under-predicted sediment yields or had a larger range of errors in the predicted sediment yields.

  6. Soil erosion and sediment connectivity modelling in Burgundy vineyards: case study of Mercurey, France

    NASA Astrophysics Data System (ADS)

    Fressard, Mathieu; Cossart, Étienne; Lejot, Jêrome; Michel, Kristell; Perret, Franck; Christol, Aurélien; Mathian, Hélène; Navratil, Oldrich

    2017-04-01

    This research aims at assessing the impact of agricultural landscape structure on soil erosion and sediment connectivity at the catchment scale. The investigations were conducted the vineyards of Mercurey (Burgundy, France), characterized by important issues related to soil loss, flash floods and associated management infrastructures maintenance. The methodology is based on two main steps that include (1) field investigations and (2) modelling. The field investigations consists in DEM acquisition by LiDAR imaging from a drone, soil mapping and human infrastructures impacting runoff classification and mapping (such as crop rows, storm water-basins, drainage network, roads, etc.). These data aims at supplying the models with field observations. The modelling strategy is based on two main steps: First, the modelling of soil sensitivity to erosion, using the spatial application of the RUSLE equation. Secondly, to assess the sediment connectivity in this area, a model based on graph theory developed by Cossart and Fressard (2017) is tested. The results allow defining the influence of different anthropogenic structures on the sediment connectivity and soil erosion at the basin scale. A set of sub-basins influenced by various anthropogenic infrastructures have been identified and show contrasted sensitivities to erosion. The modelling of sediment connectivity show that the runoff pattern is strongly influenced by the vine rows orientation and the drainage network. I has also permitted to identify non collected (by storm water-basins) areas that strongly contribute to the turbid floods sediment supply and to soil loss during high intensity precipitations events.

  7. Sedimentary links between hillslopes and channels in a dryland basin

    NASA Astrophysics Data System (ADS)

    Hollings, R.

    2016-12-01

    The interface between hillslopes and channels is recognised as playing an important role in basin evolution and functioning. However, this interaction has not been described well in landscapes such as drylands, in which the diffuse process of runoff-driven sediment transport is important for sediment communication to the channel and to the basin outlet. This paper combines field measurements of surface sediment grain sizes in channels and on hillslopes with high resolution topography, >60 years of rainfall and runoff data from the Walnut Gulch Experimental Watershed (WGEW) in Arizona, and simple calculations of spatial stress distributions for various hydrologic scenarios to explore the potential for sediment to move from hillslopes to channels and through channels across the entire basin. Here we generalise the net movement of sediment in to or out of channel reaches, at high resolution in WGEW, as the balance between hillslope sediment supply to the channel and channel evacuation, in response to a variety of storms and discharge events. Our results show that downstream of small, unit source area watersheds, the balance in the channel often switches from being supply-dominated to being evacuation dominated for all scenarios. The low frequency but high discharge event in the channel seems to control the long term evolution of the channel, as stress is far greater for this scenario than other scenarios tested. The results draw on the high variability of rainfall characteristics to drive runoff events and so provides a physical explanation for long-term evolution of the channel network in drylands.

  8. A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox

    NASA Astrophysics Data System (ADS)

    Andersen, M. B.; Romaniello, S.; Vance, D.; Little, S. H.; Herdman, R.; Lyons, T. W.

    2014-08-01

    The abundance and isotope composition of redox sensitive elements in ancient sediments are increasingly used to understand the past ocean's geochemical state and the oxygenation history of the Earth. The redox transition of uranium (U) from soluble U+6 to relatively insoluble U+4 and its subsequent incorporation into reduced sediments has been used to deduce the redox state of the oceans in the past. Furthermore, recent analytical improvements have revealed significant 238U/235U fractionation during this redox transition, offering the potential for U isotopes to act as a redox proxy. However, the development of U isotopes as a geochemical tracer requires that U isotope systematics associated with redox changes, are well-characterized. This study focuses on U isotopes in recent sediments from the two largest modern anoxic ocean basins, the Black Sea and the Cariaco Basin, with the aim of advancing our understanding of the U isotope systematics in reducing marine environments. These anoxic sediments have high U accumulation rates and high 238U/235U ratios relative to seawater, in general agreement with a process that accumulates reduced U with a heavy isotopic composition. Using Al and Ca concentrations to correct for detrital and biogenic carbonate-bound U, we estimate the reduced authigenic U accumulated in the sediments and its 238U/235U. These results highlight the importance of isotopic mass balance constraints during diffusive transport and reaction of U from seawater and through pore-water, affecting the observed 238U/235U in sediments. Using these constraints, the average percentages of U depletion from top to bottom of the water column can be estimated, assuming batch-removal of U into anoxic sediments in a restricted basin. Using this framework, 238U/235U in modern anoxic sediments from the Black Sea imply U depletions in the water column of ∼30%, which is close to the observed ∼40% U depletion in the modern Black Sea water column at these depths. Similar U depletion in the water column is estimated from anoxic sediment samples of the Cariaco Basin. These recent anoxic sediments provide a basis for interpreting authigenic 238U/235U in ancient sediments. In particular, such analyses may offer insights, based on mass balance relationships, into whether particular ancient sediments were deposited in an open ocean or restricted basin. As such, this approach may provide key insight into the controls on local versus ocean-scale redox and, in that light, constraints the capacity of other proxies to capture global signals for anoxia/euxinia.

  9. What Controls Sediment Retention in an Emerging Delta?

    NASA Astrophysics Data System (ADS)

    Keogh, M.; Kolker, A.

    2016-12-01

    What controls sediment retention in an emerging delta? Here, we examine the effects of river discharge and flow velocity on sediment retention rate, using a developing crevasse splay in the Lower Mississippi Delta as a study location. With a controlled discharge that ranges from 28 to 280 m3/s, Davis Pond Freshwater Diversion connects the Mississippi River to the adjacent wetland, allowing river water, sediment, and nutrients to flow into the marsh. Although Davis Pond was primarily designed to regulate salinity within Barataria Basin rather than to build land, a new crevasse splay has recently emerged at the mouth of the diversion's outfall channel. Short (5 cm) sediment cores were collected at 22 locations around the Davis Pond receiving basin in spring 2015, fall 2015, and spring 2016. All cores were analyzed for sediment geotechnical parameters including organic content, bulk density, and grain size. Sediment input into the receiving basin was calculated using a ratings curve. Activity of the radioisotope beryllium-7 was used to calculate rates of sediment accumulation and retention. We find that while sediment input is greater during high flow, rate of retention is greater during low flow. This is likely due to the increase in flow velocity that accompanies high discharge, which retains sediment in suspension and leads to more throughput of material. Furthermore, the diversion operation regime of sustained low flow punctuated by short-duration high discharge events has increased soil bulk density, mineral sediment accumulation, and marsh platform elevation. River diversions such as Davis Pond mimic the land-building processes of natural crevasse splays and provide a promising method to restore deltaic wetlands worldwide.

  10. Water-quality, bed-sediment, and biological data (October 2012 through September 2013) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2014-01-01

    This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2012 through September 2013. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity and dissolved organic carbon were analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical sum-maries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.

  11. Water-quality, bed-sediment, and biological data (October 2013 through September 2014) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.

    2015-12-24

    This report presents the analytical results and qualityassurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2013 through September 2014. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. At 12 sites, dissolved organic carbon and turbidity samples were collected. In addition, nitrogen (nitrate plus nitrite) samples were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-ele­ment concentrations in the fine-grained fraction. Biological data include trace-element concentrations in wholebody tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.

  12. Land-use effects on erosion, sediment yields, and reservoir sedimentation: a case study in the Lago Loiza Basin, Puerto Rico

    USGS Publications Warehouse

    Gellis, A.C.; Webb, R.M.T.; McIntyre, S.C.; Wolfe, W.J.

    2006-01-01

     Lago Loíza impounded in 1953 to supply San Juan, Puerto Rico, with drinking water; by 1994, it had lost 47% of its capacity. To characterize sedimentation in Lago Loíza, a study combining land-use history, hillslope erosion rates, and subbasin sediment yields was conducted. Sedimentation rates during the early part of the reservoir’s operation (1953– 1963) were slightly higher than the rates during 1964–1990. In the early history of the reservoir, cropland comprised 48% of the basin and erosion rates were high. Following economic shifts during the 1960s, cropland was abandoned and replaced by forest, which increased from 7.6% in 1950 to 20.6% in 1987. These land-use changes follow a pattern similar to the northeastern United States. Population in the Lago Loíza Basin increased 77% from 1950 to 1990, and housing units increased 194%. Sheetwash erosion measured from 1991 to 1993 showed construction sites had the highest sediment concentration (61,400 ppm), followed by cropland (47,400 ppm), pasture (3510 ppm), and forest (2050 ppm). This study illustrates how a variety of tools and approaches can be used to understand the complex interaction between land use, upland erosion, fluvial sediment transport and storage, and reservoir sedimentation. 

  13. Eddy-driven sediment transport in the Argentine Basin: Is the height of the Zapiola Rise hydrodynamically controlled?

    DOE PAGES

    Weijer, Wilbert; Maltrud, Mathew E.; Homoky, William B.; ...

    2015-03-27

    In this study, we address the question whether eddy-driven transports in the Argentine Basin can be held responsible for enhanced sediment accumulation over the Zapiola Rise, hence accounting for the existence and growth of this sediment drift. To address this question, we perform a 6 year simulation with a strongly eddying ocean model. We release two passive tracers, with settling velocities that are consistent with silt and clay size particles. Our experiments show contrasting behavior between the silt fraction and the lighter clay. Due to its larger settling velocity, the silt fraction reaches a quasisteady state within a few years,more » with abyssal sedimentation rates that match net input. In contrast, clay settles only slowly, and its distribution is heavily stratified, being transported mainly along isopycnals. Yet, both size classes display a significant and persistent concentration minimum over the Zapiola Rise. We show that the Zapiola Anticyclone, a strong eddy-driven vortex that circulates around the Zapiola Rise, is a barrier to sediment transport, and hence prevents significant accumulation of sediments on the Rise. We conclude that sediment transport by the turbulent circulation in the Argentine Basin alone cannot account for the preferred sediment accumulation over the Rise. We speculate that resuspension is a critical process in the formation and maintenance of the Zapiola Rise.« less

  14. Characterizing changes in streamflow and sediment supply in the Sacramento River Basin, California, using hydrological simulation program—FORTRAN (HSPF)

    USGS Publications Warehouse

    Stern, Michelle A.; Flint, Lorraine E.; Minear, Justin T.; Flint, Alan L.; Wright, Scott A.

    2016-01-01

    A daily watershed model of the Sacramento River Basin of northern California was developed to simulate streamflow and suspended sediment transport to the San Francisco Bay-Delta. To compensate for sparse data, a unique combination of model inputs was developed, including meteorological variables, potential evapotranspiration, and parameters defining hydraulic geometry. A slight decreasing trend of sediment loads and concentrations was statistically significant in the lowest 50% of flows, supporting the observed historical sediment decline. Historical changes in climate, including seasonality and decline of snowpack, contribute to changes in streamflow, and are a significant component describing the mechanisms responsible for the decline in sediment. Several wet and dry hypothetical climate change scenarios with temperature changes of 1.5 °C and 4.5 °C were applied to the base historical conditions to assess the model sensitivity of streamflow and sediment to changes in climate. Of the scenarios evaluated, sediment discharge for the Sacramento River Basin increased the most with increased storm magnitude and frequency and decreased the most with increases in air temperature, regardless of changes in precipitation. The model will be used to develop projections of potential hydrologic and sediment trends to the Bay-Delta in response to potential future climate scenarios, which will help assess the hydrological and ecological health of the Bay-Delta into the next century.

  15. Eocene Unification of Peruvian and Bolivian Altiplano Basin Depocenters

    NASA Astrophysics Data System (ADS)

    Saylor, J.; Sundell, K. E.; Perez, N.; Karsky, N.; Lapen, T. J.; Cárdenas, J.

    2017-12-01

    Paleogene evolution of the Altiplano basin has been characterized as a flexural foreland basin which developed in response to magmatic and thrust loading along its western margin. Research focused in southern Peru and Bolivia points to broadly synchronous foredeep deposition in a basin assumed to be have been contiguous from at least 14°-23°S. We investigated Paleogene strata exposed on the southwestern margin of Lake Titicaca near the Peru/Bolivia border in order to establish sediment dispersal systems, sediment sources, and the chronology of deposition. A data set of >1,000 paleocurrent measurements throughout the section consistently indicates a western sediment source. The results of detrital zircon mixture modeling are consistent with derivation from Cretaceous volcanic sources, and Cretaceous and Ordovician sedimentary strata exposed in the Western Cordillera. These results confirm previous models in which sedimentary sources for the Altiplano basin are dominated by the Western Cordillera throughout the Paleogene. The detrital zircon signatures from strata in this stratigraphic section where paleocurrent orientation is well constrained provide a benchmark for future research seeking to determine sediment sources for the Altiplano basin. However, refined chronologies based on detrital zircon U-Pb maximum depositional ages (MDAs) point to development of at least two Paleocene depocenters in Peru and Bolivia separated by a zone of nondeposition or erosion in southern Peru. The basal Muñani Formation in southern Peru yields MDAs of 36.9-40.2 Ma, which requires revision of the previously determined middle Paleocene onset of deposition. The Muñani Formation overlies the Vilquechico Group which has been biostratigraphically determined to range from Campanian-Maastrichtian (or possibly Paleocene, 60 Ma). The revised chronology for the Muñani Formation requires a disconformity of at least 20 Myr during which deposition continued in both the Peruvian and Bolivian depocenters of the Paleogene Altiplano foreland basin. This requires that the Altiplano basin initiated as separate basins, and only unified at 36-40 Ma.

  16. Iron Fertilization and Productivity in the Panama Basin

    NASA Astrophysics Data System (ADS)

    Loveley, M. R.; Marcantonio, F.; Lyle, M. W.; Hertzberg, J. E.

    2016-12-01

    The Panama Basin, located in the Eastern Equatorial Pacific, is a high-nutrient low-chlorophyll zone (HNLC). HNLC zones are thought to be iron limited, and thus have low rates of primary productivity. Iron can be delivered to the ocean by continental dust, and times of increased dust flux are thought to be correlated with increased productivity. However, few studies have addressed the relationship between dust flux and primary productivity in the Panama Basin. We use xs230Th-derived 232Th accumulation rates as a dust flux proxy, and excess Ba, and authigenic U to reconstruct primary productivity in the basin. We focus on these proxies' differences between glacial and interglacial times for the last five marine isotope stages, during which glacial times are dustier. Our study involves two marine sediment cores, one retrieved from the northern part of the Panama Basin at the Cocos Ridge, (MV1014-01-"8JC", 6° 14.0'N 86° 2.6' W, 1993 m depth), and one from the southern part of the basin at the Carnegie Ridge, (MV1014-02-"17JC" 0° 10.8'S 85° 52.0' W, 2846 m depth). Both cores record high sedimentation rates (between 4 and 20 cm kyr-1) which allow us to present a high-resolution study of the basin. However, sediment focusing and the preferential transport of fine grained material have been identified in these cores. In the Panama Basin, the lithogenic dust fraction is part of the fine fraction (<4 µm) influenced by sediment focusing. Our recent research has shown that 230Th-normalized MARs of the fine-grained fraction remain relatively unaffected by the redistribution process. Our preliminary findings show that dust flux may not have played a major role in influencing primary productivity during glacial periods in the Panama Basin. Other factors, such as nutrient consumption or nutrient supply from upwelled deep water, may have had a more dominant role during these times.

  17. Heat flow and hydrocarbon generation in the Transylvanian basin, Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cranganu, C.; Deming, D.

    1996-10-01

    The Transylvanian basin in central Romania is a Neogene depression superimposed on the Cretaceous nappe system of the Carpathian Mountains. The basin contains the main gas reserves of Romania, and is one of the most important gas-producing areas of continental Europe; since 1902, gas has been produced from more than 60 fields. Surface heat flow in the Transylvanian basin as estimated in other studies ranges from 26 to 58 mW/m{sup 2}, with a mean value of 38 mW/m{sup 2}, relatively low compared to surrounding areas. The effect of sedimentation on heat flow and temperature in the Transylvanian basin was estimatedmore » with a numerical model that solved the heat equation in one dimension. Because both sediment thickness and heat flow vary widely throughout the Transylvanian basin, a wide range of model variables were used to bracket the range of possibilities. Three different burial histories were considered (thin, average, and thick), along with three different values of background heat flow (low, average, and high). Altogether, nine different model permutations were studied. Modeling results show that average heat flow in the Transylvanian basin was depressed approximately 16% during rapid Miocene sedimentation, whereas present-day heat flow remains depressed, on average, about 17% below equilibrium values. We estimated source rock maturation and the timing of hydrocarbon generation by applying Lopatin`s method. Potential source rocks in the Transylvanian basin are Oligocene-Miocene, Cretaceous, and Jurassic black shales. Results show that potential source rocks entered the oil window no earlier than approximately 13 Ma, at depths of between 4200 and 8800 m. Most simulations encompassing a realistic range of sediment thicknesses and background heat flows show that potential source rocks presently are in the oil window; however, no oil has ever been discovered or produced in the Transylvanian basin.« less

  18. U-Pb Detrital Zircon Ages from Sarawak: Changes in Provenance Reflecting the Tectonic Evolution of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Breitfeld, H. T.; Galin, T.; Hall, R.

    2014-12-01

    Sarawak is located on the northern edge of Sundaland in NW Borneo. Five sedimentary basins are distinguished with ages from Triassic to Cenozoic. New light mineral, heavy mineral and U-Pb detrital zircon ages show differences in provenance reflecting the tectonic evolution of the region. The oldest clastic sediments are Triassic of the Sadong-Kuching Basin and were sourced by a Carnian to Norian volcanic arc and erosion of Cathaysian rocks containing zircons of Paleoproterozoic age. Sandstones of the Upper Jurassic to Cretaceous Bau-Pedawan Basin have distinctive zircon populations indicating a major change of tectonic setting, including initiation of subduction below present-day West Sarawak in the Late Jurassic. A wide range of inherited zircon ages indicates various Cathaysian fragments as major source areas and the arrival of the SW Borneo Block following subduction beneath the Schwaner Mountains in the early Late Cretaceous. After collision of the SW Borneo Block and the microcontinental fragments with Sundaland in the early Late Cretaceous, deep marine sedimentation (Pedawan Formation) ceased, and there was uplift forming the regional Pedawan-Kayan unconformity. Two episodes of extension were responsible for basin development on land from the latest Cretaceous onwards, probably in a strike-slip setting. The first episode formed the Kayan Basin in the Latest Cretaceous (Maastrichtian) to Early Paleocene, and the second formed the Ketungau Basin and the Penrissen Sandstone in the Middle to Late Eocene. Zircons indicate nearby volcanic activity throughout the Early Cenozoic in NW Borneo. Inherited zircon ages indicate an alternation between Borneo and Tin Belt source rocks. A large deep marine basin, the Rajang Basin, formed north of the Lupar Line fault. Zircons from sediments of the Rajang Basin indicate they are of similar age and provenance as the contemporaneous terrestrial sediments to the south suggesting a narrow steep continental Sundaland margin at the position of the Lupar Line.

  19. Interpreting Field-based Observations of Complex Fluvial System Behavior through Theory and Numerical Models: Examples from the Ganges-Brahmaputra-Meghna Delta

    NASA Astrophysics Data System (ADS)

    Sincavage, R.; Goodbred, S. L., Jr.; Pickering, J.; Diamond, M. S.; Paola, C.; Liang, M.

    2016-12-01

    Field observations of depositional systems using outcrop, borehole, and geophysical data stimulate ideas regarding process-based creation of the sedimentary record. Theory and numerical modeling provide insight into the often perplexing nature of these systems by isolating the processes responsible for the observed response. An extensive dataset of physical and chemical sediment properties from field data in the Ganges-Brahmaputra-Meghna Delta (GBMD) indicate the presence of complex, multi-dimensional fluvial system behaviors. Paleodischarges during the last lowstand were insufficient to generate paleovalley geometries and transport boulder-sized basal gravel as observed in densely-spaced (3-5 km) borehole data and a 255 km long fluvial multichannel seismic survey. Instead, uniform flow-derived flood heights and Shields-derived flow velocities based on measured field observations support the conclusion that previously documented megafloods conveyed through the Tsangpo Gorge created the antecedent topography upon which the Holocene sediment dispersal system has since evolved. In the fault-bounded Sylhet Basin east of the main valley system, borehole data reveal three principal mid-Holocene sediment delivery pathways; two that terminate in the basin interior and exhibit rapid mass extraction, and one located along the western margin of Sylhet Basin that serves to bypass the basin interior to downstream depocenters. In spite of topographically favorable conditions and enhanced subsidence rates for delivery into the basin, the fluvial system has favored the bypass-dominated pathway, leaving the central basin perennially underfilled. A "hydrologic barrier" effect from seasonally high monsoon-lake levels has been proposed as a mechanism that precludes sediment delivery to Sylhet Basin. However, numerical models with varying lake level heights indicate that the presence or absence of a seasonal lake has little effect on channel path selection. Rather, it appears that pre-existing topography, such as the megaflood-related scours, are a first order control on sediment routing patterns within Sylhet Basin. Applying observational data to numerical models and theory have helped us gain insight into complex fluvial system behavior in this high discharge, tectonically-influenced delta.

  20. Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Zhuang, Guang-Chao; Elling, Felix J.; Nigro, Lisa M.; Samarkin, Vladimir; Joye, Samantha B.; Teske, Andreas; Hinrichs, Kai-Uwe

    2016-08-01

    Among the most extreme habitats on Earth, dark, deep, anoxic brines host unique microbial ecosystems that remain largely unexplored. As the terminal step of anaerobic degradation of organic matter, methanogenesis is a potentially significant but poorly constrained process in deep-sea hypersaline environments. We combined biogeochemical and phylogenetic analyses with incubation experiments to unravel the origin of methane in the hypersaline sediments of Orca Basin in the northern Gulf of Mexico. Substantial concentrations of methane, up to 3.4 mM, coexisted with high concentrations of sulfate from 16 to 43 mM in two sediment cores retrieved from the northern and southern parts of Orca Basin. The strong depletion of 13C in methane (-77‰ to -89‰) points towards a biological source. While low concentrations of competitive substrates limited the significance of hydrogenotrophic and acetoclastic methanogenesis, the presence of non-competitive methylated substrates (methanol, trimethylamine, dimethyl sulfide, dimethylsulfoniopropionate) supported the potential for methane generation through methylotrophic methanogenesis. Thermodynamic calculations demonstrated that hydrogenotrophic and acetoclastic methanogenesis were unlikely to occur under in situ conditions, while methylotrophic methanogenesis from a variety of substrates was highly favorable. Likewise, carbon isotope relationships between methylated substrates and methane suggested methylotrophic methanogenesis was the major source of methane. Stable and radio-isotope tracer experiments with 13C-labeled bicarbonate, acetate and methanol and 14C-labeled methylamine indicated that methylotrophic methanogenesis was the predominant methanogenic pathway. Based on 16S rRNA gene sequences, halophilic methylotrophic methanogens related to the genus Methanohalophilus dominated the benthic archaeal community in the northern basin and also occurred in the southern basin. High abundances of methanogen lipid biomarkers such as intact polar and polyunsaturated hydroxyarchaeols were detected in sediments from the northern basin, with lower abundances in the southern basin. Strong 13C-depletion of saturated and monounsaturated hydroxyarchaeol were consistent with methylotrophic methanogenesis as the major methanogenic pathway. Collectively, the availability of methylated substrates, thermodynamic calculations, experimentally determined methanogenic activity as well as lipid and gene biomarkers support the hypothesis that methylotrophic methanogenesis is the predominant pathway of methane formation in the presence of sulfate in Orca Basin sediments.

  1. Sea level controls on the textural characteristics and depositional architecture of the Hueneme and associated submarine fan systems, Santa Monica Basin, California

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.; Hiscott, R.N.

    1998-01-01

    Hueneme and Dume submarine fans in Santa Monica Basin consist of sandy channel and muddy levee facies on the upper fan. lenticular sand sheets on the middle fan. and thinly bedded turbidite and hemipelagic facies elsewhere. Fifteen widely correlatable key seismic reflections in high-resolution airgun and deep-towed boomer profiles subdivide the fan and basin deposits into time-slices that show different thickness and seismic-facies distributions, inferred to result from changes in Quaternary sea level and sediment supply. At times of low sea level, highly efficient turbidity currents generated by hyperpycnal flows or sediment failures at river deltas carry sand well out onto the middle-fan area. Thick, muddy flows formed rapidly prograding high levees mainly on the western (right-hand) side of three valleys that fed Hueneme fan at different times: the most recently active of the lowstand fan valleys. Hueneme fan valley, now heads in Hueneme Canyon. At times of high sea level, fans receive sand from submarine canyons that intercept littoral-drift cells and mixed sediment from earthquake-triggered slumps. Turbidity currents are confined to 'underfit' talweg channels in fan valleys and to steep, small, basin-margin fans like Dume fan. Mud is effectively separated from sand at high sea level and moves basinward across the shelf in plumes and in storm-generated lutite flows, contributing to a basin-floor blanket that is locally thicker than contemporary fan deposits and that onlaps older fans at the basin margin. The infilling of Santa Monica Basin has involved both fan and basin-floor aggradation accompanied by landward and basinward facies shifts. Progradation was restricted to the downslope growth of high muddy levees and the periodic basinward advance of the toe of the steeper and sandier Dume fan. Although the region is tectonically active, major sedimentation changes can be related to eustatic sea-level changes. The primary controls on facies shifts and fan growth appear to be an interplay of texture of source sediment, the efficiency with which turbidity currents transport sand, and the effects of delta distributary switching, all of which reflect sea-level changes.

  2. Magnetostratigraphy of the Neogene Chaka basin and its implications for mountain building processes in the north-eastern Tibetan Plateau

    USGS Publications Warehouse

    Zhang, H.-P.; Craddock, W.H.; Lease, Richard O.; Wang, W.-T.; Yuan, D.-Y.; Zhang, P.-Z.; Molnar, P.; Zheng, D.-W.; Zheng, W.-J.

    2012-01-01

    Magnetostratigraphy of sedimentary rock deposited in the Chaka basin (north-eastern Tibetan Plateau) indicates a late Miocene onset of basin formation and subsequent development of the adjacent Qinghai Nan Shan. Sedimentation in the basin initiated at ~11Ma. In the lower part of the basin fill, a coarsening-upward sequence starting at ~9Ma, as well as rapid sedimentation rates, and northward paleocurrents, are consistent with continued growth of the Ela Shan to the south. In the upper section, several lines of evidence suggest that thrust faulting and topographic development of the Qinghai Nan Shan began at ~6.1Ma. Paleocurrent indicators, preserved in the basin in the proximal footwall of the Qinghai Nan Shan, show a change from northward to southward flow between 6.5 and 3.8Ma. At the same location, sediment derived from the Qinghai Nan Shan appears at 6.1Ma. Finally, the initiation of progressively shallowing dips observed in deformed basin strata and a change to pebbly, fluvial deposits at 6.1Ma provide a minimum age for the onset of slip on the thrust fault that dips north-east beneath the Qinghai Nan Shan. We interpret a decrease in sediment accumulation rates since ~6Ma to indicate a reduction in Chaka basin accommodation space due to active faulting and folding along the Qinghai Nan Shan and incorporation of the basin into the wedge-top depozone. Declination anomalies indicate the beginning of counter-clockwise rotation since 6.1Ma, which we associate with local deformation, not regional block rotation. The emergence of the Qinghai Nan Shan near the end of the Miocene Epoch partitioned the once contiguous Chaka-Gonghe and Qinghai basin complex. In a regional framework, our study adds to a growing body of evidence that points to widespread initiation and/or reactivation of fault networks during the late Miocene across the north-eastern Tibetan Plateau. ?? 2011 The Authors. Basin Research ?? 2011 Blackwell Publishing Ltd, European Association of Geoscientists & Engineers and International Association of Sedimentologists.

  3. Validation of a simple distributed sediment delivery approach in selected sub-basins of the River Inn catchment area

    NASA Astrophysics Data System (ADS)

    Reid, Lucas; Kittlaus, Steffen; Scherer, Ulrike

    2015-04-01

    For large areas without highly detailed data the empirical Universal Soil Loss Equation (USLE) is widely used to quantify soil loss. The problem though is usually the quantification of actual sediment influx into the rivers. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). But it gets difficult with spatially lumped approaches in large catchment areas where the geographical properties have a wide variance. In this study we developed a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in the catchments. The sediment delivery ratio was determined using an empirical approach considering the slope, morphology and land use properties along the flow path as an estimation of travel time of the eroded particles. The model was tested against suspended solids measurements in selected sub-basins of the River Inn catchment area in Germany and Austria, ranging from the high alpine south to the Molasse basin in the northern part.

  4. A mid-Permian chert event: widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins

    USGS Publications Warehouse

    Murchey, B.L.; Jones, D.L.

    1992-01-01

    Radiolarian and conodont of Permian siliceous rocks from twenty-three areas in teh the circum-Pacific and Mediterranean regions reveal a widespread Permian Chert Event during the middle Leonardian to Wordian. Radiolarian- and (or) sponge spicule-rich siliceous sediments accumulated beneath high productivity zones in coastal, island arc and oceanic basins. Most of these deposits now crop out in fault-bounded accreted terranes. Biogenic siliceous sediments did not accumulate in terranes lying beneath infertile waters including the marine sequences in terranes of northern and central Alaska. The Permian Chert Event is coeval with major phosphorite deposition along the western margin of Pangea (Phosphoria Formation and related deposits). A well-known analogue for this event is middle Miocene deposition of biogenic siliceous sediments beneath high productivity zones in many parts of the Pacific and concurrent deposition of phosphatic as well as siliceous sediments in basins along the coast of California. Interrelated factors associated with both the Miocene and Permian depositional events include plate reorientations, small sea-level rises and cool polar waters. ?? 1992.

  5. Accumulated sediments in a detention basin: chemical and microbial hazard assessment linked to hydrological processes.

    PubMed

    Sébastian, C; Barraud, S; Ribun, S; Zoropogui, A; Blaha, D; Becouze-Lareure, C; Kouyi, G Lipeme; Cournoyer, B

    2014-04-01

    Accumulated sediments in a 32,000-m(3) detention basin linked to a separate stormwater system were characterized in order to infer their health hazards. A sampling scheme of 15 points was defined according to the hydrological behaviour of the basin. Physical parameters (particle size and volatile organic matter content) were in the range of those previously reported for stormwater sediments. Chemical analyses on hydrocarbons, PAHs, PCBs and heavy metals showed high pollutant concentrations. Microbiological analyses of these points highlighted the presence of faecal indicator bacteria (Escherichia coli and intestinal enterococci) and actinomycetes of the genus Nocardia. These are indicative of the presence of human pathogens. E. coli and enterococcal numbers in the sediments were higher at the proximity of the low-flow gutter receiving waters from the catchment. These bacteria appeared to persist over time among urban sediments. Samples highly contaminated by hydrocarbons were also shown to be heavily contaminated by these bacteria. These results demonstrated for the first time the presence of Nocardial actinomycetes in such an urban context with concentrations as high as 11,400 cfu g(-1).

  6. Origin of marls from the Polish Outer Carpathians: lithological and sedimentological aspects

    NASA Astrophysics Data System (ADS)

    Górniak, Katarzyna

    2012-10-01

    Outcrops of marls, occurring within the sandstone-shaly flysch deposits of the Polish part of Outer Carpathians, considered to be locus typicus of these rocks, were described, measured and sampled. Lithologic features of marls, representing 15 complexes of different age and occurring in 15 complexes of various tectonic units, are presented (Fig. 1, 2). The present studies were concerning Jurassic marls from the Silesian Unit (Goleszów Marls), Upper Cretaceous marls from the Skole and Sub-Silesian Units (Siliceous-Fucoid and Węgierka Marls and Węglowka, Frydek, Jasienica and Zegocina Marls respectively), and Eocene-Oligocene marls from the Magura, Fore-Magura and Skole Units (Łącko, Zembrzyce, Budzów, Leluchów and Niwa, as well as Grybów and Sub-Cergowa and Dynów Marls respectively). The former opinions on lithology, age, formal subdivision, sedimentation conditions and genesis of these rocks are discussed (Table 1, 2; Fig. 1). Detailed description of the above mentioned marl-bearing complexes are presented and for each of them the typical lithological features are determined (Tables 3 - 20). The results of profiling are presented against the background of geological studies of the Carpathian marls. The results of lithologic studies are compared to form a classification scheme and are used as the basis of distinguishing genetic types of marls. Moreover, the interpretation of the conditions of sedimentation of these rocks is presented. According to the present author’s studies, in the outcrops of marls considered to be locus typicus of the above mentioned rocks, there are both monolithic and polylithic complexes exposed. The polylithic complexes contain apart from marls intercalations of arenaceous-shaly flysch (Table 19). Event sedimentation of marly facies, appearing at different times and in various parts of the Carpathian basin is the result of periodically repeating conditions favouring the sedimentation of marls. Carpathian marls seem to be lithologically diversified. This is a natural for these rocks, uniting in variable proportions the features of limestones, clays, siliceous and clastic rocks. Depending on the proportions of these components, they display the features of the dominant one. The lithologies of Carpathian marls do not depend on their age and position in the sedimentation basin. Nevertheless, apart from visible differentiation of marls they show many common lithologic features: fine grain size, in general corresponding to silty-clayey fraction, variable but usually considerable thickness of beds of nonarenaceous variety of marls (0.5 - 1000 cm) and small thickness of arenaceous one (2 - 62 cm). In the majority of marly complexes, the arenaceous variety, starved ripplemarks, thin sandstone beds and sandy lamines occur in bottom parts of marly beds. The majority of marls display variably developed lamination and the occurrence of burrows (Table 19). Taking into account the Ghibaudo’s (1992) classification it was estimated that the marls in question can be assigned to three finest grained lithofacies: M (mud beds), MT (mud-silty couplets) and MS (mud-sand couplets) as well as to the MyG facies (muddy gravel). These lithofacies appear in marly complexes in various proportions (Table 20). Internal structures of beds are evidence of settling grains from suspension (depositional interval e2), interrupted with different intensity by deposition from traction (depositional intervals b, d and e1), and reworking of sediments by weak bottom currents (depositional intervals c and c0). The occurrence of similar lithologic features in marls of different age that come from different tectonic units is evidence of the repeating of similar sedimentation conditions, favouring the development of marly facies, at different times and in different parts of sedimentation basin of the Outer Carpathians. According to the present author’s analysis, there is a distinct relationship between the appearance of marls and tectonic evolution of the Outer Carpathian basin. Marls initiate sedimentation, indicate reconstruction stages and are closing the deposition in the Outer Carpathian basin (Fig. 1). Marls appear in the Polish part of Outer Carpathians in Upper Jurassic, initiating sedimentation in the northern Tethyan domain. Subsequently, they occur within Upper Cretaceous sandy-shaly flysch, indicating the reconstitution stage of Outer Carpathian basin and from Eocene to Oligocene are completing the deposition in successively closing basins (Fig. 1). The appearance of marls indicates the stages of tectonic evolution of the Outer Carpathians. The opening and reconstitution of a basin is accompanied by appearance of marls distinguished as preorogenic (Goleszów, Siliceous-Fucoid, Węgierka. Frydek and Żegocina Marls), their closing - synorogenic marls (Lącko, Budzów, Zembrzyce, Leluchów, Niwa, Grybów, Sub-Cergowa and Dynów Marls). Marls represent sediments redeposited from shelves to deeper parts of basins in the form of muds (M, MT and MS facies) and as olistostromes and olistoliths (MyG facies) (Tables 19, 20). Marls redeposited in the form of olistoliths appear in the stage of opening of the Outer Carpathian basin on the boundary of the Jurassic/Cretaceous period (Goleszow Marls) and in the stage of its Upper Cretaceous reconstitution (Baculite and Zegocina? Marls). In the complexes containing redeposited marls in the form of muds, submarine slumps occur (Table 19). These features indicate tectonic disquiet accompanying deposition of marls. Among the marls studied, dark coloured rocks appear (black, bluish-gray, greenish-gray) and olive and light- coloured (creamy, beige), as well as variegated and red (Table 19). The differentiation of colours indicates sedimentation of Carpathian marls both in oxygenated environments and those that are oxygen-depleted. The analysis of evolution of the Carpathian basins indicates that they were starved basins during sedimentation of marls. Limited supply of clastic material in such basins suggests the discussion on the source of the clay minerals - one of essential components of marls. The occurrence of pyroclastic strata in sediments of the same age (Fig. 1) suggests their origin to be related to volcanic material. The data of other authors, and the detailed profiling by the present author of outcrops that are considered to be locus typicus of marls and the appearance of which indicates a distinct correlation to tectonics of the Outer Carpathians, allowed to the present author to systematize and broaden the geological knowledge concerning the evolution of the marly facies in the northern part of the Tethyan Ocean. The conditions of sedimentation of marls deduced from the analysis of evolution of sedimentation basin of the Outer Carpathians and from lithologic data can be summarized as follows: - marls appear episodically in the Outer-Carpathian basin (mono- and polylithic complexes) and determine the stages of its tectonic evolution; they initiate the stages of opening and indicate the reconstitution of basins (preorogenic marls) and closing sedimentation cycle (synorogenic marls); - marls were deposited under conditions of tectonic disquiet (the presence of MyG facies), accompanied by volcanic activity (occurrence if pyroclastic rocks within chronostratigraphic equivalents of the marls studied); - marly deposits were formed both under oxidizing and oxygen-depleted conditions, i.e. when the availability of oxygen in the bottom sediments was limited (variable colouration); - marls represent the deposits of debris flows (MyG facies) redeposited from shelves in lithified form into zones that are situated close to the basin margins (olistoliths) and as resuspensed shelf muds accumulating within basinal sediments in the seafloor depressions (trap sediments) by suspension settling mechanism and periodically reworked by currents (M, MT, and MS facies).

  7. Integrative assessment of sediment quality in lower basin affected by former mining in Brazil.

    PubMed

    Bonnail, Estefanía; Buruaem, Lucas M; Morais, Lucas G; Araujo, Giuliana S; Abessa, Denis M S; Sarmiento, Aguasanta M; Ángel DelValls, T

    2017-06-13

    The Ribeira de Iguape River (Southeast Brazil) is metal contaminated by mining activities. Despite it has been cataloged as "in via of restoration" by the literature, this basin is still a sink of pollution in some segments of the fluvial system. This study aimed to assess the sediment quality in the lower part of the RIR basin. The employed approach was based on biological responses of the freshwater clam Corbicula fluminea after 7-day exposure bioassays using as the reference site the Perequê Ecological Park. Toxic responses (burial activity and lethality) and biochemical biomarkers (GST, GR, GPx, LPO, MTs, AChE and DNA damage) were evaluated and then integrated with metal bioavailability and chemical concentrations to address the sediment quality in the area through the weight-of-evidence approach. A multivariate analysis identified linkages between biological responses and contamination. Results pointed that, despite being below the benchmarks of the US Environmental Protection Agency, there is slight metal contamination in the lower part of the basin which induces oxidative stress in C. fluminea; other toxic responses were sometimes attributed to As and Cr bioaccumulation. The sediment quality values (TEL-PEL values in mg/kg) were calculated for the current study for As (0.63-1.31), Cr (3.5-11.05), Cs (1.0-1.17), Cu (6.32-7.32), Ni (6.78-7.46), Ti (42.0-215), V (1.77-8.00). By comparison with other international guidelines, the sediment quality of the lower basin of the Vale de Ribeira does not identify a significant environmental risk.

  8. Geomorphic evolution of the Le Sueur River, Minnesota, USA, and implications for current sediment loading

    USGS Publications Warehouse

    Gran, K.B.; Belmont, P.; Day, S.S.; Jennings, C.; Johnson, Aaron H.; Perg, L.; Wilcock, P.R.

    2009-01-01

    There is clear evidence that the Minnesota River is the major sediment source for Lake Pepin and that the Le Sueur River is a major source to the Minnesota River. Turbidity levels are high enough to require management actions. We take advantage of the well-constrained Holocene history of the Le Sueur basin and use a combination of remote sensing, fi eld, and stream gauge observations to constrain the contributions of different sediment sources to the Le Sueur River. Understanding the type, location, and magnitude of sediment sources is essential for unraveling the Holocene development of the basin as well as for guiding management decisions about investments to reduce sediment loads. Rapid base-level fall at the outlet of the Le Sueur River 11,500 yr B.P. triggered up to 70 m of channel incision at the mouth. Slope-area analyses of river longitudinal profi les show that knickpoints have migrated 30-35 km upstream on all three major branches of the river, eroding 1.2-2.6 ?? 109 Mg of sediment from the lower valleys in the process. The knick zones separate the basin into an upper watershed, receiving sediment primarily from uplands and streambanks, and a lower, incised zone, which receives additional sediment from high bluffs and ravines. Stream gauges installed above and below knick zones show dramatic increases in sediment loading above that expected from increases in drainage area, indicating substantial inputs from bluffs and ravines.

  9. U-Pb Detrital Zircon Geochronologic Constraints on Depositional Age and Sediment Source Terrains of the Late Paleozoic Tepuel-Genoa Basin

    NASA Astrophysics Data System (ADS)

    Griffis, N. P.; Montanez, I. P.; Isbell, J.; Gulbranson, E. L.; Wimpenny, J.; Yin, Q. Z.; Cúneo, N. R.; Pagani, M. A.; Taboada, A. C.

    2014-12-01

    The late Paleozoic Ice Age (LPIA) is the longest-lived icehouse of the Phanerozoic and the only time a metazoan dominated and vegetated world transitioned from an icehouse climate into a greenhouse. Despite several decades of research, the timing, extent of glaciation and the location of ice centers remain unresolved, which prohibits reconstruction of ice volume. The Permo-Carboniferous sediments in the Tepuel-Genoa Basin, Patagonia contains a near complete record of sedimentation from the lower Carboniferous through lower Permian. Outsized clasts, thin pebble-rich diamictites and slumps represent the last of the late Paleozoic glacially influenced deep-water marine sediments in the Mojón de Hierro Fm. and the Paleozoic of Patagonia. U-Pb analysis of detrital zircons separated from slope sediments reveal groupings (20 myr bins, n≥5 zircons) with peak depositional ages of 420, 540 to 660 and 1040 Ma. Zircon age populations recovered from the Mojón de Hierro Fm. compare well with bedrock ages of the Deseado Massif of SE Patagonia, suggesting this may be a potential source of sediments. The maximum depositional age of the sediments is 306.05 ± 3.7 Ma (2σ) as determined by the median age of the two youngest concordant zircons that overlap in error. The youngest zircon from the analysis yields a 238U/206Pb age of 301.3 ± 4.5 Ma (2σ; MSWD = 2.3). Younger zircons from the analysis compare well with the age of granite bedrock exposed along the basin margin to the E-NE suggesting they may reflect a more proximal source. These data, which indicate a maximum age of late Carboniferous for the Mojón de Hierro Fm, provide the first geochemical constraints for the timing of final deposition of glaciomarine sediments in the Tepuel-Genoa Basin, and contributes to the biostratigraphic correlation of the late Paleozoic succession in Patagonia with other key LPIA basins that has thus far been hindered by faunal provincialism.

  10. Turbidity and suspended-sediment transport in the Russian River Basin, California

    USGS Publications Warehouse

    Ritter, John R.; Brown, William M.

    1971-01-01

    The Russian River in north coastal California has a persistent turbidness, which has reportedly caused a decline in the success of the sports fishermen. As a consequence, the number of sports fishermen angling in the river has declined, and industries dependent on their business have suffered. To determine the source of the turbidity and the rate of sediment transport in the basin, a network of sampling station was established in February 1964 along the river, on some of its tributaries, and near Lake Pillsbury in the upper Eel River basin.

  11. Sensitivity analysis of a sediment dynamics model applied in a Mediterranean river basin: global change and management implications.

    PubMed

    Sánchez-Canales, M; López-Benito, A; Acuña, V; Ziv, G; Hamel, P; Chaplin-Kramer, R; Elorza, F J

    2015-01-01

    Climate change and land-use change are major factors influencing sediment dynamics. Models can be used to better understand sediment production and retention by the landscape, although their interpretation is limited by large uncertainties, including model parameter uncertainties. The uncertainties related to parameter selection may be significant and need to be quantified to improve model interpretation for watershed management. In this study, we performed a sensitivity analysis of the InVEST (Integrated Valuation of Environmental Services and Tradeoffs) sediment retention model in order to determine which model parameters had the greatest influence on model outputs, and therefore require special attention during calibration. The estimation of the sediment loads in this model is based on the Universal Soil Loss Equation (USLE). The sensitivity analysis was performed in the Llobregat basin (NE Iberian Peninsula) for exported and retained sediment, which support two different ecosystem service benefits (avoided reservoir sedimentation and improved water quality). Our analysis identified the model parameters related to the natural environment as the most influential for sediment export and retention. Accordingly, small changes in variables such as the magnitude and frequency of extreme rainfall events could cause major changes in sediment dynamics, demonstrating the sensitivity of these dynamics to climate change in Mediterranean basins. Parameters directly related to human activities and decisions (such as cover management factor, C) were also influential, especially for sediment exported. The importance of these human-related parameters in the sediment export process suggests that mitigation measures have the potential to at least partially ameliorate climate-change driven changes in sediment exportation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. On the non-uniqueness of sediment yield

    NASA Astrophysics Data System (ADS)

    Kim, J.; Ivanov, V. Y.; Katopodes, N.

    2012-12-01

    Estimation of sediment yield at the catchment scale plays an important role for optimal design of hydraulic structures, such as bridges, culverts, reservoirs, and detention basins, as well as making informed decisions in environmental management. Many experimental studies focused on obtaining flow and sediment data in search of unique relationships between runoff (specifically, volume and peak) and sediment characteristics. These relationships were employed to predict sediment yield from flow information. However, despite the same flow volume, the actual sediment yield produced by river basins can vary significantly depending on several conditions: (i) the catchment size, (ii) land use, topography, and soil type, (iii) climatic variations or characteristics , and (iv) initial conditions of soil moisture and soil surface . Additionally, shield formation by relatively larger particles can be one of the possible controllers of erosion and net sediment transport. Smaller particles have low settling velocities and tend to move far from their original position of detachment. Conversely, larger particles can settle quickly near their original locations. Eventually, such particles can form a shield on soil bed and protect underlying soil from rainfall detachment and runoff entrainment. The shield formation and temporal development can be influenced by rainfall intensity, frequency, and volume. Rainfall influences the generation of runoff leading to different conditions of flow depth and velocity that can perturb intact soil into a loose condition. In this study, we numerically investigate the effects of precipitation patterns on the generation of sediment yield. In particular, we address reasons of non-uniqueness of basin sediment yield for the same runoff volume as well as causes of unsteady phenomena in erosion processes under steady state flow conditions. For numerical simulations, the two-dimensional Hairsine-Rose model coupled with a fully distributed hydrology and hydraulics model (tRIBS-OFM: Triangulated irregular network - based Real time Integrated Basin Simulator-Overland Flow Model) is used.

  13. RAPID Assessment of Extreme Reservoir Sedimentation Resulting from the September 2013 Flood, North St. Vrain Creek, CO

    NASA Astrophysics Data System (ADS)

    Rathburn, S. L.; McElroy, B. J.; Wohl, E.; Sutfin, N. A.; Huson, K.

    2014-12-01

    During mid-September 2013, approximately 360 mm of precipitation fell in the headwaters of the North St. Vrain drainage basin, Front Range, CO. Debris flows on steep hillslopes and extensive flooding along North St. Vrain Creek resulted in extreme sedimentation within Ralph Price Reservoir, municipal water supply for the City of Longmont. The event allows comparison of historical sedimentation with that of an unusually large flood because 1) no reservoir flushing has been conducted since dam construction, 2) reservoir stratigraphy chronicles uninterrupted delta deposition, and 3) this is the only on-channel reservoir with unimpeded, natural sediment flux from the Continental Divide to the mountain front in a basin with no significant historic flow modifications and land use impacts. Assessing the flood-related sedimentation prior to any dredging activities included coring the reservoir delta, a bathymetric survey of the delta, resistivity and ground penetrating radar surveys of the subaerial inlet deposit, and surveying tributary deposits. Over the 44-year life of the reservoir, two-thirds of the delta sedimentation is attributed to extreme discharges from the September 2013 storm. Total storm-derived reservoir sedimentation is approximately 275,000 m3, with 81% of that within the gravel-dominated inlet and 17% in the delta. Volumes of deposition within reservoir tributary inlets is negatively correlated with contributing area, possibly due to a lack of storage in these small basins (1-5 km2). Flood-related reservoir sedimentation will be compared to other research quantifying volumes from slope failures evident on post-storm lidar. Analysis of delta core samples will quantify organic carbon flux associated with the extreme discharge and develop a chronology of flood and fire disturbances for North St. Vrain basin. Applications of similar techniques are planned for two older Front Range reservoirs affected by the September flooding to fill knowledge gaps about event-based sedimentation and to expand these rates to annual and decadal scales.

  14. Impact of papyrus wetland encroachment on spatial and temporal variabilities of stream flow and sediment export from wet tropical catchments.

    PubMed

    Ryken, N; Vanmaercke, M; Wanyama, J; Isabirye, M; Vanonckelen, S; Deckers, J; Poesen, J

    2015-04-01

    During the past decades, land use change in the Lake Victoria basin has significantly increased the sediment fluxes to the lake. These sediments as well as their associated nutrients and pollutants affect the food and water security of millions of people in one of Africa's most densely populated regions. Adequate catchment management strategies, based on a thorough understanding of the factors controlling runoff and sediment discharge are therefore crucial. Nonetheless, studies on the magnitude and dynamics of runoff and sediment discharge are very scarce for the Lake Victoria basin and the African Rift region. We therefore conducted runoff discharge and sediment export measurements in the Upper Rwizi, a catchment in Southwest Uganda, which is representative for the Lake Victoria basin. Land use in this catchment is characterized by grazing area on the high plateaus, banana cropping on the slopes and Cyperus papyrus L. wetlands in the valley bottoms. Due to an increasing population pressure, these papyrus wetlands are currently encroached and transformed into pasture and cropland. Seven subcatchments (358 km2-2120 km2), with different degrees of wetland encroachment, were monitored during the hydrological year June 2009-May 2010. Our results indicate that, due to their strong buffering capacity, papyrus wetlands have a first-order control on runoff and sediment discharge. Subcatchments with intact wetlands have a slower rainfall-runoff response, smaller peak runoff discharges, lower rainfall-runoff ratios and significantly smaller suspended sediment concentrations. This is also reflected in the measured annual area-specific suspended sediment yields (SYs): subcatchments with encroached papyrus swamps have SY values that are about three times larger compared to catchments with intact papyrus vegetation (respectively 106-137 ton km(-2) y(-1) versus 34-37 ton km(-2) y(-1)). We therefore argue that protecting and (where possible) rehabilitating these papyrus wetlands should be a corner stone of catchment management strategies in the Lake Victoria basin. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Google Earth-Based Grand Tours of the World's Ocean Basins and Marine Sediments

    NASA Astrophysics Data System (ADS)

    St John, K. K.; De Paor, D. G.; Suranovic, B.; Robinson, C.; Firth, J. V.; Rand, C.

    2016-12-01

    The GEODE project has produced a collection of Google Earth-based marine geology teaching resources that offer grand tours of the world's ocean basins and marine sediments. We use a map of oceanic crustal ages from Müller et al (2008; doi:10.1029/2007GC001743), and a set of emergent COLLADA models of IODP drill core data as a basis for a Google Earth tour introducing students to the world's ocean basins. Most students are familiar with basic seafloor spreading patterns but teaching experience suggests that few students have an appreciation of the number of abandoned ocean basins on Earth. Students also lack a valid visualization of the west Pacific where the oldest crust forms an isolated triangular patch and the ocean floor becomes younger towards the subduction zones. Our tour links geographic locations to mechanical models of rifting, seafloor spreading, subduction, and transform faulting. Google Earth's built-in earthquake and volcano data are related to ocean floor patterns. Marine sediments are explored in a Google Earth tour that draws on exemplary IODP core samples of a range of sediment types (e.g., turbidites, diatom ooze). Information and links are used to connect location to sediment type. This tour compliments a physical core kit of core catcher sections that can be employed for classroom instruction (geode.net/marine-core-kit/). At a larger scale, we use data from IMLGS to explore the distribution of the marine sediments types in the modern global ocean. More than 2,500 sites are plotted with access to original data. Students are guided to compare modern "type sections" of primary marine sediment lithologies, as well as examine site transects to address questions of bathymetric setting, ocean circulation, chemistry (e.g., CCD), and bioproductivity as influences on modern seafloor sedimentation. KMZ files, student exercises, and tips for instructors are available at geode.net/exploring-marine-sediments-using-google-earth.

  16. Impact of sedimentary provenance and weathering on arsenic distribution in aquifers of the Datong basin, China: Constraints from elemental geochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xianjun; Wang, Yanxin; Ellis, Andre

    Arsenic (As)-contaminated aquifer sediments from Datong basin, China have been analyzed to infer the provenance and depositional environment related to As distribution in the aquifer sediments. The As content in the sediments ranged from 2.45 to 27.38 mg/kg with an average value of 9.54 mg/kg, which is comparable to the average value in modern unconsolidated sediments. However, minor variation in As concentration with depth has been observed in the core. There was a significant correlation between Fe, and Al and As, which was attributed to the adsorption or co-precipitation of As onto/with Fe oxides/hydroxides and/or Fe-coated clay minerals. Post-Archean Australianmore » Shale (PAAS)-normalized REEs patterns of sediment samples along the borehole were constant, and the sediments had a notably restricted range of La-N/Yb-N ratios from 0.7 to 1.0. These results suggested that the provenance of the Datong basin remained similar throughout the whole depositional period. The analysis of major geochemical compositions confirmed that all core sediments were from the same sedimentary source and experienced significant sedimentary recycling. The co-variation of As, V/Al, Ni/Al and chemical index of alteration (CIA) values in the sediments along the borehole suggested that As distribution in the sediments was primarily controlled by weathering processes. The calculated CIA values of the sediments along the borehole indicate that a relative strong chemical weathering occurred during the deposition of sediments at depths of similar to 35 to 88 m, which was corresponding to the depth at which high As groundwater was observed at the site. Strong chemical weathering favored the deposition of Fe-bearing minerals including poorly crystalline and crystalline Fe oxide mineral phases and concomitant co-precipitation of As with these minerals in the sediments. Subsequent reductive dissolution of As-bearing poorly crystalline and crystalline Fe oxides would result in the enrichment of As in groundwater. In general, the chemical weathering during the deposition of the sediments governed the co-accumulation of Fe oxides and As in the aquifer sediments. And then, the reductive dissolution of Fe oxides/hydroxides is the mechanism of As enrichment in the groundwater in the Datong basin« less

  17. Factors influencing storm-generated suspended-sediment concentrations and loads in four basins of contrasting land use, humid-tropical Puerto Rico

    Treesearch

    A. C. Gellis; NO-VALUE

    2013-01-01

    The significant characteristics controlling the variability in storm-generated suspended-sediment loads and concentrations were analyzed for four basins of differing land use (forest, pasture, cropland, and urbanizing) in humid-tropical Puerto Rico. Statistical analysis involved stepwise regression on factor scores. The explanatory variables were attributes of flow,...

  18. Ma'adim Vallis Estuarine Delta in Elysium Basin and Its Relevance as a Landing Site for Exobiology Exploration on Mars

    NASA Technical Reports Server (NTRS)

    Grin, E. A.; Cabrol, N. A.

    1998-01-01

    The debouche of Ma'adim Vallis in the Elysium Basin generated a transitional transported sediment structure, which planimetric shape is controlled by the enclosing topography of a deep reentrant gulf of the Basin into the highland. We defined it as an estuarine delta. The location and the importance of this estuarine delta is supported by the theoretical model of graded profile constructed for Ma'adim Vallis, and by two approaches: (i) the reconstruction of Ma'adim Vallis downstream course from Gusev to Elysium Basin, and (ii) the survey of the sediment deposit in the alleged estuary. The longitudinal graded profile of Ma'adim Vallis finds its base-level in the Elysium Basin, at a about 1000 m elevation, which is in agreement with the observed Basin shoreline. This model is supported by observational evidence of flow between the northern rim of Gusev crater, and the Elysium Basin shoreline. This downstream course of Ma'adim Vallis can be divided into three hydrogeologic regions. into three hydrogeologic regions. (a) The first region is a flooded plain (Zephiria Mensae), consisting in chaotic terrain formed by highland rocks, and disintegrated lava of the western flank of Apollinaris. Morphologic indicators of the flood process are: (1) the sediment deposit over the Gusev crater northern rim that reflects the overspilling of the crater-lake water through a 40-km wide gap provided by an ancient impact crater, (2) the tear-drop shaped feature on the northeastern flank of Apollinaris Patera, and (3) the chaotic terrain that suggest the emergence of ground water generated by the seepage of the crater lake through high-permeable broken rampart material. This underground water circulation sustained by the hydrostatic pressure of the crater-lake has likely generated a hydrothermal system in the volcanic environment of Apollinaris Patera. The stratigraphy of the flooded area is identified as Hesperian age, with occurrences of Noachian hilly individual features, and as Amazonian flooded plain and chaotic material, (b) The second region is located on the western flank of Apollinaris Patera. It is surrounded by relics of deep valleys that suggest a former downstream course of Ma'adim Vallis. The geologic setting of this region (Lucus Planum) is interpreted to be an Amazonian formation composed by the middle and lower members of the Medusae Formation., c) The third region corresponds to the convergence of the west and east branches of Ma'adirn Vallis into a deep re-entrant wide gulf that penetrates about 100 km into the highland. This topographic depression is delineated by the 1000 in elevation contour. This gulf has formed an estuarine configuration centered at 3S/190W within the Elysium Basin. This configuration has favored the formation of a estuarine sedimentary delta, because of topographically controlled lateral migration. This estuarine structure is strongly dominated by the incoming supply of Ma'adim Vallis fluvial sediment extracted from Zephiria Mensae and Lucus Planum. The obtuse-angle geometry of the estuary increases the sedimentation rate, which is higher than in the course of the channel. The sediment deposition process is governed by the estuarine water circulation. The inflowing loaded fluvial water enters the estuary as a bottom current, and mixes with the relatively less-loaded water of the receiving basin. When they mixed. the inflowing fluvial material, and the landward basin circulating water generate an accumulation of highly-diversified estuarine deposit stratification. This accumulation of material is mostly centered in the transitional zone of the delta. The sediment trapping efficiency of the estuary is function of the energy balance between the inflowing fluvial water, and the ingoing basin current. The submergence of the delta by the rising of the water-level increases the estuary water-depth, and consequently the sediment entrapment is favored. The locus of sediment accumulation moves landward in the zone of inflowing fluvial water. This results in the rising of the channel base-level, thus in the increase of the length of the longitudinal graded-profile. The sediment deposit facies of the zone A shows a generally smooth surface. The longitudinal deposit is bordered by alluvial terraces that reflect the variations of the channel level. The waning of the Elysium Basin caused the erosion of the Basin estuarine zone by small channels, this episode being characterized by dissected tear-drop shaped mesa-like morphologies in the delta. Our estuarine delta model predicts a lithostratigraphic depositional sequence associated with the water submergence and the transgression of Elysium Basin. The thickness of the estuarine sediment corresponds to the Elysium Basin levels changes relatively to the bed floor of the estuary, The depositional sequence of Ma'adim Vallis are described: (1) a pro-current filled region (A), where fluvial are longitudinally accumulated by the inflowing water, (2) inverse current from Elysium Basin (B), where fluvial and lacustrine sediments are accumulated, and (3) zone of current equilibrium (C), where the sediments are distributed as a shoreline at the boundary of the estuarine delta. The estuary sedimentology dynamics collects and keeps the record of the geologic unit material crossed by Ma'adim Vallis, and those of the lakebed deposit of Elysium Basin. The predicted mixed stratigraphic sequence from fluvial and lacustrine sediment makes this site an exceptional environment to concentrate potential multi-origin biologic records. We envision four possible strategies to explore this sedimentologic record: (1) longitudinal surface and subsurface traverses in region A to investigate outcrop levees, (2) exploration of the mesa walls in region B, (3) deep drilling hole lodging of the sequential deposits in the zones A and B, and (4) surface and subsurface exploration of the shoreline delta. The expected results for each of these strategies are: (1) in the deepest layers of region A are predicted frequent and abundant coarse material, sandy lenses lamination grading downward from sand to cobbles. Volcanic debris from the Noachian crustal Plateau unit material, hydrothermal altered rocks, carbonates, Hesperian and possibly Amazonian volcanic material, from Apollinaris Patera, altered rocks and carbonates from Zephiria Mensae are expected. As a favorable environment for inception of life, possible biological records are expected in transported rock, (2) At the surface, and subsurface (<=100 m), large deposits sandy to silted material from Elysium paleolake basin mixed with fine-grained sediments from Ma'adim Vallis are expected mostly in the upstream part of region B, (3) on the shoreline of the estuarine delta, abundant fine material from Elysium paleolake basin (evaporites, carbonates), mostly Amazonian in age are expected. The Ma'adini estuary is a favorable landing site for all the above mentioned science aspects, and .for its location. The site lies near the equator, which is favorable for the rover solar power supply, and at 1000m elevation, which is a favorable configuration for the descent system braking. Another advantage is the extent of the area of high scientific interest (33,000 sq km), which provides a good ellipse, and potential long study traverses.

  19. Downslope transport does not explain higher 230Th inventories in the Panama Basin

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Marcantonio, F.; Lyle, M. W.

    2009-12-01

    Mass accumulation rates (burial fluxes) in the Panama Basin calculated using oxygen isotope age models differ from those calculated using the 230Th normalized flux method. During the Holocene and the last glacial, the 230Th-derived MARs are consistently lower than age-model-derived MARs. Most importantly, using both methods, glacial MARs are always significantly higher than Holocene MARs. The discrepancy in the calculated MARs may be due to deep-ocean sediment redistribution processes, specifically downslope transport of sediments from nearby topographic highs [1]. We test this hypothesis by analyzing sediment from shallower sites throughout the Panama basin (from 712-2870 meters) and, specifically, from the tops of ridges surrounding the basin (e.g., Carnegie and Cocos Ridges). Based on 230Th methodology we determine ridge-top focusing factors (FF) that are as high as, or higher than those in the deeper parts of the basin, as determined by us or others [1]. The excess inventories of 230Th are also proportionally higher during the glacial versus Holocene in all but one of the nine new sites we have analyzed. If the source of the higher-than-predicted inventory of 230Th is topographic highs in the region, one would expect to see a correlation between 230Th and depth. We find no such correlation. Although our data suggest that within-basin topographic highs are not the source of higher 230Th inventories in the region, extrabasinal sources cannot be ruled out. In addition, there is the possibility that MARs can be underestimated using the 230Th method in Panama Basin sediments. [1] Kienast et al. 2007, Paleoceanography 22, 2213.

  20. The Tunas Formation (Permian) in the Sierras Australes foldbelt, east central Argentina: evidence for syntectonic sedimentation in a foreland basin

    NASA Astrophysics Data System (ADS)

    Lopez-Gamundi, O. R.; Conaghan, P. J.; Rossello, E. A.; Cobbold, P. R.

    1995-04-01

    The Tunas Formation, extensively exposed in the Sierras Australes foldbelt of eastern central Argentina, completes the sedimentation of the Gondwanan (Late Carboniferous-Permian) sequence, locally known as the Pillahuincó Group. The underlying units of the Group show an integrated depositional history which can be explained in terms of glaciomarine sedimentation (Sauce Grande Formation) and postglacial transgression (Piedra Azul and Bonete Formations). This succession also has a rather uniform quartz-rich, sand-sized composition indicative of a cratonic provenance from the Tandilia Massif to the northeast. Early to Late Permian deformation folded and thrusted the southwestern basin margin (Sierras Australes) and triggered the deposition of a 1,500 m — thick, synorogenic prograding wedge, the Tunas Formation, in the adjacent foreland basin (Sauce Grande or Claromecó Basin). Sandstone detrital modes for the Tunas deposits show moderate to low contents of quartz and abundant lithics, mostly of volcanic and metasedimentary origin. Paleocurrents are consistently from the SW. Tuffs interbedded with sandstones in the upper half of Tunas Formation (Early — early Late? Permian) are interpreted as being derived from volcanic glass-rich tuffs settled in a body of water. Extensive rhyolitic ignimbrites and consanguineous airborne tuffaceous material erupted in the northern Patagonian region during that period. The age constraints and similarities in composition between these volcanics and the tuffaceous horizons present in the Sauce Grande, Parana and Karoo Basins suggest a genetic linkage between these two episodes. The intimate relationship between volcanic activity inboard of the paleo-Pacific margin, deformation in the adjacent orogenic belt and subsidence and sedimentation in the contiguous foreland basin constitutes a common motif in the Sauce Grande and Karoo Basins of southwestern Gondwana.

  1. Syn-extensional lithogenetic sequences of the Soledad basin, central Transverse Ranges: Implications for detachment-fault models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrix, E.D.

    1993-04-01

    The Soledad Basin (central Transverse Ranges, CA) contains the first recognized example of mid-Tertiary detachment-faulting west of the San Andreas fault. Displacements along the Pelona detachment fault and syn-extensional upper-plate sedimentation occurred between [approximately] 26--18 Ma, resulting in deposition of at least 4 separate lithogenetic sequences (LS) which record distinct phases of crustal response to extension. The 1st LS (lower Vasquez Fm.) predates syn-extensional volcanism and records initial basin subsidence along small, discontinuous faults. The 2nd LS (middle Vasquez Fm.) consists of both volcanic and sedimentary strata and signals simultaneous onset of magmatism and initial development of a well-defined networkmore » of high-angle, upper-plate normal faults, creating 2 separate sub-basins. Resulting alluvial fans were non-entrenched, implying that subsidence rates, and thus vertical displacement rates on high-angle faults, equaled or exceeded an estimated average sedimentation rate of 1.4 mm/yr. The 3rd LS (upper Vasquez Fm.) reflects transition to a single, well-integrated depositional basin characterized by streamflood sedimentation. This suggests an enlarged drainage basin and a decrease in subsidence rate relative to sedimentation rate, triggered possibly by uplift of the detachment lower-plate. The 4th LS (Tick Canyon Fm.) lies with angular unconformity above the 3rd LS and contains the 1st clasts eroded from the detachment lower plate. Detachment faulting in the Soledad basin appears to involve, in part, reactivation of structural zones of weakness along the Vincent thrust. Preliminary reconstructions of Soledad extension imply 25--30 km of displacement along the Pelona detachment fault system at an averaged slip rate of 3.6--4.3 mm/yr.« less

  2. Characterization and Modeling of Settling, Consolidation, and Suspension to Optimize Sediment Retention of Sediment Diversions for Coastal Restoration

    NASA Astrophysics Data System (ADS)

    Sha, X.; Xu, K.; Bentley, S. J.; Robichaux, P.

    2016-02-01

    Although many studies of sediment diversions have been conducted on the Mississippi Delta, relatively less attention has been paid to understanding sediment retention and basic cohesive sedimentation processes in receiving basins. Our research evaluates long-term (up to six months) sedimentation processes through various laboratory experiments, especially cohesive sediment settling, consolidation and resuspension and their impacts on sediment retention. Bulk sediment samples were collected from West Bay, near Head of Passes of the Mississippi Delta, and the Big Mar basin that receive water and sediment from the Caernarvon Diversion in the upper Breton Sound region of Louisiana, USA. A-230-cm tall settling column with nine sampling ports at 15 cm intervals was used to measure the consolidation for four initial sediment concentrations (10-120 kg m-3) with two salinities (1 ppt & 5 ppt). Samples of sediment slurry were taken from every port at different time intervals up to 15 days or longer (higher concentration needs longer time to consolidate) to record concentrations gravimetrically. A 200 cm long tube was connected to a 50 cm long core chamber to accumulate at least a 10 cm thick sediment column for erosion tests. A dual-core Gust Erosion Microcosm System was employed to measure time-series (0.5, 1, 2, 3, 4, 5, 6 months) erodibility at seven shear stress regimes (0.01-0.60 Pa). Our preliminary results show a significant decrease of erodibility with time and high concentration (120g/L). Salinity impacted on sediment behavior in consolidation experiments. Our study reveals that more enclosed receiving basins, intermittent openings of diversions, or reduced shear stress due to man-made structure all can potentially reduce cohesive sediment erosion in coastal Louisiana. Further results will be analyzed to determine the model constants. Consolidating rates and corresponding erosional changes will be determined to optimize sediment retention in coastal protection.

  3. Formation and tectonic evolution of the Pattani Basin, Gulf of Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bustin, R.M.; Chonchawalit, A.

    The stratigraphic and structural evolution of the Pattani Basin, the most prolific petroleum basin in Thailand, reflects the extensional tectonic regime of continental Southeast Asia. E-W extension resulting from the northward collision of India with Eurasia since the Early Tertiary resulted in the formation of a series of N-S-trending sedimentary basins, which include the Pattani Basin. The sedimentary succession in the Pattani Basin is divisible into synrift and postrift sequences. Deposition of the synrift sequence accompanied rifting and extension, with episodic block faulting and rapid subsidence. The synrift sequence comprises three stratigraphic units: (1) Upper Eocene to Lower Olikgocene alluvial-fan,more » braided-river, and floodplain deposits; (2) Upper oligocene to Lowe Miocene floodplain and channel deposits; and (3) a Lower Miocene regressive package consisting of marine to nonmarine sediments. Post-rift succession comprises: (1) a Lower to Middle Miocene regressive package of shallow marine sediments through floodplain and channel deposits; (2) an upper Lower Miocene transgressive sequence; and (3) and Upper Miocene to Pleistocene transgressive succession. The post-rift phase is characterized by slower subsidence and decreased sediment influx. The present-day shallow-marine condition in the Gulf of Thailand is the continuation of this latest transgressive phase. The subsidence and thermal history of the Pattani Basin is consistent with a nonuniform lithospheric-stretching model. The amount of extension as well as surface heat flow generally increases from the margin to the basin center. The crustal stretching factor ({beta}) varies form 1.3 at the basin margin to 2.8 in the center. The subcrustal stretching factor ({delta}) ranges from 1.3 at the basin margin to more than 3.0 in the basin center. 31 refs., 13 figs., 4 tabs.« less

  4. Architecture and tectono-stratigraphic evolution of the intramontane Baza Basin (Bétics, SE-Spain): Constraints from seismic imaging

    NASA Astrophysics Data System (ADS)

    Haberland, Christian; Gibert, Luis; Jurado, María José; Stiller, Manfred; Baumann-Wilke, Maria; Scott, Gary; Mertz, Dieter F.

    2017-07-01

    The Baza basin is a large Neogene intramontane basin in the Bétic Cordillera of southern Spain that formed during the Tortonian (late Miocene). The Bétic Cordillera was produced by NW-SE oblique convergence between the Eurasian and African Plates. Three seismic reflection lines (each 18 km long; vibroseis method) were acquired across the Baza basin to reveal the architecture of the sedimentary infill and faulting during basin formation. We applied rather conventional CDP data processing followed by first arrival P-wave tomography to provide complementary structural information and establish velocity models for the post-stack migration. These images show a highly asymmetric structure for the Basin with sediments thickening westward, reaching a maximum observed thickness of > 2200 m near the governing Baza Fault zone (BFZ). Three major seismic units (including several subunits) on top of the acoustic basement could be identified. We use stratigraphic information from the uplifted block of the BFZ and other outcrops at the basin edges together with available information from neighboring Bétic basins to tentatively correlate the seismic units to the known stratigraphy in the area. Until new drilling or surface outcrop data is not available, this interpretation is preliminary. The seismic units could be associated to Tortonian marine deposits, and latest Miocene to Pleistocene continental fluvio-lacustrine sediments. Individual strands of the BFZ truncate the basin sediments. Strong fault reflections imaged in two lines are the product of the large impedance contrast between sedimentary fill and basement. In the central part of the Basin several basement faults document strong deformation related to the early stages of basin formation. Some of these faults can be traced up to the shallowest imaged depth levels indicating activity until recent times.

  5. Subaqueous Sediment Remobilization and Development of Syndepositional Deformational Structures on Mars: A Kinematic Approach from the Noachian Terby Crater

    NASA Astrophysics Data System (ADS)

    Sarkar, R.; Das, P.; Basu Sarbadhikari, A.

    2017-12-01

    A 2 km thick layered sequence within the Noachian Terby crater ( 174 km diameter, 28.0°S - 74.0°E), located at the Northern rim of Hellas basin, has been re-classified here into three major categories, i.e. mega-slump, debris flows, and turbidites based on sedimentation process. A wide spectrum of deformation structures, such as large scale isoclinal moderately inclined fold, pinch and swells, disharmonic folds, sediment loading structure, normal faults and thrust duplexes, suggest that amplitude of the syndepositional deformation spanned from hydroplastic to brittle domains. These structures provide ample evidences of sediment remobilization in Terby. The dominance of such mass-flow deposits in different stratigraphic horizons indicates that the basin was reactivated in frequent intervals during the filling process. However, an undeformed thinning-up sequence of beds, well exhibited at the basinal-lows, identified as ponded/confined turbidites, indicates that the basin experienced a stable bathymetric condition at the up-dip areas of the mega-slumps. An overall enrichment of phyllosilicates and scarcity of large boulders at the basin margins indicates that the provenance materials were deposited under stable and low-energy condition before being transported and re-deposited within the crater during the Terby impact. We presume that the inter-crater layered terrain of Hellas acted as a provenance of Terby's mass-transport deposits.

  6. The use of XRF core scanner technique to identify anthropogenic chronological markers for dating recent sediments and for mapping and estimating the quantity of contaminated sediments in different fjord settings in western Norway

    NASA Astrophysics Data System (ADS)

    Haflidason, H.; Thorsen, L.; Soldal, O. L.

    2016-12-01

    Following the initiation of the industrial revolution in Norway at the early 1900´s many of the heavy industrial factories established at that time were located in inner fjord systems of western Norway. The advantage was an easy access to cheap electricity, but the main disadvantage has been that the pollution from this industrial activity has been transported into fjord systems where the circulation of the water masses has been fairly limited leading to a high concentration of heavy metals in the fjord basin sediments. The recently developed non-destructive X-ray Fluorescence (XRF) core scanning technique offers new possibilities to obtain near-continuous records of bulk element composition in marine records. This new analytical geochemical method can measure the bulk element content directly from the surface sediment archives within a period of seconds and with a resolution up to 200 microns. By applying this method on rapidly deposited sediments one can reconstruct a continuous record of carbonate content on a sub-decadal to annual scale. This kind of high-resolution records can also be compared directly with historical and instrumental records from the same area. This offers new possibilities to identify in an effective way the geochemical anomalies in the sediment column and estimate the variability of the industrially produced elements as e.g. Cu, Zn and Pb and their distribution and thickness/quantity in fjord basin sediments. Examples will be presented demonstrating the close linkage between the industrial production history and the entrance of these elements in the fjord sediments. Identification of these elements offers an excellent opportunity to date the recent marine sediments using these elements as an event spike and also to reconstruct the history of pollution in these fjord basin sediments. As the precision of the XRF element detection is high the time of full recovery to natural conditions of the basin sediments, after close down of these factories, can be calculated.

  7. Human impact on sediment fluxes within the Blue Nile and Atbara River basins

    NASA Astrophysics Data System (ADS)

    Balthazar, Vincent; Vanacker, Veerle; Girma, Atkilt; Poesen, Jean; Golla, Semunesh

    2013-01-01

    A regional assessment of the spatial variability in sediment yields allows filling the gap between detailed, process-based understanding of erosion at field scale and empirical sediment flux models at global scale. In this paper, we focus on the intrabasin variability in sediment yield within the Blue Nile and Atbara basins as biophysical and anthropogenic factors are presumably acting together to accelerate soil erosion. The Blue Nile and Atbara River systems are characterized by an important spatial variability in sediment fluxes, with area-specific sediment yield (SSY) values ranging between 4 and 4935 t/km2/y. Statistical analyses show that 41% of the observed variation in SSY can be explained by remote sensing proxy data of surface vegetation cover, rainfall intensity, mean annual temperature, and human impact. The comparison of a locally adapted regression model with global predictive sediment flux models indicates that global flux models such as the ART and BQART models are less suited to capture the spatial variability in area-specific sediment yields (SSY), but they are very efficient to predict absolute sediment yields (SY). We developed a modified version of the BQART model that estimates the human influence on sediment yield based on a high resolution composite measure of local human impact (human footprint index) instead of countrywide estimates of GNP/capita. Our modified version of the BQART is able to explain 80% of the observed variation in SY for the Blue Nile and Atbara basins and thereby performs only slightly less than locally adapted regression models.

  8. Organic geochemistry of sediments of the Deep Gulf of Mexico Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sassen, R.; Fang Jiasong

    1990-05-01

    Analysis of 716 core samples cored at DSDP (Deep Sea Drilling Project) Leg 96 in the Mississippi submarine fan and the Orca and Pigmy basins in the Louisiana continental slope using a Rock-Eval pyrolysis unit with a TOC (total organic carbon) module allows computations of hydrogen index (HI), total organic carbon, kerogen type, and oil generative capacity assessment. No samples are obviously oil prone. TOC content ranges from 0.12 to 2.29%, with an overall average of 9.82%. HI values are generally less than 150 mg HC/g TOC. T{sub max} (maximum temperature of S{sub 2}) values (average = 425{degree}C) show themore » sediments are thermally immature through-out the study area. Hydrocarbon generative potential of the sediments ranges from 492 to 1,107 ppm, with an average of 854 ppm. Higher PI (Production index) values, ranging from 0.12 to 0.32 and averaging 0.15, suggest the presence of hydrocarbon seepage. Because of organically lean, thermally immature, and gas-prone terrestrial kerogen, there is little reason to assume that the sediments of the Mississippi fan can provide oil source rock for the Gulf of Mexico Basin, or that sediments of anoxic basins in the Louisiana continental slope are analogs to past environments where source rocks for crude oil have been deposited.« less

  9. Integrative neural networks model for prediction of sediment rating curve parameters for ungauged basins

    NASA Astrophysics Data System (ADS)

    Atieh, M.; Mehltretter, S. L.; Gharabaghi, B.; Rudra, R.

    2015-12-01

    One of the most uncertain modeling tasks in hydrology is the prediction of ungauged stream sediment load and concentration statistics. This study presents integrated artificial neural networks (ANN) models for prediction of sediment rating curve parameters (rating curve coefficient α and rating curve exponent β) for ungauged basins. The ANN models integrate a comprehensive list of input parameters to improve the accuracy achieved; the input parameters used include: soil, land use, topographic, climatic, and hydrometric data sets. The ANN models were trained on the randomly selected 2/3 of the dataset of 94 gauged streams in Ontario, Canada and validated on the remaining 1/3. The developed models have high correlation coefficients of 0.92 and 0.86 for α and β, respectively. The ANN model for the rating coefficient α is directly proportional to rainfall erosivity factor, soil erodibility factor, and apportionment entropy disorder index, whereas it is inversely proportional to vegetation cover and mean annual snowfall. The ANN model for the rating exponent β is directly proportional to mean annual precipitation, the apportionment entropy disorder index, main channel slope, standard deviation of daily discharge, and inversely proportional to the fraction of basin area covered by wetlands and swamps. Sediment rating curves are essential tools for the calculation of sediment load, concentration-duration curve (CDC), and concentration-duration-frequency (CDF) analysis for more accurate assessment of water quality for ungauged basins.

  10. Seismic wave velocity of hydrate-bearing fine-grained sediments sampled from the Ulleung basin in East Sea, Korea

    NASA Astrophysics Data System (ADS)

    Kim, H.; Kwon, T.; Cho, G.

    2012-12-01

    Synthesizing gas hydrate in a fine-grained natural seabed sediment sample, mainly composed of silty-to-clayey soils, has been hardly attempted due to the low permeability. It has been known that hydrate loci in pore spaces and heterogeneity of hydrate growth in core-scale play a critical role in determining physical properties of hydrate-bearing sediments. In the presented study, we attempted to identify the effect of hydrate growth morphology on seismic velocities in natural fine-grained sediments sampled from the Ulleung Basin in East Sea. We synthesized CO2 hydrate in clayey silt sediments in an instrumented oedometric cell and measured seismic velocities during hydrate formation and loading processes. Herein, we present the experiment results on P-wave and S-wave velocities of gas hydrate-bearing fine-grained sediments. It is found that the geophysical properties of gas hydrate-bearing sediments are governed by hydrate saturation and effective stress as well as morphological feature of hydrate formation in sediments.

  11. Control of Sediment Export From The Forest Road Prism

    Treesearch

    Johnny M. Grace

    2002-01-01

    The effectiveness of four road turn-out ditch treatments (vegetation, rip-rap, sediment fences, and settling basins) in reducing sediment export to the forest floor was evaluated. These four runoff control method are commonly prescribed to control forest road runoff and sediments. The study utilized runoff samplers, runoff diversion walls, sediment filter bags, and...

  12. Surface-water-quality assessment of the Yakima River basin, Washington; distribution of pesticides and other organic compounds in water, sediment, and aquatic biota, 1987-91; with a section on dissolved organic carbon in the Yakima River basin

    USGS Publications Warehouse

    Rinella, Joseph F.; McKenzie, Stuart W.; Crawford, J. Kent; Foreman, William T.; Fuhrer, Gregory J.; Morace, Jennifer L.; Aiken, George R.

    1999-01-01

    During 1987-91, chemical data were collected for pesticides and other organic compounds in surface water, streambed sediment, suspended sediment, agricultural soil, and aquatic biota to determine the occurrence, distribution, transport, and fate of organic compounds in the Yakima River basin in Washington. The report describes the chemical and physical properties of the compounds most frequently detected in the water column; organochlorine compounds including DDT, organophosphorus compounds, thiocarbamate and sulfite compounds, acetamide and triazine compounds, and chlorophenoxy-acetic acid and benzoic compounds. Concentrations are evaluated relative to chronic-toxicity water quality criteria and guidelines for the protection of human health and freshwater aquatic life.

  13. The Nordkapp Basin, Norway: Development of salt and sediment interplays for hydrocarbon exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerche, I.; Toerudbakken, B.O.

    1996-12-31

    Investigation of a particular salt diapir in the Nordkapp Basin, Barents Sea has revealed the following sequence of events: (1) salt started to rise when approximately 1.5 {+-} 0.3 km of sedimentary cover was present (Carboniferous/Permian time); (2) salt reached the sediment surface when about 3.5 {+-} 0.7 km of sediment had been deposited (Triassic time); (3) the mushroom cap on the salt stock top developed over a period of about 75--100 Ma (i.e. during the time when about another km of sediment had been deposited) (Triassic through Base Cretaceous time); (4) the mushroom cap started to dip down significantlymore » ({approximately}1 km) into the sediments around Cretaceous to Tertiary erosion time; (5) oil generation started in the deep sediments of the Carboniferous around the time that salt reached the surface (Triassic time) and continues to the present day at sedimentary depths between about 4 to 7 km (currently Triassic and deeper sediments); (6)gas generation started around mushroom cap development time and continues to the present day at sedimentary depths greater than about 6--7 km (Permian/Carboniferous); (7) the salt stock is currently 3--4 km wide, considerably less than the mushroom cap which is 9 km wide and 1 km thick. The relative timing of mushroom cap development, bed upturning, and hydrocarbon generation makes the salt diapir an attractive exploration target, with suggested reservoir trapping under the downturned mushroom cap on the deep basin side of the salt. In addition, rough estimates of rim syncline fill suggest the basin had an original salt thickness of 2.4--3.3 km, depending upon the amount of salt removed at the Tertiary erosion event.« less

  14. Joint inversion of high resolution S-wave velocity structure underneath North China Basin

    NASA Astrophysics Data System (ADS)

    Yang, C.; Li, G.; Niu, F.

    2017-12-01

    North China basin is one of earthquake prone areas in China. Many devastating earthquakes occurred in the last century and before, such as the 1937 M7.0 Heze Earthquake in Shandong province, the 1966 M7.2 Xingtai Earthquake and 1976 Tangshan Earthquake in Hebei province. Knowing the structure of the sediment cover is of great importance to predict strong ground motion caused by earthquakes. Unconsolidated sediments are loose materials, ranging from clay to sand to gravel. Earthquakes can liquefy unconsolidated sediments, thus knowing the distribution and thickness of the unconsolidated sediments has significant implication in seismic hazard analysis of the area. Quantitative estimates of the amount of extension of the North China basin is important to understand the thinning and evolution of the eastern North China craton and the underlying mechanism. In principle, the amount of lithospheric stretching can be estimated from sediment and crustal thickness. Therefore an accurate estimate of the sediment and crustal thickness of the area is also important in understanding regional tectonics. In this study, we jointly invert the Rayleigh wave phase-velocity dispersion and Z/H ratio data to construct a 3-D S-wave velocity model beneath North China area. We use 4-year ambient noise data recorded from 249 temporary stations, and 139 earthquake events to extract Rayleigh wave Z/H ratios. The Z/H ratios obtained from ambient noise data and earthquake data show a good agreement within the overlapped periods. The phase velocity dispersion curve was estimated from the same ambient noise data. The preliminary result shows a relatively low Z/H ratio and low velocity anomaly at the shallow part of sediment basins.

  15. Transport of branched tetraether lipids from the Tagus River basin to the coastal ocean of the Portuguese margin: Consequences for the interpretation of the MBT'/CBT paleothermometer

    NASA Astrophysics Data System (ADS)

    Zell, Claudia; Kim, Jung-Hyun; Balinsha, Maria; Dorhout, Denise; Santos Fernandez, Cten; Baas, Marianne; Sinninghe Damsté, Jaap S.

    2014-05-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs), which are transported from soil to marine sediment by rivers, have been used to reconstruct the mean annual air temperature(MAAT) and soil pH of the drainage basin using the methylation index of branched tetraethers(MBT, recently refined as MBT') and cyclization index of branched tetraethers (CBT) from coastal marine sediment records. In this study we are tracing the brGDGTs from source to sink in the Tagus River basin, the longest river system on the Iberian Peninsula, by determining their concentration and distribution in soils, river suspended particulate matter (SPM), riverbank sediments, marine SPM, and marine surface sediments. The concentrations of brGDGTs in river SPM were substantially higher and their distributions were different compared to those of the drainage basin soils. This indicates that brGDGTs are mainly produced in the river itself. In the marine environment, the brGDGT concentrations rapidly decreased with increasing distance from the Tagus estuary. At the same time, the brGDGT distributions in marine sediments also changed,indicating that marine in-situ production also takes place. These results show that there are various problems that complicate the use of the MBT'/CBT for paleoreconstructions using coastal marine sediments in the vicinity of a river. However, if the majority of brGDGTs are produced in the river, it might be possible to reconstruct the environmental (temperature and pH) conditions of the river water using appropriate aquatic calibrations, provided that marine core locations are chosen in such a way that the brGDGTs in their sediments are predominantly derived from riverine in-situ production.

  16. Transport of branched tetraether lipids from the Tagus River basin to the coastal ocean of the Portuguese margin: consequences for the interpretation of the MBT'/CBT paleothermometer

    NASA Astrophysics Data System (ADS)

    Zell, C.; Kim, J.-H.; Balsinha, M.; Dorhout, D.; Fernandes, C.; Baas, M.; Sinninghe Damsté, J. S.

    2014-03-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs), which are transported from soil to marine sediment by rivers, have been used to reconstruct the mean annual air temperature (MAAT) and soil pH of the drainage basin using the methylation index of branched tetraethers (MBT, recently refined as MBT') and cyclization index of branched tetraethers (CBT) from coastal marine sediment records. In this study we are tracing the brGDGTs from source to sink in the Tagus River basin, the longest river system on the Iberian Peninsula, by determining their concentration and distribution in soils, river suspended particulate matter (SPM), riverbank sediments, marine SPM, and marine surface sediments. The concentrations of brGDGTs in river SPM were substantially higher and their distributions were different compared to those of the drainage basin soils. This indicates that brGDGTs are mainly produced in the river itself. In the marine environment, the brGDGT concentrations rapidly decreased with increasing distance from the Tagus estuary. At the same time, the brGDGT distributions in marine sediments also changed, indicating that marine in-situ production also takes place. These results show that there are various problems that complicate the use of the MBT'/CBT for paleoreconstructions using coastal marine sediments in the vicinity of a river. However, if the majority of brGDGTs are produced in the river, it might be possible to reconstruct the environmental (temperature and pH) conditions of the river water using appropriate aquatic calibrations, provided that marine core locations are chosen in such a way that the brGDGTs in their sediments are predominantly derived from riverine in-situ production.

  17. Transport of branched tetraether lipids from the Tagus River basin to the coastal ocean of the Portuguese margin: consequences for the interpretation of the MBT'/CBT paleothermometer

    NASA Astrophysics Data System (ADS)

    Zell, C.; Kim, J.-H.; Balsinha, M.; Dorhout, D.; Fernandes, C.; Baas, M.; Sinninghe Damsté, J. S.

    2014-10-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs), which are thought to be transported from soil to marine sediment by rivers, have been used to reconstruct the mean annual air temperature (MAAT) and soil pH of the drainage basin using the methylation index of branched tetraethers (MBT, recently refined as MBT') and cyclization index of branched tetraethers (CBT) from coastal marine sediment records. In this study, we trace the brGDGTs from source to sink in the Tagus River basin, the longest river system on the Iberian Peninsula, by determining their concentration and distribution in soils, river suspended particulate matter (SPM), riverbank sediments, marine SPM, and marine surface sediments. The concentrations of brGDGTs in river SPM were substantially higher and their distributions were different compared to those of the drainage basin soils. This indicates that brGDGTs are mainly produced in the river itself. In the marine environment, the brGDGT concentrations rapidly decreased with increasing distance from the Tagus estuary. At the same time, the brGDGT distributions in marine sediments also changed, indicating that marine in situ production also takes place. These results show that there are various problems that complicate the use of the MBT'/CBT for paleoreconstructions using coastal marine sediments in the vicinity of a river. However, if the majority of brGDGTs are produced in the river, it might be possible to reconstruct the environmental (temperature and pH) conditions of the river water using appropriate aquatic calibrations, provided that marine core locations are chosen in such a way that the brGDGTs in their sediments are predominantly derived from riverine in situ production.

  18. The Hei River Basin in northwestern China - tectonics, sedimentary processes and pathways

    NASA Astrophysics Data System (ADS)

    Rudersdorf, Andreas; Nottebaum, Veit; Schimpf, Stefan; Yu, Kaifeng; Hartmann, Kai; Stauch, Georg; Wünnemann, Bernd; Reicherter, Klaus; Diekmann, Bernhard; Lehmkuhl, Frank

    2014-05-01

    The Hei River Basin (catchment area of c. 130,000 km²) is situated at the transition between the northern margin of the Tibetan Plateau and the southern slopes of Gobi-Tien-Shan. As part of the northwestern Chinese deserts, the Ejina Basin (Gaxun Nur Basin) constitutes the endorheic erosion base of the drainage system. The basin - hosting the second largest continental alluvial fans in the world, is tectonically strongly shaped by the Gobi belt of left-lateral transpression. The tectonic setting in combination with competing climatic driving forces (Westerlies and summer/winter monsoon currents) has supported the formation of a valuable long-time sediment archive comprises at least the last 250,000 yrs. of deposition. It is composed by the interplay of eolian, fluvial and lacustrine sedimentation cycles and today is dominated by widespread (gravel) gobi surfaces, insular dune fields and shallow evaporitic playa areas. Thus, it provides excellent conditions to investigate tectonic evolution and Quaternary environmental changes. Recently, geomorphological, geophysical, neotectonic and mineralogical studies have enhanced the understanding of the environmental history and the modern depositional environment. Moreover, the role of the Hei River Basin as an important source area of silt particles which were later deposited on the Chinese Loess Plateau is evaluated. Therefore, a 230 m long drill core, sediment sections and ca. 700 surface samples throughout the whole catchment and basin were analyzed. Instrumental and historical seismicity are very low, but the proximity to active fault zones and dating irregularities in earlier publications indicate evidence for deformation in the study area. Despite flat topography, indications of active tectonics such as fault-related large-scale lineations can be observed. Seismically deformed unconsolidated lacustrine deposits (seismites), presumably of Holocene age, are evident and must be related to the nearby faults. The upper catchment is represented by the Qilian Shan mountain range and its immediate foreland. Here, a tripartite altitudinal distribution of terrestrial sediment archives is evident, which is representative of catchment-wide sedimentological processes. Insights into their formation mechanisms, therefore, add valuable perspective regarding the reconstruction of sedimentological and paleoenvironmental conditions in the depositional area of the Hei River Basin. For the characterization of provenance and dispersal of Quaternary sediments in relation to the modern depositional environment, over 200 surface samples from the whole catchment were analyzed using XRD and XRF measurements on the clay fractions, heavy minerals and bulk sediments. The clay mineral results in-particular show that it is possible to discriminate between the chlorite rich metamorphic sediments originating from greenschist bearing rocks in the Qilian Shan Mountain Range in the south, and the more intrusive rocks from the Bei Shan Mountain Range west of the Hei River Basin. Additionally, these two main sources reflect different transportation processes; the Qilian Shan sediments are mainly transported by the rivers Heihe and Beida He, and the deposition of the Bei Shan sediments is mainly driven by wind or local runoff. Grain size results of primary loess deposits indicate different eolian transport pathways, i.e., far-travelled dust input (medium silty) vs. local deflation from active fluvial channels (fine sandy). Along the altitudinal transect, the varying geomorphological settings exert a significant influence on the grain size composition showing an increased contribution of far-travelled dust at higher altitudes.

  19. Water-quality assessment of the largely urban blue river basin, Metropolitan Kansas City, USA, 1998 to 2007

    USGS Publications Warehouse

    Wilkison, D.H.; Armstrong, D.J.; Hampton, S.A.

    2009-01-01

    From 1998 through 2007, over 750 surface-water or bed-sediment samples in the Blue River Basin - a largely urban basin in metropolitan Kansas City - were analyzed for more than 100 anthropogenic compounds. Compounds analyzed included nutrients, fecal-indicator bacteria, suspended sediment, pharmaceuticals and personal care products. Non-point source runoff, hydrologic alterations, and numerous waste-water discharge points resulted in the routine detection of complex mixtures of anthropogenic compounds in samples from basin stream sites. Temporal and spatial variations in concentrations and loads of nutrients, pharmaceuticals, and organic wastewater compounds were observed, primarily related to a site's proximity to point-source discharges and stream-flow dynamics. ?? 2009 ASCE.

  20. A Spatially Distributed Conceptual Model for Estimating Suspended Sediment Yield in Alpine catchments

    NASA Astrophysics Data System (ADS)

    Costa, Anna; Molnar, Peter; Anghileri, Daniela

    2017-04-01

    Suspended sediment is associated with nutrient and contaminant transport in water courses. Estimating suspended sediment load is relevant for water-quality assessment, recreational activities, reservoir sedimentation issues, and ecological habitat assessment. Suspended sediment concentration (SSC) along channels is usually reproduced by suspended sediment rating curves, which relate SSC to discharge with a power law equation. Large uncertainty characterizes rating curves based only on discharge, because sediment supply is not explicitly accounted for. The aim of this work is to develop a source-oriented formulation of suspended sediment dynamics and to estimate suspended sediment yield at the outlet of a large Alpine catchment (upper Rhône basin, Switzerland). We propose a novel modelling approach for suspended sediment which accounts for sediment supply by taking into account the variety of sediment sources in an Alpine environment, i.e. the spatial location of sediment sources (e.g. distance from the outlet and lithology) and the different processes of sediment production and transport (e.g. by rainfall, overland flow, snowmelt). Four main sediment sources, typical of Alpine environments, are included in our model: glacial erosion, hillslope erosion, channel erosion and erosion by mass wasting processes. The predictive model is based on gridded datasets of precipitation and air temperature which drive spatially distributed degree-day models to simulate snowmelt and ice-melt, and determine erosive rainfall. A mass balance at the grid scale determines daily runoff. Each cell belongs to a different sediment source (e.g. hillslope, channel, glacier cell). The amount of sediment entrained and transported in suspension is simulated through non-linear functions of runoff, specific for sediment production and transport processes occurring at the grid scale (e.g. rainfall erosion, snowmelt-driven overland flow). Erodibility factors identify different lithological units, while the distance from the outlet is accounted for by including sediment wave velocities. The model is calibrated and validated on the basis of continuous turbidity data measured at the outlet of the basin. In addition, SSC data measured twice per week since 1964 are used to evaluate the performance of the model over longer time scales. Our predictive model is shown to reproduce SSC dynamics of the upper Rhône basin satisfactorily. The model accounts for the spatial distribution of sediment sources (location and processes of erosion and transport) and their activation/deactivation throughout the hydrological year. Therefore, it can reproduce the effects of changes in climate on sediment fluxes. In particular, we show that observed changes in SSC in the upper Rhône basin during the last 40 years are likely a consequence of increased air temperatures in this period and the consequent acceleration of glacial erosion.

  1. Assessment of undiscovered petroleum resources of the Amerasia Basin Petroleum Province

    USGS Publications Warehouse

    Houseknecht, David W.; Bird, Kenneth J.; Garrity, Christopher P.

    2012-01-01

    The Amerasia Basin Petroleum Province encompasses the Canada Basin and the sediment prisms along the Alaska and Canada margins, outboard from basinward margins (hingelines) of the rift shoulders that formed during extensional opening of the Canada Basin. The province includes the Mackenzie delta and slope, the outer shelves and marine slopes along the Arctic margins of Alaska and Canada, and the deep Canada Basin. The province is divided into four assessment units (AUs): (1) The Canning-Mackenzie deformed margin AU is that part of the rifted margin where the Brooks Range orogenic belt has overridden the rift shoulder and is deforming the rifted-margin prism of sediment outboard of the hingeline. This is the only part of the Amerasia Basin Province that has been explored and—even though more than 3 billion barrels of oil equivalent (BBOE) of oil, gas, and condensate have been discovered—none has been commercially produced. (2) The Alaska passive margin AU is the rifted-margin prism of sediment lying beneath the Beaufort outer shelf and slope that has not been deformed by tectonism. (3) The Canada passive margin AU is the rifted-margin prism of sediment lying beneath the Arctic outer shelf and slope (also known as the polar margin) of Canada that has not been deformed by tectonism. (4) The Canada Basin AU includes the sediment wedge that lies beneath the deep Canada Basin, north of the marine slope developed along the Alaska and Canada margins. Mean estimates of risked, undiscovered, technically recoverable resources include more than 6 billion barrels of oil (BBO), more than 19 trillion cubic feet (TCF) of associated gas, and more than 16 TCF of nonassociated gas in the Canning-Mackenzie deformed margin AU; about 1 BBO, about 3 TCF of associated gas, and about 3 TCF of nonassociated gas in the Alaska passive margin AU; and more than 2 BBO, about 7 TCF of associated gas, and about 8 TCF of nonassociated gas in the Canada passive margin AU. Quantities of natural gas liquids also are assessed in each AU. The Canada Basin AU was not quantitatively assessed because it is judged to hold less than 10 percent probability of containing at least one accumulation of 50 million barrels of oil equivalent.

  2. Organochlorine compounds and trace elements in fish tissue and streambed sediment in the Mobile River Basin, Alabama, Mississippi, and Georgia, 1998

    USGS Publications Warehouse

    Zappia, Humbert

    2002-01-01

    During the summer of 1998, as part of the National Water-Quality Assessment Program, a survey was conducted to determine which organochlorine compounds and trace elements occur in fish tissues and streambed sediments in the Mobile River Basin, which includes parts of Alabama, Mississippi, Georgia, and Tennessee. The data collected were compared to guidelines related to wildlife, land use, and to 1991 and 1994 National Water-Quality Assessment Program Study-Unit data.Twenty-one sites were sampled in subbasins of the Mobile River Basin. The subbasins ranged in size from about 9 to 22,000 square miles and were dominated by either a single land use or a combination of land uses. The major land-use categories were urban, agriculture, and forest.Organochlorine compounds were widespread spatially in the Mobile River Basin. At least one organochlorine compound was reported at the majority of sampling sites (84 percent) and in a majority of whole-fish (80 percent) and streambed-sediment (52 percent) samples. Multiple organochlorine compounds were reported at 75 percent of the sites where fish tissues were collected and were reported at many of the streambed-sediment sampling sites (45 percent). The majority of concentrations reported, however, were less than 5 micrograms per kilogram in fish-tissue samples and less than 1 microgram per kilogram in streambed-sediment samples.The majority of trace elements analyzed in fish-liver tissue (86 percent) and streambed-sediment (98 percent) samples were reported during this study. Multiple trace elements were reported in all samples and at all sites.Based on comparisons of concentrations of organochlorine compounds and trace elements in fish-tissue and streambed-sediment samples in relation to National Academy of Science and National Academy of Engineering and Canadian tissue guidelines, probable-effects concentrations, and mean probable-effects concentration quotients for streambed sediment, the potential exists for adverse effects to wildlife at 15 (72 percent) of the sites sampled. The potential for adverse effects at these sites is because of the presence of residues or breakdown products related to polychlorinated biphenyls (PCB?s), chlordane, dichlorodiphenyltrichloroethane (DDT), chromium, lead, and zinc.The majority of compounds reported (65 percent) were chlordane, DDT, and PCB?s, or their breakdown products. Concentrations of chlordane and heptachlor epoxide in whole-fish tissue were positively correlated to the amount of urban land use in a basin. Total DDT concentrations in whole-fish tissues were positively correlated to agriculture.The relation of trace elements to land use is not as clear as the relation of organochlorine compounds to land use. This lack of clarity may be due to the possibility of geologic sources of trace elements in the Mobile River Basin and to the ubiquitous nature of many of these trace elements. However, there may be a correlation between the amount of urban land use and concentrations of antimony, cadmium, lead, and zinc in streambed-sediment samples from the Mobile River Basin.Fewer organochlorine compounds and trace elements were reported in samples from the Mobile River Basin than in samples collected during the 1991 and 1994 National Water-Quality Assessment Program studies. Of the organochlorine compounds analyzed nationally, 57 percent were reported in whole-fish tissue samples collected locally and 41 percent were reported in streambed-sediment samples collected locally, whereas 96 percent and 86 percent, respectively, were reported nationally. Of trace elements analyzed nationally, 86 percent were reported in fish-liver tissue locally and 95 percent were reported in streambed-sediment samples locally, whereas 95 percent and 98 percent, respectively, were reported nationally.In general, concentrations of organochlorine compounds and trace elements and the frequency with which they were reported in the Mobile River Basin are similar to or less than t

  3. Initial sediment transport model of the mining-affected Aries River Basin, Romania

    USGS Publications Warehouse

    Friedel, Michael J.; Linard, Joshua I.

    2008-01-01

    The Romanian government is interested in understanding the effects of existing and future mining activities on long-term dispersal, storage, and remobilization of sediment-associated metals. An initial Soil and Water Assessment Tool (SWAT) model was prepared using available data to evaluate hypothetical failure of the Valea Sesei tailings dam at the Rosia Poieni mine in the Aries River basin. Using the available data, the initial Aries River Basin SWAT model could not be manually calibrated to accurately reproduce monthly streamflow values observed at the Turda gage station. The poor simulation of the monthly streamflow is attributed to spatially limited soil and precipitation data, limited constraint information due to spatially and temporally limited streamflow measurements, and in ability to obtain optimal parameter values when using a manual calibration process. Suggestions to improve the Aries River basin sediment transport model include accounting for heterogeneity in model input, a two-tier nonlinear calibration strategy, and analysis of uncertainty in predictions.

  4. Comparative sequence stratigraphy of low-latitude versus high-latitude lacustrine rift basins: Seismic data examples from the East African and Baikal rifts

    USGS Publications Warehouse

    Scholz, C.A.; Moore, T.C.; Hutchinson, D.R.; Golmshtok, A. Ja; Klitgord, Kim D.; Kurotchkin, A.G.

    1998-01-01

    Lakes Baikal, Malawi and Tanganyika are the world's three largest rift valley lakes and are the classic modem examples of lacustrine rift basins. All the rift lakes are segmented into half-graben basins, and seismic reflection datasets reveal how this segmentation controls the filling of the rift basins through time. In the early stages of rifting, basins are fed primarily by flexural margin and axial margin drainage systems. At the climax of syn-rift sedimentation, however, when the basins are deeply subsided, almost all the margins are walled off by rift shoulder uplifts, and sediment flux into the basins is concentrated at accommodation zone and axial margin river deltas. Flexural margin unconformities are commonplace in the tropical lakes but less so in high-latitude Lake Baikal. Lake levels are extremely dynamic in the tropical lakes and in low-latitude systems in general because of the predominance of evaporation in the hydrologic cycle in those systems. Evaporation is minimized in relation to inflow in the high-latitude Lake Baikal and in most high-latitude systems, and consequently, major sequence boundaries tend to be tectonically controlled in that type of system. The acoustic stratigraphies of the tropical lakes are dominated by high-frequency and high-amplitude lake level shifts, whereas in high-latitude Lake Baikal, stratigraphic cycles are dominated by tectonism and sediment-supply variations.

  5. Geology and hydrocarbon potential of the Hamada and Murzuq basins in western Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirmani, K.U.; Elhaj, F.

    1988-08-01

    The Hamada and Murzuq intracratonic basins of western Libya form a continuation of the Saharan basin which stretches from Algeria eastward into Tunisia and Libya. The tectonics and sedimentology of this region have been greatly influenced by the Caledonian and Hercynian orogenies. Northwest- and northeast-trending faults are characteristic of the broad, shallow basins. The Cambrian-Ordovician sediments are fluvial to shallow marine. The Silurian constitutes a complete sedimentary cycle, ranging from deep marine shales to shallow marine and deltaic sediments. The Devonian occupies a unique position between two major orogenies. The Mesozoic strata are relatively thin. The Triassic consists of well-developedmore » continental sands, whereas the Jurassic and Cretaceous sediments are mainly lagoonal dolomites, evaporites, and shales. Silurian shales are the primary source rock in the area. The quality of the source rock appears to be better in the deeper part of the basin than on its periphery. The Paleozoic has the best hydrocarbon potential. Hydrocarbons have also been encountered in the Triassic and Carboniferous. In the Hamada basin, the best-known field is the El Hamra, with reserves estimated at 155 million bbl from the Devonian. Significant accumulations of oil have been found in the Silurian. Tlacsin and Tigi are two fields with Silurian production. In the Murzuq basin the Cambrian-Ordovician has the best production capability. However, substantial reserves need to be established before developing any field in this basin. Large areas still remain unexplored in western Libya.« less

  6. Advance and application of the stratigraphic simulation model 2D- SedFlux: From tank experiment to geological scale simulation

    NASA Astrophysics Data System (ADS)

    Kubo, Yu'suke; Syvitski, James P. M.; Hutton, Eric W. H.; Paola, Chris

    2005-07-01

    The stratigraphic simulation model 2D- SedFlux is further developed and applied to a turbidite experiment in a subsiding minibasin. The new module dynamically simulates evolving hyperpycnal flows and their interaction with the basin bed. Comparison between the numerical results and the experimental results verifies the ability of 2D- SedFlux to predict the distribution of the sediments and the possible feedback from subsidence. The model was subsequently applied to geological-scale minibasins such as are located in the Gulf of Mexico. Distance from the sediment source is determined to be more influential than the sediment entrapment in upstream minibasin. The results suggest that efficiency of sediment entrapment by a basin was not influenced by the distance from the sediment source.

  7. Surface-water-quality assessment of the Yakima River basin in Washington; spatial and temporal distribution of trace elements in water, sediment, and aquatic biota, 1987-91; with a section on geology

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Cain, Daniel J.; McKenzie, Stuart W.; Rinella, Joseph F.; Crawford, J. Kent; Skach, Kenneth A.; Hornberger, Michelle I.; Gannett, Marshall W.

    1999-01-01

    The report describes the distribution of trace elements in sediment, water, and aquatic biota in the Yakima River basin, Washington. Trace elements were determined from streambed sediment, suspended sediment, filtered and unfiltered water samples, aquatic insects, clams, fish livers, and fish fillets between 1987 and 1991. The distribution of trace elements in these media was related to local geology and anthropogenic sources. Additionally, annual and instantaneous loads were estimated for trace elements associated with suspended sediment and trace elements in filtered water samples. Trace elements also were screened against U.S. Environmental Protection Agency guidelines established for the protection of human health and aquatic life.

  8. Structural evolution of the Nankai inner accretionary prism constrained by thermal structure and sedimentary age of deep borehole samples

    NASA Astrophysics Data System (ADS)

    Fukuchi, R.; Yamaguchi, A.; Ito, H.; Yamamoto, Y.; Ashi, J.

    2017-12-01

    The Nankai accretionary wedge has been developed by subduction of the Philippine Sea Plate beneath the Eurasian and Amur Plate, accompanying forearc basin development upon inner wedge. To evaluate the evolutionary processes of the Nankai inner accretionary wedge, we performed vitrinite reflectance analysis and detrital zircon U-Pb age dating using cuttings retrieved from the Integrated Ocean Drilling Program (IODP) Site C0002 located within the Kumano Basin and penetrates the inner accretionary wedge down to 3058.5 m below the seafloor (mbsf). Although Ro values of vitrinite reflectance tend to increase with depth, there are two reversals (1300-1500 mbsf and 2400-2600 mbsf) of Ro values. The youngest detrital zircon U-Pb age of the cuttings from 2600.5 mbsf is 7.41 Ma, which is obviously younger than shipboard nannofossil ages (9.56-10.54 Ma) at 2245.5 mbsf. Both Ro values and the youngest detrital zircon U-Pb ages show a reversal between 2400-2600 mbsf, suggesting the existence of a thrust fault with sufficient displacement to offset both paleothermal structure and sediment age. Despite similar depositonal age and paleogeothermal gradient, lithofacies in the hanging- and footwall of the 2400-2600 mbsf thrust fault are different; volcaniclastic sediments are rare in the footwall. The lack of volcaniclastic sediments corresponding to the Middle Shikoku Basin facies in the footwall of the thrust suggests that sediments below 2600 mbsf have similar sedimentation background to that of present off-Muroto input site sediments. Thus, our synthesized model of tectonic evolutionary process of deep portion of the Nankai inner accretionary wedge is as follows: 1) 4 Ma: hemipelagic sediments, which deposited similar environment of present off-Muroto input, have accreted ( 4 Ma corresponds to the age of unconformity between forearc basin and accretionary prism (Kinoshita et al., 2009)). 2) 2 Ma: The megasplay fault was activated (Strasser et al., 2009), and Site C0002 sediments moved into inner wedge. Moving direction of the Philippine Sea Plate became NNW to WNW (Kamata and Kodama, 1999). 3) present: inner accretionary wedge has been buried with formation of Kumano forearc basin. Sediments existed offshore of the 4 Ma source area of Site C0002 have moved to off-Muroto input with the motion of the Philippine Sea Plate.

  9. Reconciling drainage and receiving basin signatures of the Godavari River system

    NASA Astrophysics Data System (ADS)

    Ojoshogu Usman, Muhammed; Kirkels, Frédérique Marie Sophie Anne; Zwart, Huub Michel; Basu, Sayak; Ponton, Camilo; Blattmann, Thomas Michael; Ploetze, Michael; Haghipour, Negar; McIntyre, Cameron; Peterse, Francien; Lupker, Maarten; Giosan, Liviu; Eglinton, Timothy Ian

    2018-06-01

    The modern-day Godavari River transports large amounts of sediment (170 Tg per year) and terrestrial organic carbon (OCterr; 1.5 Tg per year) from peninsular India to the Bay of Bengal. The flux and nature of OCterr is considered to have varied in response to past climate and human forcing. In order to delineate the provenance and nature of organic matter (OM) exported by the fluvial system and establish links to sedimentary records accumulating on its adjacent continental margin, the stable and radiogenic isotopic composition of bulk OC, abundance and distribution of long-chain fatty acids (LCFAs), sedimentological properties (e.g. grain size, mineral surface area, etc.) of fluvial (riverbed and riverbank) sediments and soils from the Godavari basin were analysed and these characteristics were compared to those of a sediment core retrieved from the continental slope depocenter. Results show that river sediments from the upper catchment exhibit higher total organic carbon (TOC) contents than those from the lower part of the basin. The general relationship between TOC and sedimentological parameters (i.e. mineral surface area and grain size) of the sediments suggests that sediment mineralogy, largely driven by provenance, plays an important role in the stabilization of OM during transport along the river axis, and in the preservation of OM exported by the Godavari to the Bay of Bengal. The stable carbon isotopic (δ13C) characteristics of river sediments and soils indicate that the upper mainstream and its tributaries drain catchments exhibiting more 13C enriched carbon than the lower stream, resulting from the regional vegetation gradient and/or net balance between the upper (C4-dominated plants) and lower (C3-dominated plants) catchments. The radiocarbon contents of organic carbon (Δ14COC) in deep soils and eroding riverbanks suggests these are likely sources of old or pre-aged carbon to the Godavari River that increasingly dominates the late Holocene portion of the offshore sedimentary record. While changes in water flow and sediment transport resulting from recent dam construction have drastically impacted the flux, loci, and composition of OC exported from the modern Godavari basin, complicating reconciliation of modern-day river basin geochemistry with that recorded in continental margin sediments, such investigations provide important insights into climatic and anthropogenic controls on OC cycling and burial.

  10. Quaternary sediment architecture in the Orkhon Valley (central Mongolia) inferred from capacitive coupled resistivity and Georadar measurements

    NASA Astrophysics Data System (ADS)

    Mackens, Sonja; Klitzsch, Norbert; Grützner, Christoph; Klinger, Riccardo

    2017-09-01

    Detailed information on shallow sediment distribution in basins is required to achieve solutions for problems in Quaternary geology, geomorphology, neotectonics, (geo)archaeology, and climatology. Usually, detailed information is obtained by studying outcrops and shallow drillings. Unfortunately, such data are often sparsely distributed and thus cannot characterise entire basins in detail. Therefore, they are frequently combined with remote sensing methods to overcome this limitation. Remote sensing can cover entire basins but provides information of the land surface only. Geophysical methods can close the gap between detailed sequences of the shallow sediment inventory from drillings at a few spots and continuous surface information from remote sensing. However, their interpretation in terms of sediment types is often challenging, especially if permafrost conditions complicate their interpretation. Here we present an approach for the joint interpretation of the geophysical methods ground penetrating radar (GPR) and capacitive coupled resistivity (CCR), drill core, and remote sensing data. The methods GPR and CCR were chosen because they allow relatively fast surveying and provide complementary information. We apply the approach to the middle Orkhon Valley in central Mongolia where fluvial, alluvial, and aeolian processes led to complex sediment architecture. The GPR and CCR data, measured on profiles with a total length of about 60 km, indicate the presence of two distinct layers over the complete surveying area: (i) a thawed layer at the surface, and (ii) a frozen layer below. In a first interpretation step, we establish a geophysical classification by considering the geophysical signatures of both layers. We use sedimentological information from core logs to relate the geophysical classes to sediment types. This analysis reveals internal structures of Orkhon River sediments, such as channels and floodplain sediments. We also distinguish alluvial fan deposits and aeolian sediments by their distinct geophysical signature. With this procedure we map aeolian sediments, debris flow sediments, floodplains, and channel sediments along the measured profiles in the entire basin. We show that the joint interpretation of drillings and geophysical profile measurements matches the information from remote sensing data, i.e., the sediment architecture of vast areas can be characterised by combining these techniques. The method presented here proves powerful for characterising large areas with minimal effort and can be applied to similar settings.

  11. Paleo-environments of Late Pliocene to Early Pleistocene Foreland-Basin Deposits in the Western Foothills of South-Central Taiwan

    NASA Astrophysics Data System (ADS)

    Chiu, Tzu-Hsuan; Tien-Shun Lin, Andrew; Chi, Wen-Rong; Wang, Shih-Wei

    2017-04-01

    Lithofacies and paleo-environmental analyses of the Pliocene-Pleistocene deposits of Taiwan provide a framework to understand the stratigraphic development of foreland basin to the west of the orogenic belt. In this study, we performed lithofacies analyses and biostratigraphic studies on calcareous nannofossils in two areas in south-central Taiwan, the Jhuoshuei River, and the Hushan Reservoir, respectively. The studied lithostratigraphic units are the Chinshui Shale, the Cholan Formation, and the Toukoshan Formation, in an ascending order, with a total stratigraphic thickness more than 3500 m in central Taiwan. Sixteen lithofacies and four lithofacies associations are identified, pertaining to tide-dominated deltaic systems bordering a shallow marine setting in the foreland basin. A few wide-spread layers of thickly-bedded sandstones featuring ball-and-pillow structures are interpreted as resulting from earthquake shaking (i.e., seismites). In addition, the vertical facies change shows a coarsening and shallowing-upward succession, indicating the gradually filling up of the foreland basin by sediment progradation. The progradation is interpreted to result from westward migrating orogenic belt and an increase in sediment supply. The top 2000-m thick foreland succession (i.e., the uppermost part of the Cholan Formation, and the Toukoshan Formation) is dominantly fluvial deposits with occasional intercalations of shoreface sediments, indicating an extremely rapid and balanced rate of basin subsidence and sediment supply for the past 1.5 Ma. Vertebrate fossils of deer and elephants are identified in the upper Cholan Formation deposited in coastal to fluvial settings. Keywords: Pliocene-Pleistocene Epoch, lithofacies, foreland basin, Taiwan

  12. Compaction of basin sediments as a function of time-temperature history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmoker, J.W.; Gautier, D.L.

    1989-03-01

    Processes that affect burial diagenesis are dependent on time-temperature history (thermal maturity). Therefore, the porosity loss of sedimentary rocks during burial may often be better treated as a function of time-temperature history than of depth. Loss of porosity in the subsurface for sandstones, carbonates, and shales can be represented by a power function /phi/ = A(M)/sup B/, where /phi/ is porosity, A and B are constants for a given sedimentary rock population of homogeneous properties, and M is a measure of thermal maturity such as vitrinite reflectance (R/sub 0/) or Lopatin's time-temperature index (TTI). Regression lines of carbonate porosity andmore » of sandstone porosity upon thermal maturity form an envelope whose axis is approximated by /phi/ = 7.5(R/sub 0/)/sup /minus/1.18/ or, equivalently, by /phi/ = 30(TTI)/sup /minus/0.33/. These equations are preliminary generic relations of use for the regional modeling of both carbonate and sandstone compaction in sedimentary basins. The dependence of porosity upon time-temperature history incorporates the hypothesis that porosity-reducing processes operate continuously in sedimentary basins and, consequently, that compaction of basin sediments continues as long as porosity exists. Calculations indicate that subsidence due to loss of porosity through time (with depth held constant) can produce a second-stage passively formed basin in which many hundreds of meters of sediments can accumulate and which conforms with the structure of the original underlying basin. Such sediment accumulation results from the thermal maturation of thick sequences of sedimentary rocks rather than from global sea level change or tectonic subsidence.« less

  13. Reconnaissance Borehole Geophysical, Geological, and Hydrological Data from the Proposed Hydrodynamic Compartments of the Culpeper Basin in Loudoun, Prince William, Culpeper, Orange, and Fairfax Counties, Virginia (Version 1.0)

    USGS Publications Warehouse

    Ryan, Michael P.; Pierce, Herbert A.; Johnson, Carole D.; Sutphin, David M.; Daniels, David L.; Smoot, Joseph P.; Costain, John K.; Coruh, Cahit; Harlow, George E.

    2006-01-01

    The Culpeper basin is part of a much larger system of ancient depressions or troughs, that lie inboard of the Atlantic Coastal Plain, and largely within the Applachian Piedmont Geologic Province of eastern North America, and the transition region with the neighboring Blue Ridge Geologic Province. This basin system formed during an abortive attempt to make a great ocean basin during the Late Triassic and Early Jurassic, and the eroded remnants of the basins record major episodes of sedimentation, igneous intrusion and eruption, and pervasive contact metamorphism. Altogether, some twenty nine basins formed between what is now Nova Scotia and Georgia. Many of these basins are discontinuous along their strike, and have therefore recorded isolated environments for fluvial and lacustrine sedimentation. Several basins (including the Culpeper, Gettysburg, and Newark basins) are fault-bounded on the west, and Mesozoic crustal stretching has produced assymetrical patterns of basin subsidence resulting in a progressive basin deepening to the west, and a virtual onlap relationship with the pre-basin Proterozoic rocks to the east. A result of such a pattern of basin deepening is the development of sequences of sandstones and siltstones that systemmatically increase in dip towards the accomodating western border faults. A second major structural theme in several of the major Mesozoic basins (including the Culpeper) concerns the geometry of igneous intrusion, as discussed below. Froelich (1982, 1985) and Lee and Froelich (1989) discuss the general geology of the Culpeper basin, and Smoot (1989) discusses the sedimentation environments and sedimentary facies of the Mesozoic with respect to fluvial and shallow lacustrine deposition in the Culpeper basin. Ryan and others, 2007a, b, discuss the role of diabase-induced compartmentalization in the Culpeper basin (and other Mesozoic basins), and illustrate (using alteration mineral suites within the diabase and adjacent hornfels, among other evidence) how this process has played a role in organizing the paleo- and contemporary-flow of crustal fluids at local and regional scales. Within this report, the Newark Supergroup nomenclature of Weems and Olsen (1997) is adopted.

  14. Overview of the sedimentological processes in the western North Atlantic

    NASA Astrophysics Data System (ADS)

    Benetti, S.; Weaver, P.; Wilson, P.

    2003-04-01

    The sedimentary processes operating within the western North Atlantic continental margin include both along-slope sediment transport, which builds sediment drifts and waves, and down-slope processes involving mass wasting. Sedimentation along a large stretch of the margin (north of 32°N) has been heavily influenced by processes that occurred during glacial times (e.g. cutting of canyons and infilling of abyssal plains) when large volumes of sediment were supplied to the shelf edge either by ice grounded on continental shelves or river discharge. The large area of sea floor occupied by depositional basins and abyssal plains testifies to the dominance of turbidity currents. The widespread presence of slide complexes in this region has been related to earthquakes and melting of gas hydrates. South of 32°N, because of the low sediment supply from rivers even during glacial times and the reduced sedimentation due to the erosive effects of the Gulf Stream, few canyon systems and slides are observed and Tertiary sediment cover is thin and irregular. Turbidity currents filled re-entrant basins in the Florida-Bahama platform. Tectonic activity is primarily responsible for the overall morphology and sedimentation pattern along the Caribbean active margin. Along the whole margin, the reworking of bottom sediments by deep-flowing currents seems to be particularly active during interglacials. To some extent this observation must reflect the diminished effect of downslope transport during interglacials, but our data also contribute to the debate over changes in deep water circulation strength on glacial-interglacial timescales. Strong bottom circulation, an open basin system and high sediment supply have led to the construction of large elongate contourite drifts, mantled by smaller scale bedforms. These drifts are mostly seen in regions protected or distant from the masking influence of turbidity currents and sediment mass movements.

  15. Arsenic associations in sediments from shallow aquifers of northwestern Hetao Basin, Inner Mongolia

    USGS Publications Warehouse

    Deng, Y.; Wang, Y.; Ma, T.; Yang, H.; He, J.

    2011-01-01

    Understanding the mechanism of arsenic mobilization from sediments to groundwater is important for water quality management in areas of endemic arsenic poisoning, such as the Hetao Basin in Inner Mongolia, northern China. Aquifer geochemistry was characterized at three field sites (SH, HF, TYS) in Hangjinhouqi County of northwestern Hetao Basin. The results of bulk geochemistry analysis of sediment samples indicated that total As concentrations have a range of 6. 8-58. 5 mg/kg, with a median of 14. 4 mg/kg. The highest As concentrations were found at 15-25 m depth. In the meanwhile, the range of As concentration in the sediments from background borehole is 3-21. 8 mg/kg, with a median value of 9 mg/kg. The As sediments concentrations with depth from the SH borehole were correlated with the contents of Fe, Sb, B, V, total C and total S. Generally, the abundance of elements varied with grain size, with higher concentrations in finer fractions of the sediments. Distinct lithology profile and different geochemical characteristics of aquifer sediments indicate the sediments are associated with different sources and diverse sedimentary environments. Up to one third of arsenic in the sediments could be extracted by ammonium oxalate, suggesting that Fe oxyhydroxides may be the major sink of As in the aquifer. Sequential extraction results indicate that arsenic occurs as strongly adsorbed on and/or co-precipitated with amorphous Fe oxyhydroxides in sediments accounting for 35 and 20%, respectively, of the total contents of arsenic. The release of As into groundwater may occur by desorption from the mineral surface driven by reductive dissolution of the Fe oxide minerals. Furthermore, small proportions of As associated with iron sulfides occur in the reductive sediments. ?? 2011 Springer-Verlag.

  16. Distribution of surficial sediment in Long Island Sound and adjacent waters: Texture and total organic carbon

    USGS Publications Warehouse

    Poppe, L.J.; Knebel, H.J.; Mlodzinska, Z.J.; Hastings, M.E.; Seekins, B.A.

    2000-01-01

    The surficial sediment distribution within Long Island Sound has been mapped and described using bottom samples, photography, and sidescan sonar, combined with information from the geologic literature. The distributions of sediment type and total organic carbon (TOC) reveal several broad trends that are largely related to the sea-floor geology, the bathymetry, and the effects of modern tidal- and wind-driven currents. Sediment types are most heterogeneous in bathymetrically complex and shallow nearshore areas; the heterogeneity diminishes and the texture fines with decreasing bottom-current energy. Lag deposits of gravel and gravelly sand dominate the surficial sediment texture in areas where bottom currents are the strongest (such as where tidal flow is constricted) and where glacial till crops out at the sea floor. Sand is the dominant sediment type in areas characterized by active sediment transport and in shallow areas affected by fine-grained winnowing. Silty sand and sand-silt-clay mark transitions within the basin from higher- to lower-energy environments, suggesting a diminished hydraulic ability to sort and transport sediment. Clayey silt and silty clay are the dominant sediment types accumulating in the central and western basins and in other areas characterized by long-term depositional environments. The amount of TOC in the sediments of Long Island Sound varies inversely with sediment grain size. Concentrations average more than 1.9% (dry weight) in clayey silt, but are less than 0.4% in sand. Generally, values for TOC increase both toward the west in the Sound and from the shallow margins to the deeper parts of the basin floor. Our data also suggest that TOC concentrations can vary seasonally.

  17. Quantifying and identifying the sources of fine sediment input in a typical Mongolian river basin, the Kharaa River case study

    NASA Astrophysics Data System (ADS)

    Theuring, Phillip

    2013-04-01

    Mongolia is facing a tremendous change of land-use intensification due to expansions in the agricultural sector, an increase of cattle and livestock and a growth of urban settlements by migration of the rural population to the cities. With most of its area located in a semiarid to arid environment, Mongolia is vulnerable to climatic changes that are expected to lead to higher temperatures and increased evapotranspiration. It is expected that this may lead to unfavorable changes in surface water quality caused by increased nutrients and sediment bound pollutants emissions. Increased fine sediment load is associated with nutrient, heavy metal and pollutant input and therefore affects water quality. Previous studies using radionuclide fallout isotope sediment source fingerprinting investigations identified riverbank erosion as the main source of suspended sediment in the Kharaa River. Erosion susceptibility calculations in combination with suspended sediment observations showed strong seasonal and annual variabilities of sediment input and in-stream transport, and a strong connection of erosional behaviour with land-use.The objective of this study is to quantify the current water quality threats by fine sediment inputs in the 15,000 km2 Kharaa River basin in Northern Mongolia by delineating the sources of the fine sediments and estimating the sediment budget.To identify the spatial distribution of sediment sources within the catchment, more than 1000 samples from the river confluences at the outlet of each sub basin into the main tributary were collected during 5 intensive grab sediment sampling campaigns in 2009-11. The fine sediment fraction (<10μm) has been analysed using geochemical tracer techniques for spatial source identification, based on major elements (e.g. Si, Al, Mg, Fe, Na, K, P) and trace elements (e.g. Ba, Pb, Sr, Zn). The contribution of suspended sediment of each sub basin in the main tributary has been evaluated with help of a mixing model. To asses sediment sources the RUSLE based sediment budget model (SedNet) was employed to estimate surface erosion and sediment budget. The spatial origin of the fine sediment in the catchment could be identified by geochemical fingerprinting techniques. This shows that only some subcatchments contribute considerably to the fine sediment load, especially areas with high grazing intensity and degraded riparian vegetation. The estimated average soil loss in the catchment is 0.2 t×ha-1•a-1. The model results reveal a strong influence of the landuse in the catchment on surface erosion and fine sediment input, which will increase with the intensification of agriculture in the catchment.

  18. Water-quality and biologic data for the Blue River basin, Kansas City metropolitan area, Missouri and Kansas, October 2000 to October 2004

    USGS Publications Warehouse

    Wilkison, Donald H.; Armstrong, Daniel J.; Brown, Rebecca E.; Poulton, Barry C.; Cahill, Jeffrey D.; Zaugg, Steven D.

    2005-01-01

    This report presents water-quality and biologic data collected in the Blue River Basin, metropolitan Kansas City, Missouri and Kansas, from October 2000 to October 2004. Data were collected in cooperation with the city of Kansas City, Missouri, Water Services Department as part of an ongoing study designed to characterize long-term water-quality trends in the basin and to provide data to support a strategy for combined sewer overflow control. These data include values of physical properties, fecal indicator bacteria densities, suspended sediment, and concentrations of major ions, nutrients, trace elements, organic wastewater compounds, and pharmaceutical compounds in base-flow and stormflow stream samples and bottom sediments. Six surface-water sites in the basin were sampled 13 times during base-flow conditions and during a minimum of 7 storms. Benthic macroinvertebrate communities are described at 10 sites in the basin and 1 site outside the basin. Water-column and bottom-sediment data from impounded reaches of Brush Creek are provided. Continuous specific conductance, pH, water-quality temperature, turbidity, and dissolved oxygen data are provided for two streams-the Blue River and Brush Creek. Sampling, analytical, and quality assurance methods used in data collection during the study also are described in the report.

  19. The Role of Source Material in Basin Sedimentation, as Illustrated within Eureka Valley, Death Valley National Park, CA.

    NASA Astrophysics Data System (ADS)

    Lawson, M. J.; Yin, A.; Rhodes, E. J.

    2015-12-01

    Steep landscapes are known to provide sediment to sink regions, but often petrological factors can dominate basin sedimentation. Within Eureka Valley, in northwestern Death Valley National Park, normal faulting has exposed a steep cliff face on the western margin of the Last Chance range with four kilometers of vertical relief from the valley floor and an angle of repose of nearly 38 degrees. The cliff face is composed of Cambrian limestone and dolomite, including the Bonanza King, Carrara and Wood Canyon formations. Interacting with local normal faulting, these units preferentially break off the cliff face in coherent blocks, which result in landslide deposits rather than as finer grained material found within the basin. The valley is well known for a large sand dune, which derives its sediment from distal sources to the north, instead of from the adjacent Last Chance Range cliff face. During the Holocene, sediment is sourced primary from the northerly Willow Wash and Cucomungo canyon, a relatively small drainage (less than 80 km2) within the Sylvan Mountains. Within this drainage, the Jurassic quartz monzonite of Beer Creek is heavily fractured due to motion of the Fish Valley Lake - Death Valley fault zone. Thus, the quartz monzonite is more easily eroded than the well-consolidated limestone and dolomite that forms the Last Change Range cliff face. As well, the resultant eroded material is smaller grained, and thus more easily transported than the limestone. Consequently, this work highlights an excellent example of the strong influence that source material can have on basin sedimentation.

  20. Gravel sediment routing from widespread, low-intensity landscape disturbance, Current River basin, Missouri

    USGS Publications Warehouse

    Jacobson, Robert B.; Gran, K.B.

    1999-01-01

    During the last 160 years, land-use changes in the Ozarks have had the potential to cause widespread, low-intensity delivery of excess amounts of gravel-sized sediment to stream channels. Previous studies have indicated that this excess gravel bedload is moving in wave-like forms through Ozarks drainage basins. The longitudinal, areal distribution of gravel bars along 160 km of the Current River, Missouri, was evaluated to determine the relative effects of valley-scale controls, tributary basin characteristics, and lagged sediment transport in creating areas of gravel accumulations. The longitudinal distribution of gravel-bar area shows a broad scale wave-like form with increases in gravel-bar area weakly associated with tributary junctions. Secondary peaks of gravel area with 1·8–4·1 km spacing (disturbance reaches) are superimposed on the broad form. Variations in valley width explain some, but not all, of the short-spacing variation in gravel-bar area. Among variables describing tributary drainage basin morphometry, present-day land use and geologic characteristics, only drainage area and road density relate even weakly to gravel-bar areal inventories. A simple, channel network-based sediment routing model shows that many of the features of the observed longitudinal gravel distribution can be replicated by uniform transport of sediment from widespread disturbances through a channel network. These results indicate that lagged sediment transport may have a dominant effect on the synoptic spatial distribution of gravel in Ozarks streams; present-day land uses are only weakly associated with present-day gravel inventories; and valley-scale characteristics have secondary controls on gravel accumulations in disturbance reaches.

  1. Characterization of hydrodynamic and sediment conditions in the lower Yampa River at Deerlodge Park, east entrance to Dinosaur National Monument, northwest Colorado, 2011

    USGS Publications Warehouse

    Williams, Cory A.

    2013-01-01

    The Yampa River in northwestern Colorado is the largest, relatively unregulated river system in the upper Colorado River Basin. Water from the Yampa River Basin continues to be sought for a number of municipal, industrial, and energy uses. It is anticipated that future water development within the Yampa River Basin above the amount of water development identified under the Upper Colorado River Endangered Fish Recovery Implementation Program and the Programmatic Biological Opinion may require additional analysis in order to understand the effects on habitat and river function. Water development in the Yampa River Basin could alter the streamflow regime and, consequently, could lead to changes in the transport and storage of sediment in the Yampa River at Deerlodge Park. These changes could affect the physical form of the reach and may impact aquatic and riparian habitat in and downstream from Deerlodge Park. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, began a study in 2011 to characterize the current hydrodynamic and sediment-transport conditions for a 2-kilometer reach of the Yampa River in Deerlodge Park. Characterization of channel conditions in the Deerlodge Park reach was completed through topographic surveying, grain-size analysis of streambed sediment, and characterization of streamflow properties. This characterization provides (1) a basis for comparisons of current stream functions (channel geometry, sediment transport, and stream hydraulics) to future conditions and (2) a dataset that can be used to assess channel response to streamflow alteration scenarios indicated from computer modeling of streamflow and sediment-transport conditions.

  2. The Sedimentary History of Southern Central Crete: Implications for Neogene Uplift

    NASA Astrophysics Data System (ADS)

    Kröger, K.; Brachert, T. C.; Reuter, M.

    2003-04-01

    The tectonic setting of Crete was largely extensional since Lower Miocene uplift and exhumation of HP/LT rocks. Erosion of uplifted areas resulted in the deposition of terrestrial to marine sediments in the Messara and Iraclion Basins. There are several concurring models that discuss Late Neogene uplift of the basinal margins. Neogene near shore sediments in the south of the Messara Basin record fault movements contemporaneous to sedimentation and sedimentary input from the hinterland. Therefore they provide information on the paleogeographic situation and the resulting amount of subsidence and uplift of mountain areas since the Upper Miocene. The studied sediments consist of terrestrial to shallow marine, floodplain related sediments of the Upper Miocene Ambelouzos Formation that are overlain by platform limestones of the Upper Miocene Varvara Formation. In the Messara Basin these units are overlain by the Pliocene Kourtes Formation. The stratigraphic architecture of these deposits indicates fragmentation of the basinal margin. Proximal boulder conglomerates and reworked blocks of the Ambelouzos formation indicate fault activity during the deposition of the Varvara Formation. Contents of terrigenous clastics, provided by rivers and distributed by longshore currents, are high in the Ambelouzos and the lower Varvara Formations but decrease rapidly upsection within the Varvara Formation. This indicates drowning of the fault bounded blocks and little topography of the hinterland (Asteroussia Mountains) at that time. The Pliocene marls at the southern margin of the Messara Basin contain lithoclasts of the Upper Miocene limestones and thus indicate uplift of the carbonate platform. The modern topographic elevation of formerly drowned fault bounded blocks requires a minimum uplift of 400m. Main uplift occurred at approximately orthogonal NW-SE and SW-NE striking normal to oblique faults. The present elevation of the Asteroussia Mountains indicates net uplift of at least 1000m since the Early Pliocene. At the Central Iraklion Ridge that separates the Messara and Iraclion Basins a similar history is indicated for the Psiloritis Mountains by fault movements within Neogene near shore sediments and their subsequent drowning. A structural model of the Neogene evolution of Crete therefore has to explain successive phases of uplift and subsidence in an over all extensional setting only slightly oblique to the modern direction of convergence between Africa and the Aegean microplate.

  3. Geoacoustic Models of the Hudson Canyon Area

    DTIC Science & Technology

    1987-01-01

    structural basin , play a strong historical role In shaping the sediment distribution and topography in this region. Several prominent horizons, A", A...Ridge, a lower Cretaceous carbonate reef, and a deep structural basin , play a strong historical role in shaping the sediment distribution and...TERRIGENOUS DEPOSIT j I SHALE \\^^% DOLOMITIC MARL I:/ j ARGi ^ACEOUS LIMESTOUE \\^ BASALT I sm.LO:. ,’,;-ER ;;■;=_ Figure 3. Stratigraphic sequence

  4. Application of a calibrated/validated Agricultural Policy/Environmental eXtender model to assess sediment and nutrient delivery from the Wildcat Creek Mississippi River Basin Initiative – Cooperative Conservation Partnership

    USDA-ARS?s Scientific Manuscript database

    The Wildcat Creek, a tributary to the Wabash River was identified by the USDA Natural Resources Conservation Service (NRCS) as a priority watershed for its high sediment and nutrient loading contributions to the Mississippi River. As part of the Mississippi River Basin Initiative (MRBI), the incorpo...

  5. Design criteria for sediment basins.

    DOT National Transportation Integrated Search

    1972-01-01

    The need for controlling construction induced sediment to keep it from entering the nation's waterways is generally accepted. Efficient means and methods for sediment control, however, are not simple, and in some cases have not been developed to a hi...

  6. Recent geologic development of Lake Michigan (U.S.A.)

    USGS Publications Warehouse

    Gross, D.L.; Cahill, R.A.

    1983-01-01

    The stresses placed on Lake Michigan since the advent of industrialization require knowledge of the sedimentology of the whole lake in order to make informed decisions for environmental planning. Sediment accumulation rates are low: areas of the lake receiving the most sediment average only 1 mm a-1; deep-water basins average 0.1 to 0.5 mm a-1; and large areas are not receiving any sediment. Sediment was deposited rapidly (typically 5 mm a-1), in the form of rock flour, during the deglaciation of both Lake Michigan and Lake Superior Basins. Then the rate of accumulation decreased by 80-90% and has remained relatively constant since final deglaciation. Because active sedimentation occurs mostly in the deep water areas of the lake, the sediment remains undisturbed and contains a record of the chemical history of the lake. ?? 1983 Dr W. Junk Publishers.

  7. Gravity anomalies and flexure of the lithosphere at the Middle Amazon Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Nunn, Jeffrey A.; Aires, Jose R.

    1988-01-01

    The Middle Amazon Basin is a large Paleozoic sedimentary basin on the Amazonian craton in South America. It contains up to 7 km of mainly shallow water sediments. A chain of Bouguer gravity highs of approximately +40 to +90 mGals transects the basin roughly coincident with the axis of maximum thickness of sediment. The gravity highs are flanked on either side by gravity lows of approximately -40 mGals. The observed gravity anomalies can be explained by a steeply sided zone of high density in the lower crust varying in width from 100 to 200 km wide. Within this region, the continental crust has been intruded/replaced by more dense material to more than half its original thickness of 45-50 km. The much wider sedimentary basin results from regional compensation of the subsurface load and the subsequent load of accumulated sediments by flexure of the lithosphere. The observed geometry of the basin is consistent with an elastic lithosphere model with a mechanical thickness of 15-20 km. Although this value is lower than expected for a stable cratonic region of Early Proterozoic age, it is within the accepted range of effective elastic thicknesses for the earth. Rapid subsidence during the late Paleozoic may be evidence of a second tectonic event or lithospheric relaxation which could lower the effective mechanical thickness of the lithosphere. The high-density zone in the lower crust, as delineated by gravity and flexural modeling, has a complex sinuous geometry which is narrow and south of the axis of maximum sediment thickness on the east and west margins and wide and offset to the north in the center of the basin. The linear trough geometry of the basin itself is a result of smoothing by regional compensation of the load in the lower crust.

  8. Cenozoic stratigraphy and geologic history of the Tucson Basin, Pima County, Arizona

    USGS Publications Warehouse

    Anderson, S.R.

    1987-01-01

    This report was prepared as part of a geohydrologic study of the Tucson basin conducted by the U.S. Geological Survey in cooperation with the city of Tucson. Geologic data from more than 500 water supply and test wells were analyzed to define characteristics of the basin sediments that may affect the potential for land subsidence induced by groundwater withdrawal. The Tucson basin is a structural depression within the Basin and Range physiographic province. The basin is 1,000 sq mi in units area and trends north to northwest. Three Cenozoic stratigraphic unit--the Pantano Formation of Oligocene age, the Tinaja beds (informal usage) of Miocene and Pliocene age, and the Fort Lowell Formation of Pleistocene age--fill the basin. The Tinaja beds include lower, middle, and upper unconformable units. A thin veneer of stream alluvium of late Quaternary age overlies the Fort Lowell Formation. The Pantano Formation and the lower Tinaja beds accumulated during a time of widespread continental sedimentation, volcanism, plutonism, uplift, and complex faulting and tilting of rock units that began during the Oligocene and continued until the middle Miocene. Overlying sediments of the middle and upper Tinaja beds were deposited in response to two subsequent episodes of post-12-million-year block faulting, the latter of which was accompanied by renewed uplift. The Fort Lowell Formation accumulated during the Quaternary development of modern through-flowing the maturation of the drainage. The composite Cenozoic stratigraphic section of the Tucson basin is at least 20,000 ft thick. The steeply tilted to flat-lying section is composed of indurated to unconsolidated clastic sediments, evaporites, and volcanic rocks that are lithologically and structurally complex. The lithology and structures of the section was greatly affected by the uplift and exhumation of adjacent metamorphic core-complex rocks. Similar Cenozoic geologic relations have been identified in other parts of southern Arizona. (Author 's abstract)

  9. Mio-Pliocene morphotectonic evolution of the Iranian Plateau: from outward expansion to incision and excavation

    NASA Astrophysics Data System (ADS)

    Ballato, Paolo; Heidarzadeh, Ghasem; Zeilinger, Gerold; Ghassemi, Mohammad; Cifelli, Francesca; Mattei, Massimo; Hassanzadeh, Jamshid; Balling, Philipp; Dunkl, István; Sudo, Masafumi; Mulch, Andreas; Strecker, Manfred

    2015-04-01

    Located along plate convergence zones, high orogenic plateaus form extensive and elevated morphotectonic provinces that are flanked by high mountain ranges at their margins. The Iranian Plateau (IP) is a prominent NW-SE striking (ca. 1500 km in length for a width of 140 to 260 km), elevated (> 50% lies between 1.5 and 2 km of elevation), mostly internally drained (at present ca. 55% has internal drainage), arid (mean annual precipitation ranging from 0.1 to < 0.5 m/yr), virtually aseismic and thick (crustal thickness up to 70 km) morphotectonic feature of the Arabia-Eurasia collision zone. The major backbones of the plateau are the Sanandaj Sirjan Zone, the Urumieh Dokhtar Magmatic Arc, and locally the High Zagros Mountains. Although the plateau must be younger than 18-17 Ma (based on uplifted marine deposits of the Qom Formation) very little is known about the mechanisms and timing of plateau vertical growth and lateral expansion. The northern IP is constituted by a series of mountain ranges and sedimentary basins, which have been excavated by the Qezel-Owzan a major river flowing into the Caspian Sea. This provides easy access to synorogenic sediments and hence makes this region an ideal location to decipher the tectono-stratigraphic and possibly topographic history of the IP. To address these goals we have designed a multidisciplinary strategy including characterization of synorogenic deposits (sedimentology and provenance) and establishment of a detailed chronostratigraphic framework (magnetostratigraphy and geochronology). Our data show that a wedging (to the NE) sedimentary body started developing from ~17 Ma during the deposition of the Upper Red Formation. Sediment provenance and magnetic lineations show that detritus was sourced from the interior of the plateau, suggesting that sedimentation was associated with the development of large regional drainage systems. At the same time, growth strata document intrabasinal contractional deformation between ~14.5 and 12.5 Ma. At ~10.5 Ma an increase in sediment flux into the basin occurred as documented by an extensive progradation (> 50 km of distance) of conglomerates in the distal sectors of the basin. This event was followed by basin uplift and erosion with a shift of the basin depocenter toward the outer margin of the plateau (to the N and NE; Zanjan and Mianeh basins). There, sedimentation lasted until fluvial incision and basin excavation of sub-horizontal sediments started sometime during the last 4 Ma. Overall, our data suggest that sedimentation took place in a contiguous foreland-basin system, most likely triggered by thrust stacking and topographic loading in the interior of the plateau from ~17 Ma. The outward N to NE-directed propagation of the deformation fronts (< 10.5 Ma) excised parts of the foreland, incorporating new basin sectors into the orogenic plateau and compartmentalizing the foreland into a contractional basin and range topography. This implies that the IP developed during crustal shortening and thickening processes and that sometime after 10.5 Ma the northern IP had reached a lateral size similar to the modern one.

  10. Diversity of microbial communities correlated to physiochemical parameters in a digestion basin of a zero-discharge mariculture system.

    PubMed

    Cytryn, Eddie; Gelfand, Ilya; Barak, Yoram; van Rijn, Jaap; Minz, Dror

    2003-01-01

    Bacterial community structure and physiochemical parameters were examined in a sedimentation basin of a zero-discharge mariculture system. The system consisted of an intensively stocked fish basin from which water was recirculated through two separate treatment loops. Surface water from the basin was pumped over a trickling filter in one loop while bottom-water was recirculated through a sedimentation basin followed by a fluidized bed reactor in the other. Ammonia oxidation to nitrate in the trickling filter and organic matter digestion together with nitrate reduction in the sedimentation basin and fluidized bed reactor, allowed zero-discharge operation of the system. Relatively high concentrations of oxygen, nitrate, sulphate and organic matter detected simultaneously in the digestion basin suggested the potential for a wide range of microbially-mediated transformation processes. In this study, physiochemical parameters were correlated to bacterial diversity and distribution in horizontal and vertical profiles within this basin in an effort to obtain a basic understanding of the chemical and microbial processes in this system. Chemical activity and microbial diversity, the latter measured by denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR) amplified 16S rDNA fragments, were higher in the sludge layer than in the overlying aqueous layer of the basin. Chemical parameters in sludge samples close to the basin inlet suggested enhanced microbial activity relative to other sampling areas with evidence of both nitrate and sulphate reduction. Four of the nine DGGE bands identified in this zone were affiliated with the Bacteroidetes phylum. Detected sequences closely related to sequences of organisms involved in the sulphur cycle included Desulfovibrio, Dethiosulfovibrio and apparent sulphur oxidizers from the gamma-proteobacteria. In addition, a number of sequences from the beta and alpha-proteobacteria were identified.

  11. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam?

    NASA Astrophysics Data System (ADS)

    Guo, Leicheng; Su, Ni; Zhu, Chunyan; He, Qing

    2018-05-01

    Streamflow and sediment loads undergo remarkable changes in worldwide rivers in response to climatic changes and human interferences. Understanding their variability and the causes is of vital importance regarding river management. With respect to the Changjiang River (CJR), one of the largest river systems on earth, we provide a comprehensive overview of its hydrological regime changes by analyzing long time series of river discharges and sediment loads data at multiple gauge stations in the basin downstream of Three Gorges Dam (TGD). We find profound river discharge reduction during flood peaks and in the wet-to-dry transition period, and slightly increased discharges in the dry season. Sediment loads have reduced progressively since 1980s owing to sediment yield reduction and dams in the upper basin, with notably accelerated reduction since the start of TGD operation in 2003. Channel degradation occurs in downstream river, leading to considerable river stage drop. Lowered river stages have caused a 'draining effect' on lakes by fostering lake outflows following TGD impoundments. The altered river-lake interplay hastens low water occurrence inside the lakes which can worsen the drought given shrinking lake sizes in long-term. Moreover, lake sedimentation has decreased since 2002 with less sediment trapped in and more sediment flushed out of the lakes. These hydrological changes have broad impacts on river flood and drought occurrences, water security, fluvial ecosystem, and delta safety.

  12. Allogenic and autogenic controls on sedimentation in the central Sumatra basin as an analogue for Pennsylvanian coal-bearing strata in the Appalachian basin

    USGS Publications Warehouse

    Cecil, C. Blaine; Dulong, Frank T.; Cobb, James C.

    1993-01-01

    Recent sedimentation patterns in the central Sumatra basin, Republic of Indonesia, may help to explain the cyclic stratigraphy of the Pennsylvanian System of the eastern United States. Modern influx of fluvial siliciclastic sediment to the epeiric seas of the Sunda shelf, including the Strait of Malacca, appears to be highly restricted by rain forest cover within the ever-wet climate belt of equatorial Sumatra. As a result, much of the marine and estuarine environments appear to be erosional or nondepositional except for localized deposition of sediment in slack water areas, such as the down-stream end of islands. Contemporaneously, thick (>13 m), laterally extensive (>70,000 km2), peat deposits are forming on poorly drained coastal lowlands. Modern peat formation in this study, therefore, is not coeval with aggrading fluvial siliciclastic systems, a situation that commonly is assumed in many depositional models of coal formation. The stratigraphy of Pleistocene and Holocene sediments on the Sunda shelf, as well as those of the Pennsylvanian System, appears to be better explained by the allocyclic controls of climate and sea-level change on sediment flux rather than by depositional models that are based on autocyclic processes. The objective of this paper is to evaluate allocyclic and autocyclic controls on sedimentation in an epeiric setting in a humid (ever-wet) tropical region. Of particular interest are the factors that control peat formation and siliciclastic sediment flux in rivers, estuaries, and open marine environments.

  13. Are iron-phosphate minerals a sink for phosphorus in anoxic Black Sea sediments?

    PubMed

    Dijkstra, Nikki; Kraal, Peter; Kuypers, Marcel M M; Schnetger, Bernhard; Slomp, Caroline P

    2014-01-01

    Phosphorus (P) is a key nutrient for marine organisms. The only long-term removal pathway for P in the marine realm is burial in sediments. Iron (Fe) bound P accounts for a significant proportion of this burial at the global scale. In sediments underlying anoxic bottom waters, burial of Fe-bound P is generally assumed to be negligible because of reductive dissolution of Fe(III) (oxyhydr)oxides and release of the associated P. However, recent work suggests that Fe-bound P is an important burial phase in euxinic (i.e. anoxic and sulfidic) basin sediments in the Baltic Sea. In this study, we investigate the role of Fe-bound P as a potential sink for P in Black Sea sediments overlain by oxic and euxinic bottom waters. Sequential P extractions performed on sediments from six multicores along two shelf-to-basin transects provide evidence for the burial of Fe-bound P at all sites, including those in the euxinic deep basin. In the latter sediments, Fe-bound P accounts for more than 20% of the total sedimentary P pool. We suggest that this P is present in the form of reduced Fe-P minerals. We hypothesize that these minerals may be formed as inclusions in sulfur-disproportionating Deltaproteobacteria. Further research is required to elucidate the exact mineral form and formation mechanism of this P burial phase, as well as its role as a sink for P in sulfide-rich marine sediments.

  14. Early Archaean collapse basins, a habitat for early bacterial life.

    NASA Astrophysics Data System (ADS)

    Nijman, W.

    For a better definition of the sedimentary environment in which early life may have flourished during the early Archaean, understanding of the basin geometry in terms of shape, depth, and fill is a prerequisite. The basin fill is the easiest to approach, namely from the well exposed, low-grade metamorphic 3.4 - 3.5 Ga rock successions in the greenstone belts of the east Pilbara (Coppin Gap Greenstone Belt and North Pole Dome) in West Australia and of the Barberton Greenstone Belt (Buck Ridge volcano-sedimentary complex) in South Africa. They consist of mafic to ultramafic volcanic rocks, largely pillow basalts, with distinct intercalations of intermediate to felsic intrusive and volcanic rocks and of silicious sediments. The, partly volcaniclastic, silicious sediments of the Buck Ridge and North Pole volcano-sedimentary complexes form a regressive-transgressive sequence. They were deposited close to base level, and experienced occasional emersion. Both North Pole Chert and the chert of the Kittys Gap volcano-sedimentary complex in the Coppin Gap Greenstone Belt preserve the flat-and-channel architecture of a shallow tidal environment. Thickness and facies distribution appear to be genetically linked to systems, i.e. arrays, of syn-depositionally active, extensional faults. Structures at the rear, front and bottoms of these fault arrays, and the fault vergence from the basin margin towards the centre characterize the basins as due to surficial crustal collapse. Observations in the Pilbara craton point to a non-linear plan view and persistence for the basin-defining fault patterns over up to 50 Ma, during which several of these fault arrays became superposed. The faults linked high-crustal level felsic intrusions within the overall mafic rock suite via porphyry pipes, black chert veins and inferred hydrothermal circulations with the overlying felsic lavas, and more importantly, with the cherty sediments. Where such veins surfaced, high-energy breccias, and in the case of the North Pole Chert huge barite growths, are juxtaposed with the otherwise generally low-energy sediments. Such localities are interpreted as sites of hydrothermal vents. Within this large-scale geological context, many environments on the micro-scale were habitable for life, such as hydrothermal vents and their vicinities, volcanic rock surfaces, subsurface sediments and sediment surfaces. These early collapse basins, hosting this bacterial life, are only partially comparable to Earthly analogues. A resemblance with Venus' coronae and the chaos terranes on Mars is suggested. This study forms part of an international project on Earth's Earliest Sedimentary Basins, supported by the Dutch Foundation Dr. Schürmannfonds. 2

  15. Sedimentology and geochemistry of surface sediments, outer continental shelf, southern Bering Sea

    USGS Publications Warehouse

    Gardner, J.V.; Dean, W.E.; Vallier, T.L.

    1980-01-01

    Present-day sediment dynamics, combined with lowerings of sea level during the Pleistocene, have created a mixture of sediments on the outer continental shelf of the southern Bering Sea that was derived from the Alaskan Mainland, the Aleutian Islands, and the Pribilof ridge. Concentrations of finer-grained, higher-organic sediments in the region of the St. George basin have further modified regional distribution patterns of sediment composition. Q-mode factor analysis of 58 variables related to sediment size and composition - including content of major, minor, and trace elements, heavy and light minerals, and clay minerals - reveals three dominant associations of sediment: 1. (1) The most significant contribution, forming a coarse-grained sediment scattered over most of the shelf consists of felsic sediment derived from the generally quartz-rich rocks of the Alaskan mainland. This sediment contains relatively high concentrations of Si, Ba, Rb, quartz, garnet, epidote, metamorphic rock fragments, potassium feldspar, and illite. 2. (2) The next most important group, superimposed on the felsic group consists of andesitic sediment derived from the Aleutian Islands. This more mafic sediment contains relatively high concentrations of Na, Ca, Ti, Sr, V, Mn, Cu, Fe, Al, Co, Zn, Y, Yb, Ga, volcanic rock fragments, glass, clinopyroxene, smectite, and vermiculite. 3. (3) A local group of basaltic sediment, derived from rocks of the Pribilof Islands, is a subgroup of the Aleutian andesite group. Accumulation of fine-grained sediment in St. George basin has created a sediment group containing relatively high concentrations of C, S, U, Li, B, Zr, Ga, Hg, silt, and clay. Sediment of the Aleutian andesite group exhibits a strong gradient, or "plume", with concentrations decreasing away from Unimak Pass and toward St. George basin. The absence of present-day currents sufficient to move even clay-size material as well as the presence of Bering submarine canyon between the Aleutian Islands and the outer continental shelf and slope, indicates that Holocene sediment dynamics cannot be used to explain the observed distribution of surface sediment derived from the Aleutian Islands. We suggest that this pattern is relict and resulted from sediment dynamics during lower sea levels of the Pleistocene. ?? 1980.

  16. Progress report on the effects of highway construction on suspended-sediment discharge in the Coal River and Trace Fork, West Virginia, 1975-81

    USGS Publications Warehouse

    Downs, S.C.; Appel, David H.

    1986-01-01

    Construction of the four-lane Appalachian Corridon G highway disturbed about 2 sq mi in the Coal River and 0.35 sq mi of the 4.75 sq mi Trace Fork basin in southern West Virginia. Construction had a negligible effect on runoff and suspended-sediment load in the Coal River and its major tributaries, the Little Coal and Big Coal Rivers. Drainage areas of the mainstem sites in the Coal River basin ranged from 269 to 862 sq mi, and average annual suspended-sediment yields ranged from 535 to 614 tons/sq mi for the 1975-81 water years. Suspended-sediment load in the smaller Trace Fork basin (4.72 sq mi) was significantly affected by the highway construction. Based on data from undisturbed areas upstream from construction, the normal background load at Trace Fork downstream from construction during the period July 1980 to September 1981 was estimated to be 830 tons; the measured load was 2,385 tons. Runoff from the 0.35 sq mi area disturbed by highway construction transported approximately 1,550 tons of sediment. Suspended-sediment loads from the construction zone were also higher than normal background loads during storms. (USGS)

  17. Hydrologic Controls on Sediment Retention in a Diversion-Fed Coastal Wetland

    NASA Astrophysics Data System (ADS)

    Keogh, M.; Kolker, A.; Snedden, G.; Renfro, A. A.

    2017-12-01

    The morphodynamics of river-dominated deltas are largely controlled by the supply and retention of sediment within deltaic wetlands and the rate of relative sea-level rise. Yet, sediment budgets for deltas are often poorly constrained. In the Mississippi River Delta, a system rapidly losing land to natural and anthropogenic causes, restoration efforts seek to build new land through the use of river diversions. At Davis Pond Freshwater Diversion, a new crevasse splay has emerged since construction was completed in 2002. Here, we use beryllium-7 (7Be) activity in sediment cores and USGS measurements of discharge and turbidity to calculate seasonal sediment input, deposition, and retention within the Davis Pond receiving basin. In winter/spring 2015, Davis Pond received 104,000 metric tons of sediment, 43.8% of which was retained within the basin. During this time, mean flow velocity was 0.21 m/s and turbidity was 56 formazin nephelometric units (FNU). In summer/fall 2015, Davis Pond received 35,100 metric tons of sediment, 82.1% of which was retained. Mean flow velocity in summer/fall was 0.10 m/s and turbidity was 55 FNU. The increase in sediment retention from winter/spring 2015 to summer/fall 2015 is likely due to the corresponding drop in water flow velocity, which allowed more sediment to settle out of suspension. Although high water discharge increases sediment input and deposition, increased turbulence associated with higher current velocity may increase sediment throughput and decrease the percent of sediments retained in the system. Sediment retention in Davis Pond is on the high end of the range seen in deltaic wetlands, likely due to the enclosed geometry of the receiving basin. Future diversion design and operation should target moderate water discharge and flow velocities in order to jointly maximize sediment deposition and retention and provide optimal conditions for delta growth.

  18. The effects of sample scheduling and sample numbers on estimates of the annual fluxes of suspended sediment in fluvial systems

    USGS Publications Warehouse

    Horowitz, Arthur J.; Clarke, Robin T.; Merten, Gustavo Henrique

    2015-01-01

    Since the 1970s, there has been both continuing and growing interest in developing accurate estimates of the annual fluvial transport (fluxes and loads) of suspended sediment and sediment-associated chemical constituents. This study provides an evaluation of the effects of manual sample numbers (from 4 to 12 year−1) and sample scheduling (random-based, calendar-based and hydrology-based) on the precision, bias and accuracy of annual suspended sediment flux estimates. The evaluation is based on data from selected US Geological Survey daily suspended sediment stations in the USA and covers basins ranging in area from just over 900 km2 to nearly 2 million km2 and annual suspended sediment fluxes ranging from about 4 Kt year−1 to about 200 Mt year−1. The results appear to indicate that there is a scale effect for random-based and calendar-based sampling schemes, with larger sample numbers required as basin size decreases. All the sampling schemes evaluated display some level of positive (overestimates) or negative (underestimates) bias. The study further indicates that hydrology-based sampling schemes are likely to generate the most accurate annual suspended sediment flux estimates with the fewest number of samples, regardless of basin size. This type of scheme seems most appropriate when the determination of suspended sediment concentrations, sediment-associated chemical concentrations, annual suspended sediment and annual suspended sediment-associated chemical fluxes only represent a few of the parameters of interest in multidisciplinary, multiparameter monitoring programmes. The results are just as applicable to the calibration of autosamplers/suspended sediment surrogates currently used to measure/estimate suspended sediment concentrations and ultimately, annual suspended sediment fluxes, because manual samples are required to adjust the sample data/measurements generated by these techniques so that they provide depth-integrated and cross-sectionally representative data. 

  19. Tectonic Tilting and Reorganization of an Aluvial Fan to a Dendritic, Erosional River Network: the Example of the Ogallala Gravels

    NASA Astrophysics Data System (ADS)

    Willett, S.; McCoy, S. W.; Beeson, H. W.

    2016-12-01

    Deposition of the Mio-Pliocene Ogallala gravels in the foreland of the Rocky Mountains represents a great natural experiment in landscape evolution. Starting about 20 million years ago the flux of sediment shed off the Rocky Mountains increased, likely in response to dynamic uplift of the Rockies and tilting of the High Plains. This event shifted the high plains from a state of erosion to deposition. The flux of sediment formed huge alluvial megafans, burying the pre-existing river network and effectively "repaving" the western High Plains. Today we are witnessing the re-establishment of a new river network that is dissecting, capturing and eroding these sediment fans. By mapping the modern drainage basins and noting the channel gradient with respect to the normalized length parameter, χ, we identify two types of basins in the high plains. The remnants of the alluvial megafans are drained by long narrow basins with low normalized steepness and nearly no concavity, reflecting little incision since formation. In contrast, the fan remnants are surrounded by basins with a dendritic structure and efficient water and sediment routing, resulting in low values of chi and correspondingly low elevation. The boundary between these two basin types is commonly an erosional escarpment, demonstrating that the trellis basins are consuming the fan deposits by lateral divide migration and successive river capture. We present scaling arguments that show that lateral escarpment advance is nearly an order of magnitude faster than the upstream (knickpoint) propagation of channel entrenchment. This process of landscape evolution has important implications for water in the high plains. Deprived of an efficient channel network, fan surfaces remain uneroded, preserving the Ogallala sediments, and the poorly-drained, poorly integrated surface retains ephemeral water for wetland habitat and aquifer recharge, illustrating how the surface hydrology reflects landscape evolution on million year timescales.

  20. Effects of Elastoplastic Material Properties on Shallow Fault Slip and Surface Displacement Fields

    NASA Astrophysics Data System (ADS)

    Nevitt, J. M.; Brooks, B. A.; Minson, S. E.; Lockner, D. A.; Moore, D. E.; Ericksen, T. L.; Hudnut, K. W.; Glennie, C. L.; Madugo, C. M.

    2016-12-01

    A primary control on the geodynamics of rifting is the thermal regime. To better understand the geodynamics of rifting in the northern Gulf of California we systematically measured heat-flow across the Wagner Basin, a tectonically active basin that lies near the southern terminus of the Cerro Prieto fault. Seismic reflection profiles show sediment in excess of 5 s two-way travel time, implying a sediment thickness of > 7 km. The heat flow profile is 40 km long, has a nominal measurement spacing of 1 km, and is collocated with a seismic reflection profile. Heat flow measurements were made with a 6.5-m violin-bow probe. Most measurements are of good quality in that the probe fully penetrated sediments and measurements were stable enough to invert for heat flow and thermal properties. We have estimated corrections for environmental perturbations due to changes in bottom water temperature and sedimentation. The mean and standard deviation of heat flow across the western, central, and eastern parts of the basin are 220±60, 99±14, 1058±519 mW m-2, respectively. Corrections for sedimentation would increase measured heat flow across the central part of basin by 40 to 60%. We interpret the relatively high heat flow and large variability on the western and eastern flanks in terms of upward fluid flow at depth below the seafloor, whereas the lower and more consistent values across the central part of the basin are suggestive of conductive heat transfer. Based on an observed fault depth of 1.75 km we estimated the maximum Darcy velocities through the western and eastern flanks as 3 and 10 cm yr-1, respectively. Heat flow across the central basin is consistent with gabbroic underplating at a depth of 15 km and suggests that continental rupture here has not gone to completion.

Top